thesis

Towards next generation WLANs: exploiting coordination and cooperation

Abstract

Wireless Local Area Networks (WLANs) operating in the industrial, scientific and medical (ISM) radio bands have gained great popularity and increasing usage over the past few years. The corresponding MAC/PHY specification, the IEEE 802.11 standard, has also evolved to adapt to such development. However, as the number of WLAN mobile users increases, and as their needs evolve in the face of new applications, there is an ongoing need for the further evolution of the IEEE 802.11 standard. In this thesis we propose several MAC/PHY layer protocols and schemes that will provide more system throughput, lower packet delivery delay and lessen the power consumption of mobile devices. Our work investigates three approaches that lead to improved WLAN performance: 1) cross-layer design of the PHY and MAC layers for larger system throughput, 2) exploring the use of implicit coordination among clients to increase the efficiency of random media access, and 3) improved packets dispatching by the access points (APs) to preserve the battery of mobile devices. Each proposed solution is supported by theoretical proofs and extensively studied by simulations or experiments on testbeds

    Similar works