50 research outputs found

    Control Of Rigid Robots With Large Uncertainties Using The Function Approximation Technique

    Get PDF
    This dissertation focuses on the control of rigid robots that cannot easily be modeled due to complexity and large uncertainties. The function approximation technique (FAT), which represents uncertainties as finite linear combinations of orthonormal basis functions, provides an alternate form of robot control - in situations where the dynamic equation cannot easily be modeled - with no dependency on the use of model information or training data. This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models cannot easily be derived or are otherwise unavailable. The first aim is to analyze the uncertain combination of a test robot and prosthesis in a scenario where the test robot and prosthesis are adequately controlled by different controllers - this is tied to efficiency. We develop a hybrid FAT controller, theoretically prove stability, and verify its performance using computer simulations. We show that systematically combining controllers can improve controller analysis and yield desired performance. In the second aim addressed in this dissertation, we investigate the simplification of the adaptive FAT controller complexity for ease of implementation - this is tied to efficiency. We achieve this by applying the passivity property and prove controller stability. We conduct computer simulations on a rigid robot under good and poor initial conditions to demonstrate the effectiveness of the controller. For an n degrees of freedom (DOFs) robot, we see a reduction of controller tuning parameters by 2n. The third aim addressed in this dissertation is the extension of the adaptive FAT controller to the robust control framework - this is tied to robustness. We invent a novel robust controller based on the FAT that uses continuous switching laws and eliminates the dependency on update laws. The controller, when compared against three state-of-the-art controllers via computer simulations and experimental tests on a rigid robot, shows good performance and robustness to fast time-varying uncertainties and random parameter perturbations. This introduces the first purely robust FAT-based controller. The fourth and final aim addressed in this dissertation is the development of a more compact form of the robust FAT controller developed in aim~3 - this is tied to efficiency and robustness. We investigate the simplification of the control structure and its applicability to a broader class of systems that can be modeled via the state-space approach. Computer simulations and experimental tests on a rigid robot demonstrate good controller performance and robustness to fast time-varying uncertainties and random parameter perturbations when compared to the robust FAT controller developed in aim 3. For an n-DOF robot, we see a reduction in the number of switching laws from 3 to 1

    An Adaptive Controller Design for Flexible-joint Electrically-driven Robots With Consideration of Time-Varying Uncertainties

    Get PDF
    Almost all present control strategies for electrically-driven robots are under the rigid robot assumption. Few results can be found for the control of electrically driven robots with joint flexibility. This is because the presence of the joint flexibility greatly increases the complexity of the system dynamics. What is worse is when some system dynamics are not available and a good performance controller is required. In this paper, an adaptive design is proposed to this challenging problem. A backstepping-like procedure incorporating the model reference adaptive control is employed to circumvent the difficulty introduced by its cascade structure and various uncertainties. A Lyapunov-like analysis is used to justify the closed-loop stability and boundedness of internal signals. Moreover, the upper bounds of tracking errors in the transient state are also derived. Computer simulation results are presented to demonstrate the usefulness of the proposed scheme. Keywords: Adaptive control; Flexible-joint electrically-driven robot; FAT 2. Introduction Control of rigid robots has been well understood in recent years, but most of the schemes ignore the dynamics coming from electric motors and harmonic drivers that are widely implemented in the industrial robots. However, actuator dynamics constitute an important part of the complete robot dynamics, especially in the cases of high-velocity movement and highly varying loads[1],[2]. The main reason for using a reduced model is to simplify complexity of controller design. For each joint, consideration of the flexibility from the M. C. Chien was with the Department of Mechanical Engineering, National Taiwan University of Science and Technology. He is now with the Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, No. 195, Sec. 4, Chung-Hsing Rd., Chutung, Hsinchu, 310, Taiwan, R.O.C. (e-mail: [email protected]). 2 A. C. Huang is with the Department of Mechanical Engineering, National Taiwan University of Science and Technology. No. 43, Keelung Rd., Sec. 4, Taipei, Taiwan, ROC. (Tel:+886-2-27376490, Fax: +886-2-37376460, E-mail: [email protected]). (A. C. Huang provides phone number because he is the corresponding author.

    Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes

    Get PDF
    International audiencePartitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design a feedforward control term for improving the tracking accuracy of the desired references. In addition, consideration of actuator dynamics is important for a robot with high-velocity movement and highly varying loads. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. Three actuator control modes are considered in this study: (i) a torque control mode in which the armature current is well controlled by a current servo amplifier and the motor torque/current constant is known, (ii) a current control mode in which the torque/current constant is unknown, and (iii) a voltage control mode with no current servo control being available. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Two case studies are used to prove the validity of the proposed controller: a two-link manipulator and a six-link biped robot

    Естимација крутости и адаптивно управљање код попустљивих робота

    Get PDF
    Although there has been an astonishing increase in the development of nature- inspired robots equipped with compliant features,i.e.soft robots, their full potential has not been exploited yet. One aspect is that the soft robotics research has mainly focused on their position control only, whilest iffness is managed in open loop. Moreover, due to the difficulties of achieving consistent production of the actuation systems for soft articulated robots and the time-varyingnatureoftheirinternalflexibleelements,whicharesubjecttoplasticdeformation overtime,itiscurrentlyachallengetopreciselydeterminethejointstiffness. . In this regard, the thesis puts an emphasis on stiffness estimation and adaptive control for soft articulated robots driven by antagonistic Variable Stiffness Actuators (VSAs) with the aim to impose the desired dynamics of both position and stiffness, which would finally contribute to the overall safety and improved performance of a soft robot. By building upon Unknown Input Observer (UIO) theory, invasive and non-invasive solutions for estimation of stiffness in pneumatic and electro-mechanical actuators are proposed and in the latter case also experimentally validated. Beyond the linearity and scalability advantage, the approaches have an appealing feature that torque and velocity sensors are not needed. Once the stiffness is determined, innovative control approaches are introduced for soft articulated robots comprising an adaptive compensator and a dynamic decoupler. The solutions are able to cope with uncertainties of the robot dynamic model and, when the desired stiffness is constant or slowly-varying, also of the pneumatic actuator. Their verification is performed via simulations and then the pneumatic one is successfully tested on an experimental setup. Finally, the thesis shows via extensive simulations the effectiveness of adaptive technique ap- plied to soft-bodied robots, previously deriving the sufficient and necessary conditions for the controller convergence.Iako se danas izuzetno intenzivno radi na razvoju robota inspirisanih prirodom koje odlikuje elastična struktura, njihov puni potencijal jox uvek nije iskorišćen. Sa jedne strane, istraživanja u oblasti popustljivih robota su uglavnom fokusirana samo na upravljanje njihovom pozicijom, dok se krutost reguliše u otvorenoj sprezi. Pored toga, zbog poteškoća u postiznju konzistentne proizvodnje aktuatora i promenljive prirode njihovih elastičnih elemenata, koji su vremenom podlo_ni plastičnoj deformaciji, trenutno je izazov precizno odrediti krutost zglobova robota. U cilju doprinosa poboljšanja_u performansi i bezbednosti rada popustivih robota, teza prikazuje doprinos proceni krutosti i adaptivnog simultanog upravljanja pozicijom i krutosti antagonističkih aktuatora promenljive krutosti (VSA). Oslanjajući se na teoriju opservera nepoznatih ulaza (UIO), predložena su invazivna i neinvazivna rešenja za procenu krutosti u pneumatskim i elektromehaničkim aktuatorima i eksperimentalno verifikovana u slučaju druge grupe aktuatora. Pored linearnosti i skalabilnosti, ovi pristupi imaju privlaqnu osobinu da senzori momenta i brzine nisu potrebni. Teza predla_e inovativne sisteme upravljanja koji poseduju adaptivni kompenzator i dinamički dekupler. Predložene metode upravljanja demonstriraju mogućnost da kompenzuju nesigurnosti dinamičkog modela robota bez obzira da li je on pogođen električnim ili pneumatskim aktuatorima. Nakon simulacija, razvijeno upravljanje je verifikovano i na pneumatskom robotu. Na kraju teze, obimne simulacije pokazuju efikasnost adaptivne tehnike kada se primeni na robote sa fleksibilnim linkovima, prethodno izvodeći dovoljne i potrebne uslove za konvergenciju kontrolera

    Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

    Get PDF
    This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimation error using a gradient descent algorithm. The proposed discrete control is robust against all uncertainties as verified by stability analysis. The proposed robust control law is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results show the effectiveness of the control approach

    Direct adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization

    Get PDF
    In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the control design parameters to achieve a desired performance. It is worthy of note that to form control law by considering practical considerations just the available feedbacks are used. It is beneficial for industrial applications wherethe real-time computation is costly. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts. The stability is guaranteed in the presence of both structured and unstructured uncertainties. As a result, all system states are remained bounded. Simulation results on a two-link flexible-joint robot show the efficiency of the proposed scheme

    Modeling and Robust Control of Two Collaborative Robot Manipulators Handling a Flexibile Object

    Get PDF
    Robots are often used in industry to handle flexible objects, such as frames, beams, thin plates, rubber tubes, leather goods and composite materials. Moving long flexible objects in a desired path and also precise positioning and orienting the objects need a collaborative action between two robot arms. Most of the earlier studies have dealt with manipulation of rigid objects and only a few have focused on the collaborative manipulators handling flexible objects. Such studies on handling of flexible objects generally used finite element method or assumed mode method for deriving the dynamic model of the flexible objects. These approximation methods require more number of sensors to feedback the vibration measurements or require an observer. Unlike in the earlier studies, this thesis concerns with development of a dynamic model of the flexible object in partial differential equation (PDE) form and design of a robust control strategy for collaborative manipulation of the flexible objects by two rigid robot arms. Two planar rigid manipulators each with three links and revolute joints handling a flexible object is considered during the model development. Kinematic and dynamic equations of the flexible object are derived without using any approximation techniques. The resulting dynamic equation of the flexible object together with the manipulator dynamic equations form the combined dynamic model of the system. The developed complete system of dynamic equations is described by the PDE’s having rigid as well as flexible parameters coupled together. Such a coupled system must be controlled without using any form of approximation techniques and this is accomplished using the singular perturbation approach. By utilizing this technique, slow and fast subsystems are identified in two different time scales and controller is designed for each subsystem. The key issue in developing a control algorithm is that, it should be robust against uncertain parameters of the manipulators and the flexible object and it should also achieve the exponential convergence. Hence, for the slow subsystem, sliding mode control algorithm is developed and for the fast subsystem, a simple feedback control algorithm is designed. In general, usage of singular perturbation technique necessitates exponential stability of the slow and fast subsystems, which is evaluated by satisfying the Tikhnov’s theorem. Hence, the exponential stability analysis for both the subsystems is performed. Simulation results are presented to validate the composite control scheme. As a further consideration in the improvement of control law for the slow subsystem, two modified control algorithms are suggested. The first one focused on the avoidance of velocity signal measurement which is useful to eliminate the need of velocity sensors and the second controller aims at avoiding the complex regressor in the control law. The capability of those controllers is illustrated through simulation studies. The extension of earlier analysis has been carried out by developing the complete system of dynamic equations in joint space

    Modeling and Robust Control of Two Collaborative Robot Manipulators Handling a Flexibile Object

    Get PDF
    Robots are often used in industry to handle flexible objects, such as frames, beams, thin plates, rubber tubes, leather goods and composite materials. Moving long flexible objects in a desired path and also precise positioning and orienting the objects need a collaborative action between two robot arms. Most of the earlier studies have dealt with manipulation of rigid objects and only a few have focused on the collaborative manipulators handling flexible objects. Such studies on handling of flexible objects generally used finite element method or assumed mode method for deriving the dynamic model of the flexible objects. These approximation methods require more number of sensors to feedback the vibration measurements or require an observer. Unlike in the earlier studies, this thesis concerns with development of a dynamic model of the flexible object in partial differential equation (PDE) form and design of a robust control strategy for collaborative manipulation of the flexible objects by two rigid robot arms. Two planar rigid manipulators each with three links and revolute joints handling a flexible object is considered during the model development. Kinematic and dynamic equations of the flexible object are derived without using any approximation techniques. The resulting dynamic equation of the flexible object together with the manipulator dynamic equations form the combined dynamic model of the system. The developed complete system of dynamic equations is described by the PDE’s having rigid as well as flexible parameters coupled together. Such a coupled system must be controlled without using any form of approximation techniques and this is accomplished using the singular perturbation approach. By utilizing this technique, slow and fast subsystems are identified in two different time scales and controller is designed for each subsystem. The key issue in developing a control algorithm is that, it should be robust against uncertain parameters of the manipulators and the flexible object and it should also achieve the exponential convergence. Hence, for the slow subsystem, sliding mode control algorithm is developed and for the fast subsystem, a simple feedback control algorithm is designed. In general, usage of singular perturbation technique necessitates exponential stability of the slow and fast subsystems, which is evaluated by satisfying the Tikhnov’s theorem. Hence, the exponential stability analysis for both the subsystems is performed. Simulation results are presented to validate the composite control scheme. As a further consideration in the improvement of control law for the slow subsystem, two modified control algorithms are suggested. The first one focused on the avoidance of velocity signal measurement which is useful to eliminate the need of velocity sensors and the second controller aims at avoiding the complex regressor in the control law. The capability of those controllers is illustrated through simulation studies. The extension of earlier analysis has been carried out by developing the complete system of dynamic equations in joint space

    Autonomous Visual Servo Robotic Capture of Non-cooperative Target

    Get PDF
    This doctoral research develops and validates experimentally a vision-based control scheme for the autonomous capture of a non-cooperative target by robotic manipulators for active space debris removal and on-orbit servicing. It is focused on the final capture stage by robotic manipulators after the orbital rendezvous and proximity maneuver being completed. Two challenges have been identified and investigated in this stage: the dynamic estimation of the non-cooperative target and the autonomous visual servo robotic control. First, an integrated algorithm of photogrammetry and extended Kalman filter is proposed for the dynamic estimation of the non-cooperative target because it is unknown in advance. To improve the stability and precision of the algorithm, the extended Kalman filter is enhanced by dynamically correcting the distribution of the process noise of the filter. Second, the concept of incremental kinematic control is proposed to avoid the multiple solutions in solving the inverse kinematics of robotic manipulators. The proposed target motion estimation and visual servo control algorithms are validated experimentally by a custom built visual servo manipulator-target system. Electronic hardware for the robotic manipulator and computer software for the visual servo are custom designed and developed. The experimental results demonstrate the effectiveness and advantages of the proposed vision-based robotic control for the autonomous capture of a non-cooperative target. Furthermore, a preliminary study is conducted for future extension of the robotic control with consideration of flexible joints
    corecore