
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2008

Vcluster: A Portable Virtual Computing Library For Cluster Vcluster: A Portable Virtual Computing Library For Cluster

Computing Computing

Hua Zhang
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Zhang, Hua, "Vcluster: A Portable Virtual Computing Library For Cluster Computing" (2008). Electronic
Theses and Dissertations, 2004-2019. 3512.
https://stars.library.ucf.edu/etd/3512

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236257398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F3512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F3512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3512?utm_source=stars.library.ucf.edu%2Fetd%2F3512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

VCLUSTER: A PORTABLE VIRTUAL COMPUTING LIBRARY

FOR CLUSTER COMPUTING

by

HUA ZHANG

M.S. University Of Central Florida, 2006

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2008

Major Professors: Ratan K. Guha

 Joohan Lee

ii

© 2008 Hua Zhang

iii

ABSTRACT

Message passing has been the dominant parallel programming model in cluster

computing, and libraries like Message Passing Interface (MPI) and Portable Virtual Machine

(PVM) have proven their novelty and efficiency through numerous applications in diverse areas.

However, as clusters of Symmetric Multi-Processor (SMP) and heterogeneous machines become

popular, conventional message passing models must be adapted accordingly to support this new

kind of clusters efficiently. In addition, Java programming language, with its features like object

oriented architecture, platform independent bytecode, and native support for multithreading,

makes it an alternative language for cluster computing.

This research presents a new parallel programming model and a library called VCluster

that implements this model on top of a Java Virtual Machine (JVM). The programming model is

based on virtual migrating threads to support clusters of heterogeneous SMP machines

efficiently. VCluster is implemented in 100% Java, utilizing the portability of Java to address the

problems of heterogeneous machines. VCluster virtualizes computational and communication

resources such as threads, computation states, and communication channels across multiple

separate JVMs, which makes a mobile thread possible. Equipped with virtual migrating thread, it

is feasible to balance the load of computing resources dynamically.

Several large scale parallel applications have been developed using VCluster to compare

the performance and usage of VCluster with other libraries. The results of the experiments show

that VCluster makes it easier to develop multithreading parallel applications compared to

conventional libraries like MPI. At the same time, the performance of VCluster is comparable to

iv

MPICH, a widely used MPI library, combined with popular threading libraries like POSIX

Thread and OpenMP.

In the next phase of our work, we implemented thread group and thread migration to

demonstrate the feasibility of dynamic load balancing in VCluster. We carried out experiments to

show that the load can be dynamically balanced in VCluster, resulting in a better performance.

Thread group also makes it possible to implement collective communication functions between

threads, which have been proved to be useful in process based libraries.

v

Dedicated to my dear family.

vi

ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Ratan Guha and Dr. Joohan Lee, for their

invaluable help, support and guidance throughout my degree pursuit. I would also like to thank

members of my research committee – Dr. Mostafa Bassiouni, Dr. Jayanta Kapat and Dr. Cliff

Zou – for their assistance and guidance in completing this work.

vii

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES AND LISTINGS .. xiii

LIST OF ACRONYMS/ABBREVIATIONS .. xiv

CHAPTER ONE: INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Features of VCluster ... 3

1.3 Contributions of the Thesis ... 5

1.4 Organization of This Thesis .. 5

CHAPTER TWO: LITERATURE REVIEW ... 7

2.1 Cluster Computing .. 7

2.2 The Java Language ... 10

2.3 Java Libraries for Cluster Computing ... 12

2.4 Cluster-wide Multithreading ... 15

2.4.1 Non-Java Approaches .. 15

2.4.2 Multithreading Through Java ... 17

2.5 Thread/Process Migration ... 20

2.6 Comparison of libraries by features .. 24

CHAPTER THREE: VCLUSTER – ARCHITECTURE AND IMPLEMENTATION 26

3.1 Design Philosophy .. 26

3.2 VCluster – The Architecture ... 29

3.2.1 Global Architecture .. 30

viii

3.2.2 Local Architecture ... 32

3.2.3 Thread Migration ... 33

3.3 VCluster – Implementation ... 35

3.3.1 Implementation of Global Architecture ... 35

3.3.2 Implementation of Local Architecture ... 36

3.3.3 The Initialization Process ... 41

3.3.4 Thread Migration ... 45

3.3.5 Object Serialization .. 47

3.4 Conclusion .. 48

CHAPTER FOUR: USE OF VCLUSTER ... 49

4.1 An Example Application... 49

4.2 A Multithreading Application ... 52

4.3 Conclusion .. 57

CHAPTER FIVE: PERFORMANCE, EXPERIMENTS AND COMPARISON 58

5.1 Communication Overhead .. 58

5.2 Experiments without Multithreading .. 60

5.2.1 Parallel Dirichlet Problem.. 61

5.2.2 Parallel Back-propagation Neural Network ... 62

5.3 Experiments with Multithreading ... 64

5.3.1 Coding with VCluster and Other Libraries .. 65

5.3.2 Experiments and Results .. 76

5.4 Molecular Dynamics ... 79

5.5 Conclusion .. 83

ix

CHAPTER SIX: PREDICTIVE MODELING USING COMPLEXITY ANALYSIS 84

CHAPTER SEVEN: EXPERIMENTS FOR LOAD BALANCING WITH VCLUSTER 89

7.1 Introduction to Load Balancing .. 89

7.2 Related Research ... 90

7.2.1 Mesh Partitioning ... 90

7.2.2 Scheduling of Parallel Loops ... 92

7.2.3 Thread/Process Migration in Load Balancing ... 95

7.3 Implementation of Load Balancing in VCluster ... 96

7.3.1 Thread Group ... 96

7.3.2 Load Balancing .. 98

7.4 Experiments and Results ... 98

7.4.1 Migrate One Thread at a Time ... 99

7.4.2 Migrate More than One Threads at a Time .. 101

7.4.3 Migrate More than One Thread from More than One Node as a Time 102

7.4.4 Multi-Threading Issue with Linux Thread Library .. 104

7.5 Conclusion .. 105

CHAPTER EIGHT: FUTURE WORK AND CONCLUSION .. 106

8.1 Mini-Grid .. 106

8.2 Conclusion .. 108

APPENDIX A: SOURCE CODE ... 111

Appl.java ... 112

applState.java .. 113

applThread.java ... 114

x

APPENDIX B: DOCUMENTATION .. 116

VCluster .. 117

VC_Channel .. 120

VC_ChannelSet... 124

VC_State ... 126

VC_Thread .. 128

LIST OF REFERENCES .. 132

xi

LIST OF FIGURES

Figure 1: Portability of Java .. 11

Figure 2: An Agent Based Infrastructure .. 19

Figure 3: Global Architecture ... 31

Figure 4: Thread Architecture ... 32

Figure 5: Thread Migration ... 34

Figure 6: Distributed Run-Time System Architecture .. 35

Figure 7: Internal Multithreading Structure of a Process.. 37

Figure 8: Intra-node Communication.. 39

Figure 9: Inter-node Communication.. 40

Figure 10: Parallel Application Architecture on Cluster .. 41

Figure 11: Initialization Process (Sequence Diagram) ... 43

Figure 12: Communication Overhead ... 60

Figure 13: Illustration of Parallel Dirichlet Problem .. 61

Figure 14: Dirichlet Problem without Multithreading .. 62

Figure 15: Parallel Neural Network without Multithreading .. 64

Figure 16: Parallel Dirichlet Problem with MultiThreading... 77

Figure 17: Parallel Neural Network with Multithreading ... 77

Figure 18: Comparison of 2 Threads and 2 Processes. ... 78

Figure 19: Parallel Molecular Dynamics with Multithreading - 1 .. 82

Figure 20: Parallel Molecular Dynamics with Multithreading – 2 ... 82

Figure 21: Analysis Model with Actual Numbers .. 88

xii

Figure 22: Prediction Model ... 88

Figure 23: Load Balancing on Two Nodes 1 .. 100

Figure 24: Load Balancing on Two Nodes 2 .. 100

Figure 25: Load Balancing on Four Nodes 1 .. 101

Figure 26: Load Balancing on Four Nodes 2 .. 102

Figure 27: Load Balancing on Eight Nodes 1 ... 103

Figure 28: Load Balancing on Eight Nodes 2 ... 103

Figure 29: Multiple Run of a Simple Application .. 104

Figure 30: VCluster Architecture for Mini-Grid .. 107

xiii

LIST OF TABLES AND LISTINGS

Table 1: A Comparison of Libraries for Cluster Computing .. 25

Listing 1: A Sample ProcGroup File .. 42

Listing 2: An Example Virtual State Class ... 46

Listing 3: Transmitting Object through SocketChannel ... 48

Listing 4: Example Application, the Main Class .. 50

Listing 5: Example Application, the State Class .. 50

Listing 6: Example Application, the Thread Class ... 51

Listing 7: Example Application, the ProcGroup file .. 51

Listing 8: Main Class of BPNN in VCluster without Multithreading .. 54

Listing 9: Thread Class of BPNN in VCluster without Multithreading 55

Listing 10: Main Class of BPNN in VCluster with Multithreading ... 56

Listing 11: Thread Class of BPNN in VCluster with Multithreading .. 57

Listing 12: Multithreading with MPICH + PThread .. 68

Listing 13: Multithreading with MPICH + PThread (continue) ... 69

Listing 14: Multithreading with MPICH + OpenMP .. 71

Listing 15: Multithreading with mpiJava .. 73

Listing 16: Multithreading with mpiJava (continue) .. 74

Listing 17: MPICH + PThread Code for Thread Communication ... 75

file:///C:\Users\Leo\Documents\Research\MyPaper\Dissertation\Dissertation.doc%23_Toc204717088
file:///C:\Users\Leo\Documents\Research\MyPaper\Dissertation\Dissertation.doc%23_Toc204717089
file:///C:\Users\Leo\Documents\Research\MyPaper\Dissertation\Dissertation.doc%23_Toc204717095
file:///C:\Users\Leo\Documents\Research\MyPaper\Dissertation\Dissertation.doc%23_Toc204717099
file:///C:\Users\Leo\Documents\Research\MyPaper\Dissertation\Dissertation.doc%23_Toc204717102

xiv

LIST OF ACRONYMS/ABBREVIATIONS

BPNN Back Propagation Neural Network

CORBA Common Object Request Broker Architecture

COTS Commodity Off The Shelf

JDK Java Development Kit

JNI Java Native Interface

JVM Java Virtual Machine

MPI Message Passing Interface

PVM Parallel Virtual Machine

RMI Remote Method Invocation

S-DSM Software Distributed Shared Memory

SMP Symmetric Multi-Processor

1

CHAPTER ONE: INTRODUCTION

1.1 Motivation

 Cluster computing [1,2] provides a low cost parallel computing platform consisting of

multiple interconnected PCs or workstations through commodity network technology as a

replacement for an expensive parallel computer. The most widely used parallel programming

model in cluster computing is the message passing model where each processor executes a

different stream of instructions and exchanges messages when they need to share data or

coordinate with other processors.

Significant improvement in the performance of microprocessors during the last decade

promoted the popularity of cluster computing. Recently, processor vendors started producing

relatively low cost Symmetric Multiprocessor (SMP) machines. In these machines, multiple

processors share the same memory, I/O devices, and other resources and run a single copy of the

operating system. Emergence of low cost SMPs and low cost operating systems running on these

platforms such as Linux/Unix made it possible to build a cluster of multiprocessors

economically. Also, for clusters of SMP machines, less number of machines need to be

connected through a slower network and communications among the processors within the same

machine can take place using a much faster bus or an interconnected network. This improved the

performance as well as the scalability of a cluster. Moreover, fast communication between

processors on a same machine make it possible to achieve better granularity as work can be

further divided within a physical machine.

2

Current message passing programming models do not support this new type of cluster

computing architecture effectively. To attain better granularity, multithreading techniques,

POSIX Thread [16] and OpenMP [17], have been widely used in shared memory programming

for SMP machines. For clusters consisting of SMP machines, it is desired that the shared

memory programming model be incorporated into the programming model to support intra-node

communication while the message passing model is still used to support inter-node

communication. A parallel programming model that supports this architecture must address two

different parallel computing paradigms in a single framework. In shared memory

multiprocessors, multithreading and synchronization based on shared variables are common

techniques. In message passing, communication is defined between two processes rather than

threads and explicit message exchanges are used for work distribution, data sharing,

coordination, and synchronization.

While many of the existing parallel programming libraries have been targeted for C/C++

and Fortran programming languages, another programming language, Java, and its associated

technologies opened a door to portable and integrated development of distributed computing

software, due to its built-in thread support, platform neutral byte codes, concurrent programming

model based on monitor concept, object oriented, and inter-process communication mechanisms

such as TCP/IP sockets, Remote Method Invocation (RMI) and Common Object Request Broker

Architecture (CORBA). Recently, Java has also enforced its viability as a distributed computing

tool by incorporating Java cryptography and security packages as a part of recent JDKs.

3

1.2 Features of VCluster

Motivated by the above observations, we have developed a new parallel programming

model and a parallel runtime system, VCluster, which implements this model. VCluster is a

prototype realization of the proposed framework. VCluster addresses both tightly coupled shared

memory multiprocessors and loosely coupled distributed memory multiprocessors, a cluster, in a

single framework. The main features of VClsuter are described below.

Support of Multithreading

VCluster is a thread-based model instead of a process-based model. The basic processing

unit in VCluster is a virtual thread, which is built on top of Java thread. Through this feature, any

parallel application developed on top of VCluster will support multithreading, to better utilize

clusters of SMP machines.

Support of Message-Passing and Shared-Memory in One Framework

 Message-Passing between threads is not supported by conventional message passing

libraries, which only support communication between processes. In VCluster, Virtual channels

are established between two virtual threads that want to communicate through message-passing.

If two threads are on different nodes, the messages are sent through the network; if two threads

are on a same node, the message is sent through memory copy. This is carried out by the

channels and is totally transparent to the user.

 Also, one or more virtual states can be associated with a virtual thread. If two threads on

a same node want to communicate through shared-memory, a virtual state can be associated with

two threads at the same time.

Support of Thread Migration

4

 Information stored for a Java thread that is bounded to a local machine is too difficult and

large to migrate to a different machine due to the large overhead of the transfer. In VCluster, a

parallel application stores the computation information in virtual states instead of virtual threads.

When a virtual threads need to migrate, the virtual state is transmitted to another machine

through object serialization [20] and a new virtual thread is created and it can continue the

computation using this virtual state. Channels are automatically updated by VCluster so that

threads can continue communicate after migration.

Support of Thread Groups

 In MPI, group members are processes and collective communications are defined

between processes. For clusters of SMP machines which favor thread-based applications instead

of process-based applications, this becomes very inconvenient. VCluster support groups of

threads and collective communications between threads.

Designed for Java

 Our programming model is designed based on Java threads and other features of Java.

The architecture is totally object-oriented, making it easy to develop and maintain large scale

parallel applications. VCluster is implemented using 100% Java, and can be used on clusters of

heterogeneous machines due to the platform neutral Java bytecode.

Support a Wide Range of Computer Platforms

 Although VCluster is primarily designed for cluster computing, it can also run on SMP

machines, computers in a local area network, or even computers on the internet. In VCluster, a

daemon is running on every participating node and acts as an agent. These agents communicate

through TCP/IP sockets. Theoretically speaking, as long as a collection of computer nodes are

connected through a TCP/IP network, they are eligible for VCluster.

5

1.3 Contributions of the Thesis

 We proposed a new parallel programming model that can achieve better granularity on

cluster of SMP machines and implemented this model as VCluster, a portable virtual computing

library for cluster computing. The contributions of our work are listed as follows:

1. VCluster can achieve better granularity on clusters of SMP machines through

multithreading. With better granularity, work can be further divided for possible parallel

execution to improve performance.

2. VCluster support the shared memory paradigm and message passing paradigm in a same

framework, making it much easier to develop parallel applications for clusters of SMP

machines.

3. VCluster supports thread migration through virtual states, which can be used for advance

features like dynamic load balancing and fault tolerance.

4. VCluster support point-to-point and collective communications between threads, which is

lack in conventional message passing models.

5. VCluster is designed with an object oriented framework, which is necessary to develop

large scale parallel applications.

1.4 Organization of This Thesis

 The rest of this thesis goes as follows. In Chapter 2, we introduce the background and

research related to this dissertation and compare approaches used in VCluster to other related

middleware libraries. Chapter 3 describes the architecture and implementation of VCluster. In

Chapter 4, we discuss the method to develop parallel applications using VCluster. Chapter 5

6

presents the experiments and results comparing VCluster with other approaches, including

single-threading and multithreading. After that, we discuss a performance prediction model in

chapter 6. Load balancing is discussed Chapter 7. Finally future works and conclusion are given

in chapter 8.

7

CHAPTER TWO: LITERATURE REVIEW

 In this chapter, we first discuss the background of cluster computing and Java language.

Then works and techniques that are related to the VCluster research are discussed. They are

divided into the following sections: Java Libraries for Cluster Computing, Cluster-wide

Multithreading, and Thread/Process migration. Each section is organized as a small survey of the

related works and techniques. Also in each section, we compare approaches proposed or adopted

by VCluster with related approaches and explain why they are chosen for VCluster.

2.1 Cluster Computing

 ―A cluster is a type of parallel or distributed processing system, which consists of a

collection of interconnected stand-alone computers working together as a single, integrated

computing resource.‖ [1]

Rapid advances in high performance commodity computers and networks made cluster

computing [1, 2] an attractive solution to large scale parallel applications. Cluster computing

provides a cost-effective parallel computing platform as a network of PCs or workstations,

providing a comparable performance to those expensive, specially designed parallel

supercomputers at a fraction of the cost. The 31st TOP500 list [3], which was released in June

2008, shows that 400 out of the 500 fastest computer systems in the world are clusters.

Moreover, as clusters are low-cost and easy to build, they drastically improve the availability of

supercomputing to small companies and organizations. This is why clusters are also called

commodity supercomputing [2].

8

Clusters are normally built up with commodity-off-the-shelf (COTS) hardware

components, e.g. PCs or workstations and network products. Each PC or workstation in a cluster

is a stand-alone computer with its own processors and memory, and is equipped with a network

interface card (NIC). We will call it a node, or a computer node throughout this thesis. A copy of

operating system is running on each of the node. The most accepted operating systems for

clusters are Linux/Unix systems. They are free, stable, and have excellent support for

networking. Different versions of Windows operating systems are also widely used in clusters,

mostly because of their popularity in PCs or workstations, and the availability of abundant

applications and tools. These computer nodes are then connected through their NICs to form a

cluster. A parallel application running on a cluster has one or more processes running on each

node, and uses the interconnecting network for communications between these processes.

Here is a list of the advantages of clusters [1, 4, 5]:

 SMP machines have been available to the market at a relative low cost, so it is

relatively cheap and easy to build a cluster of SMP machines.

 New network technologies and protocols are implemented to increase the

bandwidth and reduce the latency.

 Clusters have good scalability. The number of nodes in a cluster can be easily

increased. Each node can also be easily upgraded by upgrading the components,

which are standardized commodity products that can be easily replaced or

upgraded.

 As clusters use free or commodity operating systems like Linux/Unix and

Windows, the applications and tools are more mature and abundant compared to

conventional specialized proprietary parallel supercomputers.

9

 Clusters are easier to be integrated into existing networks. Networking enables

remote operation of clusters and makes it possible to share resources of clusters

by a wide range of people. There is an increasing trend to connect several clusters

through internet to provide a larger computing platform.

 A parallel application on a cluster runs processes on every node in the cluster, and these

processes communicate through the network that connects these nodes. This work is difficult,

hard, tedious and error-prone. To facilitate the programming on clusters, an extra layer is

introduced between the application and the operating system running on the nodes. This layer is

called middleware. Middleware often has a programming model and an associated library that

implements this model. Users develop their parallel applications on top of these libraries as if

they were programming on a single computing resource. This greatly simplified the development

and a standardized library can improve the portability of the parallel application developed. The

most widely used programming models used in clusters are message passing and software

distributed shared memory (S-DSM).

 In message passing, each node executed a different stream of instructions and exchange

message when they need to share data or coordinate with other nodes. Message Passing Interface

(MPI) [6] has been used as a de facto standard for message passing based parallel computing.

MPI specifies the necessary point-to-point and advanced collective communication primitives for

message passing. MPI and other message passing libraries such as Parallel Virtual Machine

(PVM) [67] have been widely used in developing parallel applications, proving its effectiveness

due to simplicity and portability over various parallel computing platforms.

 In software distributed shared memory, the middleware library presents the cluster as a

shared-memory, multi-processor supercomputer. Processes in different nodes communicate as if

10

they were sharing a big memory space, and the correctness of this sharing is guaranteed by the

underlying middleware. Contrary to message-passing, there is no standard for S-DSM yet. The

idea of S-DSM was firstly proposed by Li and Hudak. They also implemented the first S-DSM

system, named IVY [21, 22]. TreadMarks [7] is another widely used page-based distributed

shared memory system that provides a global shared address space across the different nodes on

a cluster.

 Comparing these two programming models, message passing is generally thought to yield

better performance, although harder to program with. Message passing is still the dominant

programming model in cluster computing. VCluster adopts the message passing model.

2.2 The Java Language

 Java [8] was first introduced by Sun Microsystems to be used as an internet language,

because its binary code (bytecode) can run on machines with any architecture without re-

compilation, as long as Java Virtual Machine (JVM) [9] is installed. As clusters composed of

heterogeneous machines become popular, this feature becomes desirable for cluster computing.

Also, other features like native support for multithreading, concurrent programming model based

on monitor concept, object oriented framework, inter-process communication mechanisms such

as TCP/IP sockets, Remote Method Invocation (RMI) [18] and Common Object Request Broker

Architecture (CORBA) [19], all make Java an attractive language for parallel computing. Java

has been known for inferior performance compared to C/C++ and FORTRAN, but new

technologies like Just-In-Time (JIT) compiler [10] and HotSpot [11] have significantly improved

11

the performance of Java. Some results show that Java can compete with the performance of C++

[12]. Several interesting features of Java are briefly introduced below.

Bytecode

 When a Java source file is compiled, it is compiled into a class file that is composed of

bytecode. Bytecode can be called the machine code of Java Virtual Machine (JVM). To run a

class file, JVM, acting like an interpreter, translates bytecode to native machine code. In this

way, the same class file can ran on machines with different architectures without re-compilation

as long as a JVM is installed. Figure 1 is an illustration of this approach.

Figure 1: Portability of Java

Multithreading

 Java provides Java threads which is build upon native threads of the operating system.

But as far as the user is concerned, the user just needs to deal with Java threads. And the user can

be confident that the code can run on different architectures without problem. Every Java object

is a monitor. The synchronized keyword enables exclusive access to shared variables. And the

wait and notify keywords provide mechanisms for threads to coordinate with each other.

Just-In-Time compiler

12

 The JIT compiler compiles Java bytecode to native machine code on the fly at runtime.

This compilation causes some initial slowdown, but can significantly improve the performance

afterwards.

HotSpot technology

 The HotSpot technology can further improve the performance by performing runtime

analysis of the frequency of the code segments execution and optimizing the performance of the

code that are frequently executed.

2.3 Java Libraries for Cluster Computing

 In cluster computing environment where computers have their own private memories and

are loosely coupled through a slower network, message passing has been the dominating parallel

programming paradigm. Data sharing, coordination, and synchronization are done through

explicit message exchanges. In this parlance, MPI and PVM are the most successful

implementations and are used in developing many different types of parallel applications.

Message passing architectures favor coarse-grained parallelism because send and receive

operations can be designed to amortize latency over the long messages that are sent infrequently

in coarse-grained programs [23].

 Another widely used programming paradigm for cluster computing is Software

Distributed Shared Memory (S-DSM). S-DSM is a software mechanism that provides a virtual

shared memory address space to distributed applications, although the memory is physically

distributed, as the memory on different nodes in a cluster.

13

 With its advanced features (Section 1.2), Java has been widely used to develop both

message passing and S-DSM systems. A recent work [51] compared the performance of message

passing Java libraries and S-DSM Java libraries. Message passing libraries generally gives better

performance than distributed shared memory. VCluster falls in the Message passing category.

For this reason, only Java libraries adopting the message passing model are discussed in this

section. Java S-DSM systems [24-30] are listed in the reference for interested readers. Some of

them will also be discussed in the following two sections.

 Java libraries adopting the message passing model can be divided into two groups: Java

wrappers and pure Java. Java wrappers actually call native MPI method in C, C++ or FORTRAN

through Java Native Interface (JNI) [66], and generally provide better communication

performance. However, Java wrappers compromise the portability of Java, which is desirable as

clusters of heterogeneous machines become popular. Pure Java implementations, on the other

hand, maintain the portability of Java but provide a less efficient communication. Some of these

systems are described below. More comprehensive discussions of these libraries can be found in

[37, 38].

 mpiJava [31] is the most active Java wrapper project, providing a C++ like, Object-

Oriented interface by calling native MPI methods through JNI. It was developed as part of the

HPJava project [32], but it is compatible with all implementations of Java language.

 JMPI [33] is a pure Java implementation developed for academic purposes at the

University of Massachusetts, following the MPJ [34] standard, which is proposed by the

Message Passing Working Group within the Java Grand Forum (www.javagrande.org).

 JPVM [35] is a pure Java implementation of PVM. However, it does not follow all the

specifications of PVM and thus is not compatible with standard PVM.

http://www.javagrande.org/

14

In a MPI/PVM system, as communications are only defined between processes, users

must take care to make sure a message is received by the correct destination thread, e.g. using a

specified tag value. This becomes very difficult, if not infeasible, when thread migration are

incorporated to support load balancing. Another problem is collective communication between

threads. Collective communications between processes in MPI have been proven very useful to

scientific applications. When multithreading is imported to better support clusters of SMP

machines, collective communications between threads are desirable. Without direct

communication between threads, collective communications between threads are impossible.

 CCJ [36] is another pure Java library. It does not follow the MPI or the MPJ

specification. Instead, it is designed to integrate the communication into Java‘s Object-Oriented

framework. It supports inter-thread communication and thread group instead of inter-process

communication and process group as in the MPI specification.

 VCluster defines communications between threads. A virtual channel is created for two

threads to communicate. When two threads are on different machines, the message is transmitted

through the underlying network; when they are on a same node, the message is transmitted

through memory copy. VCluster also supports shared-memory between threads, by associating a

virtual state with several threads. Thread groups and collective communication between threads

are supported in VCluster as well. Moreover, virtual channels and thread groups will be

automatically updated by the VCluster system after thread migration, which is very useful when

thread migration is used to implement load balancing.

15

2.4 Cluster-wide Multithreading

 While clusters of SMP machines become popular, it is desired to incorporate

multithreading into cluster computing. For the message passing model, this forms a two-level

architecture: shared-memory is used for communications between threads on the same node

(intra-node communication) and message-passing is used for communications between threads

on different nodes (inter-node) communication. For the S-DSM model, local shared memory can

be merged into the distributed shared memory model, forming a virtual one-level architecture.

This saves the user from dealing with two types of communication all the time, and makes it

much easier to do thread migration as a thread will communicate in the same way with all other

threads before and after migration. Otherwise, when a thread migrates to another node, the

original intra-node communication will become inter-node communication, and inter-node

communication with threads on the destination node will become inter-node communication.

VCluster also provides this virtual one-level architecture, yet in message-passing instead of

distributed shared-memory. The virtual channel between two threads hides the differences of

inter-node communication and intra-node communication to the user.

 Systems or approaches that provide multithreading are discussed below. We divide them

into two categories, those do not use Java threads and those use Java threads.

2.4.1 Non-Java Approaches

 For non-Java languages like C/C++, as thread is not supported by the language,

multithreading must be supported through additional thread libraries, or extending the language.

16

 Multithreading libraries, POSIX Thread [39] and OpenMP [40], have been widely used in

shared-memory programming for SMP machines. POSIX Thread (also called PThread) provides

thread APIs for C/C++. Users can spawn new threads, and use mutex, join, condition mechanism

for thread synchronization. OpenMP provides both APIs and directives. Threads are created

implicitly through defining parallel structures. OpenMP favors large array-based applications. It

provides special directives to parallelize loops, like the for loop. Synchronization mechanisms

are also provided, e.g. the barrier directive.

 For clusters of SMP machines, it is very natural that people want to combine message

passing or S-DSM libraries with multithreading libraries. [41], [42] combine OpenMP with

DSM systems, and [44] combines PThread with MPI systems. [43] [45] conducted performance

evaluation of these approaches and concluded that MPI/S-DSM systems + Multithreading give

better performance than sole MPI/S-DSM systems in most cases on clusters of SMP machines,

as ―they exploit better the configuration characteristics of an hierarchical parallel platform‖[43].

A problem with this kind of approaches is that most MPI/S-DSM systems are not thread-safe.

That is, if two or more threads are calling library APIs at the same time, for example, two threads

want to send messages at the same time, exceptions may occur. A popular solution is to let only

one thread call library APIs, on behalf of the other threads, but this makes development of

parallel applications awkward, tedious, and error prone.

 Also built on top of a threading library, CLAM [82, 83] uses its own parallel computing

architecture. CLAM means Connection-less, Lightweight, and Multi-way. It is build on top of

the Ariadne threads library [84]. CLAM provides efficient and scalable user-space support for

distributed applications requiring multiple protocols. Multithreading is used both in the

17

communication protocol and the message passing software. For example, one of its

communication module has three threads, a receive, a send, and a timer threads.

 Another approach is to extend parallel languages, like JR [46] and Cilk [47]. Cilk is an

algorithmic multithreaded language based on ANSI C. The two basic parallel keywords are

spawn and sync. spawn is used to spawn a new thread, and sync is used for synchronization. Cilk

is especially effective for exploiting dynamic highly asynchronous parallelism, for example, the

divide-and-conquer paradigm. Distributed Cilk [48] implements the basic features of Cilk, and

implements its own distributed shared memory, supporting a memory consistency model called

dag-consistent shared memory [52]. SilkRoad [49] and SilkRoad II [50] further extends

Distributed Silk by implementing the Lazy Release Consistency memory model [53] to support

user level shared memory which is necessary in many multithreaded applications. The thread

safe problem is eliminated in this approach. However, it requires the user to learn a new parallel

programming paradigm other than the popular message passing and S-DSM parallel paradigms.

2.4.2 Multithreading Through Java

 Since multithreading is already supported by the Java language, Java libraries can simply

use Java thread to implement multithreading. However, the multithreading model in Java is only

for SMP machines. In a computing environment as cluster, the multithreading model in Java

must be extended to a cluster level, which includes at least two requirements: creating thread

remotely and provide communication mechanism for threads on different nodes. Different

approaches have been proposed and implemented to provide cluster wide multithreading. But

most systems choose S-DSM as the communication mechanism, because message passing model

18

is de facto for inter-process communication. An exception is CCJ [36], which uses its own

thread-based message passing model.

 Techniques to implement cluster wide multithreading in Java can be divided into four

categories: Distributed JVM (DJVM), Code Transformation, Bytecode Instrumentation, and

Agent-based Systems.

Distributed JVM

 A distributed Java Virtual Machine (DJVM) spans the whole cluster and provides a

parallel execution environment for multithreaded Java applications. Java/DSM [27], cJVM [26],

JESSICA [25], JESSICA2 [24] all implements some kind of DJVM. In these systems, a

modified, nonstandard JVM is installed on every node. Java/DSM, cJVM, JESSICA modify the

Java interpreter. This can seriously affect the performance of parallel applications as JIT

compiler can not be used. JESSICA2 distinguish itself by providing a dedicated JIT compiler.

The main disadvantage of this approach is that it compromises portability, as they use non-

standard Java Virtual Machine.

Code Transformation

 In this approach, the source files or the compiled bytecode files (class files) are

transformed into native machine code. Hyperion [28] includes a Java-bytecode-to-C translator

and a runtime library for the distributed execution of Java threads. Java bytecode is translated to

C source code and then compiled to native machine code. Portability is compromised by the

hardware-specific runtime library. Jackal [29] consists of an extended Java compiler and a

runtime system for distributed shared memory. The compiler compiles Java sources codes to

Intel x86 code. The compiler stores Java objects in shared regions and augments the program it

compiles with access checks. This machine dependent compiler also compromises portability.

19

Bytecode Instrumentation

 Systems adopting this approach take bytecode as input, and output the instrumented

bytecode. Portability of Java is kept as the instrumented bytecode can run on standard JVM.

JavaSplit [30], JavaParty [54], JDSM [55] are this kind of systems. JavaSplit support the original

multithreaded paradigm of Java, which distinguish it from the other two that both introduce

unconventional programming constructs and style.

Agent-based Systems

 In these systems, a software agent is running on every node in the cluster. Software

agents have been used in many systems to enhance the performance and quality of services [57].

These software agents provide services include job distribution, monitoring, and controlling for

the system. An agent based Infrastructure is proposed in [56] as showed in Figure 2. The whole

structure is implemented in pure Java, so it keeps full-fledged portability of Java. VCluster

adopts this approach.

Figure 2: An Agent Based Infrastructure

20

 Using agents has a lot of advantages [56]:

 Portability: Despite the excellent portability of Java, it does not hide the architecture of

the underlying computation platform. With agents running on a collection of nodes, a parallel

application can run on these nodes regardless of how these nodes are connected.

 Expandability: A new node can be added into the system by activating an agent on the

machine. This can be totally transparent to the user and the parallel application. For those

parallel applications that cannot be stopped, this is quite desirable.

 Flexibility: Since the infrastructure is hidden from the user and the parallel applications,

it is easy to modify and expand the underlying computation platform.

 Security: Communication through the agents can be encrypted through a security module.

This module can be removed, added, replaced, and upgraded transparently to the parallel

application.

 Resource management: Agents can collect the necessary information about the resources

of their resident machines. This provides a distributed information base for all the system

resources.

2.5 Thread/Process Migration

 Thread/process migration can be used to improve the performance and robustness of a

parallel application. It can be used in dynamic load balancing, or fault tolerance, e.g. to migrate a

thread/process to another node when the original node is attacked. Also, for non-stoppable

applications, threads/processes can be migrated without stopping when the original node is

21

attacked or need to be shut down for maintenance. Some process migration systems are briefly

introduced and we focus on thread migration in Java.

 Process migration is implemented in [58-60]. [58] is based on Gobelins, which is a

cluster operating system that provides a Distributed Shared Memory (DSM) system. [59]

implements process migration based on the existing checkpoint/restart package, Epckpt. [60]

provides a Java wrapper to MPI and support process migration through the Java Virtual Machine

Debugger Interface (JVMDI) [65]. Process state is captured through JVMDI, and restored at the

destination node. A MPI daemon is running on every node to deliver messages on behalf of the

Java process. After a Java process migrates, the communication channels are automatically

reconstructed so that processes can keep communicating.

 What makes thread migration difficult is the machine dependent nature of threads. Same

as processes, a thread context has much machine dependent information, such as the hardware

program counter. This information cannot be simply transmitted to another machine as they will

not work. To migrate a thread, machine dependent and machine independent information must

be handled differently and a mechanism to continue the thread execution on the destination node

must be provided.

 JESSICA [25] is a multithreading S-DSM system in Java. It implemented a preemptive

and transparent thread migration mechanism called Delta Execution [61]. The Delta Execution

divides the execution context of a running thread into machine-independent sub-contexts and

machine dependent sub-contexts. Machine-independent sub-contexts are migrated in a regular

manner when a thread migrates. Machine-dependent sub-contexts will be left on the home node

and execution involving these sub-contexts will continue to be performed there. Executions on

the machine-dependent and machine-dependent sub-contexts will switch back and forth between

22

the home and the remote node, making the migrated thread observed as in active execution.

Delta Execution is transparent to the user and the parallel application as it is at the bytecode

level, but it requires a Bytecode Execution Engine (BEE) which is part of JESSICA. Bytecode

Execution Engine in turn requires modifications to the standard JVM, which compromises

portability. Moreover, Bytecode Execution Engine cannot utilize the JIT compiler, unless a

specialized JIT is developed, thus not suitable for high performance applications.

 To tackle the JIT problem, JESSICA2 [24] first proposed a new migration mechanism

through dynamic native code instrumentation inside the JIT compiler [62]. JESSICA2 uses a JIT

compiler based execution engine (JITEE) compared to the BEE in JESSICA. The JIT compiler

transform the raw thread context (RTC), which usually includes the virtual memory space,

thread execution stack and hardware machine registers, to bytecode-oriented thread context

(BTC), which consist of the identification of the thread, followed by a sequence of frames. Then

RTC can be re-established using the BTC on the destination machine. Since this approach will

cause extra space and time overheads, JESSICA2 later implemented another new migration

mechanism through JIT recompilation [63]. A JIT compiler is used to recompile the Java

methods in the stack context to aid the extraction and restoration of the thread context at the

migration time. This approach achieves high-speed native thread execution without redundant

code and thread mobility.

 The three migration mechanisms used in JESSICA and JESSISA2 all requires a

customized JVM, as either the interpreter or the compiler need to be modified. CEJVM [64], on

the other hand, uses JVMDI [65] and JNI [66] to implement thread migration. However, JVMDI

needs huge data structures and incurs large time overhead in supporting the general debugging

23

functions. JVMDI also requires Java applications to be compiled with debugging information

using specific Java compilers.

Visper [104] implements thread migration through the concept of remote thread, which is

not a Java thread. Visper defines an RTRunnable interface, which extends the Java serializable

interface and defines a Run function. Any class can become a remote thread by implementing

this interface. A Java thread is allocated to run a remote thread by calling the Run function. A

remote thread does not contain machine dependent context, so its state can be saved through

serialization and transferred to another node. After that, its Run function is called again. The Run

function must be coded by the user to handle the resumption of execution. In this mechanism,

thread migration is not transparent to the user as in the cases of the previous mechanisms, but it

is efficient and uses general JVM.

 In VCluster, we use an approach which is totally different to the above approaches. The

basic execution unit in VCluster is a virtual thread, and a virtual state is associated with a virtual

thread. This virtual state contains all the computation data a virtual thread will need. In another

words, a new virtual thread can continue the work of another virtual thread simply by given the

virtual state of that virtual thread. Under this framework, to migrate a thread, we actually

transmit the virtual state to another machine, create a new virtual thread, and let the new virtual

thread continue the execution based on the virtual state. This is also why we call the threads

virtual threads and hence the name of our library, VCluster. A virtual thread is not bound to a

specific machine, and it can move around the whole cluster, for example, in case of load

balancing or fault tolerance. This approach should be more effective and induce less overhead

compared to the above approaches, as only the computation data, which is the necessary part, is

actually migrated.

24

2.6 Comparison of libraries by features

 Based on our discussion above, we provide a table that shows the comparison of all these

libraries on features we discussed. We can see that most Java libraries that support

multithreading and thread/process migration are based on the S-DSM model. Visper and

VCluster are the few Java libraries that support multithreading and thread migration under a

message-passing based architecture.

25

Table 1: A Comparison of Libraries for Cluster Computing

 Parallel Model Programming

Language

Support

Multithreading

Support

Thread

Migration

 Message

Passing

S-DSM Non-

Java

Java

CCJ X X X

CEJVM X X X X

cJVM X X X

CLAM X X X X

Distributed

Cilk

 X X X

Hyperion X X X

IVY X X

Jackal X X X

Java/DSM X X X

JavaSplit X X X

JavaParty X X X

JDSM X X X

JESSICA X X X X

JESSICA2 X X X X

JMPI X X

jPVM X X

MPICH X X

mpiJava X X

SilkRoad X X X

SilkRoad II X X X

TreadMarks X X

Visper X X X X

VCluster X X X X

26

CHAPTER THREE: VCLUSTER – ARCHITECTURE AND

IMPLEMENTATION

 In this chapter, we first discuss the design of the VCluster architecture, a thread-based

architecture that supports message passing and shared-memory in one framework. Then we

describe the implementation of this architecture in Java.

3.1 Design Philosophy

 We designed our parallel model with the following guidelines:

A Message Passing Framework

In cluster computing environment where computers have their own private memories and

are loosely coupled through a slower network, message passing has been the dominating parallel

programming diagram. Data sharing, coordination, and synchronization are done through explicit

message exchanges. Message Passing Interface (MPI) [6] has been used as a de facto standard

for message passing based parallel computing. MPI specifies the necessary point-to-point and

advanced collective communication primitives for message passing. MPI and other message

passing libraries such as Parallel Virtual Machine (PVM) [67] have been widely used in

developing parallel applications, proving its effectiveness due to simplicity and portability over

various parallel computing platforms.

Thread Based Message Passing

With the advance in microprocessor technologies, clusters of SMP machines have

become available at a relatively low cost. Conventional message passing libraries, like MPI and

PVM, are de facto parallel programming libraries for clusters which consist of usually

27

homogeneous and uni-processor machines and lack the necessary technique, multithreading, to

support this new type of cluster efficiently. Moreover, point-to-point and collective

communications between threads must be supported. Multithreading can be imported into current

message passing libraries using multithreading libraries, like PThread and OpenMP. But the later

can be very difficult given that the communications are defined between processes in MPI. A

thread based model will not have any of these problems. Multithreading will be natively

supported, and communication will be defined between threads, which in turn facilitate

collective communications between threads. Besides, as conventional message passing libraries

are not designed to support multithreading, their code is not thread safe and will induce many

problems when multithreading is incorporated. The first suggestion people should follow to

develop MPI+PThread or MPI+OpenMP parallel applications is to make sure that only one

thread is calling MPI functions at any time, otherwise unexpected exceptions might happen. This

again will not be a problem for thread based systems.

Message Passing and Shared Memory in one Framework

 Under the architecture of a cluster of SMP machines, it is desired that shared memory is

used for intra-node communication and message passing is used for inter-node communication.

This requires the parallel model to support both shared memory and message passing in one

framework. We go one step further and propose an extra feature, merging local shared memory

into global message passing and providing a uniform message passing inter-thread

communication mechanism to the user. This feature unifies inter-node communication and intra-

node communication into one type of communication, inter-thread communication, saving the

user from dealing with two types of communications all the time. Also, thread migration and

28

load balancing will be much easier with this feature, as the communication mechanisms between

the migrated thread with other threads will be the same before and after the migration.

Portability and Maintainability

 While scalability and better speedup have been the main driving motivations of parallel

and distributed processing, we cannot emphasize the importance of portability and

maintainability enough in more recent cluster computing environments where a cluster is

composed of heterogeneous machines rather than homogeneous ones. The number

representation formats can be different, big endian and little endian. Although it can be handled

by the user who is aware of the heterogeneity and converts the number representations

accordingly, heterogeneity is not hidden from the users and it reduces the portability of the

developed parallel programs.

 It is widely accepted that Object oriented programming can promote greater flexibility

and maintainability in programming, especially for large-scale software engineering. However,

the MPI standard is not designed toward an object oriented architecture.

Designed for Java

 As an object-oriented programming language and a platform independent environment,

Java has been intensively studied for its application in high performance computing and a variety

of Java libraries for cluster computing have been developed. These libraries either provide a

Java wrapper to native MPI libraries, or implement the MPI standard in pure Java. However,

simply applying Java technologies to the existing message passing model is not an efficient

solution. Those message passing models were designed to augment the existing sequential

programming languages with additional message passing functionalities, and not designed

towards the object-oriented paradigm.

29

 Other specific features of Java also need to be taken into consideration when design a

new parallel model. For example, the model should leverage the multithreading paradigm of Java

to better support clusters of SMP machines.

Support Thread Migration

 Thread migration can be used to improve the performance and robustness of a parallel

application. It can be used in dynamic load balancing, or fault tolerance. Also, for non-stoppable

applications, it can be migrated without stopping.

Security

 Security seems to be neglected by current message passing libraries, as clusters nowadays

tend to be a close collection of nodes in which nodes can trust each other. However, this mutual-

trust between nodes is not always true, especially with the emergence of so called mini-grid

computing, in which multiple clusters form a larger scale computation platform. The new parallel

model must be able to enforce security mechanisms.

 Recently, Java has also enforced its viability as a distributed computing tool by

incorporating Java cryptography and security packages as a part of recent JDKs.

3.2 VCluster – The Architecture

 Following the guidelines in the previous section, we designed our new parallel

programming model, VCluster. VCluster provides a framework to support a cluster of

heterogeneous uni- or multi-processor machines using a portable parallel programming library.

VCluster combines the shared memory and message passing in a single framework. The initial

design of VCluster was inspired by SCPlib and CRlib, which are both multithread message

30

passing libraries with richer set of advanced functionalities such as dynamic load balancing,

thread mobility, heterogeneous computing, replication, and fault tolerance [68, 69]. They were

primarily developed for parallel C programs over a variety of parallel computing platforms.

VCluster is designed to act as a middle-ware on top of the operating system to facilitate

development and execution of parallel, multi-threading programs over a cluster of SMP

machines. This cluster architecture is reflected in VCluster as global architecture. Global

architecture is composed of local architectures, which reside on every node in the cluster. The

design and implementation of these architectures are described in the following sections.

3.2.1 Global Architecture

 The global architecture is showed in Figure 3. A basic computing unit in the VCluster is a

communicating virtual thread, which is built upon Java thread. One or more virtual threads can

be running on every Java Virtual Machine (JVM), and one or more Java Virtual Machines can be

running on every physical node.

Unlike the message passing model where communication resources are bound to a

process, in VCluster, communication resources are associated with an individual thread. A

virtual channel is created between any two threads that want to communicate with each other.

The two threads can be on different node, or on the same node. This virtual channel provides

message passing functions, and decide how to send the message according to the locations of the

destination thread, through the underlying network or through shared memory. In this way,

virtual channels hide the difference between inter-node communication and intra-node

communication from the user.

31

H/W H/W H/W H/W

JVM JVM JVM JVM

Virtual

Thread

Virtual Thread

Group

Virtual Channel

Figure 3: Global Architecture

All or part of the virtual threads can form virtual thread groups. A virtual thread can be a

member of several thread groups. Collective communication is supported between threads in a

thread group.

A virtual thread can migrate across the Java Virtual Machines and physical computers, to

facilitate load balancing or fault tolerance through thread migration. After a thread migration,

corresponding virtual channels and/or virtual thread groups will be automatically updated by the

system so that threads can continue communicating with each other.

32

3.2.2 Local Architecture

 By local architecture, we refer to the architecture of a VCluster parallel application on a

Java Virtual Machine. This architecture is actually a collection of virtual threads. A thread

creates a set of uni-directional communication channels to communicate with other threads. A

thread also associates itself with a set of states of interest that are shared data and methods. The

same state can be shared by multiple threads and the atomic and mutually exclusive accesses to

the states are guaranteed. This gives another type of shared memory communication between

threads.

Figure 4: Thread Architecture

 Java‘s object oriented paradigm and polymorphism provide a useful framework to hide

the complexity of the software structure and make the parallel program modular and the layered

software structure more effective. Programmer write the parallel applications by extending

33

VCluster thread, state, channel, and channel set classes and inheriting their properties, which

hides the internal complexity of those abstract concepts.

3.2.3 Thread Migration

 Thread migration is difficult because of the machine-dependent part of thread context.

Approaches in JESSICA [25], JESSICA2 [24], CEJVM [64] are strong migration mechanisms,

as thread migration is transparent to the user. However, they incur extra overhead on the

execution after migration. Furthermore, they require customized or specific interpreters or

compilers, which compromise portability. On the other hand, Visper [104] implements a weak

migration mechanism. Its mechanism uses general JVM and compilers, but thread migration is

not transparent to user applications.

VCluster also implements a weak migration mechanism, using the concept of virtual

state. In VCluster, the concept of virtual state provides user applications with a direct way to

define the computation state of a thread. The computation state of a remote thread contains

information necessary for the resumption of the execution after migration. For example, it can

contain computation data, intermediate results, etc. The computation state varies according to the

specific application, and it must be handled with the cooperation of the user application.

Users define a virtual state by extending the virtual state class. This inheritance gives

both users and the VCluster system access to a virtual state, while separating them into two

levels. Users can store application level information in a virtual state, and the VCluster system

can store system level information. They have the choice to share or hide certain information

from each other. In Java, only serializable objects can be transmitted over the network

34

connection, so all information included in a virtual state must be stored in primary data type or

serializable objects.

State A State B State D

VC_thread
VC_thread

State B

VC_thread
VC_threadMigrate

Figure 5: Thread Migration

The thread migration mechanism is illustrated in figure 5. To migrate a thread, the user

thread is first notified to write the associated virtual state. After that, the user thread stops and is

removed from the original node. The virtual state is then migrated to the destination node, where

a new virtual thread is created based on the same class information and associated with the

migrated state. This new thread reads the state, and continues the computation. To do this, the

user thread must be coded to read the state before computation and start or continue the

computation as desired. In thread migration, associated communication properties, e.g. the

associated channels, are also copied and updated.

This approach is efficient as the system is only involved in the migration of the thread.

Once a thread is migrated, it runs on its own just like normal threads and the system does not

incur any overhead. Also, the application can run on any general JVM and with any general

interpreters and compilers. However, this approach does require cooperation from the user

applications and thus is not transparent to the user applications.

35

3.3 VCluster – Implementation

 A prototype of VCluster was developed using 100% Java. The parallel run time system

will run on any standard JVM, keeping full-fledged portability of Java. Details of the

implementation of this run time system are described below.

3.3.1 Implementation of Global Architecture

 The global architecture is implemented through an agent based architecture, as showed in

Figure 6.

Proc

Initiating

Process

SVC Thr

Daemon

Proc

SVC Thr

Daemon

Proc

SVC Thr

Daemon

Figure 6: Distributed Run-Time System Architecture

In VCluster, a daemon process is running on every node in a cluster, and they talk through

sockets. The user can start a parallel application from any node in the cluster (a daemon process

is not necessary). Then the VCluster system started by this application will cooperate with the

daemon processes to set up the distributed runtime environment. The daemon process manages

process creation and termination and relays the standard output from the created processes to the

initiating process. Daemon processes are multithreaded and can take multiple process creation

requests concurrently. When a process creation request arrives at the daemon, a separate service

thread is created that will actually spawn the requested process on the computer. This service

36

thread replays the standard outputs to the initiating process and monitors the execution of the

spawned process. When the spawned process is terminated, this service thread is destroyed as

well. In VCluster, we are currently using a process group file to indicate the machines upon

which processes are to be created. Once the requested processes are created, full connection is

established among the processes that will be later used to create virtual channels among the

threads.

 MPICH [70] uses rsh [71] service provided by the operating system. Rsh service,

however, has significant security vulnerabilities in that it does not perform secure authentication

of the users and the communications are transmitted in plain text without encryption. SSH [72]

service is a better choice in that it provides strong user authentication and communication

encryption. Nevertheless, even SSH is used, the security is totally dependent on the SSH security

mechanism, which has been facing challenges [73]. By using dedicated daemons, we can

strengthen the overall structure of the distributed parallel run time system. Currently, we are not

using any security services, but confidentiality and authentication will be later incorporated into

the system. Also, dedicated daemons form an agent based architecture that delivers portability,

expandability, flexibility and better resource management (Section 2.2.2).

3.3.2 Implementation of Local Architecture

 The local system, a process serviced by a service thread, is a multithreaded system.

Figure 7 shows the internal multithreaded structure of a process.

37

VCluster

Send

Thread
Recv

Thread

VC_thread

Recv Queue Send Queue

Wake Up Wait

Sockets Pool

Wake Up
Receive

Send

Channels

VC_thread

Channels

Rend Queue

Rend

Thread

Wake Up

Figure 7: Internal Multithreading Structure of a Process

Each process consists of system threads that are not visible to the users, and user computing

threads. User computing threads are created by user through extending the virtual thread class of

VCluster, to represent a certain computation. System threads include rendezvous thread, send

thread, and receive thread. Rendezvous thread is used to provide rendezvous style

communication, a higher level communication mechanism for clients to issue remote procedure

calls and for servers to accept them; In VCluster, thread migration takes place through this

mechanism. Send and Receive threads maintain the associated message queues and perform

send/receive operations on behalf of the virtual threads. Use of separate send and receive threads

make I/O operations more efficient. They make the send and receive operation non-blocking,

which allows the user computing threads to continue to run without being unnecessarily blocked.

On SMP machines, user computing threads can keep running while send/recv threads are sending

and receiving messages. Message requests can be processed and replied quickly. And it is

38

possible that when a computation thread tries to receive a message, it is already in the receive

message queue. It is shown in [74] that prompt responses of requests can improve performance

and using separate send/recv threads yields better performance than interrupted communication

on SMP machines, and slightly worse on uni-processor machines.

 In our original implementation, the recv thread will be always running and polling for

incoming messages. This approach turned out to decrease the performance seriously as the recv

thread will compete with computation threads for CPU cycles, most time unnecessarily. It is

desired that recv thread sleeps all the time and only wake up when there are messages coming.

Java NIO [75], which is introduced in Sun JDK 1.4, gave us just what we needed. The Java NIO

provides a new I/O mechanism through new classes called channel and selector. We replaced

ServerSocket and Socket with ServerSocketChannel and SocketChannel. Then the recv thread

uses a selector to monitor these channels. When there are no messages coming, the recv thread

will wait on this selector, during which the recv thread is in a sleep state and will not compete for

CPU cycles. Only when there are messages coming, the recv thread will be woke up by the

selector and receive the message. The message is put into the receive message queue after

received by the recv thread. After that, recv thread goes to sleep again.

 Similarly, the send thread sleeps all the time an only wake up when there are outgoing

messages. This can be easily implemented using the wait and notify keywords in Java. In Java,

every object is a monitor and provides synchronization functions including wait and notify.

Several threads can wait on an object until be woke up. Send Thread will wait on the send

message queue, not using any CPU cycles at this time, until being wake up by outgoing

messages. After sending out the messages, it goes to sleep again.

39

 Communications between two threads can be either inter-node or intra-node. Figure 8

illustrates the intra-node communication between two threads. To send a message, the sender

virtual thread calls the virtual communication channel with the data to be sent. The channel

assembles a message with a copy of the data and other parameters, and puts the message into the

receive queue. Since a copy of the data is put into the queue instead of the original one, the

sender virtual thread can continue working on the data right after the call, without worrying

about whether the receiver virtual thread has received the data. To receive a message, the

receiver virtual thread also calls the virtual communication channel. The channel first checks

whether the desired message is already in the receive queue. If it is, the channel returns the

message to the virtual thread; if not, the channel causes the virtual thread to sleep on the queue,

and be woken up when the message comes. Acting as a monitor, the queue also guarantees

exclusive access to it and prevents race conditions.

Figure 8: Intra-node Communication

40

Figure 9: Inter-node Communication

Figure 9 illustrates the inter-node communication between two threads. To send a

message, the sender virtual thread calls the virtual communication channel, which in turn

assembles a message and puts it into the send message queue. Again, a copy of the data is

included in the message, so that the sender virtual thread can continue working on the original

data immediately, without worrying about whether the data has been sent out. The send message

queue wakes up the send thread, which sends out the message through sockets.

When the message arrives at the destination node, the receive thread is woken up, which

in turn receives the message and puts it into the receive message queue. If a computation thread

is waiting on this message, it is woken up immediately.

To receive a message, the receiver virtual thread calls the virtual communication channel.

This part of the communication is the same as in the intra-node communication.

41

3.3.3 The Initialization Process

 To deploy a parallel application on a cluster, processes must be created on distributed

nodes in the cluster, and inter communication channels must be created between every two

processes, as showed in Figure 10. Outputs of all processes must be forwarded to the master

process, where the user starts the application.

Process 1 Process 2 Process 3 Process 4

Ethernet

Figure 10: Parallel Application Architecture on Cluster

This could be a quite complex process. MPICH creates processes through rsh, using a

―machinefile‖ to specify the nodes. JPVM creates processes through daemons running on every

node, a similar approach to VCluster. However, its approach is much more complex to the user

compared to the VCluster approach. JPVM provides an administrative console at the master

node. To run an application, a user must first build up the parallel environment using this

administrative console by inputting the information of every daemon, including the node address

and the listening port. Then, in the parallel application, the user must code explicitly to spawn

42

those processes. If arguments are used to run the application, the master process must transfer

them to other processes through coding again. We want to simply this process, moving this

complicate part from the user side into VCluster side. Currently, the user runs VCluster

applications through a ―procgroup‖ file. This ―procgroup‖ files specifies the nodes to run a

parallel application and other related information. Listing 1 shows the contents of a sample

―procgroup‖ file. Every line specifies the information of a node. The first item is the name or IP

address of a node; the second item is the number of processes to create on the node (currently not

supported); following that are command line arguments to the ‗java‘ command; the last item is

the name of the main class to run.

Listing 1: A Sample ProcGroup File

 Next, the initialization process of VCluster will be explained in detail. Figure 11

illustrates the initialization process in a UML sequence diagram.

 Step 1: a user starts the application with a ―procgroup‖ file. Let us call this node the

master node, and the VCluster instance created by the user VCluster Master.

#sample proc group file

sgenode01 1 –Xmx1000m VClusterApp.MD.AppMD

sgenode02 1 –Xmx1000m VClusterApp.MD.AppMD

sgenode03 1 –Xmx1000m VClusterApp.MD.AppMD

sgenode04 1 –Xmx1000m VClusterApp.MD.AppMD

43

Figure 11: Initialization Process (Sequence Diagram)

44

 Step 2: VCluster Master read in the ―procgroup‖ file and spawn processes on client

nodes. Daemons are located from the ―procgroup‖ file and socket connections from VCluster

master to these daemons are established. After that, a request is sent to every daemon. This

request contains the contents of the ―procgroup‖ file, and the process id assigned to the process

that will be created by the daemon.

 Step 3: daemons create service threads and VCluster processes. After receiving the

request, a daemon creates a service thread. The service thread then creates a VCluster instance

(VCluster Client) according to the specifications in the ―procgroup‖ file with a Java Runtime. In

this way, the printout of the VCluster Client will be read by this service thread, which in turn

forward to the master node and printed out there to the user. Also, this communication channel

between the service thread and the VCluster Client allows the service thread to pass the

―procgroup‖ file to the VCluster Client, and the VCluster Client to pass the information of the

server sockets it created to the service thread. This socket information will be again sent to the

master node. Till this step, a VCluster process is created on every node in the ―procgroup‖ file,

but they can not communicate with each other as the connections between these processes are

not established.

 Step 4: connections between every two VCluster Clients are established. At this time,

only VCluster Master has the socket information of every VCluster Client. This information is

sent to the service threads, and then to the VCluster Clients. Using this information, the VCluster

Clients can establish connections between each other. This step could be simplified if VCluster

Clients all create sockets with a fixed port number. The problem is that in such a way, only one

VCluster Client can be created on every node, and the port number might not be free on every

node. By allowing more than one VCluster Clients on a single node, we can run several parallel

45

applications on one cluster at the same time, e.g. fault tolerance applications or other not

performance critical applications.

 Step 5: computation are carried out by the VCluster Clients. Computations and

communications are carried out by the VCluster Clients. Printouts of VCluster Clients are

relayed by service threads to VCluster master, being printed out to the user consequentially.

 Step 6: application is terminated. After a VCluster client finished, the corresponding

service thread notifies VCluster Master the termination of this VCluster Client and terminates

itself. After all clients have finished, VCluster Master terminates. We can see that during this

process, VCluster Master does not carry out the computation.

3.3.4 Thread Migration

As discussed previously, to migrate a thread in VCluster, VCluster migrates the user

defined computation state of the thread. After that, a new thread is created on the destination

node and is associated with the migrated state. Users define the computation state of an

application by extending the VC_State class. For example, the user has a very simple application

that computes the sum of an integer array. In this application, the user thread contains a loop that

sums up the array items one by one. Now, suppose the user wants to migrate a thread within the

loop. To continue the loop after migration, the user needs the array, the intermediate sum, and

the index of the last item added to the sum. The computation state of this thread can be defined

as shown in listing 2.

46

The VC_State class is implemented in VCluster. It currently only contains one variable, a

flag to identify whether a state has migrated. This inheritance relationship allows users and

VCluster to define a virtual state together while being separated into two levels.

Thread migration can be triggered either by user applications or by VCluster. We are currently

working on the system triggered thread migration. It is still an ongoing work, so this paper only

discusses user-triggered thread migration. The previous example is used. When the user

application decides to migrate a thread, the thread writes its state to the associated virtual state,

calls the migrate() function, which is implemented in the parent VC_Thread class, and stops the

loop. The migrate() function does the following. First, the virtual state is marked as migrated so

that the user application will resume execution at the destination node instead of start over.

Second, the state, the channels, and the class names of the user thread and state are packed up as

a message and put into the send message queue, which is in turn sent by the send thread. The

receive thread on the destination thread receives this message and determines it is a system

message. System messages are put into the rendezvous message queue and the rendezvous thread

is woken up to process this message. The rendezvous thread creates a new user thread, associates

it with the virtual states and channels extracted from the message, and let it run. The user thread

must be coded to read the virtual state first and decide whether to start the loop from beginning

Public class sumState extends VC_State

{

public int[] aiArray; //the array

public int iInterSum; //the intermediate sum

public int iIndex; //the index of the last item added

}

Listing 2: An Example Virtual State Class

47

or continue the loop. In this case, it should continue. With the information in the state, it is easy

to continue the loop. Channels between this thread and other threads must also be updated.

Currently, this has to be done by user applications. We are currently implementing the idea of

thread group. Thread group will manage channels between group members. It will create

channels between threads, and automatically update channels after thread migration.

3.3.5 Object Serialization

 Object serialization is one of the great features of Java. While conventional message

passing libraries only support transmissions of arrays, object serialization enables transmission of

objects. Compared to arrays, objects are more structured and can contain much more information

than plain data. Any objects that implements the Serializable interface can be serialized,

transmitted through the network to a destination node, and rebuilt through de-serialization.

 Java provides ObjectOutputStream and ObjectInputStream to serialize and de-serialize

objects. But as we use non-blocking SocketChannels in Java NIO, which is block-oriented

instead of stream-oriented, this is not feasible. Objects must first be serialized to a stream, and

then converted to a ByteBuffer which can be used by non-blocking SocketChannel. Listing 3

shows the code for sending and receiving objects through SocketChannel.

48

3.4 Conclusion

 In this chapter, we discussed the architecture and implementation of VCluster. VCluster

is a thread based parallel application model that support shared memory and message passing in

a same framework. In the following chapter, we discuss how to develop parallel applications

using VCluster.

 //sending objects through SocketChannel

 baos = new ByteArrayOutputStream();

 oos = new ObjectOutputStream(baos);

 oos.writeObject(obj); //convert object to stream, serialization

 ByteBuffer bfObj =

 ByteBuffer.wrap(baos.toByteArray()); //convert to ByteBuffer

 while (nBytes < bfObj.capacity())

 nBytes += SocketChannel.write(bfObj); //write to SocketChannel

 //receiving objects through SocketChannel

 ByteBuffer bfObj = ByteBuffer.allocate(objLength);

 while (bfObj.remaining() > 0)

 SocketChannel.read(bfObj); //read from SocketChannel

 ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(

 bfObj.array())); //convert ByteBuffer to stream

 obj = ois.readObject(); //read from stream, de-serialization

Listing 3: Transmitting Object through SocketChannel

49

CHAPTER FOUR: USE OF VCLUSTER

 In this chapter, we describe how to write parallel applications on top of VCluster. The

object-oriented paradigm of Java lets us hide the complexity within VCluster, and users write

parallel applications through extending the virtual thread and virtual state classes.

4.1 An Example Application

Users develop parallel applications by extending the VC_Thread class and VC_State

class. A user application normally contains three classes. The computation will be in the virtual

thread class. The virtual state is used for thread migration and is not necessary if thread

migration is not considered. Another class, the main class, is used to create and set up virtual

threads, virtual states, and run them. Next we explain this with an example application.

This simple example application runs on two nodes, one thread running on each node.

Thread 0 is the sender and thread 1 is the receiver. Thread 1 receives the messages and prints

them out.

The main class contains the main() function, and is the class that is run by the user.

Basically the task of main class is to set up the execution environment; create virtual threads,

virtual states and the communication channels between threads. Listing 4 shows part of the code

in this class. Code section 1 creates a virtual thread and adds it to VCluster. Line 4 and line 5

create a virtual state and associate it with the virtual thread. Section 2 creates a send channel on

thread 0 and a receive channel on thread 1. A channel must be within a channel set. Send and

receive channels usually belong to two separate channel sets, but are not required to. The send

channel and the matching receive channel must have the same name.

50

The virtual state class contains computation data and/or methods. Users implement their

application specific states through extending the virtual state class in VCluster. In this example,

this class only contains one integer member, x. While it is not visible to the users, virtual state

class provides inherited methods for state transfer necessary for thread migration.

Listing 4: Example Application, the Main Class

Listing 5: Example Application, the State Class

The most important class is the virtual thread class, which carries out all the computation.

Listing 6 shows part of the code of this class. Code section 1 shows how to get the process id and

public class applState extends VC_State

{

 public int x;

 public applState ()

 {

 x = 999;

 }

}

1.1 // Create a VC_Thread

1.2 vthr = new applThread();

1.3 // Associate a state with this thread

1.4 vState = new applState();

1.5 vthr.addVCState(vState);

1.6 //add this thread to VCluster

1.7 vc.addThread(vthr);

2.1 // Setup the communications (channelSets and channels)

2.2 if (vc.getMyPid() == 0) {

2.3 vchannelSet = new VC_ChannelSet("sendChannelSet");

2.4 vchannel = new VC_Channel(1,"ch", vc.VC_WRITE);

2.5 }

2.6 else {

2.7 vchannelSet = new VC_ChannelSet("recvChannelSet");

2.8 vchannel = new VC_Channel(0,"ch", vc.VC_READ);

2.9 }

2.10 vchannelSet.addChannel(vchannel);

2.11 vthr.addChannelSet(vchannelSet);

51

thread id, and how to print out messages; code section 2 shows how to access state; code section

3 shows how to send messages; code section 4 shows how to read messages.

Listing 6: Example Application, the Thread Class

Listing 6 shows a ―procgroup‖ file for this example application.

Listing 7: Example Application, the ProcGroup file

sgenode01 1 VClusterApp.Example.Appl

sgenode02 1 VClusterApp.Example.Appl

1.1 //get my process id and thread id

1.2 myPid = getPid();

1.3 myTid = getTid();

1.4 VC_Println("** Hello World : pid = "+myPid+", tid = "+myTid);

2.1 //access state

2.2 state = (applState)getState();

2.3 VC_Println("** x = "+state.x);

3.1 //retrieve channel

3.2 vchannelSet = getChannelSet("sendChannelSet");

3.3 VC_Channel vchannel = vchannelSet.getChannel("ch");

3.4 //send messages

3.5 vchannel.writeInt(888);

3.6 vchannel.writeFloat((float)777.0);

3.7 vchannel.writeDouble(666.0);

3.8 int arrInt[] = {1,2,3,4};

3.9 vchannel.writeObject(arrInt);

3.10 double arrD[] = {1.0,2.0,3.0,4.0};

3.11 vchannel.writeObject(arrD);

4.1 vchannelSet = getChannelSet("recvChannelSet");

4.2 VC_Channel vchannel = vchannelSet.getChannel("ch");

4.3 //receive messages

4.4 int a = vchannel.readInt();

4.5 float b = vchannel.readFloat();

4.6 double c = vchannel.readDouble();

4.7 VC_Println("** recved a = "+a);

4.8 VC_Println("** recved b = "+b);

4.9 VC_Println("** recved c = "+c);

4.10 int arrInt[];

4.11 arrInt = (int []) vchannel.readObject();

4.12 double arrD[];

4.13 arrD = (double []) vchannel.readObject();

52

Then the user executes the following command for compilation and execution:

The complete listing of this sample application can be found in Appendix A.

4.2 A Multithreading Application

In the previous section, only one thread is created on every node. To use SMP machines

efficiently, we explain how to create multiple threads on a single node and how to deal with the

communication between these threads in VCluster. We first introduce the single thread version,

in which only one thread is created on every node. Then we show how to extend this single

thread version to support multithreading.

BPNN [77] is one of the most popular neural network training algorithms and has shown

robust performance in many diverse applications. However, computational complexity of the

BPNN makes its use challenging especially when the training data set size is huge. BPNN can be

parallelized in many different ways depending on the underlying parallel computing architecture

and programming models [78, 79]. We use a training set partition method that reduces the

amount of communication needed for distributing data and synchronization. BPNN is trained

iteratively until an acceptable mean squared error rate is achieved. In the beginning, the

partitions of the data set are distributed to each worker thread. Each iteration is called an epoch,

in which each worker thread works on the fraction of the computation corresponding to the

distributed partition and the master thread aggregates the partial computation results. Then, the

updated weight vectors are distributed to all the worker threads for the next epoch.

javac –d . Appl.java, applState.java, applThread.java

java VClusterApp.Example.Appl procgroup2

53

Implementation of this algorithm in VCluster is composed of two classes, the main class

and the thread class. Note that there is no state class used in this example since issues on thread

migration are not discussed in this paper.

Listing 8 shows the code of the main class. Only one thread is created on every node.

Thread 0 is the master, so a send channel and a receive channel are created from this thread to all

other threads. The other threads simply create a send channel and a receive channel to thread 0.

The real computation is carried out in the thread class, which is shown in listing 9. The

computation part here is the same in both VCluster and MPICH. In the communication part,

thread 0 will collect new weight vectors from all other threads, average it, compute the new

weight vectors, and distribute the new weight vectors to all other threads. The code in listing 9

shows how this communication part is implemented in VCluster. Every thread has a set of

weight vectors. As Java is object-oriented, this set of vectors can be packaged into a class, which

is called BPNNWeights. Objects of this class, instead of sets of vectors, can be transferred

between threads to simplify the communication. Thread 0 first enters a loop to receive new

weight vectors, and all other threads send its new weight vector. The send and receive are carried

out by retrieving the corresponding channel from the channel set, and then calling write or read

method of the channel. After all weight vectors are collected, new weight vectors are calculated

by calling functions of the BPNNWeights class. Then the new weight vectors are distributed to

all other threads.

54

Listing 8: Main Class of BPNN in VCluster without Multithreading

public class AppBPNN {

 public static void main(String args[])

 {

 ...

 vc = new VCluster(args);

 myPid = vc.getMyPid();

 nprocs = vc.getTotProcs();

 // Create VC_Threads

 myThr vthr = new myThr();

 vc.addThread(vthr);

 // Setup the communications (channelSets and channels)

 //channelsets

 vSendSet = new VC_ChannelSet("sendChannelSet");

 vRecvSet = new VC_ChannelSet("recvChannelSet");

 //channel from all the other threads to thread 0

 if (myPid == 0)

 {

 for (i=1;i<nprocs;i++)

 {

 vchannelr = new VC_Channel(i, WEIGHT_FROM+i, vc.VC_READ);

 vRecvSet.addChannel(vchannelr);

 vchannels = new VC_Channel(i, WEIGHT_TO+i, vc.VC_WRITE);

 vSendSet.addChannel(vchannels);

 }

 } else {

 vchannels = new VC_Channel(0,WEIGHT_FROM+myPid, vc.VC_WRITE);

 vSendSet.addChannel(vchannels);

 vchannelr = new VC_Channel(0, WEIGHT_TO+myPid, vc.VC_READ);

 vRecvSet.addChannel(vchannelr);

 }

 //add channel set to thread

 vthr.addChannelSet(vSendSet);

 vthr.addChannelSet(vRecvSet);

 // Start the computation

 vc.start();

 vc.finalize();

 }

}

55

 Based on this single thread code, we want to add the feature of multithreading to better

To support multithreading, we need to create more threads. We added a loop to create

more threads, and a loop to create channels to all threads on a node instead of just one thread.

public class myThr extends VC_Thread {

 //constants

 private final int outputNode = 1;

 ...

 //class variables

 private SampleRecord[] sampleRecords;

 ...

 public void run() {

 ...

 if (myPid != 0) {

 vSendSet.getChannel(WEIGHT_FROM+myPid)

 .writeObject(newBPNNWeights);

 } else {

 summaryBPNNWeights = new BPNNWeights(inputNode, hiddenNode,

outputNode);

 summaryBPNNWeights.add(newBPNNWeights);

 for (i=1;i<nprocs;i++) {

 readBPNNWeights = (BPNNWeights)vRecvSet.getChannel

 (WEIGHT_FROM+i).readObject();

 summaryBPNNWeights.add(readBPNNWeights);

 }

 summaryBPNNWeights.mean(nprocs);

 summaryBPNNWeights.add(bpnnWeights);

 newBPNNWeights = summaryBPNNWeights;

 }

 //thread 0 send bpnnWeights to all other threads

 if (myPid != 0) {

 newBPNNWeights = (BPNNWeights)vRecvSet.getChannel

 (WEIGHT_TO+myPid).readObject();

 } else {

 for (i=1;i<nprocs;i++) {

 vSendSet.getChannel(WEIGHT_TO+i)

 .writeObject(newBPNNWeights);

 }

 ...

 finalize();

 }

Listing 9: Thread Class of BPNN in VCluster without Multithreading

56

Listing 10: Main Class of BPNN in VCluster with Multithreading

 Changes to the thread class are similar. The major change is the loop on thread 0 to

communicate with all threads on a node instead of just one thread.

 //set up the threads

 for (myTid=0;myTid<Thread_Per_Node;myTid++) {

 // Create VC_Threads

 vthr = new myThr();

 vc.addThread(vthr);

 // Setup the communications (channelSets and channels)

 //channelsets

 vSendSet = new VC_ChannelSet("sendChannelSet");

 vRecvSet = new VC_ChannelSet("recvChannelSet");

 if ((myPid == 0) && (myTid == 0)) {

 //establish channels to other threads

 for (i=0;i<nprocs;i++) {

 for (j=0;j<Thread_Per_Node;j++) {

 if ((i != 0) || (j != 0)) {

 vchannelr = new VC_Channel(i, WEIGHT_FROM+i+j,

 vc.VC_READ);

 vRecvSet.addChannel(vchannelr);

 vchannels = new VC_Channel(i, WEIGHT_TO+i+j,

 vc.VC_WRITE);

 vSendSet.addChannel(vchannels);

 }

 }

 }

 } else {

 //establish channel to thread 0 on node 0

 vchannels = new VC_Channel(0, WEIGHT_FROM+myPid+myTid,

 vc.VC_WRITE);

 vSendSet.addChannel(vchannels);

 vchannelr = new VC_Channel(0, WEIGHT_TO+myPid+myTid,

 vc.VC_READ);

 vRecvSet.addChannel(vchannelr);

 }

 //add channel set to thread

 vthr.addChannelSet(vSendSet);

 vthr.addChannelSet(vRecvSet);

 }

57

Listing 11: Thread Class of BPNN in VCluster with Multithreading

4.3 Conclusion

 In this chapter, we describe how to develop parallel applications using VCluster, with or

without multithreading. Detailed documentation of classes and their functions in VCluster are in

Appendix B.

if ((myPid != 0) || (myTid != 0)) {

 vSendSet.getChannel(WEIGHT_FROM+myPid+myTid)

 .writeObject(newBPNNWeights);

} else {

 summaryBPNNWeights = new BPNNWeights(inputNode, hiddenNode, outputNode);

 summaryBPNNWeights.add(newBPNNWeights);

 for (i=0;i<nprocs;i++) {

 for (j=0;j<Thread_Per_Node;j++) {

 if ((i != 0) || (j != 0)) {

 readBPNNWeights = (BPNNWeights)vRecvSet

 .getChannel(WEIGHT_FROM+i+j).readObject();

 summaryBPNNWeights.add(readBPNNWeights);

 }

 }

 }

 summaryBPNNWeights.mean(nthrds);

 summaryBPNNWeights.add(bpnnWeights);

 newBPNNWeights = summaryBPNNWeights;

}

//thread 0 send bpnnWeights to all other threads

if ((myPid != 0) || (myTid != 0)) {

 newBPNNWeights = (BPNNWeights)vRecvSet

 .getChannel(WEIGHT_TO+myPid+myTid).readObject();

} else {

 for (i=0;i<nprocs;i++) {

 for (j=0;j<Thread_Per_Node;j++) {

 if ((i != 0) || (j != 0)) {

 vSendSet.getChannel(WEIGHT_TO+i+j)

 .writeObject(newBPNNWeights);

 }

 }

 }

}

58

CHAPTER FIVE: PERFORMANCE, EXPERIMENTS AND

COMPARISON

 In this chapter, we examine the performance of VCluster and compare it with other

relevant systems. Three relevant systems were compared with VCluster: MPICH, mpiJava, and

JPVM. To support multithreading, MPICH was combined with POSIX Thread and openMP.

MPICH is a C implementation of MPI by Argonne National Laboratory [70], mpiJava by [31],

and JPVM by [35]. MPICH was chosen as the base case that extends the C programming

language with message passing functions. It is most widely used and would yield the best

performance compared with other Java based libraries. mpiJava is simply a wrapper of MPICH

with Java interface and is expected to be slower than MPICH but faster than JPVM and

VCluster, which are implemented purely in JAVA. Our performance analysis was done in three

aspects. First we measured the point-to-point communication overhead. Second, we investigated

the real application performance without multithreading for several exemplary parallel

algorithms that includes both communication and computation. Lastly, we explored the

application performance with multithreading.

5.1 Communication Overhead

The compare the communication overhead of different systems, we use the popular ping-

pong benchmark. There are two processes running on two nodes, one is the sender and the other

is the receiver. The sender will send a message to the receiver, and the receiver will send the

same message back right after receives the message. This roundtrip time is calculated by sending

the message a number of times and taking average.

59

Since JAVA uses the neural byte format for the communication, the communication

overhead was expected to be higher than that of C. Figure 12 shows the round trip

communication overhead with respect to the varying message size from one byte to one mega

bytes. As expected, Java based message passing libraries are slower than C based MPICH. For a

larger message size closer to one mega byte, VCluster performed better than the JPVM. We

believe that this is because of the VCluster‘s sending and receiving mechanisms based on

separate send/recv threads. Despite the higher communication overhead in VCluster and other

Java based systems, it does not discourage the use of Java for cluster computing in that coarse

grain parallelism is mostly used in cluster computing and the communication overhead can be

compensated by the larger computation part of the application. In addition, when computation

becomes the major part, the send/recv thread in VCluster can transmit messages while the

computation thread is working on computation. The pure communication time, in which the

computation thread is idly waiting for messages, can be greatly reduced.

60

Figure 12: Communication Overhead

5.2 Experiments without Multithreading

 In this section, we compare the performance of VCluster with MPICH, mpiJava and

jPVM without using multithreading. VCluster will only create one thread on every node, and the

other three libraries create one process on every node, as how they are usually used. The

experiment was conducted on the Scerola cluster, which has 64 LINUX PCs equipped with

900MHz AMD Athlon processor, 1 GB memory, and 100BT networking.

61

5.2.1 Parallel Dirichlet Problem

 The first application is a fluid dynamics application, Dirichlet boundary problem. The

Dirichlet boundary problem is a simple numerical simulation problem on a two dimensional grid.

Each point on the grid has a),(yx location and a value representing the temperature of some

material. At each time step, each point's temperature is averaged with its neighbors‘ temperatures

to find the point's temperature at the end of the time step. This operates on all grid points that are

not on the boundary. Boundary grid points are assumed to have a constant value. The workload

is uniform in the Dirichlet problem. This allows the domain decomposition technique to be used

in dividing up the workload among processes. We divided the grid by columns, as showed in

figure 13. The communication will be between neighboring processes,

Process 1 Process 2 Process 3

Figure 13: Illustration of Parallel Dirichlet Problem

Figure 14 shows their performance on this cluster with varying numbers of processors.

Performance of three Java based message passing libraries was comparable and the MPICH

outperformed them. With a small number of processors, the execution time difference was

noticeable. However, with a larger number of processors, for example 32, the difference became

62

ignorable. This results of the experiments indicate that with enough number of processors Java

based message passing libraries can mitigate the associated overhead compared with C based

libraries and be an attractive tool for a large scale parallel application development. mpiJava was

expected to be faster than VCluster and JPVM as it still uses C codes in it. However, its

performance was close to the other Java implemented libraries.

Figure 14: Dirichlet Problem without Multithreading

5.2.2 Parallel Back-propagation Neural Network

 The second application was a parallel Back Propagation Neural Network (BPNN)

algorithm for network based intrusion detection. BPNN [76] is one of the most popular neural

network training algorithms and has shown robust performance in many diverse applications.

63

However, computational complexity of the BPNN makes its use challenging especially when the

training data set size is huge. BPNN can be parallelized in many different ways depending on the

underlying parallel computing architecture and programming models [77, 78]. We used a

training set partitioning method that reduces the amount of communication needed for

distributing data and synchronization. BPNN is trained iteratively until an acceptable mean

squared error rate is achieved. In the beginning, the partitions of the data set are distributed to

each worker thread. Each iteration is called an epoch. In each epoch, each worker thread works

on the fraction of the computation corresponding to the distributed partition and the master

thread aggregates the partial computation results. Then, the updated weight vectors are

redistributed to all the worker threads for the next epoch.

Figure 15 shows the performance of the parallel PBNN on the same cluster. Once again,

the three Java based libraries showed comparable performance. Note that the gap between

VCluster and MPICH converges as the number of processors increases. The required amount of

computation is much higher than that of the Dirichlet boundary problem and it is expected that

with use of more processors the gap will further converge as the previous application did.

64

Figure 15: Parallel Neural Network without Multithreading

5.3 Experiments with Multithreading

Previous experiments were conducted on a cluster of uni-processor computers. While

VCluster can support a cluster of uni-processor computers, it can also be used with a cluster of

multiprocessors using the same programming model without causing significant changes to the

parallel program. The experiments are on a clusterof 32 dual processor computers. Each

computer is equipped with dual AMD Opteron 242 1.6GHz processors, 2 GB RAM, and a

Gigabit Ethernet. The operating system is SunOS 5.9. The two problems used are again parallel

dirichlet problem and parallel back propagation neural network problem.

65

5.3.1 Coding with VCluster and Other Libraries

We revised the MPICH program with POSIX thread and openMP to support

multithreading, and mpiJava and JPVM programs were revised using Java threads. During this

process, we found VCluster the easiest one to change. We have shown how to write

multithreading applications in VCluster in the previous chapter. Next we will discuss the

implementation of multithreading applications with MPICH, mpiJava and JPVM.

Multithreading with MPICH + PThread

 Listing 12 shows the basic architecture of a MPICH + PThread program. Mutex and

Conditioners are used for thread synchronization. And the communication between threads on

the same node must be handled by the user. A thread is explicitly created on a function, ―*thr()‖

as in Listing 12. Thread ID can be passed to the thread at this time. After that, the main thread

will be waiting for all thread to finish, only at that time should the MPI_Finalize function been

called.

The thr function shows how intra-node communication and inter-node communication

should be carried out. Functions, setMsg and readMsg are written for intra-node communication.

These functions must be protected by mutex to ensure exclusive entrance. To write a message,

we must first make sure the last message has been read, otherwise it will be overwritten. This can

be done through a conditioner. After that, the new message flag is set. To read a message, we

must first make sure a new message has been written, otherwise the same message will be read

again. After that, the new message flag is cleared. For different messages, specific functions

should be written and specific flags should be used.

66

Inter-node communication is still through MPICH functions. Since MPICH is not thread-

safe, calls to MPICH functions must be exclusive. One way to do this is through a mutex , as

showed in Listing 7; another way is only allow one thread to call MPICH functions, other local

threads will send their data to this thread if they want to send through MPICH. Another problem

in inter-node communication is that as the message passing functions in MPICH are defined

between processes, users must program carefully to make sure the message is sent to or received

from the right thread on the other node. This can be done through tags, assigning a special tag for

every thread. Collective communications are far more complicate. As only one thread can attend

the collective communication, a specific thread must be selected as a representative. This thread

needs to collect data from other local threads through intra-node communication, call MPICH

collective function to get global data, and distribute the new data to all local threads.

These problems will not be present in VCluster. Intra-node communication and inter-

node communication will be handled in the same way, through virtual channels. Collective

communications between threads are also supported, which is easy to implement in VCluster as

communications are defined between threads.

Another problem we encountered in revising a single thread MPICH program to support

multithreading is about the global variables and functions. To develop a program, functions are

often necessary and will make the program architecture more structural. Global variables are

used to share data between these functions, and there is only one copy of every variable.

However, when multithreading is incorporated, these global variables must be duplicated so that

every thread can operate on a copy of the variables. And since functions can be called by

different threads, they must determine by which thread they are called so that they can operate on

the right copy of global variables.

67

Again this is not a problem for VCluster, thanks to Java‘s object-oriented architecture.

Every thread is an instance of a class, and a copy of the class global variables will be

automatically created for every thread. The functions do not need to changed, as Java will make

sure they operate on the right copy of global variables.

A MPICH + PThread program can still be compiled using mpicc. Nevertheless, as the

implementation of PThread library is highly dependent on the underlying operating system, this

compiling process can be highly different, as illustrated

above.

//compile on ariel cluster, which is running SUN OS5.9

mpicc -O1 -o hp hp.c -D_POSIX_C_SOURCE=199506 -lm -lrt -lpthread

//compile on scerola cluster, which is running Debian with kernel 2.4.18

//debian is a popular linux distribution

mpicc -O1 -o hp hp.c -lpthread

68

Listing 12: Multithreading with MPICH + PThread

#include "mpi.h"

#include <pthread.h>

//mutex and conditioner are used for thread synchronization

pthread_mutex_t mutex_mpi = PTHREAD_MUTEX_INITIALIZER; //exclusive call to

mpi functions

pthread_mutex_t mutex_cond = PTHREAD_MUTEX_INITIALIZER; //mutex for

condition

pthread_cond_t cond_msg = PTHREAD_COND_INITIALIZER; //gurantee the order of

read and write

float *msg[Thread_Per_Node]; //storage of messages

int fNewMsg[Thread_Per_Node]; //flags for new messages

/**

***/

int main(int argc, char *argv[])

{

 pthread_t threads[Thread_Per_Node]; //an array of threads

 int *tids[Thread_Per_Node]; //thread ids to pass to the threads

 //MPI_Init(&argc,&argv);

 MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &thread_level);

 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myPid);

 //create threads

 for (i=0;i<Thread_Per_Node;i++) {

 *tids[i] = i; //set thread id

 //create thread

 pthread_create(&threads[i], NULL, thr, (void *) tids[i]);

 }

 //wait until all threads end

 for (i=0;i<Thread_Per_Node;i++) {

 pthread_join(threads[i], NULL);

 }

 MPI_Finalize();

}

//thread function

void *thr(void *ptr) {

 //get thread id

 myTid = *((int *)ptr);

 //communicate with threads on the same node

 setMsg(myTid-1,msgr); //send

 readMsg(myTid, revr); //receive

69

MPICH+OpenMP

 //communicate with threads on other nodes

 pthread_mutex_lock(&mutex_mpi); //exclusive call to MPI functions

 {

 MPI_Send(...);

 MPI_Recv(...);

 }

 pthread_mutex_unlock(&mutex_mpi);

}

//communicate between threads on the same node

void setMsg(int destTid, float *p_msg) {

 pthread_mutex_lock(&mutex_cond);

 {

 //make sure the last one has been read

 while (fNewMsg[destTid]) pthread_cond_wait(&cond_msg, &mutex_cond);

 //copy p_msg to msg

 for (i=0; i<N; i++) msg[destTid][i] = p_msg[i];

 //set new message flag

 fNewMsg[destTid] = 1;

 //someone might be waiting, wake them up

 pthread_cond_broadcast(&cond_msg);

 }

 pthread_mutex_unlock(&mutex_cond);

}

void readMsg(int myTid, float *p_msg) {

 pthread_mutex_lock(&mutex_cond);

 {

 //make sure new values have been written

 while (!fNewMsg[myTid]) pthread_cond_wait(&cond_msg, &mutex_cond);

 //copy msg to p_msg

 for (i=0; i<N; i++) p_msg[i] = msg[myTid][i];

 //clear new message flag

 fNewMsg[myTid] = 0;

 //someone might be waiting, wake them up

 pthread_cond_broadcast(&cond_msg);

 }

 pthread_mutex_unlock(&mutex_cond);

}

 Listing 13: Multithreading with MPICH + PThread (continue)

70

Listing 14 shows the basic architecture of a MPICH + OpenMP program. The

architecture is similar to that of MPICH + PThread, except that thread creation and thread

synchronization are implemented through different ways. Threads are created by define a parallel

architecture, by using primitive #pragma omp parallel. The number of threads to be created is by

the environment variable, OMP_NUM_THREADS.

The thr function shows how intra-node communication and inter-node communication

should be carried out. Functions, setMsg and readMsg are written for intra-node communication.

Since mutex and conditioner are not supported by OpenMP, thread synchronization must be

implemented in different ways. We use the primitive, #pragma omp barrier. By putting a barrier

between the write and read functions, we guarantee that no message will be read before written.

This may looks convenient than the MPICH + PThread approach, but it requires all threads to be

synchronized, which is unnecessary and in-efficient as only the two communicating threads

should be synchronized with each other.

Exclusive calls to MPICH functions are implemented using the #pragma omp critical

primitive, which guarantees that only thread will be in the following block at one time.

Other problems like point-to-point communications and collective communications

between threads, global variables and functions, still apply here.

Since OpenMP programs can only be compiled by specially designed, OpenMP support

compilers, mpicc can not be used to compile the program. We use ompicc [81] compiler, the

compilation command is like above.

ompicc -DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1 -

DHAVE_STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1 -I/home/hzhang/mpich-

1.2.6/include -L/home/hzhang/mpich-1.2.6/lib -lmpich -lsocket -lnsl -lrt -

lnsl -O1 hp.c -o hp

71

Listing 14: Multithreading with MPICH + OpenMP

#include "omp.h"

#include "mpi.h"

float *msg[THREAD_PER_NODE]; //exchange border value

double msg_time[THREAD_PER_NODE]; //exchange time

/**

***/

int main(int argc, char *argv[])

{

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myPid);

 //create threads

#pragma omp parallel

 hp(omp_get_thread_num());

 MPI_Finalize();

}

void hp(int tid) {

 myTid = tid;

 //communicate with threads on the same node

 setMsg(myTid-1, msgl);

 //make sure all have written to left

#pragma omp barrier

 readMsg(myTid, revr);

 //communicate with threads on other nodes

#pragma omp critical

{

 MPI_Send(...);

 MPI_Recv(...);

}

//communicate between threads on the same node

void setMsg(int destTid, float *p_msg) {

 //copy p_msg to msg

 for (i=0; i<N; i++) msg[destTid][i] = p_msg[i];

}

void readMsg(int myTid, float *p_msg) {

 for (i=0; i<N; i++) p_msg[i] = msg[myTid][i];

}

72

Multithreading in mpiJava and jPVM

 Since Java multithreading mechanism is used in both mpiJava and jPVM to support intra-

node communication and thread synchronization, the multithreading part is the same. We use

mpiJava code to show how to develop multithreading applications on these two systems. The

code is showed in Listing 15.

 The computation is moved into the run method of a class that extends the Thread class.

To create a thread is equal to create an instance of such class. The rest part is the same as in

MPICH + PThread. The main class starts the threads, waits for them to finish, and then call the

MPI.Finalize method.

 The algorithm of intra-node communication and inter-node communication is the same as

in MPICH + PThread, although they have to be implemented in different ways. Mutexes and

conditioners are replaced with monitors. In Java, every object is itself a monitor. Using a static

object, threads will share a same monitor. The synchronized keyword on this monitor guarantees

exclusive calls to MPICH functions. For intra-node communications, a special class, myBuffer is

created. An instance of myBuffer will be associated with every thread. Communications are

implemented by writing or reading from these buffers. For example, to send a message, a thread

will write to the buffer that associated with the destination thread. Every buffer is a monitor,

which guarantees exclusive access to critical sections through the synchronized keyword and

support thread coordination through the wait and notifyAll functions.

 Although problems like point-to-point communications and collective communications

between threads still exist, global variables and functions will not be a problem anymore. Global

variables are declared as class members of the worker class and every thread will naturally have

its own copy of global variables.

73

 mpiJava and jPVM programs can be compiled with the standard javac command.

Listing 15: Multithreading with mpiJava

import mpi.*;

class appl {

 static public void main(String[] args) throws MPIException {

 MPI.Init(args);

 nprocs = MPI.COMM_WORLD.Size();

 myPid = MPI.COMM_WORLD.Rank();

 //create threads

 for (i=0;i<Thread_Per_Node;i++) {

 workers[i] = new worker(N, nprocs, myPid, i);

 thrds[i] = workers[i];

 }

 //start threads

 for (i=0;i<Thread_Per_Node;i++) thrds[i].start();

 //wait for threads to finish

 for (i=0;i<Thread_Per_Node;i++) thrds[i].join();

 MPI.Finalize();

 }

}

class worker extends Thread {

 static Object mpiObject = new Object(); //exclusive call to mpi

 worker(int p_N, int procs, int Pid, int Tid) {

 //get thread id

 myTid = Tid;

 }

 public void run() {

 //communicate with threads on the same node

 leftBuf.setMsg(msgr);

 myBuf.readMsg(revr);

 //communicate with threads on other nodes

 synchronized (mpiObject) {

 MPI.COMM_WORLD.Send(...);

 MPI.COMM_WORLD.Recv(...);

74

In conclusion, advantages of VCluster are:

1. VCluster support shared memory communication. In this case, threads on a same node

communicate using channels, just like threads on different nodes. While in other systems,

shared memory communication must be managed by the user, through techniques like

monitors and semaphores.

2. As most message passing libraries are not thread safe, users must make sure that no two

threads are calling libraries functions, especially communication functions, at the same

 }

 }

}

class myBuffer {

 //communication between the other thread

 private float msg[];

 private boolean fNewMsg;

 //called by the neighbor to transmit the new border

 synchronized public void setMsg(float p_msg[]) throws

InterruptedException{

 //make sure the last value has been read

 while (fNewMsg == true) wait();

 //copy p_msg to msg

 for (i=0;i<N;i++) msg[i] = p_msg[i];

 //set new message flag

 fNewMsg = true;

 //someone might be waiting, wake them up

 notifyAll();

 }

 //called by self to read the new border

 synchronized public void readMsg(float p_msg[]) throws

InterruptedException{

 //make sure new value has been written

 while (fNewMsg == false) wait();

 //copy msg to p_msg

 for (i=0;i<N;i++) p_msg[i] = msg[i];

 //clear new message flag

 fNewMsg = false;

 //someone might be waiting, wake them up

 notifyAll();

 }

}

Listing 16: Multithreading with mpiJava (continue)

75

time. Combined with the monitors and semaphores for shared memory communication,

this can easily lead to problems like deadlock.

3. VCluster supports communication between threads. In other systems, as the

communication is between processes, users need to code carefully and make sure the

message is received by the correct thread. In our code, tags are used to identify the source

and destination threads.

4. In VCluster, shared memory or message passing is hidden from the user. In other

systems, whenever two threads want to communicate, users must decide which model

should be used and send messages appropriately. This again can be quite tedious and

results in much longer code. Listing 17 shows the code for this in MPICH+PThread.

Listing 17: MPICH + PThread Code for Thread Communication

5. After joined a group, VCluster assigns each thread a unique ID, and the destination thread

can be specified by this ID. In other systems, users need to set the thread IDs, for

example, a combination of the process ID and thread ID. To communicate with a thread,

process ID need to be parsed out from the thread ID, and again the user need to decide

which model to use.

 //recv

 if (inodei == myPid) {

 //on the same node

 nrc = readNsd(tid);

 } else {

 //on the other node

 //exclusive call to mpi

 sched_yield();

 pthread_mutex_lock(&mutex_mpi);

 MPI_Irecv(&nrc,1,MPI_INT,inodei,tagNsd-

 tid,MPI_COMM_WORLD,&rcvRequest[tid]);

 pthread_mutex_unlock(&mutex_mpi);

 }

76

6. VCluster supports collective communication based on threads. While in other systems,

the user must first collect data from threads on the same node to one thread, then ask the

underlying library to carry out the collective communication at inter-node level on these

selected threads, and finally, distribute the results to each thread.

5.3.2 Experiments and Results

Beside the advantages in the previous section, VCluster also present good performance.

Figure 16 and 17 shows the performance of Parallel Dirichlet Problem and Parallel Neural

Network with multithreading. We discussed these two problems without multithreading in the

previous section. Now we create 2 threads on each node, with each threading working like a

process in the previous case. The experiment is run on up to 32 nodes. VCluster gives a similar

performance of mpiJava and a better performance than JPVM.

77

Figure 16: Parallel Dirichlet Problem with MultiThreading

Figure 17: Parallel Neural Network with Multithreading

78

Figure 18: Comparison of 2 Threads and 2 Processes.

We also use the parallel Dirichlet problem to compare the communication performance of

multithreading and multiprocessing. In multithreading, a thread is created for every processor.

The communications between two threads on a same node are carried out through shared-

memory by VCluster. In multiprocessing, a process is created for every processor. The

communications between two processes on a same node are carried out through sockets by

VCluster. The grid size is smaller than in the previous experiment to increase the communication

to computation ratio. In this way, the difference in communication can affect the overall time

more. Figure 18 shows the results of the experiment. Multithreading performs better than

multiprocessing, and the difference increases when more processors are used.

79

5.4 Molecular Dynamics

Our third application is molecular dynamics. Molecular dynamics is a technique to

simulate a set of interacting atoms, or particles. It is widely used in chemical and physical fields,

like drug design and material design. It is also used in computer graphics, for example, to

simulate the explosion of a gas bomb in computer games. Compared to the first two applications,

this application requires much more computation. The algorithm is primarily based on [79], and

we made some changes to suit our requirements.

In molecular dynamics, a set of atoms in a defined space are simulated. Every atom has

an initial position and speed. The atoms exert forces to each other, thus incur acceleration. As the

time evolves, all atoms will move and interacting with each other. The interacting of atoms is

computed according to Newton‘s second law. That is,

iii fam 

The equation means that acceleration can be calculated by the mass of the atom and the

force. The mass of atoms is known or can be assumed, and the force can be calculated by the

potential energy. Practically, a threshold for distance is used, called RCUT. If the distance of two

atoms is larger than RCUT, the force on each other is so small that it needs not to be computed.

The acceleration between two atoms is a function of their distance and the threshold distance

RCUT.

The algorithm is to simulate the evolution of time. At every time step, the acceleration of

each atom is computed, and atoms are moved accordingly. Since the interaction between every

two atoms need to computed, the main computation part is a two-level loop and the time

complexity is)(2NO , where N is the number of atoms.

80

To parallelize the molecular dynamics problem, we divided the space into subspaces,

with each parallel process assigned a subspace. In each time step, a process carried out the

computation of atoms in its subspace.

In VCluster and MPICH + POSIX Thread, we create 2 or more threads on each machine.

This further divids the space. For example, if originally we use two machines and thus two

threads to divide the space into two sub-spaces, now we have 4 threads and the space is divided

into four sub-spaces. openMP is good at parallelizing loops, and our main computation part is

loops of numerical operation. Naturally we want to use openMP to parallelize these loops.

We expect that VCluster and mpich+pthread will show similar performance, while

mpich+openMP will be almost twice slower. Suppose originally we have n atoms on each node,

according to our analysis above, the computation complexity is)(2nO . In VCluster and

MPICH+PThread, the sub-space is further divided. If we create two threads on each node, each

thread will take care of a sub-space which is half the size of the original sub-space, and thus has

2

n
 atoms. The computation complexity for each thread will be)

4
(

2n
O , which is ¼ of the original

time. Since we have two processors on each node, these two threads will be able to run in

parallel. This will result in a loop time which is ¼ of the original loop time. In MPICH+openMP,

the space is not further divided, instead the computation is parallelized. If we create two threads

on each node, the computation for each thread will be)
2

(
2n

O . These two threads can run in

parallel, and result in a loop time which is ½ of the original loop time.

We experimented this application with a total of 131,072 atoms being simulated. This is

the largest amount of atoms that can be stored in the memory of one node. Two threads are

81

created on every node. We ran the experiment on 1 to 32 nodes. When one node is used, which

means a total of two threads, each thread will simulate 131,072 / 2 = 65,536 atoms. When two

nodes are used, which means a total of 4 threads, each thread will simulate 131,072 / 4 = 32,768

atoms. We would expect the computation time to be reduced to ¼. However, when more threads

are used, communication time goes up, and the overall time will not be reduced to ¼. We ran the

results on 1, 2, 4, 8, 16, 32 nodes. The results of the experiments are shown in figure 19 and 20.

We can see that VCluster is the fastest, followed by MPICH+POSIX Thread and

MPICH+openMP. As we have expected, MPICH+openMP is twice slower than MPICH+POSIX

Thread. But MPICH+POSIX Thread is much slower than VCluster. We calculated the time spent

on each step and found out that this is because the computation, which is a 2-level loop, contains

several function calls. These functions calls will be executed for extraordinary times when the

loop is executed. C somehow does not handle these functions calls as efficiently as Java does.

This may because we use gcc, instead of cc, under the Solaris environment.

82

Figure 19: Parallel Molecular Dynamics with Multithreading - 1

Figure 20: Parallel Molecular Dynamics with Multithreading – 2

83

5.5 Conclusion

 In this chapter, we compare the performance of VCluster with other related libraries. The

results of the experiments show that VCluster provides similar performance to Java related

libraries, while making it much more easily to develop parallel applications on clusters of SMP

machines.

84

CHAPTER SIX: PREDICTIVE MODELING USING COMPLEXITY

ANALYSIS

The results of the experiments in the previous chapter indicate that when more

parallelization is used (more threads and nodes), the computation time for each thread goes

down, while the communication time goes up. When the decrease in the computation time

exceeds the increase of the communication time, the overall time will goes down. After some

point, when the decrease in the computation time is less than the increase of the communication

time, the overall time will goes up. Beyond that point, using more threads will decrease the

performance instead of increasing it. If we can find that point, we know how many threads we

should use to achieve the best overall time. In this chapter, we describe a parallel runtime

prediction model that uses an analytical modeling technique to investigate the performance of the

parallel MD program. Using this model, we can predict the performance of the MD program on

different number of nodes or different data sizes and see what the best run time is and how to get

it. We validate the performance prediction models against the experimental data.

The analytical model is primarily concerned with predicting the performance and

resource scaling characteristics on a variety of architectures. Analytical modeling techniques

abstract the features of a parallel system as a set of parameters or parameterized functions in

order to make the modeling task tractable [80]. Our analytical model models the behavior of a

single time step of the parallel MD program, which includes concurrent computation, sequential

computation, and communication overhead. Then, a linear equation is used to describe the gross

behavior of the algorithm executed on a cluster.

During each time step, the following operations are executed on every thread.

1) update the speed of every atom to half the time step using the acceleration;

85

2) move the atoms according to their speed;

3) some atoms will move out to neighbor sub-spaces;

4) some atoms need to be copied to respective neighbors;

5) compute new acceleration;

6) update the speed of every atom to the other half of the time speed using the new

acceleration;

We use these notations,

n , the number of atoms in each thread

p , the number of threads

neighborn , the number of neighbor atoms

copyn , the number of atoms to copy to a neighbor thread

moven , the number of atoms to move to a neighbor thread

Ci , i in 1, 2, 3 …, where each Ci is a constant

Operation 1 is a loop over all the atoms which updates the speed in three dimensions, the time is:

11 *3* CnT 

Operation 2 is a similar loop, which updates the position of each atom instead of the speed, the

time is:

22 *3* CnT 

Operation 3 is more complex than the first 2 steps. It contains a loop over the three dimensions.

For every dimension, all atoms are checked on whether it has moved out, the time is 3*3* Cn .

Then for every direction, atoms are moved out through network transportation. The time for

network transportation consists of a start time startupT , and the transportation time of each atom,

noted as wT . Since atoms move both in and out, the time is)(*2 movewstartup nTT  . The whole loop

over the three dimensions will take))(*2*3*(*3 3 movewstartup nTTCn  . After this loop is

86

finished, the atom array needs to be compressed to exclude the atoms that have moved out. This

is a loop over all the atoms, the time is 4*3* Cn . Sum this time with the loop time, the overall

time for operation 3 is

433 *3***6*6*9* CnnTTCnT movewstartup 

Operation 4 is almost the same as operation 3. The difference is that it checks atoms on whether

they need to be copied to neighbor threads and it does not have the final compress action. The

time is

copywstartup nTTCnT **6*6*9* 54 

Operation 5 is the part that takes most of the time. First all the accelerations are reset to 0, the

time is 6*3* Cn . Next is a two-level loop that computes the force between every two atoms,

including those neighbor atoms, the time is 7*)
2

)1(
*(C

nn
nn neighbor


 . After the acceleration is

computed, all threads exchange the potential energy. That is, they send their local energy to

every other thread and receive the potential energy from every other thread, the time is

)(*)1(*2 wstartup TTp  . Sum all this up, the time for operation 5 is

)(*)1(*2*)
2

)1(
*(*3* 765 wstartupneighbor TTpC

nn
nnCnT 




Operation 6 is the same as operation 1.

16 TT 

The time for a single time step will be the sum of 1T through 6T ,

54321*2 TTTTTT 

87

The factors in the above equation of T is n , p , neighborn , copyn , and moven . The others are

constants. After aggregating all these factors and simplifying them, we can obtain the following

equation,

141312

2

111098 ******* CCpCnCnnCnCnCnT neighborcopymove 

According to our results of experiments, neighborn , copyn , and moven are all linearly related to n .

That is, for example, 99 *** CbnCnmove  , where b is another constant. Based on this

assumption, the above equation can be further simplified to

181716

2

15 *** CCpCnCnT 

From the results of the experiments, we have a set of known n, p, and T. Using a linear

regression method, we can get the coefficient values, 0.0004212515 C , 009-6.6229e16 C ,

0.03834217 C , -2.384718 C .

Figure 21 shows that the experimental results fit in the developed analytical model well.

Using this analytical prediction model, we can predict the performance of the application. Figure

22 shows that to simulate 262,144 atoms, the loop time will be longer if 64 machines are used

instead of 32. This means that we do not need more than 32 machines in this case. To utilize

more than 32 machines efficiently, we can increase the number of atoms that are simulated.

Again our prediction model can be used to predict the application performance. The advantage of

prediction model over actual experiments is obvious. Carrying out the experiment will take much

more time than using the prediction model, for example, months compared to minutes for this

application. From Figure 22, we can see that when the number of atoms goes larger than 524288,

we can use 64 machines efficiently. When the number of atoms goes to 2097152, 128 machines

can be used efficiently.

88

Figure 21: Analysis Model with Actual Numbers

Prediction Performance

1

10

100

1000

8 16 32 64 128 256 512

Number of Nodes

E
x
e
c
 T

im
e
 (

s
e
c
o

n
d

)

262144

524288

1048576

2097152

Figure 22: Prediction Model

Analysis Model

1

10

100

1000

1 2 4 8 16 32

Number of Nodes

Exec Time (Second)

measured
predicted

89

CHAPTER SEVEN: EXPERIMENTS FOR LOAD BALANCING WITH

VCLUSTER

 Based on the basic functions, we want to implement more advanced features like load

balancing. By migrating threads, loads in the cluster can be balanced dynamically.We show that

dynamic load balancing through thread migration can improve the performance of the molecular

dynamics application.

7.1 Introduction to Load Balancing

 In cluster computing, load imbalances can be caused by many factors. It can be from the

architecture of the application. For example, in molecular dynamics, particles can move around

from one sub-space to another sub-space, potentially from one node to another node in the

environment of cluster computing. It can also be affected by the configuration of nodes in a

cluster. Nodes can be heterogeneous and have different computation power. Other factors, like

other concurrently running applications, network latency, can also contribute to load imbalances

during execution. Load imbalances often lead to performance degradation of applications, as the

overall execution time is normally determined by the slowest node.

Dynamic load balancing can be utilized to improve application performance in cases of

load imbalances. In conventional cluster computing libraries, dynamic load balancing is not

supported and must be handled by users at application level. Many load balancing algorithms

and schemes have been proposed and successfully employed in different application. These

algorithms and schemes, although not proposed to be part of a cluster computing library, are

worth studying as they were later adopted into different cluster computing libraries. There are

90

two major categories in these systems. The first category falls into repetitive or iterative static

partitioning. Data are repartitioned from time to time, according to historical statistics, to

balance the load in the following computation. The second category is scheduling of parallel

loops. Iterations of a loop are dynamically feed to idle workers to achieve an overall balanced

load.

As the development of cluster computing libraries, recent libraries began to integrate

dynamic load balancing as part of the library.

The rest of this chapter will be as following. In section 6.2.1 and 6.2.2 we discuss the two main

categories in load balancing research. Section 6.2.3 is about the research on the exploit of

thread/process migration in load balancing. In section 6.3 we discuss our implementation of load

balancing. At last we show how load balancing can improve application performance through

experiments.

7.2 Related Research

7.2.1 Mesh Partitioning

 To discuss repetitive or iterative static partitioning, we first introduce meshing and mesh

partitioning. Meshing is the procedure of discretizing the problem domain [92]. A mesh can be

represented by a graph, with vertices representing sub-domains and edges representing the

communication between them. This graph architecture makes mesh based applications a natural

source of parallelization. Through mesh partitioning, meshes can be partitioned into connected

sub-domains. In a cluster computing environment, every process will be assigned a sub-domain

91

and be responsible for the computation of the sub-domain. Communications between sub-

domains are carried out between processors. Generally, mesh partitioning can be abstracted as

graph partitioning problems.

Due to the nature of the application, or when the number of processors becomes large, the

load on processors can be much unbalanced. The mesh must be re-partitioned and sub-domains

must be re-distributed to processors at runtime. In this distributed environment, the meshing

partition algorithm must take into consideration the capability of processors, the network latency,

along with the application. In repetitive or iterative partitioning, meshes are re-partitioned from

time to time to achieve load balance. So the partitioning algorithm should also be efficient, as it

will be carried out periodically during the runtime.

In [92], Jian et al proposed a communication tool, PART, addressing the difference of

local and remote communication. In some distributed computing environments, the

communication latency between processors can be very different. For example, in a cluster of

SMP machines, the communication between processors on a same node, local communication,

will be much faster than communication between processors on different nodes, remote

communication. Their experiments show that PART can reduce the total execution time by up to

12%.

S-harp [93] tackled the problem of computation latency. Based on the fast feature of

inertial partitioning and the quality feature of spectral partitioning, S-harp implemented a fast

mesh partitioning algorithm.

Re-partitioning of a mesh is based on the load distribution of the mesh. This load

distribution can be either computed or predicted based on previous data. Since there is no load

balancing operation between two re-partitioning, the effectiveness of load balancing is based on

92

the accuracy of the load distribution. This may incur problems in some cases. For example, in

some applications the load of a mesh might not only depend on the number of data points, but

also depend on the properties of each data point. In this case, the computation of load distribution

might be too expensive to be carried out periodically for re-partitioning. In some other cases, the

load distribution can not be accurately predicted. Load prediction is based on the assumption,

―slow rate of load variation‖, which is apparently not always true.

7.2.2 Scheduling of Parallel Loops

 Parallel loops are loops in which iterations are independent to each other. Because

parallel loops are abundant in scientific applications and can be easily parallelized, the

parallelization of them has been extensively researched, mostly on scheduling. The scheduling

problem, basically, is how to schedule parallel loops on to workers, e.g. nodes in a cluster

computing environment, so that the loops can be finished in the shortest time. The fundamental

trade-off in scheduling of parallel loops is maintaining balanced load on workers while

minimizing the scheduling overhead. To discuss different scheduling algorithms, we first

introduce two notations.

N: the number of iterations.

P: the number of workers.

One simple and naïve scheduling algorithm is to schedule equal portion of iterations to workers

at once. This algorithm is called static chunking (SC). In SC, each worker is assigned a chunk of

size N/P. Scheduling overhead is minimized as only one scheduling operation is needed.

However, equal portion of iterations does not always mean equal work load. A common example

is the conditional statements used in iterations. Branches of a conditional statement can have

93

different work load. If iterations assigned to a worker tends to have more heavy-load branches

than iterations assigned to other workers, its work load will be higher than average and the

overall performance might not be optimal.

 Alternatively, we can schedule one iteration at a time, which is known as self-scheduling

(SS). Workers request for a new iteration when they become idle. In this case, we are sure that

the finish time of all workers will not differ by more than the execution time of one iteration.

Load on all workers are perfectly balanced. However, N scheduling operations are needed and

because of the scheduling overhead, the overall performance might again not be optimal.

 The above are two extreme cases. SC favors finge-grained, constant-length loops, and SS

favors coarse-grained, variable-length loops. Other scheduling algorithms lie in the middle. We

discuss several of them below.

Fixed-Size Chunking

 Instead of scheduling one iteration of N/P iteration at a time, Kruskal and Weiss proposed

the idea of scheduling fixed-size chunks [85]. They believe that given an upper bound of

execution time, an optimal number K can be found such that the execution time will be within

the given bound if iterations are scheduled in chunks of fixed-size K. They also gave the

algorithm to calculate K. However, their algorithm only works when P and K are large.

Furthermore, their algorithm does not take into consideration the average execution time of an

iteration, whose effect could be significant as shown in [87].

 In their paper, Kruskal and Weiss also speculate that it may be good to schedule large

chunks at first, and later use smaller chunks to smooth over the previous load imbalances. Many

decreasing-size schemes have been proposed after that, including the famous factoring scheme

[86].

94

Guided Self-Scheduling

 This is a decrasing-size scheme proposed by Polychronopoulus and Kuck [88], which

addresses the problem of uneven processor starting times. When a worker request for work, 1/P

of the total work left will be assigned. For example, if N=16 and P=4, the first worker will get

16/4=4 iterations; the second worker will get (16-4)/4=3 iterations; the whole distribution is

shown in the following line.

4, 3, 3, 2, 1,1,1,1

Polychronopoulus and Kuck proved that for constant-length loops, GSS guarantees that the

finishing time of all processors will differ within the execution time of one iteration. They also

showed in their experiments that GSS out-perform SS in variable-length loops.

Factoring

GSS is good, but a problem with GSS is that GSS might schedule too much work at first,

and the later smaller chunks are not able to smooth over the previous un-evenness. Flynn and

Hummel analyzed this problem and proposed that a scheduling algorithm should schedule as

much work as possible while they must have a high probability to finish before the optimal time.

We omit the induction process (which can be found in [86]), and present their algorithm directly.

In factoring, iterations are distributed in batches of P equal size chunks. The total number of

iterations in a batch is a fixed ratio of the remaining, normally half of it. Using the same

example, N=16, P=4, the distribution is as following:

2,2,2,2,1,1,1,1,1,1,1,1

We can see that compared to GSS, fewer iterations are allocated at first, leaving enough

left to compensate for the un-evenness when necessary.

95

Factoring has been widely researched and many algorithms based on Factoring have

been proposed, like Weighted Factoring, Adaptive Factoring, and Weighted Adaptive Factoring

[89-91]. These algorithms have been widely adopted in distributed applications and also cluster

computing libraries [94].

7.2.3 Thread/Process Migration in Load Balancing

 Traditionally, load balancing is handled by the parallel applications. With the advance in

cluster computing libraries, especially with the support of multithreading and dynamic

thread/process migration, it is possible to incorporate load balancing into cluster computing

libraries.

Although a lot of research has been done in the use of thread migration in load balancing,

they are mainly focused on the new issues incurred by the distributed environment, for example,

the network latency. In [95, 96], loads on threads are monitored by the systems. When the system

determines that the load on a node is high, it will find a node with light load and decide which

threads to be migrated from the high load node to light load node. The threads will then be

stopped from computation, migrated to the destination nodes, and re-started for computation. In a

distributed system, other resources associated with a thread, like the communication resources,

data used by the thread, must also be handled with care. As we discussed in chapter two, most

current libraries that support thread migrations are based on distributed shared-memory systems.

The data shared between threads, and the communications incurred by this sharing to keep

consistence of data, must be taken into consideration for the decision of migrating thread. If the

increase of communications out-beat the gain of load balancing, load balancing is useless. The

96

computation of communication cost must also be fast, to reduce load balancing overhead.

Originally, communication cost is calculated as the total number of data pages shared by threads,

which can be very expensive. In [97], Liang et al analyzed the communication cost of different

sharing types and proposed a much faster algorithm for the computation of communication cost.

7.3 Implementation of Load Balancing in VCluster

As we have discussed, load balancing is implemented in VCluster through thread

migration. Load balancing must be carried out among a group of threads. So, to implement load

balancing, we first implement the thread group, called VC_Group, in VCluster. Periodically,

applications in a thread group exchanges load information. The group analyzes the load

distribution and determines whether thread migration is necessary. If thread migration is

necessary, the group also determines which threads to migrate and where the threads should be

migrated to. To describe the implementation of load balancing, we first describe the

implementation of thread group.

7.3.1 Thread Group

Thread group is implemented in VCluster through the VC_Group class. All threads in a

group join the group at the beginning of the computation. After that, they can exchange messages

by their indexes in the group. VC_Group manages the channels between all the threads. This

implementation further hides the physical position of threads from each other. Through the

virtual channels, communication threads do not need to know the physical position of each other.

97

With thread group, they do not need to know the physical position even after some of the threads

have migrated. VC_Group will update the related channels automatically.

Another powerful feature of thread group is collective communication between threads.

In conventional cluster computing libraries, all or some of the processes can form groups. A

group of processes can carry out collective communications to exchange data in a group-wide

scope. For example, the broadcast function can send data from one process to all other processes

in the group. The broadcast function may look simple, but collective communications can be

rather complicate. Nearly all common group-wide data operations can be implemented as

collective communication functions. Collective communication functions have been proven to be

extreme useful in abundant scientific communications, like the experiment programs we have

used.

Under a multithreading architecture, it is desirable to carry out collective communication

between threads. This is not supported by conventional cluster computing libraries. As shown in

our experiment programs, the user application must collect data from threads in a process, carry

out collective communications between processes, and distribute the result to threads. In these

libraries, the communications are between processes. Since collective communications are

actually a series of two-way communications and group-wide operations, it will be very difficult,

if not impossible, to implement collective communications between threads in these libraries.

While in VCluster, as our model is based on threads, the implementation will be very

straightforward. We have implemented several collective communications.

98

7.3.2 Load Balancing

VC_Group currently provides two load balancing functions, with each implementing a

different load balancing algorithm. Each load balancing function takes in two parameters, the

load and the threshold. Periodically, all threads in a group call the same load balancing function

with their load and the same threshold. With the load information from every thread, VC_Group

has a clear view of the current load distribution and can run different load balancing algorithms

upon it. If a thread is to be migrated, the load balancing function will return the index of the

destination node; otherwise -1 is returned. All channels that are related to this thread are updated.

As there are many load balancing algorithms, with probably more in the feature, it is

impossible to write a system that provides all these algorithms. With this observation, we

positioned VCluster as a platform to implement load balancing algorithms, and designed it so

that additional load balancing algorithms can be easily added. The VC_Group class provides a

series of functions to easy the implementation of load balancing algorithms. For example, the

updateMember (member_index, destination_index) function makes all the necessary changes to

migrate a thread. When a load balancing algorithm decides to migrate a thread, it simply calls

this function.

7.4 Experiments and Results

To show that the load balancing in VCluster works, we modified the molecular dynamics

application for experiment. In the distributed molecular dynamics application, every thread will

be responsible for particles in a sub-space, and every node can have several threads. As particles

can move around, it might happen that the number of atoms in one sub-space is much larger than

99

the number of atoms in another sub-space. As a result, the load on some nodes can be much

heavier than the load on other nodes, slowing down the overall performance. By re-distributing

the threads, we can re-even the load on every node and thus improve overall performance.

To simulate these situations and show how load balancing can tackle these problems. We

intentionally make the load un-balance and use load balancing to balance it.

7.4.1 Migrate One Thread at a Time

In our first experiment, we only migrate one thread at a time. This experiment includes

two nodes. The load ratio is initially set to 4 : 1. With load balancing, the ratio will become 3 : 2

after one iteration. We would expect that the iteration time of the second iteration will be less

than the time of the first iteration. And since no further balancing is needed from the third

iteration, the time should be further less. Figure 23 and Figure 24 shows the comparison with and

without load balancing. Figure 24 shows the expected performance. However, in Figure 23, the

iteration time of the second iteration is the same as the first iteration. This is because the time

spent on load balancing and thread migration is almost the same as the time saved. In Figure 23,

since the data is much larger, the time saved is much larger than the time spent on load

balancing.

100

Figure 23: Load Balancing on Two Nodes 1

Figure 24: Load Balancing on Two Nodes 2

101

7.4.2 Migrate More than One Threads at a Time

In our second experiment, we migrate more than one thread at a time, to balance the load

quickly. Four nodes are used in this experiment. The load ratio is initially set to 4:1:1:1. If one

thread is migrated at a time, the ratio will become 3:2:1:1 after the first iteration, and 2:2:2:1

after the second iteration. If we make all necessary migrations at one time, the ratio will become

2:2:2:1 after the first iteration, saving more time. Figure 25 and 26 show the experiment results.

Multi-migration balances the load after the first iteration, while single-migration takes two

iterations. When the data size is small, the time spent on load balancing is larger than the time

saved, resulting in longer overall time. This does not happen when the data size is large.

Figure 25: Load Balancing on Four Nodes 1

102

Figure 26: Load Balancing on Four Nodes 2

7.4.3 Migrate More than One Thread from More than One Node as a Time

In our third experiment, we try to migrate more than one thread from more than one node

at a time. This case might occur in real applications and we want to make sure it can be handled

by VCluster. Eight nodes are used in this experiment. The load ratio is initially set to

4:4:2:2:1:1:1:1. The balanced ratio is 2:2:2:2:2:2:2:2. Figure 27 and 28 show the results. The

results are similar to the results in the previous section, which means VCluster can handle multi-

migration from multi-nodes.

103

Figure 27: Load Balancing on Eight Nodes 1

Figure 28: Load Balancing on Eight Nodes 2

104

7.4.4 Multi-Threading Issue with Linux Thread Library

When we were working on the above experiments, we ran into one issue with the Linux

thread library. The issue is, when multi-threading is used, the performance of an application is

very un-stable. It took us quite some time to figure out where is the problem and we finally find

out the problem is within the Linux thread library, or the compatibility of Java and the Linux

thread library. We never had this problem in Solaris.

We wrote a simple multi-threading application in Java to confirm that the problem is with

the Linux thread library, or the compatibility of Java and the Linux thread, and is not incurred by

VCluster. This simple application will have four threads. Every thread will do the same matrix

multiplication. We ran the application 10 times and the time for every run is shown in Figure 29.

We can see that the time varies from 300 seconds to 800 seconds.

Figure 29: Multiple Run of a Simple Application

We have not figured out how to resolve this problem. Because of this issue, the data used

in the pervious sections are all the best data we observed in many runs. These data are consistent

105

with the data we observed when the cluster is installed with Solaris. Also because of this issue,

we recommend run VCluster on clusters with Solaris.

7.5 Conclusion

In this chapter, we discussed the implementation of load balancing through thread

migration in VCluster. Load balancing is built on top of thread group. The design of thread group

makes VCluster a platform to develop load balancing algorithms easily. Thread group also

support collective communication, which is desirable in multi-threading cluster computing but

difficult to be implemented in conventional process-based libraries. We also show that load

balancing can improve the performance of application through experiments.

106

CHAPTER EIGHT: FUTURE WORK AND CONCLUSION

 In this chapter, we describe what can be done to further enhance VCluster and the

conclusion. We want to extend VCluster to a higher level of parallel computing architecture,

mini-grid.

8.1 Mini-Grid

 Mini-grids are also called cluster of clusters. A mini-grid forms a larger computation

platform by connecting a number of clusters together. This larger computation platform enables

larger scale parallel applications. With an agent-based architecture, VCluster can be easily

extended to support mini-grids.

107

Cluster 1

Gateway

Node 1 Node n

Cluster 2

Node 1 Node n

Cluster 3

Node 1 Node n

Internet

Daemon

Gateway

Daemon

Gateway

Daemon

Figure 30: VCluster Architecture for Mini-Grid

 Figure 30 shows the conceived architecture of VCluster on a mini-grid. A cluster

normally has a gateway node that is connected to the outside world, while other nodes are

protected in local network. In VCluster, a daemon is running on every node, including the

gateway node. The daemons on these gateway nodes can be connected through the outside

network, e.g. the internet. These daemons can relay messages between internal nodes in different

clusters. However, communications between clusters should not be used too often as the

communication latency is much higher than communications within a cluster.

 After this mini-grid architecture is finished, we want to extend the load balancing scheme

to this larger architecture.

108

Intensive research has been done in the area of load balancing on grid computing. Grid

computing is different from cluster computing in that it is on a very larger scale, and the

components are weakly connected and are especially heterogeneous. With this background, the

load balancing research on grid computing focuses on the scheduling of tasks submitted by

tremendous users and resource management [99-101]. [99] is of special interest to us as it uses a

two-level architecture. The whole grid is divided into groups and every group will have a

coordinator. This architecture is similar to that of a mini-grid. But for the load balancing on mini-

grids, we focus on the load balancing of just one computation intensive application, as mini-grids

are far more dedicated computing resource than grids and we can use it exclusively.

Mini-grid is a new area and so is the load balancing on mini-grid. We will identify the

possible issues, design a load balancing scheme based on VCluster, and implement it.

8.2 Conclusion

In this research, we designed and developed a portable parallel runtime system for cluster

computing, called VCluster. VCluster was designed to support both shared memory

programming and message passing in a single framework, which is desirable for the new cluster

computing environment, a cluster of symmetric multiprocessors. VCluster provides the concepts

of virtual thread, states, and channels through which thread migration is possible. A prototype

implementation was done using 100% Java codes for portability. Underlying architectural

differences of the multiprocessor machines are hidden from the user applications by the

developed library.

109

VCluster makes it much easier to develop multithreading parallel applications compared

to conventional libraries like MPI. As multithreading is supported in VCluster, no extra thread

libraries are needed. Communications between threads in VCluster are through virtual channels.

Virtual channels automatically choose shared memory or message passing for the

communication according to the relative position of the two threads, intra-node or inter-node,

freeing the user applications from dealing with two communication modes all the time. Virtual

channels also make it easy to implement thread migration. The relative position of threads are

hidden from the user application and communications between two threads remain the same even

if one or two of the threads have migrated. The communication system is also designed to be

thread safe so multiple threads can call communication functions simultaneously.

We have developed three applications, parallel dirichelet problem, parallel back-

propagation neural network, and parallel molecular dymanics, to compare the performance of

VCluster with three other libraries, MPICH, mpiJava, and JPVM. OpenMP and POSIX Thread

are used to implement multithreading in MPICH. The experimental results show that the

performance of VCluster is comparable to MPICH with OpenMP or POSIX Thread. VCluster is

different from those message passing tools in that it facilities the use of a cluster of

multiprocessors more efficiently. VCluster utilizes a separate send and receive thread to send

and receive messages. This implementation makes it possible for communication and

computation to run simultaneously on multiprocessor machines.

The basic computing unit in VCluster is a virtual thread. The word virtual comes from the

fact that virtual threads can migrate from one machine to another machine in a cluster, while a

real thread is bound to a physical machine. Thread migration is implemented in VCluster through

the concept of virtual state. To migrate a virtual thread, its associated virtual state is migrated to

110

the destination machine, and then a virtual thread is created on the destination machine to

continue the computation.

Virtual threads in VCluster can form a thread group. A thread group creates channels

between member threads automatically and allows virtual thread to communicate with each other

through their group ID. A thread group also provides collective communication methods to its

member threads, which is hard to be implemented in conventional process-based message

passing libraries. When member threads are migrated, a thread group also updates the related

channels automatically.

With thread migration and thread group, dynamic load balancing is implemented in

VCluster. Dynamic load balancing is desirable in applications where the load distribution can be

very un-balanced, which results in bad performance. Performance can be improved by re-

balancing the load distribution. In VCluster, threads are migrated to re-balance the load

distribution. A user application periodically calls the load balancing functions provided by thread

group. A load balancing function determines whether thread migration is necessary and if so

which threads should be migrated and to which machines. We modified the molecular dynamics

application for experiment. The results show that dynamic load balancing in VCluster can greatly

improve the performance in some cases.

There are still a lot can be done to further improve and enhance VCluster. We plan to

expand VCluster to support mini-grid, cluster of clusters. A mini-grid forms a larger computation

platform by connecting a number of clusters together. This larger computation platform enables

larger scale parallel applications. Since the architecture of a mini-grid is very different from a

cluster, a lot of challenges are lying ahead.

111

APPENDIX A: SOURCE CODE

112

 Appl.java

package VClusterApp.Example;

import VCluster.VCluster;

import VCluster.VC_Thread;

import VCluster.VC_Channel;

import VCluster.VC_ChannelSet;

public class Appl

{

 public static void main(String args[])

 {

 VCluster vc;

 VC_ChannelSet vchannelSet;

 VC_Channel vchannel;

 applThread vthr ;

 applState vState

 // Initialize

 vc = new VCluster(args);

 // Create a VC_Thread

 vthr = new applThread();

 // Associate a state with this thread

 vState = new applState();

 vthr.addVCState(vState);

 //add this thread to VCluster

 vc.addThread(vthr);

 // Setup the communications (channelSets and channels)

 if (vc.getMyPid() == 0) {

 vchannelSet = new VC_ChannelSet("sendChannelSet");

 vchannel = new VC_Channel(1,"ch", vc.VC_WRITE);

 }

 else {

 vchannelSet = new VC_ChannelSet("recvChannelSet");

 vchannel = new VC_Channel(0,"ch", vc.VC_READ);

 }

 vchannelSet.addChannel(vchannel);

 vthr.addChannelSet(vchannelSet);

 // Start the computation

 vc.start();

 vc.finalize();

 }

}

113

applState.java

package VClusterApp.Example;

import VCluster.VC_State;

public class applState extends VC_State

{

 public int x;

 public applState ()

 {

 x = 999;

 }

}

114

applThread.java

package VClusterApp.Example;

import VCluster.VC_Thread;

import VCluster.VC_State;

import VCluster.VC_Channel;

import VCluster.VC_ChannelSet;

public class applThread extends VC_Thread

{

 // User need to implement this run method for each different thread

 public void run()

 {

 applState state;

 VC_ChannelSet vchannelSet;

 int myTid, myPid;

 //get my process id and thread id

 myPid = getPid();

 myTid = getTid();

 VC_Println("** Hello World : pid = "+myPid+", tid = "+myTid);

 //access state

 state = (applState)getState();

 VC_Println("** x = "+state.x);

 if (myPid == 0) {

 //retrieve channel

 vchannelSet = getChannelSet("sendChannelSet");

 VC_Channel vchannel = vchannelSet.getChannel("ch");

 //send messages

 vchannel.writeInt(888);

 vchannel.writeFloat((float)777.0);

 vchannel.writeDouble(666.0);

 int arrInt[] = {1,2,3,4};

 vchannel.writeObject(arrInt);

 double arrD[] = {1.0,2.0,3.0,4.0};

 vchannel.writeObject(arrD);

 }

 else if (myPid == 1) {

 //retrieve channel

 vchannelSet = getChannelSet("recvChannelSet");

 VC_Channel vchannel = vchannelSet.getChannel("ch");

 //receive messages

 int a = vchannel.readInt();

 float b = vchannel.readFloat();

 double c = vchannel.readDouble();

 VC_Println("** recved a = "+a);

 VC_Println("** recved b = "+b);

 VC_Println("** recved c = "+c);

 int arrInt[];

 arrInt = (int []) vchannel.readObject();

115

 VC_Println("** recved arrInt =

"+arrInt[0]+arrInt[1]+arrInt[2]+arrInt[3]);

 double arrD[];

 arrD = (double []) vchannel.readObject();

 VC_Println("** recved arrD = "+arrD[0]+", "+arrD[1]+",

"+arrD[2]+", "+arrD[3]);

 }

 finalize();

 }

}

116

APPENDIX B: DOCUMENTATION

117

VCluster

Field Summary

public static final int VC_WRITE

public static final int VC_READ

Constructor Summary

void VCluster (String args[])

Method Summary

void addThread (VC_Thread vthr): Add a virtual thread.

void finalize (): Finalize the computaton.

int getMyPid (): Return the process ID of this VCluster instance.

int getTotProcs (): Return the total number of processes.

void start (): Start the computation.

void VC_Println (String s): Print out a message at the master node.

Field Details

VC_WRITE

public static final int VC_WRITE

Used in creating virtual channels to specify that data is read from the channel.

VC_READ

public static final int VC_READ

Used in creating virtual channels to specify that data is written to the channel.

118

Constructor Details

VCluster

public VCluster (String args[])

Initialize a VCluster instance.

args: command line arguments

returns: nothing

Method Details

getTotProcs

public int getTotProcs()

Return the total number of processes.

returns: total number of processes.

getMyPid

public int getMyPid()

Return the process ID of this VCluster instance.

returns: process ID.

start

public void start()

Start the computation. Called in the main class of an application.

returns: nothing

finalize

public void finalize()

Finalize the computaton. Must be called at the end in the main class of an application.

returns: nothing.

119

addThread

synchronized public void addThread(VC_Thread vthr)

Add a virtual thread. Called in the main class of an application.

returns: nothing.

VC_Println

public void VC_Println(String s)

Print out a message at the master node.

s: the message to be pritned out.

returns: nothing.

120

VC_Channel

Field Summary

Constructor Summary

void VC_Channel (int t_pid, String t_chName, int t_mode)

Method Summary

int getDestPid (): Return the destination process ID

int getMode (): Return the mode of this channel, read or write.

String getName (): Return the name of this channel.

boolean isAvailable (): Check whether a message for this channel has arrived.

double readDouble (): Read a double. Blocks until the message has arrived.

float readFloat (): Read a float. Blocks until the message has arrived.

int readInt (): Read a integer. Blocks until the message has arrived.

Object readObject (): Read an object. Blocks until the message has arrived.

void writeDouble (double vdouble): Write a double. Message might not have been sent or

received.

void writeFloat (float vfloat): Write a float. Message might not have been sent or received.

void writeInt (int vint): Write an integer. Message might not have been sent or received.

void writeObject (Object o): Write an object. Message might not have been sent or received

Field Details

Constructor Details

121

VC_Channel

public VC_Channel(int t_pid, String t_chName, int t_mode)

Initialize a virtual channel.

t_pid: process id of the destiation thread

t_chName: name of the channel

t_mode: VC_READ or VC_WRITE

returns: nothing

Method Details

getDestPid

public int getDestPid()

Return the destination process ID.

returns: process ID.

getMode

public int getMode()

Return the mode of this channel, read or write.

returns: VC_READ or VC_WRITE.

getName

public String getName()

Return the name of this channel.

returns: name of this channel.

isAvailable

public boolean isAvailable()

122

Check whether a message for this channel has arrived. Return true is the message has

arrived, otherwise return false

returns: true: message has arrived; false: message has not arrived.

readInt

public int readInt()

Read a integer. Blocks until the message has arrived.

returns: an integer.

readFloat

public float readFloat()

Read a float. Blocks until the message has arrived.

returns: a float.

readDouble

public double readDouble()

Read a double. Blocks until the message has arrived.

returns: a double.

readObject

public Object readObject()

Read an object. Blocks until the message has arrived.

returns: an object.

writeInt

public void writeInt(int vint)

Write an integer. Message might not have been sent or received.

123

vint: integer to be written

returns: nothing.

writeFloat

public void writeFloat(float vfloat)

Write a float. Message might not have been sent or received.

vfloat: float to be written

returns: nothing.

writeDouble

public void writeDouble(double vdouble)

Write a double. Message might not have been sent or received.

vdouble: double to be written

returns: nothing.

writeObject

public void writeObject (Object o)

Write an object. Message might not have been sent or received. A copy of the object is

made by the system when this function returns. The desination thread will receive the copy of the

object.

o: object to be written

returns: nothing.

124

VC_ChannelSet

Field Summary

Constructor Summary

void VC_ChannelSet (String t_channelSetName)

Method Summary

void addChannel (VC_Channel channel): Add a channel to this channel set.

VC_Channel getChannel (String channelName): Return a channel by name.

String getName (): Return the name of this channel set

void removeChannel(String channelName): Remove a channel from this channel set.

int size (): Return the size (number of channels) of this channel set.

Field Details

Constructor Details

VC_ChannelSet

public VC_ChannelSet(String t_channelSetName)

Initialize a channel set.

t_channelSetName: name of the channel

returns: nothing

Method Details

getName

public String getName()

Return the name of this channel set.

125

returns: name of channel set.

size

public int size()

Return the size (number of channels) of this channel set.

returns: number of channels.

addChannel

public void addChannel(VC_Channel channel)

Add a channel to this channel set.

channel: a virtual channel

returns: nothing.

getChannel

public VC_Channel getChannel(String channelName)

Return a channel by name.

channelName: name of the channel

returns: a virtual channel.

removeChannel

public void removeChannel(String channelName)

Remove a channel from this channel set.

channelName: name of the channel

returns: nothing

126

VC_State

Field Summary

Constructor Summary

void VC_State ()

Method Summary

void clearMigrated (): Set the state as not migrated.

boolean isMigrated (): Return whether the state has migrated.

Field Details

Constructor Details

VC_State

public VC_State()

Initialize a virtual state.

returns: nothing

Method Details

clearMigrated ()

public void clearMigrated()

Set the state as not migrated.

returns: nothing.

isMigrated ()

public boolean isMigrated()

Return whether the state has migrated.

127

returns: true, if migrated; false if not migrated.

128

VC_Thread

Field Summary

Constructor Summary

void VC_Thread ()

Method Summary

void addChannelSet (VC_ChannelSet vcc): Add a channel set to this thread.

void addVCState (VC_State vcs): Associate a virtual state with this thread.

void finalize (): Finalize the computation.

VC_ChannelSet getChannelSet (String t_ChannelSetName): Get a channel set by name.

int getPid (): Returns the process ID of this thread.

int getTid (): Returns the thread ID of this thread in a process.

VCluster getVC (): Returns the VCluster instance this thread belongs to.

String getVCName (): Get the name of this thread in VCluster.

Object getVCState (): Get the virtual state associated with this thread.

void migrate (int destPid): Migreate this thread to a specified destition process

void setVCName (String t_name): Set the name of this thread in VCluster.

void VC_Println (String s): Print out a message at the master node.

Field Details

Constructor Details

VC_Thread

public VC_Thread()

129

Initialize a Virtual Thread.

returns: nothing

Method Details

setVCName

public void setVCName(String t_name)

Set the name of this thread in VCluster.

t_name: name.

returns: nothing.

getVCName

public String getVCName()

Get the name of this thread in VCluster.

returns: name.

getVC

public VCluster getVC()

Returns the VCluster instance this thread belongs to.

returns: a VCluster instance.

getPid

public int getPid()

Returns the process ID of this thread.

returns: process ID.

getTid

public int getTid()

Returns the thread ID of this thread in a process. This is not a globally unique thread id.

130

returns: thread ID.

addVCState

public void addVCState(VC_State vcs)

Associate a virtual state with this thread.

vcs: a virtual state

returns: nothing.

getVCState

public Object getVCState()

Get the virtual state associated with this thread.

returns: a virtual state.

addChannelSet

public void addChannelSet(VC_ChannelSet vcc)

Add a channel set to this thread.

vcc: a channel set

returns: nothing.

getChannelSet

public VC_ChannelSet getChannelSet(String t_ChannelSetName)

Get a channel set by name.

t_ChannelSetName: name of the channel set

returns: a channel set.

VC_Println

public void VC_Println(String s)

Print out a message at the master node.

131

s: the message to be pritned out.

returns: nothing.

finalize

public void finalize()

Finalize the computation. Must be called at the end of a thread.

returns: nothing.

migrate

public void migrate(int destPid)

Migreate this thread to a specified destition process. All information not save to the

assocated virtual state will be lost.

destPid: ID of the destination process

returns: nothing.

132

LIST OF REFERENCES

[1] R. Buyya, High Performance Cluster Computing: Architectures and Systems, 1
st
 edn.,

Prentice Hall Inc., 1999.

[2] M. Baker, R. Buyya. Cluster computing: the commodity supercomputer. Software:

Practice and Experience May 1999; 29:6, 551-576.

[3] Top 500 Supercomputers, www.top500.org.

[4] T. Anderson, D. Culler, and D. Patterson. A Case for Networks of Workstations. IEEE

Micor, Feb. 95. http://now.cs.berkeley.edu/

[5] M.A. Baker, G.C. Fox, and H.W. Yau. Review of Cluster Management Software. NHSE

Review, May 1996, http://www.nhse.org/NHSEreview/CMS/

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with

the Message Passing Interface, MPI Press, 1995.

[7] C. Amza, A. L. Cox, S.Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.

Zwaenepoel. Treadmarks: Shared memory computing on networks of workstations. IEEE

Computer, 29(2):18 C̈28, February 1996.

[8] M. Campione, K. Walrath, A. Huml, Java Tutorial, The: A Short Course on the Basics,

3
rd

 Edition, Addison Wesley Professional, 2000.

[9] Lindholm T, Yellin F. The Java Virtual Machine Specification (Sunsoft Java Series) (2nd

edn). AddisonWesley Developers Press, 1999.

[10] Neffenger J. The Volano Report: Which Java platform is fastest, most scalable? A Java

World exclusive!. http://www.javaworld.com/javaworld/jw-03-1999.

http://www.top500.org/
http://now.cs.berkeley.edu/
http://www.nhse.org/NHSEreview/CMS/
http://www.javaworld.com/javaworld/jw-03-1999

133

[11] Sun Microsystems, Inc. The Java HOTSPOT Virtual Machine. White Paper, September

2002.

[12] C. Mangione. Performance test show Java as fast as C++. Technical report, JavaWorld,

1998.

[13] http://www.debian.org/

[14] http://www.redhat.com/

[15] http://www.sun.com/software/solaris/

[16] Technical Committee on Operating Systems and Application Environments of the IEEE.

Portable Operating System Interface (POSIX)-Part 1: System Application Program

Interface (API), 1996. ANSI/IEEE Std. 1003.1, 1995 Edition, including 1003.1c:

Amendment 2: Threads Extension [C Language].

[17] OpenMP Forum. OpenMP: A Proposed Industry Standard API for Shared Memory

Programming. Technical report, October 1997.

[18] Javasoft, ‗Java Remote Method Invocation - Distributed Computing for Java, a White

Paper‘, http://java.sun.com/marketing/collateral/javarmi.html.

[19] Javasoft, ‗Java Interface Definition Language‘,

http://java.sun.com/products/jdk/1.2/docs/guide/idl/index.html.

[20] Javasoft, ‗Java Object Serialization‘,

http://java.sun.com/products/jdk/1.1/docs/guide/serialization/index.html.

[21] K. Li. Ivy: A shared virtual memory system for parallel computing. Proceedings of the

International Conference on Parallel Processing (ICPP'88), The Pennsylvania State

University, University Park, PA, August 1988;

http://www.debian.org/
http://www.redhat.com/
http://www.sun.com/software/solaris/
http://java.sun.com/marketing/collateral/javarmi.html
http://java.sun.com/products/jdk/1.2/docs/guide/idl/index.html
http://java.sun.com/products/jdk/1.1/docs/guide/serialization/index.html

134

[22] K. Li, P. Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems 1989; 17:4, 321-359.

[23] Harry F. Jordan, Gita Alaghband, Fundamentals of Parallel Processing, Prentice Hall,

2003.

[24] Wenzhang Zhu, Cho-Li Wang and Francis C.M.Lau, ``JESSICA2: A Distributed Java

Virtual Machine with Transparent Thread Migration Support,'' IEEE Fourth International

Conference on Cluster Computing (CLUSTER 2002) Chicago, USA - September 23-26,

2002, pp. 381-388, 2002

[25] M.J.M. Ma, C.L. Wang, F.C.M. Lau, ``JESSICA: Java-Enabled Single-System-Image

Computing Architecture, Journal of Parallel and Distributed Computing, Vol. 60, No. 10,

October 2000, pp. 1194-1222

[26] "cJVM: a Single System Image of a JVM on a Cluster" - International Conference on

Parallel Processing 99 (ICPP 99), September 1999.

[27] W. Yu and A. L. Cox. Java/dsm: A platform for heterogeneous computing. Concurrency -

Practice and Experience, 9(11):1213 C̈1224, 1997.

[28] G. Antoniu, L. Bouge, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst. The

Hyperion system: Compiling multithreaded Java bytecode for distributed execution.

Parallel Computing, 27(10):1279--1297, 2001.

[29] R. Veldema, R. A. F. Bhoedjang, and H. E. Bal. Jackal, a compiler based implementation

of java for clusters of workstations. PPoPP 2001, 2001.

[30] Michael Factor, Assaf Schuster, Konstantin Shagin, "JavaSplit: A Runtime for Execution

of Monolithic Java Programs on Heterogeneous Collections of Commodity

135

Workstations," cluster, p. 110, IEEE International Conference on Cluster Computing

(CLUSTER'03), 2003.

[31] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim. mpi-Java: an Object-Oriented Java

Interface to MPI. In 1st Int. Workshop on Java for Parallel and Distributed Computing

(IPPS/SPDP 1999 Workshop), San Juan, Puerto Rico, Lecture Notes in Computer

Science, volume 1586, pages 748 C̈762. Springer, 1999.

[32] http://www.hpjava.org/elements.html

[33] S. Morin, I. Koren, and C. M. Krishna. JMPI: Implementing the Message Passing

Standard in Java. In 4th Int. Workshop on Java for Parallel and Distributed Computing

(IPDPS2002 Workshop), Fort Lauderdale, FL, 118-123, 2002.

[34] M. Baker and B. Carpenter. MPJ: a Proposed Java Message Passing API and

Environment for High Performance Computing. In 2nd Int. Workshop on Java for

Parallel and Distributed Computing (IPDPS 2000 Workshop), Cancun, Mexico, Lecture

Notes in Computer Science, volume 1800, pages 552-559. Springer, 2000

[35] Adam J. Ferrari. JPVM: Network Parallel Computing in Java. ACM Workshop on Java

for High-Performance Network Computing, 1998.

[36] A. Nelisse, J. Maassen, T. Kielmann, and H. Bal. CCJ: Object-Based Message Passing

and Collective Communication in Java. Concurrency and Computation: Practice &

Experience, 15(3-5):341C369, 2003.

[37] G. L. Taboada, J. Tourino, and R. Doallo. Performance Analysis of Java Message-

Passing libraries on Fast Ethernet, Myrinet and SCI Clusters. IEEE Fifth International

Conference on Cluster Computing, Hong Kong, China Dec. 2003.

http://www.hpjava.org/elements.html

136

[38] N. Stankovic and K. Zhang. An Evaluation of Java Implementations of Message-Passing.

Software - Practice and Experience, 30(7):741 C̈763, 2000.

[39] Technical Committee on Operating Systems and Application Environments of the IEEE.

Portable Operating System Interface (POSIX)-Part 1: System Application Program

Interface (API), 1996. ANSI/IEEE Std. 1003.1, 1995 Edition, including 1003.1c:

Amendment 2: Threads Extension [C Language].

[40] OpenMP Forum. OpenMP: A Proposed Industry Standard API for Shared Memory

Programming. Technical report, October 1997.

[41] F. Cai, S. Wu, L. Zhang, and Z. Tang. Parallel Program Performance Evaluation And

Their Behavior Analysis on an OpenMP Cluster. IEEE International Symposium on

Cluster Computing and the Grid, Chicago, Illinois, USA, 2004.

[42] Yoshinori Ojima, Mitsuhisa Sato, Hiroshi Harada, Yutaka Ishikawa, "Performance of

Cluster-enabled OpenMP for the SCASH Software Distributed Shared Memory System,"

ccgrid, p. 450, 3rd International Symposium on Cluster Computing and the Grid, 2003.

[43] Nikolaos Drosinos, Nectarios Koziris, "Performance Comparison of Pure MPI vs Hybrid

MPI-OpenMP Parallelization Models on SMP Clusters," ipdps, p. 15a, 18th International

Parallel and Distributed Processing Symposium (IPDPS'04) - Papers, 2004.

[44] Thomas Rauber, Gudula Runger, Sven Trautmann, "A Distributed Hierarchical

Programming Model for Heterogeneous Cluster of SMPs," ipdps, p. 165a, International

Parallel and Distributed Processing Symposium (IPDPS'03), 2003.

[45] T. Boku, K. Itakura, S. Yoshikawa, M. Kondo and M. Sato. Performance Analysis of PC-

CLUMP based on SMP-Bus Utilization. Proceedings of WCBC'00 (Workshop on Cluster

Based Computing 2000), Santa Fe, May 2000.

137

[46] Olsson, Ronald A., Keen, Aaron W. The JR Programming Language, Concurrent

Programming in an Extended Java, Springer, 2004.

[47] Cilk-5.2 Reference Manual. Available on the website http://supertech.lcs.mit.edu/cilk.

[48] Distributed Cilk - Release 5.1 alpha 1. Available on the website

http://supertech.lcs.mit.edu/cilk/release/distcilkS.1.html.

[49] L. Peng, W. F. Wong, M. D. Feng, and C. K. Yuen. SilkRoad: A Multithreaded Runtime

System with Software Distributed Shared Memory for SMP Clusters. In Proc. Of the 2nd

IEEE International Conference on Cluster Computing (CLUSTER2000), Nov. 2000.

[50] L. Peng,W. F.Wong, and C. K. Yuen. SilkRoad II: A Multi-Paradigm Runtime System

for Cluster Computing. In Proc. of the 4nd IEEE International Conference on Cluster

Computing (CLUSTER2002), Sept. 2002.

[51] Philip Hatcher, Mathew Reno, Gabriel Antoniu, Luc Bouge, "Cluster Computing with

Java," Computing in Science and Engineering, vol. 07, no. 2, pp. 34-39, Mar/Apr,

2005.

[52] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. Dag-consistent

distributed shared memory. In Proceedings of the 10th International Parallel Processing

Symposium (IPPS), pages 132-141, Honolulu, Hawaii, Apr. 1996.

[53] P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy Consistency for Software Distributed

Shared Memory. In Proceedings of the 19th Annual Symposium on Computer

Architecture, pages 13-21, May 1992

[54] M. Philippsen and M. Zenger. JavaParty - transparent remote objects in Java.

Concurrency: Practice and Experience, 9(11):1225--1242, 1997.

http://supertech.lcs.mit.edu/cilk
http://supertech.lcs.mit.edu/cilk/release/distcilkS.1.html

138

[55] Y. Sohda, H. Nakada, and S. Matsuoka. Implementation of a portable software DSM in

Java. In Java Grande/ISOPE'01, pages 163--172, Palo Alto, CA USA, 2001

[56] Jameela Al-Jaroodi, Nader Mohamed, Hong Jiang, David Swanson, "An Agent-Based

Infrastructure for Parallel Java on Heterogeneous Clusters," cluster, p. 19, IEEE

International Conference on Cluster Computing (CLUSTER'02), 2002.

[57] Hayzelden and Bigham, ―Software Agents for Future Communication Systems‖,

Springer-Verlag Berlin Heidelberg, 1999

[58] Geoffroy Vallée, Christine Morin, Renaud Lottiaux, Jean-Yves Berthou, Ivan Dutka

Malen, "Process Migration Based on Gobelins Distributed Shared Memory," ccgrid, p.

325, 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid

(CCGRID'02), 2002.

[59] Min Choi, DaeWoo Lee, and SeungRyoul Maeng, ―Cluster Computing Environment

Supporting Single System Image‖, IEEE International Conference on Cluster Computing

(CLUSTER‘04), 2004

[60] Ricky K. K. Ma, Cho-Li. Wang, Francis C.M. Lau, "M-JavaMPI: A Java-MPI Binding

with Process Migration Support," ccgrid, p. 255, 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGRID'02), 2002.

[61] M.J.M. Ma, C.L. Wang, and F.C.M. Lau; ``Delta Execution: A Preemptive Java Thread

Migration Mechanism,¡̄¡̄ International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA¡̄99), pp. 518-524, June 28 C̈ July 1,

1999, Las Vegas, Nevada, USA.

139

[62] Wenzhang Zhu, Cho-Li Wang, Francis C. M. Lau, "Lightweight Transparent Java Thread

Migration for Distributed JVM," icpp, p. 465, 2003 International Conference on Parallel

Processing (ICPP'03), 2003.

[63] Wenzhang Zhu, Weijian Fang, Cho-Li Wang, and Francis C.M. Lau, A New Transparent

Java Thread Migration System Using Just-in-Time Recompilation, The 16th IASTED

International Conference on Parallel and Distributed Computing and Systems (PDCS

2004), pp. 766-771, MIT Cambridge, MA, USA, November 9-11, 2004

[64] M.U. Janjua, M. Yasin, F. Sher, K. Awan, I. Hassan, "CEJVM: "Cluster Enabled Java

Virtual Machine"," cluster, p. 389, IEEE International Conference on Cluster Computing

(CLUSTER'02), 2002.

[65] http://java.sun.com/j2se/1.3/docs/guide/jpda/jvmdi-spec.html

[66] http://java.sun.com/j2se/1.3/docs/guide/jni/

[67] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency:

Practice and Experience Dec. 1990; 2:4, 315-339.

[68] J. Watt, S. Taylor, S. Nilpanich. SCPlib: A Concurrent Programming Library for

Programming Heterogeneous Networks of Computers. IEEE Information Technology

Conference, EX 228, pp 153-6, 1998

[69] J. Lee, S. Chapin, S. Taylor. Computational Resiliency. Journal of Quality and reliability

Engineering International, 18:3, pp185-199, 2002

[70] MPICH-A Portable Implementation of MPI, http://www-unix.mcs.anl.gov/mpi/mpich

[71] http://en.wikipedia.org/wiki/Rsh

[72] http://en.wikipedia.org/wiki/Ssh

http://java.sun.com/j2se/1.3/docs/guide/jpda/jvmdi-spec.html
http://java.sun.com/j2se/1.3/docs/guide/jni/
http://www-unix.mcs.anl.gov/mpi/mpich
http://en.wikipedia.org/wiki/Rsh
http://en.wikipedia.org/wiki/Ssh

140

[73] Dawn Song, David Wagner, Xuqing Tian. Timing Analysis of Keystrokes and

Timing Attacks on SSH. Usenix Security Symposium 2001.

[74] Weiwu Hu Gang Shi, Fuxin Zhang, "Communication with Threads in Software DSMs,"

cluster, p. 149, 3rd IEEE International Conference on Cluster Computing

(CLUSTER'01), 2001.

[75] http://java.sun.com/j2se/1.4.2/docs/guide/nio/

[76] R., D. E., G. E. Hinton, and R. J. Williams. Learning representations by back-propagating

errors. Nature, vol 323, pp533-536, 1986.

[77] Z., S., W., M., Klauer, B., W., K. Pipelining and parallel training of neural networks on

distributed-memory multiprocessors. IEEE World Congress on Computational

Intelligence, 4(27), June 1994, 2052-2057.

[78] N., T. and B. Svensson. Using and designing massively parallel computers for artificial

neural networks. Journal of Parallel and Distributed Computing, 14 (3), 1992, 260-285.

[79] Louisiana State University, http://sunmp.cclms.lsu.edu/cclms/teaching/csc7610/

[80] Jr. Wagner Meira. Modeling Performance of Parallel Programs. Technical report 589,

University of Rochester, Computer Science Department, Rochester, New York 14627,

June 1995.

[81] http://www.cs.uoi.gr/~ompi/

[82] J. Gomez, V. Rego, and V. Sunderam, ―CLAM: Connectionless, Lightweight, and

Multiway Communication Support for Distributed Computing,‖ Lecture Notes in

Computer Science: Communication and Architectural Support for Network-Based

Parallel Computing, pp. 227-240. Springer-Verlag, 1997.

http://java.sun.com/j2se/1.4.2/docs/guide/nio/
http://sunmp.cclms.lsu.edu/cclms/teaching/csc7610/
http://www.cs.uoi.gr/~ompi/

141

[83] Juan Carlos Gomez, Edward Mascarenhas, Vernon Rego, "The CLAM Approach to

Multithreaded Communication on Shared-Memory Multiprocessors: Design and

Experiments," IEEE Transactions on Parallel and Distributed Systems, vol. 09, no. 1,

pp. 36-49, Jan., 1998.

[84] E. Mascarenhas and V. Rego, ―Ariadne: Architecture of a Portable Threads System

Supporting Thread Migration,‖ Software–Practice and Experience, vol. 26, no. 3, pp.

327-357, Mar. 1996.

[85] Kruskal, C. and Weiss, A. Allocating independent subtasks on parallel processors, IEEE

Trans. Softw. Eng., SE-11, 10 (Oct. 1985).

[86] S.F. Hummel, E. Schonberg, L.E. Flynn, Factoring: a method for scheduling parallel

loops, Communications of the ACM 35 (8) (1992) 90–101.

[87] Flynn, L.E. and Hummel, S.F. Scheduling variable-length parallel subtasks. IBM

Research Report RC 15492, Feb. 1990.

[88] Polychronopoulos, C. and Kuck, D. Guided self-scheduling: A practical scheduling

scheme for parallel computers. IEEE Trans. Comput. C-36, 12 (Dec. 1987), 1425-1439.

[89] S.F. Hummel, J. Schmidt, R.N. Uma, J. Wein, Load-sharing in heterogeneous systems via

weighted factoring, in: Proceedings of the 8th Annual ACM Symposium on Parallel

Algorithms and Architectures, 1996, pp. 318–328.

[90] I. Banicescu, V. Velusamy, Load balancing highly irregular computations with the

adaptive factoring, in: Proceedings of the IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2002)—Heterogeneous Computing Workshop, IEEE

Computer Society Press, 2002, p. (CDROM).

142

[91] I. Banicescu, V. Velusamy, J. Devaprasad, On the scalability of dynamic scheduling

scientific applications with adaptive weighted factoring, Cluster Computing: The Journal

of Networks, Software Tools and Applications 6 (3) (2003) 215–226.

[92] J. Chen, V.E. Taylor, Mesh partitioning for distributed systems: exploring optimal

number of partitions with local and remote communication, in: Proceedings of 9th SIAM

Conference on Parallel Processing for Scientific Computing, 1999, p. (CDROM).

[93] A. Sohn, H. Simon, S-harp: a scalable parallel dynamic partitioner for adaptive mesh-

based computations, in: Supercomputing �98: Proceedings of the 1998 ACM/IEEE

Conference on Supercomputing, IEEE Computer Society, 1998, p. (CDROM).

[94] I. Banicescu, R. L. Cariño, J. P. Pabico, M. Balasubramaniam, Design and

Implementation of A Novel Dynamic Load Balancing Library for Cluster Computing,

Journal of Parallel Computing, Vol. 31, Issue 7, Pg. 736-756, July 2005

[95] B. Dimitrov and V. Rego. Arachne: A portable threads system supporting migrant threads

on heterogeneous network farms. IEEE Concurrency Magazine, 7(1):60-69, January

1999.

[96] A. Itzkovitz, A. Schuster, and L. Shalev. Thread migration and its applications in

distributed shared memory systems. Systems and Software, 42(1):71-87, 1998.

[97] T. Liang, C. Shieh, J. Li, Selecting Threads for Workload Migration in Software

Distributed Shared Memory Systems, Journal of Parallel Computing, Vol. 28, Issue 6, Pg.

893-913, June 2002

[98] T.T.Y. Suen, J.S.K. Wong, Efficient Task Migration Algorithm for Distributed Systems,

IEEE Transactions on Parallel and Distributed Systems, vol. 03, no. 4, pp. 488-499,

Jul., 1992.

143

[99] F. O. Lucchese, E. J. Huerta Yero, F. S. Sambatti, and M. A. A. Henriques, An Adaptive

Scheduler for Grid, Journal of Grid Computing, vol. 04, no. 1, pp. 1-17, March, 2006

[100] F. Desprez, and A. Vernois, Simultaneous Scheduling of Replication and Computation

for Data-Intensive Applications on the Grid, Journal of Grid Computing, vol. 04, no. 1,

pp. 19-31, March, 2006

[101] S. Huang, E. Aubanel, and V. C. Bhavsar, PaGrid: A Mesh Partitioner for Computational

Grids, Journal of Grid Computing, vol. 04, no. 1, pp. 71-88, March, 2006

[102] G. W. Finger, J. Kapat, and A. Bhattacharya, Analysis of Tangential Momentum

Accommodation Coefficient Using Molecular Dynamics Simulation. Microfluidics

Session at 44th AIAA Aerospace Sciences Meeting & Exhibit, 2006

[103] http://www.centos.org/

[104] Stankovic, N., and Zhang, K., A Distributed Parallel Programming Framework, IEEE

Transactions on Software Engineering, 28(5), May 2002, pp.478-493

http://www.centos.org/

	Vcluster: A Portable Virtual Computing Library For Cluster Computing
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES AND LISTINGS
	LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 Motivation
	1.2 Features of VCluster
	1.3 Contributions of the Thesis
	1.4 Organization of This Thesis

	CHAPTER TWO: LITERATURE REVIEW
	2.1 Cluster Computing
	2.2 The Java Language
	2.3 Java Libraries for Cluster Computing
	2.4 Cluster-wide Multithreading
	2.4.1 Non-Java Approaches
	2.4.2 Multithreading Through Java

	2.5 Thread/Process Migration
	2.6 Comparison of libraries by features

	CHAPTER THREE: VCLUSTER – ARCHITECTURE AND IMPLEMENTATION
	3.1 Design Philosophy
	3.2 VCluster – The Architecture
	3.2.1 Global Architecture
	3.2.2 Local Architecture
	3.2.3 Thread Migration

	3.3 VCluster – Implementation
	3.3.1 Implementation of Global Architecture
	3.3.2 Implementation of Local Architecture
	3.3.3 The Initialization Process
	3.3.4 Thread Migration
	3.3.5 Object Serialization

	3.4 Conclusion

	CHAPTER FOUR: USE OF VCLUSTER
	4.1 An Example Application
	4.2 A Multithreading Application
	4.3 Conclusion

	CHAPTER FIVE: PERFORMANCE, EXPERIMENTS AND COMPARISON
	5.1 Communication Overhead
	5.2 Experiments without Multithreading
	5.2.1 Parallel Dirichlet Problem
	5.2.2 Parallel Back-propagation Neural Network

	5.3 Experiments with Multithreading
	5.3.1 Coding with VCluster and Other Libraries
	5.3.2 Experiments and Results

	5.4 Molecular Dynamics
	5.5 Conclusion

	CHAPTER SIX: PREDICTIVE MODELING USING COMPLEXITY ANALYSIS
	CHAPTER SEVEN: EXPERIMENTS FOR LOAD BALANCING WITH VCLUSTER
	7.1 Introduction to Load Balancing
	7.2 Related Research
	7.2.1 Mesh Partitioning
	7.2.2 Scheduling of Parallel Loops
	7.2.3 Thread/Process Migration in Load Balancing

	7.3 Implementation of Load Balancing in VCluster
	7.3.1 Thread Group
	7.3.2 Load Balancing

	7.4 Experiments and Results
	7.4.1 Migrate One Thread at a Time
	7.4.2 Migrate More than One Threads at a Time
	7.4.3 Migrate More than One Thread from More than One Node as a Time
	7.4.4 Multi-Threading Issue with Linux Thread Library

	7.5 Conclusion

	CHAPTER EIGHT: FUTURE WORK AND CONCLUSION
	8.1 Mini-Grid
	8.2 Conclusion

	APPENDIX A: SOURCE CODE
	Appl.java
	applState.java
	applThread.java

	APPENDIX B: DOCUMENTATION
	VCluster
	VC_Channel
	VC_ChannelSet
	VC_State
	VC_Thread

	LIST OF REFERENCES

