121 research outputs found

    Contributions to QoS and energy efficiency in wi-fi networks

    Get PDF
    The Wi-Fi technology has been in the recent years fostering the proliferation of attractive mobile computing devices with broadband capabilities. Current Wi-Fi radios though severely impact the battery duration of these devices thus limiting their potential applications. In this thesis we present a set of contributions that address the challenge of increasing energy efficiency in Wi-Fi networks. In particular, we consider the problem of how to optimize the trade-off between performance and energy effciency in a wide variety of use cases and applications. In this context, we introduce novel energy effcient algorithms for real-time and data applications, for distributed and centralized Wi-Fi QoS and power saving protocols and for Wi-Fi stations and Access Points. In addition, the diÂżerent algorithms presented in this thesis adhere to the following design guidelines: i) they are implemented entirely at layer two, and can hence be easily re-used in any device with a Wi-Fi interface, ii) they do not require modiÂżcations to current 802.11 standards, and can hence be readily deployed in existing Wi-Fi devices, and iii) whenever possible they favor client side solutions, and hence mobile computing devices implementing them can benefit from an increased energy efficiency regardless of the Access Point they connect to. Each of our proposed algorithms is thoroughly evaluated by means of both theoretical analysis and packet level simulations. Thus, the contributions presented in this thesis provide a realistic set of tools to improve energy efficiency in current Wi-Fi networks

    Towards Optimising WLANs Power Saving: Novel Context-aware Network Traffic Classification Based on a Machine Learning Approach

    Get PDF
    Energy is a vital resource in wireless computing systems. Despite the increasing popularity of Wireless Local Area Networks (WLANs), one of the most important outstanding issues remains the power consumption caused by Wireless Network Interface Controller (WNIC). To save this energy and reduce the overall power consumption of wireless devices, most approaches proposed to-date are focused on static and adaptive power saving modes. Existing literature has highlighted several issues and limitations in regards to their power consumption and performance degradation, warranting the need for further enhancements. In this paper, we propose a novel context-aware network traffic classification approach based on Machine Learning (ML) classifiers for optimizing WLAN power saving. The levels of traffic interaction in the background are contextually exploited for application of ML classifiers. Finally, the classified output traffic is used to optimize our proposed, Context-aware Listen Interval (CALI) power saving modes. A real-world dataset is recorded, based on nine smartphone applications’ network traffic, reflecting different types of network behaviour and interaction. This is used to evaluate the performance of eight ML classifiers in this initial study. Comparative results show that more than 99% of accuracy can be achieved. Our study indicates that ML classifiers are suited for classifying smartphone applications’ network traffic based on levels of interaction in the background

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    Practical and Context-Aware Resource Adaptation in Mobile Networks

    Get PDF
    With the proliferation of various portable devices such as smart phones, netbooks and tablets, it becomes more important to design and implement effective resource management schemes with (i) the increasing number of users in the network and (ii) the expectation of frequent and fast mobility of network users. In this dissertation, we conclude that the key to solve the problem in mobile networks is adaptive resource allocation, which requires the system to behave in an adaptive manner considering the dynamic network conditions and various context of mobile users. Specifically, we study the following critical resource allocation issues in this dissertation: (i) rate adaptation; (ii) station handoff; (iii) load balancing; and (iv) power saving, for each we have proposed an adaptive scheme, implemented it in the MadWifi device driver, and demonstrated its effectiveness via experiments

    Towards next generation WLANs: exploiting coordination and cooperation

    Get PDF
    Wireless Local Area Networks (WLANs) operating in the industrial, scientific and medical (ISM) radio bands have gained great popularity and increasing usage over the past few years. The corresponding MAC/PHY specification, the IEEE 802.11 standard, has also evolved to adapt to such development. However, as the number of WLAN mobile users increases, and as their needs evolve in the face of new applications, there is an ongoing need for the further evolution of the IEEE 802.11 standard. In this thesis we propose several MAC/PHY layer protocols and schemes that will provide more system throughput, lower packet delivery delay and lessen the power consumption of mobile devices. Our work investigates three approaches that lead to improved WLAN performance: 1) cross-layer design of the PHY and MAC layers for larger system throughput, 2) exploring the use of implicit coordination among clients to increase the efficiency of random media access, and 3) improved packets dispatching by the access points (APs) to preserve the battery of mobile devices. Each proposed solution is supported by theoretical proofs and extensively studied by simulations or experiments on testbeds

    Towards Optimizing WLANs Power Saving: Context-Aware Listen Interval

    Get PDF
    Despite the rapid growth of Wireless Local Area Networks (WLANs), the energy consumption caused by wireless communication remains a significant factor in reducing the battery life of power-constrained wireless devices. To reduce the energy consumption, static and adaptive power saving mechanisms have been deployed in WLANs. However, some inherent drawbacks and limitations remain. We have developed the concept of Context-Aware Listen Interval (CALI), in which the wireless network interface, with the aid of a Machine Learning (ML) classification model, sleeps and awakes based on the level of network activity of each application. In this paper we develop the power saving modes of CALI. The experimental results show that CALI consumes up to 75% less power when compared to the currently deployed power saving mechanism on the latest generation of smartphones, and up to 14% less energy when compared to Pyles’ et al. SAPSM power saving approach, which also employs an ML classifier

    Exploring Energy Consumption Issues for video Streaming in Mobile Devices: a Review

    Full text link
    The proliferation of high-end mobile devices, such as smart phones, tablets, together have gained the popularity of multimedia streaming among the user. It is found from various studies and survey that at end of 2020 mobile devices will increase drastically and Mobile video streaming will also grow rapidly than overall average mobile traffic. The streaming application in Smartphone heavily depends on the wireless network activities substantially amount of data transfer server to the client. Because of very high energy requirement of data transmitted in wireless interface for video streaming application considered as most energy consuming application. Therefore to optimize the battery USAge of mobile device during video streaming it is essential to understand the various video streaming techniques and there energy consumption issues in different environment. In this paper we explore energy consumption in mobile device while experiencing video streaming and examine the solution that has been discussed in various research to improve the energy consumption during video streaming in mobile devices . We classify the investigation on a different layer of internet protocol stack they utilize and also compare them and provide proof of fact that already exist in modern Smartphone as energy saving mechanism
    • …
    corecore