1,933 research outputs found

    Dual-Loop Adaptive Iterative Learning Control for a Timoshenko Beam With Output Constraint and Input Backlash

    Get PDF

    Neural Network-based Finite-time Control of Nonlinear Systems with Unknown Dead-zones: Application to Quadrotors

    Get PDF
    Over the years, researchers have addressed several control problems of various classes of nonlinear systems. This article considers a class of uncertain strict feedback nonlinear system with unknown external disturbances and asymmetric input dead-zone. Designing a tracking controller for such system is very complex and challenging. This article aims to design a finite-time adaptive neural network backstepping tracking control for the nonlinear system under consideration. In addition,  all unknown disturbances and nonlinear functions are lumped together and approximated by radial basis function neural network (RBFNN). Moreover, no prior  information about the boundedness of the dead-zone parameters is required in the controller design. With the aid of a Lyapunov candidate function, it has been shown that the tracking errors converge near the origin in finite-time. Simulation results testify that the proposed control approach can force the output to follow the reference trajectory in a short time despite the presence of  asymmetric input dead-zone and external disturbances. At last, in order to highlight the effectiveness of the proposed control method, it is applied to a quadrotor unmanned aerial vehicle (UAV)

    Adaptive neural network cascade control system with entropy-based design

    Get PDF
    A neural network (NN) based cascade control system is developed, in which the primary PID controller is constructed by NN. A new entropy-based measure, named the centred error entropy (CEE) index, which is a weighted combination of the error cross correntropy (ECC) criterion and the error entropy criterion (EEC), is proposed to tune the NN-PID controller. The purpose of introducing CEE in controller design is to ensure that the uncertainty in the tracking error is minimised and also the peak value of the error probability density function (PDF) being controlled towards zero. The NN-controller design based on this new performance function is developed and the convergent conditions are. During the control process, the CEE index is estimated by a Gaussian kernel function. Adaptive rules are developed to update the kernel size in order to achieve more accurate estimation of the CEE index. This NN cascade control approach is applied to superheated steam temperature control of a simulated power plant system, from which the effectiveness and strength of the proposed strategy are discussed by comparison with NN-PID controllers tuned with EEC and ECC criterions

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    An adaptive extended fuzzy function state-observer based control with unknown control direction

    Get PDF
    In this paper, a novel adaptive extended fuzzy function state observer based controller is proposed to control a class of unknown or uncertain nonlinear systems. The controller uses Nussbaum-gain technique from literature to prevent controller singularity with unknown control direction and the controller degree of freedom is increased. A state observer which employs the adaptive extended fuzzy function system to approximate a nonlinear system dynamics and estimates the unmeasurable state. The stability of closed-loop control system are shown using Lyapunov stability criterion and Nussbaum function property. The proposed and conventional fuzzy system based controllers are designed to control an inverted pendulum in simulation and a flexible-joint manipulator in real-time experiment. The integral of absoulte error (IAE) of tracking, integral of squared error (ISE) of tracking and integral of required absolute control signal (IA U) performances are compared in applications. The aim of the paper is not only to improve the tracking performances, but also to implement the adaptive extended fuzzy function based controller to a real-time system and conduct the tracking with unknown control direction

    Adaptive fuzzy tracking control for a class of singular systems via output feedback scheme

    Get PDF

    Robust Adaptive Controls of a Vehicle Seat Suspension System

    Get PDF
    This work proposes two novel adaptive fuzzy controllers and applies them to vibration control of a vehicle seat suspension system subjected to severe road profiles. The first adaptive controller is designed by considering prescribed performance of the sliding surface and combined with adaptation laws so that robust stability is guaranteed in the presence of external disturbances. As for the second adaptive controller, both the H-infinity controller and sliding mode controller are combined using inversely fuzzified values of the fuzzy model. In order to evaluate control performances of the proposed two adaptive controllers, a semi-active vehicle suspension system installed with a magneto-rheological (MR) damper is adopted. After determining control gains, two controllers are applied to the system and vibration control performances such as displacement at the driver’s position are evaluated and presented in time domain. In this work, to demonstrate the control robustness two severe road profiles of regular bump and random step wave are imposed as external disturbances. It is shown that both adaptive controllers can enhance ride comfort of the driver by reducing the displacement and acceleration at the seat position. This excellent performance is achieved from each benefit of each adaptive controller; accurate tracking performance of the first controller and fast convergence time of the second controller

    Descriptive And Review Study Adaptive Control Of Nonlinear Systems In Discrete Time

    Get PDF
    Nowadays, analyzing different control systems is a must for virtually all types of modern industries and factories. Analyzing these control systems allows optimizing and streamlining processes, which in many cases are carried out manually, leading to large errors, delays and costly processes. Continuous-time adaptive control of nonlinear systems has been an area of increasing research activity [1] and globally, regulation and tracking results have been obtained for several types of nonlinear systems [2]. However, the adaptive technique is gradually becoming more dynamic after 25 years of research and experimentation. Important theoretical results on stability and structure have been established. There is still much theoretical work to be done [3]. On the other hand, adaptive control in discrete-time nonlinear systems has received much less attention, in part because of the difficulties associated with the sampled data of nonlinear systems [2]. Thus, it is in some theories where adaptive control laws are implemented admitting the intervening nonlinearities in the real system [4] where investigations about the regulation of the system are created. The purpose of this is to implement a very simple adaptive control law and to check the convergence of the closed loop.  However, Zhongsheng Hou, author of several well-regarded papers proposes a model-free adaptive control approach for a class of discrete-time nonlinear SISO systems with a systematic framework [5]-[6]

    Synchronous MDADT-Based Fuzzy Adaptive Tracking Control for Switched Multiagent Systems via Modified Self-Triggered Mechanism

    Get PDF
    In this paper, a self-triggered fuzzy adaptive switched control strategy is proposed to address the synchronous tracking issue in switched stochastic multiagent systems (MASs) based on mode-dependent average dwell-time (MDADT) method. Firstly, a synchronous slow switching mechanism is considered in switched stochastic MASs and realized through a class of designed switching signals under MDADT property. By utilizing the information of both specific agents under switching dynamics and observers with switching features, the synchronous switching signals are designed, which reduces the design complexity. Then, a switched state observer via a switching-related output mask is proposed. The information of agents and their preserved neighbors is utilized to construct the observer and the observation performance of states is improved. Moreover, a modified self- triggered mechanism is designed to improve control performance via proposing auxiliary function. Finally, by analysing the re- lationship between the synchronous switching problem and the different switching features of the followers, the synchronous slow switching mechanism based on MDADT is obtained. Meanwhile, the designed self-triggered controller can guarantee that all signals of the closed-loop system are ultimately bounded under the switching signals. The effectiveness of the designed control method can be verified by some simulation results

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation
    • …
    corecore