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ABSTRACT

Modeling and Robust Control of Two Collaborative Robot Manators

Handling a Flexible Object

Balasubramanian Esakki, Ph.D.

Concordia University, 2011

Robots are often used in industry to handle flexible objecish as frames, beams, thin
plates, rubber tubes, leather goods and composite matekiaving long flexible objects
in a desired path and also precise positioning and orietiti@gbjects need a collaborative
action between two robot arms. Most of the earlier studie® ltealt with manipulation
of rigid objects and only a few have focused on the collaligananipulators handling
flexible objects. Such studies on handling of flexible olgeynerally used finite element
method or assumed mode method for deriving the dynamic naidbk flexible objects.
These approximation methods require more number of setsdegdback the vibration
measurements or require an observer. Unlike in the eatliglies, this thesis concerns
with development of a dynamic model of the flexible objectamtial differential equation
(PDE) form and design of a robust control strategy for caaltive manipulation of the
flexible objects by two rigid robot arms.

Two planar rigid manipulators each with three links and hetejoints handling a
flexible object is considered during the model developmiémematic and dynamic equa-
tions of the flexible object are derived without using anyragpnation techniques. The



resulting dynamic equation of the flexible object togeth@&hwhe manipulator dynamic
equations form the combined dynamic model of the system.dEkreloped complete sys-
tem of dynamic equations is described by the PDE’s havirid &g well as flexible param-
eters coupled together. Such a coupled system must be bedtwothout using any form
of approximation techniques and this is accomplished ufiegsingular perturbation ap-
proach. By utilizing this technique, slow and fast subsystare identified in two different
time scales and controller is designed for each subsystdra. k&y issue in developing a
control algorithm is that, it should be robust against utaiemparameters of the manipula-
tors and the flexible object and it should also achieve themeptial convergence. Hence,
for the slow subsystem, sliding mode control algorithm iged@ped and for the fast sub-
system, a simple feedback control algorithm is designedgelmeral, usage of singular
perturbation technigue necessitates exponential dtabilithe slow and fast subsystems,
which is evaluated by satisfying the Tikhnov’s theorem. &erthe exponential stability
analysis for both the subsystems is performed. Simulageults are presented to validate
the composite control scheme.

As a further consideration in the improvement of control fanthe slow subsystem,
two modified control algorithms are suggested. The first @ceged on the avoidance of
velocity signal measurement which is useful to eliminateribed of velocity sensors and
the second controller aims at avoiding the complex regreegbe control law. The capa-
bility of those controllers is illustrated through simudat studies. The extension of earlier
analysis has been carried out by developing the completeraysf dynamic equations in

joint space.
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Chapter 1

Introduction

1.1 Motivation

A tremendous growth of the use of robots in automobile, ed@dts, construc-
tion, manufacturing and medical equipment industry hasvedoin the past four decades.
Robotic systems relieved humankind from boring repetiigks, dangerous environments
in space, underwater and high radiation environments. @heysed for a large variety of
tasks such as material handling, welding, paint sprayiag,geburring, pick and place op-
erations and machining at high speeds with high precisiorb&t can work in hazardous
environments replacing humans and also minimizing the ygton cost. In addition to
that, robot needs little environmental control comparetthéohumans performing the same
task in hazardous environments. In general, the robotsfiaetieely used in the industry
and in the near future, the use of robots will be increasiggiicantly.

In the past, a single robot alone was not able to grasp and enlovey object in a safe



and efficient way. Owing to the single arm structure, presagtrobots are called “hand-
icapped operators” for performing complex tasks. Mostdaeskassembly / disassembly,
handling large or heavy objects are done efficiently with tebot arms. Collaborative

manipulators have the following advantages compared tesarm manipulators:

increased load carrying capacity by sharing the loads ketdlee manipulators.

e greater dexterity and manipulability in handling flexiblgects.

e reduced need for extra auxiliary equipments.

¢ efficient use of available workspace.

e increased productivity by operating each robot in paratiedchieve different tasks

at the same time.

Considering these advantages, two manipulator system pdoged in wide range
of tasks and the first master/slave teleoperated manipwat® used in the nuclear indus-
try in the 1940’s at Oak Ridge and Argonne National Labora#of1l] which led to the
need for two robots. In the 1970’s, Nakaabal. [2] reported on their research on multi
robot coordination where they recognized the need for twusar_uh [3] categorized the
two robot arm co-ordinated motion into two types: looselgrinated motion and tightly
coordinated motion. In the former, two robots share a commorkspace and execute
independent tasks. The failure of one robot will not afféet bther. In the latter case,
movement of one robot depends on the other and also, faifusaenof the robot affects

the other.



Two robots handling a rigid object have been studied by masgarchers whereas
manipulating a flexible object was studied in the 1990’s [AJmodern automobile body
assembly has more than 200 sheet metal parts which mustédralalssl in a precise way.
Handling them needs special equipment and skilled operaiiwo robots can grasp a flex-
ible sheet metal and force them together for assembly. Asadustry, many deformable
objects such as rubber tubes, sheet metals, cords andrlpatkects are handled by spe-
cial equipment or human operators. In aerospace indusinyposite materials which have
high flexibility are used to replace metals. In the shipboddndustry long flexible frames
and plates can be assembled with the help of two manipulaMesy of these applica-
tions need vibration free motion especially in robot assisturgery. In order to effectively
manipulate complex flexible objects and bend them in a désir@nner, for example, the
insertion of a flexible beam into a hole and assembling she¢alnm the required place,
two robot arms are needed. In real time applications, mai@ue requirements can be
shared between two robots when handling long and heavytsbjecthe case of a single
manipulator a large torque is required to handle heavy lednilsh increases the cost of the
motor, whereas the use of dual robotic arms may be able tcedtie torque requirements
of the individual motors.

The dynamics and control problem of two manipulators haugdliexible materials
collaboratively is complex compared with handling thedigarts. In order to develop an
efficient control algorithm a precise dynamic model is neagegand the unprecise models
may create problems such as control and observation spill bvmost of the applications,

beams, plates and shells are considered to represent theflexstem. Many researchers



approximated the dynamics of a flexible object using thediriement model or the fi-
nite assumed mode model which converts the Partial DiftexeBquation (PDE) of the
beam into the Ordinary Differential Equation (ODE). The tohdesign for PDE based
systems is very few compared with ODE based systems. Futtigecontrolling of these
systems are of utmost importance in real time applicati@tabse of its complexity and
high demand in various industries. This dissertation wmes] dynamic modeling of the
manipulators-flexible object system without using any agjpnation or discretization and
development of suitable robust control approach to achieselesired motion and simul-
taneously suppressing the vibration of the flexible objéctorder to review the relevant
studies in terms of various dynamic modeling and controlreaghes for these kind of

systems, a detailed survey is conducted in the next section.

1.2 Literature Review

Many of the tasks in various industrial applications nedéast two robots. Two robots
performing a single task can have a significant advantageabgegle robot performing
similar task. It is quite obvious that a human being using &wms has more advantage
than using a single arm. The main application of such typ®lbts can be realized from
the transportation of massive and/or bulky objects, asBegf automotive parts and also
handing non-rigid payloads. As a result, considerable arhotiwork has been done for
the coordinated control of two manipulators or multiple mpaators in the recent past.
There are many pioneering studies related to collaborat&on of robots manipulating a

common rigid object and non-rigid object. Consideringtthe literature survey is divided



into two parts. Firstly, some of the important works relatedwo manipulators handling
a rigid object are reviewed and secondly a detailed reviemanipulation of the flexible
objects including different approaches of modeling andtrabrof the flexible object is

presented.

1.2.1 Collaborative manipulation of rigid objects

In the past decades a number of control methods for the awateti motion of manip-
ulators have been developed. Naketal. [2] used force sensors for the coordination and
control of two arms. Luh and Zheng [3] formulated a closegl&mematic chain where
the position and orientation of two robots had satisfied #heessary constraints. In their
master-slave approach, if the trajectory of the master aptanned and executed, the slave
arm trajectory was derived from the constrained relatiords@rrespondingly the coordi-
nation was achieved. Ishida [5] proposed a force contrarélgm which uses a PID con-
troller to move the object in a parallel and rotational mobtlee master-slave principle was
employed and interactive forces between the two arms weesuned using a wrist force
sensor. The master robot arm was position controlled amé slam was position and/or
force controlled based upon the information given by theterasm. Alford and Belyeu [6]
utilized the concept of Ishida [5] for the position contréltwo arms. In their case, given
the trajectory of the master arm, the slave arm trajectoryiaglified in run time. Zheng
and Sias [7] studied the collision effects between the dfetters which caused changes
in joint velocities, and impulsive force generated at theé-effectors was used to detect the

position and orientation of the two arms. Tatal. [8, 9] developed a nonlinear feedback



control method to control two Puma robot arms and also théipoArelocity errors and
force/torque errors were reduced. However, the mastee-slpproach failed due to the
kinematic and dynamic uncertainties in an un-calibratastesfobot joint measurements.
In order to resolve this issue, hybrid position/force coh@igorithm was developed.

The Hybrid position/force control scheme developed by Baiand Craig [10] cre-
ated a new arena for controlling the manipulators in non emenistic environments. In
the case of hybrid position/force control, the position &rde information are separately
fed back and compared with the desired value. The correatitien is taken separately by
applying position and force control laws, and then conwaegrii into joint torques using the
Jacobian. By selecting 0’s and 1's in the matrices, the josénd force control action is
determined. However, it was only applied to a single arm toBese far as the two robot co-
ordination was concerned, Hayati [11] proposed a contatiitecture based on the Raibert
hybrid control strategy [10] for multi arm robots grasping@d object. Uchiyamaet al.
[12, 13] and Daucheet al. [14] have used Hayati's [11] algorithm for their applicatso
and further investigations to control the coordinationnssn two robot arms. They have
considered the static force relationship and it can be usédfor low speed operations
[15]. Experimental results of Kopf and Yabuta [16] showedttthe hybrid control law
achieves better coordination than master-slave conth@rse. However, Duffy [17] iden-
tified some fallacies in the hybrid position/force controheme. In the master-slave and
hybrid control approach, the controllers need the accunddemation of the dynamic pa-
rameters. However, in the real time applications, indaktnanipulators have uncertainties
while grasping the load which cannot be handled by masésesind hybrid position/force

control methods. Hence, nonlinear control algorithms hevee adopted.
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In order to adapt to the uncertainties, an adaptive sche8lewhich controls the
motion of the object, internal force and contact force wehpect to the environment was
developed and simulated. Several adaptive based contrairses [19]-[21] have been pro-
posed by various researchers. However, these methodsrusaust information of the
robot. Furthermore, object dynamics can lack robustnesatoodeled dynamics such as
arm or object flexibility, actuator lags, and sensor noisdéhadugh many of them proposed
and simulated the various control algorithms without faotand neglecting gravitation
effects, they provided a great insight into further devaiept. A few of them had im-
plemented their control strategy in the experiments. Boaitd Hsia [22, 23] introduced
a robust internal force based impedance control for the pugattiors coordination. Under
this control scheme, nonlinear dynamic terms of the rob®mtampensated. The developed
controller was implemented through experiments by usiegwo Puma robots. Uzmaya
et al. [24] performed the simulation considering uncertaintieshsas contact and friction
constraints for grasp, bearing conditions and structueailllity using adaptive, robust
and inverse dynamics controllers. Gueagtlal. [25] proposed a hybrid (combination of a
conventional adaptive controller and an adaptive fuzzytredier) intelligent controller to
handle unwanted parametric and modeling uncertainties. sitnulation was carried out
and it was evident from the results that the controller way effective. Caccavalet al.
[26] developed centralized impedance control which wasdiat conferring the compliant
behavior of the object and decentralized impedance cotg@loid large internal loading
of the object. These control algorithms were implementetthéntwo 6 Degrees of Free-

dom (DOF) manipulators test bed. Moosavian and Papadop¢2i) also incorporated



impedance control to achieve the free motions and contsks taithout changing the con-
trol modes. The simulation results confirm that the two malaifors achieve good tracking
performance. In order to handle load transportation of tats, a sliding mode control
[28] has been implemented. The comparative study on PID kdaidg mode controllers

through simulation results showed that, the tracking asraninimized in sliding control.

1.2.2 Collaborative manipulation of flexible objects

Earlier studies dealt with coordinated control of multipdots handling a rigid object.
However, the manipulation of flexible objects is more chadiag in terms of dynamics and
control. Mills [4] considered the vibrations of flexible gtanetal parts in the fixtureless
assembly case. The sheet metal bending was modeled as allsprpeg - damper system.
In his work, the two robots were used to carry the negligilaglpad and the robots were
always in contact with the payload. Due to this assumpti@gtaf kinematic constraints
are imposed in certain directions. The computed torqueaabiatv regulates the constraint
forces in the constrained directions, the bending forcethénbending directions of the
payload and positions in the free motion directions of thglged. This problem was
intended only for parts having small mass but in the casergélpayloads dynamics can
not be ignored. Later, he modeled the sheet metal as appaitedhmodel using assumed
mode method [29] and also discretized the model using fitdament method [30]. The
control law proposed by him assumes that the sheet metal @ahntbit rigid body motion
in certain directions while deforming elastically in remiaig directions.

Zhenget al. [31] studied the deflection behavior of beams in conneatiitin a single



robot arm and the beam was assembled into a rigid hole. Zhsh@hen [32] extended
their work on single arm manipulation to two robot arm maiagion, for the alignment of
flexible sheets in printed circuit boards. In their two metfothe first method was used
to position the flexible beam but not the orientation, andgbeond method to position
and orient the object. The bending angle of the beam is ceresidas a variable and the
positions of two end-effectors are taken as functions oflbenangle. Piece - wise linear
approximation is considered for trajectory tracking basetiending angle and minimizing
force and moment on end-effectors. Dellinger and Ander88hdeveloped a mathemati-
cal model for interactive forces and torque generated, whetwo manipulators handle a
pair of pliers. Yukawaet al. [34] developed the beam dynamic model by assuming mode
functions in the state space form. They proposed a positotral algorithm to achieve
total system stability and they also suppressed the vibratt the intermediate points of the
flexible beam. Kosuget al. [35] derived FE models for bending and twisting sheet metal.
The relationship between them and static deformationsedtsimetal was also developed.
Their control algorithm was implemented experimentallgl e deformation was reduced.
Nguyen and Mills [36] derived combined dynamics of the systéilizing finite element
method, considering the rigid body dynamics of robots andgaals. They proposed the
force control algorithm which was implemented in the realdifor assembling auto body
sheet metal parts.

Kraus and McCarragher [37] used kinematic redundancyuéealto achieve the co-
ordination between two robot arms. They also used [38] theeféield information caused
by elastic deformations of the load for force guided contrioénd-effector motions. His
innovative concept was demonstrated using their expetahsetup for inserting a flexible

9



beam into a hole. By minimume-effort optimality criteriaeticontrolled variable in each
direction was determined. They continued their work [39]tfeo case studies, namely, the
bending of sheet metal and the insertion of a beam into a hyoderiploying a hybrid posi-
tion/force controller in their experiments. Yukawgal. [40] proposed a handling system to
transform the flexible object in 2D space and also investgéte stability and robustness
of the proposed system. Sehal. [41] developed a dynamic model of the object using
finite element method. They also formulated a PD plus graxdtyipensation algorithm
for the position control of multiple robots handling a flebebmaterial while suppressing
the vibrations of the payload at each contact. Sun and Lilidé2eloped a mathemati-
cal model of the beam using assumed mode method. They prpdsgbrid impedance
controller which was used to stabilize the system while segging the vibrations and con-
trolling internal forces. Asymptotic stability was anagygifor various boundary conditions
of the beam using assumed mode functions. In the previousai@&@unet al. [42], vectors
containing vibration parameters and states were hard tomeensated using the feedback
controllers. Hence, a new compensation scheme [43] and \j#{ saturation controller
was proposed in order to achieve the desired trajectoryoiitral the interaction forces be-
tween the manipulators and the beam and also to stabilizetilesystem, hybrid position
and force controller was developed. The proposed contsodiee simulated and their re-
sults validated the proposed control algorithms. They eldended their work [45] for the
two manipulator handling of a general flexible object anad aleveloped a hybrid control
algorithm.

Ji and Park [46] developed a computational scheme whichrdetes the optimal

trajectory and vibration was also suppressed. In theiryaisl assumed mode method

10



has been utilized to develop the dynamic model of the flexdblject. Zoe and John [47]
modeled the flexible object as a spring - mass - damper sysfidm. complete system
kinematics and dynamics equations were formulated anddbéed control was proposed.
Simulation results showed that the proposed controllereaed the desired pose of the
object and also the deformation is minimized. Al-Yahmadi &fsia [48] considered a
spring-mass system as the object model and developed anahterce based impedance
controller in which the internal force was controlled toakeh the object in order to reach
a desired shape. By controlling the contact forces betwleembject and the fixture, the
deformed object was assembled into the fixture. They [49) dkrived flexible beam
dynamic model using spline approximation. The proposetingimode control algorithm
was designed in such a way that it provides robustness aghmsnodel imperfection
and uncertainty and suppresses the vibration. The stabilithe system was proved and
the simulation results were presented. @flial. [50] also used assumed mode method to
derive the dynamic model of the beam. Their two time scalérofiars such as, PD control
scheme for rigid motion and pole placement technique forldlexnotion were designed
to track the desired trajectory for the rigid body motion anduppress the vibration. In
order to avoid the external measurement equipment to metseidisplacement of a beam,
a linear observer was designed. Tang and Li [51] used finmeht method to derive the
dynamic equations of motion of the object. By using singplarturbation approach, the
slow and fast subsystems were identified. For the slow stdrsysn adaptive sliding mode

control was proposed and for fast subsystem, a robust olptmnérol was suggested.
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1.3 Scope and Objectives

From the review of the relevant studies, it is evident thaliaborative manipulation of
two robots handling a flexible object is a complex and chajliegtask. However, from the
reported studies related to collaborative robots manimgahe flexible objects, some of
them considered lumped spring-mass-damper system asxiiéeflebject model and many
of them obtained the dynamic model of the flexible objectegithy discretizing using finite
element method or by approximations using assumed modeotheth

The truncation of the original model with infinite degreesfreedom of a flexible

model to a finite dimensional model poses the following issieh as [52]:

1. Requirement of a higher order controller to achieve grgag¢rformance in terms of
accuracy of tracking. This results in increase in the nunoibéexible modes to be

assumed.

2. Presence of control and observation spill over due to ghered high frequency

dynamics.

3. Unambiguous consideration of number of modes while coashg the discretized

ODE model.
4. Destabilization of the system due to the negligence ohiyker order modes.

5. Requirement of as many sensors as the locations of thauneeasnt of vibration and

the difficulty in implementation.

12



Alternatively, PDE based systems were proved to be effedtiveliminating above men-
tioned issues. It can also be seen from the review of litezatiiat several control al-
gorithms are available for the ODE based systems compardtetBDE based systems.
Control engineers have more challenge due to the complaxiojved in developing the
control algorithm for the PDE based systems. Moreover, Weerhanipulators collabo-
ratively handling the flexible object involve more intrigaio developing the dynamics of
the system and a suitable control scheme to achieve theedesiotion of the object and
reducing the vibration. Furthermore to improve the coteralesign

Considering the aforementioned reasons and unlike in theeavailable stud-
ies, this thesis concerns with an overall objective of dgwelent of a dynamic model
of manipulators-flexible object system without using angragimation methods and de-
sign of a robust control scheme. The purpose of the robusta@ystem design is to use
the two planar three link manipulators to move the flexiblgobin the prescribed trajec-
tory (tracking problem) and simultaneously to suppress/tbiation of the flexible object
with unknown manipulator and beam parameters. In additias thesis also considers to
improve the controller design in terms of avoiding the nemdvilocity sensor and also
alleviate the computation burden. Furthermore, to avolthennverse kinematic calcula-
tions and corresponding singularity problems, joint sphagamic system will be derived
and similar analysis will also be carried out.

The above mentioned objectives would be achieved in diftesequential steps. The

specific objectives of each step of this dissertation rebezain be summarized as follows:

e Develop a mathematical model of manipulators - flexible cbgystem in Cartesian

13



space without any approximation and discretization tesplines.

e Implement singular perturbation approach to identify flh&vsubsystem that depicts
the rigid body motion and the fast subsystem that descrhmsransverse vibration

of the flexible object.

e Develop arobust control scheme that would achieve theetesimcking performance
while suppressing the vibration of flexible object beingdiiad when the parameters

of the system are unknown.

e Extend the analysis by developing the complete system camyoamodel in joint

space.

1.4 Thesis Overview

This dissertation is organized into 7 Chapters. The outlirtbe thesis is as follows.
Chapter 1 summarizes the relevant reported studies orbootiave manipulators handling
rigid and flexible objects. The scope and objectives of teeattation is subsequently for-
mulated on the basis of the reviewed studies.

Chapter 2 presents the kinematics and dynamics of flexigkcbhs well as those of the
manipulators. Dynamic equations of motion of the flexiblgeobare derived using Hamil-
ton’s principle. The resulting equation is combined withmpalator dynamic equations
forming the combined dynamics.

After a brief introduction to singular perturbation apprband using these concepts, the

two sub systems, namely, slow subsystem which deals wiith bigdy motion of the beam
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and also fast subsystem which accounts the transversedigibiat beam are derived in
Chapter 3.

Regressor based control scheme for slow subsystem to ttrgnagid motion of the beam
and a simple feedback control algorithm for the fast sulesydb suppress the vibration
is developed in Chapter 4. The stability analysis for eadisgstem has been analyzed.
Simulation results are presented so as to validate the csitemntrol scheme.

Chapter 5 proposes an adaptive control law for the slow stbsy with only position
feedback to avoid the measurements of velocity feedbackladorresponding stability
analysis is also carried out. Furthermore, a non-regrésss®d adaptive robust control al-
gorithm is implemented to the slow subsystem to avoid theesspr and its stability results
are also discussed. The effectiveness of different costilaémes are illustrated through
simulation studies.

In Chapter 6, the extension of earlier analyses has beeedaut by developing the com-
plete system of dynamic equations in joint space. The coitgooentrol strategies, stability
analysis and corresponding simulation results are disduss

The major conclusions drawn from the dissertation researetsummarized in Chapter 7

together with a few recommendations and suggestions firdustudies.
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Chapter 2

Kinematics and Dynamics of

Manipulators - Flexible Object System

2.1 Introduction

Handling flexible objects using robot manipulators is ofvgray interest in industry.
For example, assembly of automotive parts involves maatpr of deformable parts and
also air craft assembly involves joining flexible structwwamponents. In order to handle
these objects effectively, and precisely positioning therthe required location, at least
two robot arms are necessary. Two robots collaborativelyipugating a flexible object is
a complex and challenging problem compared to that of hagdlirigid object. Control of
this kind of problem requires precise mathematical mod#hefflexible object. However,

it is evident from the literature that the solution of the dgmic equation of motion of the
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flexible object is implemented by using assumed mode or fai@ment method. These ap-
proximations cause many problems which are mentioned ip€ha, for example, mea-
surement difficulties. Hence, in this Chapter the dynamigatign of motion of flexible
object is derived by using Hamilton’s principle and solvé@dtly without approximation.
Then, the kinematic relations for the flexible object andrr@nipulators are formulated.
By utilizing these relations, the general manipulatorsadyits and flexible object dynam-
ics are combined. The resulting combined dynamics derivéthirtesian space is coupled
with rigid and flexible parameters where the flexible pararsetare not approximated with

the modes unlike the existing methods in the literature.

2.2 Manipulators - flexible object system description

In this study, two planar rigid manipulators each with thiiaks are considered. Fig.
1 shows schematic representation of a manipulator withespanding joint angles;;,
link lengthslj; and also its end-effector which is used to grasp the objebereyi = 1,2
represents the two manipulators ane- 1,2,3 represents the links of each manipulator.
Here, in this thesis two manipulators are considered to detichl.

In order to analyze the rigid body and flexible body motionwb tplanar manipu-
lators handling a flexible object shown in Fig. 2, five cooaedenframes are considered.
FramesX;1Y; andX,Y, are two fixed coordinate frames for each manipulator atthehéhe
base. FrameXe, Yo, andXe,Ye, are end-effector coordinate frames attached at the contact
points of the object and xy is a moving frame attached at thesnsanter of the flexible

object. All the kinematic relations are written with respecthe fixed framexX,Y;.
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Revolute joint

Manipulator 1 Manipulator 2

Figure 2: Two planar rigid manipulators grasping a flexidgeot
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2.3 Kinematics and dynamics of the flexible object

In the manufacturing and automobile industries, many camepts to be assembled
can be modeled as beams. Various applications such aspéuwudtior blades, spacecrafts
with flexible appendages, flexible robot arms and aerospesterss, are essentially beams
which are flexible bodies. Therefore, in this thesis the flexbbject is considered as an
Euler-Bernoulli beam. Since the two manipulators are useddve the object to a desired
position and orientation which necessitates rotation atttto ends of the beam, simply
supported end conditions are considered for deriving threahyc equations of motion of
the beam. Certainly, other end boundary conditions can dladed for the derivation of
the beam dynamics. However, with the aim of illustratingeksential features of the con-
troller design and to avoid complex mathematical expressisimply supported boundary

conditions are considered.

2.3.1 Kinematics of the flexible object

A flexible beam can be modeled with discretized finite elem 3] or approximated
with assumed modes [42]. In view of the disadvantages meadian Chapter 1 and also
stated in [52], exact PDE based model is developed in thisosewithout resorting to
approximate discretized model is used in this thesis.

Consider a beam of length massm = pL, wherep is mass per unit length. The
mass center position and orientation of the beam with régpe¢, Y;-frame are given by

{co} = {X0, Yo, G}T. Fix, Fiy, Fx, Foy are the forces applied by the manipulator at the two
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ends of the beam. The transverse displaceméxt ) is measured with respect to xy-frame
and deformation in the longitudinal direction is neglect&dr simplicity, argumentx,t)
will be omitted further in this thesis.

Any point on the beam can be written as,

X = Xp+Xxcod —nsind (1)

Y = Yo-+XsinB+ ncodh (2)

where x is the spatial coordinate ranging fro@# to .

Flexible motion

thzy
" Fy

) '\ X2, YE;E}
o ,Fy 1 Rigid motion

X1, YIJB B F]X e i

I 1

e, Co Initial position and

e, orientation of the beam

X1
Figure 3: Beam rigid body motion and deflection
In general, the beam has rigid body motion on which the flexibbtion or vibration

of beam is superimposed. It is evident from the Fig. 2 thatefteand right end points of

the beam sharesthe left and right end-effector grasping pbihe two end-effectors. The
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slope due to transverse deflection is small compared to thatation of the beam and is
neglected at the two ends of the beam. The following kinezmatations are obtained from
Fig. 3.

The left end pose (position and orientation) of the beamvsrgby,
L L . T . T
{er1} ={co} — {Ecosﬂ Esm@ 0} +{—nsin@ ncosé 0} (3)
The right end pose of the beam is given by,

{ez}:{c0}+{%cose %sin@ 0}"+{—nsin@ ncos® 0O}T (4)

Differentiating (3) and (4) results in,

p

X0+ 5sinfO — n cosBO — ) sind
{&1} =1 yo—5c0996 —nsinBH + 1 coss
6

( . .

Xo — 5SiN6O — 1 coshO — 1 sinb

{€&} =1 yo—5c0996 —nsinB6 + 1 cosd

6

Where('-) represents differentiation with respect to time.
Above relations can be written in compact form with respedhe Cartesian co-ordinates

as,

{e} = [Ri{Xr} (5)
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where{Xt} = {X, Yo, 8}T denotes the velocity of the mass center of the object, and

0 Lsind—ncoso

[EEN

0 1 —5coh—nsind

00 1

[EY
o

—5sin@ —ncosd
0 1 5coh—nsinb

00 1

Differentiating (5) gives the acceleration,

(& = [R{X} + [R{Xr} (6)

whereX; s describes the acceleration of the mass center of the object.
The resulting equations (5) and (6) will be used latter tawbthe manipulator dy-

namics in the Cartesian space.

2.3.2 Dynamics of the flexible object

The equation of motion of the dynamic systems can be derisgdyrinciple of virtual
displacements, Euler-Lagrange equations or Hamiltorrgcle. The Hamilton’s princi-
ple provides an elegant approach to describe the equationstmn because the boundary
conditions are derived simultaneously. Hamilton’s praheidescribes that, the dynamic
system can be moved from one point to another point in timeHhergiven time interval
in all of the possible paths, but, the actual path followeddtermined by minimizing the

time integral between the kinetic and potential energy. Haenilton’s principle [53] is
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stated as follows, “The actual path in configuration spatievi@d by a dynamical system
during the fixed time intervah to ty is such that the integrej[tl2 L, dt where,La= kinetic
energy - potential energy, is stationary with respect td pariations and vanishes at the
end points”.

The Hamilton’s principle is mainly used for rigid bodies. &xfible body has infinite
degrees of freedom and the states of the systems are desbyil®ntinuous functions of
time and space. The Extended Hamilton’s principle is dgaadicfor such bodies and it is
given by [53],

/tz(éT—6U+5W)dt:O 7)
t

1

whered represents the variational operatdris kinetic energy ant is potential energy.

Further,t; to t, are any two instances of time with > t; > 0. In order to determine
the dynamic equations of motion of beam, the kinetic enepgyential energies due to
elasticity of the beam and due to gravity must be obtainedhérfollowing, these energy
expressions are obtained.

Kinetic energy of the beam is defined as,

L

T = %/ip(X2+Y2)dx ®)
2

Differentiating (1) and (2) gives,

X = Xo— [xsind+ ncos]6 —sindn (9)

Y = yo+[xcoP —nsinb]6 + cohn (10)

Squaring (9) and (10) and substituting into (8) yields,
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1[5 5. 0, - - -
T = é/ip[X%+yé+62n2+(x9+n>2—29n(><00089+y08'n9)
2z

+2(6x+ 1) (Yocosh — Xosing)|dx (11)

Neglecting the shear deformation and considering the bgrafithe beam, potential energy

of the beam due to elasticity can be obtained as,

1
Ue = —/Uxxexxdv (12)
2 /v

where,

Oxx=Eé&x, &x=—Yyan", dV =dxdydz (13)

where(-)" represents differentiation with respect to space.

Further,oxx, &x dV andE denote the stress, strain component, infinitesimal volunae a
Young’s Modulus of a beam element, respectively. Bendirgyrsts measured at a distance
yq from the neutral axis of the beam.

Substituting (13) into (12) gives,

1
Ue = = / Ee2dV
2 /v

= 3/% "2E /AyZdA dx
= 5 4 n Rl
1 L

Ue = - [ [EIn"?]dx (14)

2

|
'\’||- N

where,| = [$'y3dA

Potential energy due to the gravitational force can be nbthas,

L
Ug = pg [ (o xsind)dx— mgy (15)
2
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Total potential energy can be calculated by the following,

The manipulator will exert forces, namekuy, Fiy, Fox andF,y at the two ends of the

X1

Figure 4: Flexible beam with boundary forces

beam which is shown in Fig. 4.

Work done due to the external forces are formulated as,

L L . L L .
W = Fix(X0 — 5 €0S6) + Fay(Yo — 5 Sin6) + Fox(Xo + 5 €088) + oy (yo + 5 Sin6) +

(Foy+ F1y)n cosd — (Fix+ F)n sind (17)

By applying Extended Hamilton’s Principle (7), the followg equations of motion of beam

along X, Y and Z directions are obtained.
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The detailed derivations are given in Appendix A. Based uip@se derivations, the fol-
lowing are obtained:

The equation of motion for translation along the X - direntis obtained as,

L L

m¥o — (p cosd jndx)é—psin@ jh’dx
2 2
L L
—2p9cos€/if7dx+92psin9 jndx = Foy+ Foy (18)
2 2

The translation in the Y - direction is described by the eiquat
3 ) 3
myo—(psine/Lndx)@-i—pcos@/Lijdx
. 5 2 . 5 2
—2pesin6/_L ndx— ¢92pcos¢9/_L ndx+mg = Fy+Fy (29)
2 2
Rotation about the Z axis is described by,
; ; mL2 3 y :
(—pcos@/Lndx)kg—(psinB/Lndx)y0+(§+p/L nzdx)9+p/L xndx
2 2 2 2

L
+2pé/2L nndx= le(%sine— n cosd) +F1y(—%cose— nsin@) +
2

sz(—% sin6 —ncosO) + FZy(% cosf —nsin@) (20)
The differential equation of motion of transverse vibratad beam is derived as,

) . . El .
—sinB%o + cosBYo + X6 + 1 —092-1-?!7“’

= —F1xSinB + F1ycosB — Fxsind + Fyy coso (22)

Hence, from (18), (19) and (20) the beam dynamics with regpeCartesian coordinates

{Xo, Yo, B}T can be written in a compact form as,

Mt Xet +Crf + Nt +Grf = Fre(—f) (22)
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where,

Crf =

p

L
m 0 —pcosh 2 ndx
2
L
Mt = 0 m —psind [2 ndx
2
L L L
_pcosef% ndx —psin@f% ndx m1—52+pf% n2dx

\ r

. L L . L
62(psind 2 ndx) —psind [ fdx—2p6cosh [% ndx
2 2 2
. L L . L,
—6?(pcosh [2 ndx) ¢+ Mrf =4 pcosh [? Hdx—2p8sinb [ Hdx
2 2 2
L L
0 p [Z xijdx+2p6 [% nndx
/ \ v v
1 0 0 1 0 0
0 1 0 0 1 0

Lsing—ncosd —5cosb—nsin 0 —5sinf—ncosd 5cosd—nsing 0

Fix
( \ ( F1y
0 Xo
y Moy
G = mg ; Xef = Yo , =
. Fax
0 0
\ J \ J
Foy
Moy
\ J

and also the flexible motion is the transverse vibration @nbalynamics which can be

rewritten as,

—sin@)’(’o+coseyo+xé+i7'—n92+%ni":Fff(f) (23)
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where,Fss = [—sin@ cosf 0 —sinB cos6 0
Equation (22) is written in compact form in which the rigidwasll as flexible parameters
are coupled together as also in (23). The above beam dynauatiens will be combined

with the manipulator dynamics to form complete system dyinam

2.4 Kinematics and dynamics of the manipulator

2.4.1 Kinematics of the manipulator

The study of manipulator kinematics gives us the geométaicd time-based proper-
ties of the motion of a manipulator. It provides informati&mout the locations of frames
attached to each link when the manipulator is performingvargtask. It is classified into
forward and inverse kinematics [54]. In the former caseggithe manipulator joint angles
of each link, the end-effector pose is determined. In thelaiase, for the desired pose of
the end-effector, one can find joint angles which will achki¢ve given pose. In general,
velocity of each end-effector of the manipulator is relai@bint velocity of the manipu-
lator through Jacobian matrix [54]. The Jacobian matrix lsarmbtained with the help of
position and orientation relations of the end-effectorréHa this section, the Jacobian ma-
trix for a three link manipulator will be obtained which heltbr another manipulator too.
In general manipulators are considered to be identicalderdio achieve the desired Carte-
sian space motion. However, by proper selection of diffecenfiguration of manipulator
to achieve the similar Cartesian space motion is also plessibthat case, the manipulators

Jacobian, inertia matrix, centrifugal and coriolis comgats and gravitational components
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Figure 5: A manipulator with link-frame assignments

have to be derived separately.

Consider the position and orientation of end-effed& = {x;, yi, 8} T with respect
to a fixed coordinate frame (Refer Fig. 2). Each manipulaimt jangles are represented
by a vector{q;} = {qi1, Gi2, Gi3}'. To compute the end-effector position and orientation of
a manipulator, a local coordinate frame at each joint of aimaator is consideredXm, Ym,
represents a coordinate frame attached at the base of tHakrand similarly other coor-
dinate frames are shown in Fig. 5. For example, the relatiprizetween two coordinate
frames A and B that are shown in Fig. 6 can be described by DeHavtenberg notation
[54] and this transformation matrix is denotedT@. Similarly, the transformation matrix
between each links of manipulator is obtained. Finallyséhigansformation matrices are

multiplied in a certain order which gives the transformati@tween the end-effector frame
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Figure 6: Two Coordinate frames A and B

and fixed frame of a manipulator.

The transforation matrix between each joint coordinatmé&as as follows,

cogqi1) —sin(g) O lizcogqir)
o sin(gi1) cos(gi) O lizsin(giz)
Tip =
0 0 1 0
0 0 0 1
coggi2) —sin(giz) 0 lizcoqdiz)
. sin(giz) codagi2) O li2sin(gi2)
Tiz =
0 0 1 0
0 0 0 1
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cogqiz) —sin(giz) O lizcoqqi3)
sin(giz) cogdiz) O Ilizsin(gi3)

0 0 1 0

0 0 0 1

The transformation matrix of the manipulator can be obthing

T5 =TL Ty Ty (24)
Ci123 —S123 0 li1Gi1 +lizGi12+1i3Ci123
S123 G123 O li1S1+li2S12+1lizS123
0 0 1 01+ Oi2 + Qi3
0 0 0 1

where,cij = cogqj); Sj =Sin(Qij); Ci12 = Ccog0i1+0i2); S12=SiN(0i1+qi2);

Ci123 = COYGi1 + 02+ Gi3); Si123= SiN(Qi1+Ci2+ 0i3).
From the above transformation, the end-effector positiod arientation are obtained,

which are given by,

X = li1Ci1 + li2Ci12+ liCi123 (25)
Vi = li1Si1+ lioS12+ li3Si123 (26)
6 =01+ 02+ i3 (27)

In general, Jacobian matrix of a manipulator can be caledlay [54],
Ix 05 0%
dgi1  dG2  ddi3

J=| 9% 9%

Jdgi1  ddz2  ddis

96 06 06

Jdgi1  ddz2  das
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After partial differentiation, the Jacobian matrix can legided as,

—li1s1 —lioSi12— lisSi12z  —lizS12—lizS123 —lizSi123
J = | lisG1+lisGi1o+lisCi1oz  lioGiz2+lisGizzz  lisCit3

1 1 1

Above matrix is used to map the end-effector velocities Whscin the Cartesian space to
joint velocities which is represented in joint space. Sinmeeshave two manipulators with
their Jacobian matrices denoted byand J,, corresponding vectors of joint angles are
denoted ag; andgy, respectively.

A well known kinematic relation between the end-effectdoegy and joint velocity gives
[54],

(&} =[Ha} (28)

For the two manipulators,

(&1} =[hl{a}, {&}=I[R{q} (29)

Equation (29) in an assembled form is given by,

{e} = [JH{a} (30)
where,
é1 J O
{e} = ; J=
& 0 %
Equation (30) can be rewritten as,
CHE NI (31)
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Differentiating (31) gives,
{a) =P He + e (32)

The above relations representing joint velocities (31) jaimtt acceleration (32) will
be used in the next section to convert the manipulator dyc&mepresented in joint space

to Cartesian space.

2.4.2 Dynamics of the manipulator

The dynamics of manipulator plays a vital role in developihg control algorithm
and also simulating the motions of the manipulator. In galhelynamics of manipulator
can be classified into inverse and forward dynamics. In tisé dase, given joint motion
trajectories, one has to determine the required joint tesqa order to achieve the desired
joint motion. In the second case, given joint torques, thietjmotions such as joint an-
gles, its velocities and accelerations are calculated. dyimamic equations of motion of
manipulator can be represented in a generalized joint coatelspace or in a generalized
Cartesian coordinate space. In many of the assembly taskspaiator may require the
geometrical information of the environment in task space e dynamic equations of
motion in that space is helpful in designing the control rodtiHowever, depending upon
the applications and for the development of various cordigdrithms, the dynamics can
be presented in any one of these spaces. In this section,ahipuhator dynamics will be
converted into Cartesian space because of the fact thabuldtbe combined with beam
dynamics which is already available in Cartesian space.

Dynamic equations of manipulator can be derived using Nes#oler recursive
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method or Euler - Lagrange method. The Euler-Lagrange @msatre generally used
to obtain the dynamic equations of manipulator [55] becaitgpves good insight to un-
derstand the nonlinear characteristics of the manipulator

The following are the assumptions to be considered whileiderthe dynamic equa-

tions of manipulator.

1. Each link of the manipulator is assumed to be rigid andl@thno structural com-

pliance.
2. Compliance at each joint of the manipulator is ignored.

General manipulator dynamic equation can be written intjgace as [55],
Mi ()6 +Ci(ch,6)G +Gi(a) =T+ i wherei=1,2 (33)

where,

gi is the vector of joint angles.

M; represents inertia matrix.

Ci is the matrix due to coriolis and centrifugal components.

G;i represents the vector of gravitational components.

T; is the vector of input torque applied at each joints of the imaator.

fi is the interaction force between the manipulator and thédliexeam.

Ji is the Jacobian matrix of a manipulator.

Although, Equation (33) is complex and possesses highlyimear terms, is has a

few important properties which will be useful for the contiesign purpose. These prop-

erties are given in [55] and [56] which are stated as follows:
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Property 1:
The inertia matrixM;(q;) is symmetric and positive definite. If all of the joints are

revolute then,

palg < Mj(ai) < palg

where, the boundg; and o are constants anig is identity matrix. Sinceg appears in
Mi(qi) only through sine and cosine terms, their magnitudes aredexliby 1.

Similarly, the inverse of inertia matrit,~*(q;), is also bounded
1 . 1
g <M (g) < =
T @) < T

Property 2:

The matrixV(q,q) = M (ai) — 2Ci(qi, Gi) is skew symmetric, i.e, the componewig
of V satisfyVjx = —V;
If V is skew-symmetric, the following should also be satidfend the detailed proof is

found in [57].
G' [Mi() — 2Ci(Gi, Gi)]G =0

Property 3:
SinceCi(q;, ) is quadratic irg;, it can also be bounded by quadratic functiormgof

That is,
Ci(ai,G) < Vb(q)]G|?

wherevy(q) is known scalar function andl- || denotes any appropriate norm.
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Property 4:

Mi (Gi) i +Ci(ai, &) G + Gidi =: Yim(h, Gi, Gi ) Oim

The functionYiy, is called Regressor [58] @' manipulator which has time dependant vari-
ables and®jy, is the parameter vector @f' manipulator which contains time independent
variables such as link masses, moments of inertia, etd.jrtbat be determined for a par-
ticular manipulator.

Assembling the dynamic equations (33) of the two manipuditojoint space gives,

MiG+Cq+G =T+J" f (34)
where,
)
My O C O G1 41
Mr = , G = , Gr= , T=
0 My 0 G Gy T2
2
Jb 0 f1 01
J= , f= , 0=
0 % f2 02

\

It can be seen that the beam dynamics in (22) is representkdespect to Cartesian coor-
dinates,{Xo, Yo, 8}, whereas the manipulator dynamics (34) is representedresghect
to joint space coordinates. In order to formulate a comgstem of dynamic equations
in Cartesian space, the manipulator dynamics will be cdadento Cartesian space and
the result will be combined with the beam dynamics to formabeabined dynamics.

Substituting (5) into (31) yields,

{a} = I H[R{X+} (35)
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Differentiating (35) gives,
{6} =3 1RX ¢ + I 1R% s + 37 TRX ¢ (36)

For simplicity, parentheses for vectors and square bradkeimatrices are omitted in the
following.
Substituting (35) and (36) into (34), we obtain the manifaralynamics in Cartesian

space,

M I IRY t + (M J IR+ M IR+ C I IR X + Gy = T+ 7 f (37)

2.5 Combined dynamics

The dynamics of manipulators and beam represented witlecesp Cartesian coordi-
nates are combined to formulate the kinematically closeg kystem.

Premultiplying (37) byRTJ~T gives,
RTITTMIIR% s +RTIT (MI IR+ MIIR+C I IR Xt +RTITTG, =
RIJTTr+RITITf  (39)

In view of the assumption of simply supported beam boundanglitions, the moments
at the two ends are zero. However, in reality manipulatoesegnce forces as well as
moments at the two ends of the beam [59]. Utilizing this fdet,moments at the two ends

of the beam is included in the mat; of (22). So,F+ become®R" and is given by,

1 0 0 1 0 0

Fri= 0 1 0 0 1 0

5sinf—ncosd —5cosd—nsing 1 —5sinf—ncosd 5cosd—nsind 1
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SinceR" = F¢, (42) becomes,

RTITTMIIR% s +RTIT (MI IR+ MIIR+C I IR Xt +RTITTG, =

RIITr+FRif (39)
Substituting (22) into (39) yields,

RTITTMI IRt +RTIT (MI IR+ MIIR+C I IR Xt +RTITTG, =

R TT— (MXt+Crt+n+Grr)  (40)

The above combined rigid motion dynamic equation can beittenras,

Morfxrf +Coerrf + Gorf + Norf = Uorf (41)

where,

Morf = RTITTM IR+ My¢

Corf = RTITT(MJIIR+M I IR+ C I IR) + G

Gorf = RTI TG, + Gy

Nort = Irt

Uorf = RTJ Tt
The above combined rigid motion dynamic equation (41) regméed in the Cartesian co-
ordinate space has coupling between rigid and flexible patensiand there is no approxi-
mation or discretization involved.
Taking into account the transverse vibration of beam dynai{@3), the complete manipulator-

beam system dynamics is represented as

IVloerrf +Corfxrf + Gorf + Nort = Uorf (42)
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—sin9>'<'o+coseyo+xé+r'7—né2+%niV=Fff(f) (43)

The above system of dynamic equations are used further igrdascontrol algorithm

without using any approximate methods.

2.6 Summary

This Chapter focuses on the development of mathematica¢hoddhanipulator-flexible
object system. Kinematic relations of manipulators andfirable object were obtained.
The dynamic model of the flexible object was obtained withowblving any approxima-
tions or discretizations. Furthermore, the derived olglgaiamics has been combined with
the manipulators dynamics, which yields the combined dyosin Cartesian space with-
out using any assumption of number of modes. The resultinghared dynamic equation
and also the transverse vibration of beam equation are edwgth rigid as well as flex-
ible parameters which are in PDE form. In order to developrobrstrategy for such a
PDE based system without using any approximate methodimsugdThe control of such a
coupled rigid and flexible body motion is normally achievgdemploying singular pertur-
bation technique. In the next Chapter, the system of dynampi@tions (23) and (41) will
be decoupled into rigid and flexible dynamics by using siagplerturbation technique.

Then, they will form a slow and fast subsystem, in two différigme scales, respectively.
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Chapter 3

Singular Perturbation Model

3.1 Need for singular perturbation analysis

The system of dynamic equations obtained from the previbapter involves rigid and
flexible body motions. These two motions can be also comiadlithout using any approx-
imation or discretization. Moreover, the assumption of benof modes causes increase in
the order of the control algorithm and also neglecting tlghér order frequencies would
destabilize the system. It is necessary to implement atdaitantrol strategy for the devel-
oped PDE based systems which is a more challenging taskh becpossible by separating
the system dynamics into rigid and flexible dynamics by med#rgngular perturbation
approach. The main purpose of the singular perturbatioroagp is to alleviate the high
dimensionality and ill-conditioning resulting from the@naction of slow and fast dynamic
modes. Utilizing this approach, the system of dynamic eqoatis decoupled into slow
and fast subsystems in two different time scales, respEgtivhen, one can design a con-

trol algorithm for each subsystem that together forms a @amitg control input to achieve
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the desired rigid body motion of the object and also supprggke vibration. This thesis
considers a similar approach to decouple the system imoahal fast subsystems.

In this Chapter, before proceeding into the developmenigidl and flexible dy-
namic model an outline of singular perturbed approach fugdr and nonlinear systems
is reviewed. Then, the typical steps of singularly pertdrbealysis of nonlinear systems
is implemented into the system dynamics (23) and (41) (mdaipr-beam system) under
some specific requirements. It yields into slow subsystemtwtorresponds to rigid body
motion of the object and fast subsystem that signifies theatitn of the object. Further-
more, based upon the concept of differential operatorsnfirete dimensional partial dif-
ferential model of the fast subsystem is further modified atbstract differential equation

which will avoid the issues due to approximation or dis@ation techniques.

3.2 Outline of singular perturbation approach

For the control engineer, the first task is to mathematicalbdel the given physical
system. While simplifying the given model, the presencensélé “parasitic” parameters
such as time constants, masses, capacitances, indugtesismnces, moments of inertia,
Reynolds number and other parameters may increase the amdealso stiffness of the
systems. In order to alleviate these problems, singuldugeation approach is employed
commonly. These problems are dealt in many fields of appliathematics, various dis-
ciplines of engineering, electrical and electronics discand systems, electrical power

systems, aerospace systems, nuclear reactors and ecdloigyapproach would also be
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helpful for analytical investigations of robustness ofteys properties, behavior of opti-
mal controls near singular arcs and other order reductiotietso Some of the well known
applications are in aircraft and rocket flight models andical reaction diffusion theory.
Singular perturbation introduces multitime-scale bebeof dynamical systems, namely,
slow and fast phenomena due to the external stimuli. It iedtan [60] as, “Singular per-
turbation approach lowers the model order by first neglgdtie fast phenomena. It then
improves approximation by reintroducing their effect asitdary layer corrections calcu-
lated in separate time scales”. In most of the classical avaknm control schemes, singular
perturbation analysis plays a role in the order reductioimefmodel which disregard high
frequency parasitics [61]. This leads to the developmetitad scale methods for various
control algorithms such as state feedback, output feedligtek and observer design. It
is also useful for the analysis of high-gain feedback systemntrol of dynamic networks
and other class of linear and nonlinear dynamic systemscdimplete survey on singular
perturbations and time scales in control theory and apica can be seen in [60]-[63].
After brief review on the concepts of singular perturbatésralysis for the case of linear

and nonlinear systems, they will be employed in the mantptHéexible beam system.

3.2.1 Singularly perturbed analysis of linear systems

In order to illustrate the basics of singularly perturbesteyns, the second order initial
value problem presented in [62] is reproduced here.

The standard singularly perturbed linear second order@moks given by,

eX(t,e) +x(t,e)+x(t,e) =0
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X(to) = x(0),  X(to) = x(0) (44)

where, the small parametemultiplying into the highest derivative term defines the-sin
gularly perturbed problem. The degenerate problem or esthocder problem can be ob-

tained by setting = 0 in (44) which is given by,
O t) +xO(t) =0 (45)

wherex(©(t) = x(0) and the solution to (45) is,
X0 (t) = x(0)e™ (46)

The reduced order problem in (45) is only of first order whicaynmot satisfy both of
the initial conditions given in (44) and hencd}y) is sacrificed during the degeneration

process.

3.2.2 Singularly perturbed analysis of nonlinear systems

Now let us analyze singularly perturbed time varying nogdinsystem which is given

by [64],

x=fp(x,2,€,t), X(to) =%, XERM (47)

£2=0p(xz&,t), Z(to) =2, zcR™ (48)

where, f, andgp are many times continuously differentiable functions @itarguments
X, z, € andt. If the functionsf, andg, are having same order of magnitude then, the

perturbation parameterrepresents the ratio of two time scales. Wheapproaches zero,
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the dynamics oz becomes faster tharand also the abovg + m; dimensional model will
reduce tan; dimensional model, because, (48) degenerates into thkeralgeor transcen-

dental equation,

O - gp(XS7 257 07 t) (49)

where the subscript “s” indicates the slow subsystem whapproaches zero. On solving

(49) we havek; > 1 distinct or isolated real roots given by,

ZS:¢i(X57t)7 i:1727""7k1 (50)

Substituting (50) into (47) gives,

XS = fp<X57 ¢i (XS7t)7 O7t)7 XS<t0) =Xo (51)

The above model given in (51) is called as quasi-steadg-staidel or reduced-order
model. The multi-time-scale behavior occurs due to this ehof.e) the slow response
is obtained from the reduced order model. The discrepantwydas the response of the
reduced order model (51) and that of the given nonlinear indd@¢ and (48) is the fast re-
sponse or transient behavior. Due to this behavior, theigt@ady-state variablg would

not start at the prescribed initial conditiag of the original variablez and there may be
small or large order of magnitude difference which is spedifiyO(¢) [64]. Due to this

error,zs cannot be a uniform approximation bénd it can be approximated as

z=17(t)+0(g), telty,T] where §>tg (52)

However, the slow variablgs can be constrained to start from the pre-specified initial
conditionxg. Hence, the approximation afby the quasi-steady-state variablewill be
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uniform and is given by
x=Xs(t) +O(g), telto,T] (53)

The above way of approximating the solution is called degdin. It can be seen from
(52) that, in the initial interval (boundary laydty, t1] the original variable approachess
and after that it remains close 2@

In order to study the fast parts ¥fandz, let us define new time scale variable,

t—t
v:?o, v=0att=tp (54)

Then, (47) and (48) can be rewritten with respect to fast snsde as,

dx
av = efp(X,z,€,t0+€V) (55)
dz
av = Op(X,Z,&,tg+€V) (56)
Whene — 0 then,
dx
3, =0 (57)

which means that = constant in the fast time scale. However, the deviatioriim its
guasi-steady-statg plays a role in the fast time scale. In order to obtain the behaf z

as a function o), the boundary layer correction has to be obtained whichvisrgby,
Zt =212 (58)

Using (58) and letting = 0 in (56), the fast subsystem or boundary layer system can be
obtained as,

de

av = Op(Xo,Zs(to) +2¢(v),0,10), Zf(Vo) = 20— Zs(to) (59)
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The solution of (59), (i.ex:(v) is considered as boundary layer correction of (52) for a

uniform approximation ot which is given by,
z=1zt) +2:(v) +O(¢) (60)

It is evident from (60) thatzs(t) is slow transient o andz; (v) is the fast transient af The
corrected approximation (60) has to converge in a shorbgdad the slow approximation
in (52) and the correction term (v) must decay a8 — . The stability of boundary layer
system given in (59) has to account for the approximationdema (52), (53) and (60).
Hence, valid stability properties should be stated. Thkiliaproperties are provided as
assumptions in [64] which are given below.

Assumption 1:

The equilibriumz;(v) = 0 of (59) is asymptotically stable uniformly ixy andty, and
7o — Zs(tp) belongs to its domain of attraction and herméy) exists for allv > 0.

If this assumption is satisfied, then

lim z;(v) =0 (61)

V—o00

uniformly in Xg, to; that is,zwill come close to its quasi-steady-statat some time; > to.
To ensure that stays close tas the following assumption is considered.

Assumption 2:

The eigenvalues of® evaluated, foe = 0, alongxs(t) andz(t), have real parts smaller

0z

than a fixed negative number, i.e.

Re’\{%}g—c<0 62)
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The above mentioned two assumptions describe strongistgibperty of the boundary

layer system (59).

3.2.3 Features of singularly perturbed solutions

The important characteristics of singular perturbatiarbpgms are summarized below:

¢ In any given mathematical model, the highest derivativiefrhodel is multiplied by
the small parameter and is called singularly perturbed model if the order of ntode

is reduced whel = 0.

e The singularly perturbed problem has two phenomena nanhaly &nd fast in its

solution which occurs in two different time scales.

e The degenerate problem of reduced order model will notfgadlkthe given bound-

ary conditions of the original given problem.
¢ In the boundary layer, solution changes rapidly.

¢ In order to approximate the fast solution, boundary layereztion is incorporated

with the help off stretching transformation suchias 2.

3.3 \Validity of singular perturbation approach

The use of singular perturbation approach for the non-tisgstems necessitates the satis-
faction of Tikhnov’s theorem. Hence, based upon the backgtanaterial presented earlier

on standard singularly perturbed model of the non-lineatesys, the Tikhnov’s theorem

47



given in Khalil [65] is reproduced for the different casediofe intervals.
Theorem 1 (for the case of finite time interval):
Consider the singular perturbation problem (47) and (48)latz = 3 (x,t) be an isolated

root of (49). Assume that the following conditions are dadsfor all

X,t,z— 3 (xt),€] € [0, T] x By x Bp x [0, &

1. The functionsfp, gp and their first partial derivatives with respect (az ) are
continuous. The functiof (x,t) and the Jacobiadg(x,z,0,t) /dz have continuous

first partial derivatives with respect to their arguments.

2. The reduced problem (51) has a unique solutigt), defined orjto, t1] and||xs(t) || <

ry<rforallte [t, T].
3. The origin of the boundary layer model (59) is exponelytistable, uniformly in
(X,1).

Then, there exist positive constanptsande* such that for all|z(0) — ¢(to,x(0)|| < ¢ and
0 < € < g%, the singular perturbation problem (47) and (48) has a wngplutionx(t, €),

z(t,e) onto,T] and

X—Xs(t) = Of(¢)
z— 9 (Xs,t) —zs(v) = O(¢)

hold uniformly fort € [to, T], wherez; (v) is the solution of the boundary layer model (59).

Moreover, given anyy > tg, there ise™ < £* such that,

z— 9 (xs,t) = O(¢)

48



holds uniformly fort € [t;, T| whenever < &*

The above theorem holds good for finite time intervals. Thibecause, the error
estimateO(¢) is not uniform in for allt > 0. In order to extend this theorem to infinite
time intervals, additional stability requirement on reedenodel (47) must be met. To be
precise, the reduced order model should also be exporigrgiable for the infinite time
interval. Hence, Tikhnov extended the previous theorerhearifinite interval which is as
follows.

Theorem 2 (for the case of infinite time interval):
Consider the singular perturbation problem (47) and (48)latz = 3 (x,t) be an isolated

root of (49). Assume that the following conditions are dadsfor all
Xt,z— (X t),€] € [0,00] x By x Bp x [0, &)

1. The functionsfp, gp and their first partial derivatives with respect (z ) are
continuous and bounded. The functi®(x,t) and the Jacobiaflg(x,z,0,t)/dzhave

bounded continuous first partial derivatives with respec¢heir arguments.

2. The Jacobiad f (x, 3 (t,X),0,t) /dx has bounded first partial derivatives with respect

to x.
3. The origin of the reduced problem (51) is exponentiakiyokd.

4. The origin of the boundary layer model (59) is exponelytisfable, uniformly in
(%,t).

Then, there exist positive constapts, Uy> ande* such that for all

1X(0)|| < 11, [1Z(0) — ¢(to,x(0)|| < 22 and 0< & < €*
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the singular perturbation problem (47) and (48) has a ungpletionx(&,t) andz(e,t)

defined for allT >ty > 0, and

X—Xs(t) = O(¢)

Z— 9 (Xs,t) — 21 (V) = O(¢)
hold uniformly fort € [to, ®0]. Moreover, given any; > to, there ise** < £* such that,
z— 9 (xs,t) = O(¢)

holds uniformly fort € [t;, o] whenever < £**.
Hence, it is evident from the above theorem that, for thedadion of use of singular
perturbation approach, the slow subsystem or reduced orddel and fast subsystem or

boundary layer model must be exponentially stable for thiaite time interval.

3.4 Singular perturbed model of the manipulators - flexi-

ble object system

Singular perturbation approach is not straightforwardaplyato the manipulator-beam
system. There are some requirements to be met to apply tisitpie into the system
of dynamic equations (42) and (43) which will be discusseerldn this section, initially
the control task will be stated and based upon this task &rlgyerturbed model will be
developed.

The control task is stated as follows: For any given desimghided trajectories of

the mass center of the beafrrq andX;t4, with some or all of the manipulator and beam
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parameters unknown, derive a controller for the manipusatsuch that the beam center
X ¢ tracksX;tg While suppressing the vibration of the flexible objettto zero.

The system dynamics derived without using any approximati@thods given in
(42) and (43) have rigid as well as flexible parameters treataupled together. To achieve
the above control objective for such a complicated nonlirsyatem, a possible control
approach is the two-time scale theory which considers thle fiequency phenomenon of
flexible motion in different time scales. The basic idea fog two-time scale theory is to
identify the slow and fast subsystems in separate timesbglemploying singular pertur-
bation approach [64]. Then, a control algorithm for eactsgatem is designed, which will
be combined to yield the composite control strategy for thgimal system. However, the
challenge is such that the designed sub-controllers gaktisfso-called Tikhnov's theorem
in order to guarantee that the composite controller can péeapto the original system,
especially when the parameters of the system are unknown.

It is evident from the complete system of dynamic equatitias, the inertia matrix
M;, Coriolis and Centrifugal matri,, Gravitational vectorss, and Jacobian matrid
do not have any flexible parameters, because the manipsi@terconsidered to be rigid.
However, inM;¢, Ci¢, nrs and inR, rigid as well as flexible parameters are coupled to-
gether. These flexible parameters have to be uncoupled freatiove matrices and vectors
by using singular perturbation technique. It is to noted,thmmorder to avoid confusion,
these parameters are separated from the complete systgmewhit equations and typical
steps of singular perturbation approach is applied. Thikrtgjue also accounts for the
neglected high frequency characteristics when the beamrgaods vibration [66]. Using a
perturbation parameter, sa¥, order of the system dynamics can be changed and this small
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parameter depends upon the system variable. Keeping thahah the ternEl /p in (43),

which has large magnitude compared to other coefficients ¢&# be re-defined as,
—=a.kK (63)

whereK is a dimensionless parameter which has large value for ffegeht materials [64]
and [66] and its order is equal Bl /p and also the variablea” satisfies the equalities. For
example, an aluminium rod with a diameter of 0.0%0% 71 GPa angh = 2700kg/m® has
the value of the co-efficierii| /p = 4.1 x 10% and therefora = 4.1 andK = 10°. However,
the beam has rigid motion with respect to the state variakles- {Xo, Yo, 8} and also
the transverse vibration with respect to the state variable occurs in different ticees.
Then, one need to introduce a new variablg,t) in the same order of the state variable
by the following,

n(x,t) = 2.w(x,t) (64)

wheres? = 1/K is the so-called perturbed parameter.
Using (64) one can re-write the rigid motion dynamics of tearn as follows:
The equation of motion (18) in the X-direction can be writtieterms of perturbed param-

eter as,
y ! _ ,
m¥o — (p cosd sZ/L wdx) 8 — psind sZ/L Wdx— 206 cosB eZ/L Wdx+
2 2 2
L
620 5sind &2 / “wdx=Fa+Fix  (65)
2

The equation of motion (19) in the Y-direction can be writieterms of perturbed param-

eter as,
5 . 5 : 5
myo — (psind ez/L wdx)0 4 p cosf 82/L Wdx—2p0sing EZ/L Wwdx
2 2 2
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L
—6%pcosh €2 /i wdx+mg= Foy + Fry (66)
2

Rotation about the Z axis described in equation of motior) {2@erms of perturbed pa-

rameter is,

L
(—pcosh sz/iwdx) — (psing &2 / wdx)¥io + ( —+pe / w2dx)0
2

+p 82/ xwdx2p0 84/ wdx= le(%sine— £2wcosh)

+F1y(—%cose— € WSII’]Q)—{—FZX(—%SII’]Q— € Wcose)+F2y( cosf — ¢ Wsme) (67)

Correspondingly, using (63) and (64), the equation of mmoftow transverse vibration

of the beam can be rewritten as,
—sin@Xg +cosBYo + X6 + £2W— £2wh? +aw = Fy¢(f) (68)

The equations (65), (66), (67) and (68) represent the samlyyberturbed form which will
be incorporated into the system of dynamic equations (4@)48) to form the singularly

perturbed model of the complete system.

3.5 Slow and fast dynamic models

In this section, the two subsystems, namely slow and faslatained by following the
typical steps of singular perturbation approach which wiseussed earlier in this Chapter.
Due to the presence of perturbed paramefethe complete system has two motions in the
different time scales. Initially, the singularly pertucbenodel of rigid motion dynamics
of the beam will be converted into the rigid dynamic modehwiit involving any flexible
parameter and finally it will be incorporated into (42) whidims the slow subsystem.
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Similarly, after following the usual procedure of the sitagyuperturbation approach, the

fast subsystem will be obtained from (68).

3.5.1 Slow subsystem

When the perturbation parameterapproaches zero, the equivalent quasi-steady-state
system [67] represents the slow subsystem. By settiag0, (65), (66) and (67) forms the

rigid dynamic model of the beam which is given in compact f@asn

MraXrt +Crd + Nrd + Grg = Fra(— ) (69)

Ma=|0 m o0 |; Xf= Yo ; Cq=1{000}";

L2 .
0o o m 8

nrd:{OOO}T; G = mg >

0
1 0 0 1 0 0
Frd = 0 1 0 0 1 0

L o L L o L
ésme —§COSQ 1 —§S|n9 §COSQ 1

The equation of motion for transverse vibration of the be@&) pecomes,
[—sin@%o + cosBYo +xB +aw"]s = Fr(fs) (70)

wherefs corresponds tbwhene approaches zero.
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Again, substituting (64) into (5) and also setting- 0, R becomed$r; which is given

by, i} _
1 0 Lsing
0 1 —Lco¥
00 1

Ry =

1 0 —5sing
0 1 Lcow
00 1

Based upon the above results, the combined dynamic equéd2yecomes,
(Mo‘f‘Mrd)).(rf +C0er +Go+ Grg = Uo (71)

where,
Mo =R[J TM IR,
Co=R]JI T(MJ R +M IR +C I 1Ry)
Go=RIJ TG
u=R[JTr

The above equation can be rewritten as,

MesXef +Ccsxrf + Ges = Ucs (72)
where,
Mes = Mo+ Mg
Ces=Co
Gcs - c':'o + Grd
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Ucs = Uo
The slow subsystem given in (72) represents the rigid bodyamaevithout involving any
flexible parameters. It will be used further to design a aardtgorithm to track a desired
trajectory of the object.
The slow subsystem has following properties which are ingmiito the stability analysis.
Property 1 in Cartesian Space(CS)Mcsis a symmetric positive definite matrix [59] and
[68].

Property 2 in CS: The matrixM¢s andCcs in (72) must satisfy
XT(Mes—2Cc)X =0, VX #0 (73)

where, X is any arbitrary vector. Hend@cs— 2Ccs) is a skew-symmetric matrix [59] and
[68].
Property 3 in CS: There exists a vectares € RY*! which solely depends on manipulators

and beam dynamic parameters (link lengths, masses and neaofenertia etc.) such that

MesXrf +Ccsxrf +Gcs:ch(er7er,q,Q)acs (74)

whereY.s € RV is called regressor matrix of manipulator-beam systemsarteSian
space. The regressor for the Cartesian space slow subsysiemd alsoacs is given
in Appendix B.
Property 4 in CS: Since the matriceMcs, Ces and Ggs in (72) are the functions of sine
and cosine of manipulator joint angles and velocities, treybounded. Then, there exist
arbitrary positive constantg (i=1, 2, 3), the boundedness [69] of each matrices can be
described as follows:

| Mcs [|< p1
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| Ces [|< p2 || Xt |l

| Ges [I< 3

3.5.2 Fast subsystem

Equation (68) represents the perturbed flexible model nbthwith perturbation param-
eter € which is very small and solely depends upon e andp.
In order to study the dynamic behavior of fast system, theadleat boundary layer phe-
nomenon [64] and [67] must be obtained. This can be identifieensuring that the slow
variables are kept constant in the fast time soa*e%. From the typical steps of singular

perturbation [64], one can define the fast variakje

Wi = W— W (75)
Differentiating the fast time scale,
dv = dt
€
dv 1
- _ = 76
dt ¢ (76)
Differentiating (75) gives,
. d . dvd 1
W= W+ Wi = W o Wi = Wi+ —Wr (77)

wherew; denotes differentiating fast variable with respect to fese scale.

Differentiating (77) again yields,

. 1
—Ws = Ws+ ?Wf (78)
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Using (75), (68) can be rewritten as,
— sinB%o +cosBYo + x6 + £2W— £2(Ws+wy )02 +a(Wy +wy) = Fr¢(f) (79)
Using (70) and (78), (79) becomes,
Frt(fs) +Wr + 2Ws — £2(Ws+wy )02 +awsV = Fr¢(f) (80)
By definingFs¢(ff) = Fr¢(f) — Fe 1 (fs), the above equation can be rewritten as,
Wi + 2V — £2(Ws+wr ) 0% +aw; ™ = Fyy(fy) (81)

However, in the boundary layer system, the slow variakjes constant which implies

Ws = 0 and als& = 0 [67]. Then, the fast dynamics can be represented as,
Vit +awsV = Fee (fr) (82)

The above equation (82) represents the fast subsystemfastitene scale which connotes
the vibration of the flexible object.

Thus itis evident from the above analysis that, singulatysbation approach estab-
lishes slow and fast system in two different time scales. Slbe or the quasi-steady-state
response is obtained from the reduced order model (72) anthth transient is nothing
but the discrepancy between the original complete systamardics (42) and (43) and the
reduced order model. However, the fast subsystem (82)llisnsthe form of infinite di-
mensional partial differential model and it should not bpragimated using finite element
method or assumed mode method. Luo [70] and [71] introducetf the operators and
its properties to avoid the issues related to approximati@hdiscretization for such a PDE
based systems. These operators will be useful to form theaabdifferential model of the
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fast subsytem without any approximation. Following are saithe important definitions
and terms used by Luo [70] for developing the abstract diffgal equation from the infi-
nite dimensional model of the beam.

Hilbert Space [72]:

A Hilbert space is a space which satisfies the following ax¢n2]:

It is a vector space, in which the operations such as additiomultiplication of the
vector elements by a scalar can be done. Also, the usual ctativey associative

and distributive properties are satisfied.

e For every pair of elements X, y there is associated a scadaiupt also called inner

product denoted by x . y > exists.

e It has an infinite number of dimensions, i.e., the number rdédrly independent

elements has no bound.

e Itis a complete space which means that every Cauchy sequencerges.

e Itis of countable type. There exists one sequeYiee(x;....xn) Which is everywhere
dense in H. i.e., for every x in H and every smatb 0, there is atleast ong which

satisfies|x — || < A.

Bounded Operator [72]:
The operatoA is bounded in the Hilbert space and then, there exists aiymsammbera

such that,

IAX| < a|x]| VxeH
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Adjoint Operator [72]:
Consider a linear bounded operatoiand the produck Fx .y >, wherey is fixed andx

ranges oveH. Then, there exists an elemdtity such that,
<Fx.y> = <x.F'y> VWxeH

The operatoF* is linear and bounded and called as adjoint of F.
Self-Adjoint Operator [73]:
The linear bounded operatéron a Hilbert spacél is said to be self adjoint, iF* = F.

Then,
<Fx.y> = <x.Fy> VxeH
By utilizing above definitions, an operataArf71] is defined as,

D(A) = {ws|w} € H,wi(0) = w; (0) = wy (L) = wy (L) = 0} (83)

Aws =aw, VYw; € D(A) (84)

where,D(A) denotes the domain of the operafoandH denotes the Hilbert space.
The important properties of operatdhas been introduced by Sakawa and Luo [74] which

are as follows:

e Ais closed, self-adjoint, and positive definite operator

e The inverse A1) of A exists and is compact d#

They also provided [74] the detailed proof for each of thevaaroperties.
In addition to those properties, the operakdras the eigenvalues and the corresponding
eigenfunctiongy satisfying the following conditions [75].
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1. 0< A1 < A , limAj = o0
2. Ag =A@, i=12..0

3. The set of the eigenfunctions forms a complete orthonbsystem in the Hilbert

space.

Luo [71] defined another unbounded operdibwith D(M) > D(A). The following are

some of the important assumptions that has to be satisfiduehypteratof:

1. N is A-bounded. i.e.yu € D(A), there exist nonnegative constaatsandb. such

that||Mu|| < ac||u|| + be||Aull.
2. M is A-symmetric. i.e.yu,v € D(A), there holdgMu, Av) = (Au, Nv).
3. M is A-positive semidefinite. i.e¥u € D(A), there holdgMu, Au) > 0.

The operatofl is called aA-dependant operatawhen it satisfies all of the above assump-
tions. If I is A-positive definite, then, we cdll asstrict A-dependant operatoiSome of
the A-dependant operators dre= |4, the identity operator oHl, N = A? and alsd1 = A.

It is also shown by Luo [70] that, the operafdrcan be expressed as,
M=nA"*A=QA (85)
where,Q = MA~1 and it has the following properties:
e Itis a bounded operator dt
e Itis a symmetric operator o

e Itis a positive semidefinite operator &h
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These operators are useful for stability analysis in the @évapter. The complete proof
for the above mentioned properties can be found in [70].
Using (84), the partial differential equation (82) can bentten as an abstract differential

equation orH as,

Wi () + Aw (v) = F¢(fr) (86)

Wik (O) :Wfo, Wf (O) = Wf1

Equation (86) represents the fast subsystem in the abdtfi@rential equation form, which

will be used for designing fast feedback control.

3.6 Summary

Fundamental concepts of singular perturbation method baem reviewed in this
Chapter. Based upon these concepts, the coupled rigiditectynamics have been sepa-
rated into slow subsystem which corresponds to rigid bodifon@nd fast subsystem that
describes transverse vibration of flexible object. The jman of these two subsystems
occurred in two different time scales. In addition, the fgbsystem is further modified
into abstract differential equation by using various d#éf#ial operators. Therefore one
can develop control scheme for each subsystem and combiméng together to form a
composite control input for the manipulator-beam systehe fiext Chapter deals with the
development of composite control scheme and its stabitigiyasis. Simulation studies will

be performed to evaluate the proposed composite contrehseh
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Chapter 4

Controller Design

4.1 Introduction

From a review of literature in Chapter 1 it becomes evideait tiajority of the studies on
manipulating flexible objects have focused on the developmwiinear control algorithms
such as PD controller [41], [43] and [50] and hybrid impedanontroller [45] and [48] .
Even though the linear control algorithms had been genyesattcessful in industrial appli-
cations, it has a few drawbacks while handling structuredl @amstructured uncertainties,
external disturbances and also in linearizing large opeyaanges.

The key issue in developing a control algorithm is that, didd handle the uncertain
parameters of the manipulators and beam and it must givenexpial convergence of both
slow and fast subsystems to satisfy the validity of singp&turbation approach by means
of Tikhnov’s theorem. Considering these facts, in this Geapa regressor based sliding

mode control is developed for the slow subsystem and as ap#re composite control
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law; a simple feedback control algorithm is proposed forfds subsystem. The justifi-
cation of a composite control scheme is achieved by presgtitie exponential stability
analysis for the slow and fast subsystems. Simulationteaut also presented to validate
the proposed composite controller. In order to reduce théeting on the slow subsystem,
a smoothing control law is considered. A special case of taaipulators handling a rigid
object has been derived by keeping the flexible parameterama the modulus of elas-
ticity assumed to be infinite. Since, this thesis makes uskeobasic notions of adaptive
and robust control algorithm, they are reviewed initialhdeconsequently the composite

control law will be presented.

4.1.1 Adaptive control

Adaptive controllers were developed in the 1950’s with the af designing autopi-
lots for high performance aircraft when difficulties wereceantered implementing PID
controllers. Adaptive control laws are determined fromdhen desired control objective
and the feedback signal derives the parameter update lasicalg, it has adaptation law
which is used to learn the uncertain parameters of the syatehthe learned parameters
are used further in the designed control law. Several agapthemes related to control
of robot manipulators can be seen in the literature. A cohmgmsive survey of adaptive
control of rigid robots is reported in [57]. These contradlese parametric formulation of
robot dynamics resulting in better performance. Also, &idagontrol is useful in various
applications [76] such as aircraft control, process constup steering and robot manipu-

lation control.
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The following example will illustrate the overview of theaative controller proposed by
Slotine and Li [58] for a rigid manipulator withy number of links which is as follows.

General manipulator dynamic equation can be written intjgimce as [55],

M(g)4+C(g,9)q+G(q) =T (87)

For the given initial joint position of rigid manipulator thisome or all of the manipulator
unknown parameters, control law for the input joint torquels be derived to track the
desired trajectorgy € R™, gq € R™ anddy € R™. The manipulator will track the desired
path after an initial adaptation process.

Letv=[ug ..... uml]T be anm;-dimensional vector containing the unknown manipulator
and load parameters, adds its estimate. CorrespondingM, C andG are the estimates
of M, C andG and are obtained by substitutingfor actualv. Utilizing the linear pa-
rameterized property 4 of the dynamics of manipulator nosettl in Chapter 2, one can

have,
M ()& +C(a, &) +G(a) := Y (9,8, G, G )0 (88)

where,Y(q,q,¢r,6) € R™*™ is the regressor matrix which is independent of dynamic
parameters and = U — v is the parameter estimation error.
Considering a positive definite matri¢ and the position tracking errar = q— qq, the

reference trajectory velocity can be written as,
Or = Gd — A1 (89)
Then, the sliding surface can be defined as,

Si=8-6 =g+ (90)
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Using above relations, the control law becomes,

T=Y(9,0,,6) 0 — KaSu(t) (91)
and the adaptation law is given by,

0 =—"Y7(q,4,6,6)Su(t) (92)

where® is a constant positive definite matrix alg is a symmetric positive definite matrix
usually diagonal. The vect@;(t) is the measure of tracking accuracy.

By choosing the following Lyapunov function candidate,

V(t) = S[S[(HMSy(t) + 0T ®0] (93)

NI =

it was shown that, the control and the adaptation laws aelggsbal convergence of the
positional and velocity tracking error to zero. Hence, thairsy surface (90) converged
asymptomatically to zero which in turn guarantees thand ¢ also converge to zero.
An advantage of this type of controller is that there is nodheeEmeasurement of joint
accelerations to feed back or inverting the estimatedimengtrix. However, the given
adaptation law (92) is of gradient type and the convergeht®cking errors to zero does
not mean that the convergence of estimated parameters &x#ot values. In order to
achieve the asymptotic convergence of estimated parasniete¢he true parameters, the
matrix Yq(qq, 4, dq) should be persistently exciting and uniformly continuolishe ma-
trix Yq(0aq,dq, Gg) is not persistently exciting, it means that, the followietption does not

hold good for all time [77]. There exist positive constadig; and 3, such that,

t1+0 T q
Balg < | Yy Yadt < Bolg (94)
1
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Also, if the above condition is not satisfied then the estomatay become unstable i.e.,
the estimated parameters will diverge. It is also shown &) {i7at, without persistent exci-
tation, system may not be able to achieve uniform adaptatéorsient because is away

from v and also convergence of vec®i(t) or O = U — v is very slow. In addition, adap-
tive controllers deal with the case of constant or slowlyiray parametric uncertainties
only. However, various parametric and unparametric uag#ies are occurring frequently
in robot models. In order to handle these uncertainitielsysb control algorithms came

into picture.

4.1.2 Robust control

In the robust controllers, the controller has a fixed stmectwith known bounds of
uncertainty and no learning behavior takes place. The tatmrgrollers have attractive

features compared to adaptive controllers, which are [76]
¢ ability to deal with disturbances.
¢ ability to handle quickly varying parameters and unmodelgabmics.
e they are easy to implement.

These controllers can achieve desired transient responselao convergence of their
tracking error is uniform and bounded [79]. The survey orusttzontrol strategies [80]
and [81] shows that these kind of controllers are well knowa @ery useful for different

applications. This thesis considers, one of the robustrabstheme, namely, sliding mode

control which is reviewed in the following section.
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4.1.2.1 Sliding mode control

One of the robust schemes to control the nonlinear systetmg mseans of Variable
Structure Control (VSC) and it is a high-speed switchinglfek control. The high-speed
switching gain and advancement of computer technologyeas®s interest in the practical
implementation of VSC. A simple approach to robust consdhe so-called sliding mode
control. Here, in this section an overview of sliding modatcol is provided [76].

A single input dynamic system is given by,
XM = f5(x) 4 bs(x)u (95)

where the scalax is the outputu is the control input and = [x, X, .... ,x"Y|T is the

vector of state variables. The nonlinear functiigfx) is known by its upper bound and the

control gainbs(x) is also bounded with known sign. The control objective isrézk the
(n-1)

desired stat&y = [X4, X4 -... X ] in the presence of model uncertainities fafx) and

bs(x). The tracking error vector can be defined as,
X=X—Xg=[% % ..., "] (96)

and the sliding surface is given by,

S = (% +A2)X (97)

whereA; is a positive constant andis the tracking error in the variable

For the given initial conditiorxg = x(0), the sliding control will track the desired
trajectoryxq which is equivalent to the state variables remaining on thtaseSy(t) for
all t > 0. Fig. 7 shows that for the different Initial Conditions {JGhe state variables
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are converge t&(t) = 0. It is also observed from (97) that, the sliding surfaceelated
to tracking errorx™and therefore the sliding variab® is the true measure of tracking

performance. We need to ke&p(t) at zero when tracking is outside 8f(t). This can

IC4
\X

IC3
Sliding surface S5,(t)=0

e
\

IC T

Figure 7: Sliding surface and various initial conditions

be achieved by choosing the control lawwbf (95) such that the outside &(t) should

satisfy the following,

238m < Vs 98)
whereY is a strict positive constant and (98) describes that theesysrajectories will
converge towards the sliding surface which is an importanttusion for the existence of
sliding mode and satisfying this condition is called asisticcondition.

In this technique, a nonlinear system state trajectory lvéldriven onto a specified

and user-chosen sliding or switching surface. If the sydtamctory will be “above” the
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surface, then the control path has one gain and a differentfghe trajectory drops “be-
low” the surface. The state trajectories of the system ra@iatl in this surface indicate that
the system is controlled. In this approach, the trackingrexill reach a switching surface
and afterwards the system will be in sliding mode. The stidiehavior causes the system
to slide along or in the vicinity of sliding surface. Thenethystem will not be affected
by any model uncertainty i.e., it is robust and insensitealisturbances. By designing
a proper sliding surface, VSC can achieve the goals suchadslization, regulation and
tracking in control perspective. Sliding mode control hastapplied to various applica-
tions [76] such as robot manipulators, underwater vehieegmotive transmissions and
engines, high performance electric motors and power systdinis thesis also considers

sliding mode approach for the control of slow subsystem.

4.2 Composite control for the manipulators - flexible ob-

ject system

Singular perturbation approach produces a multi-timéesoeodel of manipulator-
flexible beam system. Due to the end-effector force, theldleXxsteam has to move in the
desired trajectory and simultaneously, vibration of thepobmust be suppressed. In order
to achieve these objectives, a composite control algonihiirbe designed. A composite

control for the manipulator-flexible object system is, byiiéon, a controller of the form

U= Us(Xrf, Xf,t) -+ Up (W, V)
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whereus is designed based on slow subsystem (72)wnid designed to stabilize the fast
subsystem (86). The slow control for the rigid nonlinearsygbem can be designed by
utilizing sliding mode control theory. In case of fast sutteyn, a feedback control law
with special damping term will be introduced. Utilizing tharious operators mentioned in

Chapter 3, a control law for the fast subsystem will be dgwedb

4.2.1 Robust control design for slow subsystem

The key issue in developing a control algorithm is that, itk unknown manipulators
and beam parameters, the desigm@f(rf,xrf ,t) can not be arbitrary. It has to guarantee
the exponential tracking of the desired trajectories so tte Tikhnov’s theorem can be
satisfied, which will be clear in the later development. H@ttpurpose, a sliding mode
control approach will be adopted.

The tracking error is defined as,

& = Xt — Xrfd (99)
whereX; ¢4 is the desired trajectory, and the auxiliary trajectory as,
>.<r = erd — AcsEr (100)

whereAcs is a positive definite matrix whose eigenvalues are striotihe right half com-
plex plane.

The sliding surface can be chosen as,

S:s:er—Xr:'er‘f’)\cser (101)
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The sliding mode controller can be given as,

Us = Ucs = Yestf — Kp &s (102)

whereKp is a positive definite gain matriXzs(X, X, G q) is the regressor matrix given
in property 3 in CS (74) where the dynamic parameters of mdaiprs and beam are

excluded andy = [....¢n] " are the switching functions which are given by,

YCTS s
= —Lro—=2—2 103
V="Feyr e (103)

where 3cs > ||ac| is upperbound ofxcs which is known though it could be conserva-
tively selected. The advantages of the suggested contnehse is, exact knowledge of
the manipulator parameters or the beam are not requiredidsithe need for parameter
estimation unlike in the adaptive control; it gives the degitransient response and also

robustness to uncertainties are guaranteed; and it satis&erikhnov’s theorem.

4.2.2 Control design for fast subsystem

The objective of the controller is to suppress the vibratibrhe flexible object by

incorporating following feedback control law,
ur = (fr) = —F{Mvr (v) (104)

whereFfTf can be found using pseudo inverse. The oper@tig neither selfadjoint nor
positive definite and is also shown in [70] and [71] that, iBisymmetric andA-positive
semidefinite. This operator was formulated in [71J&s- KQAwhereQ is a bounded and

positive definite operator. Also, the velocity signal(V) can be measured using velocity
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sensor. It is to be noted that, there are some establisheltsrasailable using the veloc-
ity feedback for example [82] and [83]. However, they havasidered assumed modes
while in this control algorithm no form of approximation ised. In addition, compared
to other recent boundary control methods available in tteediure [66] and [84] where
the velocity and slope of fast state variable are used ab&sdand they are dependant
upon the boundary conditions of the beam. Also, the feedbéslope of the beam is not
easy to measure in real time applications. However, theepted control algorithm uses
only velocity feedback which is irrespective of boundaryditions and it does not need
the information of modes. This controller is simple to impknt in real time and reduces
the need for number of sensors.

Substituting (104) into (86) gives closed loop system wiscfjiven by,
Wi (V) + M (v) +Awg (V) =0 (105)
Using the operator8 andQ, (105) can be rewritten as,

Wi (V) + kQAWt (V) +Awg (V) =0 (106)

Wy (O) = Wig, Wi (O) =Wif,

wherek is the positive gain and the ter@Aws (v) is a special damping term [71]. This
damping has been studied by various researchers esp¢8EH)B8]. The two operator®

andAare related b = AP andp varies betweeh%l, 0]. Itis shown analytically by Huang
[86] when3 = ‘71 the damping ternQAw; (v) becomesA%V\?f(v). This corresponds to
structural damping which can also be seen in [88]3 K= 0, then damping term exhibits

strong damping or overdamping characteristics which isvsha [86] and [87].
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4.3 Stability analysis

The stability of the closed loop system is essential to sh@ability of the suggested
control algorithms for slow and fast subsystems. The devetnt of slow and fast sub-
system with the help of singular perturbation techniquéstsson to satisfy the Tikhnov’s
theorem. It is evident from the Tikhnov’s theorem for thenité time interval presented
in Chapter 3 that, the slow and fast subsystems must be enpalhestable. Therefore,
the rigorous exponential stability proof for slow and faghsystem will be presented in the

following.

4.3.1 Stability analysis for slow subsystem

The Tikhnov's theorem requires the slow subsystem to bereqitally stable. Hence,
the following analysis will illustrate the exponential siigty of the slow subsystem.

Differentiating the sliding surface (101) with respectitod results in,

Ses= X1 — X (107)
Mutiplying both sides of (107) bi.sand using (72), (107) can be rewritten as,
McsSes = Ues — CesXef — Ges— Moskr (108)
Adding and subtractinGcsX; in (108) results in,
MesSos = Ugs— (McsXr + CosXr + Ggs) +CesXe — CesXe (109)
Using (101), (109) can be rewritten as,

Mc&s: uCS_YCS(Xhth?q)aCS_CC&S (110)
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where,
(McsX; + CesXr -+ Ges) = Yes(Xr, X, 61,0) Qs
Consider a Lyapunov function candidate as,
Vi(t, Se) = %SISMCSSCS (111)
Differentiating (111) with respect to time gives,
Vi(t,So9) = SiMesSis + 5 bl (12
Substituting (110) into (112) and also using property 2 in(C3, above equation yields,
Va(t, Ses) = SlUes — Yes(Xe, X, 6,0) e (113)
Substituting the control law given in (102) and (103) int@ 3} results in,
Vi(t, Ss) < —SiKoSes— Bl Yes Sesll + | Se¥esll | s (114)

Taking transpose dfSl.Ycs|| and alsaB > ||ac| gives,
Vi(t, Sos) < —SiKpSes (115)

It is known that [89]Kp = Mgk wWherek can be considered as a least eigenvalue. Hence,

(115) can be rewritten as,

dvl (t7 &S)

G < S Mok Ss (116)

Using (111), (116) can be rewritten as,

TSI - vt s (117)

75



The solution of the above equation is,

Va(t, Sos) < V1(0, S(0)) e 2 (118)

It is evident from the above equation that the sliding swefedll converge exponentially
to zero. Thus the sliding surface is related to the trackimgres, in (101) which also

converges exponentially to zero which satisfies the Tikheibneorem.

4.3.2 Stability analysis for fast subsystem

Tikhnov’s theorem requires that for the infinite time int@rvthe fast subsystem or the
boundary layer model also must be exponentially stable. értexgy multiplier method
used by [71] is followed to prove the exponential stabilityder the following theorem
[90], [theorem 4.1] which guarantees exponential stabilit
Theorem 3:

Let A be the infinitesimal generator ofGy semigroupr (t). If for somep, 1< p <o
| ITedt<e (119)
0

then there are constaris> 1 and 1 > 0 such that|| T (t)|| < Me .
Note: It is also shown in [71] and [91] that the property lot stability and exponential

stability for a strongly continuous semigroup must sattbfy following,
| IEW)IPay <o (120)
0

Proof:

Let the energy function for (106) be of the form,
1 2 1 1 . 2
E(v) = 5 l|Aw; (v) 2+ S| A2 (v)] (121)
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whereE(v) is weakly monotonically decreasing function with respedeist time scale

[91]. The fast time scale derivative Bf v) from the above equation will be,
E(v) = —k(QAW( (v) . AWt (v)) <0 (122)
Let us choose & ¢f < 1 and the Lyapunov function candidate is given by,
Vo(v) = 2(1—&r)VE(V) + (Wi (V) . Awg (V) (123)
We have the following relation,
(W1 (v) - A (v) < 3 (A (0)][2 + [AZ 2 Ay () |2
There exists a constaot such that,
[2(1—&r)v —a]E(V) <Va(v) < [2(1—&1)v +CE(V) (124)
Forv > vy, the Lyapunov function is positive and is found from,
2(1—¢gf)v1—c1=0 (125)
The derivative ol/,(Vv) in (123) with respect to fast time scale is given by,
Vo(v) = (2— &) [|A2VUr (v) |2 — ¢ | Awr (v) [ = 2K(1— £1)v (QAWE (v) . AWt (v) —
k(QAW: (V) . Awg (v))(126)
For any arbitrary constant, say, > 0 we have,
QAT (v) . AW (V) < 2 Ama Q) [GB(Avr (v) [ + glznAwf(v)H2 (127)

Using (127), (126) can be rewritten as,

2
S

Uo(v) =2 A2 + 2

Amax(Q) — 2kv (1= &) Amin( Q)] | A (v) | -
(61— el Q) AW (V)]? (128)
2
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whereAmax(Q) = maxy, cH (Qws . W) and Amin(Q) = Miny, cH (Qws . w).

If ¢, can be chosen as large thgn — z_léz)\maX(Q» >0,
2

A

Vo(v) <0 YV > vp (129)

wherev, be found from the following is satisfied,
1.2 3k
(2—&1)[|A72]| + 5 Amax(Q) — 2kvz(1— &1 )Amin(Q) =0
The above result in (129) shows that derivative of Lyapunmction has decreasing trend
forv > vy anditis also evident from (122) that the energy will also issigating forv > 0.

Using these facts, far > Ts:= max v, vo} and also from (124 (v) can be estimated as,

V(Ts) < [2(1—€5)Ts+c1]E(O)

E(V)SZ(l—Sf)V—Cl_ 21— )v—0Cy (130)

Then, (130) can be rewritten as,

0 o 2
/r E(V)Zdvg/ [2<1_8f)TS+Cl]2E(O) <o (131)

Ts 21—¢g)v—Cy

which confirms the exponential stability as given in (119 &ence it is proved.

4.4 Simulation of composite controller

In many manufacturing and automobile industries variowsajons on flexible com-
ponents such as assembling, welding, picking and placiagficiently done using two
robot arms. In a typical car industry, number of sheet metatispmust be assembled in
the required place. In order to avoid the collision betwédengarts and also to satisfy the
ergonomic constraints, these parts must move in the pbesttrajectory (tracking prob-
lem). By defining effective desired path, the robots helpouserform repetitive tasks that
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ultimately improve productivity. In order to illustratedheffectiveness of the proposed
composite controller, simulation studies are performed.

The following are the time independent parameters of a nudatipr dynamic equa-
tion which are used to formulate the regressor [68].

piz = migld +lis +mi(12 +12) + liz+ mi(12 +15+12) + I3

Piz = Mu2lializc +miglizliz

Piz = Miglizlize; Pia = Miglialisc

pis = Mizl 5 + liz +my3(13 +13) + i3

Pie = Mzl 3. + liz; Piz = MizGlizc + mMizglis + Misglia

Pig = Mizglizc +Misgliz; Pig = Miagliac

Each manipulator inertia matrix is given by,

Mi11 M2 Mi13
Mi= | mp mox mps

Mi31 Miz2 Mi33

where,
Mi11 = Pi1 + 2Pi2C0di2) + 2Pi3COKdi3) + 2Pia COK Gz + Gii3)
Mi12 = Pis + Pi2COKGi2) + 2Pi3COK Qi) + Pia CO iz + Gi3)
Mi13 = Pie + Pi3COKi3) + Pia COYdi2 + Gi3)
Mi21 = Miz2; Mgy = Mi13; Mi22 = Pis + 2Pi3Co0Yi3)

Mi23 = Pig + Pi3COYQi3); Miz2 = Mi23; M3z = Pis
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The centrifugal and coriolis matrices for each manipulatergiven by,

Ci=1 g2 G2 Go3

where,

Ci11 G2 Gi13

Ciz1 GCi3z2 Gi33

Ci11 = —Pi2SiN(Gi2)Gi2 — PizSiN(Giz) iz — Pia SIN(Gi2 + Giz) (Gi2 + Giz)

Ci12 = —Pi2SiN(Gi2) (Gi1 + Gi2) — PizSIN(diz) iz — PiasSin(Gi2 + diz) (Gi1 + G2 + Gi3)

Ci13 = —Pi3SiN(0i3) (41 + Gi2+ Giz) — PiaSiN(Giz + Gi3) (Gi1 + G2 + Gia)

Ci21 = Pi2SiN(Qi2)Gi1 — PizSin(Qiz)diz + Pia Sin(di2 + 0i3)Giv

Ci22 = —Pi3Sin(Qi3)Gi3

Cizz = —Pi3Sin(diz) (Gia + Giz + Gia)

Ciz1 = PizSin(qi3) (Gi1 + Giz) + PiaSiN(Qiz + Gi3) G

Ciz2 = Pi3Sin(gi3) (Gi1 +Gi2); Cizz=0

Each manipulator gravity vector is given by,

;

\

where,

di1

Gi2

gi3

V

0i1 = Pi7CO0i1) + PisCoY i1 + Gi2) + PiocOS i1 + Qi+ Gi3)

iz = PigCOg0i1 + Gi2) + Pig CO i1 + Qi2 + Gi3)

0i3 = PioCO i1 + Uiz + Gi3)
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Each manipulator Jacobian matrix is given by,

Ji11 Jiiz Jis

Jiz1 Jizz Ji2z

1 1 1
where,
Ji11 = —lizsin(diz) — li2sin(Gi1 + Gi2) — lizSin(Qiz + Giz + Gi3)
Jizz = —li2sin(diz + diz) — lizsin(Gi1 + iz + ia)
Jiz3 = —lizsin(Gi1 + Giz + Gi3)
Ji21 = lizcogqi1) + li2cogGi1 + Gi2) 4 li3Co(Gi1 + Giz + Gi3)
Jizz = lizcog(qj1) +lizcogdi1 + Gi2)
Jizz = lizcoggi1 + 0z + Gi3)

In the tracking problem, desired circular trajectory of thgect is specified by,

sin(t)

Xrfd = | cogt)

0

Table 1: Parameters of the manipulator

Link Length (m) Mass (kg) Moment of inertia (kgin

1 0.6 1.5 0.50
2 0.6 1.5 0.50
3 0.2 1.5 0.25

The parameters of identical manipulators [68] are giversipld 1. The flexible beam
parameters are given in Table 2.
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Figure 8: X-Position tracking-Sliding control in CS
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Figure 9: Y-Position tracking-Sliding control in CS
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Figure 10: Orientation of the beam-Sliding control in CS
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Figure 11: Circular trajectory
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Table 2: Parameters of the flexible beam

Parameter Value
Mass (m) 1.5kg
Length (L) 1m
Radius of the object 0.05m
Density 2700kgm?

Young’s modulus (E) 71 GPa

Manipulator 1 Manipulator 1

Jointl1(rad)

14 16 18 20 70 Z‘ l; é 8 'I.‘O 1‘Z 1‘4 1‘5 W‘B 20
Time(sec)

s 0 1
Time(sec)

Figure 12: J1M1-Sliding control in CS  Figure 13: J2M1-Sliding control in CS

The beam initial position and orientation atg = {0.51,0.36,0.1}" and initial ve-
locity and acceleration are considered to be zero. Iniakjangles of manipulator ag
=0.2974 radgo = 1.6974 radg;3 = -1.6948 radgp; = 0.2149 radgp, = 1.4886 rad and
023 = -1.4306 rad, respectively. The initial joint velocitielsatl the joints of manipulators

are 0.001 rad/sec and joint accelerations are assumed &rdeThe simulation is carried

Table 3: Control parameters-sliding control in CS

Parameter Value

Kb diag(424.2)
Acs diag(7.9)
Bcs 0.004

k 1
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Manipulator 1 Manipulator 2

Joint3(rad)
Joint1(rad)

o 2 4 6 5 _wb 12 14 G 8 20 o P 2 s s 1b 12 14 6 5 20
Time(sec) Time(sec)

Figure 14: J3M1-Sliding control in CS  Figure 15: J1M2-Sliding control in CS

Manipulator 2

Manipulator 2

o
@

Joint2(rad)

Joint3(rad)

°
&

NS NN

2 4 6 8 1‘0 1‘2 1‘4 16 18 20 ) 2‘ /; 6‘ é 1)0 1‘2 1‘4 1‘6 1‘8 20
Time(sec) Time(sec)

Figure 16: J2M2-Sliding control in CS  Figure 17: J3M2-Sliding control in CS

out with a sampling period of 0.01sec. The control pararsedes tuned and are given in
Table 3.

The value of” was chosen based on thg norm of the time independent parameters
of the regressor in this case, vecty;. Figs. 8 - 10 show the tracking of planar motion
of center of the object along X, Y directions and also rotaibout Z axis, respectively. It
can be observed that, tracking of position and orientasaachieved within 1 sec, which
shows the effectiveness of the controller. It can be seen fre Fig. 11 that the desired

circular motion is achieved. In order to achieve the destiedlilar trajectory of the object,
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each joint of the manipulator are moved in a smooth mannectwdiie shown in Figs. 12
- 17. In all the figure captions, “JjMi” the j-th Joint of i-th dhipulator where (i=1, 2),
(=1, 2, 3) and “CS” represents the Cartesian Space.

Itis also observed from the Figs. 18 - 20 that the slidingalaas (SV) approach zero.
Once the system reaches the sliding surface it becomes statblit will try to maintain in
the sliding surface which can also be inferred from thesedigjuHence, it is evident from
(101) that, the tracking error will also converge exporahtito zero. The control torques
(CT) of each joints of manipulators are shown in Figs. 21 -18&ll of these results around
4.5 secs there is a sudden increase in the value and afteriverdtabilized. This is due to
the joint 2 of manipulator 1 approaches towards the singulpoint which can be seen in

Fig. 13. These singularity problems can be avoided with &ip bf careful path planning

techniques.
5 T 5
aF 4
3 o~ 3F
Q [0}
Q Q
L.CE 2 ﬁ 2F 5
= =
=1 =]
[ZIRIS 4 738 1
g g
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2 —2F
3 3
—ar 4
0 p 2 é Q .1‘0 > " 1‘5 1‘3 20 0 P 4 é é ,wb 2 4 1‘6 1‘3 20
Time(sec) Time(sec)

Figure 18: SV 1-Sliding control in CS Figure 19: SV 2-Sliding control in CS

In the case of fast subsystem, the initial disturbance of Smtimzero initial velocity
is considered for the simulation. Even though the flexiblgathis neither approximated

nor discretized, for the simulation purpose first few ndténeguencies of the beam are
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Figure 20: SV 3-Sliding control in CS
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Figure 21: CT of J1M1-Sliding control inFigure 22: CT of J2M1-Sliding control in
CS CS

considered. Since the first few modes are dominant yieldigigen amplitude of vibration,
first four modes of vibration are taken into account for thawdation studies. For the
case of structural damping characteristics wifes —0.5, the vibration initially yields
oscillatory motion and is completely suppressed aroundcarsewhich is shown in Fig.
27. It is also observed from the Fig. 28 that exponential gexaurs at3 = 0 which
corresponds to over damping behavior of the fast subsystaghvis same for all modes.
Simulations are also performed with different dampingosbf 0.1 and 0.4. Figures

29 and 30 show that, with increasing damping ratio, the aongéi of vibration has been
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Figure 23: CT of J3M1-Sliding control inFigure 24: CT of J1M2-Sliding control in
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Figure 25: CT of J2M2-Sliding control inFigure 26: CT of J3M2-Sliding control in

CS

significantly suppressed. Furthermore, the transvergéadisment under simply supported

CS

end condition of the beam with damping ratio of 0.1 is evaddadt various locations of

the beam using the modal summation method. Due to symmetmgdawy conditions,

the deflections at 0.1 m from the left end and at the middle eflibdam are considered.

It can be observed from the Figs. 31 and 32 that, the centdneobéam yields more

deflection than any other point on the beam. The simulatisalt®are compared with the

existing available results [44] and [50], where, assumedesare considered. It can be
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seen from those results that, the proposed controller sgpps the vibration with limited
information compared with the existing controller, whidiog/s the effectiveness of the

proposed controller.

X 10
- - model
A - mode2
alb ---mode3

& —mode4

Transverse deflection (m)

_3 | | | | | | | | |
0 02 04 06 08 1 12
Time(Sec)

Figure 27: Structural damping characterisfits- —0.5

Further simulation analysis is being carried by increasihgmodulus of elasticity
which resembles the rigid beam. Initially, the Young’s mh@uE) of aluminium is con-
sidered as 71GPa and the transverse deflection at the midgdaire beam is suppressed
around 0.2 secs which is shown in Fig. 32. Then, E is increasmghd two times to show
the rigid nature of the beam. By considering the E as 150 GRalations are performed
again. Itis shown in Fig. 33 that the vibration is suppressauparatively in less time
than in the previous case. Finally, the E value is increas@00 GPa that is close to that
of steel, and simulation is carried out. Compared to the almgntioned two cases here,

the vibration is suppressed within 0.15 secs which showstiigaincrease in modulus of
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Figure 28: Strong damping characteristits- 0
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Figure 29: Deflection of the beam for Damping ratio=0.1

90



5 T
\ --mode 1
| mode 2
4 '\‘ k ~|---mode3
- —mode 4
~~ ‘ \A
g 3 : \' 4
= .
2
ISH T
LR :
Q ' !
Lo i |
o -
= T 7
wn " \
g |
— U ! -~
Op v \\ 7 T —=
-
_2 1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 004  0.05 0.06 0.07 0.08 0.09 0.1
Time(Sec)
Figure 30: Deflection of the beam for Damping ratio=0.4
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Figure 31: Deflection at 0.1 m from the left end of the beam
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Figure 32: Deflection at mid point of the beam for E=71GPa
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Figure 33: Deflection at mid point of the beam for E=150GPa
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Figure 34: Deflection at mid point of the beam for E=200GPa

elasticity has made the beam rigid and correspondinglatiilim is suppressed faster.

4.4.1 Avoidance of chattering in the slow subsystem contrd&w

Since the control law (102) and (103) is discontinuous actbs sliding surface, such
a control law leads to chattering. Chattering is undesérabbractice because it involves
high control activity. To remedy this drawback, we usualsb;e% to replacesgnx) in
the control law (102), wheré, is a constant. Let the switching functignin the control

law (102) be replaced by,

Yos Ses

SsYtS 132
AN (132)

Y= —.BCS

wheref:s becomegBes > (1+ %) |acs|| ande; is a design constant. Following the analysis
given in [77], it can be proved that will exponentially converge to a small bound, which
depends on selection @f. Based on the Tikhnov’s theorem, the stability analysiggiv
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in [77] is still valid. However, in such a case, tracking erep will not tend to zero but
is uniformly bounded. The admissible amplitude of the tnaglerror can be achieved by
choosing a suitablé;. By incorporating the suggested switching function in tbatool

law, the chattering can be avoided.

4.5 Special case as manipulators handling a rigid object

When we consider the object as rigid, then the flexible patamein the dynamic
equations of motion of the object (22) will be considered ¢ozlero and the modulus of
elasticity is assumed to be infinite in (23). Hence, one cae tize dynamic model for the
rigid object as,

MraXet +Cra + Mrd + Gra = Fra(— ) (133)

B T ( ) (

m O O Xo 0

Ma=|0 m 0 |i%i=1{ 4 (i Ga={000"; na={000"; Gu=1{ mg

L2 .
o o m 6 0

L . \ / Vs

Including the moments at the two ends of the beam,

1 0 0 1 0 0

Frd = 0 1 0 0 1 0

L o L L o L
Qsme —7cos(9 1 —7S|n9 7cos€ 1
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Also Rbecomes®;

1 0 Lsing

0 1 —5co¥

00 1
R =

1 0 —5sing

0 1 5codh

00 1

The obtained dynamic equation of rigid object (133) is eglaimt to the rigid object model
presented in [68].

Then, the manipulator equation derived in Cartesian sf@ec@n be rewritten as,
M IR Xt + (MII IR + MR + GO IR X + Gy =147 f (134)
Premultiplying (134) byR] J-T and alsdR] = F ¢ gives,

RIJ TMI IR Xt +RIITT (M IR + M IR + C IRy ) Xt

+RIITG =R I Tr+F¢f (135)
Substituting (133) into (135) yields,

RIJ TMI IR Xt +RIITT (M IR + M IR + G I IRy ) Xt

+RIITTGr =R I T T~ (MgXsf +Gra) (136)
The above combined dynamic equation formulated in Cartespace is described by,

(Mo+ Mrd)xrf +C0er +Go+ Grg = Uo (137)
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where,
Mo =R[J TM IR
Co=R]J T(MJ R +M IR +C I 1Ry)
Go=R]J TG
u=R[JTr

The above equation can be rewritten as,

MorX;t +CorXrt + Gor = Uor (138)
where,
Mor = Mo+ Mg
Cor =Co
Gor = Go + Grg
Uor = Uo

which is same as the slow subsystem presented in (72). Thermrontrol algorithm and
stability analysis presented for the slow subsystem earlithis Chapter will be valid for

the case of two manipulators rigidly grasping and movingitie object.

4.6 Summary

In this Chapter, basic idea of adaptive and robust contgirihms were reviewed.
Based on those concepts, a regressor based sliding model@gorithm was developed
for the slow subsystem. In case of fast subsystem, as a pédu¢ gbmposite control law, a
simple feedback control algorithm was derived. Exponéstability analysis was carried
out to satisfy the Tikhnov’s theorem which validated thegsilar perturbation approach.
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The simulation results showed that the proposed compositiatler yields good track-
ing performance and simultaneously suppresses the obrafithe beam. In addition, to
reduce the chattering effect on the slow subsystem cordvgl 4 smoothing control law
was suggested. Furthermore, as a special case, combinachaymodel for the two ma-
nipulators handling a rigid object was presented. In the @apter, two more control
strategies will be developed to improve the slow subsystamirol law and corresponding

simulations will be performed to demonstrate the efficieoicthe controller.
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Chapter 5

Further Studies on Controller Design

5.1 Introduction

In the previous Chapter, the detailed investigation andhatiges of regressor based
control algorithm was carried out for the slow subsystemweleer, further improvement
on the control law for the slow subsystem can be made withmutuse of velocity feed-
back and also disregarding the regressor. In some of thdine@alapplications, velocity
measurement may require additional instrumentation aswl mleasured feedback signal
may be contaminated with noise. Also, the inclusion of regoe matrix in the control
algorithm increases the computational effort needed amdeimenting them in real time
application is also tedious. This Chapter addresses thsges by providing suitable con-
trollers to the slow subsystem. The stability analysis isqened and the corresponding
simulation studies are carried out. The simulation reshitsv that the proposed controllers

can achieve good tracking performance.
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5.2 Control design without velocity measurements

In most of the control algorithms, it is assumed that the cigfofeedback signal is
available. However, in some applications it may not be frbsdb measure the velocity
or may not even be desirable to do it. Furthermore, the useisfwelocity signal in the
control algorithm may creates the instability in the sysf8#j. In practice, the joint veloc-
ity is measured by means of tachometers or by differengiatie position measurements
which are obtained from encoders or resolvers. This naeg¢ssiadditional sensors which
increases the cost and also the velocity signals are comédeai by severe noise [93]. This
section, focuses on the development of an adaptive coatnohithout measuring the ve-
locity signal.

By using desired velocity and acceleration trajectory ef ¢bject, the slow subsys-
tem given in (72) can be described based on the parametengatchnique [76] which is

given by,

McsXe td +CesXrtd + Ges = Ya(Xet, Xrfd, Xrfd) Ocs (139)

whereYa (X ,erd,erd) is the regressor matrix which is dependent on desired taajec
and independent of dynamic parameterss is the constant vector of manipulator and
beam inertia parameters.

The control law can be formulated as [94],
Ues = Ya(Xet, Xrtd, Xrtd) Oes— QZY(w+ per) (140)
and the intermediate vectossandw can be calculated by,

w = w+Q% (141)
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w = —20w-2Q% (142)

Also, the adaptive law is defined as,

écszécs:—ZY;IZ (143)
and z is given by,
. w p
= — =4 = 144
z da-ata® (144)

whereg, = Xt — X4 is the tracking errorfics is the estimate ofrs, then, the parameter
error vector can be defined ass = ¢s— Qcs, Y is constant positive definite matrif, p
and{ are positive constants. It should be noted here that thealdatv given in (140)
and the adaptive parametégs can be found using adaptive law given in (143) do not
involve any velocity measurement as feedback. Thus, idsvbie velocity sensors and the
controller needs only position measurements.

Substituting (140) into (72) gives,
& = Mg (—Q?Yw— pQ?Yer — Ceshy + Yallcs— Caér) (145)

whereCyé = Ces(Xrt, Xrt ) Xrfd — Ces(Xrf , Xrfd) Xrta-
With the introduction of state vectof, = [€7, ', & ], using (141), (142) and (145), the
state space form of the closed-loop equation is described by

Xy = —AXy +Cy(—Cesbr —Cyé& + Yalcs) (146)

where the matriXd, andC, are given by,

0 QMY pQ2M Y Meek
A= —0a 20 0 &= 0
—1 0 0 0
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By arbitrarily selecting the matricd& andQ,, one can show that/2(R,A,+A,"R,) =

Qv. One of the possible choice for the symmetric positive difimatriced?, andQ, are

[95],
Mes  —gMes GMes (Q—§Mes —Mes 0
R=1-3Ms Y 0o |} Q= ~Mes QY 0
EMecs 0 pQ% 0 0 p2QY

Also, the eigenvalues &, andQ, satisfies the following bounds,

Apllx IP<x]Rx, and QAq || %y [1< ) Quxy (147)

The stability of closed loop system given in (143) and (14#)ke proved in the following

section.

5.2.1 Stability analysis

Stability analysis aims to show, by properly choosing a lyragy function candidate,
that the proposed control algorithm can accomplish asytigdtacking performance.
Theorem:

The closed-loop system described by (143) and (146) andabignals are bounded and

alsolim;_.., Xy = 0, provided the following condition satisfied,

2V3(t)
Ap

QAq >3 Cq || +29 [sup|| Xctq || + ] (148)

whereA, andAq are the eigenvalues & andQ, and a functionVa(t) is defined in (149).
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Proof:

Consider a Lyapunov function candidate

1
V3 (t) - EX\-,I_ P\/XV + acsacs (149)

2¢

Differentiating (149) gives,

T
—aIsacs (150)

. . 1 .

Using (146), the above equation can be rewritten as,

. 1.
Va(t) = —X\-/FQVXV‘FX\-/FPVCV( Cesér —Cyé& + Yalcs) + Xv vav+ 2 I Ocs (151)
WhenQ > max1, p), one can have the following,
—XRCCe& = (er—§+ger> Caér
< 3Gl %17 (152)
1 T l T - . 1 T * . - p " T - 1 N T
=X, PXy — X, PRCCestr = -6 Mes& + & =My ' — & =M
2 2 Q Q
. w :
RS %er)TCcser (153)

Using the propertysrT(l/ZMcs—Ccs)é( = 0, above equation can be rewritten as,
1. T . 1 : .
o Rxv— X, RCCeslr = ﬁ[per — W|[Mcs— Cegl&
< 29| Xer Il % 11 (154)
whered || Xt ||=|| Mes— Ces |-
Substituting (147), (152) and (154) into (151) yields,
. 1.
Va(t) < —(QAq—3|Cqll =28 || Xt II) || v [|* +(Z Ya+ Zacs) cs

= —f(| %t ) | % )12 (155)
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wheref (|| Xt [|) = QAq—3 || Cq || =28 || Xt || andx] RCy, = Z" and also (143) is used to
obtain the above equation. The right hand side of (155) istheif f (|| X1 ||) > 0, which
is true if (148) is satisfied.

When QAq is sufficiently large, (148) is satisfied. By induction witbspect ta,
V3(t) will be decreasing until| X, ||= 0 which shows that the closed-loop system (146) is

asymptotically stable and hence the given theorem is proved

5.2.2 Simulation results

To illustrate the performance of the proposed controllenuations are carried out.
The parameters of the identical manipulators and beam &em gn Table 1 and 2. The
beam initial position and orientation ak¥; = {0.51,0.36,0.1} T and it’s initial velocity
and acceleration are considered to be zero. Initial joigiesof manipulator arg;1 =
0.2974 radg = 1.6974 radg3 = -1.6948 radgp; = 0.2149 radgp, = 1.4886 rad andps
= -1.4306 rad respectively. The initial joint velocitiesalf the joints of manipulators are
0.001 rad/sec and joint accelerations are assumed to be Eleeosimulation was carried

out with a sampling period of 0.001sec to track the desirg@dtory given by,

sin(t)
Xrtd = | codt)

0

The initial values ofi.s(0) are chosen ag8.11; 006; 6e~3; 6e~3; 0.11; 0.02; 0.073; Q044;
0.16; 011; 006;6e73; 6e~3; 0.11; 002; 0073; Q044; Q16; 0.16; 00YT. The initial

value ofw(0) is chosen as zero. The control parameters are tuned andigiVable 4.
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—actual
- - desired

Beam center X—Position(m)

.5 6
Time(sec)

Figure 35: X-Position tracking-Without velocity measuearhin CS

—actual
- - desired

Beam center Y—Position(m)

.5 6
Time(sec)

Figure 36: Y-Position tracking-Without velocity measueamin CS
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0.12

—actual
- - desired

01t . . : i
0.08 |- N
0.06 - . . . i

0.04 - b

Orientation of the beam —theta(rad)

-0.02

—-0.04 b

70 06 Il Il Il Il Il Il Il Il Il
: e 6
Time(sec)

Figure 37: Orientation of the beam-Without velocity measoent in CS

Table 4. Control parameters-without velocity measuresanCS

Parameter Value

Q 31
p 27.8
Y diag(0.1)
{ 0.1
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Manipulator 1 Manipulator 1

Joint1(rad)
Joint2(rad)

T 5 6 7 T s 6 7
Time(sec) Time(sec)

Figure 38: J1M1-Without velocity meakigure 39: J2M1-Without velocity mea-

surement in CS surement in CS

Manipulator 1 Manipulator 2

Joint3(rad)
Joint1(rad)

s 6 7
Time(sec)

T s
Time(sec)

Figure 40: J3M1-Without velocity meaFigure 41: J1M2-Without velocity mea-
surementin CS surement in CS

It can be observed from the Figs. 35 - 37 that the control latkout velocity mea-
surement also yields good performance in tracking along Hir¥ctions and also reaches
the desired orientation. It can be seen from the Figs. 38 hdB8the manipulators also
moved in a similar path as in the regressor based slidingaor8&imilarly, joint 2 of ma-
nipulator 1 approaches the singularity point around 4 sdushwcan also be seen in the
previous section controller simulation results. It is @rntdfrom the simulation results that

the suggested controller can track the desired trajectaityowt using velocity feedback
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Manipulator 2 Manipulator 2

Joint2(rad)
Joint3(rad)

T s 6 7 T s 6 7
Time(sec) Time(sec)

Figure 42: J2M2-Without velocity meakFigure 43: J3M2-Without velocity mea-
surementin CS surement in CS

signal. This avoids the need for necessary sensors andatdlinreduces the cost.

5.3 Control design without regressor

Many studies have been focused on the development and iraptation of adaptive
and robust control algorithms [18], [24], [25], [68], [86ha [96] for two manipulators
handling an object. All of these studies need the use of theessor matrix to simplify
the control algorithm and help in achieving the stabilitpgirfor the linearized robot dy-
namics [58]. However, it should be noted that the regresasedh approach has difficulties
in implementing in practical problems as it involves morenpaitations. Furthermore, the
recomputation of the regressor at the servo control rameases the computational effort
in practical applications [97]. An off-line computatioretheme of regressor is thus pro-
posed to calculate the regressor [98] to reduce the on-timgpatational complexity which
uses the position, velocity and acceleration informatittihe desired trajectory. However,

the computation of regressor could not be avoided when tiseaechange in the robot
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structures or desired trajectory.

Considering the aforementioned difficulties, for a singlanipulator case various
control strategies have been developed (see, for exangdeand also [97] - [99]) which
avoids the regressor. In particular, Leung and Su’s adapd9] approach involves com-
putation of simple scalar functions and it involves only f@arameters to be estimated
which is independent of number of robots. This control apphois also valid when more
number of links are considered for each of the robot. Hermeatgorithm developed for
the single manipulator is extended to the two manipula&amb system. However, it is to
be noted that the typical parameter adaptive algorithmiregjatleast [68] ten parameters
to be estimated for each robot.

The robust adaptive control law can be chosen as [69],

Uos = —KaMosSp— (B [| % || B2 [l et [l % || +B3+ a || X H)Sat(%s) (156)

whereKy is the positive definite matrix angl, i=1,2,3,4, are the adaptive control gains.
Sy is the measure of the algebraic distance of the currenttstéite boundary layer which

is given by,
Sp = Ss— @ sal(Ss/ @) (157)

where@ > 0 is boundary layer thickness.

Also, the sat&.s/ @) is defined as follows,

sal(Ss/P) = SONSes) if [ Ses|> @

= S/ if|Ss|<o
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The adaptive parameters are given by,

pr = BullSyllllX | (158)
Pr = BallSyllll Xt Il X | (159)
Pz = BsllSyll (160)
Py = BallSollll %t (161)

wheref3 > 0, i=1,2,3,4 are the arbitrary constants which determiagssrof adaptation.
The control law (156) has two terms. The first term is represgproportional and deriva-
tive control. The adaptive control gairﬁg, i=1,2,3,4 are represented in the second term
which are used to recover and cancel the unknown nonlingaardics. It should be em-
phasized here that the control laws (156) and (158)-(1&bjwe multiplication of simple
scalar functions and the detailed description of model isweoessary. Therefore, the sug-
gested controller will avoid the complex calculations ofnesssor, computationally fast,

structurally simple and easy to implement in real time agations.

5.3.1 Stability analysis

In order to determine the stability of the closed loop systiescribed by (72) and (156),
the following analysis is being carried out.

Differentiating the sliding surface (101) with respectitoe gives,

Ses= X1 — % (162)
Multiplying both sides of (162) b¥.s and using (72), (162) can be rewritten as,

Mc&s = Ues— Ccsxrf — Ges— Mcsxr (163)
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Adding and subtractinGcsX; in (163) gives,
McsS:s = Ucs— Mchr — CesSs— Ges— Ccsxr (164)

Consider a Lyapunov function candidate,

1 1
Vy(t) = sgmcssp+§z

1 (pi — pi)?
2

Bi

SinceS, = Ssand differentiating (165) with respect to time gives,

(165)

(pi — Pi) (—P)

: (166)

: ) 1 .
Using (156) and (164), (166) becomes,

Va(t) = Spl—KaMesSp — (B || Xe || +52 [ Xet [[11 X || +B3 +Pa || X Iyjsar )

¢
(o —6i)(—pH)
B

Since|| Sy ||= SqTosat(SCS/go) [69], using property 4 in CS given in Chapter 3 and after some

. ) 1 +.
+8p(~MesXr — CesSes— Ges — CosXr) + 55 MesSp + (167)

algebraic manipulation, (167) results in,

Va(t) < —SpKaMesSp — (B | X [| +02 | Xet [[[1 Xe (| +Bz+Pal| Xt 1) 1| Sy |

. ) . 1 +-
(o1 [| X I +p2 | Xet ([l X 1] +p3) || Sy || +§s}0|v|css¢
s (P —P) (=5

+ — SCesSp+ @p2 || X || Sp |l (168)

SinceSZ(Mcs— 2Ccs)Sp = 0 (property 2 in CS) and defines = @p, and also using the

adaptive parameters (158)-(161), (168) yields into,
V4(t) = —SHKaMesSy (169)

SinceKygMcs is symmetric positive definite matrix then there exists astamnty such that

Vlg < KgMcs. Hence, (169) can be rewritten as,

Va(t) < -y Sp5<0 (170)
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In order to achieve the stability of the system, it is necgssa show thatS, — 0 as
t — . This can be achieved by applying Barbalat’'s lemma to thieviahg continuous

non-negative function,

V() = Va(t)~ [ (a(n) 4y Sr) [Brar with

V(t) = —y| Se(r) I3 (171)

By definition, S, is related withSs in (157). Then, using the standard argument, sige

is bounded and correspondinglyande; are also bounded. Thus, all the feedback signals
Xct, X+ andX, are bounded. Therefore, it can seen from (164) t8atis also bounded
becauséVics is already given as bounded property (property 4 in CS) whichesV (t) to

be uniformly continuous function of time. Sineis bounded below by 0 and(t) < 0

for all t, use of Barbalat's lemma proves théft) — 0 and from (171) thal S, ||— 0 as

t — oo,

5.3.2 Simulation results

To demonstrate the effectiveness of the controller, sitiaria are performed by con-
sidering the manipulators and beam parameters given ireThkdnd 2. The adaptive
gains are chosen g&=£>=3=2 andf3;4=2.4. The initial adaptive parameters are taken
as P1(0)=P2(0)=p3(0)=P4(0)=1. In order to reduce the chattering effect, the boundary
layer thickness is chosen @s0.2. The control gain parameters are choselgas 50 and
Acs = 19.94. The tracking performance along X and Y-directioresshhown in the Figs.

44 and 45. The orientation of the beam reached its desirest waithin a sec as shown
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in Fig. 46. The results show that, without incorporating tegressor, the proposed con-
troller can achieve good tracking performance. SimildHg,joint angular motions of each

manipulator follow a similar trend as in the case of othertialers.

—actual
- - desired

Beam center X—Position(m)

e 6
Time(sec)

Figure 44: X-Position tracking-Without regressor in CS

5.4 Summary

This Chapter presented two control strategies to overcdmaeptoblems related to
measurement of velocity feedback and inclusion of regressdrix. Initially, in order to
avoid the concerns associated with the measurement ofityefagnal, an adaptive con-
trol law with only position feedback has been implementedh® slow subsystem, and
corresponding stability analysis is also carried out. 3aton results confirm that, the
presented control does not need any velocity feedback wdiolds the velocity sensors
and other associated practical difficulties. Finally, a-negressor based adaptive robust
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—actual
- - desired

Beam center Y—Position(m)

_-I 5 1 1 1 1 1 1 1 1 1
) .5 6
Time(sec)

Figure 45: Y-Position tracking-Without regressor in CS
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Figure 46: Orientation of the beam-Without regressor in CS
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Manipulator 1 Manipulator 1

Joint1(rad)
Joint2(rad)

-0.5

I R R T
Time(sec) Time(sec)

Figure 47: J1M1-Without regressor in CSFigure 48: J2M1-Without regressor in CS

Manipulator 1 Manipulator 2

Joint3(rad)
Joint1(rad)

_ I I I L I _ I I I L
0 1 2 3 4 9 10 0 1 2 3 4

S s s 6 7
Time(sec) Time(sec)

Figure 49: J3M1-Without regressor in CSFigure 50: J1M2-Without regressor in CS

control algorithm was implemented to the slow subsystemaadahe computation burden
of the regressor. Stability analysis and simulation rastédveal that the presented con-
troller can track the desired trajectory effectively. EariChapters discussed broadly the
dynamics and control of manipulators-flexible object syste Cartesian space. In the next
Chapter, further analysis will be carried out by develoghgcomplete system of dynamic

eguations in joint space.
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Figure 51: J2M2-Without regressor in CS
Manipulator 2
10 T T T
=)
8
bl
g
R

Time(sec)

Figure 52: J3M2-Without regressor in CS
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Chapter 6

Manipulators - Flexible Object System

In Joint Space

6.1 Introduction

Depending on the nature of the problems and the intendedat@piplications, the dy-
namic equations of motion of a manipulator-beam system eagxpressed either in joint
coordinate space or Cartesian coordinate space. Earliaptéis have dealt with Carte-
sian space system. However, there are certain advantagssmjoint space compared to
the Cartesian space. The joint space motion planning cactbevad in two steps [101]:
path planning and trajectory generation. In the path plagniobot motion is preplanned
for the desired geometric path and the problems associatedjgometric constraints and
joint angle limits are taken care of. The trajectory genieratletermines how fast the robot
should move along the desired geometric path and it corssmtber constraints such as

limits of joints velocity, acceleration, jerk and torque.ahy industrial robots utilize joint
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space control schemes for the position control. Also, wiidéning the Cartesian trajec-
tory, the inverse kinematics is used to transform the Cianegariables to joint variables
and there may be a chance of singularity problem. Furthepte inverse kinematic cal-
culations are computationally expensive for complicatagettories. Hence, defining the
joint space motion can be an advantage. Moreover, clagsicdélspace control schemes
are not only simple to implement, but also stable and rod82][ Considering these rea-
sons, earlier analysis is further extended by developiegctimplete system of dynamic
model in joint space. Then, by utilizing the typical stepsiogular perturbation approach,
slow and fast subsystem will be obtained. For each subsysterasponding control law
will be suggested and together they form a composite compol to the complete system.
Stability analysis and simulation results are presentetustrate the composite control
strategy. It should be noted that some of the equations miessén the previous Chapters

are reviewed here to formulate the complete system of dynmaquations in joint space.

6.2 Modeling of manipulators - flexible object system in
joint space

In order to obtain the complete system of dynamic equatiofsint space, the manip-
ulators and beam dynamic equations obtained in Chapterr2emasidered.

The two manipulators dynamic equation assembled in joiate§34) is rewritten as,

MiG+Cq+Gr =1+ f (172)
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The beam dynamic equation derived in Chapter 2 for the rigui/lbimotion can be repro-
duced as,

Myt Xt +Crt -+ Nes +Grf = Fre(—f) (173)
and for the flexible beam equation of motion is rewritten impact form as,
g . > El 4
Ajt Xit +1—nb +3’7 = Frs(f) (174)

whereAjs = [—sinf cosf X|.

It can be seen from (173) and (174) that, the beam dynamiepresented in Cartesian
space and it should be converted into joint space. Then,dab@ting equation can be
combined with the manipulator dynamics (172) to yield thenptete system of dynamic
equations in joint space. The following section illusteat@w to formulate the combined

dynamics in joint space.

6.2.1 Combined dynamics in joint space

Following relations are taken into account again from Caaptto formulate the com-
bined dynamics in joint space.

The end-effector velocities and joint velocities of the mpafators are related by,
{e} = [Jl{a} (175)
and the end-effectors velocities are related to the objarity as,
{e} = [R{X+} (176)
Using (175), (176) can be written as,

Xt =R'Jq a77)
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whereR' is the pseudo inverse &

Differentiating (177) gives,
Xt = RIIG+RI(IG+Jd) (178)

Then incorporating (178) into (173) and (174) yields therbemid body motion in joint
space,

Mrt RTIG+ Myt (RFI+RII)G+Crt + Nt +Grp = Frg (— 1) (179)

and also flexible motion of beam in joint space can be writeen a
) : N 5 El
ARG+ A (RII+RNI)G+ 1 —n6%+ F”W = Fse(f) (180)

Substituting for the forcé from (179) into (172) gives the combined rigid motion dynami

equation in joint space,
Mistd+CistQ+ Gjst + Njsf = Tjsf (181)

where,

Mist = (Mr +JTFE M RTJ)

Cist = Cr +JTF My (RTI+RTJ)

Gjst = Gr +JTF Gyt

Njst = Nrt
SinceF; ¢ is not a square matrix, its inverﬁé} can be calculated by the pseudo inverse.
Taking into account the transverse vibration of beam dynai{di80) and also above derived
combined dynamics forms the complete manipulator-beatesydynamics in joint space
given by,

Mistd+Cistq+ Gjst + Nrf = Tjst (182)
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: . L . El .
AijTJCi-l-Ajf(RTJ—I-RTJ)q-l-n—r762+?n'V:Fff(f) (183)

The above system of dynamic equations are coupled with agdl flexible parameters.
Without using any approximate methods, the coupled motioast be controlled. There-
fore, singular perturbation approach can be applied tosfgsem of dynamic equations as

well.

6.3 Singular perturbation modeling in joint space

In order to develop a robust control algorithm for the systéilynamic equations (182)
and (183), the following control task is considered.
Control task: For any given desired bounded trajectogg®nddg, with some or all of the
manipulator and beam parameters unknown, derive a cagtfoll the manipulator control
torqueTjs¢ such that the manipulatay tracksqy while suppressing the vibration of the
flexible object,n, to zero.

The above control task can be achieved by developing theatoMiast subsystem in
joint space. These subsystems can be obtained followingitasianalysis as discussed in
Chapter 3 by using singular perturbation approach. By ipetingn = £2. winto (182)
and (183) and also using (63), the singularly perturbed moidihe complete system of

dynamic equations is obtained as,

MistG+Cistd+ Gjst + firf = Tjst (184)
A RIIG+Ajf (RN + R G+ e2— e2wd? +aw = Fe(f) (185)
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whereMist, Cjst, Gjst, firf andR' are obtained by substitutinginstead of]. Henceforth,
the typical steps of singular perturbation approach wilfd®wed to obtain the slow and

fast subsystem from (184) and (185).

6.3.1 Slow subsystem in joint space

The slow subsystem in joint space is determined when 0 in (184) and (185).

Therefore, the slow subsystem can be obtained as,
MisG+Cjsd+ Gjs = Tjs (186)

where,
Mis = (Mr +JTFMgRLJ)
Cis =Cr +JTF M (RII+RId)
Gjs = Gr +JTF Gy

and the transverse vibration of beam equation becomes,
[AjfRIIG+Ajr (RII+RII)G+aw"]s = Fre(fjs) (187)

Since the manipulators are considered to be rigid, the ceatrelated to the beam dynamics
such asvi;¢, Gy, Frf andRbecomeM,q, Gq, Frg andRy which are given in Chapter 3.
The following properties describe the characteristicdafsubsystem in joint space which
are useful for stability analysis:

Property 1 in Joint Space(JS):Mjs is a symmetric positive definite matrix.

Property 2 in JS: The matrixMjs andCjs in (186) must satisfy

XT(Mjs—2Cjs)X =0, VX #£0 (188)
J J
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where X is any arbitrary vector. That@B'/IjS — 2Cjs) is a skew-symmetric matrix.
Property 3 in JS: There exists a vectars € RY2*1 which solely depends on manipulator
and beam dynamic parameters (lengths, masses and momeett@s etc.) such that
MijsG+Cjsd+ Gjs = Yijs(d,9,9)ajs (189)

whereYjs € R%2*"2 s called regressor of the slow subsystem represented rib §pace
which is given in Appendix C.
Property 4 in JS: Since the matriceMs, Cjs andGjs in (186) are the functions of sine
and cosine of manipulator joint angles and velocities, treybounded. Then, there exist
arbitrary positive constangs; (i=1,2,3), the boundedness of each matrices can be dedcribe
as follows:

| Mjs [|< p11

ICis 1< p22 | 4l

I Gjs [I< P33

6.3.2 Fast subsystem in joint space

In order to obtain the fast subsystem in the different tinsdese = % the fast variable
Wi = W — Ws is introduced into the flexible system (185). Following danarguments as
mentioned in Chapter 3 for the development of fast subsyqtE8®) becomes,

Ajf RTIG+ Ajs (RTI + RI3)G+ Vs + 62 — £2(ws+wy )02+ a(w +wl) = Fr¢()(190)
In the boundary layer system, the slow variabieis constant which impliesis’= 0 and
alsoe = 0. Then, the above equation yields into,

AjrRIIG+Ajr (R +RII)G+a(we +wy) = Fre () (191)
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Using (187) and also definirfg ¢ (fjr) = Fr¢(f) — Fr¢(fjs), (191) becomes,
V\7f+aniV:Fff(fjf) (192)

After incorporating the operatdx as mentioned in Chapter 3, the above partial differential

equation (192) becomes,

Wi (V) + Awg (v) = Fre(fjr) (193)

ws (0) = Wi, Wi (0) = Wi 4

The above equation represents the fast subsystem whichilsusto the one developed

(82) in Chapter 3.

6.4 Composite control for the manipulators - flexible ob-
ject system in joint space

In the previous section, singular perturbation analysesdgd the slow and fast sub-
system in joint space. These two subsystems have to be #edtrogether to achieve the
desired trajectory while suppressing the vibrations obiés@m. Hence, a composite control

law in the following form is conidered:

U= Uss(Q,,t) + Ust(Ws,V)

whereussis designed based on slow subsystem (186)wargignal is designed for the fast

subsystem (193).
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6.4.1 Robust control for slow subsystem in joint space

In order to handle non linear coupled dynamics and uncenta@nipulators and beam
parameters, a robust control scheme presented for the glasystem in Chapter 4 is con-
sidered here also. It is reformulated according to the dynamodel given in (186).

Define the tracking error as,
&r =0—0d (194)
and the auxiliary trajectory can also be defined as,
Or = dd — Ajser (195)

whereAjs is a positive definite matrix whose eigenvalues are strictithe right half of
complex plane.

The sliding surface can be chosen as,

Sis=0—0 = 6&r +Ajser (196)
The sliding mode controller can be given as,

Uss= Tjs = Yjs¥js — Kp1Sjs (297)

whereKp; is a positive definite gain matrixs(¢r,qr, ) iS regressor matrix angjs =
[Y1....4m] T are the switching functions which are given by,

Yis Sis

5B (198)
1Y% Sisll

LI"js = _Bjs

wherejs > | ajs|| is upperbound oérjs which is known though it could be conservatively
selected.
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6.4.1.1 Stability analysis

The exponential stability of the closed loop system desdriby (186) and (197) is
achieved as shown in the following analysis.

Differentiating the sliding surface (196) with respectitoe gives,
Sis = G — G (199)
Mutiplying both sides of (199) bi;s and using (186), (199) can be rewritten as,
MjsSjs = Tjs — Cjsq — Gjs — Misti (200)
Adding and subtractinG;sgr in (200)
MjsSis = Tjs — (Mistir +Cjstr + Gjs) +Cistr — Cjs (201)
By using (196), (201) can be rewritten as,
MjsSjs = Tjs — Yjs(Cir &, @) — CjsSjs (202)
where,
(Mjs€r +Cisar +Gjs) = Yis(Gr, ar, q)Qjs
Consider a Lyapunov function candidate as,
Ve(t, Sjs) = %szSM isSis (203)
Differentiating (203) with respect to time gives,

. . 1 .
Ve(t, Sis) = S[MjsSjs + éSJTSM isSis (204)
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Substituting (202) into (204) and also using property 2 igi¥®n in (188), above equation

yields,
Ve(t, Sis) = Sjs[T — Yis(Cr, G, ) ajs] (205)
Substituting the control law given in (197) and (198) int6%2one can have,
< —SKpaSjs — Bjs| ;s Sisll + 1SlsYisll| s (206)
Taking transpose dfS[Y;s|| and alsgBjs > ||ajs|| results in,
Ve(t,Sis) < —S|sKp1Sis (207)

It is known that [89]Kp; = Mjsk1 wherek; can be considered as a least eigenvalue.

Using (203), (207) can be rewritten as,

G < —2KaVe(t,Sis) (208)

The solution of the above equation is,
Vs(t, Sis) < Ve(0, Sjs(0) )&~ (209)

It is evident from the above equation that the sliding swefadll converge exponentially
to zero. Thus the sliding surface is related to the trackimgres, in (196) which also

converges exponentially to zero.

6.4.2 Feedback control for fast subsystem in joint space

Since the fast subsystem is similar in structure both intjgpace as well as Cartesian
space, the proposed control algorithm for the fast subsysteChapter 4 as a part of the
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composite control law is still valid here. It can be given by,
ust = (fjf) = —Ffoan(V> (210)

Then similar arguments on the various operators such, &3 andQ and also damping
relationsQAWs (v) andQ = AP are also valid. In addition, the exponential stability ctfa
subsystem presented in Chapter 4 also holds good and hexycaréhnot discussed.

It must be noted that, Tikhnov’s theorem is still satisfie@ ¢luithe exponential con-
vergence of slow and fast subsystem in joint space. Thexefbe singular perturbation

analysis is validated to the joint space system as well.

6.4.3 Simulation results

The objective of this composite controller is to move theegbfrom the initial position
of center of mass and orientation [103] (0.51m; 0.36n%) 20 the final position and ori-
entation (0.55 m; 0.36 m; 9Pusing two planar manipulators each with three links, while
suppressing the vibrations. The object motion corresptmdsove each revolute joint of
first manipulator from (9, -45°; -45°) to (-10.35; -21.5; -58.2) and correspondingly the
second manipulator from the initial angular positioh; @5°; 45°) to final position (10.3%5

21.5;58.2). The control parameters are tuned and they are given ireTabl

Table 5: Parameters of the manipulator

Link Length (m) Mass (kg) Moment of inertia (kgm

1 0.3 1.0 0.30
2 0.3 1.0 0.30
3 0.05 0.4 0.15
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Figure 53: X movement-Sliding control in JS
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Figure 54: Y movement-Sliding control in JS
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Table 6: Parameters of the beam

Parameter Value
Mass (m) 1.0 kg
Length (L) 0.1m

Moment of Inertia (I) 0.2 kgrh

- - actual
—desired

105+

951

901+

85

Orientation of the beam —theta(rad)

80

751

70 | | | | | | | | |
0 0.2 04 06 8 .1 12
Time(sec)

Figure 55: Orientation-Sliding control in JS

It is shown in Fig. 53 that, beam approaches towards its fiositipn along X di-
rection within 0.5 secs. The translation along Y directiod arientation of the beam are
also maintained towards their desired values which are showFigs. 54 and 55. Due
to the highly nonlinear manipulator parameters, a smaliadi®n to the final value occurs
initially in Figs. 54 and 55 and after 0.2 secs the beam cédrasreached its final pose.

Due to the sliding condition given in (198), the control [a¥97) is discontinuous
across the sliding surface and this causes the chatteriagopfenon. Chattering is the

undesirable phenomenon of oscillations which has finitgueacy and amplitude. In the
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Table 7: Control parameters-sliding control in JS

Parameter Value
Kb1 diag(20)
Ajs diag(50)
Bjs 3

‘ Maqipulqtor -1 Manipulator — 1

=251 “
-30(

—350

Thetal(deg)
Theta2(deg)

—aof
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=50

—551

—60

14 16 18 2 0 0.2 04 0.6 08 4 16 18 2

O.‘B .1‘ 1‘2 '; 'IJZ 1
Time(sec) Time(sec)

Figure 56: J1M1-Sliding control in JS Figure 57: J2M1-Sliding control in JS

case of ideal sliding, infinite switching of frequenciesdalplace. The chattering leads
to high control activity that corresponds to low control @@y, high wear of moving
mechanical parts and also high heat losses in electrica¢poicuits [104]. It may excite
unmodeled high frequency dynamics which are not consideueithg initial modeling of
the systems. This phenomenon is observed in the slidinghlas (SV) which are shown
in the Figs. 62 - 67 and also in the input control torques (Cbw in the Figs. 68 - 73.

In order to overcome the chattering, the discontinuousrobfdw can be replaced
with continuous one inside the boundary layer [77] and [10%js can be done by adding
a boundary layer thicknegsin the switching function which is given by,

ng Sis

s (211)
IY;s Sisll + @

Yis = —Bjs
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Figure 58: J3M1-Sliding control in JS
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Figure 60: J2M2-Sliding control in JS
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Figure 59: J1M2-Sliding control in JS
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Figure 61: J3M2-Sliding control in JS

It can be seen from the Figs. 74 - 85 that, the chattering isptetely reduced by

adding the boundary layer thicknegs= 0.75. This will lead us to avoid the problems

mentioned earlier due to chattering and also ensure théditalh the system. Since the

fast subsystem is analogous in both Cartesian and joinesganulation results presented

in Chapter 4 for the fast subsystem are still valid here amité¢hey are not presented in

this section.
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Figure 62: SV 1 with chattering in JS
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Figure 64: SV 3 with chattering in JS
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Figure 63: SV 2 with chattering in JS
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Figure 65: SV 4 with chattering in JS

6.5 Further improvements on the controller design of slow

subsystem in joint space

In order to improve the controller design for the joint spalosv subsystem, control algo-

rithms presented in Chapter 5 such as an adaptive contwatlevut velocity measurements

and non-regressor based adaptive-robust controller caeftwenulated and implemented
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Figure 68: CT of J1IM1 with chattering irFigure 69: CT of J2M1 with chattering in
JS JS

to the developed slow subsystem (186) in joint space. Itlshmeinoted that, the compos-
ite control law will be obtained by combining one of the abaventioned slow subsystem
control law in joint space and fast subsystem controlleegiin (104). This composite

control signal will be used to track the desired trajectohylersimultaneously suppressing
the vibration. Since the fast subsystem control is consilés be same in both Cartesian
and joint space, in the following sections, the control alpons presented for the Cartesian
space slow subsystem will be modified according to the jgpate slow subsystem (186)

and corresponding stability analysis and simulationsivélcarried out.
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Figure 72: CT of J2M2 with chattering irFigure 73: CT of J3M2 with chattering in
JS JS

6.5.1 Controller design without velocity measurements ingint space

Measurement of joint speeds by tachometers may contairsuatige noise and tachome-
ters may not perform at low speeds due to magnetic field disugties [106]. In order to
avoid such problems, a controller without velocity feedbececessary. Hence, an adap-
tive controller without velocity feedback presented in @tes 5 is formulated again for the

case of joint space slow subsystem.
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Figure 76: SV 3 without chattering in JS Figure 77: SV 4 without chattering in JS

By using desired velocity and acceleration trajectory & tibject, the slow subsystem
given in (186) can be expressed based on the parametengatohnique [76] which is

given by,
Mijs@i+ Cist+ Gjs = Yb(0, dd, Gd) Qjs (212)

whereYy(q,qq, Gq) is the regressor matrix which is dependent of desired set pairam-
eters of the manipulators and also independent of dynamépeters.ajs is the constant

vector of manipulator and beam inertia parameters.
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The control law can be formulated as,

Tjs = Uss= Yp(0, O, o) &js — QEY1 (w1 + p1&r) (213)

and the intermediate vectosg andw, can be calculated by,

w = w+Q% (214)

01 = 2010 2036, (215)
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Also, the adaptive law is given by,

djs=bis=-LYy 2 (216)
andz; can be given as,
: w1
= &y — — 4= 217
z & o, T Q. (217)

wheree, = q—(q is the tracking errorfijs is the estimate ofrjs. Then, the parameter
error vector can be defined &g = ajs — Qjs; Y1 is constant positive definite matrif1,
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p1 and{; are positive constants. It should be noted here that theadatv given in (213)
and also the adaptive parametgg can be found using adaptive law given in (216) and
does not involve any velocity signal as feedback. Thus,adids/the velocity sensors and
the controller needs only position measurements.

Substituting (213) into (186) gives,
&r = M (—Qf Y1 — p1Q7Yaer — Cisérr + Yolijs — Ceéir ) (218)

whereCe&r = Cjs(a,d)dd — Cjs(0;, da)da-
With the introduction of state vectad = [, @/, e ], using (214), (215) and (218), the

state space form of closed-loop equation is given by,
X1 = —A1X1 +C1(—Cjsér — Celrr +Yoljs) (219)

where the matrid; andC; are,

0 Qimlyr piQiMYy Mt
A= —Q%ly  2Qlq 0 Ci=1| o0
—Iq 0 0 0

By arbitrarily selecting the matricés andQ1, one can show that/JZ(PlAl—i—AI Pr)=
Q1 . One of the possible choice for the symmetric positive difimatriced?; andQ; are

given by [95],

Mis —g-Mjs B-Mjs (Qu—-FIMjs —Mjs 0
Pl=| —aMjs V1 0 Q1= ~Mjs QY1 0
EMis 0 pi03 | 0 0 pfivy |

Also, the eigenvalues ¢ andQ; and satisfies the following bounds,
)\pl || X1 ||2§ X;II_- Pixq and Ql)\ql || X1 ||2§ XIQ]_X]_ (220)
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6.5.1.1 Stability analysis

The stability of the closed loop system described by (21€) @46) is obtained from
the following theorem.
Theorem: If the input control torque given by (213) are applied to thetem (186), then all
the closed loop signals are bounded &nd_.., x; = 0, provided the following condition

satisfied,

2V (1)

Quhqa > 3| Ce | +29115up| o [+ 52
p

(221)

whereAp; andAq are the positive eigenvaluesBf andQq andV(t) is a function defined
in (222).
Proof:

Consider a Lyapunov function candidate

1+
V7(t) = _Xl PiX1+ =—

222
> > Z (222)
Differentiating (222) gives,
: 15 1.7,
V7(t) = X]_ PyXx1 + 2X1 P1X1+ Z CY sdjs (223)
Using (219), the above equation can be rewritten as,
' T T . 1 1 T
V7(t) = —x Quxa +Xg I:)1C:1(_sterr Cebir +Ybajs) + 2X1 I:)lxl + 5 Z1 Jsajs (224)
whenQ; > max1, p1), one can have the following,
—X[PIC1Celry = —(&r— =+~ pL &) " Cebrr
Q O
< 3fCelllx|? (225)
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1. . 1.+ . . . 1.
SX1 Pixq — x] PICICjsérr = € Mjsérr + Py jser ' — &r —Mjsw]
2 2 Q1 Q4
: W P1 T .
—(&r — Q_l + Q—lerr) Ciserr (226)

Using the propertg/, (1/2Mjs —Cjs)ér = 0, above equation can be rewritten as,

1 - .
P1&r — w1][Mjs —Cjs|ér

1. .
EX-JI_- P]_X]_ — X-JI_- P1C1star = Q—l[

< 291G x| (227)

whered | ¢ ||=[| Mjs —Cjs |-

Substituting (220), (225) and (227) into (224) yields,

. . 1.
V7(t) < —(QuAq =3[ Cell =291 ][ al)) [ % H2+(ZIYb+aast)ajs

= —f(lal) x| (228)
wheref(|| ) = QiAq — 3| Ce || =281 || q|| andx] P1.C1 = z] and also (216) is used to
obtain the above equation. The right hand side of (228) istegif f(|| q||) > 0, which
is true if (221) is satisfied.

WhenQiAq is sufficiently large, (221) is satisfied and alégt) < 0. By induction
with respect td, V7(t) will be decreasing until x; ||= 0 which shows that the closed-loop

system (219) is asymptotically stable and hence the giveorém is proved.

6.5.1.2 Simulation results

The simulation is carried out by considering the similagpagters of manipulators and
beam given in Table 5 and 6. The beam is moved from the initisitn of center of mass
and orientation [103] (0.51m; 0.36m; 9o final position and orientation (0.55 m; 0.36
m; 90°) is considered for the simulation. Correspondingly, th&t finanipulator is moved
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Table 8: Control parameters-without velocity measuresiandS

Parameter Value

Q1 23
P1 20
Y1 diag(0.027)
{1 0.1

from (0°; -45°; -45°) to (-10.35; -21.5’; -58.2°) and also the second manipulator is moved
from the initial joint angles (8 45°; 45°) to final joint angles (10.35 21.5; 58.2°). The
initial values ofdrjs(0) = [0.96; 0.08; 0.003; Q003; 051; 0.15; 146; 265; 0.098; 096;
0.08;0.003; Q003; 051; 0.15; 146; 265; 0.098; 15; 0.13". The initial value ofw (0)

is chosen as zero. The control parameters are tuned andigiVahble 8.
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Figure 86: X movement-Without velocity measurement in JS

The motion of beam along X direction reaches its desiredevatound 2 sec with a

small steady state error, that can be observed from the Fg.IrBthe Y direction, after
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small oscillation for about 0.5 sec, the beam approachedesieed value which is shown in

Fig. 87. Itis evident from the Fig. 88 that, the orientatidii® beam has more oscillation

initially and after 0.5 sec it maintains the final set valuggsk 89 - 94 shows the angular

positions of each joints of the manipulators. They haverstitheir desired value within 1

sec. However, compared with the Cartes

ian space resuétsrhtre joint space, all the joint

angular motions have initial oscillations and reach thesickd values after few seconds.
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6.5.2 Controller design without regressor in joint space

In order to control the motion of manipulators and the objecthe joint space without
involving complex regressor matrix calculations, a nogressor based control algorithm
presented in Chapter 5 is reformulated according to the sltgystem in joint space (186).

The robust adaptive control law is given by,

S < s . N Si
Tjs = Uss= —KadaMjsSpr — (P11 [ Gr || +P22 || 4 1ll] G || +P33+Paa | § ||>Sat(—(;,s) (229)

whereKyq is the positive definite matrix ang, i=1,2,3,4, are the adaptive control gains,
respectively.

Se1 = Sis — @ sat(Sjs/ @) is the measure of the algebraic distance of the currenttstae
boundary layergp > 0 is boundary layer thickness.

The adaptive parameters are given by,

P11 = Bl Spa ||| Gr || (230)

~

P22 = Bazll Se llll Gl & | (231)
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Pss = Baall Sprll (232)

Pas = Baal Sprllll 4] (233)

wheref;i > 0 (i=1, 2, 3, 4) are the arbitrary constants which determihegates of adap-

tation.

6.5.2.1 Stability analysis:

To carry out the stability analysis, the closed loop syst&86) will be expressed in
terms of the sliding variabl§;s.

Mutiplying both sides of (199) bis and using (186), (199) can be rewritten as,
Mjssjs = Tjs — Cjsq — Gjs — Mjshr (234)
Adding and subtractinG;sgr in (234) gives,
Missjs = Tjs — Mjstr — CjsSjs — Gjs — CjsOr (235)

Consider a Lyapunov function candidate,

la 1_(pi —fii)
Vg(t) = > 01 M jsSp1 + EZT (236)
SinceSy1 = Sjs, differentiating (236) with respect to time gives ,
: . 1+ - ) (— O
Va(t) = SjMisSis + 5 SpaMjsSpn + 5 (P pﬁ'g'“)( i) (237)

Using (229) and (235), (237) becomes,

: . s ST N S
Vs(t) = Spa[—KaaMijsSpr — (Bu || G || +022 || G ||l G || +P33-+Paa || II)]Sat(f>

y _ 1 : ) (— -
+S<T01(—Mjsqr—C,-ss,-s—st—C,-sqr>+§s;1|v|,-ssq,1+z(p” p[';'“)( p”)(238)
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Since|| Sp1 ||= Sglsat(Sjs/go), using property 6 and after some manipulation, (238) result
in,
Va(t) < —SprKaaMijsSpr — (Bua || Cir [| +P22 [ G (11| & || +Paz+Paall ) [I Spa |

+(P11 | G | +P22 | G [} G || +p33) | Spu |l

(i — Bit) (—Bii)
Bi

SinceSIol(l\'/ljs— 2Cjs)Sp1 = 0 and definingoss = @p22 and also using the adaptive param-

1 .
+5SpMisSpr +Z

> — SpCisSpr+ @p22 || G ||| Sp || (239)

eters (230-233), (239) yields into,

Vg(t) = —Sp1KdaMjsSp1 (240)

SinceKyqMjs is symmetric positive definite matrix then, there exists @stanty such that

Ylad < KggMjs. Then (240) can be rewritten as,

Va(t) < =y Sp 550 (241)

In order to achieve the stability it is necessary to show $at— 0 ast — «. This can be

achieved by applying Barbalat’'s lemma to the following combus non-negative function,

Uo(t) = Vo(t) — [ (o(r) +y | Sp(r) [Byar with
Vo(t) = —y| Su(T) II3 (242)

SinceS;js is bounded and correspondingly ande, are bounded. Thus, all the feedback
signalsg, g andq; are bounded. Therefore, it can seen from (235) tﬁaﬁs also bounded
becauseVijs is already given as bounded property (property4 in JS) whiokiesVy(t) to

be uniformly continuous function of time. Sin®g is bounded below by 0 anéb(t) <0
for all t, use of Barbalat’s lemma proves théatt) — 0 and from (242) thalt Sy || — O as

t — oo,
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6.5.2.2 Simulation results

In order to validate the above presented controller, sitraria are performed. Sim-
ilar set of parameters for the manipulators and beam givefalsle 5 and 6 are con-
sidered. The control parameters are choseKgs= 500 andAjs = 20. The adaptive
gains are chosen d%1=,2=333=£44=0.01. The initial adaptive parameters are taken as
P11(0)=p22(0)=P33(0)=P44(0)=1. In order to reduce the chattering effect, the boundary
layer thickness is chosen gs0.05. The position of the object along X direction is shown
in Fig. 95 where it reaches desired value within 0.5secsaritlie seen from the Figs. 96
and 97 that the motion of object along Y direction and origataabout Z axis is main-
tained at its desired value. Each joint of the manipulatoeseached towards its set point
value within 0.5secs which are shown in Figs. 98 - 103. It carcdncluded from these
results that the, controller without regressor has achliéeatter control performance than
the controller without velocity measurement in joint space

The following conclusions are made by analyzing the slowsgatem in joint space

as compared to the Cartesian space slow subsystem:

1. The regressor for joint space slow subsystem has lessutatigm burden than that

of the Cartesian space slow subsystem.

2. The regressor based sliding mode control law achieved gontrol performance in

the regulation problem as well.

3. It can be observed from the simulation results of the adletr without velocity

measurement in the joint space that, there are some osriladt the beginning to
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Figure 97: Orientation-Without regressor in JS

achieve the set point value of manipulators joint anglesksain pose. These kinds
of oscillations are not seen from the Cartesian space sltosystem simulation re-

sults of similar controller.

4. The non regressor based control approach yield compealsatbetter results than

those by other control schemes in both Cartesian and joatesp

6.6 Summary

In this Chapter, complete systems of dynamic equations bega developed in joint
space. The two subsystems, namely, slow and fast were fiderniy using the singular

perturbation approach. Furthermore, the composite cbakgorithms presented for the
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Cartesian space system was implemented to the joint spatansyas well. Stability anal-
ysis and simulation results were discussed. In the next €hamnclusions and some of

the possible extensions to this thesis will be given.
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Chapter 7

Conclusions and Recommendations for

Future Works

7.1 Summary

Maneuvering of flexible objects by robot arms has wide apgilbns in various indus-
tries and in space. Especially solving the complete systedymamic equations without
using any approximate methods, correspondingly devedpibie robust control algorithms
and also satisfying the necessary stability criteria aadlehging problems. This disser-
tation research has addressed these problems by implemeontiaborative manipulation
of two planar rigid manipulators moving a flexible object ipr@scribed trajectory while
suppressing the vibration of the flexible object being haddlA brief summary of this
research is provided in the following:

The flexible object being handled by two rigid arm manipulats a beam. From

the kinematics of the flexible beam, the relation betweewdéhecities of end-effectors and
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the object are obtained. In order to alleviate problemsaasad with truncating the in-
finite degrees-of-freedom flexible beam to a finite dimersiomodel, dynamic equations
of motion of the beam are derived in PDE form. Furthermoreuytilizing the established
kinematic relations of manipulators as well as beam, theadya equations of manipu-
lators are formulated in Cartesian space. Then, the ragultianipulator dynamics were
combined to the beam dynamics to yield a combined systemnaigsan Cartesian space
without utilizing any approximate or discretiation metisod

The derived systems of dynamic equations are coupled wgitl @nd flexible pa-
rameters. Without the aid of the assumed modes, the couigledfelxible dynamics has
been separated into slow subsystem, which signifies thé bigdy motion and the fast
subsystem that considers the vibration of the flexible dtiggaising singular perturbation
technique. The method of separation is considered undediffeyent time scales that
permits designing of the control signal for each subsystEme. challenge in the design of
control systems lies in the fact that, they should be robgairest parameter uncertainties
and also guarantees the exponential convergence. Hemdbgefslow subsystem, regres-
sor based sliding mode control algorithm is developed. T$hod avoids the need of
parameter estimation unlike in the case of adaptive cantvtbreover, the method also
gives the desired transient response while achieving tobss to uncertainties. In the
case of fast subsystem, as a part of the composite contreirsgha simple feedback con-
trol algorithm is designed with a special damping term. Thkgoaential stability results
for slow and fast subsystems validate the singular pertiabanalysis by satisfying the
Tikhnov’s theorem. Simulation results of the compositetomrstrategy confirmed that,

the proposed controller achieved very good tracking perémce while suppressing the
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vibration. In addition, switching function in the slidingade control algorithm may cause
chattering which is an undesirable phenomenon in real tppécations. Hence, a suitable
smoothing control law is suggested. As a special case, tiic@d dynamic model for
the two manipulators handling a rigid object is derived \ihialidate the developed slow
subsystem in the Cartesian space.

Further improvement in the design of control algorithm floe slow subsystem is
achieved by avoiding the measurement of velocity feedbAnkadaptive control law with
only position feedback is proposed. The stability analgsid simulations results are pre-
sented to illustrate the tracking performance of the cdiettoln addition to this, to avoid
the online computation of complex regressor, a non-regréxssed adaptive robust control
algorithm is implemented to the slow subsystem and corredipg stability analysis has
been carried out. Simulation results demonstrate theteféeess of the suggested control
scheme.

The earlier analysis has been extended to the joint spaceotd the complex in-
verse kinematics solutions of Cartesian trajectories amguarity problems. In order to
rectify these issues, the complete system of dynamic empsats derived in joint space.
By following the typical steps of singular perturbation apgch, slow and fast subsystems
are obtained in joint space. It is observed that, fast subsykas similar structure in both
Cartesian and joint space. Based upon these subsystemspsibencontrollers have been
developed and corresponding simulations are performes eitident from the simulation

results that, the proposed composite controllers achigeed control performance.
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7.2 Major Contributions

1. A complete system of dynamic equations with respect téeSem space and joint
space in PDE form was developed. This avoids the problenosiassd with approx-

imation techniques which are mentioned in Chapter 1.

2. A composite control algorithm for the PDE based mode$$atig the Tikhnov's the-
orem to achieve the tracking and regulation control perforce and also suppressing

the vibration of the flexible object was designed.

3. A regressor for the Cartesian space and joint space nlatopstbeam system dy-

namics was formulated.

7.3 Conclusions

The major conclusions drawn from this dissertation stuéysaimmarized below:

e When the complete system of dynamic equations for the m&tgmand the flexible
object is solved using modal approximation techniques,npi clear as to how many
modes should be considered while developing the modelh&uymeglecting higher
order modes may cause instabilities in the system. Thisstipeisnarily attempts to

avoid such problems by developing the system of dynamictemmsin PDE form.

¢ Validation of singular perturbation approach necessta@isfying the Tikhnov's
theorem wherein, both slow and fast subsystems shouldwecthie exponential con-

vergence. Furthermore, in real time applications parammetiethe manipulators and
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flexible object will be varying and hence robust control aitjon is necessary. This
thesis addressed these problems by developing a compaisitst control algorithm
and corresponding exponential stability analysis of eadisgstem, which is as a

whole, not found in the literature.

The proposed feedback control algorithm for the fast subgsysuppresses the vibra-
tion only with velocity feedback and it also reduces the neednore sensors unlike
in the available control algorithms in the literature. A®ault, the measurement cost

iS minimized.

For the slow subsystem, in order to avoid velocity measurgsp@ controller with-
out velocity feedback is proposed. The simulation resuitsasthat, the proposed

controller does not affect the tracking performance of thessubsystem.

Further improvement in the control law for the slow subsysie made to avoid the
complex computational burden of the regressor. A non-ssgnebased adaptive ro-
bust control algorithm is developed. Simulation studiesdestrate that, the desired

tracking is achieved as in the other proposed control alyos.

Further studies have been carried out by developing the letegystem of dynamics
in joint space, to avoid the singularity problems and alsoglex inverse kinematic
calculations of online trajectories. The simulation resshow that, the proposed

controller does not affect the tracking performance of thessubsystem.
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7.4 Future Works

There are some recommended studies related to this donatingbds further investi-

gations are listed below:

¢ Vibration free motion is necessary in many of the deformalriectural components
such as in aircraft wings, shiphulls, space antennas aodh#iskins. The dynamic
eqguations of motion can also be derived by assuming thesetstes as plates or
shells instead of beam. The development of system of dynaquations without
using any approximate methods and establishing the slowfamtdsubsystem is a
complex problem. Developing these subsystems and impliémgetine proposed

robust control algorithms is very important.

e The proposed control algorithms in this thesis can be implaed through experi-

ments. Performing experimental studies will be an addedrtdge.

¢ In this thesis, the two manipulators grasping the flexiblgcbwas considered as
rigid grasping. In the literature, different grasping cgafiations are available [107].
According to the types of objects to be grasped and transghoshe can consider the

required grasping configuration and perform the detailedysis.

¢ In general manipulators are considered to be rigid. Noveygsdlexible manipulators
are used in medical and aerospace applications. They havadss, and require less
power and ultimately saves the cost. However, mathematicaleling of flexible

object needs special attention and also coupling with thebfle object can be a
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complex problem. In addition, suppressing the vibratiomaiipulators as well as

the flexible object is critical too.

e The interaction between the external environment suchaslastacles or collision
between manipulators are not considered in this thesis dd@nario occurs in real
time applications such as assembly, material handling arkdemd place operations.
When the object is constrained, the dynamic modeling angidgrthe control law

becomes more tedious.

158



Bibliography

[1] R. C. Goertz, “ Fundamentals of general-purpose remaripulators, Nucleonics

vol. 10, pp. 36-42, 1952.

[2] E. Nakano, S. Ozaki, S. Isida and I. Kato, “Cooperationtoal of the anthropomor-
phous manipulator MELARM,” irProc. 4th Int. Conf. on Industrial Robqt§974,

pp. 251-260.

[3] J. Y. S. Luh and Y. F. Zheng, “Constrained relations betwevo coordinated indus-

trial robots for motion control,Int. J. of Robotics Researchol. 6, pp. 60-70, 1987.

[4] J. K. Mills, “Multi-manipulator control for fixtureles@assembly of elastically de-
formable parts,” inProc. Japan - U.S.A. Sym. on Flexible Automati@892, pp.

1565-1572.

[5] T. Ishida, “Force control in coordination of two armsyi Proc. 5th Int. Conf. on

Artificial Intelligence 1977, pp. 717-722.

[6] C. O. Alford and S. M. Belyeu, “Coordinated control of twobot arms,” inProc.

IEEE Int. Conf. on Robotics and Automatjdr®84, pp. 468-473.

159



[7] Y. F. Zheng and F. R. Sias, “Two robots arms in assembtyPiioc. IEEE Int. Conf.

on Robotics and Autonomous Systé886, pp. 1230-1235.

[8] T. J. Tarn, A. K. Bejczy and X. Yun, “Co-ordinated contral two robot arms,” in

Proc. IEEE Int. Conf. on Robotics and Automati@986, pp. 1193-1202.

[9] T. J. Tarn, A. K. Bejczy and X. Yun, “Dynamic coordinatiar two robot arms,” in

Proc. IEEE Int. Conf. on Decision and Contydl986, pp. 1267-1270.

[10] M. H. Raibert and J. J. Craig, “Hybrid position/forcentmol of manipulators,ASME

J. of Dynamic Systems, Measurement, and Contadl 120, pp. 126-133, 1981.

[11] S. Hayati, “Hybrid position/force control of multi-ar cooperating robots,” iProc.

IEEE Int. Conf. on Robotics and Automatjdr®86, pp. 82-89.

[12] M. Uchiyama, N. lwasawa and K. Hakomori, “Hybrid positiforce control for co-
ordination of a two arm robot,” ifProc. IEEE Int. Conf. on Robotics and Automation

1987, pp. 1242-1247.

[13] M. Uchiyama and P. Dauchez, “A symmetric hybrid posifforce control scheme for
the coordination of two robots,” iRroc. IEEE Int. Conf. on Robotics and Automation

1988, pp. 350-356.

[14] P. Dauchez, A. Fournier and R. Jordon, “Hybrid contriohdwo-arm robot for com-

plex tasks,"EEE J. of Robotics and autonomous Systerok 5, pp. 323-332, 1989.

160



[15] J. Wang, S. J. Dodds and W. N. Bailey, “Co-ordinated calndf multiple robotic

[16]

[17]

[18]

[19]

[20]

[21]

manipulators handling a common object - theory and experisjein Proc. IEEE

Control Theory Applicationsl997, pp. 73-84.

C. D. Kopfand T. Yabuta, “Experimental comparison ofstea/slave and hybrid two-
arm position/force control,” ifProc. IEEE Int. Conf. on Robotics and Automation

1989, pp. 425-430.

J. Duffy, “The fallacy of modern hybrid control theorldt is based on orthogonal
c omplements of twist and wrench spacek,bf Robotic systemsol. 7, no. 2, pp.

139-144, 1990.

Y.R. Huand A. A. Goldenberg, “An adaptive approach taimoand force control of
multiple coordinated robots,” iRroc. IEEE Int. Conf. on Robotics and Automation

1988, pp. 1633-1637.

M. W. Walker, D. Kim, and J. Dionise, “Adaptive coordieal motion control of two
manipulator arms,” irProc. IEEE Int. Conf. on Robotics and Automatid®89, pp.

1084-1090.

B. Yao and M. Tomizuka, “Adaptive coordinated contrdlroultiple manipulators
handling a constrained object,” Froc. IEEE Int. Conf. on Robotics and Automation

1993, pp. 624-629.

S. Arimoto, Y.H. Liu, and T. Naniwa, “Model-based adapthybrid control for geo-
metrically constrained robots,” iRroc. IEEE Int. Conf. on Robotics and Automation
1993, pp. 618-623.

161



[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. G. Bonitz and T. C. Hsia, “Intemal force-based impaaacontrol for cooperating
manipulators,TEEE Trans. on Robotics and Automatjoml. 12, no. 1, pp. 78-89,

1996.

R. G. Bonitzand T. C. Hsia, “Robust internal force-lbdsapedance control for coop-
erating manipulators - theory and experimentsPioc. IEEE Int. Conf. on Robotics

and Automation1996, pp. 622-628.

I. Uzmaya, R. Burkan and H. Sarikaya, “Application obust and adaptive control
techniques to cooperative manipulatio@dntrol Engineering Practicevol. 12, pp.

139-148, 2004.

W. Gueaieb, F. Karray and S. Al-Sharhan, “A Robust hylmielligent position/force
control scheme for cooperative manipulatot§ EE/ASME Transactions on Mecha-

tronics vol. 12, no. 2, pp. 109-125, 2007.

F. Caccavale, P. Chiacchio, A. Marino and L. Villani,iX@»OF impedance control
of dual-Arm cooperative manipulatorsEEE/ASME Transactions on Mechatronics

vol. 13, no. 5, pp. 576-586, 2008.

S. A. A. Moosavian and E. Papadopoulos, “Cooperativieaibmanipulation with
contact impact using multiple impedance contrbif: J. of Control, Automation, and

Systemgsvol. 8, pp. 314-327, 2010.

N. Yagiz, Y. Hacioglu and Y. Z. Arslan,“Load transpadrtan by dual arm robot using
sliding mode control,J. of Mechanical Science and Technolpggl. 24, pp. 1177-
1184, 2010.

162



[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. K. Mills, “Fixtureless assembly: Multi-robot manifation of distributed parameter
payloads,” inNIMAC/SICE Int. Sym. on Robotics, Mechatronics and Manufaog

Systemsl992.

J. K. Mills and J. G. L. Ing, “Robotic fixtureless assembf sheet metal parts using
dynamic finite element models:Modeling and simulation,Piroc. IEEE Int. Conf.

on Robotics and Automatiph995, pp. 2530-2537.

Y. F. Zheng, R. Pei and C. Chen, “Strategies for autotnassembly of deformable

objects,” inProc. IEEE Int. Conf. on Robotics and Automati@991, pp. 2708-2715.

Y. F. Zheng and M. Z. Chen, “Trajectory planning for twampulators to deform
flexible beams,” inProc. IEEE Int. Conf. on Robotics and Automatid®93, pp.

1109-1024.

W. F. Dellinger and J. N. Anderson, “Interactive forcgndmics of two robot ma-
nipulators grasping a non-rigid object,” Proc. IEEE Int. Conf. on Robotics and

Automation 1992, pp. 2205-2210.

T. Yukawa, M. Uchiyama and H. Hooka, “Cooperative cohtf a vibrating flexible
object by a rigid dual-arm robot,” iRroc. IEEE Int. Conf. on Robotics and Automa-

tion, 1995, pp. 1820-1825.

K. Kosuge, H. Yoshida, T. Fukuda, M. Sakai and K. Kanitékanipulation of sheet
metal by dual manipulators based on finite element modeRrot. IEEE Int. Conf.

on Robotics and Automatiph995, pp. 199-204.

163



[36] W. Nguyen and J. K. Mills, “Multi-robot control for flekie fixtureless assembly
of flexible sheet metal auto body parts,” froc. IEEE Int. Conf. on Robotics and

Automation 1996, pp. 2340-2345.

[37] W. Kraus Jr. and B. McCarragher, “Control of flexible tbdeformations and environ-
ment contact forces in dual-arm manipuiation,’Hroc. 13th IFAC World Congress

1996, pp. 61-67.

[38] W. Kraus Jr. and B. McCarragher, “Force fields in the matation of flexible ma-
terials,” inProc. IEEE Int. Conference on Robotics and Automati#96, pp. 2352-

2357.

[39] W. Kraus Jr. and B. McCarragher, “Case studies in theimaation of flexible parts
using a Hybrid position/force approach,” Rroc. IEEE Int. Conf. on Robotics and

Automation 1997, pp. 367-372.

[40] T. Yukawa, M. Uchiyama, D. N. Nenchev and H. Inooka, ‘18li#y of control system
in handling of a flexible object by rigid arm robots,”Rroc. IEEE Int. Conf. Robotics

and Automation1996, pp. 2332-2339.

[41] D. Sun, J. K. Mills and Y. Liu, “Position control of mufile robots manipulating a

flexible payload,” inProc. American Control Conferenc&998, pp. 456-460.

[42] D. Sun and Y. H. Liu, “Modeling and impedance control ah@-manipulator system
handling a flexible beam ASME J. of Dynamic Systems, Measurement, and control

pp. 736-742, 1997.

164



[43] Y. Liu and D. Sun, “Stabilizing a flexible beam handledtiio manipulators via PD

feedback,1EEE Trans. on Automatic Controlol. 45, no. 11, pp. 2159-2164, 2000.

[44] D. Sun and Y. Liu, “Position and force tracking of a two myaulator system manip-

ulating a flexible beam J. of Robotic Systemsol. 18, no. 4, pp. 197-212, 2001.

[45] D. Sun, “Cooperative control of two-manipulator syatehandling a flexible object,”

Ph.D. dissertation, The Chienese Univ. of Hong Kong, CHii88,7.

[46] Y. C.Jiand Y. Park, “Optimal input design for a coop@rgtrobot to reduce vibration

when carrying flexible objectsRobotica vol. 19, pp. 209-215, 2001.

[47] Z. Doulgeri and J. Peltekis, “Modeling and dual mangtidn of a flexible object,” in

Proc. IEEE Int. Conf. on Robotics and Automati@004, pp. 1700-1705.

[48] A. S. Al-Yahmadi and T. C. Hsia, “Internal force-basedpedance control of dual
arm manipulation of flexible objects,” iRroc. IEEE Int. Conf. on Robotics and Au-

tomation 2000, pp. 3296-3301.

[49] A. S. Al-Yahmadi and T. C. Hsia, “Modeling and control wfo manipulators han-

dling a flexible object,J. of the Franklin Institutevol. 344, pp. 349-361, 2007.

[50] A. Tavasoli, M. Eghtesad and H. Jafarian, “Two-timeleaaontrol and observer de-
sign for trajectory tracking of two robot manipulators muyia flexible beam,J. of

Robotics and Autonomous systend. 57, pp. 212-221, 2009.

165



[51] Z. Tang and Y. Li, “Modeling and control of two maniputeis handling a flexible pay-
load based on singular perturbation,Rroc. IEEE Int. Conf. on Advanced Computer

Control, 2010, pp. 558-562.

[52] S.S. Ge, T. H. Lee and G. Zhu, “Improving regulation ofrege-link-flexible manip-
ulator with strain feedback]EEE Trans. on Robotics and Automatjoml. 14, pp.

179-185, 1998.

[53] D. T. GreenwoodClassical DynamicsDover publications, Prentice Hall, 1997.

[54] J. J. Craig,Introduction to Robotics:Mecahnics and Contrélrentice Hall, Third

edition, 2004.

[55] M. W. Spong, S. Hutchinson and M. Vidyasagar, “Robot elody and control,” John

Wiley and Sons, First Edition, 2006.

[56] F. L. Lewis, D. M. Dawson and C. T. AbdallaRobot Manipulator Control Theory

and Practice Prentice-Hall, Second edition, 2006.

[57] R. Ortega and M. W. Spong, “Adaptive motion control ajid robots: A tutorial,”

Automaticavol. 25, no. 6, pp. 877-888, 1989.

[58] J. J. E. Slotine and W. Li, “On the adaptive control of eblnanipulators,int. J .

Robotics Resvol. 6, no. 3, pp. 49-59, 1987.

[59] C. Y. Su and Y. Stepanenko, “Adaptive sliding mode cawaited control of multiple
robot arms handling one constrained objetiEEE Transactions on Systems, Man,

and Cyberneticsvol. 25, no. 5, pp. 871-878, 1995.

166



[60] P. V. Kokotovic, R. E. O’'Malley and P. Sannutiti, “Sinigu perturbations and order
reduction in control theory an overviewXutomatica vol. 12, no. 2, pp. 123-132,

1976.

[61] V. R. Saksena, J. O’'Reily and P. V. Kokotovic, “Singuterturbations and time-scale
methods in control theory: Survey 1976-1988yitomatica vol. 20, no. 3, pp. 273-

293, 1984.

[62] D. Subbaram Naidu and A. J. Calise, “Singular pertudret and time-scales in guid-
ance and control of aerospace systems: A sunkyf Guidance, Control, and Dy-

namics vol. 24, no. 6, pp. 1057-1078, 2001.

[63] D. Subbaram Naidu, “Singular perturbations and tiroakss in control theory and ap-
plications:An overview,J. of Dynamics, Continuous and Discrete Impulsive Systems:

series-B; applications and algorithngol. 9, pp. 233-278, 2002.

[64] P. Kokotovic, H. K. Khalil and J. O’ReillySingular Perturbation Methods in Con-

trol:Analysis and DesignSIAM, 1999.

[65] H. K. Khalil, Nonlinear System®rentice Hall, New Jersey, 2002.

[66] A. Lotfazar, M. Eghtesad and A. Najafi, “Vibration cooltrand trajectory tracking
for general in-plane motion of Euler-Bernoulli beam via ttume scale and boundary

control methods,ASME J. of Vibrations and Acoustjesl. 130, 051009-1-11, 2008.

[67] M. W. Spong, “Adaptived control of flexible joint manifaiors:Comments on two

papers,’Automaticapp. 585-590, 1995.

167



[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

M. Zribi, M. Karkoub and L. Huang, “Modelling and controf two robotic manip-
ulators handling a constrained obje@pplied Mathematical Modellingsol. 24, no.

12, pp. 881-898, 2000.

T. P. Leung and C. Y. Su, “Adaptive control for a congtiead robot without using a
regressor, Transactions of the Institute of Measurement and Cont@l.. 18, no. 5,

pp. 267-275, 1996.

Z. H. Luo, “Direct strain feedback control of flexiblelvot arms:New theoretical and
experimental resultsJEEE Trans. on Auomatic ControVol. 38, no. 11, pp. 1610-

1622, 1993.

Z.H. Luo and B. Guo, “Further theoretical results oredirstrain feedback control of
flexible robot arms,IEEE Trans. on Auomatic Controbol. 40, no. 4, pp. 747-751,

1995.

J. L. SouleLinear Operators In Hilbert Spa¢&ordon and Breach Science Publish-

ers, New York, 1968.

E. Kreyszig, Introductory Functional Analysis with Applicationdohn Wiley and

Sons, New York, 1978.

Y. Sakawa and Z. H. Luo, “Modeling and control of cooupleending and torsional
vibrations of flexible beamJEEE Trans. on Auomatic ControVvol. 34, no. 9, pp.

970-977, 1989.

Y. Sakawa, F. Matsuno and S. Fukushima,“Modeling ardlf@ck control of a flexi-
ble arm,”J. of Robotic Systempp. 453-472, 1985.

168



[76] J.J. E. Slotine and W. LApplied Nonlinear ControlPrentice Hall, New Jersey, 1991.

[77] C. Y. Su, T. P. Leung and Y. Stepanenko, “Real-time impatation of regressor-
based sliding mode control algorithm for robotic manipotdiEEE Transactions on

Industrial Electronicsvol. 40, no. 1, pp. 71-79, 1993.

[78] L. Hsu and R. R. Costa, “Adaptive control with discontirus u-factor and saturation

for improved robustnessiit. J. of Contro| vol. 45, no. 3, pp. 843-859, 1987.

[79] M. W. Spong, “On the robust control of robot manipul&dtEEE Transactions on

Automatic Contrglvol. 37, no. 11, pp. 1782-1786, 1992.

[80] C. Abdallah, D. Dawson, P. Dorato and M. Jamshidi, “Syref robust control for

rigid robots,”IEEE Control Systems Magazinel. 11, pp. 24-30, 1991.

[81] H. G. Sage, M. F. De Mathelin and E. Ostertag, “Robustm@of robot manipulators:

a survey,’Int. J. of Control, vol. 72, no. 6, pp. 1498-1522, 1999.

[82] M. J. Balas, “Direct velocity feedback control of largeace strutures). of Guidance

and Contro] vol. 2, pp. 252-253, 1979.

[83] P. Gardonio and S. J. Elliott “Modal response of a bear \&i sensoractuator pair
for the implementation of velocity feedback contral,”of Sound and Vibratigrvol.

284, pp. 1-22, 2005.

[84] A. Lotfazar, M. Eghtesad and A. Najafi, “Exponential dteation of Transverse

Vibration and Trajectory Tracking for General In-Plane Matof an Euler-Bernoulli

169



Beam Via Two-Time Scale and Boundary Control MethoISKME J. of Vibrations

and Acousticsvol. 131, pp. 054503-1-7, 2009.

[85] G. Chen and D. L. Russell, “A Mathematical model for Eneslastic systems with

structural damping,Quarterly Applied Mathemati¢sol. 39, pp. 433-454, 1981.

[86] F. Huang,“On the mathematical model for linear elasyistems with analytic damp-

ing,” SIAM J. of Control and Optimizatiowol. 26, pp. 714-724, 1988.

[87] S.Chen and R. Triggiani, “Gevrey class semigroupsragisom elastic systems with
gentle dissipation:The case0a < % Proc. of the American Mathematical Society

vol. 110, no.2, pp. 401-415, 1990.

[88] J. A. Burns and B. B. King, “A note on mathematical modgliof damped second
order systems,J. of Mathematical Systems, Estimation and Control. 8, no. 2, pp.

1-12, 1998.

[89] W. T. Thomson,Theory of vibration with applicationrentice Hall, United King-

dom, 1993.

[90] A. Pazy,Semigroups of linear operators and applications to partidfierential equa-

tions Springer-Verlag, New york, 1983.

[91] M. Hattori, S. Tadokoro and T. Takamori, “Robust stabtion of flexible structures
using static output feedback,” Proc. 2nd World Congress Nonlinear Analysis, The-

ory, Methods and Applicationg997, pp. 2215-2220.

170



[92]

[93]

[94]

[95]

[96]

[97]

[98]

J. H. Yang, “Adaptive Tracking Control for Manipulatowith Only Position Feed-
back”, inProc. IEEE Canadian Conf. on Electrical and Computer Engitreg, 1999,

pp. 1740-1745.

M. A. Arteaga, “Robot control and parameter estimatioth only joint position mea-

surements,Automaticavol. 39, no. 1, pp. 67-73, 2003.

C. Y. Su and Y. Stepanenko, “Redesign of hybrid adafrbist motion control of
rigid-link electrically-driven robot manipulatordEEE Transactions on Robotics and

Automationvol. 14, no. 4, pp. 651-655, 1998.

C. Y. Su and Y. Stepanenko, “Hybrid adaptive/robust iorotcontrol of rigid-link
electrically-driven robot manipulatordEEE Transactions on Robotics and Automa-

tion, vol. 11, no. 3, pp. 426-432, 1995.

J. H. Jean and L. C. Fu, “"An adaptive control scheme foordmated multi-
manipulator systemJEEE Transaction on Robotics and Automatiorol. 9, no. 2,

pp. 226-231, 1993.

Y. D. Song, “Adaptive motion tracking control of robotamipulators: non-regressor
based approach,” iRroc. IEEE Int. Conf. on Robotics and Automatidi®94, pp.

3008-3013.

N. Sadegh and R. Horowitz, “Stability and robustnesslygsis of a class of adaptive
controller for robotic manipulatorsfnt. J. of Robotics Researchol. 9, no. 3, pp.

74-92, 1990.

171



[99] Y. Stepanenko and J. Yuan, “Robust adaptive controbbbtic manipulators without
the regressor matrixJnt. J. of Adaptive Control and Signal Processingl. 6, pp.

111-126, 1992.

[100] R. Colbaugh and K. Glass, “Adaptive regulation ofdidink electrically-driven ma-

nipulators,” inProc. IEEE Int. Conf. on Robotics and Automati@f895, pp. 293-299.

[101] J. X. Liu, Robotic Manipulators: New Researdiova Science Pub. Inc., 2005.

[102] S. Arimoto, F. Miyazaki, “Stability and robustness BfD feedback control for
robot manipulators of sensory capability, Robotics Research:Proc. First Int. Symp.

1984, pp. 783-799.

[103] S. Ahmad and M. Zribi, “Lyapunov based control design multiple robots han-
dling a common object,J. of Dynamics and Contrphol. 3, no. 2, pp. 127-157,

1993.

[104] V. Utkin and H. Lee, “Chattering problem in sliding m®dontrol systems,” iRroc.

International Workshop on Variable Structure Syste2@06, pp. 346-350.

[105] M. Oya, C. Y. Su and R. Katoh, “Robust adaptive motiorzé tracking control of
uncertain nonholonomic mechanical systemiBEE Transactions on Robotics and

Automationvol. 19, no. 1, pp. 175-181, 2003.

[106] L. Hsu and F. Lizarralde, “Experimental results oniahle structure adaptive robot
control without joint velocity measurement,” Proc. American Control Conf1995,

pp. 2317-2321.

172



[107] B. Mishra and N. Silver, “Some discussions of statipping and its stability,IEEE

Transactions on Systems, Man, and Cyberngtick 19, no. 4, pp. 783-796, 1989.

173



Appendix A

Dynamics of Beam

Kinetic energy with respect to fixed coordinate frame in €sien space is given by,
1[5 o 5 ; . - -
KE = é/i P +V3+ 62n% 4 (x8 + )% — 201 (%coh + Yosin)
2
+2(6x+ 1) (YocosH — %osing)]dx

Variational principle is applied to the kinetic energy tarmhich are illustrated for some

of the terms as follows:

1., t

6(5%%) = X009 (Xo)
t
t2
= %08300) I~ [ a3000)
1
t2
= / —%00(X0)
1
1. 2 )
5(53/02) = Yod(Yo)
1
t2 s
= —Y0d(Yo)
t
. .
6(%6%2) = /tz—enzese, for variation of 6
1

to .
— /29217517, for variation of n
t
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1 . . S sh s
SI5(x0+1) = (x8-+7)[x56+50)
= X2050+x03N +x1N36+Ndn
— X036 —xBdn —xid0 —idn

_ /t2[<_x2é_xn')59_ (xB+7)3n]

1
Similarly, variations on the other kinetic energy termsals® performed.

Potential energy is given by

1 %
"2
Ue = _Z/ZL [Eln }dx

Ug = mgy

Variation of potential energy:

L t |
5(%/3 [Eln//2:| dx) = % [EIZI”]”5(I’)”)} = El[””é(n’) _Elr’///5(r’)+ 2E|r’IV5<r’)
2

1

3(mgy) = mgdyo
Work done due to the external forces is given by,

L L . L L .
W = Fay (X0 — 5 cosB) + Fy(yo — > sinB@) + Fxx(Xo + > cos8) + Foy(yo + > sin@) +

(Foy +Fry)n cos6 — (Fix + Fax)n siné
Variation of external forces:
1. Fixdxo
2. —Fi53c0s0 = F15sin056
3. FydYo

175



4. —Fyy58sin = —Fyy 5 cosb 56

5. Fx0Xo

6. Fox50C0S0 = —Fx55iN056

7. Foy0Yo

8. Fiy505sin6 = Foy 50656

9. —F1xnd(sinB) = —F1xn cosBdo
10. —Fy«sinBd(n)
11. Fiynd(cosB) = —Fyn sin666
12. Fiycos8d(n)
13. —Fxnd(sinB) = —Fxn cos6do
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16. Fyycos85(n)

Separatingdxg components
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L
Integrating all the terms idxo (p [ dX)
2

L
. [2 , M y
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Separatingdyg components
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Integrating all the terms idyg (p f% dx)
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p/i x62sinfdx = 0
: L
—p/L n cosBdx = —pcos@/L ndx
2 2
Separatingd@ components
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Separatingdn components

621 — (X0 +ij) — %06 cosh — YO SinB — o cosh + YpB Sind + X SinB + %96 cosb + F”N
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Appendix B

Regressor for Manipulator - Flexible

Object System in Cartesian Space

B.1 Time dependent parameters

al a2 a3 ad ab al6 al7 al8 alg a20
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Yes Yes Yes Yes Yes o Yeso Yes' Yes© Yeso Yes
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[2sin(gy — g3) +0.5siNg2 — 0) — j11— j12—0.5sin(q2 + 6) + j13 cogqp) O
2(cogqz)?— 1)
_ 2[cog(a1 +Gp) cog(qs) cOgqp)|%o
sin(ge)?
[2j1201 + 2j1282 — 2j1201 + Sin(gz + 6) G +Sin(g2 + 6) G2 — j1302] 6
4sin(qz)

a2
ch = -

_|_
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[sin(gz — 0)d1 — ja3G2 — 2SiN(d1 — g3) Gz + SiN(d2 — 6)G1 |6
+ -
4sin(d)

201 +l¥o  cot(gp)[cot(dp) cog ) —sin(2ds — B) +cog(2q1 — 6) cot(qp) 62

2 2
Sin(201 +02)01Yo |, COS(01 + G2)d2€0901)Xo

2sin(0p) sin(gz)
21468 + 2j15% + 21588 — 2j1601 — j1602] COS(0) O

sin(02)201(G1 + Go)
[~ i1761 — 1891 — J1802 + 21401 G — 2] 1900103 + 2j19G02] O 02) B
sin(02)201 (A1 + o)
[coq(a1 + Gp) cogan) cog(A2)) (261 + G2)Yo
sin(02)201 (A1 + &)

_|_

_|_

_sin(2qu) +sin(201 +2d2)%  2sin(gy + ) cos(Gz) sin(d1)Yo |, , [61 + Gef%o
2sin(qgp)? sin(gp)2 * 2
_ 0.5c08q2 — 0) —2sin(ds — gg) + 20+ cog(qs +q3) +0.5cogg + 6) — j21
2(coq0p)? 1) .
[2j2001 + 2j2002 +2€0801 + G3)G1 + j2201 + j2o02 — J2102]0
4sin(az)
[2coga1 — 03)Gz — cogaz — 6)0q1]6
4sin(gy)
[cog2qu — B) + cot(gp) sin(8) + sin(20; — 6) cot(qp)] cot(gp) 62
2
sin(ox + G) sin(da)Gayo | SIN(201 + G2) GoXo
sin(qy) 2sin(qy)
 2j239] + 2j249F + 2j2495 — 2581 — j2601 — j2sd2 — 2j2701
2sin(02)%t (G + G2)
 J2r%2 +2j2391G2 + 2j23G1G3 + 4i2401G2 + 2j240103 + 2j240203
2j29
[j2801 — 0.55in(g2) G2 + 0.5]2802] cOK02) Yo
J29
. Sin(Gy + d2) O(Gp) sin(da) (26 + GaJ%o
J29

b2
ch =

[0.5c0402 — 6) —2cog a1 — 03) + jao+ cog a1 + 03)] cOg02)Yo
2(cog02)? 1)
[0.5cogd2+ 0) — j31]cogd2)Vo
2(cogdp)? - 1)
[2sin(q1 — gs) +0.5sin(g — 8) — jg2—sin(dx +g3) — 0.5sin(gz + 6)] cog(dz2) %o
2(cogdp)? - 1)
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_{[E i Coqq2>j51]j

—1—{[@ i CoqqZ)j57]j

_ [2sin(gs) + jaa— jas][2sin(gp +d3) + cog(cy) sin(6) — cog(B) sin(d)] cog(dz) 8

2sin(gp)?

1 {(05c080)[ 27— 128 o5 J20 a0y Jar a2y g or6
Jss )59 Jss  Js9 Jsg  ]59

co +0gp)Co 160+ -
. ‘ . o Qg) 5(Q2)J60}y0
)58 J59 Js8
sin(gy + o) cogap) J'eo}).(0

. - 0+ .
J58 J59 > )58

_ [2j6201 — 2je201 — 26202 + SIN(d2 + 6) G + je30l2 + 2SiN(0h — d3) G2 + Jeada]Xo

4sin(ay)
[2165CI1 —2jeed1 — 2je602 + cOg 02+ 0)01 + je702 +2€0501 — 03) G2 — jesdr]Yo

4sin(qy)
[169+ j70— i71— j72+ j73+ j74— j75/6?
sin(z)?
[2 sin(ds) + j76— j77)[2SiN(02 + 03) + j78— j70)¢120
4sin(gp)

k1l=sin(gy — 6) — 2sin(qz+0s); k12=cogdi)cogqs); k13=cosds)sin(d);

k14 = cogq; — 0)cogqs); k15=sin(qi)sin(dz); k16=sin(dz+dsz);

k17 =sin(qs — 8); k18=sin(qp)d; + sin(gz)g2

_ cog(gs)sin(qs) 6 sin(gq)cogas)

_cog(d1)cog(q3)8 | cos(cn)sin(ds)(d1+d2+3s)0  cogar)cog(qs)f

n(dz) sin(dz)
(o + G2 +Gs)8 _ cog(qg)sin(an)6
sin(qgp) sin(gp) sin(qy)

sin(gp) Si

cofg)kinb kit ko | kisko kYo KiaB?  Kas(Ga+d2)¥o

sin(qy) sin(gp) B sin(gy) + kig kis  2sin(Q) sin(qp)

_ sin(gs)ki1ds®  kis(th+d2)%0

2sin(0) sin(dz)

n cog(qg)[cogq1 — ) — 4kyel — 4K1602 — 2k160s + k1701 + ki762] 0

2sin(dz) (1 + Go)

nll=cog o+ 02) cogd+0s); Nl2=cogq; + ) Sin(dz + d3);

n13 = cogdz2+03) Sin(gy +0z); N14=sin(qgs +dz) sin(dz + 03);

nl5=sin(g1+ g2 — 03— 6); nl6=sin(qy+ 302+ 03— 6);

nl7=sin(dy — gz — gz —0); nl8=sin(g1+02+0ds—6); nl9=cod+0d2—03—6);
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n20=cogq; +302+ gz — 0); Nn21l=cog202+203); N22=cogdy— 02—z — 6);

n23=coqa1+gx+0s—0); n24=coq2qp); n25=cog2qz).

ni6 | b npp(Gu+de+3s)6
sin(q__g) sin(qg) sin(qp) _
Vo n130 N6  Nua(Qr+0G2+03)0
b B T .
sin(g2) ~ sin(ag) sin(dg) )
v MiXo ~ Mayo  cogO2+az)[sin(gr+ g — 8) — 2sin(qz)] 6
o = 0 D0 :
sin(gz) ~ sin(d2) sin(og)
N 0.5cog 01 + 202 + 03)Yo + 0.5 cog a1 — 03)Yo
Sin(dp) 01 _
[cog(qs + 202 + Gz — 8) + cogqy — g3 — 6)]62
+ -
4sin(d) _
[401 + 202 + 203+ N15+ N1 — N17 — N1g — N1901 — N2o1 + 4N21G1 + 2n210p] 6
8sin(g2)%0 _
[N22G1 + N2301 — 4N24Q1 — 22402 — 2Np403 — 4Nos01 — 2NpsCe — 2N2503] 0
8sin(02)201
[sin(q1 — d3) +Sin(q1 + 202 + 03)]Xo
2sin(d2)qy .
sin(dz2 +ds) (G2 + Gs) [sin(dr + 02 — 6) — 2sin(g3)] 6
+ -
2sin(0p)
| 0001 +Gp) Sin(dz +G3)dr¥o , Sin(da + ) Sin(dz + ds) daYo
sin(d) sin(d)

+

031 =sin(qy + g2)? —sin(g1)?;, g32=sin(2qy) — sin(2q1 + 20p);

g33=sin(2q1 +2q, — 0); g34=sin(2q; —0); 35=sin(gy+ 2 — q3);

036 =sin(0L — 02 — 03); 037 =cog20: + 20— 6); g38=cog20, — 6);
q39=coga1 + )% q40=sin(dy+0p+03); q4l=sin(2q1+20p); q42=sin(qr+02)?
g43=coq0r +02+0g); g44=coqdh+G—0s); G45=cost1— Gz —U);

Q46 = cog2q1 + 202 — 20); g47=cogq1+02— 03— 6); g48=cot1— G2~ gz~ 0);

g49=sin(q1 + g —gz—6); g50=sin(q1 — gz — gz — 6);
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g51l=sin(q+qx— 0); g52=sin(gx+0qz); g53=cogq;+g>— ).

a5 _  Ui¥o n 0d32Yo n (033 — Oz + 2035 — 20j36) 6
© sin(g)? * 2sin(q)? 4sin(gp)?
 [0s7— s8]0 [Oaolh + Gs002]Y0
4sin(dz)?  sin(d2)?du(dy+ G2) '
_ [cog6)d2 — dzsth — 20400510 203647 + 201350% + 29354516
2c04202 — 1)Ga(G1 + Go) 2cog202 — 1)G1(G1 + G2)
[Q37Q1 + Ga702 — 20360102 — 20360163 — 2008102 — 20a002Gs + 4035¢162] 0
2cog202 — 1) (1 + Go)
2040610 + 200350208] 0 [Gaadis — SIN(201) G + Gaadia] o
2c092q2 — 1)G1(Ga + G2) cog 2z — 1)G1(Q1 +G)

[siN(201) — Qa1]  [037— O38+ 2044 —204s]0  Qz1Yio

Y = : - . — =
2sin(gp)? 4sin(gp)? sin(gp)?
 [Ozat + Gsallz + 204303 — Gaats — 2014405 — 204403 + SIN(6) G + 204505] 6
2c04202 — 1)(Gu01G2
[ZQ43OI2QS — 404401 G — 2040103 — 20446203 + 2045162 + 204501.G] 0
_ 2c08202 — 1) (0 + G2)
_ [933—34]6% [ — SiN(201) G + Ga182]Yo | [Gazb — SiN(ga) %G + Ga2b2]%o
4sin(gp)? cog20, — 1)qu(qr + 02) sin(02)201(G1 + G2)
yes _ [Sin(201) —Gaa%o  [Ga7— Qs + 2044 — 20| 6  dafo
© 2sin(g)? 4sin(gp)? sin(gz)?
(G201 — Sin(ga) %6 + Gazlie]Xo
sin(02)201(G1 + G2) '
_ [0.5sin(gs — 6) +0.5051 — Os2] [05201 — 0.5 cog . — 0) + G520 + U523 0
sin(d2)?(G1 + G2)
05051 — sin(g)][sin(gs) 2 + sin(g) 43 — 0.5053¢ — 0.5053¢2)0
sin(02)2q1(A1 + Go)
_ [0.5051 — sin(qz)][—0.5cog a1 — 6) 1 + Gsalfi]
sin(02)201(q1 + Go) '
N [0.5051 — sin(g3)][2 siN(g3) G102 + Sin(gz) 4163 + Sin(gs) ¢pG3] 6
sin(dz)?Gu (G + Go)
n [SiN(g2 + g3) G102 + Sin(gz + g3) 41030
sin(02)2G1 (AL + Go)

[OI380I1 — 204401 — 204482 + 204501 + €0 6) 2 + 204302 — G3701 — U3762] X0
2cog202 — 1) (1 + Go)

_ [A3301 + 3302 — 3401 + 203501 + 203502 — 203661 — SIN(O) G2 — 20u0]Yo
2c04202 — 1)q1(G1 + G2)
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ril=sin(gy—6); rl2=sin(gy+0qg); rl3=-cog2q; —6); rld=cogq; —0);

r15=sin(29; —0); rl6=sin(2g9;—20); rl7=sin(qi—g2—0qs—0);

r18=sin(qr+0g2+0s—0); r19=coq2g;+2qz); r20=cogq1— g2 —qz— 0);

r2l=cogdu+02+0s—6); r22=sin(qr+0z+0ds); r23=sin(qy — o2 — da);

ab
ch

c6
ch

[r11—2r1zJcog(qn)6  sin(2q1)¥o  cogar)*ko sin(291)%o

sin(cp)? 2sin(dz)?  sin(g2)®  2sin(dz)?(Gu + Go) '
_cofq)®o  [r13+cog6)]6%  [2riath — 14+ 2riop + 2rioGs)cogar)6

sin(d2)?(Gy + d2) 4sin(gp)? 2sin(d2)(Gs + G2)

[r11—2r1gsin(g1)8  sin(a)%o  sin(2d1)%o

2sin(d)? sin(dz)?  2sin(gz)?
 [2raoG — ria+ 2r190 + 2r15Gg] sin(q.) 8

2sin(0d2)?(0n + G2)
sin(d)®0  [rs+sin(8)16%  sin(2a1)yo

5

sin(dz)?(q1 + Gz) 4sin(g)? sin(02)%(Gq + G2)
[2r1o+cogay)sin(@) — cog 8)sin(01)]?0  [r11— 2r12] cog(qr)Xo
4sin(gp)2 2sin(gp)?

[r11—2r1g)sin(cn)yo  [r1e+2r17 — 2rig) 02
2sin(dz)? 8sin(gp)?

L [403+r16+ 2r17 — 2r1g — 4r1901 — 4r1902 — 4r 1003 — 2r2001 — 2r2002 0

4cog2qp — 1)(th + G2) '
[2r2003 + 2r2101 + 2r2102 + 22103 + 4 €05 202) 01 + 4 €05 202) 02| 6
4cog2dz — 1)(0a + G2)
[2r22 —r11—2r3+sin(6)]yo
2cog202 — 1)(th + Q)
[r11 — 2r12] sin(g1)Xo
2sin(g2)?(G + 2)

cog(qy + 02) cogqy)

sin(dg)

sin(q. + g2) cogay)

sin(qy)
[sin(g1 + gz — 6) — 2sin(gz)] cog )
2sin(gp)
cogqy +d2) cogd)
sin(qg)
sin(qy +d2) sin(qy)
sin(dg)
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[sin(qy — 8) — 2sin(g2 + 03)] cog 01 + 02)

YE = — .

© 2sin(qp)
Y® = 0

Y® = 0

YE = costi+a+0s)

s11=cog0s+0s)%; S12=sin(2q4+ 20s); S13=sin(gs+0s— 6);
s14=cog 0 —2q,); s15=sin(8 —2q,); s16=cogqs+0s—0); S17=sin(gs+0s)>;

s18=sin(204+ 2095 — 0); s19=sin(294 —6); s20=sin(6 —Qgs—ta);

s11%0 S12¥0 cogds + Gs)[s13+ 2sin(qe)] 0 S11Y0 S12X0

Yo — + = . — —
sin(gs)?  2sin(gs)? 2sin(gs)? Gasin(gs)®  204sin(gs)
_[cos(8) —s14-+ 2s15C0t(Gs) + COY(d5)“COS0) + $14C0NT)*] 6% S14C0Y(Gs)*
4 4
, C0S(0a +05)[0-5816 + Sin() da + SiN(Ge) s + Sin(ds) de] 0
Ga sin(Qs)?
yoro _ Si7¥o s1%0 | Sin(da+Gs)[S13+2in(ge)] 6 S120
© sin(gs)?  2sin(gs)? 2sin(gs)? 2445in(ds)?
62sin(8) + 0.7581562 + 51862 + 0.7535,962
- 4sin(gs)?
s sin(d4 + 95)[0-5s16 + Sin(e) s + SiN(de) ds + Sin(de) Ge] 0
Gasin(ds)? Gasin(ds)?
yeio _ (2sin(de) —cosda+0s)sin(6) + sin(qs + ds) cog(6))°6
e 4sin(gs)?
+CO'5(Q4+ Os)[S13+ 2 sin(gs) %o
2sin(gs)?
sin(ga + 0s) [S13+ 2 Sin(ge)] %o
2sin(gs)?
n [0.5513+ SiN(gs)][0.5516+ SiN(Qe)da + Sin(de ) G5 + SiN(ds ) Ge) 0
_ Gasin(gs)?
_ s16[25in(gs) —Sp0]6° | c0g0a + Gs) [2SiN(ds) — S20)Y0
4sin(gs)? 2sin(gs)204
_ sin(g4 +05)[2siN(ds) — S20] X0
2sin(gs)204
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t1l=sin(gs— 6); t12=sin(qs—0qe); t13=sin(qs+20s+0qe); t14=sin(qs-+ge);
t15=sin(gs+ 0); t1l6=sin(2q4+0s—0); t17=sin(2q4+ 20s);

t18=coqgs+0s); t19=sin(204 —0); t20=coq2qs—0); t21=sin(2q4+Qs);
t22=cogda+0s); t23=sin(gs+0e); t24=sin(dsa+0s); t25=sin(20sa+0s);
t26=cogds —0p); t27=coqgs—0); t28=coqds+205+0p); t29=cosds+ Gs);
t30=coqgs+ 0); t31=cog2q4+0s— 0); t32=siN(0—0s—0s); t33= (Ga+0Us5+0e);
t34=sin(2q4+ 205 — 260); t35=sin(Q4+0gs—0s— 0); t36=sin(qs—0gs+0qs— 0);
t37=sin(qs+ 305+ 0s — 0); t38=sin(204—260); t39=sin(gs4—0s— Qs — 0);
t40=sin(qs+0s+0qs— 6); t41l=coqqs)sin(gs); t42=cogqs)cogH);
t43=sin(qq)sin(0); t44=cogqs)sin(8); t45=cogqs)co9Qs); t46=coggs)Sin(qs);

t47 = sin(qs) sin(gs); t48=cog0)sin(qs); t49=sin(gs)sin(ge);

sin(gs)  sin(6 —gs —ta)

t50 = .
sin(ds) 2sin(gs)
(5] — 2t1.8t50.005(q5)
dasin(gs)
52 _ t18t50(Q4 + Gs5) + COSA40la
Sings(Qa + 0s)Ga

_ tso[taz+-Sin(ge)]  t5eSin(6)[tig+Ccogqy)]

t53 = - — -
sin(gs) 2sin(gs)
t54 — t50COS(9)[F24+ sin(q4)]
2sin(gs)
e5 _ 2t50_t24 COS_(OIS)
sin(Qs)a
(56 — tsot24(0a + Gs) + SiNCada
sings (G4 + Os) G4
(57 — 2ts0 cos(.qs) Si n(de)ta3
Singsgs

{58 — cogQs) Sin(ge)taz | t22c005) cO )

= - - + - -

SingsQga 2sInqs04

~ coY0s)sin(0)tzy

t59 = - — —
25singsQ4ds + Gs)a
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t60

t61

t62

t63

t64

t65

all __
YCS -

b11
ch =

COiC]5) [0.51211 — 2t12+t13+t14—0.5t15+ t15] 0 [sin(2q4) + t17] Yo

2co40s) sin(e)tss

SingsQs
toz+sin(ge)  sin(6)[tz2+cogds)] | cog0)[tza+Sin(da)]
sin(qgs) 2sings 2sings
2tp4C080s)  cOY0s)[t2404 +t24) 05 + SiNGadi]
singsds sin(ds)da(ds + gs)

sin(ge)  ta2

sin(gs) 2sings

to3+Sin(gs)  Sin(6)[tus +coS()] | cOS6)|toa+ Sin(cia)]
sin(ds) 2sin(Qs) 2sin(Qs)

[2sin(gs) — t18SiN(8) +t24C0S )] [2t23 — cOKqa) SIN(6) 4 cOK B) Sin(ql4)]

2cog0s)2 -1 25sin(gs)?
2t15C004) cOgds)%0 | COt(Gs)[COM(dls) CO B) — tag+ t2oCOY(Gs)] 62

sin(gs)? 2
[2t1404 — 2t1305 — 2t1304 + t1504 + t1505 — t1605 + 2t1205 + t1104] 6

4sin(Qs)
204+ 05]Yo  t2105Y0 | t18C004)0sX0

2 2sin(0s) sin(ds) _
coS(0s) [2t18t2303 + 2ta1GZ + 2ta1GE + 2t gtazta + t1gtazds) 0

2sin(05)%04(G4 + Gs)

n coS(Gs) [t18t43004 + toatasCia + trataals + 2t1gtr3040s) 0

2sin(05)204(G4 + 0s)

N c0S(0s) [2t18t23606 + 44161405 + 2t410406 + 2ta16506] 6

2sin(05)%04 (0 + O5)

n coq0s)[0.5siN0s0s5 + to50s + 0.5t0505]%0  t1gtas[204+ Gs]Yo

sin(gs)26a(da + Gs) Sin(ds)2da(Ga + Gs)

COSQ5[2t25 + 0.5ty7 — tog —tog+ 0.5t39 — t31] 0 [Siﬂ(2Q4) + t17])'('0

2cog0s)%—1 2sin(gs)?
2to4taeYo | [20a+ Gs]Xo
sin(gs)? 2
[2to801 + 2toglls — 2t20 — t3004 — taols + 13165 — 2toells + t27C1] 0
4sin(gs)

+00t(QS)[t22+ cot(gs) sin(8) -+ tigcot(qs)] 62 n tosGsXo  t24SiN(0a)dsYo

2 2sin(0s) sin(ds) _
COSUs[2to4to303 + 2ta703 + 2ta702 + trgtagla + 2toatazta + trgtasds + 2t24ta3da] 0
2sin(0s)204(04 + Gs)
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n COSOs5[2t4t2304 + 2to4t230406 + 4290405 + 2t470406 + 2t470506) 6
2sin(Qs)204 (04 + 0s)
_ COSQs(t2184 — 0.58iN(0s)05 +0.5t210s]Y0 | tatas[204 + ds]%0
sin(0s)%04(Ga + Gs) sin(0s)%G4(Ga + Gs)
c0sQs5[0.5t11 — 2t12+ t13+t1a— 0.5t15+ t16)X0
2coggs)? -1
N COSOs[ 2o+ 0.5tp7 — tog — tog+ 0.5t30 — t31] Yo
2coggs)? -1
_ cosgs[2sin(ds) — ta2SiN(6) + t2ac0Y 6)] [2t23— tag + t1g] 6
2sin(gs)?
L 0.5c040)[ts1 — cogds) [t1804 + t1805 + O 04)d4]Yo
sin(gs)da(Ga + Gs)
n 0.5sin(0)[ts1 — 0 0s) [t1804 + t1805 + COSO4) Ga] Yo
sin(gs)da(Ga + Gs)
~ t18°°§r?(5gg5§4+ 54) | 0.5c056)]ts1 — tspc08q5)]8
t50c0(g5) [t2304 + SiN(Qe) da + SiN(ds) s ta3
Sin(0s)da(ds + Gs)

cll1 _
ch -

+[t51 — t52C00s) ]

+0.55in(6)[ts4 — ts5c05s5)] 6 —

. . te3Xo
—([tsg+t50]te1) O —teoteaXo + S(cE)Ge
n [2t1404 — 2t1304 + 2t1405 + t1504 + t1605 — 2t1205 + t1104 + t1105]%0
4sin(gs)
[2t2804 — 22904 — 22905 — t3004 — t3105 + 22605 + t2704 +t2705]Yo
4sin(0s)
0.13t34 — 0.25t35+ 0.13t36+ 0.13t37+ 0.13t3g — 0.25t39 + 0.25t4¢) 62 t65Q5é
sin(gs)? ~ 4sin(gs)
_ cog(qu) cog(ge) 6 , ©0s(G4)sin(d)(Ga + G50 +Gp) _ COSG4) COKGe)0
sin(ds) sin(ds) sin(ds)
_ cos(ge) sin(da) 6 n sin(ga) sin(de) (G4 + 950 +de)  COe) SiN(Ga) 0
sin(ds) sin(ds) sin(ds)

_|_

N

al2 __
ch -

b12 _
Yes© =

_ cogqe)[sin(ds — 6) +2sin(gs+0e)|0  cogqs) COS(Gs)X0  COTs) SIN(Ga)Yo
sin(Qs) sin(ds) sin(ds)
cogge)cogqs— 0)8*  cogaa) cogs)Yo cog(gs) Sin(da)%o
2sin(gs) sin(ds)Ga +sin(gs)ds  sin(gs)da -+ sin(ds)ds

_ Sin(da) sin(Qe) (Ga +ds)Yo , [SiN(Ga — 6) +25in(0s + )| SiN(Ge) ds®

sin(gs) 2sin(ds)
~cog(ga) sin(ge) (G4 + ds)%o

sin(as) .
_ cog(ds)[cogds — 6) +4sin(gs + 0p) 44 + 4 SiN(0s + Gs) G5 + 2SiN(ds + d) Ue 0

2in(gs) (G4 + Gs)

clz2 __
ch -
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[sin(g4 — 8)Ga +sin(qs — 0)0s5]6
2sin(ds)(Ga + 9s)

ull=coggs+0s); Ul2=coggs+0s); UL3=sin(gs+0e); Uld= (Ga+0s+Ge);
ul5=sin(qs+0s); ul6=sin(ga+0gs—0); ul7=coqqs+ 205+ Qs);
ul8=cogds—0p); UL9=cogds+20s5+Qs—0); U20=cogds—0ds—0);
U21=sin(gs+0ds — e — 6); U22=sin(gs+ 3ds+de — 0);

U23=sin(gs —gs— s — 6); U24=sin(gs+0s+0ds—0); U25=cogds+0gs—ge— 6);
u26=cogga+30s+0s — 8); U27 = o205+ 20g); U28= CcOGs— 05— — 6);

u29=cos0s+0s+0s— 6); u30=sin(gs+ 205+ 0s);

CUpgUspf | UpUpp  Upalazuig®
sin(ds)  sin(gs) sin(ds) -
_ UppUisB | UnalnpB  UpaUsausef
sin(gs)  sin(gs) sin(gs)
_ UniUng¥o | Unalaslio | Uno[Use+25in(ge)]6 | [0.5u17+ 0.5u1g]yo
sin(gs) ~ sin(gs) sin(gs) daSin(gs)
[U19+ U2q] 62
4sin(gs) _
[404 - 205 + 206 — Up1 — U22 + U3 -+ Upg - Upss + Upells + 4Up704 + 2U2705| 6
85sin(gs)20a _
2U2706 — UpgQa — UpgQa — 4€09205)G4 — 209 205)s| 0
8sin(gs)?s _
[2c0g205)Gs — 4 c0g206) s — 20K 206) G5 — 20K 2g) (6] O
8sin(gs)%ds
~ Upaluge+2sin(ge)](ds +de)  [SiN(da — ds) + Uz Xo
2sin(0s) 2sin(gs)ga
U11U1304X%0 , U1sU1304Yo
sin(gs) sin(gs)

al3 __
ch -

b13 __
ch -

cl3 __
ch -

N

vl1l=sin(gs+0s)? Vv12=sin(2q4+20s5); V13=sin(2q4+ 205 — 6);
v1l4=sin(2g94—60); v15=sin(gs+09s—0Qs); V16=sin(qs—0gs—Qs);
v17=coq6 — 205 —2q4); v18=coq6 —2qs); Vv19=coq2qs+205—6);
v20=cog2q,s— 0);
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V21 = cog0s+0s)% V22=sin(dsa+0s+0s); V23=CO0s+Us— Ue);

V24 = cog0s—0s—0p); V25=C0Y04+0s+0p); V26=cog204+ 205 —26);
V27=coq0s+ 05— Qs — 0); V28=cog 205+ 20p);

v29 = cog2q4 — 26); v30= sin(ds+ Js);

v31l=sin(qs+0gs— 0); v32=coggs+ Qg5 — 0); Vv33=sin(2q4+ 205 — 20);

v34=sin(gs+0s — s — 0); Vv35=sin(20s —26); v36=sin(ds—0gs—0qs—0).

yata _  [vir—sin(as)’%o— . [sin(2d4) —vaalfo—  [Vi3—Vaa— 215+ 2va6]0
© sin(gs)? 2sin(gs)> 4sin(gs)?
[0.25v17 — 0.25v18+ 0.75v19 — 0.75v(] 62 V2104 + V2105 — COS(C]4)2CI]4])'/0
+ . > — - 5= -
4sin(gs) Sin(0s)2Ga(Ga+ Gs)

N [2v1605 — V2o0a + 2V2202 + €0 ) (s — 2v1503 — V4502 + V1904] 6
2|cog2g5) — 1]34(%a + Gs)
[V1oQs + 2V160405 + 2V160406] 0
2|cos(2gs) — 1]Ga(Ga + Gs) |
n [2V220405 + 2V220506 — 4V150405 — 2V150406 — 2V150506] 0
2[coq205) — 1]Ga(Ga + Gs)
[V12Q4 — SiN(204) Ga + V1205] %o
[cog205) — 1]Ga(Ga + Gs)

yora _  [Vio—Vao— o3+ 4]0 [vig— sin(da)?lyo | [Sin(2qa) —vi2l%o
CS -

4sin(gs)? sin(gs)? 2sin(gs)?
1.75 S|r(9 — 2CI4) +Vv13+0.75v14
4sin(gs)?
[V13Ga + Vi3G5 — 2V2502 — V14l + 2Vp32 + 2v2302] 0
2[cog205) — 1]d4(Ga + 0) _
[Sin(8) 85 — 22403 — V250405 — V250506 + 4V230ads + 2V230a06] 0
+ — -
2|cog2g5) — 1]44(0a + Gs)
[2V230506 — 2V240405 — 2V240506] 0
2[cog20s5) — 1]Ga(Ga + Gs)
[V1184 — Sin(Ga) 2G4 + V1105)%0
sin(05)244(04 + Gs)
[V12Q4 — SiN(204) Ga + V1205]Yo
sin(05)244(04 + Gs)
[4C08206) + Vog — 4Vo7 — AVog — Vo9 +4V27]60 [V19— Voo — 2V23+ 2V24]Yio
8sin(gs)? 2sin(gs)?

cl4 _
ch -

193



[V13 — V14— 2Vi5+ 2V16/X0
2sin(gs)?
0.5c080q4 — ) + V3004 + V3005 + V30de) [0.5Sin(gs — 8) — 0.5v31 + V30| 0
sin(ds)?(Ga + Gs) _
0.5v31 + sin(d)][2 Sin(q) & -+ 2 SiN(06) G + Va2l + Va2ls + COYGs — 0) 6] 6
sin(gs)?(G4 + Gs) '
N [sin(de)][2v3003 + 4 Sin(ds) Gads + 2 SiN(ds) Gadls + 2 SiN(ds) Gs s -+ 2V30Uals] 0
Sin(ds)2(Ga + Gs)
0.125v33— 0.25v34 — 0.125v35 + Vag] 62
sin(ds)?
[V208a + 2V2304 + 22305 — 2V2404 + €OS 0) {5 — 22505 — V19G4 — V1905|%0
2[cog295) — 1]Ga(Ga + Gs)
[V1304 + V1305 — V14Q4 — 2V1504 — 2V1505 + 2V1604 — SIN(O) 05 + 2v2205] Yo
2[coq295) — 1]Ga(Ga + Gs)

N

N

N

wll=sin(qs—0); wl2=sin(gs+0g); W13=cog6—2qs); wld=cogqs—6);
wl5=sin(0 —2q4); w16=sin(2q4—20); wl7=sin(gs—0s—0qs— 0);
W18=sin(gs+0gs+0ds— 6); W19=coq20s+20s); W20=cogds—0s— 0 — 0);
W21l=cogqs+0s5+0s—0); W22=sin(qs+0s+0s); W23=sin(2q4— 6);
W24 = sin(ds — g5 — 0s); W25=cogds + 05+ 0s); W26=cog2qs— 6);

W27 = c0Yg4 — 05 — Gp)-

—cogga)Ko  sin(204)¥o  cos(au)[wiz+2wiz]6  [wiz+cog0)]6?

als __
ch -

sin(gs)? 2sin(gs)? 2sin(gs)? 4sin(gs)?
_cogga)*Yo sin(294)%o
sin(0s)%(da+Gs) ~ 2sin(05)%(Ga+Gs)
_ COS(Ga) [Wi14 + 2W1 2G4 + 2W1205 + 2W12G6] 6
2sin(0s)?(G4 + Gs)
ol = sin(2d4)% _ Sin{m)zYo _ sin(Qa) w1 + 2w17]6 | Sin(Q4_)2>'<o _
sin(ds)? 2sin(gs)? 2sin(gs)? sin(ds)?(Ga + Gs)
[wis—sin(6)]6%  sin(2q4)Yo
4sin(gs)? 2sin(Gs)?(Ga+05)
_sin(dja) [Wag+ 2W1204 + 2W1 205 + 2W1206] 6
2sin(0s)?(Ga + +0s)
yels _ § (6 W1+ 2w1g]?)  cogaa) W11+ 2Wiz%0 _ Sin(0a) W11+ 2Wa2]o
4sin(gs)? 4sin(qs)? 4sin(Qs)?
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v
v
ch316
Yar
el
chsl7
v
v
ch318
Yo
vie
chslg

a20
ch

b20
Yes

c20
ch

+

[W16 —2Wp7+ 2W18] 92

8sin(gs)?
[406 + W16 — 2W17 + 2W1g — 4W1 904 — 4W1905 — 4W1906 + 2W2004] O

2[cog295) — 1]G4(Ga + Gs)

n [2W2005 + 2W200s — 2W2104 — 2W2105 — 2W210s + 4 €05 205) (4] 0

2[c0g295) — 1]da(Ga +s)
[2w22 +Wo3 — 2024 — SIN(B) Yo [2Wo5+ Wag — 2Wp7 — COY6) %0

2[co9(20s) — 1]G4(Ga + Gs) 2[co920s) — 1]G4(Ga + Gs)

cogQ4 + 0s) COY0l4)

Si

sin(ds)
N(Q4 + 0s) cOgda)

0

sin(gs)
[sin(gs +ds — 6) +2sin(ge)] cog(ga)

2sin(gs)
cog4 + 0s) CO0l4)

sin(gs)
coQ4 +0s) Sin(da)

sin(ds)
[sin(g4 — 6) + 2sin(gs + Js)] COY 04 + Ts)

2sin(0s)

cog0s + Qs+ 0p)

%o

Yo
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B.2 Time independent parameters

_ Iyl 2 ~3 44 45 16 17 18 19 201T
Ucs= [acs Ucs Ucs Ocs Ocs oo Ucs Ocs Ues Ucs acs]

— — _1212 2 - _ 212 .

122 : —12.12122
a6 = 17411521000, @7 = 144155154155

bl =1211313,13,; b2=1%,11313,15,; b3=1212,15,l53; b4 =LIZ|5 |5, b5=LIZ12]2;;
bll= | |2 | |22; bl12= |11|12|13|§1|§2; b13= | | 2|21|22|23. bl4 = L|11|12|21|22,

—11212 . _ 121212

cl=121212112,; c2=12121315; c3=12/12,]212,; cA4=12,I2,212,; c5=12|2,]2,12,;
c6=L22,12/12,; c7=L2%12)5,; c8=L22I2)2; cO=L2% 1313, cl0=LIZ13313;;
cll=LIZ 13515, cl2=LIZ 125 lp5 c13=LIZ 12|12 153 cl4=111l122)512;;
015:|%1|12|12_3| |22, Cl6:|11|12_2|13| |22, Cl7=|12_1| |1|22|23, Cl8=|%1|%2| |2|23,
cl9=1212,12112,125; c20=LI11l2,15,12,; c21=LIZ 122113, €c22=LIZ 1171313,
c23=LI212,1212,; c24=1L21111173)12,; €25=L212IZ,5113, €26=Ll11l12l1313,2;

212
c27= L|11| 12| 13|21|22|23.

dl=1l11l13l21l20; d2=l11l12l22l23; d3=I11l12l21l22; d4=111l13l21l22; d5=111l12l21l23;

d6 = Lly1lp1l20; d7 = Llgolo1lop; d8 = Llal1ol21; d9=Llggliol2
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p11(4al+-4b2 — 8b4 + c4 — 3¢6 — 2c10)a7d3

20
p12(6a5+ 8b12+ 12014+ c14— 4c24— 4c26)ard3

20
p13(4b10+ c15— 2c22)a7d3

20
P14(4b8+ c16— 2c20)a7d3

20
p15(4al+ 4ad+ 4bl+ 4b2 4 8b4 — 8b7 + d1+ ¢4+ 3c6+ 3¢9 — 2¢10— 2cl11)ard3

20
Prs(4ad -+ 4b1 + 807 + d1 -+ c3+ 3¢9 + 2c11)a7d3

20
p17(el —4d1 - 8d7)a7d3

20
p1s(€2 — 4d4 — 8d6)a7d3

20
p1oa7d3
20
p21(4a2 + 4b3 — 8b5+ ¢5 — 3¢7 — 2c12)a7d3

20
p22(6a6 + 8b13+ 120154 c17 — 4c25— 4¢c27)a7d3

20
p23(4b11+c18— 2c23)ard3

20
Poa(4b9+ 19— 2c21)a7d3

20
P2s(4a2 + 4a3 + 4b3 + 8b5 — 8b6 + 4b16+ c2 4 c5+ 3¢7 4 3¢8 — 2¢12— 2c13)a7d3

20
p2s(4a3+ 8b6 + 4b16+ c2 + c3+ 3c8+ 2c13)ard3

20
po7(€3 — 4d2 — 8d9)a7d3

20
p28(64 —4d5— 8d8)a7d3

20
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18 p29a7d 3

Oes = 20

aé‘sg _ p31a7d3
20

agso _ ps2a7d3
20

where,p3l=m; p32=1
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Appendix C

Regressor for Manipulators - Flexible

Object System in Joint Space

C.1 Time dependent parameters

[ Y](é 1 qus 2 qus 3 Yj(,i,4 Y](é 5 qus 17 qus 18 qus 19 qus 20 ]
inl Yj?sz in‘g Yj%4 Yjes5 Yjesl7 in‘lS in‘lg in‘zo
Yjs ) ijsl Y]];Z Y]1;3 YJfS4 ijSS Y]l;17 Y]l;18 Yll;lg le;ZO
ngs 1 YJ%Z YJ%S ngs4 Y]%S ngs 17 ngs 18 ngs 19 Yj%ZO
le;l YJT;Z YJT;S le;4 le;S th;l? YJT;lS YJT;lQ YJ};ZO
] le sl le S2 YJIS YJI S4 YJI SL:') ) le 317 le 318 le 319 le S20 |

Y = G Y2 = cog(dp) (261 + bz) — G2SiN(Gp) (261 + G2);
Y& = cogqs) (241 + 262 + d3) — G3Sin(gs) (201 + 262 + Ga);
Y4 = cog(d2+ 03) (261 + 262+ G3) — SiN(02 + G3) (G2 + 63) (261 + G2 + Ga);
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YO =t YR =ds Y =codq); Y =cogau+0p); YL =cogai+0a2+0a);

Yle Ydll Yd12 Yd13 Ydl4 Yd15 Yd16 Yd17 Ydl8 0.

a1 =SiN(da+0s+0s); a2 =SiN(th+dz); a13=cogda+ s+ Js);

a4 =sin(q1+02+0z); aus=Cog01+02+03); ae=CO1+02); a7 =COda+0s);

a18=SiN(Qa+0s5); 9= (Qr+G+03); o= (G1+0G2); 1= (Ga+04s+0e);

a2 = (da+0s).

YS® = (g[0.25811812 — 0.25a13a12 + 0.25811Sin(q) — 0.2581 3814+ 0.25a1401 1]
—01[(0.25a14+ 0.25a12) (a35+ a16+ €c0g01)) — (a14+ a2+ sin(qp))
(0.25a14+ 0.25a15 + 0.25 sin(o ) 6a] (0.25814 + 0.25a12) (213 + @17 + o 0la) )
—(a11+a18+Sin(qs))(0.25a14+ 0.25a12+ 0.25sin(g1)] — 0.50(a14+ a12)
—63[a15(0.25814 + 0.25815) — a14(0.25814+ 0.25815+ 0.25 5iN(qy))]
+G2[0.5{ (a14810+ a12820) (0.5a14+ 0.5a12) } + 0.5{ (ar5a19 + &16820)
(0.5a14+0.5a12+0.5sin(01)) }] + Gs[0.5{ (a11821 + A18322) (0.5a14 + 0.5812) }
+0.5{(a13821 +a17822) (0.5a14+0.5a12+0.5sin(qy) ) }] — Gs[(a13+ a17)
(0.25314+ 0.25a12) — (211 +a18)(0.25314+ 0.25312+ 0.25siM(qy) )]
(3]0.5{@14(0.5a14+ 0.5a12)a19} + 0.5{@15(0.5a14+ 0.5a12)a19}|
06/0.5{@11(0.5a14+ 0.5a12)a21 } + 0.5{@13(0.5a14+ 0.5a12) 821 }|
+01[0.5{(0.5a14+ 0.5a12) (a14819 + @12820+ SiN(q1)G1) } + 0.5{ (az2a19
+ageao+ €0g01)d1)(0.5a14+ 0.5a12+ 0.5sinq; ) }]
+04[0.5{(0.5a14+0.5a12) (11821 + 18822 + SiN(da) Ga) } + 0.5{ (ar3dz1
+aj7az2+ c0g04)04)(0.5a14+ 0.5a12+ 0.5sinqy ) }]
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+0.25[02(a14 + a12) (a14 — 815 — 816+ @124 SiN(qy) )|

a3 = Cog01 + G2+ 0); aa=cogq:—0); axs=sin(qr+02+6);

axs=Coq g1+ 02— 0); agz=sin(qi+02—6); axg=coq1+02+0qz+06);

a9 =sin(01+ 02+ 03+ 6); ago=cogd1+6); ag1=cosqi+g+0s—6);
agz=SiN(1+ G2+ 03— 0); agz=sin(ds+0gs+0ds— 6); ags=sin(qs — 0);

ags = sin(qs — 0); ags=sSin(qs+09s—0); agz =sin(qr+02—6);

agg = COg04+ 05— 0); age = cog0s+0s+s— 6);

ayo=cogds—6); ayr=sin(th+6); ayz=cog0s+0s+6); asz=sin(dsa+0ds+6);
844 = COYQa+ 05+ Qs+ 0); ass=sin(Qs+0s+0gs+6);

asg = SiN(Qa+ 0); as7 =cogda+ 6).

Y@ = 0.04/(0.5a23— 0.5824— 2814+ 0.5805 — 0.5a6+ 0.5az7 + 0.5a25+ 0.5a29
+0.5a30— 0.5a31 + 0.5832) (261 + 20 + 2G5 + 204 + 25+ 246
“+ago0f + agal + as203 — a3l — Asad3 — As30ls + saG] — AgsCj + Ax70f
~+ag705 — agells — agells + 2ag20102 + 283201 G + 285202003 — 2ag30als — 28330406
—2a330506 + 28370102 — 28360405)] + 0.04{(0.5a23 — 0.5824 — 2214+ 0.5a25
—0.5a6+ 0.5a27 + 0.5a28 + 0.5a29 + 0.5a30— 0.5a31 + 0.5a32)
(201 + 202 + 263 + 2Ga + 205 + 20 — azebh — A2602 + azslia + azsls

—agz101 — az102 — az10z + az9tia + az9lis + azglic — az4G1 + asobs)|

Y2 = 0; Y2 = sin(02) ¢ + cog(q2) d1;
Y& = cog(q3) (201 + 26 + 3) — 43Sin(0a) (201 + 20 + Gs);
Y2 =sin(gz+0s) 65 + cos(0z2+0a)t); Y2 = Gi+62 YR =0 YT =0;
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Y2 = cofaqu+0); YE =cogar+0z2+0s);

YelO Yell YelZ Yel3 Ye14 YelS Yel6 Yel? YelS 0.

Y2 = (5[0.25015(a15+ a16) — 0.25814(a15 + 16+ COS1 )] — G[0.5{ (ar4a10 + A12820)
0.5(a15+ a16) } + 0.5{(ars819+ a16320)0.5(a15+ @16 + COSth ) }] — 05[0.5{ (11821
+a18822)0.5(a15+ a16) } 4 0.5{ (a13821 + a17822)0.5(a15+ a6+ COSA1 ) }]
0.25(a15+ a16) — (a14+@12)0.25(a15+ a16+ coqq1))] + Gs[(a13a17)0.25(ay5+ a16)
—(a11+ a18)0.25(a15+ a16+ cog01) )] — Gz[0.25{aisa19(a15+ aysCOS 01 ) }
+0.25{ag4810(a15+ a16) } — 06[0.25{a13801 — (@15 -+ a16C08q1) } + 0.25{a1181
(a15+a16) } — 01[0.25(a15+ 16) (14219 + 12820+ SIN(1 )G ) + 0.25(ay5+ a16
+cosqy) (agsa19+ (g6 + a20) + €0S(q1)G1)] — G4[0.25(a15+ a16) (11821 + @18822
+sin(0a)G4) 4 0.25(ay5+ @16+ oSGy ) (a13821 + (@17 + @22) + €001 )41
+04[0.25(a14+ a16) (a13+ @17+ cosqs) — 0.25(a;5+ a;6+ €0sq1 ) (a11 + a1g+ Singy) |
+4.98(a15+ a16) — G6[0.25(a112816 — 13216 + Q11 COSY1 — 15313+ a11815)|
—(1[0.25(ay5+ a16+ COSO1 ) (A14 — @15 — @16+ @12+ sinqy )|

Y20 = 0.04[0.5(ags— 4a15+ 823 — a5+ 826+ 827 + A28 — 820 — A1 + 831+ Ag2)

2(Gu+ G2 + Gz + G4 + Gs + O + 207 + Az205 + ag205 — Asad] — Agads — agal
~+ag40f — agsCj + az70f + @705 — Age] — sells + 28320102 + 283201 Gz + 28320203
—2a330405 — 28330406 — 233050 + 28270102 — 28360405 — 0.5(a34 — 4215+ a3
—aps5+ 86+ A7+ Apg — A2 — 41+ 831 + A32) (201 + 202 + 203 + 24 + 205 + 206

—agels — azellz + aggls + azgls — az101 — az1lz — az1z + azalis + azgls
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+agzglis — aads + aaotia)|

Ve =0; Y2 =0; Y& = cos(s) (6 + Ga + ta) + Sin(qs) (¢ + )

ij4 = sin(gz + 93) G2 + co 0z + 3) 1 ); ijss =0; ijsG = 01 + G + G3;
Y =0; Y2 =0; Y, = cos(on + a2+ Ga);

f10 f11 f12 f13 f14 f15 f16 f17, f18
Yo=Yt =Y = Py M = v P =y = v v =0

f19

Yis = 0.59+0.25(ageb1 + a1eb + a170s + a170s — @126 — ag262 — aagts — a1eds
+€0g(d4)Ga — Sin(da)d1 — SiN(da)ts + @501 + a0z + 1503 + a13s — a3ls —
1401 — a1402 + a14G3 — 81164 — a110s — a11Gs)

Y2 = 0.04((sin(6) — cog(6) +2) (201 + 202 + 20 + 20 + s + 206 — azes

—agel2 + a3sla + agsls — az161 — @s102 — 3103 + azels + azg0s + azele
—ap401 — a400a)] + 0.04[(sin(6) — cog B) + 2) (201 + 202 + 203 + 204 + 205 + 206
+aa20f + ag20l2 + 83203 — as3d; — as3E — asadfs + asadf — ags0ls + az70f + az70h
—agej — azedls + 2(ag20102 + 320103 + As2ols — A33d4Gs — Azadade — Az3disCe
a270102 — az60a0s) )]

YE VP =vP=vP =P =L =y =vP=vP =0

Yj%lo = Ga; ngsll = €0SU5(204 + Gs) — SiNGs05(204 + Gs);

Y,-slz = C0SOe( 204 + 205 + () — SiNdeUs (204 + 205 + Js);

Yj95,13 = €005 + 0s( 204 + U5+ Gp) — SiNQs + 0p (s + Us) (204 + G5 + Js); Yj%M = (s;

Y2 = e Y2®=cosus; Y2 = cosqu+as; YE® = costs + s + e

ngslg = (3[0.25(a14218 — 15818+ A14SiNCs — 5811 + A14211)] — G2[0.25(a11 + A1)

(ag5+age+cosqy) — 0.25(a14+ a2+ sinds ) (az1 + aig + Singy)
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020 _
vPo =

—0a[0.25(ag1 + a1g) (a3 + @17+ cosgs) — 0.25(a11 + agg + sinds)
(a11+a1g+sings)] — 0.5g(a11+ a1g) — Gs[0.25a13(a11 + a1g) — 0.25a11
(a11+a18+Sinda)] + G2[0.5{ (a14219 + A12820) (0.5a11 + 0.523.8) } |

+0.5{(a15819 + a16320) (0.5a11 + 0.5a18) + 0.5SiNG4 } + G5[0.5{ (a11821 + A18822)
(0.5a11+ 0.5a18) }] 4+ 0.5{(a13821 + a17822) (0.5a11 + 0.5a38) + 0.5 sinqy }
—02[0.25(ag5a16) (111 @18) — 0.25(a14+ a12) (a11+ aig+ Sinda)|
+03[0.2581419(211 + A18) + 0.25815819(11 + A18 + SiNCl4) ]

+06[0.25a11821(211 + &18) + 0.25813819(11 + @18+ SiNGl4) ]

+01[0.25(a11 + a1g) (ar4819 + ar2820 + singua) + 0.25(arsa19 4 aredz0 +- COSU1 1)
(a11+a18+Sinda)] + 04[0.25(ay1 + as) (11821 + 818822 + SiNGaGa) + 0.25(az3821
+a17822+ COSUala) (811 + 18+ SiNGa)]

+0.2505[(a11 + a1s) (a11 — @13 — a17+ a1g+Singa)|

—0.04[0.5(ay2 — ago+4a11 +a43 — azg — A3 + A4 + A5+ 847 — g9 + aga)

{2(01 4 42+ d3+ Ga+ G5+ Gs) + agaCf; + g2 + ag(3 — agadj — agads — agafs
“+agaO — agsCj + 2707 + a2705 — Aged; — agels + 283201 G2 + 283201 G

+2a320203 — 22330405 — 28330406 — 28330506 + 28270102 — 28360405 }
—0.04[0.5(as2 — aup + 4a11 + au3 — azg — e + dua + aus + ay7 — g + aza)

{2(d + G2 + G + Ga + s + s) — A2601 — A6t + agsta + agslis

—ag101 — ag1 — 3103 + azgtia + azols + aggtis — azads + asotia }|
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hi _ vh2 _vh3 _vh4 _ \yh5 _ \vh6 _ \yh7 _\h8 _ \yh9 _ Nn.
Y= Y2 = YIS — Y = YIS = YIS = VI = v = v = 0;

nglo —0: ngll = sings(Z + OS5 ia;

Y12 = costs(26ja+ 245+ ) — SiNGes(20a+ 205 +s); YIo> = Sinds + et; + COSTs + Geia;

Yjsl4 = Ga+0s; Yj215 = (e; ngm =0; ngﬂ = COS(04 +0s); Y1218 = COS(04 + 05+ 0p)-

h19
Yis

h20
Yis

= (e(0.25a13(a13+a17) — 0.25a11(ag3+ @17+ €osty) ) — G2[0.5(a14819 + a12820)
(0.5a13+ 0.5a17) + (a14a19 + a12820) (0.5a13+ 0.5a17+ 0.5 coa)
—05[0.5(a11321 + a18822) (0.5a13+ 0.5a17) + (A13821 + 817822)
(0.5a13+ 0.5a17+ 0.5costy) + 62[(a15+ a16) (0.25a13+ 0.25817) — (a4 -+ a12)
(0.25a33+ 0.25a17+ 0.25 cosys)] + Gs[(au3+ @17) (0.25a13+ 0.25a17) — (g1 + &ug)
(0.25a13+ 0.25a17+ 0.25cogyy)| — §3[0.5a15819(0.5813+ 0.5817+ 0.5 co4)
+0.5a34819(0.5a13+ 0.5817)] — G5]0.5a13821(0.5813+ 0.5817+ 0.5 co4)

+0.5a31821(0.5a13+ 0.5a17)] — 1[0.5(0.5a13+ 0.5817) (214819 + @12820 + SiNQ141)

+ (0.5813 +0.5a;7+0.5 COSIZ]4) (61156119 “+ 16220+ COSqul)] — q4[0.5(0.5a13 + 0.56117)

(a11821 + @18822 + SingaQs) + (0.5a33+ 0.5a17+ 0.5 cos)

(813821 + 17822+ COSO4d4)] + G1[(0.25813+ 0.25817) (@15 + @16+ COST1 )

—(0.25a13+ 0.25217+ 0.25cosyy) (a4 + a2 +singy )| +0.59(a13 +a17)

—(j3[0.25834817 — 0.25a15377 + 0.25a14€0804 — 0.25315813+ 0.25a13814] — 0.2504

[(a13+a17+C0SUs) (@11 — @13 — aq7+a— 18+ sinds) — 0.25a15813 + 0.25a1 381 4]
= 0.04{(2a;3+ 0.5a35+ 0.5a42 — 0.5a43+ 0.5a38 + 0.5a36 + 0.5a44 — 0.5a45 + 0.5a46

+0.5ag9+ 0.5a33) (201 + 20 + 23+ 204 + 205 + 20 + Az20f + ag205 + 205

—ag3(y — aga0s — azz0g + azaq1 — agsds + az7q1 + ax705 — azels — azels + 283201102
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i19
iz —

20 _
Yis© =

+28320103 + 28320203 — 22330405 — 28330406 — 28330506 + 23270102 — 23360405 ]
—0.04[(2a;3+ 0.5a35 + 0.5a42 — 0.5a43+ 0.5a3g — 0.5a36+ 0.5a44 — 0.5845
—0.5a46+ 0.5a39 4 0.5a33) { 2(¢1 + G + Gz + G4 + G5 + Us) — azelis — azeiz
+aggts + agsls — @z — az16z2 — az1Gs + aggba + azels + agoele — A24G1 + Aa0Ga )]
0.5g — 43(0.25a15a19+ 0.25a14819) — U6(0.25a13821 + 0.25a11821)

+0.25(az601 + a1602 + a1704 + a1705 — @201 — a1202 — a18Gs18ds

+CcosO 01 + COSQatis) — Gs[0.25a1 3821 + 0.25a11821 +- 0.25a1 7822 + 0.2521 8827
—0.25(ay601 + 166z + 1704 + 1705 — 1201 — 1202 — a18Ga

—0.25(singu 1 — sindatis + agstis + asstiz + agstis + a13tia + ag3tis + ai3de)
—01[0.25a35819+ 0.25a1 4879 + 0.25a1 6820 + 0.2583 2820 + 0.25 CO1 1

+0.25 sinqlql] — q4[0.25a13a21 + 0.25a;1a21 + 0.25a3 7802 + 0.25a; gap2

+0.25 cogy4Gy4 + 0.25 sin0js 0] — 0.25(ag401 — a146z — a1403 — a1164 — a1105 — a110s)

0.04{(cog0) —sin(6) +2){2(G1 + € + Gz + Ga + G5 + Gs) — azetin
—agel2 + azglls + aggls — az1G1 — az102 — az103 + azglis + azglis + azgle
—a2401 + @004 }] + 0.04{(cog 8) — sin(6) +2){2(q1+ G2 + 43+ Ga + d5 + Ge)
+agolfs + asal3 + agp03 — agzl3 — g3l — aga

. 2 . 2 . 2 . 2 . 2 . 2 . . . .
+ag4q1 — agsdy + ag7q1 + a7q5 — azels — azels + 28320102 + 28320103

+28320203 — 28330405 — 28330406 — 28330506 + 28270102 — 238360405 }]
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C.2 Time independent parameters

ajs = [p11l pl2 pl3 pl4 pl5 pl6 pl7 pl8 pl9 p2l1 p22 p23 p24

P25 p26 p27 p28 p29 p31l p32]T
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