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CONTROL OF RIGID ROBOTS WITH LARGE UNCERTAINTIES USING THE FUNCTION APPROXIMATION TECHNIQUE
DONALD EBEIGBE

ABSTRACTThis dissertation focuses on the control of rigid robots that cannot easily be modeled due to complexity and large uncertainties. The function approximation technique (FAT), which represents uncertainties as finite linear combinations of orthonormal basis functions, provides an alternate form of robot control - in situations where the dynamic equation cannot easily be modeled - with no dependency on the use of model information or training data. This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models cannot easily be derived or are otherwise unavailable. The first aim is to analyze the uncertain combination of a test robot and prosthesis in a scenario where the test robot and prosthesis are adequately controlled by different controllers- this is tied to efficiency. We develop a hybrid FAT controller, theoretically prove stability, and verify its performance using computer simulations. We show that systematically combining controllers can improve controller analysis and yield desired performance. In the second aim addressed in this dissertation, we investigate the simplification of the adaptive FAT controller complexity for ease of implementation- this is tied to efficiency. We achieve this by applying the passivity property and prove controller stability. We conduct computer simulations on a rigid robot under good and poor initial conditions to demonstrate the effectiveness of the controller. For an n degrees of freedom (DOFs) robot, we see a reduction of controller tuning parameters by 2n. The third aim addressed in this dissertation is the extension of the adaptive FAT controller to the robust control framework - this is tied to robustness. We invent a novel robust controller based on the FAT that uses continuous switching 
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laws and eliminates the dependency on update laws. The controller, when compared against three state-of-the-art controllers via computer simulations and experimental tests on a rigid robot, shows good performance and robustness to fast time-varying uncertainties and random parameter perturbations. This introduces the first purely robust FAT-based controller. The fourth and final aim addressed in this dissertation is the development of a more compact form of the robust FAT controller developed in aim 3 - this is tied to efficiency and robustness. We investigate the simplification of the control structure and its applicability to a broader class of systems that can be modeled via the state-space approach. Computer simulations and experimental tests on a rigid robot demonstrate good controller performance and robustness to fast time-varying uncertainties and random parameter perturbations when compared to the robust FAT controller developed in aim 3. For an n-DOF robot, we see a reduction in the number of switching laws from 3 to 1.
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CHAPTER I

INTRODUCTION

Robot manipulators have been applied in industries to save labor and reduce cost, as well as put considerable distance between humans and environments/scenarios that might cause harm. Robots are used for various purposes; they are used in production lines, for rehabilitative purposes, for rescue operations, and even for space exploration, to name a few. Robots may or may not include environmental interaction. When a robot interacts by establishing contact with its environment, impedance control is a widely used controller as it gives a good trade-off between trajectory tracking accuracy, interaction force magnitudes, and control signal magnitudes [1]. For a robot without any environmental contact, pure motion controllers are preferred as they prioritize tracking accuracy.In this dissertation, we consider the control of rigid robots. Rigid robots can be modeled using Euler-Lagrange equations, which are derived by the variational method - a powerful modeling technique - whose use of energy functions in terms of generalized variables leads to the definition of the Lagrangian function [2]. For a robot, the Euler-Lagrange equation is defined as
(1.1)
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where q ∈ Rn is the generalized coordinate, n is the number of degrees of freedom, and τ 2 Rn is the generalized force. The Lagrangian L 2 Rn of the system is the difference of the kinetic and potential energy.Multivariable control makes it possible to control robots that have dependent joint motions where the dynamics of one joint affects the dynamics of others. Two main classes of robot control are adaptive control and robust control.Most adaptive controllers are designed to handle system uncertainties that vary with time by learning the uncertain parameters of a robot via update laws. The adaptive inverse dynamics approach [3,4] uses the inverse of the estimate of the inertia matrix. The drawback of this method is that although the inertia matrix is nonsingular, its estimate may be singular, thereby leading to numerical problems. Several adaptive control schemes address the problem of singularity of the inertia matrix estimate [4-6]. Some adaptive control schemes use joint acceleration feedback [4,6,7], which might prove difficult or costly to measure due to noise. Slotine and Li developed a controller that uses the regressor matrix and eliminates the need for joint acceleration feedback [3].Most robust controllers are designed to give desirable performance over a given range of system uncertainties by having a fixed structure. Early research on robust control used feedback linearization of the nonlinear robot dynamics along a predescribed trajectory [8,9]. An exact linearization approach that used the positive definite property of a robot’s inertia matrix was developed [10]. Methods like the small-gain theorem [11-18] and variable structure [19-21] have been successfully used to develop various robust controllers. However, most variable structure control use discontinuous switching laws that induce chattering, which might excite high- frequency unmodeled dynamics.A linear parameterization of the dynamic equations of a robot yields a regressor matrix and a parameter vector, but a minimal parameterization can always be 
2



found for any robot [22,23]. The linear parameterization property has been employed by regressor-based adaptive control [24-27] and regressor-based robust control [28]. Some regressor-based controllers use Altered forms of the regressor matrix [29,30]. A regressor-based sliding mode controller was developed based on the variable structure control scheme [28]. Regressor-based robust impedance controllers have been developed for a test robot/prosthesis [27,31-34].Some adaptive controllers use neural networks and fuzzy systems [35,36]. Neuro-fuzzy controllers use the universal approximation property and the linear parameterization property. Neuro-fuzzy controllers are advantageous in terms of fault tolerance, parallelism, and excellent learning abilities [37]. The unknown parameters of neural network controllers and fuzzy controllers can be tuned offline. Lyapunovbased techniques have been used to develop neural network controllers and fuzzy controllers that have the ability to tune their unknown parameters online with adaptation laws.In recent decades, researchers have combined adaptive control and robust control to take advantage of the beneffls of both control methods [27, 38-41]. Many robust adaptive control methods [42-44] require the variation bounds of the timevarying parametric uncertainties to be known. Despite advances in nonlinear robot control, there is still need for improvement in adaptive control and robust control especially in mathematical understanding and more practical applications to a wide range of robots. Most mathematical models of robots contain uncertainties. Traditional robust controllers, such as sliding control, require the availability of the uncertainty variation bounds. If the bounds are not available, traditional adaptive control is applicable if the uncertainty is time-invariant due to the nature of the adaptation laws. However, the uncertainties may be time-varying with uncertain bounds and therefore traditional robust and adaptive control methods become unfeasible. The function approximation technique (FAT)-based controller designs overcome the 
3



above-mentioned problems and do not require training data for implementation. By representing uncertainties as orthonormal basis functions, we have a more general model that can be applied to a vast number of systems. Adequate control is achieved by simply updating the weight matrices.
1.1 Passivity

Masses, springs, and dampers can be used to build passive mechanical systems. Passive systems are dynamic systems that exchange energy with their environments. In a passive system, the rate of energy flow into a system cannot be less than the increase in stored system energy [2]. This implies that the energy stored by a passive system cannot exceed the energy supplied to it from the outside. When there is dissipation in a passive system, the total stored energy is always less than the total supplied energy. Hence, passive systems satisfy the energy conservation property
Energy Stored = Energy Supplied + Dissipation

Consider a dynamic system with vector input (generalized forces) τ and vector output (generalized coordinates) q. The system is said to be passive from τ to q if there exists 
a > 0 such that
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8τ and T > 0 [45]. The term qrτ has units of power, so the term on the L.H.S of Eqn. (1.2) is the system energy produced during the interval [0 T]. This means that the total amount of dissipated system energy is lower bounded by —a. The term passivity-based control (PBC) was first introduced [46] to define a controller that makes the closed loop system passive. PBC was first done in the context of adaptive control, as it was shown that the dynamics of a robot defines a passive map [46]. Also, parameter estimators have been shown to be passive [47].



Robot models have the passivity property and several control techniques take advantage of this property [46,48]. For rigid robots, passivity is implied by the skew-symmetry property. This property relates the inertia matrix to the Coriolis matrix. The control objective in PBC is the preservation of the energy conservation property using desired energy and dissipation functions
PBC ^ Energy Shaping + Damping Assignment

The energy shaping approach of PBC gives the following advantages:
• It helps not only to ensure system stability, but it also helps to improve system performance.
• Using and preserving the system structure, it helps give physical representations to control actions, and also helps incorporate physical knowledge of the system.
• Energy serves as a common language that is familiar to professionals from different helds.

1.2 Function Approximation Technique

Robots are subject to various structured and unstructured uncertainties. Structured uncertainties arise from uncertainties in robot parameters, such as link lengths, center of mass, and moment of inertia, while unstructured uncertainties arise from unmodeled dynamics such as external disturbances and friction [49,50]. Traditional adaptive control is well suited for handling structured uncertainties and low-frequency unstructured uncertainties. Traditional adaptive control is likely to fail in the presence of high-frequency unstructured uncertainties, and also in the presence of large and abrupt changes in the robot parameters, such as when a robot’s payload suddenly changes [51—53]. Traditional robust control guarantees good performance in 
5



the presence of large and abrupt changes in robot parameters, and low-frequency and high-frequency unstructured uncertainties, especially when the disturbance bound is not exceeded [52,54]. However, it is possible that both structured and unstructured uncertainties exist, in which case traditional robust and adaptive control methods are not feasible [55]. The function approximation technique (FAT) controller addresses this problem by providing reliable robot control in the presence of time-invariant and time-varying uncertainties.In contrast to regressor-based control, the function approximation technique (FAT) based control provides a means of robot control for which the calculation of the regressor matrix is not needed. Furthermore, in contrast to most regressor-free control, FAT control does not require training data for controller implementation.The Stone-Weierstrass theorem [56-58] shows that orthonormal basis functions provide a universal approximator for any nonlinear dynamic system with arbitrary accuracy. The FAT controller is developed based on the fact that any matrix function F(t) in a Hilbert space can be approximated by a finite linear combination of orthonormal basis functions [55] such that

6

(1.3)
under the assumption that a sufficient number of basis function is used. The term W is a weight matrix and Z(t) is a time-varying vector comprised of the basis functions zi(t). Assuming there exists a function F(t) ∈ Rraxp, and that each matrix element



in Eqn. (1.3) uses the same number of orthonormal basis functions β, we can write

(1.4)
where, for the sake of ease of notation, the dependence of Z on t is not explicitly indicated here and in the sequel. The FAT controller allows the control of robots in the presence of parametric uncertainties by employing basis functions to account for the time-varying uncertainties in the robot dynamics [59]. If a real-valued periodic or aperiodic function satisfies the Dirichlet conditions, then it is equal to the sum of its Fourier series within a time interval [60]. Dirichlet conditions are:

1. The function is absolutely integrable over the time period.
2. The function has a finite number of extrema over the time period.
3. The function has a finite number of discontinuities over the time period.

7



An aperiodic function can be assumed to be periodic if it is restricted to a limited time interval. Since the inertia matrix, Coriolis matrix, and gravity vector are functions of the generalized coordinate, which is continuous, they satisfy the Dirichlet conditions [61]. This allows the use of Fourier series (FS) as our orthonormal basis functions. The duration of the fundamental period and the number of frequencies play a big role in the controller performance when FS are used in the development of FAT controllers. In determining the proper value for the fundamental period duration of the FS expansion for good controller performance for repetitive tasks, it was shown that the least common multiple (LCM) of fundamental period durations of the desired trajectories of the joints is required [37]. Using FS for uncertainty estimation does not require state feedback. This is because the uncertainties are considered as time-varying functions, rather than functions of state variables. Increasing the number of FS terms will reduce the approximation errors. However, for practical implementation, the number of FS terms should be carefully selected to obtain a good trade-off between controller accuracy and hardware limitations.A time-varying scalar function f (t) defined on [t1, t2] that satisfies Dirichlet’s conditions can be expressed as

8

where a1 and ak are Fourier series coefficients, ωk = 2p,'' are the frequencies, and P is the fundamental period of f (t). The finite-term Fourier series approximation is given
(1.5)

as
and can be written as

(1.6)
(1.7)



where

(1.8)
We will now prove that the Fourier series representation of Eqn. (1.6), which is used in this dissertation, has the universal approximation capability.
Proposition I.1 Let f (t) be a continuous real function on a convex set T ∈ R. Then 
for any arbitrary e > 0,

such that

Proof. Using the Stone-Weierstrass theorem [62], let Z be a set of continuous functionson T which take the form of Eqn. 1.6. Suppose =1 and =2 are given as
(1.9)

(1.10)

9



we have

which is also in the form of Eqn. (1.6). We can conclude Z is algebra by considering Eqns. (1.11) and (1.12), therefore satisfying the hrst condition of the Stone- Weierstrass theorem for Z. We now show that Z separates points on T. Choose the parameters of =(t), which is described by Eqn. (1.6), as

10

can get (1.12)
Hence Z is closed under multiplication and addition. For any arbitrary v ∈ R, we



(1.13)
Hence, Z vanishes at no point of T, and thus the three conditions of the Stone- Weierstrass theorem are satisfied. Therefore, the results follow by the Stone-Weierstrass theorem. ■

For an arbitrary vector F(t) ∈ H where H is a separable Hilbert space [55], the approximation error can be calculated as

(1.15)
The research literature is replete with papers discussing the development and implementation of adaptive FAT controllers. Most adaptive FAT controllers are based on Slotine and Li’s method [5] which eliminates the need for joint acceleration feedback in its implementation.The control of flexible robot arms is an area where several adaptive FAT controllers have been developed [63—67]. Huang and Chen [63] used the FAT and a backstepping approach to design an adaptive controller for flexible-joint robots with mismatched uncertainties. Huang and Liao [64] used the FAT to develop an adaptive sliding controller for flexible robot arms with time-varying uncertainties and unknown 

11

Therefore, the minimum error can be obtained when the Fourier coefficients are selected as wi = {f,zi). Hence with these coefficients, F(t) ∈ H is approximated as
(1.14)



bounds. Huang and Chen [65] developed an adaptive controller for electrically-driven flexible-joint robots using the FAT. Izadbakhsh and Masoumi [66] used the singular perturbation approach to develop a robust adaptive FAT controller for flexible robot joints. Huang and Liu [67] used the FAT to develop an adaptive controller for flexiblejoint robot manipulators by avoiding the use of Slotine and Li’s modification.Adaptive FAT controllers have been developed for impedance control of robots [68—72]. Huang and Chen [68] developed an FAT-based adaptive impedance controller for a rigid robot. The controller was developed for trajectory tracking in task space. Huang and Chen [69] developed an adaptive impedance FAT controller for flexible-joint robots. Huang and Chen [71] used the backstepping approach to design a model reference adaptive impedance FAT controller for an electrically driven flexible-joint robot. Huang and Chen [71] then extended the adaptive impedance FAT controller by including actuator dynamics for flexible-joint robots. A backstepping approach was used for the controller development and computer simulations were used to verify the controller performance. Kai and Huang [72] developed an adaptive impedance FAT controller for a rigid robot by avoiding the use of Slotine and Li’s modification and joint acceleration feedback.The FAT has also been used to develop controllers for a wide variety of robotic systems [58,73—77]. Izadbakhsh [58] developed an adaptive controller for an electrically-driven robot. Using a model-free observer, the controller avoids the dependency on velocity measurements. Chien and Huang [73] used the FAT to develop an adaptive controller for visual servoing robots. Huang and Chen [74] used the FAT and the backstepping approach to design an adaptive controller for an underactuated system, which was implemented on an inverted pendulum and a translational oscillator/rotational actuator (TORA) system via computer simulations. Kai and Huang [75] used the FAT to design an adaptive controller in which the robot dynamics and the joint acceleration feedback were lumped together and treated as unknown 
12



time-varying uncertainties. That controller gave good trajectory tracking in the presence of uncertain system dynamics. Huang and Kai [76] used the FAT to develop an adaptive linear quadratic (LQ) controller for robot manipulators with unknown dynamics. Brahmi et al. [77] developed an adaptive FAT controller for an upper-limb exoskeleton while considering actuator dynamics.All FAT-based controllers in the literature are in the form of adaptive control. This is due to the fact that the FAT control scheme was developed on the premise that large uncertainties in the robot dynamic equation of motion exist. Most robust adaptive FAT controllers use an update law and a robustifying term to improve the controller’s robustness. A technique called σ-modification is a popular method used to robustify adaptive FAT controllers [58,64,78]. The σ-modification approach does not need the disturbance bounds. The σ-modification prevents the estimate of the robot parameters from growing without bounds in the presence of system uncertainties. One of the drawbacks of σ-modification is that when the tracking errors are small, the adaptive parameters tend to converge to zero; that is, they unlearn the gain values that helped make the tracking errors small. Additionally, the tracking error does not converge to zero even when the disturbance is removed from the system.
1.3 Dissertation Research Problem Statement

Of the many advanced control methods existing in the literature, one majority uses model information for controller implementation and is based on the premise that a better description of the dynamics of a robot can be a vital tool in the development of reliable and efficient controllers. However, the controller is likely to fail if the derived model varies significantly from the actual robot model. Another majority, which does not emphasize knowledge of the robot dynamics, utilizes training data for controller implementation. However, these methods require a large amount of data during their training routines to ensure the resulting controller is effective.
13



Developing accurate mathematical models that describe the dynamics of robots can prove difficult and time-consuming, and this difficulty increases as the complexity of the robot increases. As the complexity of tasks increase, which in turn might lead to additional complexity in robot designs, the derivation of the regressor matrix - which is not unique but a minimal parmeterization can always be found - becomes tedious when a robot has more than four joints and contains several nonlinearities. This can lead to a scenario where an engineer decides that the dynamics of the robot are too costly to develop and that it might not be feasible to design a controller that relies on the knowledge of an extremely complex regressor matrix and the updating of an easy-to-obtain parameter vector which consists of measurable constants such as weight, moment of inertia, length, and gravity center. Additionally, the use of training data might become costly as the robot complexity increases. This is why the proportional-integral-derivative (PID) controller has dominated industrial control applications for decades due to its simplicity, model independence, and ease of implementation. However, in scenarios where model-based or model-free controllers are able to be effectively implemented, they offer better robustness than most PID controllers.This is where the FAT controller framework stands out because it does not require model information or training data, and is able to account for time-varying uncertainties while giving good performance. It combines the benefit of not needing the derivation of mathematical models with the advantages of model-based control theory, such as the utilization of structural properties for controller realization. Although there have been several theoretical and practical development of FAT controllers in recent decades, improving the efficiency of the FAT controller in terms of computation time, memory requirements, and ease of tuning and implementation is still an open research area. Furthermore, improving the robustness capabilities of FAT controllers over a wide range of uncertainties and fast time-varying disturbances remains an im
14



portant goal. The FAT framework is used as an underlying basis for all the results developed in this dissertation.
1.4 Research Aims

This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models are too costly to develop or are otherwise unavailable. By efficiency, we imply ease of implementation by reducing controller complexity. By robustness, we imply guaranteed performance over a given range of time-varying and time-invariant uncertainties without the need to retune controller parameters. We propose the following research aims.
Aim 1: Hybrid control of a prosthesis test robot. A need for an alternative platform where rigorous testing could be carried out on prosthesis without the need for human trials - hence avoiding any risk to amputees during the development stage - led to the design of a prosthesis test robot [79]. The prosthesis test robot and the prosthesis itself are relatively independent and typically use different controllers. The ability to combine separately designed controllers for a prosthesis and a prosthesis test robot had not been previously accomplished. We aim to accomplish this by developing a hybrid FAT controller for the combined control of the test robot and prosthesis.
Aim 2: Investigate simplification of the adaptive FAT controller. Assuming very little is known about the robot dynamics, using the adaptive FAT control framework, we investigate the simplification of the adaptive FAT controller design and implementation, which will be advantageous by having fewer tuning parameters when compared to current state-of-the-art adaptive FAT controllers while maintaining stability and good controller performance.
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Aim 3: Extend the FAT controller to the robust control framework. Our studies showed that all FAT controllers in the literature are in the form of adaptive control, with some of them having a robustifying term - the σ-modification - to improve controller robustness. However, when implemented on robots in practice, adaptive control exhibits problems during transient response and in the presence of fast time-varying uncertainties. To this end, we aim to extend the FAT controller to the robust control framework, which can eliminate the drawbacks of adaptive FAT control and guarantee desired performance over a given range of uncertainties.
Aim 4: Investigate a compact form of the robust FAT controller. Using the new robust FAT controller framework designed in Aim 3, we aim to investigate a compact form of the controller which will be advantageous by minimizing controller complexity and reducing tuning parameters while being applicable to systems written in state-space form. We then aim to compare its performance to the robust FAT controller developed in Aim 3.
1.5 Organization of this Dissertation

Some preliminaries are introduced in Chapter II. We discuss the robot models used in this dissertation. We also give overviews of some well-known controllers. This chapter serves as a foundation on which concepts and methods in subsequent chapters will be built on. Chapter III, which is connected to Aim 1, develops a hybrid controller for a test robot/prosthesis system using the FAT technique. Lyapunov functions and update laws are used to verify controller stability. The controller performance was 
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verified via computer simulations under good and poor initial conditions in the presence of ground reaction forces (GRFs).Chapter IV, which is connected to Aim 2, investigates the simplification of the adaptive FAT controller complexity. By using the passivity property, a simpler form of the adaptive FAT controller is developed. Controller stability is proven with the aid of Lyapunov functions and an update law, and good controller performance is demonstrated using computer simulations under good and poor initial conditions.Chapter V, which is connected to Aim 3, extends the adaptive FAT controller to the robust control framework by developing a robust FAT controller, which is characterized by a fixed control structure and continuous switching laws. Controller stability is verified by proving uniform ultimate boundedness of the closed loop dynamics. Simulation and experimental results validates good controller performance and robustness to large uncertainties and time-varying disturbances when compared to some state-of-the-art controllers.Chapter VI, which is connected to Aim 4, uses the robust FAT control framework developed in Chapter V to develop a robust FAT controller of lower complexity that can also be applied to systems described using the state-space model. Controller stability is proven via Lyapunov functions and a switching law. The performance is verified by subjecting the controller to the same simulation and experimental testing conditions used in Chapter V.
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CHAPTER II

BACKGROUND INFORMATION

In this chapter, we introduce and review preliminaries needed for the theoretical developments, simulation and experimental validation that will follow in subsequent chapters of this dissertation. The goal of this thesis is to develop controllers that perform well when little is known about the dynamics of a robot. To that end, we describe the robot models that will be used to verify the validity of developed controllers. The dynamic equation of motion for a rigid robot is briefly described in Section 2.1. The PUMA500 robot model is described in Section 2.2. The test robot/prosthesis is described in Section 2.3. The adaptive passivity (AP) controller is reviewed in Section 2.4. The adaptive function approximation technique (FAT) controller is reviewed in Section 2.5. Finally, the robust passivity (RP) controller is reviewed in Section 2.6.
2.1 Rigid Robot Dynamic Equation

The Euler-Lagrange approach [45], an energy-based approach, can be used to develop the dynamic equation of an n-DOF robot:
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where D(q) 2 Rn×n is the inertia matrix, C(q, q) 2 Rn×n is the matrix of Coriolis and centrifugal forces, g(q) 2 Rn is the gravity vector, τ 2 Rn is the torque input, and q 2 Rn is the vector of generalized coordinates.Under the influence of external forces, Eqn. (2.1) can be rewritten as
(2.2)

where T 2 Rn is the effect of external forces. Eqns. (2.1) and (2.2) have the following properties.

(2.3)
where Yr(q,q,q) 2 Rn×l is called the regressor matrix, and θ 2 Rl is a vector of 
parameters. l is the number of parameters, which is not unique, but a minimal pa

rameterization can always be found.Following the standard passivity-based control approach [31], we define
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2.2 PUMA Robot Model

The PUMA500 robot is a six-DOF robot but we only use three DOFs q1, q2, and q3 as shown in Fig. 1. The dynamic equations of the robot can be obtained by using the Denavit-Hartenberg convention to compute the kinematics, Jacobian, and finally, the Euler-Lagrangian equations of motion [45]. The dynamic equation of the PUMA500 robot can be found in Appendix A. The mechanical properties of the PUMA500 robot are shown in Table I below.

20

where qd ∈ Rn is the reference trajectory, q ∈ Rn is the robot joint trajectory, andΛ 2 Rn×n is a tunable diagonal matrix with positive entries. From Eqn. (2.4)
(2.8)(2.9)

Substituting Eqns. (2.8) and (2.9) into Eqn. (2.1) gives the open loop dynamics
(2.10)

For robots under the influence of external forces, substituting Eqns. (2.8) and (2.9) into Eqn. (2.2) gives the open loop dynamics
(2.11)



Figure 1: The PUMA500 robot has DOFs q1, q2, and q3.
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Table I: The mechanical properties of the PUMA500 robot.
Mechanical Property symbol Valuemass of link 2 m2 19.02 kgmass of link 3 m3 5.53 kglength of link 1 di 0.67 mdistance between link 1 and 2 d2 0.24 mdistance between link 2 and 3 d3 0.09 mlength of link 2 a2 0.43 mcenter of mass link 2 C2x -0.34 mcenter of mass link 3 C3x 0.14 mmoment of inertia (y) for link 1 hy 1.39 kg-m2moment of inertia (x) for link 2 12x 0.13 kg-m2moment of inertia (y) for link 2 12y 5.25 kg-m2moment of inertia (z) for link 2 12z 0.54 kg-m2moment of inertia (x) for link 3 13x 0.19 kg-m2moment of inertia (y) for link 3 13y 0.12 kg-m2moment of inertia (z) for link 3 13z 1.08 kg-m2acceleration of gravity g 9.81 m

Experimental Setup

The motion of the three joints of the robot are facilitated by brushed DC motors. The motors are coupled with incremental encoders that capture data from the joints. The motor is powered by a servo ampliher that delivers the voltage commanded by a controller to the motors. For implementation of a control scheme, we use input constants 0.0543 Nm/V, 0.0806 Nm/V, and 0.1078 Nm/V to capture the overall amplifier gains and the motor gear ratios for q1, q2, and q3 respectively. These amplifier constants convert voltage to an equivalent torque. Real-time control and instrumentation is handled by a dSPACE DS-1202 system that interfaces with Matlab / Simulink and ControlDesk software. The sampling frequency used was 1 kHz. The PUMA500 robot used for controller implementation is shown in Fig. 2 while the experimental setup is shown in Fig. 3.
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Figure 2: The PUMA500 robot used for real-time controller implementation. The robot is in Cleveland State University’s Controls, Robotics, and Mechatronics Lab.

Figure 3: Experimental setup for the PUMA500 robot control. The setup comprises 1) dSPACE MicroLabBox DS-1202, 2) Encoder input conversion box, and 3) PC for controller implementation.
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2.3 Test Robot/Prosthesis Model

Advances in the development of prosthetic legs have been demonstrated via human trials [80,81]. These tests are subject to severe constraints because there is little room for rigorous testing due to inherent health risks. In light of the need for a platform for rigorous testing without risk to amputees, a prosthesis test robot was designed [79,82]. The prosthesis test robot and the prosthesis itself are relatively independent and typically use different controllers. The model used is a 3-DOF model which uses a point-foot contact. Here, a 2-DOF test robot is combined with a 1-DOF prosthesis to yield a 3-DOF robotic system as shown in Fig. 4. The masses of links 1,2, and 3 are m1, m2, and m3 respectively. l2 and l3 are the lengths of links 2 and 3 respectively.

GRFFigure 4: The 3-DOF test robot / prosthesis model. The test robot has DOFs q1 and 
q2 while the prosthesis has DOF q3.
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Link 1, which emulates the vertical hip motion of a human, includes a vertical groove in which the hip can move up and down. Link 2 emulates the angular thigh motion of a human. Link 3 provides the angular knee motion of the prosthesis. The joint coordinates q1, q2, and q3 represent the vertical hip displacement, thigh angle rotation, and knee angle rotation respectively. The robotic model uses a point foot instead of an ankle for simplicity in the initial design and test of a proposed controller. The dynamic equation is given in Appendix B.
Ground Reaction Force Model

The ground reaction forces (GRFs) produced as a result of the point foot contact on a treadmill [31] is expressed as
(2.12)
(2.13)
(2.14)

(2.15)
where Sz is the vertical distance between the world frame origin and the belt (treadmill standoff), kb is the belt stiffness, Lz is the vertical position of the foot in the world frame, and bf is the belt coefficient of friction. Eqn. (2.13) is simplified because it always gives the same direction for the friction force vector, regardless of the direction of motion of the point foot relative to the belt or ground. This is because we placed a greater emphasis on the need for ease of implementation while generating external 
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disturbances for controller simulation, as opposed to the need for a more accurate friction model. A more accurate friction model can be found in [83]. There is no reason to suspect that the controller performance depends on the accuracy of the friction model, but future research should be conducted to verify this supposition.
2.4 Overview of Adaptive Passivity Control

This is a regressor-based controller that uses a known regressor matrix and an uncertain parameter vector. An adaptation law is used to yield a time-varying estimate of the true parameter vector. The closed loop dynamics of Eqn. (2.10) can be rewritten usingPproperty II.1 in Section 2.1 as
(2.16)

where the linearly parameterized form Y(q,q,v,v) 2 Rraxl is the regressor matrix, which has no direct dependence on the joint acceleration and θ 2 Rl is the parameter vector. When there is uncertainty in the robot parameters, the control law can be written as
where D, C, and g are estimates of D, C, and g respectively, and K 2 Rn×n is a tunable diagonal matrix with positive entries. Using property II.1 in Section 2.1,Eqn. (2.17) can be rewritten as

(2.18)

26

(2.17)



where θ is the estimate of the parameter vector θ. Combining Eqn. (2.18) with the open loop dynamics of Eqn. (2.16) gives

where Γ ∈ Rlxl is a tuneable diagonal matrix with positive entries. We also note that the size of the regressor matrix Y 2 Rraxl depends on n and l, which are the number of DOFs and the number of parameters respectively.
Theorem II.1 Using the controller of Eqn. (2.18) and the update law of Eqn. (2.21), 
the closed-loop dynamics of Eqn. (2.20) is asymptotically stable.

Proof. See [45] ■
2.5 Overview of Adaptive Function Approximation Technique Control

This is a regressor-free control approach that does not use the regressor matrix and parameter vector. This control method uses the FAT representation in its formulation. It uses weight matrices and matrices of basis functions for the approximation of the dynamic equation of a robot. An adaptation law provides a time-varying estimate of the weight matrices. The inertia matrix, Coriolis matrix, and gravity vector can be
27

(2.19)

(2.20)
which is rearranged to yield the closed loop dynamics

where θ = θ — θ is the estimation error of the parameter vector. Y(q, q,v,a) is written simply as Y in the sequel for ease of notation. The update law for the parameter estimate θ is (2.21)



rewritten using the FAT as

We note that although the external force T in Eqn. (2.11) is not included in the controller design, this can be taken care of by the gravity vector approximation. By substituting Eqn. (2.23) into Eqn. (2.17), the control law is written as
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cies are not shown explicitly for ease of notation. Using the FAT, the estimates of the inertia matrix, Coriolis matrix, and gravity vector can be written as

(2.22)

(2.23)

(2.24)
By substituting Eqn. (2.22) into Eqn. (2.10), the open loop dynamics becomes



Substituting Eqn. (2.25) into Eqn. (2.24) yields the closed loop dynamics 

(2.27)(2.28)(2.29)
matrices with positive entries, and σ(.) are positive numbers.
Theorem II.2 Using the update laws of Eqns. (2.27), (2.28), and (2.29), the closed 
loop dynamics of Eqn. (2.26) is asymptotically stable.

Proof. See [55]. ■
2.6 Overview of Robust Passivity Control

This is a regressor-based controller that uses a known regressor matrix and an uncertain parameter vector. As opposed to an adaptation law used by the AP controller, the robust passivity (RP) controller uses a continuous switching law to update the best estimate of the parameter vector (nominal values) to achieve robustness. Recall the controller of Eqn. (2.18)
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(2.26)

(2.30)



where p > 0 is the bound on the parametric uncertainty such that ∣∣ θ ∣∣ = ∣∣ θ0 — Θ ∣∣≤ p. 
μ is a positive dead zone parameter that alleviates chattering.
Theorem II.3 Using the switching law of Eqn. (2.32), the closed loop dynamics of 
Eqn. (2.31) is uniformly ultimately bounded (UUB).

Proof. See [45]. ■
Consider a nonautonomous system of the form

(2.33)
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Substituting Eqn. (2.30) into the open loop dynamics of Eqn. (2.16) yields the closed loop dynamics

(2.32)

(2.31)
The term θ is chosen as θ = θ0 + 5θ, where θ0 is the nominal parameter vector. The 
δθ additional switching term is chosen as



CHAPTER III

HYBRID FUNCTION APPROXIMATION TECHNIQUE CONTROL

The material is this chapter is based on [78] - which is one of the dissertation author’s publications. A hybrid function approximation technique (HFAT) controller is designed for the 3-DOF test robot/prosthesis described in Section 2.3. This is a good test bed for the hybrid controller because the system involves combining two seperately-designed robots, which are most likely to have different controllers. We combine the AP controller, which is a well-known control approach that can be modified to avoid long-term drift of estimated parameters [84], with the FAT controller due to its ease of implementation even when the model information and variation bounds are not known. We develop a modified control law for the hybrid controller, provide stability proof via Lyapunov functions, and simulate the controller on the 3- DOF test robot/prosthesis. The external ground reaction forces (GRFs) are treated as known (measured or estimated) disturbances by the controller. The controller’s aim is to maintain good position and angle tracking, and provide reasonable GRFs while keeping the control signals as small as possible in the presence of parametric uncertainties.
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Statement of Contribution

This chapter shows that the adaptive FAT controller can be successfully combined with existing control methods in situations where an adequately controlled robot is combined with a robot with unknown dynamics. This work provides a first step towards proving stability for a general class of hybrid FAT controllers. This work also provides the preliminary hrst steps towards the implementation of FAT controllers that will be discussed in subsequent chapters.
Publications:

• Y. Kondratenko, G. Khademi, V. Azimi, D. Ebeigbe, M. Abdelhady, S. Fakoo- rian, T. Barto, A. Roshanineshat, I. Atamanyuk, and D. Simon, “Information, communication, and modeling technologies in prosthetic Leg and robotics research at Cleveland State University," International Conference on Information 
and Communication Technologies in Education, Research, and Industrial Ap

plications, Kyiv, Ukraine, June 2016.
• D. Ebeigbe, D. Simon, and H. Richter, “Hybrid function approximation based- control with application to prosthetic legs," in Proceedings of IEEE Systems 

Conference, Orlando, Florida, April 2016.
3.1 Controller Development

Assumption III.1 A robot with n1 DOF is combined with a second robot with n2 

DOF. The resulting robotic system then yields an n-DOF robot such that n = n1 + n2.

Assumption III.2 The AP controller is used for the n1-DOF robot while the FAT 
controller is used for the n2-DOF robot. This is because the test robot, which is
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designed to test different prosthesis, is assumed to have its own established controller 
while the prosthesis uses a more advanced FAT controller.

Using Assumptions III.1 and III.2, the following candidate control law is chosen:
(3.1)

where K ∈ Rn×n is a tunable diagonal matrix with positive entries and
(3.2)

FAT controller (see Eqn. (2.25)). The candidate update laws are chosen as
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rewritten as
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Taking the time derivative of V along the trajectory of Eqn. (3.10) gives
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where T is any constant. We can use Eqn. (3.14) to write Eqn. (3.17) as
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This shows that the transient response is bounded by an exponentially decreasing function plus some constants. ■
3.2 Simulation Results

The HFAT controller is implemented on the 3-DOF test robot/prosthesis model described in section 2.3. The controller in Eqn. (3.1) is modified as 
(3.23)

where T is the external torque generated as a result of the GRFs. Note that the approximation of g captures the effects of both g and T. The initial weighting vectors were chosen as

where β is the number of basis functions used. The gains K and Λ, and the gain matrices in the update laws of Eqns. (3.3), (3.4), and (3.5), were manually tuned to obtain good controller performance:
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where Ik is the identity matrix. The reference trajectories qd(t), qd(t), and qd(t) were obtained from human walking data from the United States Department of Veterans Affairs (VA) [27,85], while derivatives were precomputed offline. The data were obtained during normal walking from an individual weighing approximately 78 kg.The number of basis functions β(:) is varied to observe its effect on the robotic system. The σ terms in Eqns. (3.3), (3.4), and (3.5) were chosen by trial and error to obtain σD = 30, σc = 30, and σg = 15. The simulation was done with the following constant basis functions:
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while all other elements in the ZD, Zc, and Zg matrices were set to 0 (see Section 2.5). We note that using a constant basis function mimics the use of a one-term Fourier series, which might not be sufficient for adequate approximation. However, we use this to improve computational efficiency.One constant basis function (βD = βc = βg = 1) is used for the first simulation. The system is simulated under two different conditions. The first condition is zero initial tracking errors while the second condition nonzero initial tracking errors. The simulation results are shown in Figs. 5 and 6. Figure 5 shows good tracking of the reference trajectories, while Fig. 6 shows the control efforts used to drive each joint and the vertical GRF. The RMS errors and the steady-state maximum control signal magnitudes are 5.8 × 10-4 m and 841 N for the hip joint, 0.0027 rad and 457.6 Nm for the thigh joint, and 0.0041 rad and 253.6 Nm for the knee joint. The maximum steady-state vertical GRF is 1266 N.

(3.25)



Figure 5: Hip vertical displacement q1, thigh angle q2, and knee angle q3 when one constant basis function is used in simulation. When there are no initial trajectory tracking errors, the simulated and reference trajectories are visually indistinguishable.

Figure 6: GRF and control signals for the hip vertical displacement, thigh angle, and knee angle when one constant basis function is used in simulation. The variables u1, 
u2, and u3 represent the control signals required to drive qi, q2, and q3 respectively to their desired trajectories. Fz is the vertical GRF produced by the point foot contact.

The approximate maximum able-bodied thigh moment and knee moment
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for a 78 kg subject are given in [86] as 70.2 Nm and 78 Nm respectively. The simulated thigh control signal is six times that of an able-bodied human, while our knee control signal is three times that of an able-bodied human. The steady-state simulated vertical GRF is 54% higher than the approximate 820 N vertical GRF of an able-bodied human. The control signals and vertical GRF are much higher than those for able bodied human walking, but this is not unexpected since the robot dynamics is completely different than human dynamics, and this controller has motion tracking as the objective.The estimates of some elements of the inertia matrix, Coriolis matrix, and gravity matrix are shown in Figs. 7 and 8. The initial weighting vectors were initializedto 0 which results in the estimates WD, WC, and Wg being initialized to 0. Despitethe fact that the estimated parameters are not guaranteed to converge to their true values in adaptive control, they all remain bounded. The FAT controller did not give good estimates because it prioritizes reference trajectory tracking over accurateparameter estimates.
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True values of C(3,1), C(3,2), C(3,3), g3Figure 8: estimates and along with their corresponding
We also simulated with 11 constant basis functions. We note that a comparison between 1 and 11 constant basis functions shows that they produce almost identical tracking results, with the main difference being the estimate of D, C, and 

g, which are influenced by tuning parameters. When varying the number of basis functions with both good and poor initial conditions, the overall performance of the controller remains virtually the same, with only slight differences in parameter estimation, control signal magnitudes, GRFs, and reference trajectory tracking. The differences are due to the differing initial transient responses of the system when different initial conditions are used.
3.3 Remarks

We investigate stable control of a robotic system when a controller is coupled with the adaptive FAT controller. A hybrid controller using a blend of the adaptive FAT control and the regressor-based control was developed for a 3-DOF system comprised 
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of a test robot and a prosthesis. We presented the controller development and showed uniform ultimate boundedness of the closed loop dynamics via Lyapunov functions and update laws. The simulation results showed good reference trajectory tracking in the presence of external GRFs when good and poor initial conditions were used.In the controller implementation, the external GRFs were not factored into the controller design but we still get good performance. This is because this effect was taken care of when the adaptive FAT controller approximated the uncertainties. Looking at Eqn. (3.23), we see that by combining the external forces with the gravity term as a lumped uncertain term, the adaptive FAT controller is able to account for this uncertainty using the update law of Eqn. (3.5). Although good controller performance was achieved using constant basis functions, using multiple-term time-varying basis functions would also yield good performance. Multiple-term time-varying basis functions require more computation but offer better performance in the presence of larger uncertainties. Although a constant basis function gave good performance, the time-varying estimates of the inertia matrix, Coriolis matrix, and gravity vector did not converge to their true values. Although time-varying basis functions could effectively account for uncertain dynamics, the convergence of the estimate is still not guaranteed because the controller prioritizes reference trajectory tracking. What matters is the overall sum of the inertia matrix, Coriolis matrix, and gravity vector estimates, rather than their individual estimates. We also note that the high control torques are due to the application of the maximum friction force to the point-foot, which is always in the positive direction. The horizontal GRF during actual walking will much lower.With the proposed hybrid controller in this chapter, we show via computer simulations that adequate testing of a prosthesis by a test robot can be achieved and their overall stability can be evaluated and guaranteed when the the test robot and the prosthesis both have different controllers. The controller developed in this 
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chapter is appealing in scenarios where two or more robotic systems with different control techniques need to be combined together and analyzed. The controller implementation in this chapter also serves as a preliminary to the implementation of the different FAT-based controllers that will be discussed in subsequent chapters.
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CHAPTER IV

SIMPLIFIED ADAPTIVE FAT CONTROL

The material is this chapter is based on [87] - which is one of the dissertation author’s publications. The use of more basis functions in the adaptive FAT controller leads to increased matrix dimensions, which in turn could lead to additional complexity, computational effort, and memory requirements. Our results in the previous chapter indicate that only one basis function is needed, but other applications may benefit from more basis functions. Although several adaptive FAT controllers exist with the aim of controller simplicity and implementation, there is still room for improvement. A new adaptive passivity function approximation technique (APFAT) controller that employs the passivity property towards controller simplification is developed. The controller simplicity is achieved by approximating an unknown time-varying function, which is defined as the combined product of the regressor matrix and parameter vector. We prove stability of the APFAT controller via a Lyapunov function and verify its effectiveness via computer simulations on the 3-DOF PUMA500 robot described in Section 2.2. Good controller performance is shown, as well as the added benefit of reduced tuning parameters.
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Statement of Contribution

The APFAT control method in this paper offers simplicity in controller design and implementation by eliminating the need for simultaneous approximation of the robot’s inertia matrix, Coriolis matrix, and gravity vector, while still maintaining stability and good performance. The passivity property of the robot dynamics is utilized in the controller simplification, and thus the APFAT controller does not require the calculation of the continuous Lyapunov equation. When compared to the simplified adaptive FAT controllers of [58,75,88,89], the APFAT controller is advantageous by having fewer tuning parameters, which makes it easier to implement, while still maintaining good tracking performance with reasonable control signal magnitudes.
Publications:

• D. Ebeigbe and D. Simon, “A passivity-based regressor-free adaptive controller for robot manipulators with combined regressor/parameter estimation," in Proceedings of ASME Dynamic Systems and Control Conference, Atlanta, Georgia, September - October 2016.
4.1 Review of Adaptive FAT Control without Slotine and Li’s Modification 

Here, we review the adaptive regressor-free controller [75] that improves on the adaptive FAT controller design in [68] by simplifying the controller structure. This is done without using Slotine and Li’s modifications and the passivity property. We note that the controllers in [58,88,89] are all based on [75], which we will refer to as the modified function approximation technique (MFAT) controller in this sequel for ease of notation. We rewrite the robot dynamic equation as
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Defining an unknown time-varying vector Ψ(t) 2 Rn as

where Wτ 2 Rra×ra^ is the estimate of the constant weight matrix Wτ, Z(t) ∈ Rra^ is the time-varying vector of basis functions, β is the number of basis functions, and e(t) is the approximation error vector, we rewrite Eqn. (4.5) to get the closed loop dynamics
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(4.8)

(4.5)

(4.6)(4.7)

(4.4)

(4.2)
(4.3)we simplify Eqn. (4.1) as

Note that we write Ψ instead of Ψ(t) for ease of notation. The control law is given as

where Ψ ∈ Rn is the estimate of Ψ, Kp ∈ Rn×n is the tunable proportional gain, 
Kd ∈ Rn×n is the tunable derivative gain, and e = q — qd is the tracking error. Using Eqn. (4.4), we rewrite Eqn. (4.3) as

Using the FAT representation



where 7 2 Rn^×n^ is a tunable diagonal matrix with positive diagonal entries, and σ is a positive tunable scalar.
Theorem IV.1 The uniform ultimate boundedness of the error vector x is guaranteed 
when the update law of Eqn. (4.10) is used.

Proof. See [75].
4.2 Main Results Controller Development

Here, we develop a new adaptive FAT controller that improves on previous adaptive FAT controller design by reducing controller complexity. Recall the open loop dynamics of Eqn. (2.10)
(4.11)
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which using Property II.3 can be linearly parameterized as
(4.12)

Defining an unknown time-varying vector Ψ(t) 2 Rn as the product of the regressor matrix and parameter vector such that Ψ = Yθ, we write
(4.13)

Using the FAT representation where
(4.14)(4.15)

and defining the candidate control law as
(4.16)

we rewrite the open loop dynamics of Eqn. (4.13) as
(4.17)

where W = W — W. Consider the candidate update law
(4.18)

We now present the following lemmas that will aid in the stability analysis of theAPFAT controller.
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Lemma IV.1
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Proof. Using the fact that W = W — I~, we write

50



Property II.2 gives
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This implies uniform ultimate boundedness of r and W. ■

A summary of the comparison between the APFAT and the MFAT is shown in Table II. For an n-DOF robot, the MFAT controller has 4n + nβ + 1 tuning parameters and the APFAT controller has 2n + nβ + 1 tuning parameters. The APFAT controller has 2n fewer tuning parameters.
4.3 Simulation Results

The APFAT controller is verified via computer simulations on the PUMA500 robot described in Section 2.2 to test its effectiveness. We then compare it against the MFAT controller. We also note that the control laws and update laws of the APFAT and MFAT controllers can be found in Table II. We manually tune the APFAT and MFAT controller parameters to give good performance. The time-varying reference trajectories were selected as q1d = sin(2t), q2d = 0.25 sin(2t), and q3d = 0.5 sin(2t) — ι2, . These test conditions were chosen to demonstrate the effectiveness of the APFAT controller despite having fewer tuning parameters when compared to the MFAT controller.For the simulation, we use input constants that convert the robot control signals from Nm to V. The input constants capture the combined effect of gear ratios, amplifier gains, and motor torque constants. The input constants are 0.0543 V/Nm, 0.0806 V/Nm, and 0.1078 V/Nm, for q1, q2, and q3 respectively.
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Table II: Summary of APFAT and MFAT Controller Designs.

APFAT Controller Parameters

We tune the APFAT controller by selecting σ = 0.009. The initial weight matrix W and vector of basis functions Z were selected arbitrarily. The initial weight matrix
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and basis functions were

MFAT Controller Parameters

We tune the MFAT controller by selecting σ = 0.009. The initial weight matrix W, vector of basis functions Z, and number of basis functions β were the same with ones used in the APFAT controller. We chose T = π seconds, and the update law gain as 7 = 300I3^. The controller gains were chosen as Kd = diag([10 30 10]), 
Kp = diag([5 5 5]), Q = diag([20 30 20 20 30 20]) We note that the gain P is realized by solving the continuous Lyapunov equation AτP + PA = — Q.
4.3.1 Simulation 1 - Zero Initial Tracking Errors

We use zero initial tracking errors to evaluate the performance of the APFAT and MFAT controller. The tracking performance and control signals when zero initial conditions were used are shown in Fig. 9. We see that the both the APFAT and MFAT controllers gave good reference trajectory tracking for all the robot joints.
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The APFAT controller root-mean-square (RMS) errors were 0.013 rad, 0.004 rad, and 0.005 rad for q1, q2, and q3 respectively. We see that despite the larger control signals during the transient response phase, the steady-state control signal magnitudes are reasonable and are characterized by no chattering.

Figure 9: The trajectories for q1, q2, and q3 and their respective control signals u1, u2, and u3 when the APFAT and MFAT controllers were implemented with zero initial tracking errors.
Figure 10 shows a comparison of the estimate of the unknown time-varying vector Ψ with its actual value when good initial conditions were used. We note that Ψ is time-varying due to the time-varying nature of the reference trajectories. We see that the estimates of the elements of Ψ are bounded and converge to their true values, although the estimates are characterized by some fluctuations from the true values. Better convergence of estimates with fewer fluctuations can be achieved by increasing the controller gains. However, this can induce unwanted control signal chattering. In this simulation, we get a good trade-off between accurate reference trajectory tracking and good convergence of the estimates, while keeping control signal chattering at a 
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minimum.

Time (s)Figure 10: The estimates of the elements of Ψ and their actual values when the APFAT controller was implemented with zero initial tracking errors.
4.3.2 Simulation 2 - Nonzero Initial Tracking Errors

We use nonzero initial tracking errors to evaluate the performance of the APFAT and MFAT controller. The controller tracking performance and the control signals when poor initial conditions were used are shown in Fig. 11. We see that the APFAT and MFAT controllers still give good tracking performance with reasonable control signal magnitudes. The APFAT controller gave tracking RMS errors of 0.097 rad, 0.015 rad, and 0.047 rad for q1, q2, and q3 respectively. We see that control signals only differ during the transient response when compared to the control signals in Fig. 9. The estimate of the elements of Ψ also converge to their true values and remain bounded as seen in Fig. 12.A summary of the simulation results is shown in Table III.
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Table III: Summary of APFAT Controller Simulation. The smaller RMSE for each simulation and each joint is shown in bold font.

Figure 11: The trajectories for q1, q2, and q3 and their respective control signals u1, U2, and u3 when the APFAT and MFAT controllers were implemented with nonzero initial tracking errors.
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Figure 12: The estimates of the elements of Ψ and their actual values when the APFAT controller was implemented with nonzero initial tracking errors.
4.4 Remarks

For systems with many degrees of freedom, problems with the computational effort of FAT control can be encountered because of the large matrices that are involved, especially when many basis functions are used. This chapter developed a new FAT controller, which simplifies previous adaptive FAT controllers by eliminating the need for simultaneous approximation of a robot’s inertia matrix, Coriolis matrix, and gravity vector. The simplicity in controller design is achieved by approximating the combined product of the regressor matrix and the parameter vector, which is treated as an unknown time-varying function. An adaptive control approach was used to guarantee the stability of the APFAT controller via Lyapunov functions.The feasibility of the APFAT controller was verified on a three-DOF robot via computer simulations. The controller was then compared against the MFAT controller. The simulations showed good trajectory tracking and reasonable control sig
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nal magnitudes when the APFAT controller was implemented and compared against the MFAT controller under good and poor initial conditions. Under good initial conditions, the MFAT controller gave better tracking but had higher control signal magnitudes during the transient response phase. Under poor initial conditions, the APFAT controller gave better tracking while having lower control signal magnitudes during the transient response phase.In tuning the APFAT controller, the user first selects the number of basis functions while keeping in mind the computational effort that is required when a relatively large number of basis functions are used. The estimates of the weight matrices are usually initialized to zero. The adaptation gains and the controller proportional and derivative gains are adjusted to improve controller performance. In practice, higher update law gains might destabilize the system during the transient response. The σ-modification term is included and adjusted to robustify the update law and prevent the estimate of the robot parameters from growing without bounds in the presence of system uncertainties. The good estimates of the APFAT controller are a consequence of the good reference trajectory tracking by the controller. This is because all the uncertainties are lumped into a single uncertain function to be approximated. The lumped uncertainties can be regarded as the total disturbance acting on the system, which consists of the entire system dynamics, and in some cases, external disturbances. We note that the convergence of the estimates to their true values is not guaranteed. In practice, better controller performance can be achieved by using a large enough number of basis functions. In situations where the robot is under the influence of gravity, the performance can be improved by incorporating gravity compensation in the controller implementation. The APFAT controller requires the availability of time value during implementation. This is because it uses finite-term Fourier series when representing uncertainties.We note that the APFAT controller, in its current form, is applicable to 
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systems that can be described using the Euler-Lagrange equations of motion. The MFAT controller, although though having more tuning parameters, is applicable to systems that can be described using the Euler-Lagrange equations of motion and also to systems that can be described in state-space form. The APFAT controller is more likely to fail in the presence of significant time-varying disturbances and large and abrupt changes in the system parameters. Since the controller was developed for continuous-time systems, it is not applicable to discrete-time systems and modifications  will have to be made to accomodate this. Furthermore, the controller is more likely to fail in systems that have significant time delays.
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CHAPTER V

ROBUST FUNCTION APPROXIMATION TECHNIQUE CONTROL 

FRAMEWORK

The material in this chapter is based on [90] - which is one of the dissertation author’s publications. Current FAT control methods are in the form of adaptive control. This is due to the fact that the FAT control scheme was based on the premise that there are large degrees of uncertainty in the robot dynamic equation. When implemented on robots in practice, adaptive control exhibits problems during transient response [91]. In this chapter, we extend the FAT controller to the robust control framework - this is to help mitigate the drawbacks of adaptive FAT control - by developing the robust function approximation technique (RFAT) controller. Detailed stability analysis of the RFAT controller via Lyapunov functions - with the aid of the passivity property and continuous switching laws - show uniform ultimate boundedness of the closed loop dynamics. Using computer simulations and real-time implementation on the PUMA500 robot described in Section 2.2, we demonstrate good robustness of the RFAT controller to random parameter perturbations and time-varying disturbances when compared against the RP, AP, and AFAT controllers.
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Statement of Contribution

This chapter contributes in several aspects. Its main contribution is the extension of the adaptive FAT control to the robust control framework. Previously, all FAT control were in the form of adaptive control. This is the first time a robust FAT controller is developed by completely eliminating the need for update laws and instead using continuous switching laws for controller implementation which eliminates the drawbacks of adaptive FAT control. This controller is most attractive in scenarios where the dynamic equation of a robot cannot easily be developed due to the presence of large uncertainties and disturbances or is otherwise unavailable, and guaranteed performance is required over a given range of uncertainties without the need to retune controller parameters. The results in this paper are the first steps towards developing purely robust FAT-based controllers.A secondary contribution is related to the methods. We utilized three switching laws to account for uncertainties in the inertia matrix, Coriolis matrix, and gravity vector respectively. The use of three switching laws can be advantageous in scenarios where the uncertainties or disturbances have a more profound effect on a certain part of the robot dynamics. For example, in the rotational dynamics of a quadcopter [92], the absence of a gravity vector implies that the part of the control law that approximates the gravity vector is simply deleted during implementation. This allows for a conservative approach to not overcompensate for the effects of disturbances or uncertainties to attain good performance.
Publications:

• D. Ebeigbe, T. Nguyen, H. Richter, and D. Simon, “Robust Regressor-Free Control of Rigid Robots Using Function Approximations," IEEE Transactions 
on Control Systems Technology, 2019, DOI: 10.1109/TCST.2019.2914634.
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5.1 Controller Development
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where Wtd 2 Rn×n2βo, WtC 2 Rn×n2βc, and Wt 2 Rn×n2βg are the nominal weight OD OC Ogmatrices of the inertia matrix, Coriolis matrix, and gravity vector respectively. δWD 2 Rn×n2βΏ, jwt 2 Rra×ra2βC, and δWj 2 Rn×ra2βs are additional control terms to be defined later in this section. We note that the control law of Eqn (5.10) is defined in terms of the hxed nominal weight matrices WoD, WoC , and Wog which are not updated or changed in time. The nominal weight matrices are regarded as tuning parameters. This gives the advantage of avoiding drifts in the estimate of the weight matrices, which is one of the drawbacks of the AFAT controller that was addressed using σ-modification [58,64]. We also note that according to the Stone-Weierstrass theorem, there exist different weight matrices that yield good approximation for different reference trajectories. However, the use of a nominal weight matrix can yield desirable performance if the uncertainty bounds are not violated. This implies that good performance can be maintained if the difference between the nominal weight matrix and the true weight matrix lies within the uncertainty bound (see Eqns. (5.3), (5.4), and (5.5)).
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Substituting Eqn. (5.10) into Eqn. (5.2), we get
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where μD > 0, μc > 0, and μg > 0 are dead zones parameters.We now present the following lemma that will aid in the stability analysis of the RFAT controller.
Lemma V.1 If the switching laws of Eqns. (5.17), (5.18), and (5.19) are used, then 
the following holds:
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which can be used to rewrite Eqn. (5.20) as
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Therefore, from Eqns. (5.24) and (5.27),
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Evaluating Eqn. (5.31) along the closed loop trajectory of Eqn. (5.16)
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Using the relationships
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Eqn. (5.45) implies that V < 0 if
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Therefore, ∣∣x∣∣ < Δ for t ≥ 0. Finally, the boundedness of the trajectory error follows the inequality in Eqn. (5.52).
A summary of the RFAT controller is shown in Table IV.Table IV: Summary of RFAT Controller
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5.2 Simulation Results

The RFAT controller is verified via computer simulations on the PUMA500 robot described in Section 2.2. The RFAT controller performance is then compared with the well-known RP, AP, and AFAT controllers. The controller gains were manually tuned to give as little control signal chattering as possible while maintaining good reference trajectory tracking and reasonable control signal magnitudes. The RFAT, RP, AP, and AFAT controllers all have the gains K and Λ in common. Therefore, the same values were used for K and Λ in all controllers to achieve a good basis for comparing their performance.
RFAT Controller Parameters

for i, j ∈ [1, 3] where !k = 2T^ for k 2 [2, 20]. The value for T was chosen as T = π. We select the basis function due to its universal approximation capability (shown in Section 1.2). Based on our experience, we recommend tuning the nominal weight matrix of the gravity vector, as well as the nominal weight matrices that correspond to the diagonal of the inertia and Coriolis matrices respectively, while setting all other elements of the nominal matrices to zero. This process enhances the simplicity in selection of the nominal weight matrices. However, we note that the use of different nominal weight matrices while keeping the uncertainty bounds fixed can affect the 
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performance of the RFAT controller. The difference in controller performance will mainly be observed in the transient response. The nominal weight matrices and basis function matrices were arbitrarily selected. The nominal weight matrices were 

^d = μc = μg = 0.5. See Section 5.4 for the RFAT controller tuning/implementation process.
AFAT Controller Parameters

The controller gains were selected as K = diag 10 20 10 andΛ = diag 2 10 2 . The basis functions used were the same as the ones used in the RFAT controller. The update law gains were selected as QD1 = Qc1 = 5 × Iιso, and Q~1 = 150 × I60. The initial weight matrices were selected as WDij (0) = WCij (0) = Wgi (0) = 0 ∈ R20 for (i;j) ∈ [1; 3].
RP Controller Parameters

The regressor matrix and parameter vector used by the RP controller can be found in Appendix A. The deadzone was selected as μ = 0.1, the uncertainty bound was selected as p = 6, and the controller gains were selected as K = diag 10 20 10
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5.2.1 Simulation 1 - Zero Initial Tracking Errors

Here, we simulate the AP, RP, AFAT, and RFAT controllers on the nominal robot model using zero initial tracking errors. We arbitrarily select periodic reference trajectories q1d = sin(2t), q2d = 0.25sin(2t), and q3d = 0.5sin(2t) — 2 that satisfy the physical constraints of the PUMA500 robot.Figures 13 and 14 show the controller tracking performance and control signals respectively on the nominal robot model when zero initial tracking errors were used. We see good tracking by the AP, RP, AFAT, and RFAT controllers with reasonable control signals. Although their transient responses differ, the RFAT controller had the least tracking error, with a root-mean-square error (RMSE) error value of 0.014 rad, 0.003 rad, and 0.004 rad for q1, q2, and q3 respectively. We note that in steady-state, the tracking errors of the RP, AFAT, and RFAT controllers never really converge to zero, but stay bounded within a small region around 0 rad. This is because of the uniform ultimate boundedness of the RP, AFAT, and RFAT controllers. Over time, the steady-state tracking errors for the AP controller should converge to a zero value because of the AP controller’s global convergence property.
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Time (s)Figure 13: Simulation 1: The error trajectories as a percentage of the maximum reference value when the nominal robot model is used with zero initial tracking errors.

Time (s)Figure 14: Simulation 1: The control signals when the nominal robot model is used with zero initial tracking errors.
77



The estimates of the elements of the inertia matrix, Coriolis matrix, and gravity vector by the RPFAT controller are shown in Figs. 15, 16, and 17. It is seen that the estimates of the matrix, Coriolis matrix, and gravity vector are time-varying as the robot dynamics of Eqn. (2.1) is implicitly time-varying. The estimates do not converge to their true values because of the high degree of uncertainty of the robot dynamics. This is because the RFAT controller does use the robot dynamic equation.

Figure 15: Simulation 1: The inertia matrix estimate when the nominal robot model is used.
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Figure 16: Simulation 1: The Coriolis matrix estimate when the nominal robot model is used.

Time (s)Figure 17: Simulation 1: The gravity vector estimate when the nominal robot model is used.
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We assume that 20 basis functions gives sufficiently good approximations. Therefore, using ωg = 0.2 helps us evaluate η in Eqn. (5.42), and the Lyapunov function derivative V and the UUB radius 5 in Eqns. (5.44) and (5.46) respectively. The UUB radius was calculated as 5 = 0.5625. Figure 18 shows the UUB radius and the Lyapunov function derivative. The left figures show their values over the entire 15 s simulation, while the right figures show their values over the 0 ≤ t ≤ 0.2 s window. We see that ∣∣e∣∣ enters the ±5 boundary and does not leave it, and that V becomes positive the exact moment ∣∣e∣∣ enters the ±5 boundary at t = 0.056 s.

Figure 18: Simulation 1: The UUB radius 5, error norm ∣∣e∣∣, and Lyapunov function derivative V when the nominal robot model is used with zero initial tracking errors.
5.2.2 Simulation 2 - Fast Time-varying Payload

Here, we test the robustness of the AP, RP, AFAT, and RFAT controllers to a timevarying load on the third link of the robot. We use the periodic reference trajectories 
q1d = sin(2t), q2d = 0.25sin(2t), and q3d = 0.5sin(2t) — ξ∙. We use zero initialtracking errors to simulate the nominal robot model, while keeping the all controller 
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parameters unchanged. We add an unknown time-varying load to the third link of the robot after the AP, RP, AFAT, and RFAT controllers have all reached steady-state. We vary the mass of the third link using the equation 

where m3o is the nominal mass of the third link. Figure 19 shows the tracking performance when the time-varying load is added to the third link of the robot. We see that when the time-varying load is added to the robot’s third link after 5 s, the RFAT controller maintains good reference trajectory tracking while AP, RP, and AFAT controllers do not give good performance. We note that the effect of the time-varying load is more profound on the robot’s second link, which is evident by the larger tracking errors of q2 when compared to q1 and q3. Despite the fact that the RP controller is a robust controller, we see that the RP controller gave unsatisfactory performance, especially in q2. This is because the addition of the time-varying load violated the uncertainty bounds of the RP controller. Increasing the uncertainty bounds of the RP controller might yield better tracking but it induces unwanted control signal chattering. The AP and AFAT controllers, despite being adaptive controllers that do not use uncertainty bounds, do not give satisfactory tracking for all robot joints. This is because the update laws of the AP and AFAT controllers cannot keep up with the time-varying load. This is in line with one of the major drawbacks of adaptive control, which is decreased performance when the robot’s parameters change rapidly. We note that the AP and AFAT controllers will show improved performance when a slower time-varying load is used. The good tracking of the RFAT controller in Fig. 19 shows good robustness of the RFAT controller when compared to the AP, AFAT, and RP controllers.
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Figure 19: Simulation 2: The error trajectories as a percentage of the maximum reference value when the mass of the third link of the robot is varied

Time (s)Figure 20: Simulation 2: The control signals when the mass of the third link of the robot is varied
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5.2.3 Simulation 3 - Monte Carlo Simulation of Parameter Perturbation

Here, we compare the robustness performance of the RFAT controller against the RP controller by performing random parameter perturbations, while keeping the controller parameters unchanged. We do not compare them against the AP and AFAT controllers because the AP and AFAT controllers do not have fixed control structures like the RFAT and RP controllers. We evaluate the performance of the RFAT and RP controllers over 100 Monte Carlo simulations, where each simulation includes a random perturbation of the robot parameters from their nominal values in the range [—30%, +30%]. We evaluate controller robustness performance by computing the tracking RMSE and root-mean-square (RMS) control signal values of each joint. The tracking RMSE are calculated as a percentage of the maximum reference value, which are 1 rad, 0.25 rad, amd 0.5 rad for q1, q2, and q3 respectively.Figure 21 shows the RFAT and RP controller tracking performance over 100 Monte Carlo simulations. We see that the RFAT controller performs better than the RP controller by giving lower tracking RMSE for all three joints of the robot. The RFAT controller tracking RMSE (mean ± one standard deviation) are 0.0118 ± 0.0027 rad, 0.0032 ± 0.0009 rad, and 0.0028 ± 0.0004 rad for q1, q2, and q3 respectively. The RP controller tracking RMSE (mean ± one standard deviation) are 0.0253 ± 0.0121 rad, 0.0285 ± 0.0353 rad, and 0.0928 ± 0.1138 rad for q1, q2, and q3 respectively. The tracking RMSE of the RFAT controller in Fig. 21 demonstrates good robustness of the RFAT controller. Figure 22 shows the RFAT and RP controller RMS control signal values over 100 Monte Carlo simulations. The RMS control signal values for both controllers are reasonable and do not exceed 30 Nm, 100 Nm, and 10 Nm for q1, q2, and q3 respectively.A summary of the simulation results is shown in Table V.

83



Figure 21: Simulation 3: Monte Carlo results of the RFAT and RP controllers showing percentage RMS trajectory tracking errors when the robot parameters are randomly perturbed from their nominal values in the range [—30%; +30%].

Figure 22: Simulation 3: Monte Carlo results of the RFAT and RP controllers showing RMS control signal values when the robot parameters are randomly perturbed from their nominal values in the range [—30%; +30%].
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Table V: Summary of Simulation Results. Note that the results shown for simulation 3 are the average RMSE over 100 Monte Carlo simulations. The smaller RMSE for each simulation and each joint is shown in bold font.
qι RMSE(rad) q2 RMSE(rad) q3 RMSE(rad)

Simulation 1 RP controller 0.0212 0.0033 0.0146AP controller 0.0320 0.0055 0.0304AFAT controller 0.0350 0.0083 0.0067RFAT controller 0.0142 0.0030 0.0037

Simulation 2 RP controller 0.0235 0.0353 0.1098AP controller 0.0340 0.0187 0.0092AFAT controller 0.0344 0.0186 0.0092RFAT controller 0.0112 0.0029 0.0031Simulation 3 RP controller 0.0253 0.0285 0.0928RFAT controller 0.0118 0.0032 0.0028

5.3 Experimental Results

We implement the RFAT controller performance in real-time by implementing it on the PUMA500 robot described in Section 2.2. We compare the RFAT controller performance against the AFAT and RP controllers. The controller gains were manually tuned online to give as little control signal chattering as possible while maintaining good reference trajectory tracking and reasonable control signal magnitudes.
RFAT Controller Parameters

The controller gains were selected as K = diag[15 20 15] and Λ = diag[2 10 2]. The dead zone values were selected as μ∏ = μc = μg = 0.5. For the controller implementation, we use the 10-term Fourier series as the matrix of basis function. We note that βp = βc = βg = 10. The nominal weight matrices Wo(.) used is the same as the ones used in Section 5.2. The uncertainty bounds were selected as V⅛ = 2, ≠c = βg = 3, and ωD = ωc = 0.2.
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We note that although a larger number of basis functions might yield better performance, computational issues such as larger matrices and the need for larger memory arise during real-time implementation. This is why a trade-off between accuracy and computational efficiency is favorable during real-time implementation.
RP Controller Parameters

We use the same regressor matrix and nominal parameter vector used in Section 5.2. The controller gains were selected as K and Λ = diag[2 10 2]. The deadzone was selected as μ = 0.4 and the uncertainty bound was selected as p = 6. We note that dead zone values below 0.4 induce unwanted chattering in our experiment.
AFAT Controller Parameters

We use the same basis function and initial weight matrices used in Section 5.2. The controller gains were selected as K = Λ = diag[2 10 2]. The update law gains were selected as Q D = QC1 = 0.1 × I180, and Q~1 = 1 × I60.
5.3.1 Experiment 1 - Zero Initial Tracking Errors

Here, we use the periodic reference trajectories q1d = 0.5sin(2t), q2d = 0.25sin(2t), and q3d = 0.5sin(2t) — ^ to evaluate the performance of the RFAT, RP, and AFAT controllers. We use zero initial tracking errors for this experiment.Figure 23 shows the trajectory tracking performance for joints q1, q2, and 
q3 respectively. The RFAT controller gave better tracking performance than the RP and AFAT controllers. The tracking RMSE values for the RFAT controller were 0.0243 rad, 0.0063 rad, and 0.0192 rad for q1, q2, and q3 respectively. The tracking RMSE values for the RP controller were 0.0256 rad, 0.0186 rad, and 0.0383 rad for q1, q2, and q3 respectively. The tracking RMSE values for the AFAT controller were 0.1557 rad, 0.0499 rad, and 0.0973 rad for q1, q2, and q3 respectively. We note 
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that although the AFAT controller gave the worst tracking performance, the tracking errors eventually reduce as time progresses beyond the 6 s time shown in the hgure.

Figure 23: Experiment 1: Trajectory tracking performance when zero initial tracking errors were used.
Figure 24 shows the control signals of the RFAT, RP, and AFAT controllers. We see that the control signals are reasonable with little chattering. We note that the RFAT control signals remained within the amplifier saturation limits of ±5 V for 

q1, ±10 V for q2, and ±5 V for q3. The RP control remained within the amplifier saturation limits of ±5 V for q1, ±10 V for q2, but exceeded the amplifier saturation limit of ±5 V for q3 during the transient response. However, this did not cause any instabilities in the robotic system. We note that increasing the uncertainty bound T of the RP controller induces high frequency dynamics of the robot, leading to unwanted control signal chattering. We also note that the oscillatory nature of the AFAT control signal during the transient response, if large enough, can destabilize the system. This was why higher update gain values could not be used to improve
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the transient performance of the AFAT controller.

Figure 24: Experiment 1: Control signals when zero initial tracking errors were used.
5.3.2 Experiment 2 - Trajectory Tracking and Set-point Regulation

Here, we evaluate the performance of the RFAT and RP controllers by using a reference trajectory that has a time-varying phase and a regulation phase. The reference 
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trajectories were selected as

Figure 25 shows the reference trajectory tracking performance for joints q1, q2, and 
q3 respectively when the RFAT and RP controllers were implemented. We see that the RFAT controller also gave better tracking performance when compared to the RP controller. The tracking RMSE for the RFAT controller were 0.0143 rad, 0.0043 rad, and 0.0249 rad for q1, q2, and q3 respectively. The tracking RMSE for the RP controller were 0.0153 rad, 0.0262 rad, and 0.0669 rad for q1, q2, and q3 respectively. We see that the RFAT and RP controllers gave reasonable control signals in Fig. 26.
5.3.3 Experiment 3 - Nonzero Initial Tracking Errors

Here, we use the same reference trajectories as Experiment 1. We evaluate the RFAT and RP controller performance by using nonzero initial tracking errors. We use the initial conditions —0.2, and —1.2 for q1, q2, and q3 respectively. Although that both controllers give good tracking despite the use of poor initial conditions for all joints. The RFAT controller gave the least tracking error of 0.0511, 0.0190,and 0.0615 for q1 , q2 , and q3 respectively. The good reference trajectory tracking performance of the RFAT controller, which does not need the computation of a regressor matrix and parameter vector, shows the practical applicability of the RFAT controller to robots,
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Figure 25: Experiment 2: Trajectory tracking performance when zero initial tracking errors were used.
especially in scenarios where the dynamic equation of a robot is unavailable or is too costly to develop.We see that the RFAT controller and the RP controller both have similar performances during real-time implementation. We note that the RP controller uses model information to achieve this performance, while the RFAT controller uses a finite-term Fourier series representation to account for the entire system dynamics thereby avoiding the calculation of the dynamic equation. This makes it easier to apply the RFAT controller to a different robotic system because only the nominal weight matrices, uncertainty bounds, and controller gains need to be adjusted after selecting the number of basis functions. A summary of the experimental results is shown in Table VI.
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Figure 26: Experiment 2: Control signals when zero initial tracking errors were used.

Figure 27: Experiment 3: Trajectory tracking performance when nonzero initial tracking errors were used.
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Table VI: Summary of Experimental Results. Note that the smaller RMSE for each experiment and each joint is shown in bold font.
qι RMSE(rad) q2 RMSE(rad) q3 RMSE(rad)

Experiment 1 RP controller 0.0256 0.0186 0.0383AFAT controller 0.1557 0.0499 0.0973RFAT controller 0.0243 0.0063 0.0192Experiment 2 RP controller 0.0153 0.0262 0.0669RFAT controller 0.0143 0.0043 0.0249Experiment 3 RP controller 0.0570 0.0287 0.0728RFAT controller 0.0511 0.0190 0.0615

Time (s)Figure 28: Experiment 3: Control signals when nonzero initial tracking errors were used.
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5.4 Remarks

The FAT controller provides a means of robot control without the need for a regressor matrix. The FAT controller is able to give good performance in cases where the dynamic equation of a robot is completely unavailable. But all FAT control in the literature focused solely on adaptive control due to the large degree of uncertainty of the robot dynamic equation. This chapter focused on the extension of the FAT controller to the robust control framework by developing the RFAT controller via the passivity framework. When the robot’s inertia matrix, Coriolis matrix, and gravity vector are unavailable, uniform ultimate boundedness (UUB) of the RFAT controller was shown via detailed stability analysis.Using a three-DOF PUMA500 robot, we verihed the performance of the RFAT controller via computer simulations and experimental tests in the Control, Robotics and Mechatronics Lab at Cleveland State University. In simulation, the RFAT controller performance was compared with the RP, AP, and AFAT controllers and the RFAT controller was shown to give better robustness when the random parameter perturbations and fast time-varying loads were added to the robotic system. The experimental results on the PUMA500 robot showed that the RFAT controller gave good reference trajectory tracking and reasonable control signal magnitudes with little chattering.As seen in Tables V and VI, the small RFAT controller tracking errors in Simulations 1,2, and 3, and Experiments 1,2, and 3 show good performance of the RFAT controller. The small tracking errors of the RFAT controller in simulation 2, as well as the small standard deviations of the RFAT controller tracking errors in simulation 3 show good robustness. We note that the plots of the tracking performance are shown as errors instead of actual trajectories. This is because we plot several controller performance and the error plot is the best way to visually distinguish their performance.
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The adaptive FAT controller provides reliable control in the presence of time-varying uncertainties and unknown disturbance bounds. However, when the disturbance is large and fast time-varying, the controller is prone to failure because the adaptation laws cannot keep up with the changes. Increasing the adaptation law gains to remedy this issue creates stability issues during the transient response which can cause significant damage to a robot in real-time. This is why the notion of the unavailability of the uncertainty disturbance bounds in the FAT controller design was relaxed in the RFAT controller development. By regarding the uncertain disturbance bounds - which are placed on the weight matrices - as tuning parameters, the RFAT controller overcomes the susceptibility of the adaptive FAT controller to failure in the presence of large fast time-varying disturbances. This is achieved by the use of continuous switching laws. We utilized three switching laws to account for uncertainties in the inertia matrix, Coriolis matrix, and gravity vector respectively. The use of three switching laws can be advantageous in scenarios where the uncertainties or disturbances have a more profound effect on a certain part of the robot dynamics. For example, the absence of a gravity vector - like in the case of the rotational dynamics of a quadcopter [92] - implies that the part of the control law that approximates the gravity vector is simply deleted during implementation. This allows for a conservative approach to not overcompensate for the effects of disturbances to attain good performance. Additionally, it allows model information to be easily incorporated in the controller design. Further research could be done on improving the convergence of the RFAT controller’s estimates, despite the lack of information about the dynamic equation of the robot during its implementation.In terms of controller implementation, the number of DOFs need to be known ahead of time, and the number of basis functions needs to be selected. One constant basis might be used (as seen in Chapter III). Although this might work in simulation, it is most likely to fail during real-time implementation. This is because 
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from an approximation point of view, using a 1-term Fourier series does not yield a sufficiently good approximation of a time-varying function. For better performance during simulation and real-time implementation, several basis functions should be used. In selecting the number of basis functions, we first try an arbitrary number. If the performance is poor, the number is increased. However, a compromise between computational efficiency and tracking performance should be taken into account when selecting the number of basis functions. The nominal weight matrices and uncertainty upper bounds are selected via trial and error, and more flexibility in the selection of these values can be achieved by using a large number of basis functions. Therefore, while maintaining the same uncertainty bounds, lower values for the nominal weight matrices can be used. The uncertainty bounds can even be increased to improve robustness but care should be taken when doing this during real-time implementation so as not to induce unwanted chattering.The disturbance rejection capability of the RFAT controller improves with a large enough number of basis function. However, beyond a certain number of basis functions, unwanted control signal chattering will be observed. The RFAT controller might fail, especially during real-time implementation, if a small number of basis functions are used. Lower basis function numbers make it harder to tune the controller gains to get good performance. Furthermore, the RFAT controller is most likely to fail in the presence of significant system delay or when the system is discrete in nature. One of the main drawbacks of the RFAT controller is the presence of many tuning parameters, and the fact that the uncertainty bounds are regarded as tuning parameters. Improper selection of the uncertainty bounds will lead to poor performance.
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CHAPTER VI

COMPACT ROBUST FUNCTION APPROXIMATION TECHNIQUE 

CONTROL

The material in this chapter is based on [94] - which is one of the dissertation author’s pending publications. A purely robust controller which uses the FAT to represent the robot uncertainties was developed in Chapter V. The RFAT controller uses a fixed control structure and employs three continuous switching laws to account for uncertainties in the robot’s inertia matrix, Coriolis matrix, and gravity vector, thereby guaranteeing robustness and improved transient response over a given range of uncertainties. The RFAT controller also improves on the adaptive FAT controller designs by giving desirable performance in the presence of fast-varying payloads, unmodeled dynamics, and external disturbances. In this chapter, we improve on the RFAT controller by developing a compact robust function approximation technique (CRFAT) controller. We prove uniform ultimate boundedness via Lyapunov functions and a continuous switching law. Simulation results on a 3-DOF PUMA500 robot described in Section 2.2 shows good robustness of the CRFAT controller to random parameter perturbations when compared to the existing RFAT controller. We also show success in real-time experimental tests, which validates the practicality of the proposed controller.
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Statement of Contribution

The RFAT controller has several drawbacks during real-time implementation:1. The use of more basis functions leads to increased matrix dimensions, which in turn leads to additional complexity, computational effort, and memory requirements. This is because three continuous switching laws are evaluated at every time instant.
2. The number of nominal matrix elements needed in the RFAT controller implementation increases quadratically with the number of DOFs. Note that for an n-DOF robot, this value is 2n2 + n.
3. There is a significant number of tuning parameters required for controller implementation.This chapter contributes by presenting a new form of robust FAT control that addresses the above issues present in the RFAT controller. The novelty lies in simplicity of controller design and implementation by eliminating the need for simultaneous approximation of the robot’s inertia matrix, Coriolis matrix, and gravity vector. The controller simplicity is achieved by approximating an unknown time-varying function, which is defined as a lumped function containing the inertia matrix, Coriolis matrix, and gravity vector. When compared to the RFAT controller, the controller is advantageous by having fewer tuning parameters and having a complexity that grows linearly with the increase in the number of robot DOFs. Furthermore, the CRFAT controller is more attractive in scenarios where processing power and memory allocation is limited, due to its reduced computational effort and lower memory requirements while still maintaining stability, robustness, and model independence.The design in this chapter thus presents the simplest form of a robust FAT controller to date that can also be applicable to systems that can be modeled in the state-space form.
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Publications:

• D. Ebeigbe, T. Nguyen, and D. Simon,“Compact Robust FAT Control of RigidRobots Using Function Approximations," Submitted for publication, 2019.
6.1 Controller Development

Recall the dynamic equation of a robot without the effects of external forces
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We rewrite Eqn. (6.1) as
By defining an unknown time-varying vector φ(t) 2 Rn as

where φ(t) will simply be written as φ for ease of notation, we rewrite Eqn. (6.2) as

Using the FAT representation for the unknown time-varying vector φ, we write

where J^(t) 2 Rra^×ra is the weight matrix estimate, Z(t) 2 Rn'∙i is the time-varying vector of basis functions, β is the number of basis functions, and e(t) is the approximation error vector. We note that we will write W'(t) as W', Z(t) as Z, and e(t) as e

(6.5)(6.6)

(6.4)

(6.1)
(6.2)

(6.3)



in the sequel for ease of notation. Substituting Eqn. (6.5) into Eqn. (6.4) gives
(6.7)

We suppose the weight matrix W is uncertain, and there exists a nominal weight matrix Wo 2 Rra^×ra and an uncertainty bound p 2 R+ such that

Kp 2 Rn×n is a tuneable proportional gain, Kd 2 Rn×n is a tuneable derivative gain, e = q — qd is the tracking error, and δW is the additional control term which will be defined later in this section. Rewriting Eqn. (6.7) using Eqn. (6.9) gives
(6.11)

which is rewritten using Eqn. (6.10) to give 
(6.12)
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(6.8)

(6.9)
(6.10)

We dehne the candidate control law as

where



loop dynamics in state space form
(6.13)

where
and In 2 Rn×n is the identity matrix. Since A is Hurwitz, we define positive definite matrices P, Q ∈ R2n×2n such that P = Pτ, Q = Qτ, and AτP + PA = — Q. In hindsight, we select the switching law for the additional control term δWτ as

(6.14)
where μ 2 R+ is the dead zone parameter, which alleviates control signal chattering. We now present the following Lemma that will aid in the stability analysis of the CRFAT controller.
Lemma VI.1 If the switching law of Eqn. (6.14) is used, then the following holds:
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have
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critical point Ω = ι), which implies that
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Using the relationships

A summary of the CRFAT controller is shown in Table VII.
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Table VII: Summary of the CRFAT Controller

6.2 Simulation Results

To illustrate the effectiveness of the CRFAT controller, we apply it to the 3-DOF PUMA500 robot described in Section 2.2. The performance of the CRFAT controller is validated by comparing it against the RFAT controller via simulations. We note that to get a good basis for comparing controller performance, all simulation and experimental reference trajectories and conditions used here match those used in Chapter VI. We manually tuned the CRFAT controller to give good trade-off between tracking accuracy and control signal chattering.
Controller Parameters

The controller gains were selected as Kp = diag([5 5 5]), Kd = diag([10 30 10]), and 
Q = diag([20 30 20 20 30 20]). The uncertainty bound was selected as p = 20, and the dead zone value for the switching law was selected as μ = 0.5. We note that the gain P is realized by solving the continuous Lyapunov equation AτP + PA = — Q.
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The 30-term Fourier series was selected as the basis function such that

For the RFAT controller parameters, we use the simulation parameters given in Chapter V. We note that the number of basis functions used for the RFAT controller simulation is 20. Although we use more basis functions in the CRFAT, this is compensated by the fact that we only use one switching law for the CRFAT controller implementation. Also note that the number of nominal weight matrices to be tuned is not affected by the number of basis functions. See Section 6.4 for the CRFAT controller tuning/implementation process.
6.2.1 Simulation 1 - Zero Initial Tracking Errors

We simulate the CRFAT and RFAT controllers using zero initial tracking errors and compare their respective performance. Figure 29 shows the tracking performance of the CRFAT and RFAT controllers. We see that both controllers gave satisfactory tracking performance. The CRFAT controller had tracking root-mean-square error (RMSE) of 0.0095 rad, 0.0035 rad, and 0.0023 rad for q1, q2, and q3 respectively. The RFAT controller had tracking RMSE of 0.0142 rad, 0.0030 rad, and 0.0037 rad for q1, q2, and q3 respectively. The tracking RMSE of the CRFAT controller and RFAT
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controller are similar, despite the greater simplicity of the CRFAT controller.

Time (s)Figure 29: Simulation 1: The error trajectories when the nominal robot model is used with zero initial tracking errors.
Figure 30 shows the control signals of the CRFAT and RFAT controllers. The respective control signals are almost identical, and mainly differ during the transient response phase. The control signal magnitudes are reasonable for all joints. Figure 31 shows the estimate of ψ by the CRFAT controller and compares it to its true value. We see that the estimates of the unknown time-varying vector ιψ converge to their true values.
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Time (s)Figure 30: Simulation 1: The control signals when the nominal robot model is used with zero initial tracking errors.

Figure 31: Simulation 1: The estimate of ψ by the CRFAT controller when the nominal robot model is used with zero initial tracking errors.
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6.2.2 Simulation 2 - Fast Time-varying Payload

Here, we evaluate the robustness of the CRFAT and RFAT controllers by adding an unknown time-varying load to the third link of the robot. Figure 32 shows the error trajectories and control signal magnitudes of the CRFAT and RFAT controllers when an unknown time-varying load is added to the third link of the robot. We see that the CRFAT and RFAT controllers both gave good tracking performance, even after the unknown time-varying mass was added to the third link of the robot after 5 s. The control signal magnitudes of the CRFAT and RFAT controllers were reasonable for all joints.

Time (s) Time (s)Figure 32: Simulation 2: The error trajectories and control signals when an unknown load is added to the third link of the nominal robot model.
The CRFAT controller’s estimate of the unknown time-varying vector φ is shown in Fig. 33. We see that the CRFAT controller’s estimate of φ converges to its true value, both before and after the unknown time-varying load was added to the
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third link of the robot. The good performance of the CRFAT controller when the unknown time-varying load was added to the robot’s third link demonstrates good controller robustness.

Figure 33: Simulation 2: The estimate of ψ by the CRFAT controller when an unknown load is added to the third link of the nominal robot model.
6.2.3 Simulation 3 - Monte Carlo Simulation of Parameter Perturbation

While keeping the controller parameters unchanged, we compare the robustness of the CRFAT controller against the RFAT controller over 100 Monte Carlo simulations. Each Monte Carlo simulation is achieved by performing random parameter perturbations of the robot parameters from their nominal values in the range [—30%, +30%]. Controller performance is evaluated by computing the tracking root-mean-square error (RMSE) and root-mean-square (RMS) control signal values of each joint.The tracking performance of the CRFAT and RFAT controllers are shown in Fig. 34. The CRFAT and RFAT controllers both gave good tracking performance 
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for all joints of the robot. The CRFAT controller tracking RMSE (mean ± one standard deviation) is 0.0100±0.0020 rad, 0.0049±0.0019 rad, and 0.0023±0.0003 rad for q1, q2, and q3 respectively. The RFAT controller tracking RMSE (mean ± one standard deviation) is 0.0118±0.0027 rad, 0.0032±0.0009 rad, and 0.0028±0.0004 rad for q1, q2, and q3 respectively. The small tracking RMSE of the CRFAT controller demonstrates good controller robustness. The RMS control signal of the CRFAT and RFAT controllers are all reasonable as seen in Fig. 35.

Figure 34: Simulation 3: Monte Carlo results of the CRFAT and RFAT controllers showing showing percentage RMS trajectory tracking errors when the robot parameters are randomly perturbed from their nominal values in the range [—30%, +30%].
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Figure 35: Simulation 3: Monte Carlo results of the CRFAT and RFAT controllers showing RMS control signal magnitudes when the robot parameters are randomly perturbed from their nominal values in the range [—30%; +30%].
6.3 Experimental Results

We evaluate the performance of the CRFAT controller by applying it to the 3-DOF PUMA500 robot described in Section 2.2. The performance of the CRFAT controller is validated by comparing it against the RFAT controller. We note that, for the RFAT controller, we use the controller parameters used in Chapter V. The controller gains were manually tuned online to give as little control signal chattering as possible while maintaining good reference trajectory tracking and reasonable control signal magnitudes.
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Controller Parameters

6.3.1 Experiment 1 - Zero Initial Tracking Errors

For this experiment, we use the reference trajectories q1d = sin(2t), q2d = 0.25 sin(2t), and q3d = 0.5sin(2t) — ξ∙ and use initial positions that give zero initial errors to evaluate the performance of the CRFAT and compare it against the RFAT controller.Figure 36 shows the tracking performance of the CRFAT and RFAT controllers when zero initial tracking errors were used. We see that both the CRFAT and RFAT controllers gave good tracking performance for each joint. The CRFAT controller gave a tracking RMSE of 0.0210, 0.0151, and 0.0209 for q1, q2, and q3 respectively. The RFAT controller gave a tracking RMSE of 0.0243, 0.0063, and 0.0192 for q1, q2, and q3 respectively. The respective control signals shown in Fig. 37 are reasonable with acceptable levels of control signal chattering.
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Figure 36: Experiment 1: Tracking performance of the CRFAT and RFAT controllers when zero initial conditions were used.

Time (s)Figure 37: Experiment 1: Control signals of the CRFAT and RFAT controllers when zero initial conditions were used.
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6.3.2 Experiment 2 - Trajectory Tracking and Set-point Regulation

For this experiment, we evaluate the performance of the CRFAT and compare it against the RFAT controller by using reference trajectories that have a time-varying phase and a constant phase.The tracking performance is shown in Fig. 38. We see that the CRFAT and RFAT controllers gave good tracking of the reference trajectory in both the timevarying phase and constant phase of the reference trajectory. The CRFAT controller gave a tracking RMSE of 0.0185 rad, 0.0093 rad, and 0.0182 rad for q1, q2, and q3 respectively. The RFAT controller gave a tracking RMSE of 0.0143 rad, 0.0043 rad, and 0.0249 rad for q1, q2, and q3 respectively. Figure 39 shows that the control signals used by the CRFAT and RFAT controllers were both reasonable and were not characterized by excessive chattering.

Figure 38: Experiment 2: Tracking performance of the CRFAT and RFAT controllers when zero initial conditions were used.
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Time (s)Figure 39: Experiment 2: Control signals of the CRFAT and RFAT controllers when zero initial conditions were used.
6.3.3 Experiment 3 - Nonzero Initial Tracking Errors

For this experiment, we use the same reference trajectories as Experiment 1, but use nonzero initial tracking errors to evaluate controller performance. The tracking performance for this experiment is shown in Fig. 40. Despite the use of poor initial conditions, we see that the CRFAT and RFAT controllers both gave good tracking performance. The control signals of the CRFAT and RFAT controllers are both reasonable and are also not characterized by excessive chattering as shown in Fig. 41.
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Figure 40: Experiment 3: Tracking performance of the CRFAT and RFAT controllers when nonzero initial conditions were used.

Figure 41: Experiment 3: Control signals of the CRFAT and RFAT controllers when nonzero initial conditions were used.
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Table VIII: Summary of Simulation and Experimental Results. Note that the results shown for simulation 3 are the average RMSE over 100 Monte Carlo simulations. The smaller RMSE for each simulation/experiment and each joint is shown in bold font.
q1 RMSE (rad) q2 RMSE (rad) q3 RMSE (rad)Simulation 1 CRFAT 0.0095 0.0035 0.0023RFAT 0.0142 0.0030 0.0037Simulation 2 CRFAT 0.0096 0.0058 0.0026RFAT 0.0112 0.0029 0.0032Simulation 3 CRFAT 0.0100 0.0049 0.0023RFAT 0.0118 0.0032 0.0028Experiment 1 CRFAT 0.0210 0.0151 0.0209RFAT 0.0243 0.0063 0.0192Experiment 2 CRFAT 0.0185 0.0093 0.0182RFAT 0.0143 0.0043 0.0249Experiment 3 CRFAT 0.0505 0.0292 0.0710RFAT 0.0511 0.0190 0.0615

The good performance of the CRFAT controller when three different experimental tests were carried out without changing the controller gains demonstrates the practicability of the CRFAT controller to robotic systems.A summary of the simulation results and experimental results is shown in Table VIII.
6.4 Remarks

In this chapter, we developed a novel robust controller called the compact robust function approximation technique (CFAT) controller. The CRFAT controller offers simplicity in controller design and implementation. By using a fixed control structure, which is facilitated by a single continuous switching law, the CRFAT controller was designed to give desirable performance over a range of uncertainties provided the uncertainty bounds are not violated. We proved uniform ultimate boundeness of the 
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CRFAT controller via Lyapunov functions.We validated the CRFAT controller performance via computer simulations by comparing it against the RFAT controller. The computer simulations showed good robustness of the CRFAT controller to time-varying loads and random parameter perturbations. The simulation results showed that the CRFAT controller gave good tracking performance and good estimates of the unknown time-varying vector ψ. We note that the RFAT controller gives poor estimation of the inertia matrix, Coriolis matrix, and gravity vector due to the fact that it prioritizes reference trajectory tracking over accurate estimation. We hypothesize that avoiding simultaneous estimation of the inertia matrix, Coriolis matrix, and gravity vector by lumping them together as a single unknown time-varying function improves the accuracy of the estimates even when the controller prioritizes reference trajectory tracking. The process of estimating the lumped uncertainty term can be viewed as estimating the total disturbance on the system, which contains the entire dynamics of the system and external forces acting on it. The uncertainty bounds can be increased to enhance the disturbance rejection capability. Experimental tests on a three degree-of-freedom (DOF) PUMA500 robot showed good performance of the CRFAT controller when compared against the RFAT controller, which validates the practicality of the CRFAT controller for robotic applications.For the CRFAT controller implementation, the number of basis functions needs to be selected after first determining the number of DOFs. Using a low number of basis function might yield good performance but might also lead to poor robustness capabilities, while using a large number of basis functions might yield better robustness capabilities but might induce unwanted control signal chattering. If good performance is observed when using a large number of basis functions, we suggest reducing the number of basis functions while observing the system performance. This reduction in the number of basis functions should be stopped right before a degrada
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tion in controller performance is observed. In the CRFAT controller design, there are fewer nominal weight matrices to tune. There is only a single uncertainty bound to tune. More freedom in the selection of these values can be achieved by using a larger number basis functions. This is because one can intuitively see that the approximation capabilities of Fourier series are better when more terms are used. The gain Q in the continuous Lyapunov equation has to be increased until good performance is observed. This is because the solution of the continuous Lyapunov equation is used in the realization of the continuous switching law. The continuous Lyapunov equation is also dependent on the controller proportional and derivative gains, and thus these gains need to be also tuned to get good performance. We note that for better controller implementation, lower gain and uncertainty bound values can be selected during initialization, and by using a slider graphical user interface during real-time implementation, the values can be properly adjusted until the desired performance is observed. The deadzone value can also be selected using the above method to minimize control signal chattering.The CRFAT controller is proposed as a simpler design than the RFAT controller. When compared to the RFAT controller implementation, especially for practical robotic applications where processing power and memory allocation is limited, the CRFAT controller is a better choice due to its reduced computational effort and lower memory requirements while still maintaining stability, robustness, and model independence. Excluding the number of tuning paramaters, the drawbacks of the CRFAT controller are similar to that of the RFAT controller. The CRFAT controller is designed for continuous-time and might fall short when implemented on discretetime systems. It is also prone to failure when there is significant delay in the system. For better performance during high-speed operations, the CRFAT controller will need to be modified to capture the actuator dynamics.
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CHAPTER VII

CONCLUSION

In this dissertation, we set out to develop more reliable controllers for robots with large uncertainties. As accurate mathematical models are difficult to develop in practice, traditional model-based controllers become problematic when the uncertainties are signfficant. Furthermore, traditional model-free controllers require training data, which might prove cost ineffective, for practical implementation. We aimed to develop better controllers that are applicable in worst-case scenarios where the dynamics of a robot are unavailable or too costly to develop. To achieve this goal, we defined four aims.
Aim 1: Hybrid control of a prosthesis test robot

In Chapter III, we investigated the control of a test robot/prosthesis combination where the test robot already has an established controller that is different from that of the prosthesis. We developed a hybrid controller that combined the adaptive FAT controller with the adaptive passivity controller. We showed stability of the hybrid controller via Lyapunov functions and update laws. Simulation results showed good performance of the controllers on a test robot/prosthesis system under the influence of GRFs. This chapter provides an insight into the combination of different robotic systems, with each having its own controller, and proving stability of the combined
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system. This chapter also presents the first steps for developing general class of hybrid FAT controllers.
Aim 2: Investigate simplification of the adaptive FAT controller

In Chapter IV, we investigated ways to reduce the adaptive FAT controller complexity. We used the passivity-based approach to simplify the adaptive FAT controller design by using the FAT to represent an unknown time-varying function dehned as the combined product of the regressor matrix and parameter vector. We demonstrated controller stability by proving uniform ultimate boundedness of the closed loop dynamics via the use of a Lyapunov function and an update law. The effectiveness of the controller was verihed via computer simulations on 3-DOF robot. The controller developed in this chapter, when compared to existing adaptive FAT controllers, has fewer tuning gains and becomes attractive due to its ease of implementation.
Aim 3: Extend the FAT controller to the robust control framework.

In Chapter V, we extended the adaptive FAT control to the robust control framework. In FAT control existing in the literature, update laws are used for controller implementation which might lead to issues during the transient response when applied to robots in practice. We eliminated the need for update laws by using a fixed control structure and continuous switching laws for controller implementation - this gives the advantage of avoiding drifts in the estimate of the weight matrices, which is one of the drawbacks of the adaptive FAT controller that was addressed using σ-modihcation. We showed that the developed controller was stable by using a Lyapunov function to prove uniform ultimate boundedness of the tracking errors. Using computer simulations, via Monte Carlo simulations, we showed that the controller gave better robustness to random parameter perturbations - in the ±30% range - and fast time-varying uncertainties when compared to the AFAT, RP, and AP controllers. 
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Experimental tests showed the practicality for industrial applications.The use of three switching laws provide a conservative approach to not overcompensate for the effects of disturbances or uncertainties in the dynamics of a robot. The controller developed in this chapter provides the first steps towards developing more efficient and reliable purely robust FAT controllers.
Aim 4: Investigate compact form of the robust FAT controller.

In Chapter VI, we investigated a simpler and more compact form of the RFAT controller to enhance its applicability. We define an unknown time-varying function as a lumped function containing the inertia matrix, Coriolis matrix, and gravity vector. We then expressed the unknown time-varying function using the FAT for controller development. Using a state-space approach, we utilized a Lyapunov function and a continuous switching law to prove uniform ultimate boundedness of the closed loop dynamics. We validated the controller performance via computer simulations and experimental tests on a 3-DOF robot by comparing it against the RFAT controller, and good controller performance was shown in the presence of random parameter perturbations and fast time-varying uncertainties. This controller allows for a more general range of application in systems that can be written using the state-space approach, as opposed to the Euler-Lagrange approach-based RFAT controller. Furthermore, this controller provides a simpler robust FAT control that eliminates the need for simultaneous approximation of the inertia matrix, Coriolis matrix, and gravity vector.
Future Perspectives

In control problems where robust control is preferred (such as in the presence of high frequency unstructured uncertainties, or large and abrupt changes in robot parameters), most FAT controllers tend to give undesirable performance. The robust FAT controllers developed in this dissertation gives better performance for robots in scenar
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ios where the dynamics are uncertain or too costly to develop, or when there are large and abrupt changes in robot parameters; this includes high frequency unstructured uncertainties that cannot easily be modeled. The robust FAT controllers guarantee robustness by exploiting variation bounds on the weight matrices used for estimation of the robot’s dynamic equation. Since the variation bounds are not model-based, but rather treated as tuning variables, the robustness of the robust FAT controller is not as restricted as most model-based robust controllers. The robust FAT controllers also exploit the FAT characteristic of good performance under time-varying uncertainties. In what follows, we briefly discuss possible future research directions.In this dissertation, we developed our controllers without accounting for actuator dynamics. Actuator dynamics increases the order of the system. By considering the presence of actuator inductance, the system becomes a third-order system. The consideration of a rigid robot with actuator dynamics especially comes into focus when the motion includes high velocities and time-varying loads [95]. Several adaptive control methods have been developed for the control of an electrically driven robot when the inductance is not neglected [55,96,97]. The actuator inductance and the derivative of actuator current have been lumped together as unknown functions using the FAT [55,96]. A direct adaptive FAT-based controller was developed for electrically driven robot manipulators by ignoring the actuator inductance [89]. By ignoring actuator inductance, linear differential equations were used to develop model-free robust adaptive controllers [98,99]. Several robust controllers that consider actuator dynamics ignore the presence of actuator inductance, thereby preserving the robotic system as a second order system. The development of robust controllers that consider actuator inductance is still an open area of research. One popular approach in the design of controllers that consider actuator dynamics is backstepping [100,101]. For future research, the development of a robust FAT controller that considers actuator dynamics, without neglecting the effects of actuator inductance can be considered.
123



This will be a step towards improving the robust FAT controller performance, thereby enhancing its applicability to robotic systems.Gravity compensation is a well-known technique to reduce the actuator effort for a robot. The goal is to achieve equilibrium throughout the range of motion. This means that the gravity compensation term counterbalances the link side gravity torque at all stationary points. Gravitational torques are much greater than the dynamic torque during slow robotic movement. Gravity compensation can be implemented via mechanical solutions [102]. Gravity compensation can also be implemented via the control of input torques. A PD controller was developed using a constant gravity compensation term [103]. A nonlinear gravity compensation term was used to develop a PD controller [104]. Gravity compensation has been widely used in the implementation of PID controllers [105—107]. Gravity compensation has also been employed in sliding mode control [108]. For future research, gravity compensation could be added to the robust FAT controller development to improve controller performance. We hypothesize that the performance of model-free controllers can significantly improve by incorporating the controllers with some model information; additional information about the robot, if available, can go a long way towards improving controller performance.Furthermore, in this dissertation, we developed different adaptive and robust FAT controllers that offer simplicity and ease in tuning and controller implementation. Future research can include investigating ways in which the controllers developed in this dissertation could be further improved in terms of ease of implementation. This will be beneficial because large matrices will be avoided, which will significantly reduce computational time and memory requirements during controller implementation.
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APPENDIX A

PUMA500 ROBOT DYNAMIC EQUATION

Here, the dynamic equation of the 3-DOF PUMA500 robot is described. M denotes the inertia matrix, C denotes the Coriolis matrix, and G denotes the gravity vector. The parameter vector is denoted by Θ. We note that si = sin(qi), ci = cos(qi), 
Cij = cos(qi + qj), and sij = sin(qi + qj).
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APPENDIX B

PROSTHESIS ROBOT DYNAMIC EQUATION

Here, the dynamic equation of the 3-DOF test robot / prosthesis is described. M denotes the inertia matrix, C denotes the Coriolis matrix, G denotes the gravity matrix, and R denotes the dissipation vector. The parameter vector is denoted by Θ. We note that si = sin(qi), ci = cos(qi), cij = cos(qi + qj), and sij = sin(qi + qj∙).
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APPENDIX C

PROOF OF LEMMA V.1 CONTINUED
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