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Abstract—Over the years, researchers have addressed several
control problems of various classes of nonlinear systems. This
article considers a class of uncertain strict feedback nonlinear
system with unknown external disturbances and asymmetric input
dead-zone. Designing a tracking controller for such system is very
complex and challenging. This article aims to design a finite-time
adaptive neural network backstepping tracking control for the
nonlinear system under consideration. In addition, all unknown
disturbances and nonlinear functions are lumped together and
approximated by radial basis function neural network (RBFNN).
Moreover, no prior information about the boundedness of the
dead-zone parameters is required in the controller design. With
the aid of a Lyapunov candidate function, it has been shown
that the tracking errors converge near the origin in finite-time.
Simulation results testify that the proposed control approach can
force the output to follow the reference trajectory in a short time
despite the presence of asymmetric input dead-zone and external
disturbances. At last, in order to highlight the effectiveness of the
proposed control method, it is applied to a quadrotor unmanned
aerial vehicle (UAV).

Keywords—Quadrotor; Unmanned aerial vehicle, Backstepping
control; Radial basis function neural network; Dead-zone; Nonlinear
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I. INTRODUCTION

In recent years, the popularity of Nonlinear control tech-
niques is ever increasing. A large number of systems have
nonlinear and multivariable characteristics in reality. Moreover,
the nonlinear systems usually have time-varying disturbances,
unmodelled dynamics, and other uncertainties [1]. Thus, dif-
ferent control methods have been suggested for both practical
and theoretical applications including backstepping control [2],
Feedback linearization [3], [4], Sliding mode control [5], and
Adaptive control [6].

Backstepping techniques have garnered much more interests
in the control of complex nonlinear systems such as robotic
manipulators [7], chemical processes [2], power systems [8],
and multi-agent systems [9]. These techniques break down a

complex n-order system into several subsystems, provide a
virtual controller for each subsystem and an actual control input
for the last subsystem. In addition, a Lyapunov function is built
to ensure the stability of each subsystem and the closed loop
system [10]. An adaptive backstepping control has been widely
used to control nonlinear systems with parametric uncertainties,
unmodeled dynamics and external disturbances [11]. An adap-
tive algorithm can estimate the uncertain parameter of a system
online without any prior knowledge of the upper-bound of the
parameter [12]–[15]. However, it can only estimate constant
or slow time-varying disturbances/uncertainties. This limitation
can be tackled by incorporating disturbance observer in the
controller. Several types of disturbance observers have been em-
ployed to estimate and compensate time-varying disturbances
[16]–[19]. Another limitation of adaptive control is that it is
only applicable to systems that are linear in the parameters.

Fuzzy logic and Neural networks (RBFNN) are particularly
useful for approximating unknown nonlinear functions due to
their universal approximation property. Contrary to the adap-
tive control that estimates each function’s parameters, FL and
RBFNN estimate the whole function [20], [21]. As such, the
requirement for the linearity in parameters is lifted. Adaptive
backstepping control of nonlinear systems based on RBFNN
has been studied in [22]–[25] and based on FL in [26]–
[31]. Successive differentiation of the virtual control inputs
in backstepping design leads to an explosion of complexity.
This problem is avoided by using the dynamic surface control
approach. This problem has been avoided by using the dynamic
surface control approach [32]–[38].

The presence of a dead zone, one of the common nonsmooth
nonlinearities, hinders control performances and may derive a
system to instability. It is mostly encountered in actuators, elec-
tromagnetic devices, mechanical systems, pneumatic valves,
sensors and so on. Therefore, efficient controllers were de-
signed to mitigate the effects of the dead-zones using Adaptive
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RBFNN in [32], [39], [40] and adaptive FL in [19], [31], [41].
The literature mentioned above guaranteed the asymptotic

and exponential stability of the closed-loop systems. This
implies that the closed-loop systems converge to the desired
performances as the time goes to infinity. On the other hand,
infinite-time stability is undesirable in practical applications
because it results in long transient states [42]. Furthermore,
before the system converges to the equilibrium in infinite
time, some parameters might have changed, high-frequency
external disturbances might have entered the system and lead
to inaccurate control.

To obtain faster convergence speed, stronger disturbance
suppression, and high robustness against uncertainties, finite-
time stability control schemes must be put forward. Recently,
finite-time-based RBFNN or FL control approaches have been
applied to different classes of nonlinear systems with input
dead zone nonlinearities [42]–[47]. Moreover, the input gains
in [31], [35], [39]–[47] were assumed to be constants or known
functions. In situations where the input gains are unknown or
are subjected to parametric uncertainties, these controllers will
not work. In addition, they were based on single-input-single-
output (SISO) systems.

Inspired by the above challenges, a general finite-time adap-
tive backstepping controller is designed using RBFNN for un-
certain nonlinear systems with unknown external disturbances,
unknown input gains and dead-zones. The main contributions
of this paper are as follows:

1) One RBFNN is employed to approximate the uncertain
nonlinear functions together with the external distur-
bances and the derivatives of the virtual controllers.
Therefore, disturbance observer [16]–[19] and first-order
filter based on dynamic surface control [32]–[35], [37],
[38] are not needed. As such, the computational cost is
significantly reduced.

2) The authors in [31], [35], [39]–[47] imposed a strict
assumption that the input gains of the nonlinear systems
are constant or known functions. However, the controllers
developed for these systems would fail in practical appli-
cations if this strict requirement could not be met. In this
work, the strict assumption is relaxed, and RBFNN is
utilized to identify the unknown input gains.

3) In [31], a parametric dead-zone inverse model was con-
structed. The parameters were assumed to be piece-wise
time-varying and many adaptive rules were constructed to
estimate them. On the other hand, the dead-zone inverse
and prior knowledge of dead-zone parameters are not
required in this work.

The contents of this article are arranged as follows: The
problem formulation and preliminaries are presented in Section
II. The adaptive controller is designed in Section III. The
proposed control scheme is applied to a quadrotor unmanned

aerial vehicle (UAV) in Section IV. In Section V, the conclusion
of the work is given.

II. PROBLEM STATEMENT

Consider a class of uncertain nonlinear system with unknown
external disturbances and input dead-zones written as:

ẋ1 = f1(x) + g1(x)x2 + δ1

ẋ2 = f2(x) + g2(x)x3 + δ2

ẋ3 = f3(x) + g3(x)x4 + δ3
...
ẋn−1 = fn−1(x) + gn−1(x)xn + δn−1

ẋn = fn(x) + gn(X)Uz + δn

y1 = x1

(1)

Uz(u) =


sr[u(t)− hr], u(t) ≥ hr

0, −hl < u(t) < hr

sl[u(t) + hl], u(t) ≤ −hl

where xi(t) ∈ Rn, i = 1, 2, . . . , n denotes the state variables,
y ∈ R is the output, fi(x), gi(x) ∈ Rn, i = 1, 2, . . . , n are the
unknown smooth functions, δi ∈ Rn, i = 1, 2, . . . , n contains
the unknown parametric & nonparametric uncertainties and
external disturbances, u ∈ R represents the control input, sl
and sr stand for the unknown left and right dead-zone slopes,
hl > 0 and hr > 0 denote the unknown left and right dead-zone
breakpoints, Uz represents the dead-zone output.

The dead-zone output Uz can be transformed into a slowly
time-varying input-dependent function as follows [48]:

Uz(u) = su(t) + d(t) (2)

where

s =

{
sr, u(t) > 0

sl u(t) ≤ 0

d(t) =


−shr, u(t) ≥ hr

−su(t), −hl < u(t) < hr

shl, u(t) ≤ −hl

The following assumptions, definitions, and lemmas must
be considered for proper analysis and design of appropriate
backstepping control.

Definition 1: [45]. Consider the nonlinear system:

χ̇ = f(χ(t)), f(0) = 0, , χ(0) = x0, χ ∈ Rn (3)

f : β −→ Rn is continuous in an open neighborhood β of
the origin. The zero solution of (8) is said to be semi-global
practical finite-time stable (SGPFS) If there exist r > 0 and
0 < T (x0) <∞, ∥χ(t)∥ < r holds, for all t ≤ t0 + T
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Lemma 1: [2]. Suppose a continuous positive definite Lya-
punov function L(χ), satisfies the inequality

L̇ ≤ −ψ1L+ ψ2 (4)

with ψ1 > 0 and ψ2 > 0, then L(χ) is SGPFS and converges to
the neighbourhood of the origin in a finite settling time T > 0.

Lemma 2: [49] For arbitrary positive real constants a > 0,
b > 0,c > 0, p > 1 and q > 1 satisfying 1/p + 1/q = 1, then
the following Young’s ineaquality is always true

ab ≤ ap

p
cp +

bq

q
c−q (5)

Lemma 3: [2] For the smooth functions Fi(X),Gi(X) ∈
Rm −→ R, a RBFNN can be employed to approximate them
over a compact set Ωx ⊂ Rm as:

{
Fi(X) = V Ti Θi(X) + µfi
Gi(X) =WT

i Θi(X) + µgi
(6)

where X = [x1 . . . xn]
T is the input vector, Vi = [v1, . . . , vl]

T

and Wi = [w1, . . . , wl]
T are the RBFNN weight vectors, Θi =

exp
(
−∥X − Cij∥/2ϱ2j

)
is a Gaussian function, µfi and µgi

i = (1, 2, . . . , n) are RBFNN approximation errors.
Assumption 1: For a given smooth functions Fi(X), Gi(X)

and RBFNN approximators (6) , there exist an ideal weight
vectors Vi and Wi such that µfi ≤ µ̄fi and µgi ≤ µ̄gi

, with
constants µ̄fi > 0, µ̄gi

> 0 for all Xi ∈ Ωx.
Generally, the ideal weights Vi and Wi are unknown and have

to be estimated. Let V̂i and Ŵi be the estimates of Vi and Wi

respectively, and the weight estimation errors are Ṽi = Vi − V̂i
and W̃i =Wi − Ŵi.

Assumption 2: The external disturbances meet δi ≤ ϱi with
ϱi > 0 is an unknown constant.

III. CONTROL DESIGN

The aim of this note is to design RBFNN adaptive backstep-
ping control laws to achieve the errors limt→Tf

zi ≤ cq in a
small compact set in finite-time.

Conventional backstepping design involves n-steps recursive
procedures. Using Lyapunov functions to design the control
laws at each step is tedious and lengthy and leads to complex
algorithms. Therefore, this monotonous procedure is avoided
and a systematic approach is used in the design.

Step : 1: Virtual controllers α1, . . . , αn−2 are designed for
the states x1, . . . , xn−1. Define the the tracking errors as
follows



z1 = x1 − x1d

z2 = x2 − α1

z3 = x3 − α2

. . .

zn−1 = xn−1 − α(n−2)

(7)

The time-derivatives of the error variables (7) can be calcu-
lated as follows:

ż1 = f1 +G1x2 + δ1 − ẋ1d

ż2 = f2 +G2x3 + δ2 − α̇1

ż3 = f3 +G3x4 + δ3 − α̇2

...
żn−1 = fn−1 +Gn−1xn + δn−1 − α̇(n−2)

(8)

From (7), the following equation can be obtained:

x2 = z2 + α1

x3 = z3 + α2

x4 = z4 + α3

. . .

xn−1 = zn−1 + α(n−2)

(9)

Substituting (9) into (8) gives:

ż1 = f1 +G1z2 +G1α1 + δ1 − ẋ1

ż2 = f2 +G2z3 +G2α2 + δ2 − α̇1

ż3 = f3 +G3z4 +G3α3 + δ3 − α̇2

...
żn−1 = fn−1 +Gn−1zn

+Gn−1αn−1 + δn−1 − α̇(n−2)

(10)

In order to avoid: (1) using disturbance observer to estimate
δi; (2) using first-order filter to estimate α̇i−1, we let

Remark 1: Instead of using a disturbance observer to estimate
δi (i = 1, 2, . . . , n) as in [16]–[19] or using a first-order
filter to estimate the derivatives of the virtual control inputs
α̇i−1 (i = 1, 2, . . . , n−1)(α̇0 = ẋ1d), a single RBFNN is used
to estimate δi together with α̇i−1 and the unknown nonlinear
function fi(x).

Let Fi = fi+δi−α̇i−1, (i = 1, . . . , n−1). Then, the virtual
controllers are designed as follows:

α1 = 1
Ĝ 1

[−F̂1 − Ĝ1z2 −K1z1]

α2 = 1
Ĝ 2

[−F̂2 − Ĝ2z3 −K2z2]

α3 = 1
Ĝ 3

[−F̂3 − Ĝ3z4 −K3z3]

. . .

αn−1 = 1
Ĝn−1

[−F̂n−1 − Ĝn−1zn −Kn−1zn−1]

(11)
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where F̂i and Ĝi i = 1, . . . , n−1 are the estimates of Fi and Gi
respectively. Adding Ĝiαi − Ĝiαi (i=1, . . . n-1) to (10) yields:

ż1 = F1 +G1z2 + G̃1α1 + Ĝ1α1

ż2 = F2 +G2z3 + G̃2α2 + Ĝ2α2

ż3 = F3 +G3z4 + G̃3α3 + Ĝ3α3

...
żn−1 = Fn−1 +Gn−1zn + G̃(n−1)α(n−1)

+ Ĝ(n−1)α(n−1)

(12)

where G̃i = Gi − Ĝi (i = 1, . . . , n-1). Substituting the virtual
controllers (11) into (12) yields:

ż1 = F̃1 + G̃1z2 + G̃1α1 −K1z1

= F̃1 + G̃1x2 −K1z1

ż2 = F̃2 + G̃2z3 + G̃2α2 −K2z2

= F̃2 + G̃2x3 −K2z2

ż3 = F̃3 + G̃3z4 + G̃3α3 −K3z3

= F̃3 + G̃3x4 −K3z3
...
żn−1 = F̃n−1 + G̃n−1zn + G̃n−1αn−1

−Kn−1zn−1

= F̃n−1 + G̃n−1xn −Kn−1zn−1

(13)

where F̃i = Fi − F̂i i = 1, . . . , n− 1.
Step : 2: The actual control input u that can guarantee the

overall stability of the system is computed. The error variable
is given by zn = xn−α(n−1). The derivative of zn with respect
to time is obtained as:

żn = ẋn − α̇(n−1) = fn + δn +GnUz − α̇n−1 (14)

Considering the dead-zone expression (2), one has:

żn = Fn +G∗
nu (15)

where Fn = fn + δn + Gnd − α̇n−1, G∗
n = Gns. Adding

Ĝ∗
nu− Ĝ∗

nu to (15), we get

żn = Fn + G̃∗
nu+ Ĝ∗

nu (16)

The actual controller that can neutralize the dead zone effect
and ensures tracking is given by:

u =
1

Ĝ∗
n

[−F̂n −Knzn] (17)

Substituting (17) into (16) yields:

żn = F̃n + G̃∗
nu−Knzn (18)

The RBFNN functional estimates of Fi and Gi in (6) are
given as:{

F̂i(Xi) = V̂ Ti Θi(Xi)

Ĝi(Xi) = ŴT
i Θi(Xi) i = 1, 2, . . . , n

(19)

The RBFNN functional approximation errors are thus:{
F̃i(Xi) = Fi(Xi)− F̂i(Xi) = Ṽ Ti Θi(Xi) + µfi
G̃i(X) = Gi(X)− Ĝi(X) = W̃T

i Θi(Xi) + µgi
(20)

Using (20), the general error dynamics can be written as:{
żi = Ṽ Ti Θi + W̃T

i Θixi+1 + ϑi − kizi, (i = 1, . . . , n− 1)

żn = Ṽ Tn Θn + W̃T
n Θnu+ ϑn −Knzn

(21)

where ϑi = (µqI + µGixi+1), ϑn = µFn + µGnu.

Theorem 4: Suppose the uncertain nonlinear system (1), the
closed-loop system (21) satisfied the assumptions 1 and 2.
Take the virtual controllers (11), the actual controller (17), the
RBFNN weight tuning laws (22),

˙̂
Wi = βi[Θixi+1zi − ηiŴi], (i = 1, . . . , n− 1)
˙̂
Wn = βn[Θnuzn − ηnŴn]
˙̂
Vi = ξi[Θizi − ηiV̂i], (i = 1, . . . , n)

(22)

with constant βi > 0, ξ > 0, η > 0. Then, the errors zi, i =
1, 2, . . . , n, and RBFNN weight estimates Ŵ and V̂ are semi-
globally uniformly ultimately bounded in the compact set Ωq ≡
{q : ∥q∥ ≤ cq} with cq a positive constant.

Proof 1: Let the RBFNN approximation property holds for
all q in the compact set Ωq ≡ {q : ∥q∥ ≤ cq}. Select the
following Lyapunov function candidate

L =
1

2

n∑
i=1

z2i +
1

2

n∑
i=1

Ṽ Ti ξ
−1
i Ṽi +

n∑
i=1

1

2
W̃T
i β

−1
i W̃i (23)

Differentiating (23) with respect to time yields:

L̇ =
1

2

n−1∑
i=1

ziżi −
n−1∑
i=1

Ṽ Ti ξ
−1
i

˙̂
Vi −

n−1∑
i=1

W̃T
i β

−1
i

˙̂
Wi

+ znżn − Ṽ Tn ξ
−1
n

˙̂
Vn − W̃T

n β
−1
n

˙̂
Wn (24)

Substituting (21) and (22) into (24), one obtains:

L̇ = −
n∑
i=1

kiz
2
i +

n∑
i=1

ϑizi +

n∑
i=1

ηiW̃iŴi +

n∑
i=1

ηiṼiV̂i (25)
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Consider the following Young’s inequalities:
ziϑi ≤ z2i

2 +
ϑ2
i

2

ηiṼiV̂i = ηiṼi[Vi − Ṽi] ≤ ηi
V 2
i

2 − ηi
Ṽ 2
i

2

ηiW̃iŴi = ηiW̃i[Wi − W̃i] ≤ ηi
W 2

i

2 − ηi
W̃ 2

i

2

(26)

Substituting the inequalities into (25) gives:

L̇ ≤ −
n∑
i=1

(
ki −

1

2

)
z2i −

n∑
i=1

ηiβi
W̃ 2
i

2βi
−

n∑
i=1

ηiξi
Ṽ 2
i

2ξi

+

n∑
i=1

ϑ2i
2

+

n∑
i=1

ηi
W 2
i

2
+

n∑
i=1

ηi
V 2
i

2
(27)

Equation (27) can be rewritten as:

L̇ ≤ −ψ1L+ ψ2 (28)

where

ψ1 = min
{(
ki −

1

2

)
, ηiβi, ηiξi

}
ψ2 =

n∑
i=1

ϑ2i
2

+

n∑
i=1

ηi
W 2
i

2
+

n∑
i=1

ηi
V 2
i

2

Multiplying both sides of (28) by eψ1t and integrating the
resulting equation over [0 t], we achieve:

L ≤
(
L(0)− ψ2

ψ1

)
e−ψ1t +

ψ2

ψ1
≤ L(0)− ψ2

ψ1
(29)

Taking into account the Lyapunov function (23), one can
gets:

1

2
∥q∥2 ≤ L(0)− ψ2

ψ1
=⇒ ∥q∥ ≤

√
2

(
L(0)− ψ2

ψ1

)
(30)

In view of (30), all the closed-loop signals e, W̃ and Ṽ are
semi-globally uniformly ultimately bounded in a compact set
defined by Ωq ≡ {q : ∥q∥ ≤ cq}, with cq ≡

√
(L(0)− ψ2/ψ1)

∀t ≤ t0 + T .

IV. SIMULATION STUDY

In this section, the effectiveness of the proposed control
approach is demonstrated by implementing it on a quadrotor
dynamic model.

The schematic diagram of the quadrotor is shown in Fig. 1.
The fixed body frame B(0b;xb; yb; zb) and the earth fixed frame
E(0e;xe; ye; ze) of the quadrotor are described in this figure.
The position of the quadrotor in the E-frame is represented
by the vector ζ = [x, y, z]T and the attitude is denoted by
A = [ϕ, θ, ψ]T , with ϕ, θ and ψ standing for the roll, the
pitch, and the yaw angles, respectively. Let x1 = z, x2 = ż,
x3 = ϕ, x4 = ϕ̇, x5 = θ, x6 = θ̇, x7 = ψ, and x8 = ψ̇. Then,

the fully actuated nonlinear state-space model of the quadrotor
is given by [50]: 

ẋ1 = x2

ẋ2 = f1 + g1Uz1 + δ1

y1 = x1

(31)


ẋ3 = x4

ẍ4 = f2 + g2Uz2 + δ2

y2 = x3

(32)


ẋ5 = x6

ẋ6 = f3 + g3Uz3 + δ3

y3 = x5

(33)


ẋ7 = x8

ẍ7 = f4 + g4Uz4 + δ4

y4 = x7

(34)

where x1, x3, x5 and x7 denote the altitude, the roll angle, the
pitch angle, and the yaw angle, respectively. f1 = a1x2 − g,
f2 = a2x

2
4 + a3x8x6 + a4x6, f3 = a5x

2
6 + a6x8x4 + a7x6,

f4 = a8x
2
8 + a9x4x6, g1 = 1

m (cosx3 cosx5), g2 = l
Ix

,
g3 = l

Iy
, g4 = l

Iz
, a1 = −Kaz

m a2 =
Kax3

Ix
, a3 =

(Iy−Iz)
Ix

,

a4 = −JrΩr

Ix
, a5 =

Kax5

Iy
, a6 = (Iz−Ix)

Iy
, a7 = Jrωr

Iy
, a8 =

Kax7

Iz
, a9 =

(Iy−Iz)
Iz

. The physical meaning and values of the
parameters are available in [50].

Fig. 1. Schematic of a quadrotor UAV [51]

The external disturbances are set as: δ1 = δ2 = δ3 = δ4 =
3sin(2t). The controller parameters are: K1 = k3 = k5 = k7 =
10, k2 = k4 = k6 = k8 = 8. The RBFNN parameters are: ξi =
ζi = 0.2, ηi = 0.01 (i=1,2, 3, 4). The dead-zone parameters
are: sr1 = 1, sr2 = 0.9, sr3 = 1.1, sr4 = 2.8, sl1 = −2,
sl2 = −0.5, sl3 = −3 hri = 0.001, hli = −0.4 (i=1,2,3,4).
Fig. 2 shows that each of the outputs has successfully followed
its desired trajectory with reasonable accuracy. The tracking
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errors are given in Fig. 3. The control inputs are presented in
Fig. 4. The control signals are able to mitigate the impacts of
the external disturbances and input dead-zones.

Fig. 2. The trajectory tracking of the outputs

Fig. 3. The tracking errors

Fig. 4. The control inputs

V. CONCLUSIONS

This paper has presented a finite-time RBFNN backstepping
control of uncertain nonlinear systems with unknown dynamics
and dead-zones subjected to external disturbances. The pro-
posed controller is entirely independent of the system dynamics
as it can approximate any unknown function in the system.
One RBFNN has been used to estimate the system dynamics,
time-varying disturbances, and derivatives of the virtual control
laws. As a result, the controller has less computational cost
and is easy to implement in practice. Moreover, a positive
definite Lyapunov function suggested that all the error signals
are semi-globally uniformly ultimately bounded in finite-time
near the origin. In order to validate the performance of the
proposed controller, it is applied to the dynamic model of a
quadrotor with actuator dead-zones and external disturbances.
Simulation results show that the proposed controller can achieve
excellent tracking in a finite time. In future research, we will
investigate how the controller can work for nonlinear systems
with unknown time delays and output constraints.
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