5,090 research outputs found

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    A spiral model for adding automatic, adaptive authoring to adaptive hypermedia

    Get PDF
    At present a large amount of research exists into the design and implementation of adaptive systems. However, not many target the complex task of authoring in such systems, or their evaluation. In order to tackle these problems, we have looked into the causes of the complexity. Manual annotation has proven to be a bottleneck for authoring of adaptive hypermedia. One such solution is the reuse of automatically generated metadata. In our previous work we have proposed the integration of the generic Adaptive Hypermedia authoring environment, MOT ( My Online Teacher), and a semantic desktop environment, indexed by Beagle++. A prototype, Sesame2MOT Enricher v1, was built based upon this integration approach and evaluated. After the initial evaluations, a web-based prototype was built (web-based Sesame2MOT Enricher v2 application) and integrated in MOT v2, conforming with the findings of the first set of evaluations. This new prototype underwent another evaluation. This paper thus does a synthesis of the approach in general, the initial prototype, with its first evaluations, the improved prototype and the first results from the most recent evaluation round, following the next implementation cycle of the spiral model [Boehm, 88]

    Social e-learning in topolor : a case study

    Get PDF
    Social e-learning is a process through which learners achieve their learning goals via social interactions with each other by sharing knowledge, skills, abilities and educational materials. Adaptive e-learning enables adaptation and personalization of the learning process, based on learner needs, knowledge, preferences and other characteristics. In this paper, we present a case study that analyzes the social interaction features of a social personalized adaptive e-learning system developed at the University of Warwick, called Topolor. We discuss the results of a quantitative case study that evaluates the perceived usefulness and usability. The results demonstrate a generally high level of learner satisfaction with their learning experience. We extend the discussion of the results to explore future research directions and suggest further improvements for the studied social personalized adaptive e-learning system

    Empowering cultural heritage professionals with tools for authoring and deploying personalised visitor experiences

    Get PDF
    This paper presents an authoring environment, which supports cultural heritage professionals in the process of creating and deploying a wide range of different personalised interactive experiences that combine the physical (objects, collection and spaces) and the digital (multimedia content). It is based on a novel flexible formalism that represents the content and the context as independent from one another and allows recombining them in multiple ways thus generating many different interactions from the same elements. The authoring environment was developed in a co-design process with heritage stakeholders and addresses the composition of the content, the definition of the personalisation, and the deployment on a physical configuration of bespoke devices. To simplify the editing while maintaining a powerful representation, the complex creation process is deconstructed into a limited number of elements and phases, including aspects to control personalisation both in content and in interaction. The user interface also includes examples of installations for inspiration and as a means for learning what is possible and how to do it. Throughout the paper, installations in public exhibitions are used to illustrate our points and what our authoring environment can produce. The expressiveness of the formalism and the variety of interactive experiences that could be created was assessed via a range of laboratory tests, while a user-centred evaluation with over 40 cultural heritage professionals assessed whether they feel confident in directly controlling personalisation

    A social personalized adaptive e-learning environment : a case study in Topolor

    Get PDF
    Adaptive e-Learning is a process where learning contents are delivered to learners adaptively, namely, the appropriate contents are delivered to the learners in an appropriate way at an appropriate time based on the learners’ needs, knowledge, preferences and other characteristics. Social e-Learning is a process where connections are made among like-minded learners, so they can achieve learning goals via communication and interaction with each other by sharing knowledge, skills, abilities and materials. This paper reports an extended case study that investigated the influence of social interactions in an adaptive e-Learning environment, by analyzing the usage of social interaction features of a Social Personalized Adaptive E-Learning Environment (SPAEE), named Topolor, which strives to combine the advantages from both social e-Learning and adaptive e-Learning. We present the results of a quantitative case study that evaluates the perceived usefulness and ease of use. The results indicated high satisfaction from the students who were using Topolor for their study and helped us with the evaluation processes. Based on the results, we discuss the follow-up work plan for the further improvements for Topolor

    Exploring participatory design for SNS-based AEH systems

    Get PDF
    The rapidly emerging and growing social networking sites (SNS) offer an opportunity to improve adaptive e-learning experience by introducing a social dimension, connecting users within the system. Making connections and providing communication tools can engage students in creating effective learning environment and enriching learning experiences. Researchers have been working on introducing SNS features into adaptive educational hypermedia systems. The next stage research is centered on how to enhance SNS facilities of AEH systems, in order to engage students’ participation in collaborative learning and generating and enriching learning materials. Students are the core participants in the adaptive e-learning process, so it is essential for the system designers to consider students’ opinions. This paper aims at exploring how to apply participatory design methodology in the early stage of the SNS-based AEH system design process

    TELMA: Technology enhanced learning environment for minimally invasive surgery

    Get PDF
    Background: Cognitive skills training for minimally invasive surgery has traditionally relied upon diverse tools, such as seminars or lectures. Web technologies for e-learning have been adopted to provide ubiquitous training and serve as structured repositories for the vast amount of laparoscopic video sources available. However, these technologies fail to offer such features as formative and summative evaluation, guided learning, or collaborative interaction between users. Methodology: The "TELMA" environment is presented as a new technology-enhanced learning platform that increases the user's experience using a four-pillared architecture: (1) an authoring tool for the creation of didactic contents; (2) a learning content and knowledge management system that incorporates a modular and scalable system to capture, catalogue, search, and retrieve multimedia content; (3) an evaluation module that provides learning feedback to users; and (4) a professional network for collaborative learning between users. Face validation of the environment and the authoring tool are presented. Results: Face validation of TELMA reveals the positive perception of surgeons regarding the implementation of TELMA and their willingness to use it as a cognitive skills training tool. Preliminary validation data also reflect the importance of providing an easy-to-use, functional authoring tool to create didactic content. Conclusion: The TELMA environment is currently installed and used at the Jesús Usón Minimally Invasive Surgery Centre and several other Spanish hospitals. Face validation results ascertain the acceptance and usefulness of this new minimally invasive surgery training environment
    • …
    corecore