23,009 research outputs found

    Adaptive Operator Selection and Management in Evolutionary Algorithms

    Get PDF
    One of the settings that most affect the performance of Evolutionary Algorithms is the selection of the variation operators that are efficient to solve the problem at hand. The control of these operators can be handled in an autonomous way, while solving the problem, at two different levels: at the structural level, when deciding which operators should be part of the algorithmic framework, referred to as Adaptive Operator Management (AOM); and at the behavioral level, when selecting which of the available operators should be applied at a given time instant, called as Adaptive Operator Selection (AOS). Both controllers guide their choices based on a common knowledge about the recent performance of each operator. In this chapter, we present methods for these two complementary aspects of operator control, the ExCoDyMAB AOS and the Blacksmith AOM, providing case studies to analyze them in order to highlight the major issues that should be considered for the design of more autonomous Evolutionary Algorithms

    From Adaptive to More Dynamic Control in Evolutionary Algorithms

    Get PDF
    Adaptive evolutionary algorithms have been widely developed to improve the management of the balance between intensification and diversification during the search. Nevertheless, this balance may need to be dynamically adjusted over time. Based on previous works on adaptive operator selection, we investigate in this paper how an adaptive controller can be used to achieve more dynamic search scenarios and what is the real impact of possible combinations of control components. This study may be helpful for the development of more autonomous and efficient evolutionary algorithms

    The Novel Approach of Adaptive Twin Probability for Genetic Algorithm

    Full text link
    The performance of GA is measured and analyzed in terms of its performance parameters against variations in its genetic operators and associated parameters. Since last four decades huge numbers of researchers have been working on the performance of GA and its enhancement. This earlier research work on analyzing the performance of GA enforces the need to further investigate the exploration and exploitation characteristics and observe its impact on the behavior and overall performance of GA. This paper introduces the novel approach of adaptive twin probability associated with the advanced twin operator that enhances the performance of GA. The design of the advanced twin operator is extrapolated from the twin offspring birth due to single ovulation in natural genetic systems as mentioned in the earlier works. The twin probability of this operator is adaptively varied based on the fitness of best individual thereby relieving the GA user from statically defining its value. This novel approach of adaptive twin probability is experimented and tested on the standard benchmark optimization test functions. The experimental results show the increased accuracy in terms of the best individual and reduced convergence time.Comment: 7 pages, International Journal of Advanced Studies in Computer Science and Engineering (IJASCSE), Volume 2, Special Issue 2, 201

    Use of Statistical Outlier Detection Method in Adaptive\ud Evolutionary Algorithms

    Get PDF
    In this paper, the issue of adapting probabilities for Evolutionary Algorithm (EA) search operators is revisited. A framework is devised for distinguishing between measurements of performance and the interpretation of those measurements for purposes of adaptation. Several examples of measurements and statistical interpretations are provided. Probability value adaptation is tested using an EA with 10 search operators against 10 test problems with results indicating that both the type of measurement and its statistical interpretation play significant roles in EA performance. We also find that selecting operators based on the prevalence of outliers rather than on average performance is able to provide considerable improvements to\ud adaptive methods and soundly outperforms the non-adaptive\ud case

    Use of statistical outlier detection method in adaptive evolutionary algorithms

    Full text link
    In this paper, the issue of adapting probabilities for Evolutionary Algorithm (EA) search operators is revisited. A framework is devised for distinguishing between measurements of performance and the interpretation of those measurements for purposes of adaptation. Several examples of measurements and statistical interpretations are provided. Probability value adaptation is tested using an EA with 10 search operators against 10 test problems with results indicating that both the type of measurement and its statistical interpretation play significant roles in EA performance. We also find that selecting operators based on the prevalence of outliers rather than on average performance is able to provide considerable improvements to adaptive methods and soundly outperforms the non-adaptive case
    corecore