31,236 research outputs found

    General Regression Neuro–Fuzzy Network for Identification of Nonstationary Plants

    Get PDF
    General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm

    Application of an adaptive neural fuzzy inference system to thermal comfort and group technology problems

    Get PDF
    AbstractThe Adaptive Neural Fuzzy Inference System (ANFIS) is used to design two vague systems, namely thermal comfort and group technologies in production and operations management. Results show that both systems can be modeled successfully by the combined use of a fuzzy approach and neural network learning

    Voltage stability analysis of load buses in electric power system using adaptive neuro-fuzzy inference system (anfis) and probabilistic neural network (pnn)

    Get PDF
    This paper presents the application of neural networks for analysing voltage stability of load buses in electric power system. Voltage stability margin (VSM) and load power margin (LPM) are used as the indicators for analysing voltage stability. The neural networks used in this research are divided into two types. The first type is using the neural network to predict the values of VSM and LPM. Multilayer perceptron back propagation (MLPBP) neural network and adaptive neuro-fuzzy inference system (ANFIS) will be used. The second type is to classify the values of VSM and LPM using the probabilistic neural network (PNN). The IEEE 30-bus system has been chosen as the reference electrical power system. All of the neural network-based models used in this research is developed using MATLAB

    High-performance adaptive neurofuzzy classifier with a parametric tuning

    Get PDF
    The article is devoted to research and development of adaptive algorithms for neuro-fuzzy inference when solving multicriteria problems connected with analysis of expert (foresight) data to identify technological breakthroughs and strategic perspectives of scientific, technological and innovative development. The article describes the optimized structuralfunctional scheme of the high-performance adaptive neuro-fuzzy classifier with a logical output, which has such specific features as a block of decision tree-based fuzzy rules and a hybrid algorithm for neural network adaptation of parameters based on the error back-propagation to the root of the decision tree

    Electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    Universiti Tun Hussein Onn Malaysia (UTHM) is a developing Malaysian Technical University. There is a great development of UTHM since its formation in 1993. Therefore, it is crucial to have accurate future electricity consumption forecasting for its future energy management and saving. Even though there are previous works of electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS), but most of their data are multivariate data. In this study, we have only univariate data of UTHM electricity consumption from January 2009 to December 2018 and wish to forecast 2019 consumption. The univariate data was converted to multivariate and ANFIS was chosen as it carries both advantages of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS). ANFIS yields the MAPE between actual and predicted electricity consumption of 0.4002% which is relatively low if compared to previous works of UTHM electricity forecasting using time series model (11.14%), and first-order fuzzy time series (5.74%), and multiple linear regression (10.62%)

    Neuro-Fuzzy-based Improved IMC for Speed Control of Nonlinear Heavy Duty Vehicles

    Get PDF
    A neuro-fuzzy based improved internal model control (I-IMC) is proposed for speed control of uncertain nonlinear heavy duty vehicle (HDV) as the standard IMC (S-IMC) can’t tackle the nonlinear systems effectively and degrades the performance of HDV system. Adaptive neuro-fuzzy inference system and artificial neural network with adaptive control are used for the design of I-IMC. The proposed control techniques are developed to achieve the better speed tracking performance and robustness of HDV system under the influence of road grade disturbance

    Calculating voltage magnitudes and voltage phase angles of real electrical networks using artificial intelligence techniques

    Get PDF
    In the field of electrical network, it is necessary, under different conditions, to learn about the behavior of the system. Power Flow Analysis is the tool per excellent that allow as to make a deep study and define all quantities of each bus of the system. To determine power flow analysis there is a lot of methods, we have either numerical or intelligent techniques. Lately, researchers always work on finding intelligent methods that allow them to solve their complex problems. The goal of this article is to compare two intelligent methods that are capable of predicting quantities; Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System using real electrical networks. To do that we used few significant discrepancies. These methods are characterized by giving results in real time. To make this comparison successful, we implemented these two methods, to predict the voltage magnitudes and the voltage phase angles, on two Moroccan electrical networks. The results of the comparison show that the method of Adaptive Neuro-Fuzzy Inference System have more advantages than the method of Artificial Neural Network

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio

    Appraisal of ANN and ANFIS for Predicting Vertical Total Electron Content (VTEC) in the Ionosphere for GPS Observations

    Get PDF
    Positional accuracy in the usage of GPS receiver is one of the major challenges in GPS observations. The propagation of the GPS signals are interfered by free electrons which are the massive particles in the ionosphere region and results in delays in the transmission of signals to the Earth. Therefore, the total electron content is a key parameter in mitigating ionospheric effects on GPS receivers. Many researchers have therefore proposed various models and methods for predicting the total electron content along the signal path. This paper focuses on the use of two different models for predicting the Vertical Total Electron Content (VTEC). Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) algorithms have been developed for the prediction of VTEC in the ionosphere.  The developed ANN and ANFIS model gave Root Mean Square Error (RMSE) of 1.953 and 1.190 respectively.  From the results it can be stated that the ANFIS is more suitable tool for the prediction of VTEC. Keywords: Artificial Neural Network, Adaptive Neuro Fuzzy Inference System, Vertical Total Electro

    Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    Get PDF
    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s)
    corecore