2,107 research outputs found

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    ReSHAPE: A Framework for Dynamic Resizing and Scheduling of Homogeneous Applications in a Parallel Environment

    Get PDF
    Applications in science and engineering often require huge computational resources for solving problems within a reasonable time frame. Parallel supercomputers provide the computational infrastructure for solving such problems. A traditional application scheduler running on a parallel cluster only supports static scheduling where the number of processors allocated to an application remains fixed throughout the lifetime of execution of the job. Due to the unpredictability in job arrival times and varying resource requirements, static scheduling can result in idle system resources thereby decreasing the overall system throughput. In this paper we present a prototype framework called ReSHAPE, which supports dynamic resizing of parallel MPI applications executed on distributed memory platforms. The framework includes a scheduler that supports resizing of applications, an API to enable applications to interact with the scheduler, and a library that makes resizing viable. Applications executed using the ReSHAPE scheduler framework can expand to take advantage of additional free processors or can shrink to accommodate a high priority application, without getting suspended. In our research, we have mainly focused on structured applications that have two-dimensional data arrays distributed across a two-dimensional processor grid. The resize library includes algorithms for processor selection and processor mapping. Experimental results show that the ReSHAPE framework can improve individual job turn-around time and overall system throughput.Comment: 15 pages, 10 figures, 5 tables Submitted to International Conference on Parallel Processing (ICPP'07

    Vcluster: A Portable Virtual Computing Library For Cluster Computing

    Get PDF
    Message passing has been the dominant parallel programming model in cluster computing, and libraries like Message Passing Interface (MPI) and Portable Virtual Machine (PVM) have proven their novelty and efficiency through numerous applications in diverse areas. However, as clusters of Symmetric Multi-Processor (SMP) and heterogeneous machines become popular, conventional message passing models must be adapted accordingly to support this new kind of clusters efficiently. In addition, Java programming language, with its features like object oriented architecture, platform independent bytecode, and native support for multithreading, makes it an alternative language for cluster computing. This research presents a new parallel programming model and a library called VCluster that implements this model on top of a Java Virtual Machine (JVM). The programming model is based on virtual migrating threads to support clusters of heterogeneous SMP machines efficiently. VCluster is implemented in 100% Java, utilizing the portability of Java to address the problems of heterogeneous machines. VCluster virtualizes computational and communication resources such as threads, computation states, and communication channels across multiple separate JVMs, which makes a mobile thread possible. Equipped with virtual migrating thread, it is feasible to balance the load of computing resources dynamically. Several large scale parallel applications have been developed using VCluster to compare the performance and usage of VCluster with other libraries. The results of the experiments show that VCluster makes it easier to develop multithreading parallel applications compared to conventional libraries like MPI. At the same time, the performance of VCluster is comparable to MPICH, a widely used MPI library, combined with popular threading libraries like POSIX Thread and OpenMP. In the next phase of our work, we implemented thread group and thread migration to demonstrate the feasibility of dynamic load balancing in VCluster. We carried out experiments to show that the load can be dynamically balanced in VCluster, resulting in a better performance. Thread group also makes it possible to implement collective communication functions between threads, which have been proved to be useful in process based libraries

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well

    Scalable Parallel Delaunay Image-to-Mesh Conversion for Shared and Distributed Memory Architectures

    Get PDF
    Mesh generation is an essential component for many engineering applications. The ability to generate meshes in parallel is critical for the scalability of the entire Finite Element Method (FEM) pipeline. However, parallel mesh generation applications belong to the broader class of adaptive and irregular problems, and are among the most complex, challenging, and labor intensive to develop and maintain. In this thesis, we summarize several years of the progress that we made in a novel framework for highly scalable and guaranteed quality mesh generation for finite element analysis in three dimensions. We studied and developed parallel mesh generation algorithms on both shared and distributed memory architectures. In this thesis we present a novel two-level parallel tetrahedral mesh generation framework capable of delivering and sustaining close to 6000 of concurrent work units (cores). We achieve this by leveraging concurrency at two different granularity levels by using a hybrid message passing and multi-threaded execution model which is suitable to the hierarchy of the hardware architecture of the distributed memory clusters. An end-user productivity and scalability study was performed on up to 6000 cores, and indicated very good end-user productivity with about 300 million tets per second and about 3600 weak scaling speedup. Both of these results suggest that: compared to the best previous algorithm, we have seen an improvement of more than 7000 times in performance, measured in terms of speed (elements per second) by using about 180 times more CPUs, for geometries that are by many orders of magnitude more complex
    • 

    corecore