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ABSTRACT

Modeling and Robust Control of Two Collaborative Robot Manipulators

Handling a Flexible Object

Balasubramanian Esakki, Ph.D.

Concordia University, 2011

Robots are often used in industry to handle flexible objects,such as frames, beams, thin

plates, rubber tubes, leather goods and composite materials. Moving long flexible objects

in a desired path and also precise positioning and orientingthe objects need a collaborative

action between two robot arms. Most of the earlier studies have dealt with manipulation

of rigid objects and only a few have focused on the collaborative manipulators handling

flexible objects. Such studies on handling of flexible objects generally used finite element

method or assumed mode method for deriving the dynamic modelof the flexible objects.

These approximation methods require more number of sensorsto feedback the vibration

measurements or require an observer. Unlike in the earlier studies, this thesis concerns

with development of a dynamic model of the flexible object in partial differential equation

(PDE) form and design of a robust control strategy for collaborative manipulation of the

flexible objects by two rigid robot arms.

Two planar rigid manipulators each with three links and revolute joints handling a

flexible object is considered during the model development.Kinematic and dynamic equa-

tions of the flexible object are derived without using any approximation techniques. The
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resulting dynamic equation of the flexible object together with the manipulator dynamic

equations form the combined dynamic model of the system. Thedeveloped complete sys-

tem of dynamic equations is described by the PDE’s having rigid as well as flexible param-

eters coupled together. Such a coupled system must be controlled without using any form

of approximation techniques and this is accomplished usingthe singular perturbation ap-

proach. By utilizing this technique, slow and fast subsystems are identified in two different

time scales and controller is designed for each subsystem. The key issue in developing a

control algorithm is that, it should be robust against uncertain parameters of the manipula-

tors and the flexible object and it should also achieve the exponential convergence. Hence,

for the slow subsystem, sliding mode control algorithm is developed and for the fast sub-

system, a simple feedback control algorithm is designed. Ingeneral, usage of singular

perturbation technique necessitates exponential stability of the slow and fast subsystems,

which is evaluated by satisfying the Tikhnov’s theorem. Hence, the exponential stability

analysis for both the subsystems is performed. Simulation results are presented to validate

the composite control scheme.

As a further consideration in the improvement of control lawfor the slow subsystem,

two modified control algorithms are suggested. The first one focused on the avoidance of

velocity signal measurement which is useful to eliminate the need of velocity sensors and

the second controller aims at avoiding the complex regressor in the control law. The capa-

bility of those controllers is illustrated through simulation studies. The extension of earlier

analysis has been carried out by developing the complete system of dynamic equations in

joint space.
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Chapter 1

Introduction

1.1 Motivation

A tremendous growth of the use of robots in automobile, electronics, construc-

tion, manufacturing and medical equipment industry has evolved in the past four decades.

Robotic systems relieved humankind from boring repetitivetasks, dangerous environments

in space, underwater and high radiation environments. Theyare used for a large variety of

tasks such as material handling, welding, paint spraying, part deburring, pick and place op-

erations and machining at high speeds with high precision. Arobot can work in hazardous

environments replacing humans and also minimizing the production cost. In addition to

that, robot needs little environmental control compared tothe humans performing the same

task in hazardous environments. In general, the robots are effectively used in the industry

and in the near future, the use of robots will be increasing significantly.

In the past, a single robot alone was not able to grasp and movea long object in a safe
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and efficient way. Owing to the single arm structure, presentday robots are called “hand-

icapped operators” for performing complex tasks. Most tasks in assembly / disassembly,

handling large or heavy objects are done efficiently with tworobot arms. Collaborative

manipulators have the following advantages compared to single arm manipulators:

• increased load carrying capacity by sharing the loads between the manipulators.

• greater dexterity and manipulability in handling flexible objects.

• reduced need for extra auxiliary equipments.

• efficient use of available workspace.

• increased productivity by operating each robot in parallelto achieve different tasks

at the same time.

Considering these advantages, two manipulator system is employed in wide range

of tasks and the first master/slave teleoperated manipulator was used in the nuclear indus-

try in the 1940’s at Oak Ridge and Argonne National Laboratories [1] which led to the

need for two robots. In the 1970’s, Nakanoet al. [2] reported on their research on multi

robot coordination where they recognized the need for two arms. Luh [3] categorized the

two robot arm co-ordinated motion into two types: loosely coordinated motion and tightly

coordinated motion. In the former, two robots share a commonworkspace and execute

independent tasks. The failure of one robot will not affect the other. In the latter case,

movement of one robot depends on the other and also, failure of one of the robot affects

the other.
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Two robots handling a rigid object have been studied by many researchers whereas

manipulating a flexible object was studied in the 1990’s [4].A modern automobile body

assembly has more than 200 sheet metal parts which must be assembled in a precise way.

Handling them needs special equipment and skilled operation. Two robots can grasp a flex-

ible sheet metal and force them together for assembly. Also,in industry, many deformable

objects such as rubber tubes, sheet metals, cords and leather products are handled by spe-

cial equipment or human operators. In aerospace industry, composite materials which have

high flexibility are used to replace metals. In the shipbuilding industry long flexible frames

and plates can be assembled with the help of two manipulators. Many of these applica-

tions need vibration free motion especially in robot assisted surgery. In order to effectively

manipulate complex flexible objects and bend them in a desired manner, for example, the

insertion of a flexible beam into a hole and assembling sheet metal in the required place,

two robot arms are needed. In real time applications, motor torque requirements can be

shared between two robots when handling long and heavy objects. In the case of a single

manipulator a large torque is required to handle heavy loadswhich increases the cost of the

motor, whereas the use of dual robotic arms may be able to reduce the torque requirements

of the individual motors.

The dynamics and control problem of two manipulators handling flexible materials

collaboratively is complex compared with handling the rigid parts. In order to develop an

efficient control algorithm a precise dynamic model is necessary and the unprecise models

may create problems such as control and observation spill over. In most of the applications,

beams, plates and shells are considered to represent the flexible system. Many researchers
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approximated the dynamics of a flexible object using the finite element model or the fi-

nite assumed mode model which converts the Partial Differential Equation (PDE) of the

beam into the Ordinary Differential Equation (ODE). The control design for PDE based

systems is very few compared with ODE based systems. Further, the controlling of these

systems are of utmost importance in real time applications because of its complexity and

high demand in various industries. This dissertation involves, dynamic modeling of the

manipulators-flexible object system without using any approximation or discretization and

development of suitable robust control approach to achievethe desired motion and simul-

taneously suppressing the vibration of the flexible object.In order to review the relevant

studies in terms of various dynamic modeling and control approaches for these kind of

systems, a detailed survey is conducted in the next section.

1.2 Literature Review

Many of the tasks in various industrial applications need atleast two robots. Two robots

performing a single task can have a significant advantage over a single robot performing

similar task. It is quite obvious that a human being using twoarms has more advantage

than using a single arm. The main application of such type of robots can be realized from

the transportation of massive and/or bulky objects, assembling of automotive parts and also

handing non-rigid payloads. As a result, considerable amount of work has been done for

the coordinated control of two manipulators or multiple manipulators in the recent past.

There are many pioneering studies related to collaborativemotion of robots manipulating a

common rigid object and non-rigid object. Considering this, the literature survey is divided
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into two parts. Firstly, some of the important works relatedto two manipulators handling

a rigid object are reviewed and secondly a detailed review onmanipulation of the flexible

objects including different approaches of modeling and control of the flexible object is

presented.

1.2.1 Collaborative manipulation of rigid objects

In the past decades a number of control methods for the coordinated motion of manip-

ulators have been developed. Nakinoet al. [2] used force sensors for the coordination and

control of two arms. Luh and Zheng [3] formulated a closed loop kinematic chain where

the position and orientation of two robots had satisfied the necessary constraints. In their

master-slave approach, if the trajectory of the master arm is planned and executed, the slave

arm trajectory was derived from the constrained relations and correspondingly the coordi-

nation was achieved. Ishida [5] proposed a force control algorithm which uses a PID con-

troller to move the object in a parallel and rotational mode.The master-slave principle was

employed and interactive forces between the two arms were measured using a wrist force

sensor. The master robot arm was position controlled and slave arm was position and/or

force controlled based upon the information given by the master arm. Alford and Belyeu [6]

utilized the concept of Ishida [5] for the position control of two arms. In their case, given

the trajectory of the master arm, the slave arm trajectory ismodified in run time. Zheng

and Sias [7] studied the collision effects between the end-effectors which caused changes

in joint velocities, and impulsive force generated at the end-effectors was used to detect the

position and orientation of the two arms. Tarnet al. [8, 9] developed a nonlinear feedback
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control method to control two Puma robot arms and also the position/velocity errors and

force/torque errors were reduced. However, the master-slave approach failed due to the

kinematic and dynamic uncertainties in an un-calibrated slave robot joint measurements.

In order to resolve this issue, hybrid position/force control algorithm was developed.

The Hybrid position/force control scheme developed by Raibert and Craig [10] cre-

ated a new arena for controlling the manipulators in non - deterministic environments. In

the case of hybrid position/force control, the position andforce information are separately

fed back and compared with the desired value. The correctiveaction is taken separately by

applying position and force control laws, and then converting it into joint torques using the

Jacobian. By selecting 0’s and 1’s in the matrices, the position and force control action is

determined. However, it was only applied to a single arm robot. As far as the two robot co-

ordination was concerned, Hayati [11] proposed a control architecture based on the Raibert

hybrid control strategy [10] for multi arm robots grasping arigid object. Uchiyamaet al.

[12, 13] and Dauchezet al. [14] have used Hayati’s [11] algorithm for their applications

and further investigations to control the coordination between two robot arms. They have

considered the static force relationship and it can be used only for low speed operations

[15]. Experimental results of Kopf and Yabuta [16] showed that the hybrid control law

achieves better coordination than master-slave control scheme. However, Duffy [17] iden-

tified some fallacies in the hybrid position/force control scheme. In the master-slave and

hybrid control approach, the controllers need the accurateinformation of the dynamic pa-

rameters. However, in the real time applications, industrial manipulators have uncertainties

while grasping the load which cannot be handled by master-slave and hybrid position/force

control methods. Hence, nonlinear control algorithms haveto be adopted.
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In order to adapt to the uncertainties, an adaptive scheme [18] which controls the

motion of the object, internal force and contact force with respect to the environment was

developed and simulated. Several adaptive based control schemes [19]-[21] have been pro-

posed by various researchers. However, these methods use structure information of the

robot. Furthermore, object dynamics can lack robustness tounmodeled dynamics such as

arm or object flexibility, actuator lags, and sensor noise. Although many of them proposed

and simulated the various control algorithms without friction and neglecting gravitation

effects, they provided a great insight into further development. A few of them had im-

plemented their control strategy in the experiments. Bonitz and Hsia [22, 23] introduced

a robust internal force based impedance control for the manipulators coordination. Under

this control scheme, nonlinear dynamic terms of the robot are compensated. The developed

controller was implemented through experiments by using the two Puma robots. Uzmaya

et al. [24] performed the simulation considering uncertainties such as contact and friction

constraints for grasp, bearing conditions and structural flexibility using adaptive, robust

and inverse dynamics controllers. Gueaiebet al. [25] proposed a hybrid (combination of a

conventional adaptive controller and an adaptive fuzzy controller) intelligent controller to

handle unwanted parametric and modeling uncertainties. The simulation was carried out

and it was evident from the results that the controller was very effective. Caccavaleet al.

[26] developed centralized impedance control which was aimed at conferring the compliant

behavior of the object and decentralized impedance controlto avoid large internal loading

of the object. These control algorithms were implemented inthe two 6 Degrees of Free-

dom (DOF) manipulators test bed. Moosavian and Papadopoulos [27] also incorporated
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impedance control to achieve the free motions and contact tasks without changing the con-

trol modes. The simulation results confirm that the two manipulators achieve good tracking

performance. In order to handle load transportation of two robots, a sliding mode control

[28] has been implemented. The comparative study on PID and sliding mode controllers

through simulation results showed that, the tracking erroris minimized in sliding control.

1.2.2 Collaborative manipulation of flexible objects

Earlier studies dealt with coordinated control of multiplerobots handling a rigid object.

However, the manipulation of flexible objects is more challenging in terms of dynamics and

control. Mills [4] considered the vibrations of flexible sheet metal parts in the fixtureless

assembly case. The sheet metal bending was modeled as a lumped spring - damper system.

In his work, the two robots were used to carry the negligible payload and the robots were

always in contact with the payload. Due to this assumption, aset of kinematic constraints

are imposed in certain directions. The computed torque control law regulates the constraint

forces in the constrained directions, the bending forces inthe bending directions of the

payload and positions in the free motion directions of the payload. This problem was

intended only for parts having small mass but in the case of large payloads dynamics can

not be ignored. Later, he modeled the sheet metal as approximated model using assumed

mode method [29] and also discretized the model using finite element method [30]. The

control law proposed by him assumes that the sheet metal parts exhibit rigid body motion

in certain directions while deforming elastically in remaining directions.

Zhenget al. [31] studied the deflection behavior of beams in connectionwith a single
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robot arm and the beam was assembled into a rigid hole. Zheng and Chen [32] extended

their work on single arm manipulation to two robot arm manipulation, for the alignment of

flexible sheets in printed circuit boards. In their two methods, the first method was used

to position the flexible beam but not the orientation, and thesecond method to position

and orient the object. The bending angle of the beam is considered as a variable and the

positions of two end-effectors are taken as functions of bending angle. Piece - wise linear

approximation is considered for trajectory tracking basedon bending angle and minimizing

force and moment on end-effectors. Dellinger and Anderson [33] developed a mathemati-

cal model for interactive forces and torque generated, whenthe two manipulators handle a

pair of pliers. Yukawaet al. [34] developed the beam dynamic model by assuming mode

functions in the state space form. They proposed a position control algorithm to achieve

total system stability and they also suppressed the vibration at the intermediate points of the

flexible beam. Kosugeet al. [35] derived FE models for bending and twisting sheet metal.

The relationship between them and static deformations of sheet metal was also developed.

Their control algorithm was implemented experimentally and the deformation was reduced.

Nguyen and Mills [36] derived combined dynamics of the system utilizing finite element

method, considering the rigid body dynamics of robots and payloads. They proposed the

force control algorithm which was implemented in the real time for assembling auto body

sheet metal parts.

Kraus and McCarragher [37] used kinematic redundancy resolution to achieve the co-

ordination between two robot arms. They also used [38] the force field information caused

by elastic deformations of the load for force guided controlof end-effector motions. His

innovative concept was demonstrated using their experimental setup for inserting a flexible

9



beam into a hole. By minimum-effort optimality criteria, the controlled variable in each

direction was determined. They continued their work [39] for two case studies, namely, the

bending of sheet metal and the insertion of a beam into a hole by employing a hybrid posi-

tion/force controller in their experiments. Yukawaet al. [40] proposed a handling system to

transform the flexible object in 2D space and also investigated the stability and robustness

of the proposed system. Sunet al. [41] developed a dynamic model of the object using

finite element method. They also formulated a PD plus gravitycompensation algorithm

for the position control of multiple robots handling a flexible material while suppressing

the vibrations of the payload at each contact. Sun and Liu [42] developed a mathemati-

cal model of the beam using assumed mode method. They proposed a hybrid impedance

controller which was used to stabilize the system while suppressing the vibrations and con-

trolling internal forces. Asymptotic stability was analyzed for various boundary conditions

of the beam using assumed mode functions. In the previous work of Sunet al. [42], vectors

containing vibration parameters and states were hard to be compensated using the feedback

controllers. Hence, a new compensation scheme [43] and [44], with saturation controller

was proposed in order to achieve the desired trajectory. To control the interaction forces be-

tween the manipulators and the beam and also to stabilize thetotal system, hybrid position

and force controller was developed. The proposed controllers are simulated and their re-

sults validated the proposed control algorithms. They alsoextended their work [45] for the

two manipulator handling of a general flexible object and also developed a hybrid control

algorithm.

Ji and Park [46] developed a computational scheme which determines the optimal

trajectory and vibration was also suppressed. In their analysis, assumed mode method
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has been utilized to develop the dynamic model of the flexibleobject. Zoe and John [47]

modeled the flexible object as a spring - mass - damper system.The complete system

kinematics and dynamics equations were formulated and a feedback control was proposed.

Simulation results showed that the proposed controller achieved the desired pose of the

object and also the deformation is minimized. Al-Yahmadi and Hsia [48] considered a

spring-mass system as the object model and developed an internal force based impedance

controller in which the internal force was controlled to deform the object in order to reach

a desired shape. By controlling the contact forces between the object and the fixture, the

deformed object was assembled into the fixture. They [49] also derived flexible beam

dynamic model using spline approximation. The proposed sliding mode control algorithm

was designed in such a way that it provides robustness against the model imperfection

and uncertainty and suppresses the vibration. The stability of the system was proved and

the simulation results were presented. Aliet al. [50] also used assumed mode method to

derive the dynamic model of the beam. Their two time scale controllers such as, PD control

scheme for rigid motion and pole placement technique for flexible motion were designed

to track the desired trajectory for the rigid body motion andto suppress the vibration. In

order to avoid the external measurement equipment to measure the displacement of a beam,

a linear observer was designed. Tang and Li [51] used finite element method to derive the

dynamic equations of motion of the object. By using singularperturbation approach, the

slow and fast subsystems were identified. For the slow subsystem, an adaptive sliding mode

control was proposed and for fast subsystem, a robust optimal control was suggested.
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1.3 Scope and Objectives

From the review of the relevant studies, it is evident that, collaborative manipulation of

two robots handling a flexible object is a complex and challenging task. However, from the

reported studies related to collaborative robots manipulating the flexible objects, some of

them considered lumped spring-mass-damper system as the flexible object model and many

of them obtained the dynamic model of the flexible object either by discretizing using finite

element method or by approximations using assumed mode method.

The truncation of the original model with infinite degrees offreedom of a flexible

model to a finite dimensional model poses the following issues such as [52]:

1. Requirement of a higher order controller to achieve greater performance in terms of

accuracy of tracking. This results in increase in the numberof flexible modes to be

assumed.

2. Presence of control and observation spill over due to the ignored high frequency

dynamics.

3. Unambiguous consideration of number of modes while constructing the discretized

ODE model.

4. Destabilization of the system due to the negligence of thehigher order modes.

5. Requirement of as many sensors as the locations of the measurement of vibration and

the difficulty in implementation.
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Alternatively, PDE based systems were proved to be effective in eliminating above men-

tioned issues. It can also be seen from the review of literature that several control al-

gorithms are available for the ODE based systems compared tothe PDE based systems.

Control engineers have more challenge due to the complexityinvolved in developing the

control algorithm for the PDE based systems. Moreover, the two manipulators collabo-

ratively handling the flexible object involve more intricacy in developing the dynamics of

the system and a suitable control scheme to achieve the desired motion of the object and

reducing the vibration. Furthermore to improve the controller design

Considering the aforementioned reasons and unlike in the earlier available stud-

ies, this thesis concerns with an overall objective of development of a dynamic model

of manipulators-flexible object system without using any approximation methods and de-

sign of a robust control scheme. The purpose of the robust control system design is to use

the two planar three link manipulators to move the flexible object in the prescribed trajec-

tory (tracking problem) and simultaneously to suppress thevibration of the flexible object

with unknown manipulator and beam parameters. In addition,this thesis also considers to

improve the controller design in terms of avoiding the need for velocity sensor and also

alleviate the computation burden. Furthermore, to avoid online inverse kinematic calcula-

tions and corresponding singularity problems, joint spacedynamic system will be derived

and similar analysis will also be carried out.

The above mentioned objectives would be achieved in different sequential steps. The

specific objectives of each step of this dissertation research can be summarized as follows:

• Develop a mathematical model of manipulators - flexible object system in Cartesian
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space without any approximation and discretization techniques.

• Implement singular perturbation approach to identify the slow subsystem that depicts

the rigid body motion and the fast subsystem that describes the transverse vibration

of the flexible object.

• Develop a robust control scheme that would achieve the desired tracking performance

while suppressing the vibration of flexible object being handled when the parameters

of the system are unknown.

• Extend the analysis by developing the complete system of dynamic model in joint

space.

1.4 Thesis Overview

This dissertation is organized into 7 Chapters. The outlineof the thesis is as follows.

Chapter 1 summarizes the relevant reported studies on collaborative manipulators handling

rigid and flexible objects. The scope and objectives of the dissertation is subsequently for-

mulated on the basis of the reviewed studies.

Chapter 2 presents the kinematics and dynamics of flexible object as well as those of the

manipulators. Dynamic equations of motion of the flexible object are derived using Hamil-

ton’s principle. The resulting equation is combined with manipulator dynamic equations

forming the combined dynamics.

After a brief introduction to singular perturbation approach and using these concepts, the

two sub systems, namely, slow subsystem which deals with rigid body motion of the beam
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and also fast subsystem which accounts the transverse vibration of beam are derived in

Chapter 3.

Regressor based control scheme for slow subsystem to control the rigid motion of the beam

and a simple feedback control algorithm for the fast subsystem to suppress the vibration

is developed in Chapter 4. The stability analysis for each subsystem has been analyzed.

Simulation results are presented so as to validate the composite control scheme.

Chapter 5 proposes an adaptive control law for the slow subsystem with only position

feedback to avoid the measurements of velocity feedback andthe corresponding stability

analysis is also carried out. Furthermore, a non-regressorbased adaptive robust control al-

gorithm is implemented to the slow subsystem to avoid the regressor and its stability results

are also discussed. The effectiveness of different controlschemes are illustrated through

simulation studies.

In Chapter 6, the extension of earlier analyses has been carried out by developing the com-

plete system of dynamic equations in joint space. The composite control strategies, stability

analysis and corresponding simulation results are discussed.

The major conclusions drawn from the dissertation researchare summarized in Chapter 7

together with a few recommendations and suggestions for further studies.
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Chapter 2

Kinematics and Dynamics of

Manipulators - Flexible Object System

2.1 Introduction

Handling flexible objects using robot manipulators is of growing interest in industry.

For example, assembly of automotive parts involves manipulation of deformable parts and

also air craft assembly involves joining flexible structural components. In order to handle

these objects effectively, and precisely positioning themin the required location, at least

two robot arms are necessary. Two robots collaboratively manipulating a flexible object is

a complex and challenging problem compared to that of handling a rigid object. Control of

this kind of problem requires precise mathematical model ofthe flexible object. However,

it is evident from the literature that the solution of the dynamic equation of motion of the
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flexible object is implemented by using assumed mode or finiteelement method. These ap-

proximations cause many problems which are mentioned in Chapter 1, for example, mea-

surement difficulties. Hence, in this Chapter the dynamic equation of motion of flexible

object is derived by using Hamilton’s principle and solved directly without approximation.

Then, the kinematic relations for the flexible object and themanipulators are formulated.

By utilizing these relations, the general manipulators dynamics and flexible object dynam-

ics are combined. The resulting combined dynamics derived in Cartesian space is coupled

with rigid and flexible parameters where the flexible parameters are not approximated with

the modes unlike the existing methods in the literature.

2.2 Manipulators - flexible object system description

In this study, two planar rigid manipulators each with threelinks are considered. Fig.

1 shows schematic representation of a manipulator with corresponding joint anglesqi j ,

link lengthsl i j and also its end-effector which is used to grasp the object. where,i = 1,2

represents the two manipulators andj = 1,2,3 represents the links of each manipulator.

Here, in this thesis two manipulators are considered to be identical.

In order to analyze the rigid body and flexible body motion of two planar manipu-

lators handling a flexible object shown in Fig. 2, five coordinate frames are considered.

FramesX1Y1 andX2Y2 are two fixed coordinate frames for each manipulator attached at the

base. FramesXe1Ye1 andXe2Ye2 are end-effector coordinate frames attached at the contact

points of the object and xy is a moving frame attached at the mass center of the flexible

object. All the kinematic relations are written with respect to the fixed frameX1Y1.
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Figure 2: Two planar rigid manipulators grasping a flexible object
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2.3 Kinematics and dynamics of the flexible object

In the manufacturing and automobile industries, many components to be assembled

can be modeled as beams. Various applications such as, turbine rotor blades, spacecrafts

with flexible appendages, flexible robot arms and aerospace systems, are essentially beams

which are flexible bodies. Therefore, in this thesis the flexible object is considered as an

Euler-Bernoulli beam. Since the two manipulators are used to move the object to a desired

position and orientation which necessitates rotation at the two ends of the beam, simply

supported end conditions are considered for deriving the dynamic equations of motion of

the beam. Certainly, other end boundary conditions can be included for the derivation of

the beam dynamics. However, with the aim of illustrating theessential features of the con-

troller design and to avoid complex mathematical expressions, simply supported boundary

conditions are considered.

2.3.1 Kinematics of the flexible object

A flexible beam can be modeled with discretized finite elements [30] or approximated

with assumed modes [42]. In view of the disadvantages mentioned in Chapter 1 and also

stated in [52], exact PDE based model is developed in this section without resorting to

approximate discretized model is used in this thesis.

Consider a beam of lengthL, massm= ρL, whereρ is mass per unit length. The

mass center position and orientation of the beam with respect to X1Y1-frame are given by

{c0}= {x0, y0, θ}T . F1x, F1y, F2x, F2y are the forces applied by the manipulator at the two
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ends of the beam. The transverse displacementη(x, t) is measured with respect to xy-frame

and deformation in the longitudinal direction is neglected. For simplicity, argument(x, t)

will be omitted further in this thesis.

Any point on the beam can be written as,

X = x0 +xcosθ −ηsinθ (1)

Y = y0 +xsinθ +ηcosθ (2)

where,x is the spatial coordinate ranging from−L
2 to +L

2 .

1

1

F2y

F2x

F1x

F1y

Figure 3: Beam rigid body motion and deflection

In general, the beam has rigid body motion on which the flexible motion or vibration

of beam is superimposed. It is evident from the Fig. 2 that theleft and right end points of

the beam sharesthe left and right end-effector grasping point of the two end-effectors. The
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slope due to transverse deflection is small compared to the orientation of the beam and is

neglected at the two ends of the beam. The following kinematic relations are obtained from

Fig. 3.

The left end pose (position and orientation) of the beam is given by,

{e1} = {co}−{
L
2

cosθ
L
2

sinθ 0}T +{−η sinθ η cosθ 0}T (3)

The right end pose of the beam is given by,

{e2} = {co}+{
L
2

cosθ
L
2

sinθ 0}T +{−η sinθ η cosθ 0}T (4)

Differentiating (3) and (4) results in,

{ė1} =































ẋ0 + L
2sinθθ̇ −η cosθθ̇ − η̇ sinθ

ẏ0−
L
2cosθθ̇ −η sinθθ̇ + η̇ cosθ

θ̇































{ė2} =































ẋ0−
L
2sinθθ̇ −η cosθθ̇ − η̇ sinθ

ẏ0−
L
2cosθθ̇ −η sinθθ̇ + η̇ cosθ

θ̇































where ˙(·) represents differentiation with respect to time.

Above relations can be written in compact form with respect to the Cartesian co-ordinates

as,

{ė} = [R]{Ẋr f } (5)
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where{Ẋr f } = {ẋ0, ẏ0, θ̇}T denotes the velocity of the mass center of the object, and

R=









































1 0 L
2sinθ −η cosθ

0 1 −L
2cosθ −η sinθ

0 0 1

1 0 −L
2sinθ −η cosθ

0 1 L
2cosθ −η sinθ

0 0 1









































Differentiating (5) gives the acceleration,

{ë} = [Ṙ]{Ẋr f }+[R]{Ẍr f } (6)

whereẌr f describes the acceleration of the mass center of the object.

The resulting equations (5) and (6) will be used latter to obtain the manipulator dy-

namics in the Cartesian space.

2.3.2 Dynamics of the flexible object

The equation of motion of the dynamic systems can be derived using principle of virtual

displacements, Euler-Lagrange equations or Hamilton’s principle. The Hamilton’s princi-

ple provides an elegant approach to describe the equations of motion because the boundary

conditions are derived simultaneously. Hamilton’s principle describes that, the dynamic

system can be moved from one point to another point in time forthe given time interval

in all of the possible paths, but, the actual path followed isdetermined by minimizing the

time integral between the kinetic and potential energy. TheHamilton’s principle [53] is

22



stated as follows, “The actual path in configuration space followed by a dynamical system

during the fixed time intervalt1 to t2 is such that the integral
∫ t2
t1

La dt where,La= kinetic

energy - potential energy, is stationary with respect to path variations and vanishes at the

end points”.

The Hamilton’s principle is mainly used for rigid bodies. A flexible body has infinite

degrees of freedom and the states of the systems are described by continuous functions of

time and space. The Extended Hamilton’s principle is developed for such bodies and it is

given by [53],
∫ t2

t1
(δT −δU +δW)dt = 0 (7)

whereδ represents the variational operator,T is kinetic energy andU is potential energy.

Further, t1 to t2 are any two instances of time witht2 > t1 > 0. In order to determine

the dynamic equations of motion of beam, the kinetic energy,potential energies due to

elasticity of the beam and due to gravity must be obtained. Inthe following, these energy

expressions are obtained.

Kinetic energy of the beam is defined as,

T =
1
2

∫ L
2

−L
2

ρ(Ẋ2+Ẏ2)dx (8)

Differentiating (1) and (2) gives,

Ẋ = ẋ0− [xsinθ +ηcosθ ]θ̇ −sinθη̇ (9)

Ẏ = ẏ0 +[xcosθ −ηsinθ ]θ̇ +cosθη̇ (10)

Squaring (9) and (10) and substituting into (8) yields,
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T =
1
2

∫ L
2

−L
2

ρ[ẋ2
0+ ẏ2

0 + θ̇2η2 +(xθ̇ + η̇)2−2θ̇η(ẋ0cosθ + ẏ0sinθ)

+2(θ̇x+ η̇)(ẏ0cosθ − ẋ0sinθ)]dx (11)

Neglecting the shear deformation and considering the bending of the beam, potential energy

of the beam due to elasticity can be obtained as,

Ue =
1
2

∫

V
σxxεxxdV (12)

where,

σxx = Eεxx, εxx = −ydη ′′, dV = dxdydz (13)

where(·)′ represents differentiation with respect to space.

Further,σxx, εxx, dV andE denote the stress, strain component, infinitesimal volume and

Young’s Modulus of a beam element, respectively. Bending strain is measured at a distance

yd from the neutral axis of the beam.

Substituting (13) into (12) gives,

Ue =
1
2

∫

V
Eε2

xxdV

=
1
2

∫ L
2

−L
2

[

η ′′2E
∫ A

0
y2

ddA

]

dx

Ue =
1
2

∫ L
2

−L
2

[

EIη ′′2]dx (14)

where,I =
∫ A

0 y2
ddA.

Potential energy due to the gravitational force can be obtained as,

Ug = ρg
∫ L

2

−L
2

(y0+xsinθ)dx= mgy0 (15)
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Total potential energy can be calculated by the following,

U = Ug+Ue (16)

The manipulator will exert forces, namely,F1x, F1y, F2x andF2y at the two ends of the

X

Y

F
2x

F
1y

F
2y

F
1x

x
y

1

1

Figure 4: Flexible beam with boundary forces

beam which is shown in Fig. 4.

Work done due to the external forces are formulated as,

W = F1x(x0−
L
2

cosθ)+F1y(y0−
L
2

sinθ)+F2x(x0+
L
2

cosθ)+F2y(y0 +
L
2

sinθ)+

(F2y +F1y)η cosθ − (F1x +F2x)η sinθ (17)

By applying Extended Hamilton’s Principle (7), the following equations of motion of beam

along X, Y and Z directions are obtained.
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The detailed derivations are given in Appendix A. Based uponthese derivations, the fol-

lowing are obtained:

The equation of motion for translation along the X - direction is obtained as,

mẍ0− (ρ cosθ
∫ L

2

−L
2

ηdx)θ̈ −ρ sinθ
∫ L

2

−L
2

η̈dx

−2ρθ̇ cosθ
∫ L

2

−L
2

η̇dx+ θ̇2ρ sinθ
∫ L

2

−L
2

ηdx = F1x +F2x (18)

The translation in the Y - direction is described by the equation,

mÿ0− (ρ sinθ
∫ L

2

−L
2

ηdx)θ̈ +ρ cosθ
∫ L

2

−L
2

η̈dx

−2ρθ̇ sinθ
∫ L

2

−L
2

η̇dx− θ̇2ρ cosθ
∫ L

2

−L
2

ηdx+mg = F1y +F2y (19)

Rotation about the Z axis is described by,

(−ρ cosθ
∫ L

2

−L
2

ηdx)ẍ0− (ρ sinθ
∫ L

2

−L
2

ηdx)ÿ0 +(
mL2

12
+ρ

∫ L
2

−L
2

η2dx)θ̈ +ρ
∫ L

2

−L
2

xη̈dx

+2ρθ̇
∫ L

2

−L
2

ηη̇dx= F1x(
L
2

sinθ −η cosθ)+F1y(−
L
2

cosθ −η sinθ)+

F2x(−
L
2

sinθ −η cosθ)+F2y(
L
2

cosθ −η sinθ) (20)

The differential equation of motion of transverse vibration of beam is derived as,

−sinθ ẍ0 +cosθ ÿ0 +xθ̈ + η̈ −ηθ̇2 +
EI
ρ

η iv

= −F1xsinθ +F1ycosθ −F2xsinθ +F1ycosθ (21)

Hence, from (18), (19) and (20) the beam dynamics with respect to Cartesian coordinates

{x0, y0, θ}T can be written in a compact form as,

Mr f Ẍr f +Cr f +ηr f +Gr f = Fr f (− f ) (22)
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where,

Mr f =

















m 0 −ρ cosθ
∫

L
2
−L
2

ηdx

0 m −ρ sinθ
∫

L
2
−L
2

ηdx

−ρ cosθ
∫

L
2
−L
2

ηdx −ρ sinθ
∫

L
2
−L
2

ηdx mL2

12 +ρ
∫

L
2
−L
2

η2dx

















Cr f =































θ̇2(ρ sinθ
∫

L
2
−L
2

ηdx)

−θ̇2(ρ cosθ
∫

L
2
−L
2

ηdx)

0































; ηr f =































−ρ sinθ
∫

L
2
−L
2

η̈dx−2ρθ̇ cosθ
∫

L
2
−L
2

η̇dx

ρ cosθ
∫

L
2
−L
2

η̈dx−2ρθ̇ sinθ
∫

L
2
−L
2

η̇dx

ρ
∫

L
2
−L
2

xη̈dx+2ρθ̇
∫

L
2
−L
2

ηη̇dx































;

Fr f =

















1 0 0 1 0 0

0 1 0 0 1 0

L
2 sinθ −η cosθ −L

2 cosθ −η sinθ 0 −L
2 sinθ −η cosθ L

2 cosθ −η sinθ 0

















Gr f =































0

mg

0































; Ẍr f =































ẍ0

ÿ0

θ̈































; f =















































































F1x

F1y

Mo1

F2x

F2y

Mo2















































































and also the flexible motion is the transverse vibration of beam dynamics which can be

rewritten as,

−sinθ ẍ0 +cosθ ÿ0 +xθ̈ + η̈ −ηθ̇2 +
EI
ρ

η iv = Ff f ( f ) (23)
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where,Ff f = [−sinθ cosθ 0 −sinθ cosθ 0]

Equation (22) is written in compact form in which the rigid aswell as flexible parameters

are coupled together as also in (23). The above beam dynamic equations will be combined

with the manipulator dynamics to form complete system dynamics.

2.4 Kinematics and dynamics of the manipulator

2.4.1 Kinematics of the manipulator

The study of manipulator kinematics gives us the geometrical and time-based proper-

ties of the motion of a manipulator. It provides informationabout the locations of frames

attached to each link when the manipulator is performing a given task. It is classified into

forward and inverse kinematics [54]. In the former case, given the manipulator joint angles

of each link, the end-effector pose is determined. In the latter case, for the desired pose of

the end-effector, one can find joint angles which will achieve the given pose. In general,

velocity of each end-effector of the manipulator is relatedto joint velocity of the manipu-

lator through Jacobian matrix [54]. The Jacobian matrix canbe obtained with the help of

position and orientation relations of the end-effector. Here in this section, the Jacobian ma-

trix for a three link manipulator will be obtained which holds for another manipulator too.

In general manipulators are considered to be identical in order to achieve the desired Carte-

sian space motion. However, by proper selection of different configuration of manipulator

to achieve the similar Cartesian space motion is also possible. In that case, the manipulators

Jacobian, inertia matrix, centrifugal and coriolis components and gravitational components
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Figure 5: A manipulator with link-frame assignments

have to be derived separately.

Consider the position and orientation of end-effector{ei}= {xi , yi , θ}T with respect

to a fixed coordinate frame (Refer Fig. 2). Each manipulator joint angles are represented

by a vector{qi}= {qi1, qi2, qi3}
T . To compute the end-effector position and orientation of

a manipulator, a local coordinate frame at each joint of a manipulator is considered.Xm1Ym1

represents a coordinate frame attached at the base of the first link and similarly other coor-

dinate frames are shown in Fig. 5. For example, the relationship between two coordinate

frames A and B that are shown in Fig. 6 can be described by Denavit-Hartenberg notation

[54] and this transformation matrix is denoted asT iA
iB . Similarly, the transformation matrix

between each links of manipulator is obtained. Finally, these transformation matrices are

multiplied in a certain order which gives the transformation between the end-effector frame
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and fixed frame of a manipulator.

The transforation matrix between each joint coordinate frame is as follows,

T i0
i1 =

























cos(qi1) −sin(qi1) 0 l i1cos(qi1)

sin(qi1) cos(qi1) 0 l i1sin(qi1)

0 0 1 0

0 0 0 1

























T i1
i2 =

























cos(qi2) −sin(qi2) 0 l i2cos(qi2)

sin(qi2) cos(qi2) 0 l i2sin(qi2)

0 0 1 0

0 0 0 1
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T i2
i3 =

























cos(qi3) −sin(qi3) 0 l i3cos(qi3)

sin(qi3) cos(qi3) 0 l i3sin(qi3)

0 0 1 0

0 0 0 1

























The transformation matrix of the manipulator can be obtained by,

T i0
i3 = T i0

i1 T i1
i2 T i2

i3 (24)

T i0
i3 =

























ci123 −si123 0 l i1ci1+ l i2ci12+ l i3ci123

si123 ci123 0 l i1si1+ l i2si12+ l i3si123

0 0 1 qi1+qi2 +qi3

0 0 0 1

























where,ci j = cos(qi j ); si j = sin(qi j ); ci12 = cos(qi1+qi2); si12 = sin(qi1+qi2);

ci123 = cos(qi1+qi2+qi3); si123 = sin(qi1+qi2+qi3).

From the above transformation, the end-effector position and orientation are obtained,

which are given by,

xi = l i1ci1+ l i2ci12+ l i3ci123 (25)

yi = l i1si1+ l i2si12+ l i3si123 (26)

θi = qi1+qi2+qi3 (27)

In general, Jacobian matrix of a manipulator can be calculated by [54],

Ji =

















∂xi
∂qi1

∂xi
∂qi2

∂xi
∂qi3

∂yi
∂qi1

∂yi
∂qi2

∂yi
∂qi3

∂θi
∂qi1

∂θi
∂qi2

∂θi
∂qi3
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After partial differentiation, the Jacobian matrix can be derived as,

Ji =

















−l i1si1− l i2si12− l i3si123 −l i2si12− l i3si123 −l i3si123

l i1ci1 + l i2ci12+ l i3ci123 l i2ci12+ l i3ci123 l i3ci123

1 1 1

















Above matrix is used to map the end-effector velocities which is in the Cartesian space to

joint velocities which is represented in joint space. Sincewe have two manipulators with

their Jacobian matrices denoted byJ1 andJ2, corresponding vectors of joint angles are

denoted asq1 andq2, respectively.

A well known kinematic relation between the end-effector velocity and joint velocity gives

[54],

{ėi} = [Ji]{q̇i} (28)

For the two manipulators,

{ė1} = [J1]{q̇1}, {ė2} = [J2]{q̇2} (29)

Equation (29) in an assembled form is given by,

{ė} = [J]{q̇} (30)

where,

{ė} =















ė1

ė2















; J =









J1 0

0 J2









Equation (30) can be rewritten as,

{q̇} = [J−1]{ė} (31)
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Differentiating (31) gives,

{q̈} = [J−1]{ë}+[J̇−1]{ė} (32)

The above relations representing joint velocities (31) andjoint acceleration (32) will

be used in the next section to convert the manipulator dynamics represented in joint space

to Cartesian space.

2.4.2 Dynamics of the manipulator

The dynamics of manipulator plays a vital role in developingthe control algorithm

and also simulating the motions of the manipulator. In general, dynamics of manipulator

can be classified into inverse and forward dynamics. In the first case, given joint motion

trajectories, one has to determine the required joint torques in order to achieve the desired

joint motion. In the second case, given joint torques, the joint motions such as joint an-

gles, its velocities and accelerations are calculated. Thedynamic equations of motion of

manipulator can be represented in a generalized joint coordinate space or in a generalized

Cartesian coordinate space. In many of the assembly tasks, manipulator may require the

geometrical information of the environment in task space and the dynamic equations of

motion in that space is helpful in designing the control method. However, depending upon

the applications and for the development of various controlalgorithms, the dynamics can

be presented in any one of these spaces. In this section, the manipulator dynamics will be

converted into Cartesian space because of the fact that it should be combined with beam

dynamics which is already available in Cartesian space.

Dynamic equations of manipulator can be derived using Newton-Euler recursive
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method or Euler - Lagrange method. The Euler-Lagrange equations are generally used

to obtain the dynamic equations of manipulator [55] because, it gives good insight to un-

derstand the nonlinear characteristics of the manipulator.

The following are the assumptions to be considered while deriving the dynamic equa-

tions of manipulator.

1. Each link of the manipulator is assumed to be rigid and exhibits no structural com-

pliance.

2. Compliance at each joint of the manipulator is ignored.

General manipulator dynamic equation can be written in joint space as [55],

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi) = τi +JT
i fi where i= 1,2 (33)

where,

qi is the vector of joint angles.

Mi represents inertia matrix.

Ci is the matrix due to coriolis and centrifugal components.

Gi represents the vector of gravitational components.

τi is the vector of input torque applied at each joints of the manipulator.

fi is the interaction force between the manipulator and the flexible beam.

Ji is the Jacobian matrix of a manipulator.

Although, Equation (33) is complex and possesses highly nonlinear terms, is has a

few important properties which will be useful for the control design purpose. These prop-

erties are given in [55] and [56] which are stated as follows:
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Property 1:

The inertia matrixMi(qi) is symmetric and positive definite. If all of the joints are

revolute then,

µ1Id ≤ Mi(qi) ≤ µ2Id

where, the boundsµ1 andµ2 are constants andId is identity matrix. Sinceq appears in

Mi(qi) only through sine and cosine terms, their magnitudes are bounded by 1.

Similarly, the inverse of inertia matrix,M−1
i (qi), is also bounded

1
µ2

Id ≤ M−1
i (qi) ≤

1
µ1

Id

Property 2:

The matrixV(q,qi) = Ṁi(qi)−2Ci(qi , q̇i) is skew symmetric, i.e, the componentsVjk

of V satisfyVjk = −Vk j

If V is skew-symmetric, the following should also be satisfied and the detailed proof is

found in [57].

q̇T
i [Ṁi(qi)−2Ci(qi, q̇i)]q̇i = 0

Property 3:

SinceCi(qi , q̇i) is quadratic in ˙qi , it can also be bounded by quadratic function of ˙qi .

That is,

Ci(qi, q̇i) ≤ vb(q)‖q̇i‖
2

wherevb(q) is known scalar function and‖ · ‖ denotes any appropriate norm.
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Property 4:

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Giqi =: Yim(qi, q̇i , q̈i)Θim

The functionYim is called Regressor [58] ofith manipulator which has time dependant vari-

ables andΘim is the parameter vector ofith manipulator which contains time independent

variables such as link masses, moments of inertia, etc., that must be determined for a par-

ticular manipulator.

Assembling the dynamic equations (33) of the two manipulators in joint space gives,

Mr q̈+Cr q̇+Gr = τ +JT f (34)

where,

Mr =









M1 0

0 M2









; Cr =









C1 0

0 C2









; Gr =















G1

G2















; τ =















τ1

τ2















J =









J1 0

0 J2









; f =















f1

f2















; q =















q1

q2















It can be seen that the beam dynamics in (22) is represented with respect to Cartesian coor-

dinates,{x0, y0, θ}T , whereas the manipulator dynamics (34) is represented withrespect

to joint space coordinates. In order to formulate a completesystem of dynamic equations

in Cartesian space, the manipulator dynamics will be converted into Cartesian space and

the result will be combined with the beam dynamics to form thecombined dynamics.

Substituting (5) into (31) yields,

{q̇} = [J−1][R]{Ẋr f } (35)
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Differentiating (35) gives,

{q̈} = J−1ṘẊr f +J−1RẌr f + J̇−1RẊr f (36)

For simplicity, parentheses for vectors and square brackets for matrices are omitted in the

following.

Substituting (35) and (36) into (34), we obtain the manipulator dynamics in Cartesian

space,

MrJ
−1RẌr f +(Mr J̇

−1R+MrJ
−1Ṙ+CrJ

−1R)Ẋr f +Gr = τ +JT f (37)

2.5 Combined dynamics

The dynamics of manipulators and beam represented with respect to Cartesian coordi-

nates are combined to formulate the kinematically closed loop system.

Premultiplying (37) byRTJ−T gives,

RTJ−TMrJ
−1RẌr f +RTJ−T(Mr J̇

−1R+MrJ
−1Ṙ+CrJ

−1R)Ẋr f +RTJ−TGr =

RTJ−Tτ +RTJ−TJT f (38)

In view of the assumption of simply supported beam boundary conditions, the moments

at the two ends are zero. However, in reality manipulators experience forces as well as

moments at the two ends of the beam [59]. Utilizing this fact,the moments at the two ends

of the beam is included in the matrixFr f of (22). So,Fr f becomesRT and is given by,

Fr f =

















1 0 0 1 0 0

0 1 0 0 1 0

L
2 sinθ −η cosθ −L

2 cosθ −η sinθ 1 −L
2 sinθ −η cosθ L

2 cosθ −η sinθ 1
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SinceRT = Fr f , (42) becomes,

RTJ−TMrJ
−1RẌr f +RTJ−T(Mr J̇

−1R+MrJ
−1Ṙ+CrJ

−1R)Ẋr f +RTJ−TGr =

RTJ−Tτ +Fr f f (39)

Substituting (22) into (39) yields,

RTJ−TMrJ
−1RẌr f +RTJ−T(Mr J̇

−1R+MrJ
−1Ṙ+CrJ

−1R)Ẋr f +RTJ−TGr =

RTJ−Tτ − (Mr f Ẍr f +Cr f +ηr f +Gr f ) (40)

The above combined rigid motion dynamic equation can be rewritten as,

Mor f Ẍr f +Cor f Ẋr f +Gor f +ηor f = uor f (41)

where,

Mor f = RTJ−TMrJ−1R+Mr f

Cor f = RTJ−T(Mr J̇−1R+MrJ−1Ṙ+CrJ−1R)+Cr f

Gor f = RTJ−TGr +Gr f

ηor f = ηr f

uor f = RTJ−Tτ

The above combined rigid motion dynamic equation (41) represented in the Cartesian co-

ordinate space has coupling between rigid and flexible parameters and there is no approxi-

mation or discretization involved.

Taking into account the transverse vibration of beam dynamics (23), the complete manipulator-

beam system dynamics is represented as

Mor f Ẍr f +Cor f Ẋr f +Gor f +ηor f = uor f (42)
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−sinθ ẍ0 +cosθ ÿ0 +xθ̈ + η̈ −ηθ̇2 +
EI
ρ

η iv = Ff f ( f ) (43)

The above system of dynamic equations are used further to design a control algorithm

without using any approximate methods.

2.6 Summary

This Chapter focuses on the development of mathematical model of manipulator-flexible

object system. Kinematic relations of manipulators and theflexible object were obtained.

The dynamic model of the flexible object was obtained withoutinvolving any approxima-

tions or discretizations. Furthermore, the derived objectdynamics has been combined with

the manipulators dynamics, which yields the combined dynamics in Cartesian space with-

out using any assumption of number of modes. The resulting combined dynamic equation

and also the transverse vibration of beam equation are coupled with rigid as well as flex-

ible parameters which are in PDE form. In order to develop control strategy for such a

PDE based system without using any approximate method is tedious. The control of such a

coupled rigid and flexible body motion is normally achieved by employing singular pertur-

bation technique. In the next Chapter, the system of dynamicequations (23) and (41) will

be decoupled into rigid and flexible dynamics by using singular perturbation technique.

Then, they will form a slow and fast subsystem, in two different time scales, respectively.
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Chapter 3

Singular Perturbation Model

3.1 Need for singular perturbation analysis

The system of dynamic equations obtained from the previous chapter involves rigid and

flexible body motions. These two motions can be also controlled without using any approx-

imation or discretization. Moreover, the assumption of number of modes causes increase in

the order of the control algorithm and also neglecting the higher order frequencies would

destabilize the system. It is necessary to implement a suitable control strategy for the devel-

oped PDE based systems which is a more challenging task. It can be possible by separating

the system dynamics into rigid and flexible dynamics by meansof singular perturbation

approach. The main purpose of the singular perturbation approach is to alleviate the high

dimensionality and ill-conditioning resulting from the interaction of slow and fast dynamic

modes. Utilizing this approach, the system of dynamic equations is decoupled into slow

and fast subsystems in two different time scales, respectively. Then, one can design a con-

trol algorithm for each subsystem that together forms a composite control input to achieve
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the desired rigid body motion of the object and also suppressing the vibration. This thesis

considers a similar approach to decouple the system into slow and fast subsystems.

In this Chapter, before proceeding into the development of rigid and flexible dy-

namic model an outline of singular perturbed approach for linear and nonlinear systems

is reviewed. Then, the typical steps of singularly perturbed analysis of nonlinear systems

is implemented into the system dynamics (23) and (41) (manipulator-beam system) under

some specific requirements. It yields into slow subsystem which corresponds to rigid body

motion of the object and fast subsystem that signifies the vibration of the object. Further-

more, based upon the concept of differential operators, theinfinite dimensional partial dif-

ferential model of the fast subsystem is further modified into abstract differential equation

which will avoid the issues due to approximation or discretization techniques.

3.2 Outline of singular perturbation approach

For the control engineer, the first task is to mathematicallymodel the given physical

system. While simplifying the given model, the presence of small “parasitic” parameters

such as time constants, masses, capacitances, inductances, resistances, moments of inertia,

Reynolds number and other parameters may increase the orderand also stiffness of the

systems. In order to alleviate these problems, singular perturbation approach is employed

commonly. These problems are dealt in many fields of applied mathematics, various dis-

ciplines of engineering, electrical and electronics circuits and systems, electrical power

systems, aerospace systems, nuclear reactors and ecology.This approach would also be
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helpful for analytical investigations of robustness of system properties, behavior of opti-

mal controls near singular arcs and other order reduction models. Some of the well known

applications are in aircraft and rocket flight models and chemical reaction diffusion theory.

Singular perturbation introduces multitime-scale behavior of dynamical systems, namely,

slow and fast phenomena due to the external stimuli. It is stated in [60] as, “Singular per-

turbation approach lowers the model order by first neglecting the fast phenomena. It then

improves approximation by reintroducing their effect as boundary layer corrections calcu-

lated in separate time scales”. In most of the classical and modern control schemes, singular

perturbation analysis plays a role in the order reduction ofthe model which disregard high

frequency parasitics [61]. This leads to the development oftime scale methods for various

control algorithms such as state feedback, output feedback, filter and observer design. It

is also useful for the analysis of high-gain feedback systems, control of dynamic networks

and other class of linear and nonlinear dynamic systems. Thecomplete survey on singular

perturbations and time scales in control theory and applications can be seen in [60]-[63].

After brief review on the concepts of singular perturbationanalysis for the case of linear

and nonlinear systems, they will be employed in the manipulator-flexible beam system.

3.2.1 Singularly perturbed analysis of linear systems

In order to illustrate the basics of singularly perturbed systems, the second order initial

value problem presented in [62] is reproduced here.

The standard singularly perturbed linear second order problem is given by,

ε ẍ(t,ε)+ ẋ(t,ε)+x(t,ε) = 0
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x(t0) = x(0), ẋ(t0) = ẋ(0) (44)

where, the small parameterε multiplying into the highest derivative term defines the sin-

gularly perturbed problem. The degenerate problem or reduced-order problem can be ob-

tained by settingε = 0 in (44) which is given by,

ẋ(0)(t)+x(0)(t) = 0 (45)

wherex(0)(t0) = x(0) and the solution to (45) is,

x(0)(t) = x(0)e−t (46)

The reduced order problem in (45) is only of first order which may not satisfy both of

the initial conditions given in (44) and hence, ˙x(t0) is sacrificed during the degeneration

process.

3.2.2 Singularly perturbed analysis of nonlinear systems

Now let us analyze singularly perturbed time varying nonlinear system which is given

by [64],

ẋ = fp(x,z,ε, t), x(t0) = x0, x∈ Rn1 (47)

ε ż= gp(x,z,ε, t), z(t0) = z0, z∈ Rm1 (48)

where, fp andgp are many times continuously differentiable functions of their arguments

x, z, ε and t. If the functions fp andgp are having same order of magnitude then, the

perturbation parameterε represents the ratio of two time scales. Whenε approaches zero,
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the dynamics ofzbecomes faster thanx and also the aboven1+m1 dimensional model will

reduce ton1 dimensional model, because, (48) degenerates into the algebraic or transcen-

dental equation,

0 = gp(xs,zs,0, t) (49)

where the subscript “s” indicates the slow subsystem whenε approaches zero. On solving

(49) we havek1 ≥ 1 distinct or isolated real roots given by,

zs = ϕi(xs, t), i = 1,2, ....,k1 (50)

Substituting (50) into (47) gives,

ẋs = fp(xs,ϕi(xs, t),0, t), xs(t0) = x0 (51)

The above model given in (51) is called as quasi-steady-state model or reduced-order

model. The multi-time-scale behavior occurs due to this model, (i.e) the slow response

is obtained from the reduced order model. The discrepancy between the response of the

reduced order model (51) and that of the given nonlinear model (47) and (48) is the fast re-

sponse or transient behavior. Due to this behavior, the quasi-steady-state variablezs would

not start at the prescribed initial conditionz0 of the original variablez and there may be

small or large order of magnitude difference which is specified byO(ε) [64]. Due to this

error,zs cannot be a uniform approximation ofzand it can be approximated as

z= zs(t)+O(ε), t ∈ [t1,T] where t1 > t0 (52)

However, the slow variablexs can be constrained to start from the pre-specified initial

conditionx0. Hence, the approximation ofx by the quasi-steady-state variablexs will be
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uniform and is given by

x = xs(t)+O(ε), t ∈ [t0,T] (53)

The above way of approximating the solution is called degeneration. It can be seen from

(52) that, in the initial interval (boundary layer)[t0, t1] the original variablezapproacheszs

and after that it remains close tozs.

In order to study the fast parts ofx andz, let us define new time scale variable,

ν =
t − t0

ε
, ν = 0 at t = t0 (54)

Then, (47) and (48) can be rewritten with respect to fast timescale as,

dx
dν

= ε fp(x,z,ε, t0+ εν) (55)

dz
dν

= gp(x,z,ε, t0+ εν) (56)

Whenε → 0 then,

dx
dν

= 0 (57)

which means that,x = constant in the fast time scale. However, the deviations ofz from its

quasi-steady-statezs plays a role in the fast time scale. In order to obtain the behavior of z

as a function ofν, the boundary layer correction has to be obtained which is given by,

zf = z−zs (58)

Using (58) and lettingε = 0 in (56), the fast subsystem or boundary layer system can be

obtained as,

dzf

dν
= gp(x0,zs(t0)+zf (ν),0, t0), zf (ν0) = z0−zs(t0) (59)
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The solution of (59), (i.e)zf (ν) is considered as boundary layer correction of (52) for a

uniform approximation ofzwhich is given by,

z= zs(t)+zf (ν)+O(ε) (60)

It is evident from (60) that,zs(t) is slow transient ofzandzf (ν) is the fast transient ofz. The

corrected approximation (60) has to converge in a short period to the slow approximation

in (52) and the correction termzf (ν) must decay asν → ∞. The stability of boundary layer

system given in (59) has to account for the approximations made in (52), (53) and (60).

Hence, valid stability properties should be stated. The stability properties are provided as

assumptions in [64] which are given below.

Assumption 1:

The equilibriumzf (ν) = 0 of (59) is asymptotically stable uniformly inx0 and t0 and

z0−zs(t0) belongs to its domain of attraction and hence,zf (ν) exists for allν ≥ 0.

If this assumption is satisfied, then

lim
ν→∞

zf (ν) = 0 (61)

uniformly in x0, t0; that is,zwill come close to its quasi-steady-statezs at some timet1 > t0.

To ensure thatz stays close tozs the following assumption is considered.

Assumption 2:

The eigenvalues of∂gp
∂z evaluated, forε = 0, alongxs(t) andzs(t), have real parts smaller

than a fixed negative number, i.e.

Reλ{
∂gp

∂z
} ≤ −c < 0 (62)
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The above mentioned two assumptions describe strong stability property of the boundary

layer system (59).

3.2.3 Features of singularly perturbed solutions

The important characteristics of singular perturbation problems are summarized below:

• In any given mathematical model, the highest derivative of the model is multiplied by

the small parameterε and is called singularly perturbed model if the order of model

is reduced whenε = 0.

• The singularly perturbed problem has two phenomena namely slow and fast in its

solution which occurs in two different time scales.

• The degenerate problem of reduced order model will not satisfy all the given bound-

ary conditions of the original given problem.

• In the boundary layer, solution changes rapidly.

• In order to approximate the fast solution, boundary layer correction is incorporated

with the help off stretching transformation such asν = t−t0
ε .

3.3 Validity of singular perturbation approach

The use of singular perturbation approach for the non-linear systems necessitates the satis-

faction of Tikhnov’s theorem. Hence, based upon the background material presented earlier

on standard singularly perturbed model of the non-linear systems, the Tikhnov’s theorem
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given in Khalil [65] is reproduced for the different cases oftime intervals.

Theorem 1 (for the case of finite time interval):

Consider the singular perturbation problem (47) and (48) and let z= ϑ(x, t) be an isolated

root of (49). Assume that the following conditions are satisfied for all

[x, t,z−ϑ(x, t),ε]∈ [0,T]×Br ×Bp× [0,ε0]

1. The functionsfp, gp and their first partial derivatives with respect to(x,z,ε) are

continuous. The functionϑ(x, t) and the Jacobian∂g(x,z,0, t)/∂z have continuous

first partial derivatives with respect to their arguments.

2. The reduced problem (51) has a unique solutionxs(t), defined on[t0, t1] and‖xs(t)‖≤

r1 < r for all t ∈ [t0,T].

3. The origin of the boundary layer model (59) is exponentially stable, uniformly in

(x, t).

Then, there exist positive constantsµ andε⋆ such that for all‖z(0)−φ(t0,x(0)‖ < µ and

0 < ε < ε⋆, the singular perturbation problem (47) and (48) has a unique solutionx(t,ε),

z(t,ε) on [t0,T] and

x−xs(t) = O(ε)

z−ϑ(xs, t)−zf (ν) = O(ε)

hold uniformly fort ∈ [t0,T], wherezf (ν) is the solution of the boundary layer model (59).

Moreover, given anyt1 > t0, there isε⋆⋆ ≤ ε⋆ such that,

z−ϑ(xs, t) = O(ε)
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holds uniformly fort ∈ [t1,T] wheneverε < ε⋆

The above theorem holds good for finite time intervals. This is because, the error

estimateO(ε) is not uniform in for allt ≥ 0. In order to extend this theorem to infinite

time intervals, additional stability requirement on reduced model (47) must be met. To be

precise, the reduced order model should also be exponentially stable for the infinite time

interval. Hence, Tikhnov extended the previous theorem to the infinite interval which is as

follows.

Theorem 2 (for the case of infinite time interval):

Consider the singular perturbation problem (47) and (48) and let z= ϑ(x, t) be an isolated

root of (49). Assume that the following conditions are satisfied for all

[x, t,z−ϑ(x, t),ε]∈ [0,∞]×Br ×Bp× [0,ε0]

1. The functionsfp, gp and their first partial derivatives with respect to(x,z,ε) are

continuous and bounded. The functionϑ(x, t) and the Jacobian∂g(x,z,0, t)/∂zhave

bounded continuous first partial derivatives with respect to their arguments.

2. The Jacobian∂ f (x,ϑ(t,x),0, t)/∂x has bounded first partial derivatives with respect

to x.

3. The origin of the reduced problem (51) is exponentially stable.

4. The origin of the boundary layer model (59) is exponentially stable, uniformly in

(x, t).

Then, there exist positive constantsµ11, µ22 andε⋆ such that for all

‖x(0)‖ < µ11, ‖z(0)−φ(t0,x(0)‖ < µ22 and 0< ε < ε⋆
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the singular perturbation problem (47) and (48) has a uniquesolutionx(ε, t) andz(ε, t)

defined for allT ≥ t0 ≥ 0, and

x−xs(t) = O(ε)

z−ϑ(xs, t)−zf (ν) = O(ε)

hold uniformly fort ∈ [t0,∞]. Moreover, given anyt1 > t0, there isε⋆⋆ ≤ ε⋆ such that,

z−ϑ(xs, t) = O(ε)

holds uniformly fort ∈ [t1,∞] wheneverε < ε⋆⋆.

Hence, it is evident from the above theorem that, for the validation of use of singular

perturbation approach, the slow subsystem or reduced ordermodel and fast subsystem or

boundary layer model must be exponentially stable for the infinite time interval.

3.4 Singular perturbed model of the manipulators - flexi-

ble object system

Singular perturbation approach is not straightforward to apply to the manipulator-beam

system. There are some requirements to be met to apply this technique into the system

of dynamic equations (42) and (43) which will be discussed later. In this section, initially

the control task will be stated and based upon this task singularly perturbed model will be

developed.

The control task is stated as follows: For any given desired bounded trajectories of

the mass center of the beamXr f d andẊr f d, with some or all of the manipulator and beam
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parameters unknown, derive a controller for the manipulators τ such that the beam center

Xr f tracksXr f d while suppressing the vibration of the flexible object,η, to zero.

The system dynamics derived without using any approximation methods given in

(42) and (43) have rigid as well as flexible parameters that are coupled together. To achieve

the above control objective for such a complicated nonlinear system, a possible control

approach is the two-time scale theory which considers the high frequency phenomenon of

flexible motion in different time scales. The basic idea for the two-time scale theory is to

identify the slow and fast subsystems in separate time scales by employing singular pertur-

bation approach [64]. Then, a control algorithm for each subsystem is designed, which will

be combined to yield the composite control strategy for the original system. However, the

challenge is such that the designed sub-controllers satisfy the so-called Tikhnov’s theorem

in order to guarantee that the composite controller can be applied to the original system,

especially when the parameters of the system are unknown.

It is evident from the complete system of dynamic equations that, the inertia matrix

Mr , Coriolis and Centrifugal matrixCr , Gravitational vectorsGr and Jacobian matrixJ

do not have any flexible parameters, because the manipulators are considered to be rigid.

However, inMr f , Cr f , ηr f and inR, rigid as well as flexible parameters are coupled to-

gether. These flexible parameters have to be uncoupled from the above matrices and vectors

by using singular perturbation technique. It is to noted that, in order to avoid confusion,

these parameters are separated from the complete system of dynamic equations and typical

steps of singular perturbation approach is applied. This technique also accounts for the

neglected high frequency characteristics when the beam undergoes vibration [66]. Using a

perturbation parameter, sayε2, order of the system dynamics can be changed and this small
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parameter depends upon the system variable. Keeping that inmind, the termEI/ρ in (43),

which has large magnitude compared to other coefficients [66], can be re-defined as,

EI
ρ

= a . K (63)

whereK is a dimensionless parameter which has large value for the different materials [64]

and [66] and its order is equal toEI/ρ and also the variable “a” satisfies the equalities. For

example, an aluminium rod with a diameter of 0.05m,E = 71 GPa andρ = 2700kg/m3 has

the value of the co-efficientEI/ρ ∼= 4.1×103 and thereforea= 4.1 andK = 103. However,

the beam has rigid motion with respect to the state variablesXr f = {x0, y0, θ}T and also

the transverse vibrationη with respect to the state variable occurs in different time scales.

Then, one need to introduce a new variablew(x, t) in the same order of the state variable

by the following,

η(x, t) = ε2.w(x, t) (64)

whereε2 = 1/K is the so-called perturbed parameter.

Using (64) one can re-write the rigid motion dynamics of the beam as follows:

The equation of motion (18) in the X-direction can be writtenin terms of perturbed param-

eter as,

mẍ0− (ρ cosθ ε2
∫ L

2

−L
2

wdx)θ̈ −ρ sinθ ε2
∫ L

2

−L
2

ẅdx−2ρθ̇ cosθ ε2
∫ L

2

−L
2

ẇdx+

θ̇2ρ sinθ ε2
∫ L

2

−L
2

wdx= F2x +F1x (65)

The equation of motion (19) in the Y-direction can be writtenin terms of perturbed param-

eter as,

mÿ0− (ρ sinθ ε2
∫ L

2

−L
2

wdx)θ̈ +ρ cosθ ε2
∫ L

2

−L
2

ẅdx−2ρθ̇ sinθ ε2
∫ L

2

−L
2

ẇdx
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−θ̇2ρ cosθ ε2
∫ L

2

−L
2

wdx+mg= F2y +F1y (66)

Rotation about the Z axis described in equation of motion (20) in terms of perturbed pa-

rameter is,

(−ρ cosθ ε2
∫ L

2

−L
2

wdx)ẍ0− (ρ sinθ ε2
∫ L

2

−L
2

wdx)ÿ0 +(
mL2

12
+ρ ε4

∫ L
2

−L
2

w2dx)θ̈

+ρ ε2
∫ L

2

−L
2

xẅdx2ρθ̇ ε4
∫ L

2

−L
2

wẇdx= F1x(
L
2

sinθ − ε2wcosθ)

+F1y(−
L
2

cosθ − ε2wsinθ)+F2x(−
L
2

sinθ − ε2wcosθ)+F2y(
L
2

cosθ − ε2wsinθ) (67)

Correspondingly, using (63) and (64), the equation of motion for transverse vibration

of the beam can be rewritten as,

−sinθ ẍ0 +cosθ ÿ0 +xθ̈ + ε2ẅ− ε2wθ̇2 +awiv = Ff f ( f ) (68)

The equations (65), (66), (67) and (68) represent the singularly perturbed form which will

be incorporated into the system of dynamic equations (42) and (43) to form the singularly

perturbed model of the complete system.

3.5 Slow and fast dynamic models

In this section, the two subsystems, namely slow and fast, are obtained by following the

typical steps of singular perturbation approach which werediscussed earlier in this Chapter.

Due to the presence of perturbed parameterε2, the complete system has two motions in the

different time scales. Initially, the singularly perturbed model of rigid motion dynamics

of the beam will be converted into the rigid dynamic model without involving any flexible

parameter and finally it will be incorporated into (42) whichforms the slow subsystem.
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Similarly, after following the usual procedure of the singular perturbation approach, the

fast subsystem will be obtained from (68).

3.5.1 Slow subsystem

When the perturbation parameterε approaches zero, the equivalent quasi-steady-state

system [67] represents the slow subsystem. By settingε = 0, (65), (66) and (67) forms the

rigid dynamic model of the beam which is given in compact formas,

MrdẌr f +Crd +ηrd +Grd = Frd(− f ) (69)

Mrd =

















m 0 0

0 m 0

0 0 mL2

12

















; Ẍr f =































ẍ0

ÿ0

θ̈































; Crd = {0 0 0}T ;

ηrd = {0 0 0}T ; Grd =































0

mg

0































;

Frd =

















1 0 0 1 0 0

0 1 0 0 1 0

L
2 sinθ −L

2 cosθ 1 −L
2 sinθ L

2 cosθ 1

















The equation of motion for transverse vibration of the beam (68) becomes,

[−sinθ ẍ0 +cosθ ÿ0 +xθ̈ +awiv]s = Ff f ( fs) (70)

where fs corresponds tof whenε approaches zero.
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Again, substituting (64) into (5) and also settingε = 0, RbecomesR1 which is given

by,

R1 =









































1 0 L
2sinθ

0 1 −L
2cosθ

0 0 1

1 0 −L
2sinθ

0 1 L
2cosθ

0 0 1









































Based upon the above results, the combined dynamic equation(42) becomes,

(Mo+Mrd)Ẍr f +CoẊr f +Go +Grd = uo (71)

where,

Mo = RT
1 J−TMrJ−1R1

Co = RT
1 J−T(Mr J̇−1R1 +MrJ−1Ṙ1+CrJ−1R1)

Go = RT
1 J−TGr

u0 = RT
1 J−Tτ

The above equation can be rewritten as,

McsẌr f +CcsẊr f +Gcs = ucs (72)

where,

Mcs= Mo+Mrd

Ccs = Co

Gcs = Go +Grd
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ucs = uo

The slow subsystem given in (72) represents the rigid body motion without involving any

flexible parameters. It will be used further to design a control algorithm to track a desired

trajectory of the object.

The slow subsystem has following properties which are important to the stability analysis.

Property 1 in Cartesian Space(CS):Mcs is a symmetric positive definite matrix [59] and

[68].

Property 2 in CS: The matrixMcs andCcs in (72) must satisfy

XT(Ṁcs−2Ccs)X = 0, ∀X 6= 0 (73)

where,X is any arbitrary vector. Hence(Ṁcs−2Ccs) is a skew-symmetric matrix [59] and

[68].

Property 3 in CS: There exists a vectorαcs∈ Rv×1 which solely depends on manipulators

and beam dynamic parameters (link lengths, masses and moments of inertia etc.) such that

McsẌr f +CcsẊr f +Gcs = Ycs(Ẍr f , Ẋr f , q̇,q)αcs (74)

whereYcs ∈ Ru×v is called regressor matrix of manipulator-beam systems in Cartesian

space. The regressor for the Cartesian space slow subsystemYcs and alsoαcs is given

in Appendix B.

Property 4 in CS: Since the matricesMcs, Ccs andGcs in (72) are the functions of sine

and cosine of manipulator joint angles and velocities, theyare bounded. Then, there exist

arbitrary positive constantsρi (i=1, 2, 3), the boundedness [69] of each matrices can be

described as follows:

‖ Mcs‖≤ ρ1
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‖Ccs‖≤ ρ2 ‖ Ẋr f ‖

‖ Gcs‖≤ ρ3

3.5.2 Fast subsystem

Equation (68) represents the perturbed flexible model obtained with perturbation param-

eter ε which is very small and solely depends upon theE, I andρ .

In order to study the dynamic behavior of fast system, the so called boundary layer phe-

nomenon [64] and [67] must be obtained. This can be identifiedby ensuring that the slow

variables are kept constant in the fast time scaleν = t−t0
ε . From the typical steps of singular

perturbation [64], one can define the fast variablewf

wf = w−ws (75)

Differentiating the fast time scale,

dν =
dt
ε

dν
dt

=
1
ε

(76)

Differentiating (75) gives,

ẇ = ẇs+
d
dt

wf = ẇs+
dν
dt

d
dν

wf = ẇs+
1
ε

ŵf (77)

where ˆwf denotes differentiating fast variable with respect to fasttime scale.

Differentiating (77) again yields,

ẅ = ẅs+
dν
dt

d
dν

ŵf = ẅs+
1
ε2

ˆ̂wf (78)
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Using (75), (68) can be rewritten as,

−sinθ ẍ0 +cosθ ÿ0 +xθ̈ + ε2ẅ− ε2(ws+wf )θ̇2 +a(wiv
s +wiv

f ) = Ff f ( f ) (79)

Using (70) and (78), (79) becomes,

Ff f ( fs)+ ˆ̂wf + ε2ẅs− ε2(ws+wf )θ̇2+awf
iv = Ff f ( f ) (80)

By definingFf f ( f f ) = Ff f ( f )−Ff f ( fs), the above equation can be rewritten as,

ˆ̂wf + ε2ẅs− ε2(ws+wf )θ̇2 +awf
iv = Ff f ( f f ) (81)

However, in the boundary layer system, the slow variablews is constant which implies

ẅs = 0 and alsoε = 0 [67]. Then, the fast dynamics can be represented as,

ˆ̂wf +awf
iv = Ff f ( f f ) (82)

The above equation (82) represents the fast subsystem in thefast time scale which connotes

the vibration of the flexible object.

Thus it is evident from the above analysis that, singular perturbation approach estab-

lishes slow and fast system in two different time scales. Theslow or the quasi-steady-state

response is obtained from the reduced order model (72) and the fast transient is nothing

but the discrepancy between the original complete system dynamics (42) and (43) and the

reduced order model. However, the fast subsystem (82) is still in the form of infinite di-

mensional partial differential model and it should not be approximated using finite element

method or assumed mode method. Luo [70] and [71] introduced some of the operators and

its properties to avoid the issues related to approximationand discretization for such a PDE

based systems. These operators will be useful to form the abstract differential model of the

58



fast subsytem without any approximation. Following are some of the important definitions

and terms used by Luo [70] for developing the abstract differential equation from the infi-

nite dimensional model of the beam.

Hilbert Space [72]:

A Hilbert space is a space which satisfies the following axioms [72]:

• It is a vector space, in which the operations such as additionand multiplication of the

vector elements by a scalar can be done. Also, the usual commutative, associative

and distributive properties are satisfied.

• For every pair of elements x, y there is associated a scalar product also called inner

product denoted by< x . y > exists.

• It has an infinite number of dimensions, i.e., the number of linearly independent

elements has no bound.

• It is a complete space which means that every Cauchy sequenceconverges.

• It is of countable type. There exists one sequenceϒ = (x1....xn) which is everywhere

dense in H. i.e., for every x in H and every small∆ > 0, there is atleast onexn which

satisfies‖x−xn‖ < ∆.

Bounded Operator [72]:

The operatorA is bounded in the Hilbert space and then, there exists a positive numberα

such that,

‖Ax‖ ≤ α‖x‖ ∀x∈ H
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Adjoint Operator [72]:

Consider a linear bounded operatorF and the product< Fx . y >, wherey is fixed andx

ranges overH. Then, there exists an elementF∗y such that,

< Fx . y > = < x . F∗y > ∀x∈ H

The operatorF∗ is linear and bounded and called as adjoint of F.

Self-Adjoint Operator [73]:

The linear bounded operatorF on a Hilbert spaceH is said to be self adjoint, ifF∗ = F.

Then,

< Fx . y > = < x . Fy > ∀x∈ H

By utilizing above definitions, an operatorA [71] is defined as,

D(A) = {wf |w
iv
f ∈ H,wf (0) = w

′′

f (0) = wf (L) = w
′′

f (L) = 0} (83)

Awf = awiv
f , ∀wf ∈ D(A) (84)

where,D(A) denotes the domain of the operatorA andH denotes the Hilbert space.

The important properties of operatorA has been introduced by Sakawa and Luo [74] which

are as follows:

• A is closed, self-adjoint, and positive definite operator

• The inverse (A−1) of A exists and is compact onH

They also provided [74] the detailed proof for each of the above properties.

In addition to those properties, the operatorA has the eigenvaluesλi and the corresponding

eigenfunctionsφi satisfying the following conditions [75].
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1. 0< λ1 < λ2......, lim λi = ∞

2. Aφi = λiφi , i = 1,2....∞

3. The set of the eigenfunctions forms a complete orthonormal system in the Hilbert

space.

Luo [71] defined another unbounded operatorΠ with D(Π) ⊃ D(A). The following are

some of the important assumptions that has to be satisfied by the operatorΠ:

1. Π is A-bounded. i.e.,∀u ∈ D(A), there exist nonnegative constantsac andbc such

that‖Πu‖ ≤ ac‖u‖+bc‖Au‖.

2. Π is A-symmetric. i.e.,∀u,v∈ D(A), there holds(Πu,Av) = (Au,Πv).

3. Π is A-positive semidefinite. i.e.,∀u∈ D(A), there holds(Πu,Au)≥ 0.

The operatorΠ is called asA-dependant operatorwhen it satisfies all of the above assump-

tions. If Π is A-positive definite, then, we callΠ asstrict A-dependant operator. Some of

theA-dependant operators areΠ = Id, the identity operator onH, Π = A
1
2 and alsoΠ = A.

It is also shown by Luo [70] that, the operatorΠ can be expressed as,

Π = ΠA−1A = QA (85)

where,Q = ΠA−1 and it has the following properties:

• It is a bounded operator onH

• It is a symmetric operator onH

• It is a positive semidefinite operator onH
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These operators are useful for stability analysis in the next Chapter. The complete proof

for the above mentioned properties can be found in [70].

Using (84), the partial differential equation (82) can be rewritten as an abstract differential

equation onH as,

ˆ̂wf (ν)+Awf (ν) = Ff f ( f f ) (86)

wf (0) = wf 0, ẇf (0) = wf 1

Equation (86) represents the fast subsystem in the abstractdifferential equation form, which

will be used for designing fast feedback control.

3.6 Summary

Fundamental concepts of singular perturbation method havebeen reviewed in this

Chapter. Based upon these concepts, the coupled rigid-flexible dynamics have been sepa-

rated into slow subsystem which corresponds to rigid body motion and fast subsystem that

describes transverse vibration of flexible object. The separation of these two subsystems

occurred in two different time scales. In addition, the fastsubsystem is further modified

into abstract differential equation by using various differential operators. Therefore one

can develop control scheme for each subsystem and combiningthem together to form a

composite control input for the manipulator-beam system. The next Chapter deals with the

development of composite control scheme and its stability analysis. Simulation studies will

be performed to evaluate the proposed composite control scheme.

62



Chapter 4

Controller Design

4.1 Introduction

From a review of literature in Chapter 1 it becomes evident that majority of the studies on

manipulating flexible objects have focused on the development of linear control algorithms

such as PD controller [41], [43] and [50] and hybrid impedance controller [45] and [48] .

Even though the linear control algorithms had been generally successful in industrial appli-

cations, it has a few drawbacks while handling structured and unstructured uncertainties,

external disturbances and also in linearizing large operating ranges.

The key issue in developing a control algorithm is that, it should handle the uncertain

parameters of the manipulators and beam and it must give exponential convergence of both

slow and fast subsystems to satisfy the validity of singularperturbation approach by means

of Tikhnov’s theorem. Considering these facts, in this Chapter, a regressor based sliding

mode control is developed for the slow subsystem and as a partof the composite control
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law; a simple feedback control algorithm is proposed for thefast subsystem. The justifi-

cation of a composite control scheme is achieved by presenting the exponential stability

analysis for the slow and fast subsystems. Simulation results are also presented to validate

the proposed composite controller. In order to reduce the chattering on the slow subsystem,

a smoothing control law is considered. A special case of two manipulators handling a rigid

object has been derived by keeping the flexible parameter zero and the modulus of elas-

ticity assumed to be infinite. Since, this thesis makes use ofthe basic notions of adaptive

and robust control algorithm, they are reviewed initially and consequently the composite

control law will be presented.

4.1.1 Adaptive control

Adaptive controllers were developed in the 1950’s with the aim of designing autopi-

lots for high performance aircraft when difficulties were encountered implementing PID

controllers. Adaptive control laws are determined from thegiven desired control objective

and the feedback signal derives the parameter update law. Basically, it has adaptation law

which is used to learn the uncertain parameters of the systemand the learned parameters

are used further in the designed control law. Several adaptive schemes related to control

of robot manipulators can be seen in the literature. A comprehensive survey of adaptive

control of rigid robots is reported in [57]. These controllers use parametric formulation of

robot dynamics resulting in better performance. Also, adaptive control is useful in various

applications [76] such as aircraft control, process control, ship steering and robot manipu-

lation control.
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The following example will illustrate the overview of the adaptive controller proposed by

Slotine and Li [58] for a rigid manipulator withn1 number of links which is as follows.

General manipulator dynamic equation can be written in joint space as [55],

M(q)q̈+C(q, q̇)q̇+G(q) = τ (87)

For the given initial joint position of rigid manipulator with some or all of the manipulator

unknown parameters, control law for the input joint torqueswill be derived to track the

desired trajectoryqd ∈ Rn1, q̇d ∈ Rn1 andq̈d ∈ Rn1. The manipulator will track the desired

path after an initial adaptation process.

Let υ = [υ1 ..... υm1]
T be anm1-dimensional vector containing the unknown manipulator

and load parameters, andυ̌ is its estimate. Correspondingly,̌M, Č andǦ are the estimates

of M, C andG and are obtained by substitutinǧυ for actualυ. Utilizing the linear pa-

rameterized property 4 of the dynamics of manipulator mentioned in Chapter 2, one can

have,

M̃(q)q̈r +C̃(q, q̇)q̇r + G̃(q) := Y(q, q̇, q̇r , q̈r)υ̃ (88)

where,Y(q, q̇, q̇r , q̈r) ∈ Rn1×m1 is the regressor matrix which is independent of dynamic

parameters and̃υ = υ̌ −υ is the parameter estimation error.

Considering a positive definite matrixλ1 and the position tracking error ˜q = q− qd, the

reference trajectory velocity can be written as,

q̇r = q̇d−λ1q̃ (89)

Then, the sliding surface can be defined as,

S1 = q̇− q̇r = ˙̃q+λ1q̃ (90)
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Using above relations, the control law becomes,

τ = Y(q, q̇, q̇r , q̈r)υ̌ −KdS1(t) (91)

and the adaptation law is given by,

˙̌υ = −Φ−1YT(q, q̇, q̇r , q̈r)S1(t) (92)

whereΦ is a constant positive definite matrix andKd is a symmetric positive definite matrix

usually diagonal. The vectorS1(t) is the measure of tracking accuracy.

By choosing the following Lyapunov function candidate,

V(t) =
1
2
[ST

1 (t)MS1(t)+ υ̃TΦυ̃ ] (93)

it was shown that, the control and the adaptation laws achieve global convergence of the

positional and velocity tracking error to zero. Hence, the sliding surface (90) converged

asymptomatically to zero which in turn guarantees that ˜q and ˙̃q also converge to zero.

An advantage of this type of controller is that there is no need of measurement of joint

accelerations to feed back or inverting the estimated inertia matrix. However, the given

adaptation law (92) is of gradient type and the convergence of tracking errors to zero does

not mean that the convergence of estimated parameters to theexact values. In order to

achieve the asymptotic convergence of estimated parameters to the true parameters, the

matrixYd(qd, q̇d, q̈d) should be persistently exciting and uniformly continuous.If the ma-

trix Yd(qd, q̇d, q̈d) is not persistently exciting, it means that, the following relation does not

hold good for all time [77]. There exist positive constantsδ , β1 andβ2 such that,

β1Id ≤
∫ t1+δ

t1
YT

d Yddt ≤ β2Id (94)
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Also, if the above condition is not satisfied then the estimator may become unstable i.e.,

the estimated parameters will diverge. It is also shown in [78] that, without persistent exci-

tation, system may not be able to achieve uniform adaptationtransient becausěυ is away

from υ and also convergence of vectorS1(t) or υ̃ = υ̌ −υ is very slow. In addition, adap-

tive controllers deal with the case of constant or slowly varying parametric uncertainties

only. However, various parametric and unparametric uncertainties are occurring frequently

in robot models. In order to handle these uncertainities, robust control algorithms came

into picture.

4.1.2 Robust control

In the robust controllers, the controller has a fixed structure with known bounds of

uncertainty and no learning behavior takes place. The robust controllers have attractive

features compared to adaptive controllers, which are [76]

• ability to deal with disturbances.

• ability to handle quickly varying parameters and unmodeleddynamics.

• they are easy to implement.

These controllers can achieve desired transient response and also convergence of their

tracking error is uniform and bounded [79]. The survey on robust control strategies [80]

and [81] shows that these kind of controllers are well known and very useful for different

applications. This thesis considers, one of the robust control scheme, namely, sliding mode

control which is reviewed in the following section.
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4.1.2.1 Sliding mode control

One of the robust schemes to control the nonlinear systems isby means of Variable

Structure Control (VSC) and it is a high-speed switching feedback control. The high-speed

switching gain and advancement of computer technology increases interest in the practical

implementation of VSC. A simple approach to robust control is the so-called sliding mode

control. Here, in this section an overview of sliding mode control is provided [76].

A single input dynamic system is given by,

x(n) = fs(x)+bs(x)u (95)

where the scalarx is the output,u is the control input andx = [x, ẋ, .... ,x(n−1)]T is the

vector of state variables. The nonlinear functionfs(x) is known by its upper bound and the

control gainbs(x) is also bounded with known sign. The control objective is to track the

desired statexd = [xd, ẋd .... x(n−1)
d ] in the presence of model uncertainities onfs(x) and

bs(x). The tracking error vector can be defined as,

x̃ = x−xd = [x̃, ˙̃x, .... , x̃(n−1)] (96)

and the sliding surface is given by,

S2 = (
d
dt

+λ2)x̃ (97)

whereλ2 is a positive constant and ˜x is the tracking error in the variablex.

For the given initial conditionxd = x(0), the sliding control will track the desired

trajectoryxd which is equivalent to the state variables remaining on the surfaceS2(t) for

all t > 0. Fig. 7 shows that for the different Initial Conditions (IC), the state variables
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are converge toS2(t) = 0. It is also observed from (97) that, the sliding surface is related

to tracking error ˜x and therefore the sliding variableS2 is the true measure of tracking

performance. We need to keepS2(t) at zero when tracking is outside ofS2(t). This can

IC 1

IC 3

IC 4

IC 2S (t)=0
x

x

Sliding surface 2

Figure 7: Sliding surface and various initial conditions

be achieved by choosing the control law ofu of (95) such that the outside ofS2(t) should

satisfy the following,

1
2

d
dt

S2
2(t) ≤−ϒ|S2(t)| (98)

whereϒ is a strict positive constant and (98) describes that the system trajectories will

converge towards the sliding surface which is an important conclusion for the existence of

sliding mode and satisfying this condition is called as sliding condition.

In this technique, a nonlinear system state trajectory willbe driven onto a specified

and user-chosen sliding or switching surface. If the systemtrajectory will be “above” the
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surface, then the control path has one gain and a different gain if the trajectory drops “be-

low” the surface. The state trajectories of the system maintained in this surface indicate that

the system is controlled. In this approach, the tracking error will reach a switching surface

and afterwards the system will be in sliding mode. The sliding behavior causes the system

to slide along or in the vicinity of sliding surface. Then, the system will not be affected

by any model uncertainty i.e., it is robust and insensitive to disturbances. By designing

a proper sliding surface, VSC can achieve the goals such as, stabilization, regulation and

tracking in control perspective. Sliding mode control has been applied to various applica-

tions [76] such as robot manipulators, underwater vehicles, automotive transmissions and

engines, high performance electric motors and power systems. This thesis also considers

sliding mode approach for the control of slow subsystem.

4.2 Composite control for the manipulators - flexible ob-

ject system

Singular perturbation approach produces a multi-time-scale model of manipulator-

flexible beam system. Due to the end-effector force, the flexible beam has to move in the

desired trajectory and simultaneously, vibration of the object must be suppressed. In order

to achieve these objectives, a composite control algorithmwill be designed. A composite

control for the manipulator-flexible object system is, by definition, a controller of the form

u = us(Ẋr f ,Xr f , t)+uf (ŵf ,ν)
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whereus is designed based on slow subsystem (72) anduf is designed to stabilize the fast

subsystem (86). The slow control for the rigid nonlinear subsystem can be designed by

utilizing sliding mode control theory. In case of fast subsystem, a feedback control law

with special damping term will be introduced. Utilizing thevarious operators mentioned in

Chapter 3, a control law for the fast subsystem will be developed.

4.2.1 Robust control design for slow subsystem

The key issue in developing a control algorithm is that, withthe unknown manipulators

and beam parameters, the design ofus(Ẋr f ,Xr f , t) can not be arbitrary. It has to guarantee

the exponential tracking of the desired trajectories so that the Tikhnov’s theorem can be

satisfied, which will be clear in the later development. For that purpose, a sliding mode

control approach will be adopted.

The tracking error is defined as,

er = Xr f −Xr f d (99)

whereXr f d is the desired trajectory, and the auxiliary trajectory as,

Ẋr = Ẋr f d −λcser (100)

whereλcs is a positive definite matrix whose eigenvalues are strictlyin the right half com-

plex plane.

The sliding surface can be chosen as,

Scs= Ẋr f − Ẋr = ėr +λcser (101)
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The sliding mode controller can be given as,

us = ucs= Ycsψ −KD Scs (102)

whereKD is a positive definite gain matrix,Ycs(Ẍr , Ẋr , q̇,q) is the regressor matrix given

in property 3 in CS (74) where the dynamic parameters of manipulators and beam are

excluded andψ = [ψ1....ψm]T are the switching functions which are given by,

ψ = −βcs
YT

cs Scs

‖YT
cs Scs‖

(103)

whereβcs ≥ ‖αcs‖ is upperbound ofαcs which is known though it could be conserva-

tively selected. The advantages of the suggested control scheme is, exact knowledge of

the manipulator parameters or the beam are not required; it avoids the need for parameter

estimation unlike in the adaptive control; it gives the desired transient response and also

robustness to uncertainties are guaranteed; and it satisfies the Tikhnov’s theorem.

4.2.2 Control design for fast subsystem

The objective of the controller is to suppress the vibrationof the flexible object by

incorporating following feedback control law,

uf = ( f f ) = −F†
f f Πŵf (ν) (104)

whereF†
f f can be found using pseudo inverse. The operatorΠ is neither selfadjoint nor

positive definite and is also shown in [70] and [71] that, it isA-symmetric andA-positive

semidefinite. This operator was formulated in [71] asΠ = kQAwhereQ is a bounded and

positive definite operator. Also, the velocity signal ˆwf (ν) can be measured using velocity
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sensor. It is to be noted that, there are some established results available using the veloc-

ity feedback for example [82] and [83]. However, they have considered assumed modes

while in this control algorithm no form of approximation is used. In addition, compared

to other recent boundary control methods available in the literature [66] and [84] where

the velocity and slope of fast state variable are used as feedback and they are dependant

upon the boundary conditions of the beam. Also, the feedbackof slope of the beam is not

easy to measure in real time applications. However, the presented control algorithm uses

only velocity feedback which is irrespective of boundary conditions and it does not need

the information of modes. This controller is simple to implement in real time and reduces

the need for number of sensors.

Substituting (104) into (86) gives closed loop system whichis given by,

ˆ̂wf (ν)+Πŵf (ν)+Awf (ν) = 0 (105)

Using the operatorsΠ andQ, (105) can be rewritten as,

ˆ̂wf (ν)+kQAŵf (ν)+Awf (ν) = 0 (106)

wf (0) = wf 0, ẇf (0) = wf 1

wherek is the positive gain and the termQAŵf (ν) is a special damping term [71]. This

damping has been studied by various researchers especially[85]-[88]. The two operatorsQ

andAare related byQ= Aβ andβ varies between[−1
2 ,0]. It is shown analytically by Huang

[86] whenβ = −1
2 , the damping termQAŵf (ν) becomesA

1
2ŵf (ν). This corresponds to

structural damping which can also be seen in [88]. Ifβ = 0, then damping term exhibits

strong damping or overdamping characteristics which is shown in [86] and [87].
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4.3 Stability analysis

The stability of the closed loop system is essential to show the ability of the suggested

control algorithms for slow and fast subsystems. The development of slow and fast sub-

system with the help of singular perturbation technique insists on to satisfy the Tikhnov’s

theorem. It is evident from the Tikhnov’s theorem for the infinite time interval presented

in Chapter 3 that, the slow and fast subsystems must be exponentially stable. Therefore,

the rigorous exponential stability proof for slow and fast subsystem will be presented in the

following.

4.3.1 Stability analysis for slow subsystem

The Tikhnov’s theorem requires the slow subsystem to be exponentially stable. Hence,

the following analysis will illustrate the exponential stability of the slow subsystem.

Differentiating the sliding surface (101) with respect to time results in,

Ṡcs= Ẍr f − Ẍr (107)

Mutiplying both sides of (107) byMcs and using (72), (107) can be rewritten as,

McsṠcs= ucs−CcsẊr f −Gcs−McsẌr (108)

Adding and subtractingCcsẊr in (108) results in,

McsṠcs = ucs− (McsẌr +CcsẊr +Gcs)+CcsẊr −CcsẊr f (109)

Using (101), (109) can be rewritten as,

McsṠcs = ucs−Ycs(Ẍr , Ẋr , q̇,q)αcs−CcsScs (110)
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where,

(McsẌr +CcsẊr +Gcs) = Ycs(Ẍr , Ẋr , q̇,q)αcs

Consider a Lyapunov function candidate as,

V1(t,Scs) =
1
2

ST
csMcsScs (111)

Differentiating (111) with respect to time gives,

V̇1(t,Scs) = ST
csMcsṠcs+

1
2

ST
csṀcsScs (112)

Substituting (110) into (112) and also using property 2 in CS(73), above equation yields,

V̇1(t,Scs) = ST
cs[ucs−Ycs(Ẍr , Ẋr , q̇,q)αcs] (113)

Substituting the control law given in (102) and (103) into (113) results in,

V̇1(t,Scs) ≤−ST
csKDScs−β‖YT

cs Scs‖+‖ST
csYcs‖‖αcs‖ (114)

Taking transpose of‖ST
csYcs‖ and alsoβ ≥ ‖αcs‖ gives,

V̇1(t,Scs) ≤−ST
csKDScs (115)

It is known that [89]KD = M0rκ whereκ can be considered as a least eigenvalue. Hence,

(115) can be rewritten as,

dV1(t,Scs)

dt
≤−ST

csMcsκScs (116)

Using (111), (116) can be rewritten as,

dV1(t,Scs)

dt
≤−2κV1(t,Scs) (117)
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The solution of the above equation is,

V1(t,Scs) ≤V1(0,Scs(0))e−2κt (118)

It is evident from the above equation that the sliding surface will converge exponentially

to zero. Thus the sliding surface is related to the tracking error er in (101) which also

converges exponentially to zero which satisfies the Tikhnov’s theorem.

4.3.2 Stability analysis for fast subsystem

Tikhnov’s theorem requires that for the infinite time interval, the fast subsystem or the

boundary layer model also must be exponentially stable. Theenergy multiplier method

used by [71] is followed to prove the exponential stability under the following theorem

[90], [theorem 4.1] which guarantees exponential stability.

Theorem 3:

Let A be the infinitesimal generator of aCo semigroupT(t). If for somep, 1≤ p≤ ∞

∫ ∞

0
‖T(t)‖pdt < ∞ (119)

then there are constantsM ≥ 1 and µ > 0 such that‖T(t)‖ ≤ Me−µt .

Note: It is also shown in [71] and [91] that the property ofLp stability and exponential

stability for a strongly continuous semigroup must satisfythe following,

∫ ∞

0
‖E(ν)‖2dν < ∞ (120)

Proof:

Let the energy function for (106) be of the form,

E(ν) =
1
2
‖Awf (ν)‖2+

1
2
‖A

1
2ŵf (ν)‖2 (121)
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whereE(ν) is weakly monotonically decreasing function with respect to fast time scaleν

[91]. The fast time scale derivative ofE(ν) from the above equation will be,

Ê(ν) = −k〈QAŵf (ν) . Aŵf (ν)〉 ≤ 0 (122)

Let us choose 0< ε f < 1 and the Lyapunov function candidate is given by,

V2(ν) = 2(1− ε f )νE(ν)+ 〈ŵf (ν) . Awf (ν)〉 (123)

We have the following relation,

〈ŵf (ν) . Awf (ν)〉 ≤
1
2
(‖Awf (ν)‖2+‖A

−1
2 ‖2‖A

1
2ŵf (ν)‖2)

There exists a constantc1 such that,

[2(1− ε f )ν −c1]E(ν) ≤V2(ν) ≤ [2(1− ε f )ν +c1]E(ν) (124)

For ν > ν1, the Lyapunov function is positive andν1 is found from,

2(1− ε f )ν1−c1 = 0 (125)

The derivative ofV2(ν) in (123) with respect to fast time scale is given by,

V̂2(ν) = (2− ε f )‖A
1
2ŵf (ν)‖2− ε f ‖Awf (ν)‖2−2k(1− ε f )ν〈QAŵf (ν) . Aŵf (ν)−

k〈QAŵf (ν) . Awf (ν)〉(126)

For any arbitrary constant, say,c2 > 0 we have,

−〈QAŵf (ν) . Awf (ν)〉 ≤
1
2

λmax(Q)[c2
2(‖Aŵf (ν)‖2+

1
c2

2‖Awf (ν)‖2 (127)

Using (127), (126) can be rewritten as,

V̂2(ν) = [(2− ε f )‖A− 1
2‖

2
+

c2
2k

2
λmax(Q)−2kν(1− ε f )λmin(Q)]‖Aŵf (ν)‖2−

(ε f −
k

2c2
2

λmax(Q))‖Awf (ν)‖2 (128)
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whereλmax(Q) = maxw f∈H〈Qwf . wf 〉 andλmin(Q) = minw f∈H〈Qwf . wf 〉.

If c2 can be chosen as large then(ε f −
k

2c2
2
λmax(Q)) > 0,

V̂2(ν) ≤ 0 ∀ν > ν2 (129)

whereν2 be found from the following is satisfied,

(2− ε f )‖A− 1
2‖

2
+

c2
2k
2 λmax(Q)−2kν2(1− ε f )λmin(Q) = 0

The above result in (129) shows that derivative of Lyapunov function has decreasing trend

for ν > ν2 and it is also evident from (122) that the energy will also be dissipating forν > 0.

Using these facts, forν > Ts := max{ν1,ν2} and also from (124)E(ν) can be estimated as,

E(ν) ≤
V(Ts)

2(1− ε f )ν −c1
≤

[2(1− ε f )Ts+c1]E(0)

2(1− ε f )ν −c1
(130)

Then, (130) can be rewritten as,

∫ ∞

Ts

E(ν)2dν ≤
∫ ∞

Ts

[2(1− ε f )Ts+c1]
2E(0)

2(1− ε f )ν −c1

2

< ∞ (131)

which confirms the exponential stability as given in (119) and hence it is proved.

4.4 Simulation of composite controller

In many manufacturing and automobile industries various operations on flexible com-

ponents such as assembling, welding, picking and placing are efficiently done using two

robot arms. In a typical car industry, number of sheet metal parts must be assembled in

the required place. In order to avoid the collision between the parts and also to satisfy the

ergonomic constraints, these parts must move in the prescribed trajectory (tracking prob-

lem). By defining effective desired path, the robots help us to perform repetitive tasks that
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ultimately improve productivity. In order to illustrate the effectiveness of the proposed

composite controller, simulation studies are performed.

The following are the time independent parameters of a manipulator dynamic equa-

tion which are used to formulate the regressor [68].

pi1 = mi1l2
i1c + Ii1+mi2(l2

i1+ l2
i2c)+ Ii2+mi3(l2

i1+ l2
i2+ l2

i3c)+ Ii3

pi2 = m12l i1l i2c +mi3l i1l i2

pi3 = mi3l i2l i3c; pi4 = mi3l i1l i3c

pi5 = mi2l2
i2c + Ii2+m13(l2

i2+ l2
i3)+ Ii3

pi6 = mi3l2
i3c + Ii3; pi7 = mi1gli1c +mi2gli1+mi3gli1

pi8 = mi2gli2c +mi3gli2; pi9 = mi3gli3c

Each manipulator inertia matrix is given by,

Mi =

















mi11 mi12 mi13

mi21 mi22 mi23

mi31 mi32 mi33

















where,

mi11 = pi1+2pi2cos(qi2)+2pi3cos(qi3)+2pi4cos(qi2+qi3)

mi12 = pi5+ pi2cos(qi2)+2pi3cos(qi3)+ pi4cos(qi2+qi3)

mi13 = pi6+ pi3cos(qi3)+ pi4cos(qi2+qi3)

mi21 = mi12; mi31 = mi13; mi22 = pi5+2pi3cos(qi3)

mi23 = pi6+ pi3cos(qi3); mi32 = mi23; mi33 = pi6
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The centrifugal and coriolis matrices for each manipulatorare given by,

Ci =

















ci11 ci12 ci13

ci21 ci22 ci23

ci31 ci32 ci33

















where,

ci11 = −pi2sin(qi2)q̇i2− pi3sin(qi3)q̇i3− pi4sin(qi2+qi3)(q̇i2+ q̇i3)

ci12 = −pi2sin(qi2)(q̇i1+ q̇i2)− pi3sin(qi3)q̇i3− pi4sin(qi2+qi3)(q̇i1+ q̇i2+ q̇i3)

ci13 = −pi3sin(qi3)(q̇i1+ q̇i2+ q̇i3)− pi4sin(qi2+qi3)(q̇i1+ q̇i2+ q̇i3)

ci21 = pi2sin(qi2)q̇i1− pi3sin(qi3)q̇i3+ pi4sin(qi2+qi3)q̇i1

ci22 = −pi3sin(qi3)q̇i3

ci23 = −pi3sin(qi3)(q̇i1+ q̇i2+ q̇i3)

ci31 = pi3sin(qi3)(q̇i1+ q̇i2)+ pi4sin(qi2+qi3)q̇i1

ci32 = pi3sin(qi3)(q̇i1+ q̇i2); ci33 = 0

Each manipulator gravity vector is given by,

Gi =































gi1

gi2

gi3































where,

gi1 = pi7cos(qi1)+ pi8cos(qi1+qi2)+ pi9cos(qi1+qi2+qi3)

gi2 = pi8cos(qi1+qi2)+ pi9cos(qi1+qi2 +qi3)

gi3 = pi9cos(qi1+qi2+qi3)
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Each manipulator Jacobian matrix is given by,

Ji =

















Ji11 Ji12 Ji13

Ji21 Ji22 Ji23

1 1 1

















where,

Ji11 = −l i1sin(qi1)− l i2sin(qi1+qi2)− l i3sin(qi1+qi2+qi3)

Ji12 = −l i2sin(qi1+qi2)− l i3sin(qi1+qi2+qi3)

Ji13 = −l i3sin(qi1+qi2+qi3)

Ji21 = l i1cos(qi1)+ l i2cos(qi1+qi2)+ l i3cos(qi1+qi2+qi3)

Ji22 = l i1cos(qi1)+ l i2cos(qi1+qi2)

Ji23 = l i3cos(qi1+qi2+qi3)

In the tracking problem, desired circular trajectory of theobject is specified by,

Xr f d =

















sin(t)

cos(t)

0

















Table 1: Parameters of the manipulator

Link Length (m) Mass (kg) Moment of inertia (kgm2)

1 0.6 1.5 0.50
2 0.6 1.5 0.50
3 0.2 1.5 0.25

The parameters of identical manipulators [68] are given in Table 1. The flexible beam

parameters are given in Table 2.
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Figure 8: X-Position tracking-Sliding control in CS
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Figure 9: Y-Position tracking-Sliding control in CS
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Figure 10: Orientation of the beam-Sliding control in CS

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

actual

desired

Y(m)

X(m)

Figure 11: Circular trajectory
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Table 2: Parameters of the flexible beam

Parameter Value

Mass (m) 1.5 kg
Length (L) 1 m
Radius of the object 0.05 m
Density 2700kg/m3

Young’s modulus (E) 71 GPa
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Figure 12: J1M1-Sliding control in CS
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Figure 13: J2M1-Sliding control in CS

The beam initial position and orientation areXr f = {0.51,0.36,0.1}T and initial ve-

locity and acceleration are considered to be zero. Initial joint angles of manipulator areq11

= 0.2974 rad,q12 = 1.6974 rad,q13 = -1.6948 rad,q21 = 0.2149 rad,q22 = 1.4886 rad and

q23 = -1.4306 rad, respectively. The initial joint velocities of all the joints of manipulators

are 0.001 rad/sec and joint accelerations are assumed to be zero. The simulation is carried

Table 3: Control parameters-sliding control in CS

Parameter Value

KD diag(424.2)
λcs diag(7.9)
βcs 0.004
k 1
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Figure 14: J3M1-Sliding control in CS
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Figure 15: J1M2-Sliding control in CS
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Figure 16: J2M2-Sliding control in CS
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Figure 17: J3M2-Sliding control in CS

out with a sampling period of 0.01sec. The control parameters are tuned and are given in

Table 3.

The value ofΓ was chosen based on theL∞ norm of the time independent parameters

of the regressor in this case, vectorαor. Figs. 8 - 10 show the tracking of planar motion

of center of the object along X, Y directions and also rotation about Z axis, respectively. It

can be observed that, tracking of position and orientation is achieved within 1 sec, which

shows the effectiveness of the controller. It can be seen from the Fig. 11 that the desired

circular motion is achieved. In order to achieve the desiredcircular trajectory of the object,
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each joint of the manipulator are moved in a smooth manner which are shown in Figs. 12

- 17. In all the figure captions, “JjMi” the j-th Joint of i-th Manipulator where (i=1, 2),

(j=1, 2, 3) and “CS” represents the Cartesian Space.

It is also observed from the Figs. 18 - 20 that the sliding variables (SV) approach zero.

Once the system reaches the sliding surface it becomes stable and it will try to maintain in

the sliding surface which can also be inferred from these figures. Hence, it is evident from

(101) that, the tracking error will also converge exponentially to zero. The control torques

(CT) of each joints of manipulators are shown in Figs. 21 - 26.In all of these results around

4.5 secs there is a sudden increase in the value and afterwards it is stabilized. This is due to

the joint 2 of manipulator 1 approaches towards the singularity point which can be seen in

Fig. 13. These singularity problems can be avoided with the help of careful path planning

techniques.
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Figure 18: SV 1-Sliding control in CS
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Figure 19: SV 2-Sliding control in CS

In the case of fast subsystem, the initial disturbance of 5 mmwith zero initial velocity

is considered for the simulation. Even though the flexible object is neither approximated

nor discretized, for the simulation purpose first few natural frequencies of the beam are
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Figure 20: SV 3-Sliding control in CS
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Figure 21: CT of J1M1-Sliding control in
CS
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Figure 22: CT of J2M1-Sliding control in
CS

considered. Since the first few modes are dominant yielding higher amplitude of vibration,

first four modes of vibration are taken into account for the simulation studies. For the

case of structural damping characteristics whenβ = −0.5, the vibration initially yields

oscillatory motion and is completely suppressed around 1 second which is shown in Fig.

27. It is also observed from the Fig. 28 that exponential decay occurs atβ = 0 which

corresponds to over damping behavior of the fast subsystem which is same for all modes.

Simulations are also performed with different damping ratios of 0.1 and 0.4. Figures

29 and 30 show that, with increasing damping ratio, the amplitude of vibration has been
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Figure 23: CT of J3M1-Sliding control in
CS
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Figure 24: CT of J1M2-Sliding control in
CS
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Figure 25: CT of J2M2-Sliding control in
CS
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Figure 26: CT of J3M2-Sliding control in
CS

significantly suppressed. Furthermore, the transverse displacement under simply supported

end condition of the beam with damping ratio of 0.1 is evaluated at various locations of

the beam using the modal summation method. Due to symmetry boundary conditions,

the deflections at 0.1 m from the left end and at the middle of the beam are considered.

It can be observed from the Figs. 31 and 32 that, the center of the beam yields more

deflection than any other point on the beam. The simulation results are compared with the

existing available results [44] and [50], where, assumed modes are considered. It can be
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seen from those results that, the proposed controller suppresses the vibration with limited

information compared with the existing controller, which shows the effectiveness of the

proposed controller.
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Figure 27: Structural damping characteristicsβ = −0.5

Further simulation analysis is being carried by increasingthe modulus of elasticity

which resembles the rigid beam. Initially, the Young’s modulus (E) of aluminium is con-

sidered as 71GPa and the transverse deflection at the mid point of the beam is suppressed

around 0.2 secs which is shown in Fig. 32. Then, E is increasedaround two times to show

the rigid nature of the beam. By considering the E as 150 GPa simulations are performed

again. It is shown in Fig. 33 that the vibration is suppressedcomparatively in less time

than in the previous case. Finally, the E value is increased to 200 GPa that is close to that

of steel, and simulation is carried out. Compared to the above mentioned two cases here,

the vibration is suppressed within 0.15 secs which shows that the increase in modulus of
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Figure 28: Strong damping characteristicsβ = 0
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Figure 29: Deflection of the beam for Damping ratio=0.1
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Figure 30: Deflection of the beam for Damping ratio=0.4
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Figure 31: Deflection at 0.1 m from the left end of the beam
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Figure 32: Deflection at mid point of the beam for E=71GPa
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Figure 33: Deflection at mid point of the beam for E=150GPa
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Figure 34: Deflection at mid point of the beam for E=200GPa

elasticity has made the beam rigid and correspondingly vibration is suppressed faster.

4.4.1 Avoidance of chattering in the slow subsystem controllaw

Since the control law (102) and (103) is discontinuous across the sliding surface, such

a control law leads to chattering. Chattering is undesirable in practice because it involves

high control activity. To remedy this drawback, we usually use x
|x|+δ1

to replacesgn(x) in

the control law (102), whereδ1 is a constant. Let the switching functionψ in the control

law (102) be replaced by,

ψ = −βcs
YT

cs Scs

‖YT
cs Scs‖+δ1

(132)

whereβcs becomesβcs≥ (1+ δ1
ε1

)‖αcs‖ andε1 is a design constant. Following the analysis

given in [77], it can be proved thater will exponentially converge to a small bound, which

depends on selection ofδ1. Based on the Tikhnov’s theorem, the stability analysis given
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in [77] is still valid. However, in such a case, tracking error er will not tend to zero but

is uniformly bounded. The admissible amplitude of the tracking error can be achieved by

choosing a suitableδ1. By incorporating the suggested switching function in the control

law, the chattering can be avoided.

4.5 Special case as manipulators handling a rigid object

When we consider the object as rigid, then the flexible parameter η in the dynamic

equations of motion of the object (22) will be considered to be zero and the modulus of

elasticity is assumed to be infinite in (23). Hence, one can have the dynamic model for the

rigid object as,

MrdẌr f +Crd +ηrd +Grd = Frd(− f ) (133)

Mrd =

















m 0 0

0 m 0

0 0 mL2

12

















; Ẍr f =































ẍ0

ÿ0

θ̈































; Crd = {0 0 0}T ; ηrd = {0 0 0}T ; Grd =































0

mg

0































Including the moments at the two ends of the beam,

Frd =

















1 0 0 1 0 0

0 1 0 0 1 0

L
2 sinθ −L

2 cosθ 1 −L
2 sinθ L

2 cosθ 1
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Also R becomesR1

R1 =









































1 0 L
2sinθ

0 1 −L
2cosθ

0 0 1

1 0 −L
2sinθ

0 1 L
2cosθ

0 0 1









































The obtained dynamic equation of rigid object (133) is equivalent to the rigid object model

presented in [68].

Then, the manipulator equation derived in Cartesian space (37) can be rewritten as,

MrJ
−1R1Ẍr f +(Mr J̇

−1R1+MrJ
−1Ṙ1+CrJ

−1R1)Ẋr f +Gr = τ +JT f (134)

Premultiplying (134) byRT
1 J−T and alsoRT

1 = Fr f gives,

RT
1 J−TMrJ

−1R1Ẍr f +RT
1 J−T(Mr J̇

−1R1+MrJ
−1Ṙ1 +CrJ

−1R1)Ẋr f

+RT
1 J−TGr = RT

1 J−Tτ +Fr f f (135)

Substituting (133) into (135) yields,

RT
1 J−TMrJ

−1R1Ẍr f +RT
1 J−T(Mr J̇

−1R1+MrJ
−1Ṙ1 +CrJ

−1R1)Ẋr f

+RT
1 J−TGr = RT

1 J−Tτ − (MrdẌr f +Grd) (136)

The above combined dynamic equation formulated in Cartesian space is described by,

(Mo+Mrd)Ẍr f +CoẊr f +Go +Grd = uo (137)
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where,

Mo = RT
1 J−TMrJ−1R1

Co = RT
1 J−T(Mr J̇−1R1 +MrJ−1Ṙ1+CrJ−1R1)

Go = RT
1 J−TGr

u0 = RT
1 J−Tτ

The above equation can be rewritten as,

MorẌr f +CorẊr f +Gor = uor (138)

where,

Mor = Mo+Mrd

Cor = Co

Gor = Go +Grd

uor = uo

which is same as the slow subsystem presented in (72). Then, the control algorithm and

stability analysis presented for the slow subsystem earlier in this Chapter will be valid for

the case of two manipulators rigidly grasping and moving therigid object.

4.6 Summary

In this Chapter, basic idea of adaptive and robust control algorithms were reviewed.

Based on those concepts, a regressor based sliding mode control algorithm was developed

for the slow subsystem. In case of fast subsystem, as a part ofthe composite control law, a

simple feedback control algorithm was derived. Exponential stability analysis was carried

out to satisfy the Tikhnov’s theorem which validated the singular perturbation approach.
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The simulation results showed that the proposed composite controller yields good track-

ing performance and simultaneously suppresses the vibration of the beam. In addition, to

reduce the chattering effect on the slow subsystem control law, a smoothing control law

was suggested. Furthermore, as a special case, combined dynamic model for the two ma-

nipulators handling a rigid object was presented. In the next Chapter, two more control

strategies will be developed to improve the slow subsystem control law and corresponding

simulations will be performed to demonstrate the efficiencyof the controller.
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Chapter 5

Further Studies on Controller Design

5.1 Introduction

In the previous Chapter, the detailed investigation and advantages of regressor based

control algorithm was carried out for the slow subsystem. However, further improvement

on the control law for the slow subsystem can be made without the use of velocity feed-

back and also disregarding the regressor. In some of the realtime applications, velocity

measurement may require additional instrumentation and also measured feedback signal

may be contaminated with noise. Also, the inclusion of regressor matrix in the control

algorithm increases the computational effort needed and implementing them in real time

application is also tedious. This Chapter addresses these issues by providing suitable con-

trollers to the slow subsystem. The stability analysis is performed and the corresponding

simulation studies are carried out. The simulation resultsshow that the proposed controllers

can achieve good tracking performance.
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5.2 Control design without velocity measurements

In most of the control algorithms, it is assumed that the velocity feedback signal is

available. However, in some applications it may not be possible to measure the velocity

or may not even be desirable to do it. Furthermore, the use of noisy velocity signal in the

control algorithm may creates the instability in the system[92]. In practice, the joint veloc-

ity is measured by means of tachometers or by differentiating the position measurements

which are obtained from encoders or resolvers. This necessitates additional sensors which

increases the cost and also the velocity signals are contaminated by severe noise [93]. This

section, focuses on the development of an adaptive control law without measuring the ve-

locity signal.

By using desired velocity and acceleration trajectory of the object, the slow subsys-

tem given in (72) can be described based on the parameterizations technique [76] which is

given by,

McsẌr f d +CcsẊr f d +Gcs = Ya(Xr f , Ẋr f d, Ẍr f d)αcs (139)

whereYa(Xr f , Ẋr f d, Ẍr f d) is the regressor matrix which is dependent on desired trajectory

and independent of dynamic parameters.αcs is the constant vector of manipulator and

beam inertia parameters.

The control law can be formulated as [94],

ucs= Ya(Xr f , Ẋr f d, Ẍr f d)α̌cs−Ω2ϒ(ω +ρer) (140)

and the intermediate vectorsω andω̄ can be calculated by,

ω = ω̄ +Ω2er (141)
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˙̄ω = −2Ωω̄ −2Ω3er (142)

Also, the adaptive law is defined as,

˙̌αcs= ˙̃αcs = −ζYT
a z (143)

and z is given by,

z = ėr −
ω
Ω

+
ρ
Ω

er (144)

whereer = Xr f −Xr f d is the tracking error;̌αcs is the estimate ofαcs, then, the parameter

error vector can be defined asα̃cs = α̌cs−αcs; ϒ is constant positive definite matrix;Ω, ρ

andζ are positive constants. It should be noted here that the control law given in (140)

and the adaptive parameterα̌cs can be found using adaptive law given in (143) do not

involve any velocity measurement as feedback. Thus, it avoids the velocity sensors and the

controller needs only position measurements.

Substituting (140) into (72) gives,

ër = M−1
cs (−Ω2ϒω −ρΩ2ϒer −Ccsėr +Yaα̃cs−Cdėr) (145)

whereCdėr = Ccs(Xr f , Ẋr f )Ẋr f d −Ccs(Xr f , Ẋr f d)Ẋr f d.

With the introduction of state vectorxT
v = [ėT

r ,ωT ,er
T ], using (141), (142) and (145), the

state space form of the closed-loop equation is described by,

ẋv = −Avxv +Cv(−Ccsėr −Cdėr +Yaα̃cs) (146)

where the matrixAv andCv are given by,

Av =

















0 Ω2M−1
cs ϒ ρΩ2M−1

cs ϒ

−Ω2I 2ΩI 0

−I 0 0

















; Cv =

















M−1
cs

0

0
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By arbitrarily selecting the matricesPv andQv, one can show that 1/2(PvAv+Av
TPv) =

Qv. One of the possible choice for the symmetric positive definite matricesPv andQv are

[95],

Pv =

















Mcs − 1
ΩMcs

ρ
ΩMcs

− 1
ΩMcs ϒ 0

ρ
ΩMcs 0 ρΩ2ϒ

















; Qv =

















(Ω− ρ
Ω)Mcs −Mcs 0

−Mcs Ωϒ 0

0 0 ρ2Ωϒ

















Also, the eigenvalues ofPv andQv satisfies the following bounds,

λp ‖ xv ‖
2≤ xT

v Pvxv and Ωλq ‖ xv ‖
2≤ xT

v Qvxv (147)

The stability of closed loop system given in (143) and (146) will be proved in the following

section.

5.2.1 Stability analysis

Stability analysis aims to show, by properly choosing a Lyapunov function candidate,

that the proposed control algorithm can accomplish asymptotic tracking performance.

Theorem:

The closed-loop system described by (143) and (146) and all the signals are bounded and

alsolimt→∞ xv = 0, provided the following condition satisfied,

Ωλq > 3 ‖Cd ‖ +2ϑ [sup‖ Ẋr f d ‖ +

√

2V3(t)
λp

] (148)

whereλp andλq are the eigenvalues ofPv andQv and a functionV3(t) is defined in (149).
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Proof:

Consider a Lyapunov function candidate

V3(t) =
1
2

xT
v Pvxv +

1
2ζ

α̃T
csα̃cs (149)

Differentiating (149) gives,

V̇3(t) = xT
v Pvẋv +

1
2

xT
v Ṗvxv +

1
ζ

˙̃αT
csα̃cs (150)

Using (146), the above equation can be rewritten as,

V̇3(t) = −xT
v Qvxv +xT

v PvCv(−Ccsėr −Cdėr +Yaα̃cs)+
1
2

xT
v Ṗvxv +

1
ζ

˙̃αT
csα̃cs (151)

WhenΩ ≥ max(1,ρ), one can have the following,

−xT
v PvCvCdėr = −(ėr −

ω
Ω

+
ρ
Ω

er)
TCdėr

≤ 3 ‖Cd ‖‖ xv ‖
2 (152)

1
2

xT
v Ṗvxv−xT

v PvCvCcsėr =
1
2

ėT
r Ṁcsėr + ėr

ρ
Ω

Ṁcser
T − ėr

1
Ω

ṀcsωT

−(ėr −
ω
Ω

+
ρ
Ω

er)
TCcsėr (153)

Using the property ˙er
T(1/2Ṁcs−Ccs)ėr = 0, above equation can be rewritten as,

1
2

xT
v Ṗvxv−xT

v PvCvCcsėr =
1
Ω

[ρer −ω][Ṁcs−Ccs]ėr

≤ 2ϑ ‖ Ẋr f ‖‖ xv ‖
2 (154)

whereϑ ‖ Ẋr f ‖=‖ Ṁcs−Ccs‖.

Substituting (147), (152) and (154) into (151) yields,

V̇3(t) ≤ −(Ωλq−3 ‖Cd ‖ −2ϑ ‖ Ẋr f ‖) ‖ xv ‖
2 +(zTYa +

1
ζ

˙̃αT
cs)α̃cs

= − f (‖ Ẋr f ‖) ‖ xv ‖
2 (155)
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where f (‖ Ẋr f ‖) = Ωλq−3 ‖Cd ‖ −2ϑ ‖ Ẋr f ‖ andxT
v PvCv = zT and also (143) is used to

obtain the above equation. The right hand side of (155) is negative if f (‖ Ẋr f ‖) > 0, which

is true if (148) is satisfied.

When Ωλq is sufficiently large, (148) is satisfied. By induction with respect tot,

V3(t) will be decreasing until‖ xv ‖= 0 which shows that the closed-loop system (146) is

asymptotically stable and hence the given theorem is proved.

5.2.2 Simulation results

To illustrate the performance of the proposed controller, simulations are carried out.

The parameters of the identical manipulators and beam are given in Table 1 and 2. The

beam initial position and orientation areXr f = {0.51,0.36,0.1}T and it’s initial velocity

and acceleration are considered to be zero. Initial joint angles of manipulator areq11 =

0.2974 rad,q12 = 1.6974 rad,q13 = -1.6948 rad,q21 = 0.2149 rad,q22 = 1.4886 rad andq23

= -1.4306 rad respectively. The initial joint velocities ofall the joints of manipulators are

0.001 rad/sec and joint accelerations are assumed to be zero. The simulation was carried

out with a sampling period of 0.001sec to track the desired trajectory given by,

Xr f d =

















sin(t)

cos(t)

0

















The initial values of̌αcs(0) are chosen as=[0.11; 0.06; 6e−3; 6e−3; 0.11; 0.02; 0.073; 0.044;

0.16; 0.11; 0.06;6e−3; 6e−3; 0.11; 0.02; 0.073; 0.044; 0.16; 0.16; 0.01]T . The initial

value ofω̄(0) is chosen as zero. The control parameters are tuned and givenin Table 4.
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Figure 35: X-Position tracking-Without velocity measurement in CS
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Figure 36: Y-Position tracking-Without velocity measurement in CS
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Figure 37: Orientation of the beam-Without velocity measurement in CS

Table 4: Control parameters-without velocity measurements in CS

Parameter Value

Ω 31
ρ 27.8
ϒ diag(0.1)
ζ 0.1
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Figure 38: J1M1-Without velocity mea-
surement in CS
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Figure 39: J2M1-Without velocity mea-
surement in CS
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Figure 40: J3M1-Without velocity mea-
surement in CS
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Figure 41: J1M2-Without velocity mea-
surement in CS

It can be observed from the Figs. 35 - 37 that the control law without velocity mea-

surement also yields good performance in tracking along X, Ydirections and also reaches

the desired orientation. It can be seen from the Figs. 38 - 43 that the manipulators also

moved in a similar path as in the regressor based sliding control. Similarly, joint 2 of ma-

nipulator 1 approaches the singularity point around 4 secs which can also be seen in the

previous section controller simulation results. It is evident from the simulation results that

the suggested controller can track the desired trajectory without using velocity feedback
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Figure 42: J2M2-Without velocity mea-
surement in CS

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8

10

Time(sec)

Jo
in

t3
(r

ad
)

Manipulator 2

Figure 43: J3M2-Without velocity mea-
surement in CS

signal. This avoids the need for necessary sensors and ultimately reduces the cost.

5.3 Control design without regressor

Many studies have been focused on the development and implementation of adaptive

and robust control algorithms [18], [24], [25], [68], [86] and [96] for two manipulators

handling an object. All of these studies need the use of the regressor matrix to simplify

the control algorithm and help in achieving the stability proof for the linearized robot dy-

namics [58]. However, it should be noted that the regressor based approach has difficulties

in implementing in practical problems as it involves more computations. Furthermore, the

recomputation of the regressor at the servo control rates increases the computational effort

in practical applications [97]. An off-line computationalscheme of regressor is thus pro-

posed to calculate the regressor [98] to reduce the on-line computational complexity which

uses the position, velocity and acceleration information of the desired trajectory. However,

the computation of regressor could not be avoided when thereis a change in the robot

107



structures or desired trajectory.

Considering the aforementioned difficulties, for a single manipulator case various

control strategies have been developed (see, for example, [69] and also [97] - [99]) which

avoids the regressor. In particular, Leung and Su’s adaptive [69] approach involves com-

putation of simple scalar functions and it involves only four parameters to be estimated

which is independent of number of robots. This control approach is also valid when more

number of links are considered for each of the robot. Hence, the algorithm developed for

the single manipulator is extended to the two manipulator-beam system. However, it is to

be noted that the typical parameter adaptive algorithm requires atleast [68] ten parameters

to be estimated for each robot.

The robust adaptive control law can be chosen as [69],

ucs = −KdMcsSφ − (ρ̌1 ‖ Ẍr ‖ +ρ̌2 ‖ Ẋr f ‖‖ Ẍr ‖ +ρ̌3+ ρ̌4 ‖ Ẋr f ‖)sat(
Scs

φ
) (156)

whereKd is the positive definite matrix anďρi, i=1,2,3,4, are the adaptive control gains.

Sφ is the measure of the algebraic distance of the current stateto the boundary layer which

is given by,

Sφ = Scs−φ sat(Scs/φ) (157)

whereφ > 0 is boundary layer thickness.

Also, the sat(Scs/φ ) is defined as follows,

sat(Scs/φ) = sgn(Scs) if | Scs |> φ

= Scs/φ if | Scs |≤ φ
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The adaptive parameters are given by,

˙̌ρ1 = β1 ‖ Sφ ‖‖ Ẍr ‖ (158)

˙̌ρ2 = β2 ‖ Sφ ‖‖ Ẋr f ‖‖ Ẍr ‖ (159)

˙̌ρ3 = β3 ‖ Sφ ‖ (160)

˙̌ρ4 = β4 ‖ Sφ ‖‖ Ẋr f ‖ (161)

whereβi > 0, i=1,2,3,4 are the arbitrary constants which determines rates of adaptation.

The control law (156) has two terms. The first term is representing proportional and deriva-

tive control. The adaptive control gains˙̌ρ i , i=1,2,3,4 are represented in the second term

which are used to recover and cancel the unknown nonlinear dynamics. It should be em-

phasized here that the control laws (156) and (158)-(161) involve multiplication of simple

scalar functions and the detailed description of model is not necessary. Therefore, the sug-

gested controller will avoid the complex calculations of regressor, computationally fast,

structurally simple and easy to implement in real time applications.

5.3.1 Stability analysis

In order to determine the stability of the closed loop systemdescribed by (72) and (156),

the following analysis is being carried out.

Differentiating the sliding surface (101) with respect to time gives,

Ṡcs= Ẍr f − Ẍr (162)

Multiplying both sides of (162) byMcs and using (72), (162) can be rewritten as,

McsṠcs= ucs−CcsẊr f −Gcs−McsẌr (163)
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Adding and subtractingCcsẊr in (163) gives,

McsṠcs= ucs−McsẌr −CcsScs−Gcs−CcsẊr (164)

Consider a Lyapunov function candidate,

V4(t) =
1
2

ST
φ McsSφ +

1
2

Σ
(ρi − ρ̌i)

2

βi
(165)

SinceṠφ = Ṡcs and differentiating (165) with respect to time gives ,

V̇4(t) = ST
φ McsṠcs+

1
2

ST
φ ṀcsSφ +Σ

(ρi − ρ̌i)(− ˙̌ρi)

βi
(166)

Using (156) and (164), (166) becomes,

V̇4(t) = ST
φ [−KdMcsSφ − (ρ̌1 ‖ Ẍr ‖ +ρ̌2 ‖ Ẋr f ‖‖ Ẍr ‖ +ρ̌3 + ρ̌4 ‖ Ẋr f ‖)]sat(

Scs

φ
)

+ST
φ (−McsẌr −CcsScs−Gcs−CcsẊr)+

1
2

ST
φ ṀcsSφ +Σ

(ρi − ρ̌i)(− ˙̌ρ i)

βi
(167)

Since‖ Sφ ‖= ST
φ sat(Scs/φ) [69], using property 4 in CS given in Chapter 3 and after some

algebraic manipulation, (167) results in,

V̇4(t) ≤−ST
φ KdMcsSφ − (ρ̌1 ‖ Ẍr ‖ +ρ̌2 ‖ Ẋr f ‖‖ Ẍr ‖ +ρ̌3+ ρ̌4 ‖ Ẋr f ‖) ‖ Sφ ‖

+(ρ1 ‖ Ẍr ‖ +ρ2 ‖ Ẋr f ‖‖ Ẍr ‖ +ρ3) ‖ Sφ ‖ +
1
2

ST
φ ṀcsSφ

+Σ
(ρi − ρ̌i)(− ˙̌ρ i)

βi
−ST

φ CcsSφ +φρ2 ‖ Ẋr f ‖‖ Sφ ‖ (168)

SinceST
φ (Ṁcs− 2Ccs)Sφ = 0 (property 2 in CS) and defineρ4 = φρ2 and also using the

adaptive parameters (158)-(161), (168) yields into,

V̇4(t) = −ST
φ KdMcsSφ (169)

SinceKdMcs is symmetric positive definite matrix then there exists a constantγ such that

γId ≤ KdMcs. Hence, (169) can be rewritten as,

V̇4(t) ≤−γ ‖ Sφ ‖2
2≤ 0 (170)
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In order to achieve the stability of the system, it is necessary to show thatSφ → 0 as

t → ∞. This can be achieved by applying Barbalat’s lemma to the following continuous

non-negative function,

V̇(t) = V4(t)−
∫ t

0
(V̇4(τ)+ γ ‖ Sφ (τ) ‖2

2)dτ with

V̇(t) = −γ ‖ Sφ (τ) ‖2
2 (171)

By definition,Sφ is related withScs in (157). Then, using the standard argument, sinceScs

is bounded and correspondinglyer andėr are also bounded. Thus, all the feedback signals

Xr f , Ẋr f andẊr are bounded. Therefore, it can seen from (164) that,Ṡcs is also bounded

becauseMcs is already given as bounded property (property 4 in CS) whichprovesV̇(t) to

be uniformly continuous function of time. SinceV is bounded below by 0 anḋV(t) ≤ 0

for all t, use of Barbalat’s lemma proves thatV̇(t) → 0 and from (171) that‖ Sφ ‖→ 0 as

t → ∞.

5.3.2 Simulation results

To demonstrate the effectiveness of the controller, simulations are performed by con-

sidering the manipulators and beam parameters given in Table 1 and 2. The adaptive

gains are chosen asβ1=β2=β3=2 andβ4=2.4. The initial adaptive parameters are taken

as ρ̌1(0)=ρ̌2(0)=ρ̌3(0)=ρ̌4(0)=1. In order to reduce the chattering effect, the boundary

layer thickness is chosen asφ=0.2. The control gain parameters are chosen asKd = 50 and

λcs = 19.94. The tracking performance along X and Y-directions are shown in the Figs.

44 and 45. The orientation of the beam reached its desired value within a sec as shown
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in Fig. 46. The results show that, without incorporating theregressor, the proposed con-

troller can achieve good tracking performance. Similarly,the joint angular motions of each

manipulator follow a similar trend as in the case of other controllers.
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Figure 44: X-Position tracking-Without regressor in CS

5.4 Summary

This Chapter presented two control strategies to overcome the problems related to

measurement of velocity feedback and inclusion of regressor matrix. Initially, in order to

avoid the concerns associated with the measurement of velocity signal, an adaptive con-

trol law with only position feedback has been implemented tothe slow subsystem, and

corresponding stability analysis is also carried out. Simulation results confirm that, the

presented control does not need any velocity feedback whichavoids the velocity sensors

and other associated practical difficulties. Finally, a non-regressor based adaptive robust
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Figure 45: Y-Position tracking-Without regressor in CS
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Figure 46: Orientation of the beam-Without regressor in CS
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Figure 47: J1M1-Without regressor in CS
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Figure 48: J2M1-Without regressor in CS
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Figure 49: J3M1-Without regressor in CS
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Figure 50: J1M2-Without regressor in CS

control algorithm was implemented to the slow subsystem to avoid the computation burden

of the regressor. Stability analysis and simulation results reveal that the presented con-

troller can track the desired trajectory effectively. Earlier Chapters discussed broadly the

dynamics and control of manipulators-flexible object system in Cartesian space. In the next

Chapter, further analysis will be carried out by developingthe complete system of dynamic

equations in joint space.
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Figure 51: J2M2-Without regressor in CS
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Figure 52: J3M2-Without regressor in CS
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Chapter 6

Manipulators - Flexible Object System

in Joint Space

6.1 Introduction

Depending on the nature of the problems and the intended control applications, the dy-

namic equations of motion of a manipulator-beam system can be expressed either in joint

coordinate space or Cartesian coordinate space. Earlier Chapters have dealt with Carte-

sian space system. However, there are certain advantages inusing joint space compared to

the Cartesian space. The joint space motion planning can be achieved in two steps [101]:

path planning and trajectory generation. In the path planning, robot motion is preplanned

for the desired geometric path and the problems associated with geometric constraints and

joint angle limits are taken care of. The trajectory generation determines how fast the robot

should move along the desired geometric path and it considers other constraints such as

limits of joints velocity, acceleration, jerk and torque. Many industrial robots utilize joint
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space control schemes for the position control. Also, whiledefining the Cartesian trajec-

tory, the inverse kinematics is used to transform the Cartesian variables to joint variables

and there may be a chance of singularity problem. Furthermore, the inverse kinematic cal-

culations are computationally expensive for complicated trajectories. Hence, defining the

joint space motion can be an advantage. Moreover, classicaljoint space control schemes

are not only simple to implement, but also stable and robust [102]. Considering these rea-

sons, earlier analysis is further extended by developing the complete system of dynamic

model in joint space. Then, by utilizing the typical steps ofsingular perturbation approach,

slow and fast subsystem will be obtained. For each subsystemcorresponding control law

will be suggested and together they form a composite controlinput to the complete system.

Stability analysis and simulation results are presented toillustrate the composite control

strategy. It should be noted that some of the equations presented in the previous Chapters

are reviewed here to formulate the complete system of dynamic equations in joint space.

6.2 Modeling of manipulators - flexible object system in

joint space

In order to obtain the complete system of dynamic equations in joint space, the manip-

ulators and beam dynamic equations obtained in Chapter 2 arereconsidered.

The two manipulators dynamic equation assembled in joint space (34) is rewritten as,

Mr q̈+Cr q̇+Gr = τ +JT f (172)
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The beam dynamic equation derived in Chapter 2 for the rigid body motion can be repro-

duced as,

Mr f Ẍr f +Cr f +ηr f +Gr f = Fr f (− f ) (173)

and for the flexible beam equation of motion is rewritten in compact form as,

A j f Ẍr f + η̈ −ηθ̇2 +
EI
ρ

η iv = Ff f ( f ) (174)

whereA j f = [−sinθ cosθ x].

It can be seen from (173) and (174) that, the beam dynamics is represented in Cartesian

space and it should be converted into joint space. Then, the resulting equation can be

combined with the manipulator dynamics (172) to yield the complete system of dynamic

equations in joint space. The following section illustrates how to formulate the combined

dynamics in joint space.

6.2.1 Combined dynamics in joint space

Following relations are taken into account again from Chapter 2 to formulate the com-

bined dynamics in joint space.

The end-effector velocities and joint velocities of the manipulators are related by,

{ė} = [J]{q̇} (175)

and the end-effectors velocities are related to the object velocity as,

{ė} = [R]{Ẋr f } (176)

Using (175), (176) can be written as,

Ẋr f = R†Jq̇ (177)
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whereR† is the pseudo inverse ofR.

Differentiating (177) gives,

Ẍr f = Ṙ†Jq̇+R†
1(J̇q̇+Jq̈) (178)

Then incorporating (178) into (173) and (174) yields the beam rigid body motion in joint

space,

Mr f R
†Jq̈+Mr f (Ṙ†J+R†J̇)q̇+Cr f +ηr f +Gr f = Fr f (− f ) (179)

and also flexible motion of beam in joint space can be written as,

A j f R†Jq̈+A j f (Ṙ†J+R†J̇)q̇+ η̈ −ηθ̇2 +
EI
ρ

η iv = Ff f ( f ) (180)

Substituting for the forcef from (179) into (172) gives the combined rigid motion dynamic

equation in joint space,

M js f q̈+Cjs f q̇+G js f +η js f = τ js f (181)

where,

M js f = (Mr +JTF†
r f Mr f R†J)

Cjs f = Cr +JTF†
r f Mr f (Ṙ†J+R†J̇)

G js f = Gr +JTF†
r f Gr f

η js f = ηr f

SinceFr f is not a square matrix, its inverseF†
r f can be calculated by the pseudo inverse.

Taking into account the transverse vibration of beam dynamics (180) and also above derived

combined dynamics forms the complete manipulator-beam system dynamics in joint space

given by,

M js f q̈+Cjs f q̇+G js f +ηr f = τ js f (182)

119



A j f R†Jq̈+A j f (Ṙ†J+R†J̇)q̇+ η̈ −ηθ̇2 +
EI
ρ

η iv = Ff f ( f ) (183)

The above system of dynamic equations are coupled with rigidand flexible parameters.

Without using any approximate methods, the coupled motionsmust be controlled. There-

fore, singular perturbation approach can be applied to thissystem of dynamic equations as

well.

6.3 Singular perturbation modeling in joint space

In order to develop a robust control algorithm for the systemof dynamic equations (182)

and (183), the following control task is considered.

Control task: For any given desired bounded trajectoriesqd andq̇d, with some or all of the

manipulator and beam parameters unknown, derive a controller for the manipulator control

torqueτ js f such that the manipulatorq tracksqd while suppressing the vibration of the

flexible object,η, to zero.

The above control task can be achieved by developing the slowand fast subsystem in

joint space. These subsystems can be obtained following a similar analysis as discussed in

Chapter 3 by using singular perturbation approach. By incorporatingη = ε2. w into (182)

and (183) and also using (63), the singularly perturbed model of the complete system of

dynamic equations is obtained as,

M̃ js f q̈+C̃js f q̇+ G̃ js f + η̃r f = τ js f (184)

A j f R̃†Jq̈+A j f (
˙̃R†J+ R̃†J̇)q̇+ ε2ẅ− ε2wθ̇2 +awiv = Ff f ( f ) (185)

120



whereM̃ js f , C̃js f , G̃ js f , η̃r f andR̃† are obtained by substitutingw instead ofη. Henceforth,

the typical steps of singular perturbation approach will befollowed to obtain the slow and

fast subsystem from (184) and (185).

6.3.1 Slow subsystem in joint space

The slow subsystem in joint space is determined whenε → 0 in (184) and (185).

Therefore, the slow subsystem can be obtained as,

M jsq̈+Cjsq̇+G js = τ js (186)

where,

M js = (Mr +JTF†
rdMrdR†

1J)

Cjs = Cr +JTF†
rdMrd(Ṙ†

1J+R†
1J̇)

G js = Gr +JTF†
rdGrd

and the transverse vibration of beam equation becomes,

[A j f R†
1Jq̈+A j f (Ṙ

†
1J+R†

1J̇)q̇+awiv]s = Ff f ( f js) (187)

Since the manipulators are considered to be rigid, the matrices related to the beam dynamics

such asMr f , Gr f , Fr f andRbecomeMrd, Grd, Frd andR1 which are given in Chapter 3.

The following properties describe the characteristics of slow subsystem in joint space which

are useful for stability analysis:

Property 1 in Joint Space(JS):M js is a symmetric positive definite matrix.

Property 2 in JS: The matrixM js andCjs in (186) must satisfy

XT(Ṁ js−2Cjs)X = 0, ∀X 6= 0 (188)
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where X is any arbitrary vector. That is(Ṁ js−2Cjs) is a skew-symmetric matrix.

Property 3 in JS: There exists a vectorα js ∈ Rv2×1 which solely depends on manipulator

and beam dynamic parameters (lengths, masses and moment of inertias etc.) such that

M jsq̈+Cjsq̇+G js = Yjs(q̈, q̇,q)α js (189)

whereYjs ∈ Ru2×v2 is called regressor of the slow subsystem represented in joint space

which is given in Appendix C.

Property 4 in JS: Since the matricesM js, Cjs andG js in (186) are the functions of sine

and cosine of manipulator joint angles and velocities, theyare bounded. Then, there exist

arbitrary positive constantsρii (i=1,2,3), the boundedness of each matrices can be described

as follows:

‖ M js ‖≤ ρ11

‖Cjs ‖≤ ρ22 ‖ q̇ ‖

‖ G js ‖≤ ρ33

6.3.2 Fast subsystem in joint space

In order to obtain the fast subsystem in the different time scaleν = t−t0
ε , the fast variable

wf = w−ws is introduced into the flexible system (185). Following similar arguments as

mentioned in Chapter 3 for the development of fast subsystem, (185) becomes,

A j f R̃†Jq̈+A j f (
˙̃R†J+ R̃†J̇)q̇+ ˆ̂wf + ε2ẅs− ε2(ws+wf )θ̇2+a(wiv

s +wiv
f ) = Ff f ( f )(190)

In the boundary layer system, the slow variablews is constant which implies ¨ws = 0 and

alsoε = 0. Then, the above equation yields into,

A j f R
†
1Jq̈+A j f (Ṙ

†
1J+R†

1J̇)q̇+a(wiv
s +wiv

f ) = Ff f ( f ) (191)
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Using (187) and also definingFf f ( f j f ) = Ff f ( f )−Ff f ( f js), (191) becomes,

ˆ̂wf +awf
iv = Ff f ( f j f ) (192)

After incorporating the operatorA as mentioned in Chapter 3, the above partial differential

equation (192) becomes,

ˆ̂wf (ν)+Awf (ν) = Ff f ( f j f ) (193)

wf (0) = wf 0, ẇf (0) = wf 1

The above equation represents the fast subsystem which is similar to the one developed

(82) in Chapter 3.

6.4 Composite control for the manipulators - flexible ob-

ject system in joint space

In the previous section, singular perturbation analysis yielded the slow and fast sub-

system in joint space. These two subsystems have to be controlled together to achieve the

desired trajectory while suppressing the vibrations of thebeam. Hence, a composite control

law in the following form is conidered:

u = uss(q̇,q, t)+us f(ŵf ,ν)

whereuss is designed based on slow subsystem (186) anduf signal is designed for the fast

subsystem (193).
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6.4.1 Robust control for slow subsystem in joint space

In order to handle non linear coupled dynamics and uncertainmanipulators and beam

parameters, a robust control scheme presented for the slow subsystem in Chapter 4 is con-

sidered here also. It is reformulated according to the dynamic model given in (186).

Define the tracking error as,

err = q−qd (194)

and the auxiliary trajectory can also be defined as,

q̇r = q̇d−λ jserr (195)

whereλ js is a positive definite matrix whose eigenvalues are strictlyin the right half of

complex plane.

The sliding surface can be chosen as,

Sjs = q̇− q̇r = ėrr +λ jserr (196)

The sliding mode controller can be given as,

uss= τ js = Yjsψ js−KD1Sjs (197)

whereKD1 is a positive definite gain matrix,Yjs(q̈r , q̇r ,q) is regressor matrix andψ js =

[ψ1....ψm]T are the switching functions which are given by,

ψ js = −β js
YT

js Sjs

‖YT
js Sjs‖

(198)

whereβ js ≥ ‖α js‖ is upperbound ofα js which is known though it could be conservatively

selected.
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6.4.1.1 Stability analysis

The exponential stability of the closed loop system described by (186) and (197) is

achieved as shown in the following analysis.

Differentiating the sliding surface (196) with respect to time gives,

Ṡjs = q̈d− q̈r (199)

Mutiplying both sides of (199) byM js and using (186), (199) can be rewritten as,

M jsṠjs = τ js−Cjsq̇−G js−M jsq̈r (200)

Adding and subtractingCjsq̇r in (200)

M jsṠjs = τ js− (M jsq̈r +Cjsq̇r +G js)+Cjsq̇r −Cjsq̇ (201)

By using (196), (201) can be rewritten as,

M jsṠjs = τ js−Yjs(q̈r , q̇r ,q)−CjsSjs (202)

where,

(M jsq̈r +Cjsq̇r +G js) = Yjs(q̈r , q̇r ,q)α js

Consider a Lyapunov function candidate as,

V6(t,Sjs) =
1
2

ST
jsM jsSjs (203)

Differentiating (203) with respect to time gives,

V̇6(t,Sjs) = ST
jsM jsṠjs +

1
2

ST
jsṀ jsSjs (204)
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Substituting (202) into (204) and also using property 2 in JSgiven in (188), above equation

yields,

V̇6(t,Sjs) = ST
js[τ −Yjs(q̈r , q̇r ,q)α js] (205)

Substituting the control law given in (197) and (198) into (205) one can have,

≤−ST
jsKD1Sjs−β js‖Y

T
js Sjs‖+‖ST

jsYjs‖‖α js‖ (206)

Taking transpose of‖ST
jsYjs‖ and alsoβ js ≥ ‖α js‖ results in,

V̇6(t,Sjs) ≤−ST
jsKD1Sjs (207)

It is known that [89]KD1 = M jsκ1 whereκ1 can be considered as a least eigenvalue.

Using (203), (207) can be rewritten as,

dV6(t,Sjs)

dt
≤−2κ1V6(t,Sjs) (208)

The solution of the above equation is,

V6(t,Sjs) ≤V6(0,Sjs(0))e−2κ1t (209)

It is evident from the above equation that the sliding surface will converge exponentially

to zero. Thus the sliding surface is related to the tracking error err in (196) which also

converges exponentially to zero.

6.4.2 Feedback control for fast subsystem in joint space

Since the fast subsystem is similar in structure both in joint space as well as Cartesian

space, the proposed control algorithm for the fast subsystem in Chapter 4 as a part of the
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composite control law is still valid here. It can be given by,

us f = ( f j f ) = −F†
f f Πŵf (ν) (210)

Then similar arguments on the various operators such asA, Π andQ and also damping

relationsQAŵf (ν) andQ = Aβ are also valid. In addition, the exponential stability of fast

subsystem presented in Chapter 4 also holds good and hence they are not discussed.

It must be noted that, Tikhnov’s theorem is still satisfied due to the exponential con-

vergence of slow and fast subsystem in joint space. Therefore, the singular perturbation

analysis is validated to the joint space system as well.

6.4.3 Simulation results

The objective of this composite controller is to move the object from the initial position

of center of mass and orientation [103] (0.51m; 0.36m; 90◦) to the final position and ori-

entation (0.55 m; 0.36 m; 90◦) using two planar manipulators each with three links, while

suppressing the vibrations. The object motion correspondsto move each revolute joint of

first manipulator from (0◦; -45◦; -45◦) to (-10.35◦; -21.5◦; -58.2◦) and correspondingly the

second manipulator from the initial angular position (0◦; 45◦; 45◦) to final position (10.35◦;

21.5◦; 58.2◦). The control parameters are tuned and they are given in Table 7.

Table 5: Parameters of the manipulator

Link Length (m) Mass (kg) Moment of inertia (kgm2)

1 0.3 1.0 0.30
2 0.3 1.0 0.30
3 0.05 0.4 0.15
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Figure 53: X movement-Sliding control in JS
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Figure 54: Y movement-Sliding control in JS
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Table 6: Parameters of the beam

Parameter Value

Mass (m) 1.0 kg
Length (L) 0.1 m
Moment of Inertia (I) 0.2 kgm2
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Figure 55: Orientation-Sliding control in JS

It is shown in Fig. 53 that, beam approaches towards its final position along X di-

rection within 0.5 secs. The translation along Y direction and orientation of the beam are

also maintained towards their desired values which are shown in Figs. 54 and 55. Due

to the highly nonlinear manipulator parameters, a small deviation to the final value occurs

initially in Figs. 54 and 55 and after 0.2 secs the beam centerhas reached its final pose.

Due to the sliding condition given in (198), the control law (197) is discontinuous

across the sliding surface and this causes the chattering phenomenon. Chattering is the

undesirable phenomenon of oscillations which has finite frequency and amplitude. In the

129



Table 7: Control parameters-sliding control in JS

Parameter Value

KD1 diag(20)
λ js diag(50)
β js 3
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Figure 56: J1M1-Sliding control in JS
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Figure 57: J2M1-Sliding control in JS

case of ideal sliding, infinite switching of frequencies takes place. The chattering leads

to high control activity that corresponds to low control accuracy, high wear of moving

mechanical parts and also high heat losses in electrical power circuits [104]. It may excite

unmodeled high frequency dynamics which are not consideredduring initial modeling of

the systems. This phenomenon is observed in the sliding variables (SV) which are shown

in the Figs. 62 - 67 and also in the input control torques (CT) shown in the Figs. 68 - 73.

In order to overcome the chattering, the discontinuous control law can be replaced

with continuous one inside the boundary layer [77] and [105]. This can be done by adding

a boundary layer thicknessφ in the switching function which is given by,

ψ js = −β js
YT

js Sjs

‖YT
js Sjs‖+φ

(211)
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Figure 58: J3M1-Sliding control in JS
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Figure 59: J1M2-Sliding control in JS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20

25

30

35

40

45

50

Time(sec)

T
h

et
a2

(d
eg

)

Manipulator − 2

 

 
actual

desired

Figure 60: J2M2-Sliding control in JS
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Figure 61: J3M2-Sliding control in JS

It can be seen from the Figs. 74 - 85 that, the chattering is completely reduced by

adding the boundary layer thicknessφ = 0.75. This will lead us to avoid the problems

mentioned earlier due to chattering and also ensure the stability of the system. Since the

fast subsystem is analogous in both Cartesian and joint space, simulation results presented

in Chapter 4 for the fast subsystem are still valid here and hence they are not presented in

this section.
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Figure 62: SV 1 with chattering in JS
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Figure 63: SV 2 with chattering in JS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−6

−4

−2

0

2

4

6

8

10

12

Time(sec)

S
li

d
in

g
 s

u
rf

ac
e 

3

Figure 64: SV 3 with chattering in JS
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Figure 65: SV 4 with chattering in JS

6.5 Further improvements on the controller design of slow

subsystem in joint space

In order to improve the controller design for the joint spaceslow subsystem, control algo-

rithms presented in Chapter 5 such as an adaptive controllerwithout velocity measurements

and non-regressor based adaptive-robust controller can bereformulated and implemented
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Figure 66: SV 5 with chattering in JS
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Figure 67: SV 6 with chattering in JS
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Figure 68: CT of J1M1 with chattering in
JS
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Figure 69: CT of J2M1 with chattering in
JS

to the developed slow subsystem (186) in joint space. It should be noted that, the compos-

ite control law will be obtained by combining one of the abovementioned slow subsystem

control law in joint space and fast subsystem controller given in (104). This composite

control signal will be used to track the desired trajectory while simultaneously suppressing

the vibration. Since the fast subsystem control is considered to be same in both Cartesian

and joint space, in the following sections, the control algorithms presented for the Cartesian

space slow subsystem will be modified according to the joint space slow subsystem (186)

and corresponding stability analysis and simulations willbe carried out.
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Figure 70: CT of J3M1 with chattering in
JS
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Figure 71: CT of J1M2 with chattering in
JS
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Figure 72: CT of J2M2 with chattering in
JS
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Figure 73: CT of J3M2 with chattering in
JS

6.5.1 Controller design without velocity measurements in joint space

Measurement of joint speeds by tachometers may contain undesirable noise and tachome-

ters may not perform at low speeds due to magnetic field discontinuities [106]. In order to

avoid such problems, a controller without velocity feedback is necessary. Hence, an adap-

tive controller without velocity feedback presented in Chapter 5 is formulated again for the

case of joint space slow subsystem.
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Figure 74: SV 1 without chattering in JS
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Figure 75: SV 2 without chattering in JS
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Figure 76: SV 3 without chattering in JS
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Figure 77: SV 4 without chattering in JS

By using desired velocity and acceleration trajectory of the object, the slow subsystem

given in (186) can be expressed based on the parameterizations technique [76] which is

given by,

M jsq̈+Cjsq̇+G js = Yb(q, q̇d, q̈d)α js (212)

whereYb(q, q̇d, q̈d) is the regressor matrix which is dependent of desired set point param-

eters of the manipulators and also independent of dynamic parameters.α js is the constant

vector of manipulator and beam inertia parameters.
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Figure 78: SV 5 without chattering in JS
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Figure 79: SV 6 without chattering in JS
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Figure 80: CT of J1M1 without chattering in
JS
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Figure 81: CT of J2M1 without chattering
in JS

The control law can be formulated as,

τ js = uss= Yb(q, q̇d, q̈d)α̌ js−Ω2
1ϒ1(ω1+ρ1err ) (213)

and the intermediate vectorsω1 andω̄1 can be calculated by,

ω1 = ω̄1 +Ω2
1err (214)

˙̄ω1 = −2Ω1ω̄1−2Ω3
1err (215)
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Figure 82: CT of J3M1 without chattering in
JS
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Figure 83: CT of J1M2 without chattering
in JS
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Figure 84: CT of J2M2 without chattering in
JS
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Figure 85: CT of J3M2 without chattering
in JS

Also, the adaptive law is given by,

˙̌α js = ˙̃α js = −ζ1Y
T
b z1 (216)

andz1 can be given as,

z1 = ėrr −
ω1

Ω1
+

ρ1

Ω1
err (217)

whereerr = q−qd is the tracking error;̌α js is the estimate ofα js. Then, the parameter

error vector can be defined asα̃ js = α̌ js−α js; ϒ1 is constant positive definite matrix;Ω1,
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ρ1 andζ1 are positive constants. It should be noted here that the control law given in (213)

and also the adaptive parameterα̌ js can be found using adaptive law given in (216) and

does not involve any velocity signal as feedback. Thus, it avoids the velocity sensors and

the controller needs only position measurements.

Substituting (213) into (186) gives,

ërr = M−1
js (−Ω2

1ϒ1ω1−ρ1Ω2
1ϒ1err −Cjsėrr +Ybα̃ js−Ceėrr ) (218)

whereCeėrr = Cjs(q, q̇)q̇d−Cjs(q, q̇d)q̇d.

With the introduction of state vectorxT
1 = [ėT

rr ,ωT
1 ,err

T ], using (214), (215) and (218), the

state space form of closed-loop equation is given by,

ẋ1 = −A1x1 +C1(−Cjsėrr −Ceėrr +Ybα̃ js) (219)

where the matrixA1 andC1 are,

A1 =

















0 Ω2
1M−1

js ϒ1 ρ1Ω2
1M−1

js ϒ1

−Ω2
1Id 2Ω1Id 0

−Id 0 0

















;C1 =

















M−1
js

0

0

















By arbitrarily selecting the matricesP1 andQ1, one can show that 1/2(P1A1+AT
1 P1) =

Q1 . One of the possible choice for the symmetric positive definite matricesP1 andQ1 are

given by [95],

P1 =

















M js − 1
Ω1

M js
ρ1
Ω1

M js

− 1
Ω1

M js ϒ1 0

ρ1
Ω1

M js 0 ρ1Ω2
1ϒ1

















;Q1 =

















(Ω1−
ρ1
Ω1

)M js −M js 0

−M js Ω1ϒ1 0

0 0 ρ2
1Ω1ϒ1

















Also, the eigenvalues ofP1 andQ1 and satisfies the following bounds,

λp1 ‖ x1 ‖
2≤ xT

1 P1x1 and Ω1λq1 ‖ x1 ‖
2≤ xT

1 Q1x1 (220)
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6.5.1.1 Stability analysis

The stability of the closed loop system described by (219) and (216) is obtained from

the following theorem.

Theorem: If the input control torque given by (213) are applied to the system (186), then all

the closed loop signals are bounded andlimt→∞ x1 = 0, provided the following condition

satisfied,

Ω1λq1 > 3 ‖Ce ‖ +2ϑ1[sup‖ q̇d ‖ +

√

2V6(t)
λp1

] (221)

whereλp1 andλq1 are the positive eigenvalues ofP1 andQ1 andV7(t) is a function defined

in (222).

Proof:

Consider a Lyapunov function candidate

V7(t) =
1
2

xT
1 P1x1+

1
2ζ1

α̃T
jsα̃ js (222)

Differentiating (222) gives,

V̇7(t) = xT
1 P1ẋ1+

1
2

xT
1 Ṗ1x1+

1
ζ1

˙̃αT
jsα̃ js (223)

Using (219), the above equation can be rewritten as,

V̇7(t) = −xT
1 Q1x1 +xT

1 P1C1(−Cjsėrr −Ceėrr +Ybα̃ js)+
1
2

xT
1 Ṗ1x1+

1
ζ1

˙̃αT
jsα̃ js (224)

whenΩ1 ≥ max(1,ρ1), one can have the following,

−xT
1 P1C1Ceėrr = −(ėrr −

ω1

Ω1
+

ρ1

Ω1
err )

TCeėrr

≤ 3 ‖Ce ‖‖ x1 ‖
2 (225)
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1
2

xT
1 Ṗ1x1−xT

1 P1C1Cjsėrr =
1
2

ėT
rr Ṁ jsėrr + ėrr

ρ1

Ω1
Ṁ jserr

T − ėrr
1

Ω1
Ṁ jsωT

1

−(ėrr −
ω1

Ω1
+

ρ1

Ω1
err )

TCjsėrr (226)

Using the property ˙eT
rr (1/2Ṁ js−Cjs)ėrr = 0, above equation can be rewritten as,

1
2

xT
1 Ṗ1x1−xT

1 P1C1Cjsėrr =
1

Ω1
[ρ1err −ω1][Ṁ js−Cjs]ėrr

≤ 2ϑ1 ‖ q̇ ‖‖ x1 ‖
2 (227)

whereϑ1 ‖ q̇ ‖=‖ Ṁ js−Cjs ‖.

Substituting (220), (225) and (227) into (224) yields,

V̇7(t) ≤ −(Ω1λq1−3 ‖Ce ‖ −2ϑ1 ‖ q̇ ‖) ‖ x1 ‖
2 +(zT

1Yb +
1
ζ1

˙̃αT
js)α̃ js

= − f (‖ q̇ ‖) ‖ x1 ‖
2 (228)

where f (‖ q̇ ‖) = Ω1λq1−3 ‖Ce ‖ −2ϑ1 ‖ q̇ ‖ andxT
1 P1C1 = zT

1 and also (216) is used to

obtain the above equation. The right hand side of (228) is negative if f (‖ q̇ ‖) > 0, which

is true if (221) is satisfied.

WhenΩ1λq1 is sufficiently large, (221) is satisfied and alsoV7(t) < 0. By induction

with respect tot, V7(t) will be decreasing until‖ x1 ‖= 0 which shows that the closed-loop

system (219) is asymptotically stable and hence the given theorem is proved.

6.5.1.2 Simulation results

The simulation is carried out by considering the similar parameters of manipulators and

beam given in Table 5 and 6. The beam is moved from the initial position of center of mass

and orientation [103] (0.51m; 0.36m; 90◦) to final position and orientation (0.55 m; 0.36

m; 90◦) is considered for the simulation. Correspondingly, the first manipulator is moved
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Table 8: Control parameters-without velocity measurements in JS

Parameter Value

Ω1 23
ρ1 20
ϒ1 diag(0.027)
ζ1 0.1

from (0◦; -45◦; -45◦) to (-10.35◦; -21.5◦; -58.2◦) and also the second manipulator is moved

from the initial joint angles (0◦; 45◦; 45◦) to final joint angles (10.35◦; 21.5◦; 58.2◦). The

initial values ofα̌ js(0) = [0.96; 0.08; 0.003; 0.003; 0.51; 0.15; 1.46; 2.65; 0.098; 0.96;

0.08;0.003; 0.003; 0.51; 0.15; 1.46; 2.65; 0.098; 1.5; 0.13]T . The initial value ofω̄1(0)

is chosen as zero. The control parameters are tuned and givenin Table 8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.51

0.52

0.53

0.54

0.55

0.56

Time(sec)

B
e
a
m

 c
e
n
te

r 
X

−
P

o
si

ti
o
n
(m

)

 

 
actual

desired

Figure 86: X movement-Without velocity measurement in JS

The motion of beam along X direction reaches its desired value around 2 sec with a

small steady state error, that can be observed from the Fig. 86. In the Y direction, after
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Figure 87: Y movement-Without velocity measurement in JS
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Figure 88: Orientation-Without velocity measurement in JS
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small oscillation for about 0.5 sec, the beam approaches thedesired value which is shown in

Fig. 87. It is evident from the Fig. 88 that, the orientation of the beam has more oscillation

initially and after 0.5 sec it maintains the final set value. Figs. 89 - 94 shows the angular

positions of each joints of the manipulators. They have attained their desired value within 1

sec. However, compared with the Cartesian space results here in the joint space, all the joint

angular motions have initial oscillations and reach their desired values after few seconds.
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Figure 89: J1M1-Without velocity mea-
surement in JS
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Figure 90: J2M1-Without velocity mea-
surement in JS
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Figure 91: J3M1-Without velocity mea-
surement in JS
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Figure 92: J1M2-Without velocity mea-
surement in JS
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Figure 93: J2M2-Without velocity mea-
surement in JS
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Figure 94: J3M2-Without velocity mea-
surement in JS

6.5.2 Controller design without regressor in joint space

In order to control the motion of manipulators and the objectin the joint space without

involving complex regressor matrix calculations, a non-regressor based control algorithm

presented in Chapter 5 is reformulated according to the slowsubsystem in joint space (186).

The robust adaptive control law is given by,

τ js = uss= −KddM jsSφ1− (ρ̌11 ‖ q̈r ‖ +ρ̌22 ‖ q̇ ‖‖ q̈r ‖ +ρ̌33+ ρ̌44 ‖ q̇ ‖)sat(
Sjs

φ
) (229)

whereKdd is the positive definite matrix anďρii , i=1,2,3,4, are the adaptive control gains,

respectively.

Sφ1 = Sjs−φ sat(Sjs/φ) is the measure of the algebraic distance of the current stateto the

boundary layer,φ > 0 is boundary layer thickness.

The adaptive parameters are given by,

˙̌ρ11 = β11 ‖ Sφ1 ‖‖ q̈r ‖ (230)

˙̌ρ22 = β22 ‖ Sφ1 ‖‖ q̇ ‖‖ q̈r ‖ (231)
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˙̌ρ33 = β33 ‖ Sφ1 ‖ (232)

˙̌ρ44 = β44 ‖ Sφ1 ‖‖ q̇ ‖ (233)

whereβii > 0 (i=1, 2, 3, 4) are the arbitrary constants which determinesthe rates of adap-

tation.

6.5.2.1 Stability analysis:

To carry out the stability analysis, the closed loop system (186) will be expressed in

terms of the sliding variableSjs.

Mutiplying both sides of (199) byM js and using (186), (199) can be rewritten as,

M jsṠjs = τ js−Cjsq̇−G js−M jsq̈r (234)

Adding and subtractingCjsq̇r in (234) gives,

M jsṠjs = τ js−M jsq̈r −CjsSjs−G js−Cjsq̇r (235)

Consider a Lyapunov function candidate,

V8(t) =
1
2

ST
φ1M jsSφ1 +

1
2

Σ
(ρii − ρ̌ii )

2

βii
(236)

SinceṠφ1 = Ṡjs, differentiating (236) with respect to time gives ,

V̇8(t) = ST
φ1M jsṠjs +

1
2

ST
φ1Ṁ jsSφ1 +Σ

(ρii − ρ̌ii)(− ˙̌ρ ii )

βii
(237)

Using (229) and (235), (237) becomes,

V̇8(t) = ST
φ1[−KddM jsSφ1− (ρ̌11 ‖ q̈r ‖ +ρ̌22 ‖ q̇ ‖‖ q̈r ‖ +ρ̌33+ ρ̌44 ‖ q̇ ‖)]sat(

Sjs

φ
)

+ST
φ1(−M jsq̈r −CjsSjs−G js−Cjsq̇r)+

1
2

ST
φ1Ṁ jsSφ1+Σ

(ρii − ρ̌ii )(− ˙̌ρ ii)

βii
(238)

145



Since‖ Sφ1 ‖= ST
φ1sat(Sjs/φ), using property 6 and after some manipulation, (238) results

in,

V̇8(t)≤−ST
φ1KddM jsSφ1− (ρ̌11 ‖ q̈r ‖ +ρ̌22 ‖ q̇ ‖‖ q̈r ‖ +ρ̌33+ ρ̌44 ‖ q̇ ‖) ‖ Sφ1 ‖

+(ρ11 ‖ q̈r ‖ +ρ22 ‖ q̇ ‖‖ q̈r ‖ +ρ33) ‖ Sφ1 ‖

+
1
2

ST
φ1Ṁ jsSφ1+Σ

(ρii − ρ̌ii )(− ˙̌ρ ii)

βii
−ST

φ1CjsSφ1+φρ22 ‖ q̇ ‖‖ Sφ1 ‖ (239)

SinceST
φ1(Ṁ js−2Cjs)Sφ1 = 0 and definingρ44 = φρ22 and also using the adaptive param-

eters (230-233), (239) yields into,

V̇8(t) = −ST
φ1KddM jsSφ1 (240)

SinceKddM js is symmetric positive definite matrix then, there exists a constantγ such that

γId ≤ KddM js. Then (240) can be rewritten as,

V̇8(t)≤−γ ‖ Sφ1 ‖
2
2≤ 0 (241)

In order to achieve the stability it is necessary to show thatSφ1 → 0 ast → ∞. This can be

achieved by applying Barbalat’s lemma to the following continuous non-negative function,

V̇9(t) = V8(t)−
∫ t

0
(V̇8(τ)+ γ ‖ Sφ1(τ) ‖2

2)dτ with

V̇9(t) = −γ ‖ Sφ1(τ) ‖2
2 (242)

SinceSjs is bounded and correspondinglyerr andėrr are bounded. Thus, all the feedback

signalsq, q̇ andq̇r are bounded. Therefore, it can seen from (235) that,Ṡjs is also bounded

becauseM js is already given as bounded property (property4 in JS) whichprovesV̇9(t) to

be uniformly continuous function of time. SinceV9 is bounded below by 0 anḋV9(t) ≤ 0

for all t, use of Barbalat’s lemma proves thatV̇9(t) → 0 and from (242) that‖ Sφ1 ‖→ 0 as

t → ∞.
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6.5.2.2 Simulation results

In order to validate the above presented controller, simulations are performed. Sim-

ilar set of parameters for the manipulators and beam given inTable 5 and 6 are con-

sidered. The control parameters are chosen asKdd = 500 andλ js = 20. The adaptive

gains are chosen asβ11=β22=β33=β44=0.01. The initial adaptive parameters are taken as

ρ̌11(0)=ρ̌22(0)=ρ̌33(0)=ρ̌44(0)=1. In order to reduce the chattering effect, the boundary

layer thickness is chosen asφ=0.05. The position of the object along X direction is shown

in Fig. 95 where it reaches desired value within 0.5secs. It can be seen from the Figs. 96

and 97 that the motion of object along Y direction and orientation about Z axis is main-

tained at its desired value. Each joint of the manipulators are reached towards its set point

value within 0.5secs which are shown in Figs. 98 - 103. It can be concluded from these

results that the, controller without regressor has achieved better control performance than

the controller without velocity measurement in joint space.

The following conclusions are made by analyzing the slow subsystem in joint space

as compared to the Cartesian space slow subsystem:

1. The regressor for joint space slow subsystem has less computation burden than that

of the Cartesian space slow subsystem.

2. The regressor based sliding mode control law achieved good control performance in

the regulation problem as well.

3. It can be observed from the simulation results of the controller without velocity

measurement in the joint space that, there are some oscillations at the beginning to
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Figure 95: X movement-Without regressor in JS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time(sec)

B
e
a
m

 c
e
n
te

r 
Y

−
P

o
si

ti
o
n
(m

)

 

 
actual

desired

Figure 96: Y movement-Without regressor in JS
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Figure 97: Orientation-Without regressor in JS

achieve the set point value of manipulators joint angles andbeam pose. These kinds

of oscillations are not seen from the Cartesian space slow subsystem simulation re-

sults of similar controller.

4. The non regressor based control approach yield comparatively better results than

those by other control schemes in both Cartesian and joint spaces.

6.6 Summary

In this Chapter, complete systems of dynamic equations havebeen developed in joint

space. The two subsystems, namely, slow and fast were identified by using the singular

perturbation approach. Furthermore, the composite control algorithms presented for the
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Figure 98: J1M1-Without regressor in JS
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Figure 99: J2M1-Without regressor in JS
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Figure 100: J3M1-Without regressor in JS
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Figure 101: J1M2-Without regressor in JS

Cartesian space system was implemented to the joint space system as well. Stability anal-

ysis and simulation results were discussed. In the next Chapter, conclusions and some of

the possible extensions to this thesis will be given.
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Figure 102: J2M2-Without regressor in JS
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Figure 103: J3M2-Without regressor in JS
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Chapter 7

Conclusions and Recommendations for

Future Works

7.1 Summary

Maneuvering of flexible objects by robot arms has wide applications in various indus-

tries and in space. Especially solving the complete system of dynamic equations without

using any approximate methods, correspondingly developing the robust control algorithms

and also satisfying the necessary stability criteria are challenging problems. This disser-

tation research has addressed these problems by implementing collaborative manipulation

of two planar rigid manipulators moving a flexible object in aprescribed trajectory while

suppressing the vibration of the flexible object being handled. A brief summary of this

research is provided in the following:

The flexible object being handled by two rigid arm manipulators is a beam. From

the kinematics of the flexible beam, the relation between thevelocities of end-effectors and
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the object are obtained. In order to alleviate problems associated with truncating the in-

finite degrees-of-freedom flexible beam to a finite dimensional model, dynamic equations

of motion of the beam are derived in PDE form. Furthermore, byutilizing the established

kinematic relations of manipulators as well as beam, the dynamic equations of manipu-

lators are formulated in Cartesian space. Then, the resulting manipulator dynamics were

combined to the beam dynamics to yield a combined system dynamics in Cartesian space

without utilizing any approximate or discretiation methods.

The derived systems of dynamic equations are coupled with rigid and flexible pa-

rameters. Without the aid of the assumed modes, the coupled rigid-felxible dynamics has

been separated into slow subsystem, which signifies the rigid body motion and the fast

subsystem that considers the vibration of the flexible object by using singular perturbation

technique. The method of separation is considered under twodifferent time scales that

permits designing of the control signal for each subsystem.The challenge in the design of

control systems lies in the fact that, they should be robust against parameter uncertainties

and also guarantees the exponential convergence. Hence, for the slow subsystem, regres-

sor based sliding mode control algorithm is developed. Thismethod avoids the need of

parameter estimation unlike in the case of adaptive control. Moreover, the method also

gives the desired transient response while achieving robustness to uncertainties. In the

case of fast subsystem, as a part of the composite control scheme, a simple feedback con-

trol algorithm is designed with a special damping term. The exponential stability results

for slow and fast subsystems validate the singular perturbation analysis by satisfying the

Tikhnov’s theorem. Simulation results of the composite control strategy confirmed that,

the proposed controller achieved very good tracking performance while suppressing the
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vibration. In addition, switching function in the sliding mode control algorithm may cause

chattering which is an undesirable phenomenon in real time applications. Hence, a suitable

smoothing control law is suggested. As a special case, the combined dynamic model for

the two manipulators handling a rigid object is derived which validate the developed slow

subsystem in the Cartesian space.

Further improvement in the design of control algorithm for the slow subsystem is

achieved by avoiding the measurement of velocity feedback.An adaptive control law with

only position feedback is proposed. The stability analysisand simulations results are pre-

sented to illustrate the tracking performance of the controller. In addition to this, to avoid

the online computation of complex regressor, a non-regressor based adaptive robust control

algorithm is implemented to the slow subsystem and corresponding stability analysis has

been carried out. Simulation results demonstrate the effectiveness of the suggested control

scheme.

The earlier analysis has been extended to the joint space to avoid the complex in-

verse kinematics solutions of Cartesian trajectories and singularity problems. In order to

rectify these issues, the complete system of dynamic equations is derived in joint space.

By following the typical steps of singular perturbation approach, slow and fast subsystems

are obtained in joint space. It is observed that, fast subsystem has similar structure in both

Cartesian and joint space. Based upon these subsystems, composite controllers have been

developed and corresponding simulations are performed. Itis evident from the simulation

results that, the proposed composite controllers achievedgood control performance.
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7.2 Major Contributions

1. A complete system of dynamic equations with respect to Cartesian space and joint

space in PDE form was developed. This avoids the problems associated with approx-

imation techniques which are mentioned in Chapter 1.

2. A composite control algorithm for the PDE based model satisfying the Tikhnov’s the-

orem to achieve the tracking and regulation control performance and also suppressing

the vibration of the flexible object was designed.

3. A regressor for the Cartesian space and joint space manipulators-beam system dy-

namics was formulated.

7.3 Conclusions

The major conclusions drawn from this dissertation study are summarized below:

• When the complete system of dynamic equations for the manipulator and the flexible

object is solved using modal approximation techniques, it is not clear as to how many

modes should be considered while developing the model. Further, neglecting higher

order modes may cause instabilities in the system. This thesis primarily attempts to

avoid such problems by developing the system of dynamic equations in PDE form.

• Validation of singular perturbation approach necessitates satisfying the Tikhnov’s

theorem wherein, both slow and fast subsystems should achieve the exponential con-

vergence. Furthermore, in real time applications parameters of the manipulators and
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flexible object will be varying and hence robust control algorithm is necessary. This

thesis addressed these problems by developing a composite robust control algorithm

and corresponding exponential stability analysis of each subsystem, which is as a

whole, not found in the literature.

• The proposed feedback control algorithm for the fast subsystem suppresses the vibra-

tion only with velocity feedback and it also reduces the needfor more sensors unlike

in the available control algorithms in the literature. As a result, the measurement cost

is minimized.

• For the slow subsystem, in order to avoid velocity measurements, a controller with-

out velocity feedback is proposed. The simulation results show that, the proposed

controller does not affect the tracking performance of the slow subsystem.

• Further improvement in the control law for the slow subsystem is made to avoid the

complex computational burden of the regressor. A non-regressor based adaptive ro-

bust control algorithm is developed. Simulation studies demonstrate that, the desired

tracking is achieved as in the other proposed control algorithms.

• Further studies have been carried out by developing the complete system of dynamics

in joint space, to avoid the singularity problems and also complex inverse kinematic

calculations of online trajectories. The simulation results show that, the proposed

controller does not affect the tracking performance of the slow subsystem.
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7.4 Future Works

There are some recommended studies related to this domain that needs further investi-

gations are listed below:

• Vibration free motion is necessary in many of the deformablestructural components

such as in aircraft wings, shiphulls, space antennas and aircraft skins. The dynamic

equations of motion can also be derived by assuming these structures as plates or

shells instead of beam. The development of system of dynamicequations without

using any approximate methods and establishing the slow andfast subsystem is a

complex problem. Developing these subsystems and implementing the proposed

robust control algorithms is very important.

• The proposed control algorithms in this thesis can be implemented through experi-

ments. Performing experimental studies will be an added advantage.

• In this thesis, the two manipulators grasping the flexible object was considered as

rigid grasping. In the literature, different grasping configurations are available [107].

According to the types of objects to be grasped and transported, one can consider the

required grasping configuration and perform the detailed analysis.

• In general manipulators are considered to be rigid. Now-a-days flexible manipulators

are used in medical and aerospace applications. They have low mass, and require less

power and ultimately saves the cost. However, mathematicalmodeling of flexible

object needs special attention and also coupling with the flexible object can be a
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complex problem. In addition, suppressing the vibration ofmanipulators as well as

the flexible object is critical too.

• The interaction between the external environment such as any obstacles or collision

between manipulators are not considered in this thesis. This scenario occurs in real

time applications such as assembly, material handling and pick and place operations.

When the object is constrained, the dynamic modeling and deriving the control law

becomes more tedious.
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Appendix A

Dynamics of Beam

Kinetic energy with respect to fixed coordinate frame in Cartesian space is given by,

K.E =
1
2

∫ L
2

−L
2

ρ[ẋ2
0+ ẏ2

0 + θ̇2η2 +(xθ̇ + η̇)2−2θ̇η(ẋ0cosθ + ẏ0sinθ)

+2(θ̇x+ η̇)(ẏ0cosθ − ẋ0sinθ)]dx

Variational principle is applied to the kinetic energy terms which are illustrated for some

of the terms as follows:

δ (
1
2

ẋ0
2) =

∫ t2

t1
ẋ0δ (ẋ0)

= ẋ0δ (x0) |
t1
t2 −

∫ t2

t1
ẍ0δ (x0)

=

∫ t2

t1
−ẍ0δ (x0)

δ (
1
2

ẏ0
2) =

∫ t2

t1
ẏ0δ (ẏ0)

=

∫ t2

t1
−ÿ0δ (y0)

δ (
1
2

θ̇2η2) =

∫ t2

t1
−θ̈η2δθ , f or variation o f θ

=
∫ t2

t1
θ̇2ηδη, f or variation o f η
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δ [
1
2
(xθ̇ + η̇)2] = (xθ̇ + η̇)[xδ θ̇ +δη̇ ]

= x2θ̇ δ θ̇ +xθ̇ δ η̇ +xη̇δ θ̇ + η̇δ η̇

= −x2θ̈δθ −xθ̈ δη −xη̈δθ − η̈δη

=

∫ t2

t1
[(−x2θ̈ −xη̈)δθ − (xθ̈ + η̈)δη]

Similarly, variations on the other kinetic energy terms arealso performed.

Potential energy is given by

Ue =
1
2

∫ L
2

−L
2

[

EIη ′′2]dx

Ug = mgy0

Variation of potential energy:

δ (
1
2

∫ L
2

−L
2

[

EIη ′′2]dx) =
1
2

[

EI2η ′′δ (η ′′)
]

= EIη ′′δ (η ′)−EIη ′′′δ (η)+

∫ t2

t1
EIη ivδ (η)

δ (mgy0) = mgδy0

Work done due to the external forces is given by,

W = F1x(x0−
L
2

cosθ)+F1y(y0−
L
2

sinθ)+F2x(x0+
L
2

cosθ)+F2y(y0 +
L
2

sinθ)+

(F2y +F1y)η cosθ − (F1x +F2x)η sinθ

Variation of external forces:

1. F1xδx0

2. −F1x
L
2δ cosθ = F1x

L
2 sinθδθ

3. F1yδy0
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4. −F1y
L
2δ sinθ = −F1y

L
2 cosθδθ

5. F2xδx0

6. F2x
L
2δ cosθ = −F2x

L
2 sinθδθ

7. F2yδy0

8. F1y
L
2δ sinθ = F2y

L
2 cosθδθ

9. −F1xηδ (sinθ) = −F1xη cosθδθ

10. −F1xsinθδ (η)

11. F1yηδ (cosθ) = −F1yη sinθδθ

12. F1ycosθδ (η)

13. −F2xηδ (sinθ) = −F2xη cosθδθ

14. −F2xsinθδ (η)

15. F2yηδ (cosθ) = −F2yη sinθδθ

16. F2ycosθδ (η)

Separatingδx0 components

−ẍ0 + θ̈η cosθ + θ̇ η̇ cosθ −η sinθθ̇2 +xθ̈ sinθ

+xθ̇2cosθ + η̈ sinθ + η̇ cosθθ̇ = F2x−F1x
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Integrating all the terms inδx0 (ρ
∫

L
2
−L
2

dx)

−ρ ẍ0

∫ L
2

−L
2

dx= −ẍ0
m
L

L = −mẍ0

ρθ̈ cosθ
∫ L

2

−L
2

ηdx

2ρθ̇ η̇ cosθ
∫ L

2

−L
2

η̇dx

−ρ sinθθ̇2
∫ L

2

−L
2

ηdx

ρ
∫ L

2

−L
2

xθ̈ sinθdx= 0

ρ
∫ L

2

−L
2

xθ̇2 cosθdx= 0

ρ
∫ L

2

−L
2

η̈ sinθdx= ρ sinθ
∫ L

2

−L
2

η̈dx

Separatingδy0 components

−ÿ0 + θ̈η sinθ + θ̇ η̇ sinθ +η cosθθ̇2−xθ̈ cosθ

−xθ̇2 sinθ − η̈ cosθ + η̇ sinθθ̇ +mg = F2y−F1y

Integrating all the terms inδy0 (ρ
∫

L
2
−L
2

dx)

−ρ ÿ0

∫ L
2

−L
2

dx= −ÿ0
m
L

L = −mÿ0

ρθ̈ sinθ
∫ L

2

−L
2

ηdx

2ρθ̇ η̇ sinθ
∫ L

2

−L
2

η̇dx

ρ cosθθ̇2
∫ L

2

−L
2

ηdx

−ρ
∫ L

2

−L
2

xθ̈ cosθdx= 0
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ρ
∫ L

2

−L
2

xθ̇2sinθdx= 0

−ρ
∫ L

2

−L
2

η̈ cosθdx= −ρ cosθ
∫ L

2

−L
2

η̈dx

Separatingδθ components

−θ̈η2− (x2θ̈ +xη̈)+ η̇ ẋ0cosθ +η ẍ0 cosθ −η ẋ0 sinθθ̇ +η ẋ0sinθθ̇ + η̇ ẏ0sinθ

+η ÿ0 sinθ +η ẏ0 cosθθ̇ − θ̇η ẏ0cosθ +xẍ0 sinθ +xẋ0 cosθθ̇ −xẋ0 cosθθ̇ −xÿ0cosθ

+xẏ0 sinθθ̇ −xẏ0sinθθ̇ − η̇ ẏ0cosθ − η̇ ẋ0cosθ =

F1x(
L
2

sinθ −η cosθ)+F1y(−
L
2

cosθ −η sinθ)

+F2x(−
L
2

sinθ −η cosθ)+F2y(
L
2

cosθ −η sinθ)

−θ̈η2− (x2θ̈ +xη̈)+ ẍ0η cosθ + ÿ0η sinθ + ẍ0xsinθ − ÿ0xcosθ =

F1x(
L
2

sinθ −η cosθ)+F1y(−
L
2

cosθ −η sinθ)

+F2x(−
L
2

sinθ −η cosθ)+F2y(
L
2

cosθ −η sinθ)

Integrating all the terms inδθ (ρ
∫

L
2
−L
2

dx)

−ρθ̈
∫ L

2

−L
2

η2dx

−ρθ̈
∫ L

2

−L
2

x2dx= −
mL2

12
θ̈

ρ ẍ0cosθ
∫ L

2

−L
2

ηdx

ρ ÿ0sinθ
∫ L

2

−L
2

ηdx

ρ
∫ L

2

−L
2

xÿ0cosθdx= 0

ρ
∫ L

2

−L
2

xẍ0sinθdx= 0
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Separatingδη components

θ̇2η − (xθ̈ + η̈)− ẋ0θ̇ cosθ − ẏ0θ̇ sinθ − ÿ0cosθ + ẏ0θ̇ sinθ + ẍ0sinθ + ẋ0θ̇ cosθ +
EI
ρ

η iv

= −F1x sinθ +F1ycosθ −F2xsinθ +F1ycosθ
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Appendix B

Regressor for Manipulator - Flexible

Object System in Cartesian Space

B.1 Time dependent parameters

Ycs =

















Ya1
cs Ya2

cs Ya3
cs Ya4

cs Ya5
cs .... Ya16

cs Ya17
cs Ya18

cs Ya19
cs Ya20

cs

Yb1
cs Yb2

cs Yb3
cs Yb4

cs Yb5
cs .... Yb16

cs Yb17
cs Yb18

cs Yb19
cs Yb20

cs

Yc1
cs Yc2

cs Yc3
cs Yc4

cs Yc5
cs .... Yc16

cs Yc17
cs Yc18

cs Yc19
cs Yc20

cs

















Ya1
cs =

cos(q1+q2)
2ẍ0

sin(q2)2 +
sin(2q1+2q2)ÿ0

2sin(q2)2 −
cos(q1+q2)θ̈ [sin(q1+q2−θ)−2sin(q3)]

2sin(q2)2

+
cos(θ)θ̇2+cos(2q1+2q2−θ)θ̇2

4sin(q2)2 −
sin(2q1+2q2)ẋ0

2sin(q2)2q̇1
+

cos(2q1+2q2)ẏ0

sin(q2)2q̇1

+
cos(2q1+2q2)[sin(q3)q̇1−0.5cos(q1+q2−θ)+sin(q3)q̇2+sin(q3)q̇3]θ̇

sin(q2)2q̇1

Yb1
cs = −

sin(q1+q2)
2ÿ0

sin(q2)2 +
sin(2q1+2q2)ẍ0

2sin(q2)2 −
sin(q1+q2)[sin(q1+q2−θ)−2sin(q3)]θ̈

2sin(q2)2
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−
sin(θ)θ̇2+sin(2q1+2q2−θ)θ̇2

4sin(q2)2 +
sin(2q1+2q2)ẏ0

2sin(q2)2q̇1
−

sin(2q1+2q2)ẋ0

sin(q2)2q̇1

+
sin(2q1+2q2)[sin(q3)q̇1−0.5cos(q1+q2−θ)+sin(q3)q̇2+sin(q3)q̇3]θ̇

sin(q2)2q̇1

Yc1
cs =

[2sin(q3)+cos(q1+q2)sin(θ)−sin(q1+q2)cos(θ)]2θ̈
4sin(q2)2

−
cos(q1+q2)[sin(q1+q2−θ)−2sin(q3)]ẍ0

2sin(q2)2

−
sin(q1+q2)[sin(q1+q2−θ)+2sin(q3)]ÿ0

2sin(q2)2

+
sin(q1+q2)[sin(q1+q2−θ)−2sin(q3)]ẍ0

2sin(q2)2q̇1

−
[0.5sin(q1+q2−θ)−2sin(q3)][sin(q3)q̇1−0.5cos(q1+q2−θ)

sin(q2)2q̇1

−
[0.5sin(q1+q2−θ)−2sin(q3)][sin(q3)q̇2+sin(q3)q̇3]

sin(q2)2q̇1

−
cos(q1+q2)[sin(q1+q2−θ)−2sin(q3)]ẏ0

2sin(q2)2q̇1

−
cos(q1+q2−θ)[sin(q1+q2−θ)−2sin(q3)]θ̇2

4sin(q2)2

j11= sin(q1+2q2+q3); j12= sin(q1+q3); j13= sin(2q1+q2−θ);

j14= cos(q1+q2)sin(q2+q3); j15= cos(q1)sin(q3); j16= [cos(q1+q2)]cos(q1)cos(θ);

j17= sin(q1)sin(θ); j18= [sin(q1+q2)]cos(q1)sin(θ); j19= cos(q1)sin(q3);

j20= cos(q1+2q2+q3); j21= cos(2q1+q2−θ); j22= cos(q2+θ);

j23= sin(q1+q2)sin(q2+q3); j24= sin(q1)sin(q3); j25= cos(q1+q2)cos(θ)sin(q1);

j26= sin(q1+q2)cos(θ)cos(q1); j27= sin(q1+q2)sin(θ)sin(q1); j28= sin(2q1+q2);

j29= sin(q2)
2q̇1(q̇1+ q̇2); j30= cos(q1+2q2+q3);

j31= cos(2q1+q2−θ); j32= sin(q1+2q2 +q3); j33= sin(2q1+q2−θ);

j34= cos(q1+q2)sin(θ); j35= sin(q1+q2)cos(θ); j36= sin(q1+q2−θ )
2sin(q2)

− sin(q3)
sin(q2)

;

j37= 2cos(q1+q2)cos(q2); j38= cos(q2)[cos(q1+q2)q̇1+cos(q1+q2)q̇2+cos(q1)q̇1];

j39= 2sin(q1+q2)cos(q2); j40= cos(q2)[sin(q1+q2)q̇1+sin(q1+q2)q̇2+sin(q1)q̇1];
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j41= 2cos(q2)sin(q3)(q̇1+ q̇2+ q̇3);

j42= [sin(q2+q3)q̇1+sin(q3)q̇1+sin(q3)q̇2]cos(q2)(q̇1+ q̇2 + q̇3)

j43= cos(q1+q2)cos(q2)cos(θ); j44= cos(q2)sin(q3)(q̇1+ q̇2 + q̇3);

j45= sin(q1+q2)cos(q2)sin(θ); j46= sin(q2+q3)+sin(q3);

j47= sin(θ)[cos(q1+q2)+cos(q1)]; j48= j43
2sinq2q̇1

− j44
sinq2q̇1

+ j45
2sinq2q̇1

;

j49= j46
sinq2

+ j47
2sinq2

− j47
2sinq2

; j50= sin(q1+q2−θ )
2sin(q2)

− sin(q3)
sin(q2)

;

j51= cos(q1+q2)q̇1+cos(q1+q2)q̇2+cos(q1)q̇1; j52= sin(q2+q3)+sin(q3);

j53= sin(θ)[cos(q1+q2)+cos(q1)]; j54= cos(θ)[sin(q1+q2)+sin(q1)];

j55= 2cos(q1+q2)cos(q2); j56= 2sin(q1+q2)cos(q2);

j57= sin(q1+q2)q̇1+sin(q1+q2)q̇2+sin(q1)q̇1; j58= sin(q2)q̇1;

j59= sin(q2)q̇1(q̇1+ q̇2); j60= j52
sin(q2)

+ j53
2sin(q2)

− j54
2sin(q2)

; j61= sin(q1+2q2+q3);

j62= sin(q1+q3); j63= sin(2q1+q2−θ); j64= sin(q2−θ);

j65= cos(q1+2q2+q3); j66= cos(q1+q3); j67= cos(2q1+q2−θ);

j68= cos(q2−θ); j69= sin(2q1+2q2−2θ )
8 ; j70= sin(q1+q2−q3−θ )

4 ;

j71=
sin(q1−q2+q3−θ )

8 ; j72=
sin(q1+3q2+q3−θ )

8 ;

j73=
sin(2q1−2θ )

8 ; j74=
sin(q1−q2−q3−θ )

4 ; j75=
sin(q1+q2+q3−θ )

4 ; j76= cos(q1+q2)sin(θ);

j77= sin(q1+q2)cos(θ); j78= cos(q1)sin(θ); j79= sin(q1)cos(θ);

Ya2
cs = −

[sin(2q1)+sin(2q1+2q2)]ÿ0

2sin(q2)2

−
[2sin(q1−q3)+0.5sin(q2−θ)− j11− j12−0.5sin(q2+θ)+ j13]cos(q2)θ̈

2(cos(q2)2−1)

−
2[cos(q1+q2)cos(q1)cos(q2)]ẍ0

sin(q2)2

+
[2 j11q̇1+2 j11q̇2−2 j12q̇1+sin(q2+θ)q̇1+sin(q2+θ)q̇2− j13q̇2]θ̇

4sin(q2)
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+
[sin(q2−θ)q̇1− j13q̇2−2sin(q1−q3)q̇2+sin(q2−θ)q̇1]θ̇

4sin(q2)

−
[2q̇1+ q̇2]ẏ0

2
−

cot(q2)[cot(q2)cos(θ)−sin(2q1−θ)+cos(2q1−θ)cot(q2)]θ̇2

2

+
sin(2q1+q2)q̇1ẏ0

2sin(q2)
+

cos(q1+q2)q̇2cos(q1)ẋ0

sin(q2)

+
[2 j14q̇2

1+2 j15q̇2
1 +2 j15q̇2

2−2 j16q̇1− j16q̇2]cos(q2)θ̇
sin(q2)2q̇1(q̇1+ q̇2)

+
[− j17q̇1− j18q̇1− j18q̇2+2 j14q̇1q̇2−2 j19q̇1q̇3+2 j19q̇2q̇2]cos(q2)θ̇

sin(q2)2q̇1(q̇1+ q̇2)

−
[cos(q1+q2)cos(q1)cos(q2)](2q̇1+ q̇2)ẏ0

sin(q2)2q̇1(q̇1+ q̇2)

Yb2
cs = −

sin(2q1)+sin(2q1+2q2)ẍ0

2sin(q2)2 −
2sin(q1+q2)cos(q2)sin(q1)ÿ0

sin(q2)2 +2
[q̇1+ q̇2]ẋ0

2

−
0.5cos(q2−θ)−2sin(q1−q3)+ j20+cos(q1+q3)+0.5cos(q2+θ)− j21

2(cos(q2)2−1)

−
[2 j20q̇1+2 j20q̇2 +2cos(q1+q3)q̇1+ j22q̇1 + j22q̇2− j21q̇2]θ̇

4sin(q2)

−
[2cos(q1−q3)q̇2−cos(q2−θ)q̇1]θ̇

4sin(q2)

−
[cos(2q1−θ)+cot(q2)sin(θ)+sin(2q1−θ)cot(q2)]cot(q2)θ̇2

2

+
sin(q1+q2)sin(q1)q̇2ẏ0

sin(q2)
+

sin(2q1+q2)q̇2ẋ0

2sin(q2)

−
2 j23q̇2

1+2 j24q̇2
1+2 j24q̇2

2− j25q̇1− j26q̇1− j25q̇2−2 j27q̇1

2sin(q2)2q̇1(q̇1+ q̇2)

−
j27q̇2+2 j23q̇1q̇2+2 j23q̇1q̇3 +4 j24q̇1q̇2 +2 j24q̇1q̇3 +2 j24q̇2q̇3

2 j29

−
[ j28q̇1−0.5sin(q2)q̇2+0.5 j28q̇2]cos(q2)ẏ0

j29

+
sin(q1+q2)cos(q2)sin(q1)[2q̇1+ q̇2]ẋ0

j29

Yc2
cs = −

[0.5cos(q2−θ)−2cos(q1−q3)+ j30+cos(q1+q3)]cos(q2)ÿ0

2(cos(q2)2−1)

−
[0.5cos(q2+θ)− j31]cos(q2)ÿ0

2(cos(q2)2−1)

−
[2sin(q1−q3)+0.5sin(q2−θ)− j32−sin(q1+q3)−0.5sin(q2+θ)]cos(q2)ẍ0

2(cos(q2)2−1)
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−
[2sin(q3)+ j34− j35][2sin(q2+q3)+cos(q1)sin(θ)−cos(θ)sin(q1)]cos(q2)θ̈

2sin(q2)2

+{(0.5cos(θ)[
j37

j58
−

j38

j59
]+0.5sin(θ)[

j39

j58
−

j40

j59
]−

j41

j58
+

j42

j59
) j36+ j48 j49}θ̇

−{[
j55

j58
−

cos(q2) j51

j59
] j50+

cos(q1+q2)cos(q2) j60

j58
}ẏ0

+{[
j56

j58
−

cos(q2) j57

j59
] j50+

sin(q1+q2)cos(q2) j60

j58
}ẋ0

−
[2 j61q̇1−2 j62q̇1−2 j62q̇2+sin(q2+θ)q̇1 + j63q̇2+2sin(q1−q3)q̇2+ j64q̇1]ẋ0

4sin(q2)

+
[2 j65q̇1−2 j66q̇1−2 j66q̇2+cos(q2+θ)q̇1+ j67q̇2+2cos(q1−q3)q̇2− j68q̇1]ẏ0

4sin(q2)

+
[ j69+ j70− j71− j72+ j73+ j74− j75]θ̇2

sin(q2)2

+
[2sin(q3)+ j76− j77][2sin(q2+q3)+ j78− j79]q̇2θ̇

4sin(q2)

k11= sin(q1−θ)−2sin(q2+q3); k12= cos(q1)cos(q3); k13= cos(q3)sin(q1);

k14= cos(q1−θ)cos(q3); k15= sin(q1)sin(q3); k16= sin(q2+q3);

k17= sin(q1−θ); k18= sin(q2)q̇1+sin(q2)q̇2

Ya3
cs = −

cos(q1)cos(q3)θ̈
sin(q2)

+
cos(q1)sin(q3)(q̇1+ q̇2 + q̇3)θ̇

sin(q2)
−

cos(q1)cos(q3)θ̇
sin(q2)

Yb3
cs = −

cos(q3)sin(q1)θ̈
sin(q2)

+
sin(q1)cos(q3)(q̇1+ q̇2+ q̇3)θ̇

sin(q2)
−

cos(q3)sin(q1)θ̇
sin(q2)

Yc3
cs = −

cos(q3)k11θ̈
sin(q2)

−
k12ẍ0

sin(q2)
−

k13ÿ0

sin(q2)
+

k13ẋ0

k18
−

k12ẏ0

k18
−

k14θ̇2

2sin(q2)
−

k15(q̇1+ q̇2)ẏ0

sin(q2)

−
sin(q3)k11q̇3θ̇

2sin(q2)
−

k13(q̇1+ q̇2)ẋ0

sin(q2)

+
cos(q3)[cos(q1−θ)−4k16q̇1−4k16q̇2−2k16q̇3+k17q̇1+k17q̇2]θ̇

2sin(q2)(q̇1+ q̇2)

n11= cos(q1+q2)cos(q2+q3); n12= cos(q1+q2)sin(q2+q3);

n13= cos(q2+q3)sin(q1+q2); n14= sin(q1+q2)sin(q2+q3);

n15= sin(q1+q2−q3−θ); n16= sin(q1+3q2+q3−θ);

n17= sin(q1−q2−q3−θ); n18= sin(q1+q2 +q3−θ); n19= cos(q1+q2−q3−θ);
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n20= cos(q1+3q2+q3−θ); n21= cos(2q2+2q3); n22= cos(q1−q2−q3−θ);

n23= cos(q1+q2+q3−θ); n24= cos(2q2); n25= cos(2q3).

Ya4
cs =

n11θ̈
sin(q2)

+
n11θ̇

sin(q2)
−

n12(q̇1+ q̇2+ q̇3)θ̇
sin(q2)

Yb4
cs =

n13θ̈
sin(q2)

+
n13θ̇

sin(q2)
−

n14(q̇1+ q̇2+ q̇3)θ̇
sin(q2)

Yc4
cs =

n11ẍ0

sin(q2)
+

n13ÿ0

sin(q2)
−

cos(q2+q3)[sin(q1+q2−θ)−2sin(q3)]θ̈
sin(q2)

+
0.5cos(q1+2q2+q3)ẏ0+0.5cos(q1−q3)ẏ0

sin(q2)q̇1

+
[cos(q1+2q2+q3−θ)+cos(q1−q3−θ)]θ̇2

4sin(q2)

−
[4q̇1+2q̇2 +2q̇3+n15+n16−n17−n18−n19q̇1−n20q̇1+4n21q̇1+2n21q̇2]θ̇

8sin(q2)2q̇1

+
[n22q̇1+n23q̇1−4n24q̇1−2n24q̇2−2n24q̇3−4n25q̇1−2n25q̇2−2n25q̇3]θ̇

8sin(q2)2q̇1

−
[sin(q1−q3)+sin(q1+2q2+q3)]ẋ0

2sin(q2)q̇1

+
sin(q2+q3)(q̇2+ q̇3)[sin(q1+q2−θ)−2sin(q3)]θ̇

2sin(q2)

+
cos(q1+q2)sin(q2+q3)q̇1ẋ0

sin(q2)
+

sin(q1+q2)sin(q2+q3)q̇1ẏ0

sin(q2)

q31= sin(q1+q2)
2−sin(q1)

2; q32= sin(2q1)−sin(2q1+2q2);

q33= sin(2q1+2q2−θ); q34= sin(2q1−θ); q35= sin(q1+q2−q3);

q36= sin(q1−q2−q3); q37= cos(2q1+2q2−θ); q38= cos(2q1−θ);

q39= cos(q1+q2)
2; q40= sin(q1+q2+q3); q41= sin(2q1+2q2); q42= sin(q1+q2)

2;

q43= cos(q1+q2+q3); q44= cos(q1+q2−q3); q45= cos(q1−q2−q3);

q46= cos(2q1+2q2−2θ); q47= cos(q1+q2−q3−θ); q48= cos(q1−q2−q3−θ);

q49= sin(q1+q2−q3−θ); q50= sin(q1−q2−q3−θ);
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q51= sin(q1+q2−θ); q52= sin(q2+q3); q53= cos(q1+q2−θ).

Ya5
cs =

q31ẍ0

sin(q2)2 +
q32ÿ0

2sin(q2)2 +
[q33−q34+2q35−2q36]θ̈

4sin(q2)2

−
[q37−q38]θ̇2

4sin(q2)2 −
[q39q̇1+q39q̇2]ẏ0

sin(q2)2q̇1(q̇1+ q̇2)

−
[cos(θ)q̇2−q38q̇1−2q40q̇2

2]θ̇
2cos(2q2−1)q̇1(q̇1+ q̇2)

−
[2q36q̇2

1 +2q35q̇2
1 +2q35q̇2

2]θ̇
2cos(2q2−1)q̇1(q̇1+ q̇2)

+
[q37q̇1+q37q̇2−2q36q̇1q̇2−2q36q̇1q̇3−2q40q̇1q̇2−2q40q̇2q̇3+4q35q̇1q̇2]θ̇

2cos(2q2−1)q̇1(q̇1+ q̇2)

+
[2q40q̇1q̇3+2q35q̇2q̇3]θ̇

2cos(2q2−1)q̇1(q̇1+ q̇2)
−

[q41q̇1−sin(2q1)q̇1+q41q̇2]ẋ0

cos(2q2−1)q̇1(q̇1+ q̇2)

Yb5
cs =

[sin(2q1)−q41]

2sin(q2)2 −
[q37−q38+2q44−2q45]θ̈

4sin(q2)2 −
q31ÿ0

sin(q2)2

−
[q33q̇1+q33q̇2+2q43q̇2

2−q34q̇1−2q44q̇2
1−2q44q̇2

2+sin(θ)q̇2+2q45q̇2
1]θ̇

2cos(2q2−1)q̇1q̇1q̇2

+
[2q43q̇2q̇3−4q44q̇1q̇2−2q44q̇1q̇3−2q44q̇2q̇3+2q45q̇1q̇2+2q45q̇1q̇3]θ̇

2cos(2q2−1)q̇1(q̇1+ q̇2)

−
[q33−q34]θ̇2

4sin(q2)2 −
[q41q̇1−sin(2q1)q̇1+q41q̇2]ẏ0

cos(2q2−1)q̇1(q̇1+ q̇2)
+

[q42q̇1−sin(q1)
2q̇1+q42q̇2]ẋ0

sin(q2)2q̇1(q̇1+ q̇2)

Yc5
cs =

[sin(2q1)−q41]ẍ0

2sin(q2)2 −
[q37−q38+2q44−2q45]θ̈

4sin(q2)2 −
q31ÿ0

sin(q2)2

+
[q42q̇1−sin(q1)

2q̇1+q42q̇2]ẋ0

sin(q2)2q̇1(q̇1+ q̇2)

−
[0.5sin(q1−θ)+0.5q51−q52][q52q̇1−0.5cos(q1−θ)+q52q̇2+q52q̇3]θ̇

sin(q2)2(q̇1+ q̇2)

−
[0.5q51−sin(q3)][sin(q3)q̇2

1+sin(q3)q̇2
2−0.5q53q̇1−0.5q53q̇2]θ̇

sin(q2)2q̇1(q̇1+ q̇2)

−
[0.5q51−sin(q3)][−0.5cos(q1−θ)q̇1+q54q̇2

1]

sin(q2)2q̇1(q̇1+ q̇2)

+
[0.5q51−sin(q3)][2sin(q3)q̇1q̇2+sin(q3)q̇1q̇3 +sin(q3)q̇2q̇3]θ̇

sin(q2)2q̇1(q̇1+ q̇2)

+
[sin(q2+q3)q̇1q̇2+sin(q2+q3)q̇1q̇3]θ̇

sin(q2)2q̇1(q̇1+ q̇2)

+
[q38q̇1−2q44q̇1−2q44q̇2+2q45q̇1+cos(θ)q̇2+2q43q̇2−q37q̇1−q37q̇2]ẋ0

2cos(2q2−1)q̇1(q̇1+ q̇2)

−
[q33q̇1+q33q̇2−q34q̇1 +2q35q̇1 +2q35q̇2−2q36q̇1−sin(θ)q̇2−2q40q̇2]ẏ0

2cos(2q2−1)q̇1(q̇1+ q̇2)

186



r11= sin(q1−θ); r12= sin(q2+q3); r13= cos(2q1−θ); r14= cos(q1−θ);

r15= sin(2q1−θ); r16= sin(2q1−2θ); r17= sin(q1−q2−q3−θ);

r18= sin(q1+q2 +q3−θ); r19= cos(2q2+2q3); r20= cos(q1−q2−q3−θ);

r21= cos(q1+q2+q3−θ); r22= sin(q1+q2+q3); r23= sin(q1−q2−q3);

Ya6
cs =

[r11−2r12]cos(q1)θ̈
sin(q2)2 −

sin(2q1)ÿ0

2sin(q2)2 −
cos(q1)

2ẍ0

sin(q2)2 +
sin(2q1)ẋ0

2sin(q2)2(q̇1+ q̇2)

−
cos(q1)

2ẏ0

sin(q2)2(q̇1+ q̇2)
−

[r13+cos(θ)]θ̇2

4sin(q2)2 −
[2r12q̇1− r14+2r12q̇2+2r12q̇3]cos(q1)θ̇

2sin(q2)2(q̇1+ q̇2)

Yb6
cs =

[r11−2r12]sin(q1)θ̈
2sin(q2)2 −

sin(q1)
2ÿ0

sin(q2)2 −
sin(2q1)ẍ0

2sin(q2)2

−
[2r12q̇1− r14+2r12q̇2 +2r12q̇3]sin(q1)θ̇

2sin(q2)2(q̇1+ q̇2)

+
sin(q1)

2ẋ0

sin(q2)2(q̇1+ q̇2)
−

[r15+sin(θ)]θ̇2

4sin(q2)2 −
sin(2q1)ẏ0

sin(q2)2(q̇1+ q̇2)

Yc6
cs = θ̈ −

[2r12+cos(q1)sin(θ)−cos(θ)sin(q1)]
2θ̈

4sin(q2)2 +
[r11−2r12]cos(q1)ẍ0

2sin(q2)2

+
[r11−2r12]sin(q1)ÿ0

2sin(q2)2 +
[r16+2r17−2r18]θ̇2

8sin(q2)2

+
[4q̇3+ r16+2r17−2r18−4r19q̇1−4r19q̇2−4r19q̇3−2r20q̇1−2r20q̇2]θ̇

4cos(2q2−1)(q̇1+ q̇2)

−
[2r20q̇3+2r21q̇1+2r21q̇2 +2r21q̇3+4cos(2q2)q̇1+4cos(2q2)q̇2]θ̇

4cos(2q2−1)(q̇1+ q̇2)

+
[2r22− r11−2r23+sin(θ)]ẏ0

2cos(2q2−1)(q̇1+ q̇2)

−
[r11−2r12]sin(q1)ẋ0

2sin(q2)2(q̇1+ q̇2)

Ya7
cs =

cos(q1+q2)cos(q1)

sin(q2)

Yb7
cs =

sin(q1+q2)cos(q1)

sin(q2)

Yc7
cs = −

[sin(q1+q2−θ)−2sin(q3)]cos(q1)

2sin(q2)

Ya8
cs = −

cos(q1+q2)cos(q1)

sin(q2)

Yb7
cs = −

sin(q1+q2)sin(q1)

sin(q2)
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Yc8
cs = −

[sin(q1−θ)−2sin(q2+q3)]cos(q1+q2)

2sin(q2)

Ya9
cs = 0

Yb9
cs = 0

Yc9
cs = cos(q1+q2+q3)

s11= cos(q4+q5)
2; s12= sin(2q4+2q5); s13= sin(q4+q5−θ);

s14= cos(θ −2q4); s15= sin(θ −2q4); s16= cos(q4+q5−θ); s17= sin(q4+q5)
2;

s18= sin(2q4+2q5−θ); s19= sin(2q4−θ); s20= sin(θ −q5−q4);

Ya10
cs =

s11ẍ0

sin(q5)2 +
s12ÿ0

2sin(q5)2 +
cos(q4+q5)[s13+2sin(q6)]θ̈

2sin(q5)2 +
s11ẏ0

q̇4sin(q5)2 −
s12ẋ0

2q̇4sin(q5)2

−
[cos(θ)−s14+2s15cot(q5)+cot(q5)

2cos(θ)+s14cot(q5)
2]θ̇2

4
+

s14cot(q5)
2

4

+
cos(q4+q5)[0.5s16+sin(q6)q̇4+sin(q6)q̇5+sin(q6)q̇6]θ̇

q̇4sin(q5)2

Yb10
cs =

s17ÿ0

sin(q5)2 +
s12ẍ0

2sin(q5)2 +
sin(q4+q5)[s13+2sin(q6)]θ̈

2sin(q5)2 +
s12ẏ0

2q̇4sin(q5)2

−
θ̇2sin(θ)+0.75s15θ̇2+s18θ̇2 +0.753s19θ̇2

4sin(q5)2

−
s17ẋ0

q̇4sin(q5)2 +
sin(q4+q5)[0.5s16+sin(q6)q̇4+sin(q6)q̇5+sin(q6)q̇6]θ̇

q̇4sin(q5)2

Yc10
cs =

(2sin(q6)−cos(q4+q5)sin(θ)+sin(q4+q5)cos(θ))2θ̈
4sin(q5)2

+
cos(q4+q5)[s13+2sin(q6)]ẍ0

2sin(q5)2

+
sin(q4+q5)[s13+2sin(q6)]ẍ0

2sin(q5)2

+
[0.5s13+sin(q6)][0.5s16+sin(q6)q̇4+sin(q6)q̇5+sin(q6)q̇6]θ̇

q̇4sin(q5)2

−
s16[2sin(q6)−s20]θ̇2

4sin(q5)2 +
cos(q4+q5)[2sin(q6)−s20]ẏ0

2sin(q5)2q̇4

−
sin(q4+q5)[2sin(q6)−s20]ẋ0

2sin(q5)2q̇4
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t11= sin(q5−θ); t12= sin(q4−q6); t13= sin(q4+2q5 +q6); t14= sin(q4+q6);

t15= sin(q5+θ); t16= sin(2q4+q5−θ); t17= sin(2q4+2q5);

t18= cos(q4+q5); t19= sin(2q4−θ); t20= cos(2q4−θ); t21= sin(2q4+q5);

t22= cos(q4+q5); t23= sin(q5+q6); t24= sin(q4+q5); t25= sin(2q4+q5);

t26= cos(q4−q6); t27= cos(q5−θ); t28= cos(q4+2q5+q6); t29= cos(q4+q6);

t30= cos(q5+θ); t31= cos(2q4+q5−θ); t32= sin(θ −q5−q4); t33= (q̇4+ q̇5+ q̇6);

t34= sin(2q4+2q5−2θ); t35= sin(q4+q5−q6−θ); t36= sin(q4−q5 +q6−θ);

t37= sin(q4+3q5 +q6−θ); t38= sin(2q4−2θ); t39= sin(q4−q5−q6−θ);

t40= sin(q4+q5 +q6−θ); t41= cos(q4)sin(q6); t42= cos(q4)cos(θ);

t43= sin(q4)sin(θ); t44= cos(q4)sin(θ); t45= cos(q4)cos(q5); t46= cos(q5)sin(q4);

t47= sin(q4)sin(q6); t48= cos(θ)sin(q4); t49= sin(q4)sin(q6);

t50 =
sin(q6)

sin(q5)
−

sin(θ −q5−q4)

2sin(q5)

t51 =
2t18t50cos(q5)

q̇4sin(q5)

t52 =
t18t50(q̇4+ q̇5)+cosq4q̇4

sinq5(q̇4+ q̇5)q̇4

t53 =
t50[t23+sin(q6)]

sin(q5)
−

t50sin(θ)[t18+cos(q4)]

2sin(q5)

t54 =
t50cos(θ)[t24+sin(q4)]

2sin(q5)

t55 =
2t50t24cos(q5)

sin(q5)q̇4

t56 =
t50t24(q̇4+ q̇5)+sinq4q̇4

sinq5(q̇4+ q̇5)q̇4

t57 =
2t50cos(q5)sin(q6)t33

sinq5q̇4

t58 =
cos(q5)sin(q6)t33

sinq5q̇4
+

t22cos(q5)cos(θ)

2sinq5q̇4

t59 =
cos(q5)sin(θ)t24

2sinq5q̇4q̇4 + q̇5)q̇4
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t60 =
2cos(q5)sin(q6)t33

sinq5q̇4

t61 =
t23+sin(q6)

sin(q5)
−

sin(θ)[t22+cos(q4)]

2sinq5
+

cos(θ)[t24+sin(q4)]

2sinq5

t62 =
2t24cos(q5)

sinq5q̇4
−

cos(q5)[t24q̇4+ t24)q̇5+sinq4q̇4]

sin(q5)q̇4(q̇4+ q̇5)

t63 =
sin(q6)

sin(q5)
−

t32

2sinq5

t64 =
t23+sin(q6)

sin(q5)
−

sin(θ)[t18+cos(q4)]

2sin(q5)
+

cos(θ)[t24+sin(q4)]

2sin(q5)

t65 = [2sin(q6)− t18sin(θ)+ t24cos(θ)][2t23−cos(q4)sin(θ)+cos(θ)sin(q4)]

Ya11
cs =

cos(q5)[0.5t11−2t12+ t13+ t14−0.5t15+ t16]θ̈
2cos(q5)2−1

−
[sin(2q4)+ t17]ÿ0

2sin(q5)2

−
2t18cos(q4)cos(q5)ẍ0

sin(q5)2 +
cot(q5)[cot(q5)cos(θ)− t19+ t20cot(q5)]θ̇2

2

−
[2t14q̇4−2t13q̇5−2t13q̇4+ t15q̇4+ t15q̇5− t16q̇5+2t12q̇5+ t11q̇4]θ̇

4sin(q5)

−
[2q̇4+ q̇5]ẏ0

2
+

t21q̇5ẏ0

2sin(q5)
+

t18cos(q4)q̇5ẋ0

sin(q5)

−
cos(q5)[2t18t23q̇2

4+2t41q̇2
4 +2t41q̇2

5+2t18t42q̇4+ t18t42q̇5]θ̇
2sin(q5)2q̇4(q̇4+ q̇5)

+
cos(q5)[t18t43q̇4+ t24t44q̇4+ t24t44q̇5 +2t18t23q̇4q̇5]θ̇

2sin(q5)2q̇4(q̇4+ q̇5)

+
cos(q5)[2t18t23q̇4q̇6 +4t41q̇4q̇5+2t41q̇4q̇6+2t41q̇5q̇6]θ̇

2sin(q5)2q̇4(q̇4+ q̇5)

+
cos(q5)[0.5sinq5q̇5+ t25q̇4+0.5t25q̇5]ẋ0

sin(q5)2q̇4(q̇4+ q̇5)
−

t18t45[2q̇4+ q̇5]ẏ0

sin(q5)2q̇4(q̇4+ q̇5)

Yb11
cs =

cosq5[2t26+0.5t27− t28− t29+0.5t30− t31]θ̈
2cos(q5)2−1

−
[sin(2q4)+ t17]ẍ0

2sin(q5)2

−
2t24t46ÿ0

sin(q5)2 +
[2q̇4+ q̇5]ẋ0

2

−
[2t28q̇4+2t28q̇5−2t29q̇4− t30q̇4− t30q̇5+ t31q̇5−2t26q̇5+ t27q̇4]θ̇

4sin(q5)

+
cot(q5)[t22+cot(q5)sin(θ)+ t19cot(q5)]θ̇2

2
+

t25q̇5ẋ0

2sin(q5)
+

t24sin(q4)q̇5ẏ0

sin(q5)

−
cosq5[2t24t23q̇2

4+2t47q̇2
4+2t47q̇2

5 + t18t48q̇4+2t24t42q̇4 + t18t48q̇5+2t24t43q̇4]θ̇
2sin(q5)2q̇4(q̇4+ q̇5)
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+
cosq5[2t24t23q̇4+2t24t23q̇4q̇6+4t49q̇4q̇5+2t47q̇4q̇6+2t47q̇5q̇6]θ̇

2sin(q5)2q̇4(q̇4+ q̇5)

−
cosq5[t21q̇4−0.5sin(q5)q̇5+0.5t21q̇5]ẏ0

sin(q5)2q̇4(q̇4+ q̇5)
+

t24t46[2q̇4+ q̇5]ẋ0

sin(q5)2q̇4(q̇4+ q̇5)

Yc11
cs =

cosq5[0.5t11−2t12+ t13+ t14−0.5t15+ t16]ẍ0

2cos(q5)2−1

+
cosq5[2t26+0.5t27− t28− t29+0.5t30− t31]ÿ0

2cos(q5)2−1

−
cosq5[2sin(q6)− t22sin(θ)+ t24cos(θ)][2t23− t44+ t18]θ̈

2sin(q5)2

+
0.5cos(θ)[t51−cos(q5)[t18q̇4+ t18q̇5+cos(q4)q̇4]ẏ0

sin(q5)q̇4(q̇4+ q̇5)

+
0.5sin(θ)[t51−cos(q5)[t18q̇4+ t18q̇5+cos(q4)q̇4]ẏ0

sin(q5)q̇4(q̇4+ q̇5)

+[t51− t52cos(q5)]−
t18cos(q5)[t53+ t54]

sin(q5)q̇4
+0.5cos(θ)[t51− t52cos(q5)]θ̇

+0.5sin(θ)[t54− t55cos(q5)]θ̇ −
t50cos(q5)[t23q̇4+sin(q6)q̇4+sin(q6)q̇5]t33

sin(q5)q̇4(q̇4+ q̇5)

−([t58+ t59]t61)θ̇ − t62t63ẋ0+
t63ẋ0

sin(q5)q̇4

+
[2t14q̇4−2t13q̇4+2t14q̇5+ t15q̇4+ t16q̇5−2t12q̇5 + t11q̇4+ t11q̇5]ẋ0

4sin(q5)

+
[2t28q̇4−2t29q̇4−2t29q̇5− t30q̇4− t31q̇5+2t26q̇5 + t27q̇4+ t27q̇5]ẏ0

4sin(q5)

+
[0.13t34−0.25t35+0.13t36+0.13t37+0.13t38−0.25t39+0.25t40]θ̇2

sin(q5)2 +
t65q̇5θ̇

4sin(q5)

Ya12
cs = −

cos(q4)cos(q6)θ̈
sin(q5)

+
cos(q4)sin(q6)(q̇4+ q̇5θ̇ + q̇6)

sin(q5)
−

cos(q4)cos(q6)θ̇
sin(q5)

Yb12
cs = −

cos(q6)sin(q4)θ̈
sin(q5)

+
sin(q4)sin(q6)(q̇4+ q̇5θ̇ + q̇6)

sin(q5)
−

cos(q6)sin(q4)θ̇
sin(q5)

Yc12
cs = −

cos(q6)[sin(q4−θ)+2sin(q5+q6)]θ̈
sin(q5)

−
cos(q4)cos(q6)ẍ0

sin(q5)
−

cos(q6)sin(q4)ÿ0

sin(q5)

+
cos(q6)cos(q4−θ)θ̇2

2sin(q5)
−

cos(q4)cos(q6)ẏ0

sin(q5)q̇4+sin(q5)q̇5
+

cos(q6)sin(q4)ẋ0

sin(q5)q̇4+sin(q5)q̇5

−
sin(q4)sin(q6)(q̇4+ q̇5)ẏ0

sin(q5)
+

[sin(q4−θ)+2sin(q5+q6)]sin(q6)q̇6θ̇
2sin(q5)

−
cos(q4)sin(q6)(q̇4+ q̇5)ẋ0

sin(q5)

−
cos(q6)[cos(q4−θ)+4sin(q5+q6)q̇4+4sin(q5+q6)q̇5+2sin(q5+q6)q̇6]θ̇

2sin(q5)(q̇4+ q̇5)
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+
[sin(q4−θ)q̇4+sin(q4−θ)q̇5]θ̇

2sin(q5)(q̇4+ q̇5)

u11= cos(q4+q5); u12= cos(q5+q6); u13= sin(q5+q6); u14= (q̇4+ q̇5+ q̇6);

u15= sin(q4+q5); u16= sin(q4+q5−θ); u17= cos(q4+2q5+q6);

u18= cos(q4−q6); u19= cos(q4+2q5+q6−θ); u20= cos(q4−q6−θ);

u21= sin(q4+q5−q6−θ); u22= sin(q4+3q5+q6−θ);

u23= sin(q4−q5−q6−θ); u24= sin(q4+q5 +q6−θ); u25= cos(q4+q5−q6−θ);

u26= cos(q4+3q5+q6−θ); u27= cos(2q5+2q6); u28= cos(q4−q5−q6−θ);

u29= cos(q4+q5+q6−θ); u30= sin(q4+2q5 +q6);

Ya13
cs = −

u11u12θ̈
sin(q5)

+
u11u12θ̇
sin(q5)

−
u11u13u14θ̇

sin(q5)

Yb13
cs = −

u12u15θ̈
sin(q5)

+
u11u12θ̇
sin(q5)

−
u11u13u14θ̇

sin(q5)

Yc13
cs = −

u11u12ẍ0

sin(q5)
+

u12u15ÿ0

sin(q5)
+

u12[u16+2sin(q6)]θ̈
sin(q5)

+
[0.5u17+0.5u18]ẏ0

q̇4sin(q5)

−
[u19+u20]θ̇2

4sin(q5)

−
[4q̇4+2q̇5+2q̇6−u21−u22+u23+u24+u25q̇4+u26q̇4+4u27q̇4+2u27q̇5]θ̇

8sin(q5)2q̇4

+
[2u27q̇6−u28q̇4−u29q̇4−4cos(2q5)q̇4−2cos(2q5)q̇5]θ̇

8sin(q5)2q̇4

−
[2cos(2q5)q̇6−4cos(2q6)q̇4−2cos(2q6)q̇5−2cos(2q6)q̇6]θ̇

8sin(q5)2q̇4

−
u13[u16+2sin(q6)](q̇5+ q̇6)

2sin(q5)
−

[sin(q4−q6)+u30]ẋ0

2sin(q5)q̇4

+
u11u13q̇4ẋ0

sin(q5)
+

u15u13q̇4ẏ0

sin(q5)

v11= sin(q4+q5)
2; v12= sin(2q4+2q5); v13= sin(2q4+2q5−θ);

v14= sin(2q4−θ); v15= sin(q4+q5−q6); v16= sin(q4−q5−q6);

v17= cos(θ −2q5−2q4); v18= cos(θ −2q4); v19= cos(2q4+2q5−θ);

v20= cos(2q4−θ);
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v21= cos(q4+q5)
2; v22= sin(q4+q5+q6); v23= cos(q4+q5−q6);

v24= cos(q4−q5−q6); v25= cos(q4+q5 +q6); v26= cos(2q4+2q5−2θ);

v27= cos(q4+q5−q6−θ); v28= cos(2q5+2q6);

v29= cos(2q4−2θ); v30= sin(q5+q6);

v31= sin(q4+q5−θ); v32= cos(q4+q5−θ); v33= sin(2q4+2q5−2θ);

v34= sin(q4+q5−q6−θ); v35= sin(2q4−2θ); v36= sin(q4−q5−q6−θ).

Ya14
cs =

[v11−sin(q4)
2]ẍ0−

sin(q5)2 +
[sin(2q4)−v12]ÿ0−

2sin(q5)2 −
[v13−v14−2v15+2v16]θ̇

4sin(q5)2

+
[0.25v17−0.25v18+0.75v19−0.75v20]θ̇2

4sin(q5)2 −
[v21q̇4+v21q̇5−cos(q4)

2q̇4]ẏ0

sin(q5)2q̇4(q̇4+ q̇5)

+
[2v16q̇2

4−v20q̇4+2v22q̇2
5 +cos(θ)q̇5−2v15q̇2

4−2v15q̇2
5+v19q̇4]θ̇

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

+
[v19q̇5+2v16q̇4q̇5 +2v16q̇4q̇6]θ̇

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

+
[2v22q̇4q̇5+2v22q̇5q̇6−4v15q̇4q̇5−2v15q̇4q̇6−2v15q̇5q̇6]θ̇

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

−
[v12q̇4−sin(2q4)q̇4+v12q̇5]ẋ0

[cos(2q5)−1]q̇4(q̇4+ q̇5)

Yb14
cs =

[v19−v20−2v23+2v24]θ̈
4sin(q5)2 −

[v11−sin(q4)
2]ÿ0

sin(q5)2 +
[sin(2q4)−v12]ẍ0

2sin(q5)2

+
1.75sin(θ −2q4)+v13+0.75v14

4sin(q5)2

+
[v13q̇4+v13q̇5−2v25q̇2

5−v14q̇4+2v23q̇2
4 +2v23q̇2

5]θ̇
2[cos(2q5)−1]q̇4(q̇4+ q̇5)

+
[sin(θ)q̇5−2v24q̇2

4−2v25q̇4q̇5−2v25q̇5q̇6+4v23q̇4q̇5+2v23q̇4q̇6]θ̇
2[cos(2q5)−1]q̇4(q̇4+ q̇5)

+
[2v23q̇5q̇6−2v24q̇4q̇5−2v24q̇5q̇6]θ̇

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

+
[v11q̇4−sin(q4)

2q̇4+v11q̇5]ẋ0

sin(q5)2q̇4(q̇4+ q̇5)

+
[v12q̇4−sin(2q4)q̇4+v12q̇5]ẏ0

sin(q5)2q̇4(q̇4+ q̇5)

Yc14
cs =

[4cos(2q6)+v26−4v27−4v28−v29+4v27]θ̈
8sin(q5)2 +

[v19−v20−2v23+2v24]ÿ0

2sin(q5)2
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−
[v13−v14−2v15+2v16]ẍ0

2sin(q5)2

+
[0.5cos(q4−θ)+v30q̇4+v30q̇5+v30q̇6][0.5sin(q4−θ)−0.5v31+v30]θ̇

sin(q5)2(q̇4+ q̇5)

+
[0.5v31+sin(q6)][2sin(q6)q̇2

4+2sin(q6)q̇2
5+v32q̇4+v32q̇5+cos(q4−θ)q̇4]θ̇

sin(q5)2(q̇4+ q̇5)

+
[sin(q6)][2v30q̇2

4+4sin(q6)q̇4q̇5+2sin(q6)q̇4q̇6+2sin(q6)q̇5q̇6+2v30q̇4q̇5]θ̇
sin(q5)2(q̇4+ q̇5)

+
[0.125v33−0.25v34−0.125v35+v36]θ̇2

sin(q5)2

−
[v20q̇4 +2v23q̇4+2v23q̇5−2v24q̇4 +cos(θ)q̇5−2v25q̇5−v19q̇4−v19q̇5]ẋ0

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

−
[v13q̇4+v13q̇5−v14q̇4−2v15q̇4−2v15q̇5 +2v16q̇4−sin(θ)q̇5+2v22q̇5]ẏ0

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

w11= sin(q4−θ); w12= sin(q5+q6); w13= cos(θ −2q4); w14= cos(q4−θ);

w15= sin(θ −2q4); w16= sin(2q4−2θ); w17= sin(q4−q5−q6−θ);

w18= sin(q4+q5+q6−θ); w19= cos(2q5+2q6); w20= cos(q4−q5−q6−θ);

w21= cos(q4+q5 +q6−θ); w22= sin(q4+q5+q6); w23= sin(2q4−θ);

w24= sin(q4−q5−q6); w25= cos(q4+q5 +q6); w26= cos(2q4−θ);

w27= cos(q4−q5−q6).

Ya15
cs =

−cos(q4)
2ẍ0

sin(q5)2 −
sin(2q4)ÿ0

2sin(q5)2 −
cos(q4)[w11+2w12]θ̈

2sin(q5)2 +
[w13+cos(θ)]θ̇2

4sin(q5)2

−
cos(q4)

2ẏ0

sin(q5)2(q̇4+ q̇5)
+

sin(2q4)ẋ0

2sin(q5)2(q̇4+ q̇5)

−
cos(q4)[w14+2w12q̇4+2w12q̇5+2w12q̇6]θ̇

2sin(q5)2(q̇4+ q̇5)

Yb15
cs =

−sin(2q4)ẍ0

sin(q5)2 −
sin(q4)

2ÿ0

2sin(q5)2 −
sin(q4)[w11+2w12]θ̈

2sin(q5)2 +
sin(q4)

2ẋ0

sin(q5)2(q̇4+ q̇5)

−
[w15−sin(θ)]θ̇2

4sin(q5)2 −
sin(2q4)ẏ0

2sin(q5)2(q̇4+ q̇5)

−
sin(q4)[w14+2w12q̇4+2w12q̇5+2w12q̇6]θ̇

2sin(q5)2(q̇4++q̇5)

Yc15
cs = θ̈ −

(θ̈ [w11+2w12]
2)

4sin(q5)2 −
cos(q4)[w11+2w12]ẍ0

4sin(q5)2 −
sin(q4)[w11+2w12]ÿ0

4sin(q5)2
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+
[w16−2w17+2w18]θ̇2

8sin(q5)2

+
[4q̇6+w16−2w17+2w18−4w19q̇4−4w19q̇5−4w19q̇6+2w20q̇4]θ̇

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

+
[2w20q̇5 +2w20q̇6−2w21q̇4−2w21q̇5−2w21q̇6+4cos(2q5)q̇4]θ̇

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

+
[2w22+w23−2w24−sin(θ)]ẏ0

2[cos(2q5)−1]q̇4(q̇4+ q̇5)
−

[2w25+w26−2w27−cos(θ)]ẋ0

2[cos(2q5)−1]q̇4(q̇4+ q̇5)

Ya16
cs =

cos(q4+q5)cos(q4)

sin(q5)

Yb16
cs =

sin(q4+q5)cos(q4)

sin(q5)

Yc16
cs = −

[sin(q4+q5−θ)+2sin(q6)]cos(q4)

2sin(q5)

Ya17
cs = −

cos(q4+q5)cos(q4)

sin(q5)

Yb17
cs = −

cos(q4+q5)sin(q4)

sin(q5)

Yc17
cs = −

[sin(q4−θ)+2sin(q5+q6)]cos(q4+q5)

2sin(q5)

Ya18
cs = 0

Yb18
cs = 0

Yc18
cs = cos(q4+q5+q6)

Ya19
cs = ẍ0

Yb19
cs = ÿ0

Yc19
cs = 0

Ya20
cs = 0

Yb20
cs = 0

Yc20
cs = θ̈
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B.2 Time independent parameters

αcs = [α1
cs α2

cs α3
cs α4

cs α5
cs ...... α16

cs α17
cs α18

cs α19
cs α20

cs ]T

a1 = l2
12l

2
21l

2
22; a2 = l2

11l
2
12l

2
22; a3 = l2

11l
2
12l

2
21; a4 = l2

11l
2
21l

2
22; a5 = l11l12l2

21l
2
22;

a6 = l2
11l

2
12l21l22; a7 = l2

11l
2
12l

2
21l

2
22.

b1 = l2
11l13l2

21l
2
22; b2 = l2

12l13l2
21l

2
22; b3 = l2

11l
2
12l

2
22l23; b4 = Ll2

12l
2
21l

2
22; b5 = Ll2

11l
2
12l

2
22;

b6 = Ll2
11l

2
12l

2
21; b7 = Ll2

11l
2
21l

2
22; b8= l11l2

12l
2
21l

2
22; b9 = l2

11l
2
12l21l2

22; b10= l2
11l12l2

21l
2
22;

b11= l2
11l

2
12l

2
21l22; b12= l11l12l13l2

21l
2
22; b13= l2

11l
2
12l21l22l23; b14= Ll11l12l2

21l
2
22;

b15= Ll2
11l

2
12l21l22; b16= l2

11l
2
12l

2
21l23.

c1= l2
11l

2
13l

2
21l

2
22; c2= l2

11l
2
12l

2
21l

2
23; c3= l2

11l
2
12l

2
21l

2
22; c4= l2

12l
2
13l

2
21l

2
22; c5= l2

11l
2
12l

2
22l

2
23;

c6= L2l2
12l

2
21l

2
22; c7= L2l2

11l
2
12l

2
22; c8= L2l2

11l
2
12l

2
21; c9= L2l2

11l
2
21l

2
22; c10= Ll2

12l13l2
21l

2
22;

c11= Ll2
11l13l2

21l
2
22; c12= Ll2

11l
2
12l

2
22l23; c13= Ll2

11l
2
12l

2
21l23; c14= l11l12l2

13l
2
21l

2
22;

c15= l2
11l12l2

13l
2
21l

2
22; c16= l11l2

12l13l2
21l

2
22; c17= l2

11l
2
12l21l22l2

23; c18= l2
11l

2
12l

2
21l22l2

23;

c19= l2
11l

2
12l21l2

22l
2
23; c20= Ll11l2

12l
2
21l

2
22; c21= Ll2

11l
2
12l21l2

22; c22= Ll2
11l12l2

21l
2
22;

c23= Ll2
11l

2
12l

2
21l

2
22; c24= L2l11l12l2

21l
2
22; c25= L2l2

11l
2
12l21l2

22; c26= Ll11l12l13l2
21l

2
22;

c27= Ll2
11l

2
12l13l21l22l23.

d1= l11l13l21l22; d2= l11l12l22l23; d3= l11l12l21l22; d4= l11l13l21l22; d5= l11l12l21l23;

d6 = Ll11l21l22; d7 = Ll12l21l22; d8 = Ll11l12l21; d9 = Ll11l12l22
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e1 = 1
l11

; e2 = 1
l12

; e3 = 1
l21

; e4 = 1
l22

.

α1
cs =

p11(4a1+4b2−8b4+c4−3c6−2c10)a7d3
20

α2
cs =

p12(6a5+8b12+12b14+c14−4c24−4c26)a7d3
20

α3
cs =

p13(4b10+c15−2c22)a7d3
20

α4
cs =

p14(4b8+c16−2c20)a7d3
20

α5
cs =

p15(4a1+4a4+4b1+4b2+8b4−8b7+d1+c4+3c6+3c9−2c10−2c11)a7d3
20

α6
cs =

p16(4a4+4b1+8b7+d1+c3+3c9+2c11)a7d3
20

α7
cs =

p17(e1−4d1−8d7)a7d3
20

α8
cs =

p18(e2−4d4−8d6)a7d3
20

α9
cs =

p19a7d3
20

α10
cs =

p21(4a2+4b3−8b5+c5−3c7−2c12)a7d3
20

α11
cs =

p22(6a6+8b13+12b15+c17−4c25−4c27)a7d3
20

α12
cs =

p23(4b11+c18−2c23)a7d3
20

α13
cs =

p24(4b9+c19−2c21)a7d3
20

α14
cs =

p25(4a2+4a3+4b3+8b5−8b6+4b16+c2+c5+3c7+3c8−2c12−2c13)a7d3
20

α15
cs =

p26(4a3+8b6+4b16+c2+c3+3c8+2c13)a7d3
20

α16
cs =

p27(e3−4d2−8d9)a7d3
20

α17
cs =

p28(e4−4d5−8d8)a7d3
20
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α18
cs =

p29a7d3
20

α19
cs =

p31a7d3
20

α20
cs =

p32a7d3
20

where,p31= m; p32= I
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Appendix C

Regressor for Manipulators - Flexible

Object System in Joint Space

C.1 Time dependent parameters

Yjs =









































Yd1
js Yd2

js Yd3
js Yd4

js Yd5
js .... Yd17

js Yd18
js Yd19

js Yd20
js

Ye1
js Ye2

js Ye3
js Ye4

js Ye5
js .... Ye17

js Ye18
js Ye19

js Ye20
js

Y f 1
js Y f 2

js Y f 3
js Y f 4

js Y f 5
js .... Y f 17

js Y f 18
js Y f 19

js Y f 20
js

Yg1
js Yg2

js Yg3
js Yg4

js Yg5
js .... Yg17

js Yg18
js Yg19

js Yg20
js

Yh1
js Yh2

js Yh3
js Yh4

js Yh5
js .... Yh17

js Yh18
js Yh19

js Yh20
js

Yi1
js Yi2

js Yi3
js Yi4

js Yi5
js .... Yi17

js Yi18
js Yi19

js Yi20
js









































Yd1
js = q̈1; Yd2

js = cos(q2)(2q̈1+ q̈2)− q̇2sin(q2)(2q̇1+ q̇2);

Yd3
js = cos(q3)(2q̈1+2q̈2+ q̈3)− q̇3sin(q3)(2q̇1+2q̇2+ q̇3);

Yd4
js = cos(q2+q3)(2q̈1+2q̈2+ q̈3)−sin(q2+q3)(q̇2+ q̇3)(2q̇1+ q̇2 + q̇3);
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Yd5
js = q̈2; Yd6

js = q̈3; Yd7
js = cos(q1); Yd8

js = cos(q1+q2); Yd9
js = cos(q1+q2+q3);

Yd10
js = Yd11

js = Yd12
js = Yd13

js = Yd14
js = Yd15

js = Yd16
js = Yd17

js = Yd18
js = 0.

a11 = sin(q4+q5 +q6); a12 = sin(q1+q2); a13 = cos(q4+q5+q6);

a14 = sin(q1+q2+q3); a15 = cos(q1+q2+q3); a16 = cos(q1+q2); a17 = cos(q4+q5);

a18 = sin(q4+q5); a19 = (q̇1+ q̇2 + q̇3); a20 = (q̇1+ q̇2); a21 = (q̇4+ q̇5+ q̇6);

a22 = (q̇4+ q̇5).

Yd19
js = q̈6[0.25a11a12−0.25a13a12+0.25a11sin(q1)−0.25a13a14+0.25a14a11]

−q̈1[(0.25a14+0.25a12)(a15+a16+cos(q1))− (a14+a12+sin(q1))

(0.25a14+0.25a12+0.25sin(q1)]q̈4[(0.25a14+0.25a12)(a13+a17+cos(q4))

−(a11+a18+sin(q4))(0.25a14+0.25a12+0.25sin(q1)]−0.5g(a14+a12)

−q̈3[a15(0.25a14+0.25a12)−a14(0.25a14+0.25a12+0.25sin(q1))]

+q̇2[0.5{(a14a19+a12a20)(0.5a14+0.5a12)}+0.5{(a15a19+a16a20)

(0.5a14+0.5a12+0.5sin(q1))}]+ q̇5[0.5{(a11a21+a18a22)(0.5a14+0.5a12)}

+0.5{(a13a21+a17a22)(0.5a14+0.5a12+0.5sin(q1))}]− q̈5[(a13+a17)

(0.25a14+0.25a12)− (a11+a18)(0.25a14+0.25a12+0.25sin(q1))]

q̇3[0.5{a14(0.5a14+0.5a12)a19}+0.5{a15(0.5a14+0.5a12)a19}]

q̇6[0.5{a11(0.5a14+0.5a12)a21}+0.5{a13(0.5a14+0.5a12)a21}]

+q̇1[0.5{(0.5a14+0.5a12)(a14a19+a12a20+sin(q1)q̇1)}+0.5{(a12a19

+a16a20+cos(q1)q̇1)(0.5a14+0.5a12+0.5sinq1)}]

+q̇4[0.5{(0.5a14+0.5a12)(a11a21+a18a22+sin(q4)q̇4)}+0.5{(a13a21

+a17a22+cos(q4)q̇4)(0.5a14+0.5a12+0.5sinq1)}]
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+0.25[q̈2(a14+a12)(a14−a15−a16+a12+sin(q1))]

a23 = cos(q1+q2+θ); a24 = cos(q1−θ); a25 = sin(q1+q2+θ);

a26 = cos(q1+q2−θ); a27 = sin(q1+q2−θ); a28 = cos(q1+q2+q3 +θ);

a29 = sin(q1+q2 +q3+θ); a30 = cos(q1+θ); a31 = cos(q1+q2+q3−θ);

a32 = sin(q1+q2 +q3−θ); a33 = sin(q4+q5+q6−θ); a34 = sin(q1−θ);

a35 = sin(q4−θ); a36 = sin(q4+q5−θ); a37 = sin(q1+q2−θ);

a38 = cos(q4+q5−θ); a39 = cos(q4+q5 +q6−θ);

a40 = cos(q4−θ); a41 = sin(q1+θ); a42 = cos(q4+q5 +θ); a43 = sin(q4+q5+θ);

a44 = cos(q4+q5+q6 +θ); a45 = sin(q4+q5+q6 +θ);

a46 = sin(q4+θ); a47 = cos(q4+θ).

Yd20
js = 0.04[(0.5a23−0.5a24−2a14+0.5a25−0.5a26+0.5a27+0.5a28+0.5a29

+0.5a30−0.5a31+0.5a32)(2q̇1+2q̇2+2q̇3+2q̇4 +2q̇5+2q̇6

+a32q̇
2
1+a32q̇

2
2+a32q̇

2
3−a33q̇

2
4−a33q̇

2
5−a33q̇

2
6+a34q̇

2
1−a35q̇

2
4 +a27q̇

2
1

+a27q̇
2
2−a36q̇

2
4−a36q̇

2
5+2a32q̇1q̇2+2a32q̇1q̇3 +2a32q̇2q̇3−2a33q̇4q̇5−2a33q̇4q̇6

−2a33q̇5q̇6+2a37q̇1q̇2−2a36q̇4q̇5)]+0.04[(0.5a23−0.5a24−2a14+0.5a25

−0.5a26+0.5a27+0.5a28+0.5a29+0.5a30−0.5a31+0.5a32)

(2q̈1+2q̈2+2q̈3 +2q̈4+2q̈5+2q̈6−a26q̈1−a26q̈2 +a38q̈4 +a38q̈5

−a31q̈1−a31q̈2−a31q̈3+a39q̈4+a39q̈5+a39q̈6−a24q̈1+a40q̈4)]

Ye1
js = 0; Ye2

js = sin(q2)q̇2
1+cos(q2)q̈1;

Ye3
js = cos(q3)(2q̈1+2q̈2 + q̈3)− q̇3sin(q3)(2q̇1+2q̇2+ q̇3);

Ye4
js = sin(q2+q3)q̇2

1+cos(q2+q3)q̈1); Ye5
js = q̈1+ q̈2; Ye6

js = q̈3; Ye7
js = 0;
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Ye8
js = cos(q1+q2); Ye9

js = cos(q1+q2+q3);

Ye10
js = Ye11

js = Ye12
js = Ye13

js = Ye14
js = Ye15

js = Ye16
js = Ye17

js = Ye18
js = 0.

Ye19
js = q̈3[0.25a15(a15+a16)−0.25a14(a15+a16+cosq1)]− q̇2[0.5{(a14a19+a12a20)

0.5(a15+a16)}+0.5{(a15a19+a16a20)0.5(a15+a16+cosq1)}]− q̇5[0.5{(a11a21

+a18a22)0.5(a15+a16)}+0.5{(a13a21+a17a22)0.5(a15+a16+cosq1)}]

0.25(a15+a16)− (a14+a12)0.25(a15+a16+cos(q1))]+ q̈5[(a13a17)0.25(a15+a16)

−(a11+a18)0.25(a15+a16+cos(q1))]− q̇3[0.25{a15a19(a15+a16cos(q1)}

+0.25{a14a19(a15+a16)}− q̇6[0.25{a13a21− (̇a15+a16cos(q1)}+0.25{a11a21

(a15+a16)}− q̇1[0.25(a15+a16)(a14a19+a12a20+sin(q1)q̇1)+0.25(a15+a16

+cosq1)(a15a19+(a16+a20)+cos(q1)q̇1)]− q̇4[0.25(a15+a16)(a11a21+a18a22

+sin(q4)q̇4)+0.25(a15+a16+cosq1)(a13a21+(a17+a22)+cos(q1)q̇1)]

+q̈4[0.25(a14+a16)(a13+a17+cosq4)−0.25(a15+a16+cosq1)(a11+a18+sinq4)]

+4.98(a15+a16)− q̈6[0.25(a11a16−a13a16+a11cosq1−a15a13+a11a15)]

−q̈1[0.25(a15+a16+cosq1)(a14−a15−a16+a12+sinq1)]

Ye20
js = 0.04[0.5(a34−4a15+a23−a25+a26+a27+a28−a29−a41+a31+a32)

2(q̇1+ q̇2 + q̇3+ q̇4+ q̇5 + q̇6+a32q̇
2
1+a32q̇

2
2+a32q̇

2
3−a33q̇

2
4−a33q̇

2
5−a33q̇

2
6

+a34q̇
2
1−a35q̇

2
4+a27q̇

2
1+a27q̇

2
2−a36q̇

2
4−a36q̇

2
5+2a32q̇1q̇2+2a32q̇1q̇3+2a32q̇2q̇3

−2a33q̇4q̇5−2a33q̇4q̇6−2a33q̇5q̇6+2a27q̇1q̇2−2a36q̇4q̇5−0.5(a34−4a15+a23

−a25+a26+a27+a28−a29−a41+a31+a32)(2q̈1+2q̈2 +2q̈3+2q̈4+2q̈5+2q̈6

−a26q̈1−a26q̈2+a38q̈4+a38q̈5−a31q̈1−a31q̈2−a31q̈3+a39q̈4+a39q̈5
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+a39q̈6−a24q̈1+a40q̈4)]

Y f 1
js = 0; Y f 2

js = 0; Y f 3
js = cos(q3)(q̈1+ q̈2 + q̈3)+sin(q3)(q̇1+ q̇2)

2;

Y f 4
js = sin(q2+q3)q̇2

1+cos(q2+q3)q̈1); Y f 5
js = 0; Y f 6

js = q̈1+ q̈2 + q̈3;

Y f 7
js = 0; Y f 8

js = 0; Y f 9
js = cos(q1+q2+q3);

Y f 10
js = Y f 11

js = Y f 12
js = Y f 13

js = Y f 14
js = Y f 15

js = Y f 16
js = Y f 17

js ; Y f 18
js = 0.

Y f 19
js = 0.5g+0.25(a16q̈1+a16q̈2+a17q̈4+a17q̈5−a12q̈1−a12q̈2−a18q̈4−a18q̈5

+cos(q4)q̈4−sin(q1)q̈1−sin(q4)q̈4+a15q̈1+a15q̈2+a15q̈3+a13q̈4−a13q̈5−

a14q̈1−a14q̈2+a14q̈3−a11q̈4−a11q̈5−a11q̈6)

Y f 20
js = 0.04[(sin(θ)−cos(θ)+2)(2q̈1+2q̈2+2q̈3 +2q̈4+2q̈5+2q̈6−a26q̈1

−a26q̈2 +a38q̈4 +a38q̈5−a31q̈1−a31q̈2−a31q̈3+a39q̈4+a39q̈5+a39q̈6

−a24q̈1−a40q̈4)]+0.04[(sin(θ)−cos(θ)+2)(2q̇1+2q̇2+2q̇3+2q̇4 +2q̇5+2q̇6

+a32q̇
2
1 +a32q̇2 +a32q̇

2
3−a33q̇

2
4−a33q̇

2
5−a33q̇

2
6+a34q̇

2
1−a35q̇

2
4+a27q̇

2
1+a27q̇

2
2

−a36q̇
2
4−a36q̇

2
5 +2(a32q̇1q̇2+a32q̇1q̇3+a32q̇2q̇3−a33q̇4q̇5−a33q̇4q̇6−a33q̇5q̇6

a27q̇1q̇2−a36q̇4q̇5))]

Yg1
js = Yg2

js = Yg3
js = Yg4

js = Yg5
js = Yg6

js = Yg7
js = Yg8

js = Yg9
js = 0;

Yg10
js = q̈4; Yg11

js = cosq5(2q̈4+ q̈5)−sinq5q̇5(2q̇4+ q̇5);

Yg12
js = cosq6(2q̈4+2q̈5+ q̈6)−sinq6q̇6(2q̇4+2q̇5+ q̇6);

Yg13
js = cosq5+q6(2q̈4+ q̈5 + q̈6)−sinq5+q6(q̇5+ q̇6)(2q̇4+ q̇5+ q̇6); Yg14

js = q̈5;

Yg15
js = q̈6; Yg16

js = cosq4; Yg17
js = cosq4 +q5; Yg18

js = cosq4+q5+q6.

Yg19
js = q̈3[0.25(a14a18−a15a18+a14sinq4−a15a11+a14a11)]− q̈1[0.25(a11+a18)

(a15+a16+cosq1)−0.25(a14+a12+sinq1)(a11+a18+sinq4)
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−q̈4[0.25(a11+a18)(a13+a17+cosq4)−0.25(a11+a18+sinq4)

(a11+a18+sinq4)]−0.5g(a11+a18)− q̈6[0.25a13(a11+a18)−0.25a11

(a11+a18+sinq4)]+ q̇2[0.5{(a14a19+a12a20)(0.5a11+0.5a18)}]

+0.5{(a15a19+a16a20)(0.5a11+0.5a18)+0.5sinq4}+ q̇5[0.5{(a11a21+a18a22)

(0.5a11+0.5a18)}]+0.5{(a13a21+a17a22)(0.5a11+0.5a18)+0.5sinq4}

−q̈2[0.25(a15a16)(a11+a18)−0.25(a14+a12)(a11+a18+sinq4)]

+q̇3[0.25a14a19(a11+a18)+0.25a15a19(a11+a18+sinq4)]

+q̇6[0.25a11a21(a11+a18)+0.25a13a19(a11+a18+sinq4)]

+q̇1[0.25(a11+a18)(a14a19+a12a20+sinq1q̇1)+0.25(a15a19+a16a20+cosq1q̇1)

(a11+a18+sinq4)]+ q̇4[0.25(a11+a18)(a11a21+a18a22+sinq4q̇4)+0.25(a13a21

+a17a22+cosq4q̇4)(a11+a18+sinq4)]

+0.25q̈5[(a11+a18)(a11−a13−a17+a18+sinq4)]

Yg20
js = −0.04[0.5(a42−a40+4a11+a43−a38−a36+a44+a45+a47−a39+a33)

{2(q̇1+ q̇2 + q̇3+ q̇4+ q̇5 + q̇6)+a32q̇
2
1+a32q̇

2
2+a32q̇

2
3−a33q̇

2
4−a33q̇

2
5−a33q̇

2
6

+a34q̇
2
1−a35q̇

2
4+a27q̇

2
1+a27q̇

2
2−a36q̇

2
4−a36q̇

2
5+2a32q̇1q̇2+2a32q̇1q̇3

+2a32q̇2q̇3−2a33q̇4q̇5−2a33q̇4q̇6−2a33q̇5q̇6+2a27q̇1q̇2−2a36q̇4q̇5}]

−0.04[0.5(a42−a40+4a11+a43−a38−a36+a44+a45+a47−a39+a33)

{2(q̈1+ q̈2 + q̈3+ q̈4+ q̈5 + q̈6)−a26q̈1−a26q̈2+a38q̈4+a38q̈5

−a31q̈1−a31q̈2−a31q̈3+a39q̈4+a39q̈5+a39q̈6−a24q̈1 +a40q̈4}]
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Yh1
js = Yh2

js = Yh3
js = Yh4

js = Yh5
js = Yh6

js = Yh7
js = Yh8

js = Yh9
js = 0;

Yh10
js = 0; Yh11

js = sinq5q̇2
4+cosq5q̈4;

Yh12
js = cosq6(2q̈4+2q̈5+q̈6)−sinq6q̇6(2q̇4+2q̇5+q̇6); Yh13

js = sinq5+q6q̇2
4+cosq5+q6q̈4;

Yh14
js = q̈4+ q̈5; Yh15

js = q̈6; Yh16
js = 0; Yh17

js = cos(q4+q5); Yh18
js = cos(q4+q5+q6).

Yh19
js = q̈6(0.25a13(a13+a17)−0.25a11(a13+a17+cosq4))− q̇2[0.5(a14a19+a12a20)

(0.5a13+0.5a17)+(a14a19+a12a20)(0.5a13+0.5a17+0.5cosq4)

−q̇5[0.5(a11a21+a18a22)(0.5a13+0.5a17)+(a13a21+a17a22)

(0.5a13+0.5a17+0.5cosq4)+ q̈2[(a15+a16)(0.25a13+0.25a17)− (a14+a12)

(0.25a13+0.25a17+0.25cosq4)]+ q̈5[(a13+a17)(0.25a13+0.25a17)− (a11+a18)

(0.25a13+0.25a17+0.25cosq4)]− q̇3[0.5a15a19(0.5a13+0.5a17+0.5cosq4)

+0.5a14a19(0.5a13+0.5a17)]− q̇6[0.5a13a21(0.5a13+0.5a17+0.5cosq4)

+0.5a11a21(0.5a13+0.5a17)]− q̇1[0.5(0.5a13+0.5a17)(a14a19+a12a20+sinq1q̇1)

+(0.5a13+0.5a17+0.5cosq4)(a15a19+a16a20+cosq1q̇1)]− q̇4[0.5(0.5a13+0.5a17)

(a11a21+a18a22+sinq4q̇4)+(0.5a13+0.5a17+0.5cosq4)

(a13a21+a17a22+cosq4q̇4)]+ q̈1[(0.25a13+0.25a17)(a15+a16+cosq1)

−(0.25a13+0.25a17+0.25cosq4)(a14+a12+sinq1)]+0.5g(a13+a17)

−q̈3[0.25a14a17−0.25a15a17+0.25a14cosq4−0.25a15a13+0.25a13a14]−0.25q̈4

[(a13+a17+cosq4)(a11−a13−a17+a−18+sinq4)−0.25a15a13+0.25a13a14]

Yh20
js = 0.04[(2a13+0.5a35+0.5a42−0.5a43+0.5a38+0.5a36+0.5a44−0.5a45+0.5a46

+0.5a39+0.5a33)(2q̇1+2q̇2 +2q̇3+2q̇4+2q̇5+2q̇6+a32q̇
2
1 +a32q̇

2
2 +a32q̇

2
3

−a33q̇
2
4−a33q̇

2
5−a33q̇

2
6+a34q̇

2
1−a35q̇

2
4+a27q̇

2
1+a27q̇

2
2−a36q̇

2
4−a36q̇

2
5+2a32q̇1q̇2
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+2a32q̇1q̇3+2a32q̇2q̇3−2a33q̇4q̇5−2a33q̇4q̇6−2a33q̇5q̇6+2a27q̇1q̇2−2a36q̇4q̇5}]

−0.04[(2a13+0.5a35+0.5a42−0.5a43+0.5a38−0.5a36+0.5a44−0.5a45

−0.5a46+0.5a39+0.5a33){2(q̈1+ q̈2 + q̈3+ q̈4+ q̈5 + q̈6)−a26q̈1−a26q̈2

+a38q̈4+a38q̈5−a31q̈1−a31q̈2−a31q̈3+a39q̈4+a39q̈5 +a39q̈6−a24q̈1+a40q̈4}]

Yi19
js = 0.5g− q̇3(0.25a15a19+0.25a14a19)− q̇6(0.25a13a21+0.25a11a21)

+0.25(a16q̈1+a16q̈2+a17q̈4+a17q̈5−a12q̈1−a12q̈2−a18q̈4a18q̈5

+cosq1q̈1 +cosq4q̈4)− q̇5[0.25a13a21+0.25a11a21+0.25a17a22+0.25a18a22]

−0.25(a16q̈1+a16q̈2+a17q̈4+a17q̈5−a12q̈1−a12q̈2−a18q̈4

−0.25(sinq1q̈1−sinq4q̈4+a15q̈1+a15q̈2+a15q̈3+a13q̈4+a13q̈5+a13q̈6)

−q̇1[0.25a15a19+0.25a14a19+0.25a16a20+0.25a12a20+0.25cosq1q̇1

+0.25sinq1q̇1]− q̇4[0.25a13a21+0.25a11a21+0.25a17a22+0.25a18a22

+0.25cosq4q̇4 +0.25sinq4q̇4]−0.25(a14q̈1−a14q̈2−a14q̈3−a11q̈4−a11q̈5−a11q̈6)

Yi20
js = 0.04[(cos(θ)−sin(θ)+2){2(q̈1+ q̈2+ q̈3+ q̈4 + q̈5+ q̈6)−a26q̈1

−a26q̈2+a38q̈4+a38q̈5−a31q̈1−a31q̈2−a31q̈3+a39q̈4 +a39q̈5 +a39q̈6

−a24q̈1+a40q̈4}]+0.04[(cos(θ)−sin(θ)+2){2(q̇1+ q̇2+ q̇3+ q̇4 + q̇5+ q̇6)

+a32q̇
2
1+a32q̇

2
2+a32q̇

2
3−a33q̇

2
4−a33q̇

2
5−a33q̇

2
6

+a34q̇
2
1−a35q̇

2
4+a27q̇

2
1+a27q̇

2
2−a36q̇

2
4−a36q̇

2
5+2a32q̇1q̇2+2a32q̇1q̇3

+2a32q̇2q̇3−2a33q̇4q̇5−2a33q̇4q̇6−2a33q̇5q̇6+2a27q̇1q̇2−2a36q̇4q̇5}]
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C.2 Time independent parameters

α js = [p11 p12 p13 p14 p15 p16 p17 p18 p19 p21 p22 p23 p24

p25 p26 p27 p28 p29 p31 p32]T
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