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Abstract—In this paper, vibration control and output con-
straint are considered for a Timoshenko beam system with
input backlash and external disturbances. By integrating iter-
ative learning control (ILC) into adaptive control, two dual-loop
adaptive ILC schemes are proposed in the presence of the
input backlash. Two observers are designed to estimate two
bounded terms, which are divided from the backlash inputs.
Based on the defined barrier composite energy function, all
the signals are proved to be bounded in each iteration. Along
the iteration axis: 1) the endpoint transverse displacements
and the endpoint angle displacements are restrained; 2) the
transverse vibrations and the rotation vibrations are sup-
pressed to zero; and 3) the spatiotemporally varying disturbance
and the time-varying disturbances are rejected. Simulations
are provided to manifest the effectiveness of the proposed
control laws.

Index Terms—Adaptive control, distributed parameter system,
disturbance rejection, flexible structure, input backlash, iterative
learning control (ILC), output constraint, vibration control.

I. INTRODUCTION

LEARNING plays an essential role in autonomous control
systems, including neural learning control [1]–[7], [46],
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[80], learning impendence control [8]–[10], and iterative learn-
ing control (ILC) [11], [12]. For the sake of simple structure
and model-free nature, P-type ILC, PD-type ILC, PID-type
ILC, etc., are widely used to track prescribed trajectories,
suppress undesired vibrations, reject time-varying external dis-
turbances, and tackle nonlinear inputs and outputs [13], [14].
In [11], an adaptive robust ILC law is proposed in the presence
of input dead-zone for an ordinary differential equation (ODE)
system. Based on the defined composite energy function, a
P-type ILC scheme is proposed subject to the input saturation
in [12], where the system state is regulated to track a certain
time-varying trajectory from iteration to iteration. In [13], a
PID-type adaptive ILC (AILC) law is proposed in the presence
of input saturation for finite-dimensional systems. In [15], an
AILC scheme with input saturation is designed to guarantee
the convergence of the tracking error.

In engineering, backlash is frequently encountered in sen-
sors and actuators, such as gearboxes, mechanical connections,
and so on [16]. Different from input saturation and input
dead-zone [17]–[20], the input backlash is nondifferentiable
and dynamic nonlinear [21]. The input backlash may gener-
ate delays, vibrations, and even system paralysis. Therefore,
it is meaningful to tackle the nonlinearities of the input back-
lash. Until now, there have been many papers addressing the
input backlash through adaptive control. In [22], by estimating
the bounded “disturbance-like” term of input backlash, vibra-
tions are suppressed by employing adaptive control. In [23],
by constructing an input backlash inverse, an adaptive con-
trol scheme is designed to asymptotically stabilize the target
system. However, to the best of our knowledge, no paper
proposes AILC to tackle the input backlash for a distributed
parameter system.

In order to guarantee personal security and system
performance, system states have to be bounded [24]–[27].
Otherwise, it is of possibility to give rise to undesired vibra-
tions and even result in the system paralysis [28], [29].
Some control methodologies, including ILC, boundary
control [30]–[35], adaptive control [32], [36]–[40], [81], [82],
neural control [41]–[46], sliding mode control [47], [48],
fuzzy control [49]–[51], switched control [52], [53], fault diag-
nosis method [54]–[57], etc., have been proposed for various
systems [58], [59]. In [60] and [61], logarithmic functions are
adopted in the defined Lyapunov function to asymptotically
guarantee the output constraint.
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Fig. 1. Input backlash.

In this paper, the input backlash, the output constraint,
and the external disturbances are considered in a Timoshenko
beam system, which is presented by two second-order gov-
erning equations and four boundary equations. Similar to
Euler–Bernoulli beam [62]–[69] and flexible string [70]–[73],
the considered Timoshenko beam is sensitive to the exter-
nal disturbances, making the vibration control indispensable.
Observers are often constructed to tackle the uncertainties of
the target system and the external disturbances [74]–[76]. In
the presence of spatiotemporally varying disturbances, the tar-
get system is merely stabilized to be uniformly bounded along
the time axis. In order to address such challenge, a dual-
loop ILC method is utilized to form two controllers, which,
respectively, contain a pure ILC loop and a pure adaptive
boundary control loop. The remainder of this paper is orga-
nized as follows. Section II proposes the Timoshenko beam
system model and perliminaries. In Section III, two dual-loop
AILC laws are proposed based on the defined barrier compos-
ite energy function (BCEF). Section IV proves Theorems 1
and 2. Section V presents some simulation results. The main
results are followed in Section VI.

II. PROBLEM FORMULATION

In this section, the input backlash is divided into a linear
input and an unknown bounded term, which is estimated by
an observer. The Timoshenko beam system is described by a
second-order distributed parameter system.

A. Input Backlash

As shown in Fig. 1, B(t) is an input backlash [16], which
is defined as

B(t) = B(η(t))

=

⎧
⎪⎨

⎪⎩

m(η(t) − Bl), if η(t) ≤ zl

m(η(t) − Br), if η(t) ≥ zr

B
(
tpre
)
, if zl < η(t) < zr

(1)

where m denotes the slope. (Bl, 0) and (Br, 0) are two
intersections on the horizontal axis. B(tpre) represents the
B(t)-axis value in the previous time.

zl is the abscissas of the intersections of two lines B(t) =
m(η(t) − Bl) and B(t) = B(tpre), which is expressed

zl = B
(
tpre
)

m
+ Bl, zr = B

(
tpre
)

m
+ Br. (2)

Define ξ(t) = ξ(η(t)) = m(η(t)− min{Br, Bl}) = m(η(t)− Bl)

and then B(t) is reconstructed as

B(t) = ξ(t) + db(t). (3)

db(t) is obtained as follows:

db(t) = db(η(t))

=

⎧
⎪⎨

⎪⎩

0, if η(t) ≤ zl

m(Bl − Br), if η(t) ≥ zr

B
(
tpre
)− ξ(t), if zl < η(t) < zr

(4)

which implies db(t) is bounded and unknown. A positive
constant exists with |db(t)| ≤ d̄b.

We define ζ(t) as follows:

ζ(t) =

⎧
⎪⎨

⎪⎩

m(η(t) − Bl), if η(t) ≤ Bl

m(η(t) − Br), if η(t) ≥ Br

0, if Bl < η(t) < Br.

(5)

Then, we have |ξ(t)| ≥ |ζ(t)|.
Assumption 1: For the input backlash B(t), m > 0, Br > 0

and Bl < 0 are unknown and further mmin ≤ m ≤ mmax,
Br min ≤ Br ≤ Br max, and Bl min ≤ Bl ≤ Bl max, where mmin,
mmax, Br min, Br max, Bl min, and Bl max are unknown constants.

B. System Model

Let L and ρ represent the length and the unit mass per
unit length of the Timoshenko beam. Iρ denotes the uniform
mass moment of inertia of the cross section of the Timoshenko
beam. M represents the mass of the tip payload and J is the
inertia of the tip payload. EI expresses the bending stiffness.
K = kAG, where k > 0, A is the cross sectional area of the
Timoshenko beam and G denotes the modulus of elasticity in
shear.

Remark 1: Throughout this paper, we give the definitions
such that (∗)′ = (∂(∗)/∂x), (∗)′′ = (∂2(∗)/∂x2), ˙(∗) =
(∂(∗)/∂t), and ¨(∗) = (∂2(∗)/∂t2).

As shown in [77], the Timoshenko beam system in jth
iteration is described by the governing equations

Iρφ̈j(x, t) − EIφ′′
j (x, t) + K

[
φj(x, t) − w′

j(x, t)
]

= 0 (6)

ρẅj(x, t) + K
[
φ′

j(x, t) − w′′
j (x, t)

]
= fjw(x, t) (7)

wj(0, t) = 0 (8)

φj(0, t) = 0 (9)

Jφ̈j(L, t) + EIφ′
j(L, t) = djφ(t) + B

(
τj0(t)

)
(10)

Mẅj(L, t) − K
[
φj(L, t) − w′

j(L, t)
]

= djw(t) + B
(
uj0(t)

)
(11)

for ∀t ∈ [0, Tb] and j ∈ N. B(τj0(t)) and B(uj0(t)) are the
backlash inputs and defined in (1). wj(x, t) and φj(x, t) describe
the transverse displacement and the angle displacement for the
position x, the time t and the iteration j. fjw(x, t), djw(t), and
djφ(t) express the external disturbances.

Considering (3), we can obtain B(uj0(t)) = ξ(uj0(t)) +
d(uj0(t)) and B(τj0(t)) = ξ(τj0(t)) + d(τj0(t)). In order
to make it easy to understand, define ξju0(t) = ξ(uj0(t)),
ξjτ0(t) = ξ(τj0(t)), d1j(t) = d(uj0(t)), and d2j(t) = d(τj0(t)).
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Therefore, (10) and (11) can be rewritten as

Jφ̈j(L, t) + EIφ′
j(L, t) = djφ(t) + ξjτ0(t) + d2j(t) (12)

Mẅj(L, t) − K
[
φj(L, t) − w′

j(L, t)
]

= djw(t) + ξju0(t) + d1j(t)

(13)

|d1j(t)| ≤ d̄1 and |d2j(t)| ≤ d̄2, where d̄1 and d̄2 are two
positive constants.

Remark 2: In this paper, d1j(t) and d2j(t) are separated from
B(uj0(t)) and B(τj0(t)), respectively. djw(t) and djφ(t) are exter-
nal boundary disturbances. According to Assumption 3, the
boundary disturbances are bounded with two known positive
constants d̄w and d̄φ . However, d1j(t) and d2j(t) are bounded
but unknown, as shown in Assumption 1. Therefore, two dif-
ferent ways are used to reject the external disturbances and to
tackle the uncertainties of d1j(t) and d2j(t). For the unknown
d1j(t) and d2j(t), two adaptive laws are designed in (16)
and (18). For the boundary disturbances, α2d̄wsgn(ẇj(L, t))
and α5d̄φsgn(φ̇j(L, t)) are adopted in the AILC laws (15)
and (17), respectively.

For the Timoshenko beam system, some preliminaries are
given to facilitate the subsequent context.

Property 1 [78]: If the kinetic energy of the Timoshenko
beam system Ekj(t) = (J/2)[φ̇j(L, t)]2 + (M/2)[ẇj(L, t)]2 +
(1/2)

∫ L
0 ρ[ẇj(x, t)]2 + Iρ[φ̇j(x, t)]2dx is bounded for ∀t ∈

[0, Tb] and j ∈ N, we can then obtain ẇj(x, t), ẇ′
j(x, t), φ̇j(x, t),

and φ̇′
j(x, t) are bounded for j ∈ N.

Property 2 [78]: If the potential energy of the
Timoshenko beam system Epj(t) = (EI/2)

∫ L
0 [φ′

j(x, t)]2dx +
(K/2)

∫ L
0 [φj(x, t) − w′

j(x, t)]2dx is bounded for ∀t ∈ [0, Tb]
and j ∈ N, we can obtain wj(x, t), w′

j(x, t), w′′
j (x, t), φj(x, t),

φ′
j(x, t), and φ′′

j (x, t) are bounded for j ∈ N.
Assumption 2: For the Timoshenko beam system, the align-

ment condition is assumed, wj(x, 0) = wj−1(x, Tb), ẇj(x, 0) =
ẇj−1(x, Tb), φj(x, 0) = φj−1(x, Tb), and φ̇j(x, 0) = φ̇j−1(x, Tb)

for ∀j ∈ N.
Assumption 3: Considering the finite energies of the bound-

ary disturbances, there exist two known positive constants
d̄w and d̄φ , satisfying |djw(t)| ≤ d̄w and |djφ(t)| ≤ d̄φ for
∀t ∈ [0, Tb] and j ∈ N .

Assumption 4: The distributed disturbance has the finite
energy, and then a positive constant exists with |fjw(x, t)| ≤ f̄w
for ∀(x, t) ∈ [0, L] × [0, Tb] and j ∈ N .

Assumption 5: For the Timoshenko beam system, we
assume ẇj(L, t) 	≡ 0 and φ̇j(L, t) 	≡ 0, including the special
case ẇ0(L, 0) 	= 0 and φ̇0(L, 0) 	= 0.

Lemma 1 [79]: Let φ(x, t) be a function on (x, t) ∈ [0, L]×
[0,+∞) with φ(0, t) = 0 for t ∈ [0,+∞). For ∀x ∈ [0, L],
we can obtain

[φ(x, t)]2 ≤ L
∫ L

0
[φ′(x, t)]2dx. (14)

III. CONTROL DESIGN

In this section, two dual-loop AILC laws are designed in
the presence of input backlash, aiming to suppress the unde-
sired vibrations, reject the external disturbances and restrain
the endpoint transverse displacement and the endpoint angle
displacement.

The following AILC force is designed:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξju0(t) = ξju(t) − sgn
(
ẇj(L, t)

)
d̂1j(t) − 2α1 f̄wL

× sgn
(
ẇj(L, t)

)− α2d̄wsgn
(
ẇj(L, t)

)

− α3
wj(L,t)

C2
1−[wj(L,t)]2 ln

(
C2

1

C2
1−[wj(L,t)]2

)

ξju(t) = ζ( j−1)u(t) − α4ẇj(L, t)

(15)

where ζ(−1)u(t) = 0, α1 > 0, α2 ≥ 1, α3 > 0, α4 > 0, and
C1 > 0. d̂1j(t) is an observer to estimate the upper bound of
d1j(t) and the estimation error is d̃1j(t) = d̄1 − d̂1j(t). The
observer is designed as

d̂1j(t) = d̂1( j−1)(t) + α8
∣
∣ẇj(L, t)

∣
∣ (16)

where d̂1(−1)(t) = 0 and α8 is a positive constant.
An AILC law is proposed

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξjτ0(t) = ξjτ (t) − sgn
(
φ̇j(L, t)

)
d̂2j(t) − α5d̄φ

× sgn
(
φ̇j(L, t)

)− α6
φj(L,t)

C2
2−[φj(L,t)]2

× ln

(
C2

2

C2
2−[φj(L,t)]2

)

ξjτ (t) = ζ( j−1)τ (t) − α7φ̇j(L, t)

(17)

where ζ(−1)τ (t) = 0, α5 ≥ 1, and α6, α7, and C2 are positive
constants.

In order to estimate the unknown term d̄2, an observer is
designed as

d̂2j(t) = d̂2( j−1)(t) + α9
∣
∣φ̇j(L, t)

∣
∣ (18)

where d̂2(−1)(t) = 0 and α9 is a positive constant. Let d̃2j(t) =
d̄2 − d̂2j(t) denote the estimation error.

Remark 3: The difficulties confronted in this paper are
summarized as follows.

1) How to Tackle the Input Backlash: Input backlash has
been addressed frequently by adaptive control for dis-
tributed parameter systems. The common way used to
tackle the input backlash u0(t) is dividing into the linear
input u(t) = mη(t) and the bounded term d(t), namely

d(t) =

⎧
⎪⎨

⎪⎩

−mBl, if η(t) ≤ zl

−mBr, if η(t) ≥ zr

B
(
tpre
)− mη(t), if zl < η(t) < zr.

(19)

However, such common means is not directly applicable
for the ILC methodology. Moreover, no works address
the input backlash for distributed parameter systems.

2) How to Reject the External Disturbances: In practice,
the Timoshenko beam system with the distributed distur-
bance and the boundary disturbance has been considered
in many papers. Confronted with the vibration suppress-
ing and the trajectory tracking, the closed-loop system is
frequently stabilized not toward zero, but within a small
interval of zero, as the time goes to infinity. In other
words, it is difficult to obtain the exponential stability
or asymptotic stability for the system under the dis-
tributed disturbance and the boundary disturbance. In the
literature of ILC, time-varying disturbances have been
rejected for ODE system, but a few works achieve the
learning convergence under the spatiotemporally varying
disturbances.
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3) How to Tackle the Output Constraints: ILC is mostly
designed to suppress the vibrations, tackling input
saturation, and input dead-zone, rejecting periodic time-
varying disturbances or constraining time-varying out-
puts. Confronted with complex objectives, including
restraining output constraint, tackling nondifferentiable
input, rejecting aperiodic distributed disturbances, and
stabilizing the infinite-dimensional system, it is of large
difficulty to propose an ILC law to effectively guarantee
such requirements.

4) How to Propose the AILC Laws: Subject to a 3-D coor-
dinate system of the space, the time and the iteration, a
positive definite BCEF is defined with respect to time
and iteration. AILC schemes are proposed to ensure that
its derivative with respect to time is bounded in each
iteration and its difference with respect to iteration is
negative along the iteration axis. The closed-loop system
with the designed AILC laws in each iteration is then
proved to be bounded in the time domain and mean-
while converges to zero in the domain. It is cumbersome
but important to find such proper BCEF and AILC
schemes.

Remark 4: This paper mainly considers a second-order
PDE system with input backlash, external boundary distur-
bances, external distributed disturbance, and output constraint.
The contributions mainly include the following.

1) Comparing with common objectives in the ILC litera-
ture, such as convergence of ODE systems, rejection of
time-varying disturbances, tackling the nonlinearities of
input saturation and input dead-zone, etc., it is a novel
challenge to extend nonlinear inputs to nondifferentiable
input backlash and to extend time-varying disturbances
to spatiotemporally varying disturbance.

2) Different from the common ILC scheme in the forms
of P-type, D-type, PD-type, PID-type, etc., a dual-loop
ILC law in this paper is utilized by integrating an ILC
loop into an adaptive control loop.

3) For the Timoshenko beam system under the distributed
disturbance and the boundary disturbance, rather than
suppressing the vibrations into a neighborhood of zero,
the designed AILC laws regulate the transverse dis-
placements and rotate displacements to zero along the
iteration axis.

Remark 5: In (15), the ILC loop is constructed with
ζ( j−1)u(t) and ẇj(L, t). In (17), ζ( j−1)τ (t) and φ̇j(L, t) are used
to form ξjτ (t). Such loops are the pure ILC laws, aiming to
suppress the transverse vibrations and the rotation vibrations.
As shown in Fig. 2, the pure ILC loop is represented by the
red lines. The main loops are the pure adaptive boundary con-
trol laws, aiming to reject the disturbances, tackle the input
backlash, and prevent the violation of the constraint. By adopt-
ing ξju(t) and ξjτ (t), the ILC loop is then embedded into the
adaptive control loop.

IV. CONVERGENCE ANALYSIS

In this section, the convergence is proved for the closed-loop
system with the proposed AILC laws (15) and (17).

Fig. 2. Block diagram of the control design.

A BCEF is given as

Ej(t) = E1j(t) + E2j(t) + E3j(t) + E4j(t) + E5j(t) (20)

where E1j(t) and E2j(t) are relative to the system energy and
are defined as follows:

E1j(t) = μρ

2

∫ L

0
e−λt[ẇj(x, t)

]2
dx + μIp

2

∫ L

0
e−λt

× [
φ̇j(x, t)

]2
dx + μEI

2

∫ L

0
e−λt

[
φ′

j(x, t)
]2

dx

+ μK

2

∫ L

0
e−λt

[
φj(x, t) − w′

j(x, t)
]2

dx (21)

E2j(t) = μM

2
e−λt[ẇj(L, t)

]2 + μJ

2
e−λt[φ̇j(L, t)

]2
(22)

where μ > 0 and λ > 0.
To restrain the system outputs, including wj(L, t) and

φj(L, t), E3j(t) is expressed by

E3j(t) = α3μ

4
e−λt

[

ln
C2

1

C2
1 − [

wj(L, t)
]2

]2

+ α6μ

4
e−λt

[

ln
C2

2

C2
2 − [

φj(L, t)
]2

]2

. (23)

In order to tackle the input backlash, E4j(t) and E5j(t) are
defined

E4j(t) = μ

2α4

∫ t

0
e−λr[ξju(r)

]2
dr + μ

2α7

∫ t

0
e−λr[ξjτ (r)

]2
dr

(24)

E5j(t) = μ

2α8

∫ t

0
e−λr

[
d̃1j(r)

]2
dr + μ

2α9

∫ t

0
e−λr

[
d̃2j(r)

]2
dr.

(25)

Based on the defined BCEF, Theorems 1 and 2 are proved
through the designed AILC schemes.

Theorem 1: For the Timoshenko beam system with the
input backlash, at the initial time assuming all the signals
are bounded, |w0(L, 0)| ≤ C1 and |φ0(L, 0)| ≤ C2, by using
Properties 1 and 2, Assumptions 1–5 and the proposed AILC
laws (15) and (17), all the signals are proved to be bounded
for ∀t ∈ [0, Tb] in each iteration.
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Fig. 3. Flow chart of how to prove Theorem 1.

Fig. 4. Flow chart of how to prove Theorem 2.

Proof: Please see Appendix A.
Theorem 2: For the Timoshenko beam system with

the input backlash, assuming |w0(L, 0)| ≤ C1 and
|φ0(L, 0)| ≤ C2 at the initial time, by using Properties 1 and 2,
Assumptions 1–5, Theorem 1 and the proposed AILC
laws (15) and (17), the following properties are proved.

1) The convergence of wj(x, t) and φj(x, t) are proved along
the iteration axis.

2) wj(L, t) and φj(L, t) are restrained, namely, |wj(L, t)| <

C1 and |φj(L, t)| < C2 for ∀j ∈ N and t ∈ [0, Tb].
3) Through the designed AILC laws subject to the input

backlash, the spatiotemporally varying disturbance is
rejected from trail to trail, together with the boundary
disturbances.

Proof: Please see Appendix B.

V. SIMULATION

Through the comparison of the performance without con-
trol and that with the AILC laws (15) and (17), the above

TABLE I
PARAMETERS OF THE TIMOSHENKO BEAM SYSTEM

0

0. 2

0. 4

0. 6

0. 8

1 0
2

4
6

8
10

−0.4

−0.2

0

0. 2

0. 4

t [s]x [m]

w
(x

,t)
 [m

]

Fig. 5. w(x, t) without control.

theoretical conclusion is manifested and revealed. The system
parameters of the Timoshenko beam system (see Table I) are
chosen as follows:

1) Boundary output-feedback stabilization of a Timoshenko
beam using disturbance observer.

2) Free vibrations of a stepped, spinning Timoshenko
beam.

The external disturbances are chosen as

djw(t) = 1

10
[ cos(( j + 1)π t) + cos(2( j + 1)π t)

+ cos(3( j + 1)π t)] (26)

djφ(t) = 1

10
[ cos(2( j + 1)π t) + cos(4( j + 1)π t)

+ cos(6( j + 1)π t)] (27)

fjw(x, t) = x

20
[ sin(( j + 1)πxt) + sin(2( j + 1)πxt)

+ sin(3( j + 1)πxt)] (28)

where Tb = 2 s, j = {0, 1, 2, . . . , 23, 24}. The output con-
straints are chosen as C1 = 0.2 m and C2 = 0.2 rad. Let
d̄w = d̄φ = 0.3 N and f̄w = 0.15 N. The initial states are given
as w0(x, 0) = 0.16x, φ0(x, 0) = 0.18x, ẇ0(x, 0) = 0.1 and
φ̇0(x, 0) = 0.1. The parameters of the input backlash are set
as m = 0.3, Br = 0.1, and Bl = −0.2. By employing the finite
difference method, the continuous target systems (6)–(13) in
each iteration is then discretized into a series of rectangular
grids with the length �t = [Tb/(nt − 1)] and the width �x =
[L/(nx − 1)], where (x, t) ∈ [0, L]×[0, Tb], nt > 1 and nx > 1.
By changing the iteration number from j = 0 to j = 24, the dis-
crete iteration is then intertwined with the 2-D system of space
and time, which matches to the target system model (6)–(13).

When the control inputs are zero, Figs. 5–8 are used to
describe the performance of the Timoshenko beam system
with the external disturbances. In Figs. 5 and 6, w(x, t)
and φ(x, t) vibrate largely, in spite of the small initial
states. Moreover, w(L, t) exceeds the prescribed constraints
C1 = 0.2 m as shown in Fig. 7 and in Fig. 8 there is no
convergence for φ(L, t).
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Fig. 6. φ(x, t) without control.
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Fig. 7. w(L, t) without control.
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Fig. 8. φ(L, t) without control.

Fig. 9. wj(x, t) with the AILC laws.

Fig. 10. φj(x, t) with the AILC laws.

The proposed AILC laws (15) and (17) in the MATLAB
code are conducted by choosing α1 = 0.01, α2 = 1, α3 = 0.1,
α4 = 0.05, α5 = 1, α6 = 0.1 and α7 = 5, α8 = 0.1,

Fig. 11. wj(L, t) with the AILC laws.

Fig. 12. φj(L, t) with the AILC laws.

Fig. 13. max{|wj(x, t)|} along the iteration axis.

Fig. 14. max{|φj(x, t)|} along the iteration axis.

Fig. 15. AILC law B(uj0(t)) in (15).

and α9 = 0.1. Figs. 9–16 are used to present the effective-
ness of (15) and (17) in suppressing the vibrations, restraining
the endpoint displacements and rejecting the disturbances. In
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Fig. 16. AILC law B(τj0(t)) in (17).

Fig. 9, through the dual-loop AILC laws, the transverse dis-
placements are reduced and regulated to zero as time increases.
From Fig. 10, the angle displacement φj(x, t) reduces and
converges to zero within 50 s. As shown in Fig. 11, by design-
ing the AILC laws (15) and (17), wj(L, t) is restrained during
the whole simulation process, |wj(L, t)| < 0.2 m. The end-
point angle displacement φj(L, t) is also constrained, namely,
|φj(L, t)| < 0.2 rad, as shown in Fig. 12. From Fig. 13,
the maximal vibration of the transverse movement in each
iteration is regulated to zero as the iteration increases. From
Fig. 14, the maximum of |φj(x, t)| in each iteration is reduced
to zero within 15 iterations. The backlash inputs B(uj0(t)) and
B(τj0(t)) are bounded, as shown in Figs. 15 and 16.

VI. CONCLUSION

A Timoshenko beam system has been considered with exter-
nal disturbances, the input backlash, and the output constraints.
Two dual-loop AILC laws have been proposed based on
the defined BCEF. By using the designed AILC schemes,
the boundedness of all the signals has been proved in each
iteration. Furthermore, the convergence of the transverse dis-
placements and the angle displacements has been guaranteed
along the iteration axis. In addition, the external disturbances
have been rejected and the endpoint transverse displacements
and the endpoint angle displacements have been restrained.
The proved theoretical results have matched with the simu-
lation results, which are manifested through a comparison of
the target system with no control and with the designed AILC
schemes.

APPENDIX A

Differentiating (21) and substituting (6) and (7), we have

Ė1j(t) = −μρλ

2

∫ L

0
e−λt[ẇj(x, t)

]2
dx − μλIp

2

×
∫ L

0
e−λt[φ̇j(x, t)

]2
dx − μλEI

2

∫ L

0
e−λt

×
[
φ′

j(x, t)
]2

dx − μλK

2

∫ L

0
e−λt

[
φj(x, t) − w′

j(x, t)
]2

dx

+ μ

∫ L

0
e−λtẇj(x, t) × fjw(x, t)dx

+ μEIe−λtφ′
j(L, t)φ̇j(L, t)

− μKe−λt
[
φj(L, t) − w′

j(L, t)
]
ẇj(L, t). (29)

By considering (12), (13), (15), and (17), Ė2j(t) is expressed by

Ė2j(t) ≤ −μλM

2
e−λt[ẇj(L, t)

]2 − μλJ

2
e−λt[φ̇j(L, t)

]2

+ μe−λtẇj(L, t)

[

K[φj(L, t) − w′
j(L, t)] + ξju(t)

+ sgn
(
ẇj(L, t)

)
d̃1j(t)

− 2α1 f̄wLsgn
(
ẇj(L, t)

)

− α3
wj(L, t)

C2
1 − [

wj(L, t)
]2

× ln

(
C2

1

C2
1 − [

wj(L, t)
]2

)]

+ μe−λtφ̇j(L, t)

[

ξjτ (t) + sgn
(
φ̇j(L, t)

)
d̃2j(t)

− EIφ′
j(L, t) − α6

φj(L, t)

C2
2 − [

φj(L, t)
]2

× ln

(
C2

2

C2
2 − [

φj(L, t)
]2

)]

. (30)

Taking the time derivative of E3j(t), we have

Ė3j(t) = −α3μλ

4
e−λt

[

ln
C2

1

C2
1 − [

wj(L, t)
]2

]2

− α6μλ

4

× e−λt

[

ln
C2

2

C2
2 − [

φj(L, t)
]2

]2

+ μα3e−λt

× wj(L, t)ẇj(L, t)

C2
1 − [

wj(L, t)
]2 ln

(
C2

1

C2
1 − [

wj(L, t)
]2

)

+ μα6

× e−λt φj(L, t)φ̇j(L, t)

C2
2 − [

φj(L, t)
]2 ln

(
C2

2

C2
2 − [

φj(L, t)
]2

)

.

(31)

Substituting the designed AILC laws (15) and (17), Ė4j(t) is
obtained

Ė4j(t) = εuj(t) − μe−λtξju(t)ẇj(L, t) − μα4

2
× e−λt[ẇj(L, t)

]2 − μe−λtξjτ (t)φ̇j(L, t)

− μα7

2
e−λt[φ̇j(L, t)

]2
(32)

where εuj = (μ/2α4)e−λt[ζ( j−1)u(t)]2 +
(μ/2α7)e−λt[ζ( j−1)τ (t)]2.

Substituting the proposed observers (16) and (18), we can
obtain

Ė5j(t) = μ

2α8
e−λt

[
d̃1j(t)

]2 + μ

2α9
e−λt

[
d̃2j(t)

]2

= εdj(t) − μe−λtd̃1j(t)
∣
∣ẇj(L, t)

∣
∣− μα8

2
e−λt

× [
ẇj(L, t)

]2 − μe−λtd̃2j(t)
∣
∣φ̇j(L, t)

∣
∣

− μα9

2
e−λt[φ̇j(L, t)

]2
(33)

where

εdj = (μ/2α8)e
−λt[d̃1( j−1)(t)]

2 + (μ/2α9)e
−λt[d̃2( j−1)(t)]

2.
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By substituting (29)–(33), the time derivative of Ej(t) is
obtained

Ėj(t) ≤ εuj(t) + εdj(t) + μf̄ 2
wL

δ1
−
(

μρλ

2
− μδ1

)

×
∫ L

0
e−λt[ẇj(x, t)

]2
dx − μλIp

2

∫ L

0
e−λt

× [
φ̇j(x, t)

]2
dx − μλEI

2

∫ L

0
e−λt

[
φ′

j(x, t)
]2

dx

− μλK

2

∫ L

0
e−λt

[
φj(x, t) − w′

j(x, t)
]2

dx

−
(

μα8

2
+ μα4

2
+ μλM

2

)

e−λt[ẇj(L, t)
]2

−
(

μα9

2
+ μα7

2
+ μλJ

2

)

e−λt[φ̇j(L, t)
]2

− α3μλ

2
e−λt

[

ln
C2

1

C2
1 − [

wj(L, t)
]2

]2

− α6μλ

2
e−λt

[

ln
C2

2

C2
2 − [

φj(L, t)
]2

]2

(34)

where δ1 is a positive constant with (μρλ/2) − μδ1 > 0.
Therefore, we can conclude Ėj(t) ≤ εdj(t)+εuj(t)+(μf̄ 2

wL/δ1).
Considering ζ(−1)u(t) = 0, ζ(−1)τ (t) = 0, d1(−1)(t) = 0,
d2(−1)(t) = 0 and (34), we can obtain E0(t) ≤ (μf̄ 2

wLTb/δ1)

for t ∈ [0, Tb]. By utilizing Properties 1 and 2, then all the
signals for j = 0 are bounded, including ẇ0(L, t) and φ̇0(L, t).
Considering (15) and (17), we can thus obtain the boundedness
of ξ0u(t), ξ0τ (t), d10(t), and d20(t) for ∀t ∈ [0, Tb].

Assume ξ( j−1)u(t), ξ( j−1)τ (t), d1( j−1)(t), and d2( j−1)(t)
are bounded for ∀j ∈ N and t ∈ [0, Tb], namely,
|ξ( j−1)u(t)| ≤ ξ̄u, |ξ( j−1)τ (t)| ≤ ξ̄τ , |d1( j−1)(t)| ≤ d̄1 and
|d2( j−1)(t)| ≤ d̄2, where ξ̄u, ξ̄τ , d̄1, and d̄2 are positive con-
stants. Considering (1)–(4), two positive constants exist with
|ζ( j−1)u(t)| ≤ ζ̄u and |ζ( j−1)τ (t)| ≤ ζ̄τ . Define

ε̄j = μd̄2
2

2α9
+ μd̄2

1

2α8
+ μζ̄ 2

u

2α4
+ μζ̄ 2

τ

2α7
+ μf̄ 2

wL

δ1
(35)

ν = min

{
ρλ − 2δ1

ρ
, λ,

λM + α4 + α8

M
,
α9 + α7 + λJ

J

}

> 0.

(36)

Then, we have ȦEj(t) ≤ ε̄j − νAEj(t), where AEj(t) = E1j(t) +
E2j(t). Furthermore, we can obtain

AEj(t) ≤ AEj(0)e−νt + ε̄j

ν
. (37)

Considering (21), (22), and (37), we can obtain
∫ L

0
e−λt[ẇj(x, t)

]2
dx ≤ 2

μρ

[

AEj(0)e−νt + ε̄j

ν

]

(38)

∫ L

0
e−λt[φ̇j(x, t)

]2
dx ≤ 2

μIp

[

AEj(0)e−νt + ε̄j

ν

]

(39)

e−λt[ẇj(L, t)
]2 ≤ 2

μM

[

AEj(0)e−νt + ε̄j

ν

]

(40)

e−λt[φ̇j(L, t)
]2 ≤ 2

μJ

[

AEj(0)e−νt + ε̄j

ν

]

(41)

which implies the boundedness of the kinetic energy of the
closed-loop system. By using Property 1, all the signals are
thus bounded in each iteration, including ẇj(x, t), ẇ′

j(x, t),
φ̇j(x, t), and φ̇′

j(x, t) for ∀(x, t) ∈ [0, L] × [0, Tb] and ∀j ∈ N.
Considering (1)–(4) and (15)–(18), we can further obtain
ζju(t), ζjτ (t), d1j(t), and d2j(t) are bounded for t ∈ [0, Tb].

Besides, we can also obtain
∫ L

0
e−λt

[
φ′

j(x, t)
]2

dx ≤ AEj(0)e−νt + ε̄j

ν
× 2

μEI
(42)

∫ L

0
e−λt

[
φj(x, t) − w′

j(x, t)
]2

dx ≤ AEj(0)e−νt + ε̄j

ν
× 2

μK
.

(43)

Then, the potential energy is bounded, ∀j ∈ N and t ∈
[0, Tb]. By using Property 2, wj(x, t), w′

j(x, t), w′′
j (x, t), φj(x, t),

φ′
j(x, t), and φ′′

j (x, t) are bounded for ∀(x, t) ∈ [0, L] × [0, Tb]
and j ∈ N.

By substituting the above steps repeatedly, in each iteration
the boundedness of all the system states are proved through
the designed AILC laws (15)–(17) for ∀t ∈ [0, Tb] and j ∈ N.

APPENDIX B

Considering |ξju(t)| ≥ |ζju(t)|, |ξjτ (t)| ≥ |ζjτ (t)|, and
substituting (15) and (17), �E4j(t) is expressed by

�E4j(Tb) ≤ −μ

∫ Tb

0
e−λrξju(r)ẇj(L, r)dr

− μα4

2

∫ Tb

0
e−λr[ẇj(L, r)

]2
dr

− μ

∫ Tb

0
e−λrξjτ (r)φ̇j(L, r)dr

− μα7

2

∫ Tb

0
e−λr[φ̇j(L, r)

]2
dr. (44)

By substituting (16) and (18), we have

�E5j(Tb) = −μ

∫ Tb

0
e−λrd̃1j(r)

∣
∣ẇj(L, r)

∣
∣dr

− μα8

2

∫ Tb

0
e−λr[ẇj(L, r)

]2
dr

− μ

∫ Tb

0
e−λrd̃2j(r)

∣
∣φ̇j(L, r)

∣
∣dr

− μα9

2

∫ Tb

0
e−λr[φ̇j(L, r)

]2
dr. (45)

By using Assumption 2, the difference of Ej(Tb) is con-
structed by

�Ej(Tb) =
∫ Tb

0

[
Ė1j(r) + Ė2j(r) + Ė3j(r)

]
dr

+ �E4j(Tb) + �E5j(Tb). (46)

Substituting (29)–(31), (44), and (45), we can obtain

Ej(Tb) =
j∑

i=1

�Ej(Tb) + E0(Tb)

≤ E0(Tb) −
(

μα8

2
+ μα4

2
+ μλM

2

)
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×
j∑

i=1

∫ Tb

0
e−λr[ẇi(L, r)]2dr − μρλ

2

×
j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[ẇi(x, r)]2dx

]

dr

−
(

μα9

2
+ μα7

2
+ μλJ

2

)

×
j∑

i=1

∫ Tb

0
e−λr[φ̇i(L, r)

]2
dr − μλIp

2

×
j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[φ̇i(x, r)

]2
dx

]

dr

− μλEI

2

j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[φ′

i(x, r)
]2

dx

]

dr

− μλK

2

j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[φi(x, r) − w′

i(x, r)
]2

dx

]

dr

− α3μλ

2

×
j∑

i=1

∫ Tb

0
e−λr

[

ln
C2

1

C2
1 − [wi(L, r)]2

]2

dr

− α6μλ

2

∫ Tb

0
e−λr

[

ln
C2

2

C2
2 − [φi(L, r)]2

]2

dr

+ μ

j∑

i=1

∫ Tb

0

∫ L

0
e−λrẇi(x, r)fiw(x, r)dx

− μ

j∑

i=1

∫ Tb

0
2α1 f̄wLe−λr|ẇi(L, r)|dr. (47)

By using Theorem 1 and Assumptions 3–5, we can obtain

j∑

i=1

∫ Tb

0
2f̄wLe−λr|ẇi(L, r)|dr > 0.

There must exist a positive constant α1 satisfying

j∑

i=1

∫ Tb

0

∫ L

0
e−λrẇi(x, r)fiw(x, r)dx

≤
j∑

i=1

∫ Tb

0
2α1 f̄wLe−λr|ẇi(L, r)|dr.

Therefore, (47) is simplified as

Ej(Tb) ≤ E0(Tb) − μρλ

2

j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[ẇi(x, r)]2dx

]

dr

− μλIp

2

j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[φ̇i(x, r)

]2
dx

]

dr

− μλEI

2

j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[φ′

i(x, r)
]2

dx

]

dr

− μλK

2

j∑

i=1

∫ Tb

0

[∫ L

0
e−λr[φi(x, r) − w′

i(x, r)
]2

dx

]

dr

−
(

μα8

2
+ μα4

2
+ μλM

2

)

×
j∑

i=1

∫ Tb

0
e−λr[ẇi(L, r)]2dr

−
(

μα9

2
+ μα7

2
+ μλJ

2

) j∑

i=1

∫ Tb

0
e−λr

× [
φ̇i(L, r)

]2
dr − α3μλ

2

j∑

i=1

∫ Tb

0
e−λr

×
[

ln
C2

1

C2
1 − [wi(L, r)]2

]2

dr − α6μλ

2

×
j∑

i=1

∫ Tb

0
e−λr

[

ln
C2

2

C2
2 − [φi(L, r)]2

]2

dr. (48)

Therefore, Ej(Tb) is a nonincreasing sequence along the
iteration axis. Considering (48) and the positiveness of Ej(Tb),
as j → +∞, |ẇj(x, t)|, |φ̇j(x, t)|, |φ′

j(x, t)|, |φj(x, t) −
w′

j(x, t)|, |ẇj(L, t)|, and |φ̇j(L, t)| converge to zero along the
iteration axis.

By using Lemma 1, and considering (8) and (9), we have

[
φj(x, t)

]2 ≤ L
∫ L

0

[
φ′

j(x, t)
]2

dx (49)

[
wj(x, t)

]2 ≤ L
∫ L

0

[
w′

j(x, t)
]2

dx (50)

which advises φj(x, t) also asymptotically converges to
zero. Considering limj→+∞ |φj(x, t) − w′

j(x, t)| = 0 and
limj→+∞ |φj(x, t)| = 0, we can further prove that |wj(x, t)|
is suppressed toward zero from iteration to iteration.

Therefore, by proposing the AILC laws (15) and (17), the
following control objectives are achieved along the iteration
axis: 1) the vibrations in the transverse movement and the rota-
tion are suppressed; 2) the output constraints of the endpoint
transverse displacements and the endpoint angle displacements
are guaranteed; and 3) the external disturbances are rejected.
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