43 research outputs found

    Modelling and control of the braking system of the electric Polaris Ranger all-terrain-vehicle

    Get PDF
    I mezzi ATV sono impiegati in attività forestali, di sorveglianza e soccorso. Si è vista recentemente la nascita di ATV elettrici, sinonimo di pulizia e risparmio. La possibilità di rendere questi veicoli completamente autonomi ha stimolato l'interesse del settore automotive. L' ABS in particolare, che finora è diffusa solo tra i veicoli stradali è stata introdotta e studiata. Modelli matematici per la simulazione dell'impianto frenante sono stati derivati, come base per il futuroope

    Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    Get PDF

    Implementation of Iterative Learning Control on a Pneumatic Actuator.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Pneumatic systems play a pivotal role in many industrial applications, such as in petrochemical industries, steel manufacturing, car manufacturing and food industries. Besides industrial applications, pneumatic systems have also been used in many robotic systems. Nevertheless, a pneumatic system contains different nonlinear and uncertain behaviour due to gas compression, gas leakage, attenuation of the air in pipes and frictional forces in mechanical parts, which increase the system’s dynamic orders. Therefore, modelling a pneumatic system tends to be complicated and challenges the design of the controller for such a system. As a result, employing an effective control mechanism to precisely control a pneumatic system for achieving the required performance is essential. A desirable controller for a pneumatic system should be capable of learning the dynamics of the system and adjusting the control signal accordingly. In this study, a learning control scheme to overcome the highlighted nonlinearity problems is suggested. Many industrial processes are repetitive, and it is reasonable to make use of previously acquired data to improve a controller’s convergence and robustness. An Iterative Learning Control (ILC) algorithm uses information from previous repetitions to learn about the system’s dynamics. The ILC algorithm characteristics are beneficial in real-time control given its short time requirements for responding to input changes. Cylinder-piston actuators are the most common pneumatic systems, which translate the air pressure force into a linear mechanical motion. In industrial automation and robotics, linear pneumatic actuators have a wide range of applications, from load positioning to pneumatic muscles in robots. Therefore, the aim of this research is to study the performance of ILC techniques in position control of the rod in a pneumatic position-cylinder system. Based on theoretical analysis, the design of an ILC is discussed, showing that the controller can satisfactorily overcome nonlinearities and uncertainties in the system without needing any prior knowledge of the system’s model. The controller has been designed in such a way to even work on non-iterative processes. The performance of the ILC-controlled system is compared with a well-tuned PID controller, showing a faster and more accurate response

    Commande hybride d'un système à suspension active

    Get PDF
    Cette thèse traite la modélisation, d’un système de suspension active électrohydraulique, du développement des lois de commande et leur implantation en temps réel pour des fins de validation. Les stratégies de contrôle employées et développées utilisent des approches de commande linéaire, nonlinéaire, et de commande adaptative avec des structures simples ou hybrides. Dans le cadre de cette thèse, nous avons développé une méthode de commande nonlinéaire hybride pour contrôler la position et la force appliquées sur un banc de suspension active représentant la suspension active d’un véhicule. La structure hybride combine deux contrôleurs nonlinéaires en utilisant deux filtres passe bas. Cette structure consiste en une loi de commande nonlinéaire qui contient des fonctions et des gains variables. Les contrôleurs sont développés en utilisant le mode de glissement pour sa robustesse malgré le broutement (chattering) produit dans la loi de commande. Une chose importante à traiter en contrôle de mode de glissement est la réduction du broutement. La loi d’atteint exponentielle est une des techniques existant pour réduire le broutement dans la loi de commande nonlinéaire. La technique a été testée en simulation ainsi qu’en temps réel pour des fins de validation dans cette thèse. Pour améliorer la performance du contrôleur proposé dans le paragraphe précédent, nous avons ajouté un autre contrôleur de logique floue basé sur les surfaces de glissement pour les tests de validation. Dans le contrôleur de logique floue, les entrées sont les surfaces de glissement de la position et de la force qui sont calculés instantanément dans le système. Le contrôleur de logique floue varie les gains des filtres efficacement pour améliorer la performance de contrôleur proposé utilisé dans la structure hybride. La stabilité de structure hybride est renforcée par la stabilité de chaque contrôleur employé dans cette structure. La popularité de contrôleur PID nous a motivé à l’intégrer dans la structure hybride. Vu que le contrôleur PID est facile à intégrer dans les applications industrielles et dans les systèmes embarqués, un contrôleur hybride basé sur des contrôleurs PID est construit et testé pour déterminer une force désirée en gardant la position dans ses limites. La structure hybride composée des contrôleurs PID et contrôleurs de mode de glissement a prouvé sa validité à travers des séries de tests en simulation et en temps réel. Les résultats montrent qu’un contrôleur hybride peut réduire la perturbation exercée sur un système à suspension active et suivre une trajectoire de force désirée générée à partir des paramètres du système. Ce double aspect ne peut être réalisé par un contrôleur simple et même un contrôleur nonlinéaire. Les contrôleurs simples sont faits pour réaliser un seul objectif (force ou position) et parfois garder des variables dans leurs limites. En revanche, la structure hybride est devenue de plus en plus populaire pour les applications multitâches surtout en robotiques. Autrement dit, le contrôle composé de deux contrôleurs a prouvé son efficacité dans plusieurs domaines. Dans le même sens, un contrôleur PID dual loop (PIDDL) a été développé et présenté sous une forme adaptative à travers des fonctions adaptatives pour contrôler la position de banc d’essai à suspension active. Le PIDDL pourrait être intégré dans la structure hybride pour avoir une nouvelle structure basée sur un contrôleur considéré comme une extension de contrôleur PID. Des contrôleurs à logique flou sont employés sous une structure adaptative avec des retours des sorties des même contrôleurs pour mettre à jour les gains essentiels de contrôleurs PID et PIDDL. Le contrôleur PIDDL avec des gains variables a été testé et validé à travers une série des comparaisons avec le PID et d’autres contrôleurs. Les résultats obtenus ont prouvé la validité du contrôleur proposé en surpassant les autres contrôleurs en termes de performance

    Robust Control of Industrial Hydraulic Cylinder Drives - with Special Reference to Sliding Mode- & Finite-Time Control

    Get PDF

    Investigation of Advanced Engine Cooling Systems - Optimization and Nonlinear Control

    Get PDF
    Advanced automotive engine cooling systems can positively impact the performance, fuel economy, and reliability of internal combustion engines. A smart engine cooling system typically features multiple real time computer controlled actuators: a three way linear smart valve, a variable speed coolant pump, and electric radiator fan(s). In this dissertation, several innovative comprehensive nonlinear control and optimization operation strategies for the next generation smart cooling application will be analyzed. First, the optimal control has been investigated to minimize the electric energy usage of radiator fan matrix. A detailed mathematical model of the radiator fan(s) matrix operation and the forced convection heat transfer process was developed to establish a mixed integer nonlinear programming problem. An interior points approach was introduced to solve the energy consumption minimization problem. A series of laboratory tests have been conducted with different fan configurations and rotational shaft speed combinations, with the objective to cool a thermal loaded engine. Both the mathematical approach and the laboratory test results demonstrated the effectiveness of similar control strategies. Based on the tests data and mathematical analysis, an optimization control strategy reduced the fan matrix power consumption by up to 67%. Second, a series of experimental laboratory tests were implemented to investigate the contributions of each electro-mechanical device in automotive thermal management system. The test results established a basis for several key operating conclusions. The smart valve and variable speed pump impacted the engine temperature by adjusting the heat transfer rate between the engine and the radiator through coolant redirection and/or coolant flow rate. On the other hand, the radiator fan(s) operation affects the engine\u27s temperature by modifying the heat rejection rate of the radiator which can influence the entire cooling system. In addition, the smart valve\u27s operation changes the engine\u27s temperature magnitude the greatest amount followed by the radiator fan(s) and the coolant pump. Furthermore, from a power consumption aspect, the radiator fan(s) consumes the most engine power in comparison to the two other actuators. Third, a Lyapunov based nonlinear control strategy for the radiator fan matrix was studied to accommodate transient engine temperature tracking at heavy heat load. A reduced order mathematical model established a basis for the closed-loop real time feedback system. Representative numerical and experimental tests demonstrated that the advanced control strategy can regulate the engine temperature tracking error within 0.12°C and compensate the unknown heat load. The nonlinear controller provided superior performance in terms of power consumption and temperature tracking as evident by the reduced magnitude when compared to a classical proportional integral with lookup table based controller and a bang bang controller. Fourth, a nonlinear adaptive multiple-input and multiple-output (NAMIMO) controller to operate the smart valve and radiator fans has been presented. This controller regulates the engine temperature while compensating for unknown wide range heat loads and ram air effects. A nonlinear adaptive backstepping (NAB) control strategy and a state flow (SF) control law were introduced for comparisons. The test results indicated that the NAMIMO successfully regulated the engine temperature to a desired value (tracking error, |e|\u3c0.5°C, at steady state) subject to various working conditions. In contrast, the NAB control law consumes the least radiator fan power but demonstrated a larger average temperature tracking error (40% greater than the NAMIMO controller), a longer response time (34% greater than the NAMIMO controller), and defected when the heat load was low. Lastly, the SF controller, characterized by greater oscillation and electrical power consumption (18.9% greater than the NAMIMO controller), was easy to realize and maintained the engine temperature to within |e|\u3c5°C. An important aspect of engineering research is the knowledge gained from learning materials to fully understand the thermal management. As part of the dissertation, advanced three-dimensional (3D) visualization and virtual reality (VR) technology based engineering education methods has been studied. A series of computer aided design (CAD) models with storyboards have been created to provide a step to step guide for developing the learning modules. The topics include automotive, aerospace, and manufacturing. The center for aviation and automotive technological education using virtual e-schools (CA2VES) at Clemson University has developed a comprehensive e-learning system integrated with eBooks, mini video lectures, 3D virtual reality technologies, and online assessments as supplementary materials to engineering education

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    An Energy Efficient Electro-Hydraulic Control System For A Collaborative Humanoid Robot

    Get PDF
    DissertationThis study presents the design of an energy efficient electro-hydraulic control system for a collaborative humanoid robot. Robots can be found in almost every aspect of our lives with different applications such as manufacturing, construction, agriculture, surgery, and transportation. The need for robots is on the rise as they perform certain tasks much faster and with more precision than humans. The lack of them having cognitive ability limits them in certain tasks as human interaction is often needed. Humans are currently better than robots in performing some tasks such as decision making and problem solving. In collaborative robotics, humans and robots are required to work together to achieve a common goal. In most cases, this is achieved by confining both entities in the same space. This allows for better accuracy for these robots with the flexibility and cognition of humans. Furthermore, research lately shows an increase in robots that use hydraulics with most showing that these hydraulics have energy saving abilities in robotic actuation. It is known that hydraulics have a high power to weight ratio thus allowing for more powerful yet compact robots to be built. An electro-hydraulic control system is thus described in this research in which the system allows the human user to manipulate the robot by having it mimic the user’s moves. This approach allows the user to not do any strenuous activities while the robot does the heavy lifting. Furthermore, the system does not need to be reprogrammed for a new task therefore reducing the reconfiguration time of the system. The proposed approach further allows the robot to work in hazardous situations while the user is in a safe environment. The system uses a proportional-integral-derivative (PID) algorithm to control a hydraulic cylinder allowing it to move with the user. Experiments performed to validate the study shows the reaction time as well as energy saving abilities of the system. Additionally, the results show that hydraulic systems have the ability to save energy during stall as well as increasing power density of the robot. Furthermore, an improved response time was recorded for the hydraulic system when being controlled by a remote operator
    corecore