242 research outputs found

    Dynamics and controls for robot manipulators with open and closed kinematic chain mechanisms

    Get PDF
    This dissertation deals with dynamics and controls for robot manipulators with open and closed kinematic chain mechanisms;Part I of this dissertation considers the problem of designing a class of robust algorithms for the trajectory tracking control of unconstrained single robot manipulator. The general control structure consists of two parts: The nominal control laws are first introduced to stabilize the system in the absence of uncertainties, then a class of robust nonlinear control laws are adopted to compensate for both the structured uncertainties and the unstructured uncertainties by using deterministic approach. The possible upper bounds of uncertainties are assumed to be known for the nonadaptive version of robust nonlinear controls. If information on these bounds is not available, then the adaptive bound of the robust controller is presented to overcome possible time-varying uncertainties (i.e., decentralized adaptive control scheme);Part II of the dissertation presents the efficient methodology of formulating system dynamics and hybrid position/force control for a single robot manipulator under geometric end-effector constraints. In order to facilitate dynamic analysis and control synthesis, the original joint-space dynamics (or a set of DAEs) is transformed into the constraint-space model through nonlinear transformations. Using the transformed dynamic model, a class of hybrid control laws are presented to manipulate the position and contact force at the end-effector simultaneously and accurately: the modified computed torque method, the robust adaptive controller, and the adaptive hybrid impedance controller;Part III of the dissertation deals with a mathematical modeling and coordinated control of multiple robot manipulators holding and transporting a rigid common object on the constraint surfaces. First, the kinematics and dynamics of multiple robot systems containing the closed-chain mechanisms are formulated from a unified viewpoint. After a series of model transformations, a new combined dynamic model is derived for dynamic analysis and control synthesis. Next, a class of hybrid position/force controllers are developed. The control laws can be used to simultaneously control the position of the object along the constraint surfaces and the contact forces (the internal grasping forces and the external constraint forces)

    Hybrid force and position control in robotic surface processing

    Get PDF
    PhD ThesisThis programme of research was supported by NEI Parsons Ltd. who sought a robotic means of polishing mechanical components. A study of the problems associated with robot controlled surface processing is presented. From this evolved an approach consistent with the formalisation of the demands of workpiece manipulation which included the adoption of the Hybrid robot control scheme capable of simultaneous force and position control. A unique 3 axis planar experimental manipulator was designed which utilized combined parallel and serial drives. A force sensing wrist was used to measure contact force. A variant of the Hybrid control 'scheme was successfully implemented on a twin computer control system. A number of manipulator control programs are presented. The force control aspect is shown both experimentally and analytically to present control problems and the research has concentrated on this aspect. A general analysis of the dynamics of force control is given which shows force response to be dependent on a number' of important parameters including force sensor, environment and manipulator dynamics. The need for a robust or adaptable force controller is discussed. A series of force controlled manipulator experiments is described and the results discussed in the context of general analyses and specific single degree of freedom simulations. Improvements to manipulator force control are suggested and some were implemented. These are discussed together with their immediate application to the improvement of robot controlled surface processing. This work also lays important foundations for long term related research. In particular the new techniques for actively controlled assembly and force control under 'fast' operation.Science and Engineering Research Council NEI Parsons Ltd

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Position and Force Control of Cooperating Robots Using Inverse Dynamics

    Get PDF

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 Second Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Delay occurs with earth-based teleoperation in space and with surface-based teleoperation with untethered submersibles when acoustic communication links are involved. The delay in obtaining position and force feedback from remote slave arms makes teleoperation extremely difficult leading to very low productivity. We have combined computer graphics with manipulator programming to provide a solution to the problem. A teleoperator master arm is interfaced to a graphics based simulator of the remote environment. The system is then coupled with a robot manipulator at the remote, delayed site. The operator\u27s actions are monitored to provide both kinesthetic and visual feedback and to generate symbolic motion commands to the remote slave. The slave robot then executes these symbolic commands delayed in time. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment which is then reset to the error state from which the operator continues the task

    Lungs cancer nodules detection from ct scan images with convolutional neural networks

    Get PDF
    Lungs cancer is a life-taking disease and is causing a problem around the world for a long time. The only plausible solution for this type of disease is the early detection of the disease because at preliminary stages it can be treated or cured. With the recent medical advancements, Computerized Tomography (CT) scan is the best technique out there to get the images of internal body organs. Sometimes, even experienced doctors are not able to identify cancer just by looking at the CT scan. During the past few years, a lot of research work is devoted to achieve the task for lung cancer detection but they failed to achieve accuracy. The main objective of this piece of this research was to find an appropriate method for classification of nodules and non-nodules. For classification, the dataset was taken from Japanese Society of Radiological Technology (JSRT) with 247 three-dimensional images. The images were preprocessed into gray-scale images. The lung cancer detection model was built using Convolutional Neural Networks (CNN). The model was able to achieve an accuracy of 88% with lowest loss rate of 0.21% and was found better than other highly complex methods for classification

    Robot manipulator skill learning and generalising through teleoperation

    Get PDF
    Robot manipulators have been widely used for simple repetitive, and accurate tasks in industrial plants, such as pick and place, assembly and welding etc., but it is still hard to deploy in human-centred environments for dexterous manipulation tasks, such as medical examination and robot-assisted healthcare. These tasks are not only related to motion planning and control but also to the compliant interaction behaviour of robots, e.g. motion control, force regulation and impedance adaptation simultaneously under dynamic and unknown environments. Recently, with the development of collaborative robotics (cobots) and machine learning, robot skill learning and generalising have attained increasing attention from robotics, machine learning and neuroscience communities. Nevertheless, learning complex and compliant manipulation skills, such as manipulating deformable objects, scanning the human body and folding clothes, is still challenging for robots. On the other hand, teleoperation, also namely remote operation or telerobotics, has been an old research area since 1950, and there have been a number of applications such as space exploration, telemedicine, marine vehicles and emergency response etc. One of its advantages is to combine the precise control of robots with human intelligence to perform dexterous and safety-critical tasks from a distance. In addition, telepresence allows remote operators could feel the actual interaction between the robot and the environment, including the vision, sound and haptic feedback etc. Especially under the development of various augmented reality (AR), virtual reality (VR) and wearable devices, intuitive and immersive teleoperation have received increasing attention from robotics and computer science communities. Thus, various human-robot collaboration (HRC) interfaces based on the above technologies were developed to integrate robot control and telemanipulation by human operators for robot skills learning from human beings. In this context, robot skill learning could benefit teleoperation by automating repetitive and tedious tasks, and teleoperation demonstration and interaction by human teachers also allow the robot to learn progressively and interactively. Therefore, in this dissertation, we study human-robot skill transfer and generalising through intuitive teleoperation interfaces for contact-rich manipulation tasks, including medical examination, manipulating deformable objects, grasping soft objects and composite layup in manufacturing. The introduction, motivation and objectives of this thesis are introduced in Chapter 1. In Chapter 2, a literature review on manipulation skills acquisition through teleoperation is carried out, and the motivation and objectives of this thesis are discussed subsequently. Overall, the main contents of this thesis have three parts: Part 1 (Chapter 3) introduces the development and controller design of teleoperation systems with multimodal feedback, which is the foundation of this project for robot learning from human demonstration and interaction. In Part 2 (Chapters 4, 5, 6 and 7), we studied primitive skill library theory, behaviour tree-based modular method, and perception-enhanced method to improve the generalisation capability of learning from the human demonstrations. And several applications were employed to evaluate the effectiveness of these methods.In Part 3 (Chapter 8), we studied the deep multimodal neural networks to encode the manipulation skill, especially the multimodal perception information. This part conducted physical experiments on robot-assisted ultrasound scanning applications.Chapter 9 summarises the contributions and potential directions of this thesis. Keywords: Learning from demonstration; Teleoperation; Multimodal interface; Human-in-the-loop; Compliant control; Human-robot interaction; Robot-assisted sonography

    Engineering for a changing world: 60th Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 04-08, 2023 : programme

    Get PDF
    In 2023, the Ilmenau Scientific Colloquium is once more organised by the Department of Mechanical Engineering. The title of this year’s conference “Engineering for a Changing World” refers to limited natural resources of our planet, to massive changes in cooperation between continents, countries, institutions and people – enabled by the increased implementation of information technology as the probably most dominant driver in many fields. The Colloquium, supplemented by workshops, is characterised but not limited to the following topics: – Precision engineering and measurement technology Nanofabrication – Industry 4.0 and digitalisation in mechanical engineering – Mechatronics, biomechatronics and mechanism technology – Systems engineering – Productive teaming - Human-machine collaboration in the production environment The topics are oriented on key strategic aspects of research and teaching in Mechanical Engineering at our university
    • …
    corecore