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Abstract  

Multiple robot manipulators cooperating in a common manipulation task can 

accomplish complex tasks that a single manipulator would be unable to 

complete. To achieve physical cooperation with multiple manipulators working 

on a common object, interaction forces need to be controlled throughout the 

motion. The aim of this research is to develop an inverse dynamics model-

based cooperative force and position control scheme for multiple robot 

manipulators. An extended definition of motion is proposed to include force 

demands based on a constrained Lagrangian dynamics and Lagrangian 

multipliers formulation. This allows the direct calculation of the inverse dynamics 

with both motion and force demands. A feedforward controller based on the 

proposed method is built to realise the cooperative control of two robots sharing 

a common load, with both motion and force demands. Furthermore, this thesis 

develops a method to design an optimal excitation trajectory for robot dynamic 

parameter estimation utilising the Schroeder Phased Harmonic Sequence. This 

method yields more precise and accurate inverse dynamics models, which 

result in better control. The proposed controller is then tested in an experimental 

set-up consisting of two robot manipulators and a common load. Results show 

that in general the proposed controller performs noticeably better position and 

force tracking, especially for higher speed motions, when compared to 

traditional hybrid position/force controllers.  
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 Introduction  1

1.1 Overview  

Since the concept of cooperative robotic systems was first seriously explored in 

the 1980s, the systems themselves have rapidly evolved from the first dual axes 

robot arms to the complex and highly specified robots used in industrial settings 

today [1-6]. Cooperative robotics is a multi-disciplinary field that spans the full 

range of computer science, electrical engineering, artificial intelligence, biology, 

communication, and robotics [7]. Two or more robots cooperating in a single 

manipulation task can accomplish different kinds of complex task that a single 

manipulator would be unable to complete alone. Even when a single robot is 

able to achieve a given task, it is possible that employing a group of robots can 

improve the performance of the overall system [8]. Furthermore, single multi-link 

actuators, such as a robotic hand, require the cooperative actuation of all its 

parts.  

With the ever-increasing development of the modern world, the demand for 

everyday products drives industries to invest more and more in automation. In 

2013, an “all-time high” of almost 180,000 industrial robots were sold worldwide, 

which is 12 percent more than in 2012 [9]. Continuing development of the 

manipulators and control systems that allows cooperative systems to be 

effective at controlling forces and able to accomplish increasingly detailed and 

specific tasks is necessary for implementation of these systems in industry.  

Controlling the forces of manipulators in cooperatively controlled robots is a 

challenge because the forces in three-dimensional spaces may act 

independently on different agents in the system. As soon as multiple 

manipulators grip one object, the robotic system forms a closed chain 

mechanism that is extremely nonlinear and coupled, which has an effect on the 

controller design. With only position-controlled robots, it is problematic to 

accomplish a synchronised trajectory of two or more robots with no error 

between them. Small errors in the trajectories will result in huge internal force 

which can damage the load and the robots themselves, therefore it is necessary 

to regulate the internal force [10]. To achieve this, one can use force sensors 
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and hence force feedback control. However, when moving fast, a simple PI 

controlled force feedback loop cannot handle the nonlinearities of the 

manipulator system. Consequently, more advanced force control methods are 

demanded. Addressing force control in cooperating manipulator systems is vital 

to understanding cooperative control in current industrial robotics and in 

prototypes that may become part of robotics technology in the future. 

1.2 Hypothesis and Contributions  

The hypothesis explored in this thesis is the following:  

“The usage of Lagrangian methods to derive feedforward controllers that 

combine position and force will improve the control of fast moving cooperative 

robotic systems.”  

The cooperative robotic systems referred to are two or more robots sharing a 

common physical constraint; for example, two robots carry a shared load. 

The primary contribution of the thesis is to introduce a formulation of the 

Lagrangian dynamics to be applied to force- and position-constrained tasks that 

occur during multi-robot physical interaction. Chapter 3 describes the 

manipulation of the constrained equations such that force and position can be 

used as hybrid inputs to the model. This is in contrast to the conventional 

approach in which only acceleration is used as the demand.  

The second contribution is to introduce a novel approach to optimally identify 

model parameters experimentally. Chapter 4 describes the use of Schroeder 

Phased Harmonic Sequence (SPHS) in obtaining optimal excitation trajectories. 

SPHS has fewer parameters to optimise compared to the conventional Fourier 

series or polynomial curves.  

1.3 Objectives of the Research 

The objectives to prove the hypothesis are:  

 To develop an inverse dynamics model-based cooperative manipulator 

control scheme that regulates internal force while achieving desired 

motion. Based on constrained Lagrangian dynamics and Lagrangian 
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multipliers, an extended definition of motion inputs is proposed to include 

force demands. This allows direct calculation of the inverse dynamics with 

both motion and force inputs. Furthermore, given the generality of the 

Lagrangian formulation, different physical phenomena can be modelled 

within the unified approach, enabling the modelling of complex systems. 

 To implement the proposed controller experimentally. A test rig consisting 

of two robot manipulators is used for the studying of the controller 

performance.  

 To develop a method of optimal excitation trajectory design for the 

estimation of robot dynamic parameters. Existing methods require many 

parameters during the optimisation process. The proposed method should 

use fewer parameters.  

1.4 Layout of the Thesis 

This thesis is organised as follows: Chapter 2 presents a review of past 

literature that covers the cooperation of multiple robots, robot force control and 

its application in cooperative manipulation, and trajectory design for dynamic 

parameter estimation of robot manipulators. Chapter 3 describes the derivation 

of the extended inverse dynamics formulation and the feedforward control 

scheme. Simulations are presented on cooperative controlled manipulators. 

Chapter 4 presents the hardware and software used in the research and a brief 

experiment set-up. Then the new method to design optimal excitation 

trajectories is presented. Chapter 5 and 6 present a detailed set-up for each 

experimental case and the results are reported and analysed. Chapter 7 

presents the conclusions and recommendations for future developments.  
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 Background to Multi-Robot 2
Systems and Force Control 

By definition, industrial robots are generally reprogrammable, multipurpose 

machines with some ability to sense, plan, and act to complete defined functions, 

and they generally have a contained mechanism for observing and addressing 

disturbance. These robots can often carry out motion in six axes and utilise a 

broad range of end-effectors. They comprise one of the largest and most 

diversified classes of machines that are able to interact autonomously in an 

industrial environment. Additional challenges arise when programming for 

complex or specific processes among multiple robotic systems.  

The coordinated control of multiple robot manipulators has been actively studied 

by many researchers. Since robots have become an integral part of human life, 

they are presented with increasingly difficult tasks. Many of these tasks can be 

achieved by multiple robots better than a single robot. By cooperating, robots 

can complete tasks more quickly, improve system robustness, and achieve 

tasks impossible for a single robot. A robotic system consisting of several 

manipulators has more capability than a single manipulator for tasks such as 

handling heavy material and assembly. 

Controlling force in a varied group of robots provides a unique challenge for 

engineers and researchers. To achieve cooperation when multiple manipulators 

hold a common object, internal and external forces need to be measured and 

controlled. With only position-controlled robots, it is problematic to accomplish 

the synchronised trajectory of two robots with no error between them [11]. A 

small error in the trajectories will result in huge internal forces which can 

damage the load; therefore, it is necessary to measure and control internal 

forces.  

An accurate dynamic model of the manipulator is required for the purposes of 

model-based control and robot manipulator simulations. Known kinematic and 

inertial parameters of the manipulator can be used to construct a dynamic 

model. The kinematic parameters, such as joint types, link lengths, and offsets 

between joint axes can be obtained from the manufacturer, or from calibrations, 



5 

 

without difficulty. However, most of the time inertial parameters such as link 

mass, location of the centre of gravity (COG), and moment of inertia, are not 

available from the manufacturers. Therefore, many attempts have been made to 

identify these parameters.  

This chapter is organised as follows: Section 2.1 presents a review of multi-

robot cooperation and classification; Section 2.2 presents a review of position 

and force control; Section 2.3 presents a review of robot dynamic parameter 

estimation.  

2.1 Multi-Robot Cooperation 

Multi-robot system technology has progressed rapidly from simulation, to 

laboratory prototyping, to realization of real-world applications [12]. 

Cooperatively controlled industrial robots, among others, have become capable 

of greater operating work volumes and better repeatability accuracy in the past 

decades, as well as dropping to a price range practical in many industrial 

settings. A typical industrial robot that cost $100,000 ten years ago, now costs 

$30,000, making it much more attractive to medium sized manufacturing and 

industrial companies [4]. While multi-robot systems offer many advantages and 

increased potential when compared to single robots, there are still many 

challenges in their design, realization, and control that must be overcome in 

order to yield cost-effective and efficient multi-robot systems.  

The quality and control of robotic manipulators has improved. However, simple 

arm joints are still widely used, with joints that are actuated by electric motors or 

hydraulic actuators, though newer arm geometries and joints allow for easier 

maintenance and more detailed, reprogrammable motion. Improvements in 

robot control, planning, and human interfacing are necessary to allow 

cooperative robot systems to be a practical alternative as manufacturing 

continues to shift from the high volume assembly line and conveyor belts of the 

mid-twentieth century, to the contemporary High-Mix Low-Volume (HMLV) 

manufacturing seen in current industrial environments. Advances in coordinated 

robotic systems control coupled with more capable manipulators have made 

these systems more practical for industry [13].  
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When two or more manipulators handle one object, they form a closed chain 

mechanism, which is referred to as a parallel mechanism. A parallel mechanism 

is where “the stationary link and the output link are connected by more than one 

link” [14]. Manipulators that consist of parallel mechanisms are termed parallel 

manipulators [15]. Furthermore, when there are more actuators than the 

degrees of freedom (DOF) of the system, it is then called redundantly actuated 

parallel manipulators [16].  

The cooperative manipulators have close resemblance to parallel manipulators. 

They share similar kinematic and dynamic properties. However, they serve 

different purposes hence their research focuses are different. Cooperative 

manipulators consist of individual manipulators which carry out tasks together, 

possibly with different loads from time to time. Therefore, the connections 

between manipulators and loads are temporary and consequently the dynamics 

of the mechanisms change. The research of cooperative manipulators focuses 

on coordination control, motion planning, robustness, force control and mobile 

applications [17-23]. On the other hand, parallel manipulators have built-in 

closed chain mechanisms and their goals are often to provide moving platforms 

or interact with other objects. The research of redundant parallel manipulators 

focuses mainly on position accuracy improvement, force capacity improvement 

and force distribution [24-26]. Internal forces considered by redundantly 

actuated parallel manipulators are preloads which can eliminate backlash in the 

system [27].  

Researchers generally agree that multi-robot systems have several advantages 

over single robot systems [28-30]. The most common motivations for developing 

multi-robot system solutions are that: (1) the task complexity is too high for a 

single robot to accomplish; (2) the task is inherently distributed; (3) building 

several resource-bounded robots is much easier than having a single powerful 

robot; (4) multiple robots can solve problems faster using parallelism; and (5) 

the introduction of multiple robots increases robustness through redundancy. 

Examples of manipulation tasks that cooperating manipulators may achieve 

include automated manufacturing, assembling, and handling large, heavy or 

flexible objects [31-36]. The types of robot considered in this thesis are those 

cooperating robot arms, such as in load handling.  
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To understand multi-robot systems as a whole, a classification of multi-robot 

systems is necessary. Many researchers have proposed various taxonomies for 

these systems. Cao et al. proposed five research axes on cooperative 

behaviour: group architectures, resource conflicts, origins of cooperation, 

learning, and geometric problems [37]. Dudek et al. provided a classification and 

metrics scheme for these systems by classifying robotic collectives by seven 

different characteristics: collective size, range of communication, communication 

topology, communication bandwidth, collective reconfigurability, processing 

ability of each agent, and collective composition [38]. Gerkey and Matarić 

provided a taxonomy of task allocation problems based on three classes: 

single/multi task robots, single/multi robot tasks, and instantaneous/time-

extended assignments [39]. Winfield proposed a taxonomy focusing on robot 

foraging with four major axes (environment, robot(s), performance and strategy) 

and 19 minor axes [40].  

However, the taxonomy that is most relevant to this thesis is the one provided 

by Farinelli et al. [41]. The authors proposed a taxonomy of coordinated multi-

robot systems. A hierarchical structure is illustrated in Figure 2.1. Although 

focused on complex mobile platforms, the taxonomy is applicable to other 

platforms.  

 

Figure 2.1 Multi-robot systems taxonomy [41], with shaded blocks indicating the 
classification of this thesis 

The proposed controller in this thesis is designed for multiple robot cooperative 

load manipulation. The controller needs the dynamic information of all robots 

Organisation 

Coordination 

Knowledge 
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Coordinated 
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Not 
Coordianted 
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and load. All feedforward and feedback control is executed by a single controller. 

Therefore, the work focused in this thesis can be classified in Cooperative - 

Aware - Strongly coordinated - Strongly centralized, as show in Figure 2.1 with 

the shaded blocks. 

2.2 Position and Force Control 

De Schutter et al. stated in their bird’s eye view of force control that major force 

control methods were distinguished by their constraint models: hybrid/parallel 

position/force control deals with geometric constraints; impedance control deals 

with dynamic constraints [42]. Whereas Zen and Hemami provided a more 

structured and detailed overview of robot force control [43]. A classification is 

provided according to their taxonomy in Table 2.1. However, there is a slight 

alteration to their taxonomy. According to Zen and Hemami, in the fundamental 

force control, the stiffness, impedance, and admittance control is listed 

separately. Here they are grouped together under indirect force control for more 

clarity.  

Table 2.1 A classification of robot force control based on taxonomy in [43] 

Fundamental 

force control 

Indirect force control 

Stiffness control  [44] 

Impedance control  [45-50] 

Admittance control   

Hybrid control 
Hybrid position/force control  [29, 30, 51-57] 

Hybrid impedance control  [58] 

Explicit force control  [59] 

Implicit force control  

Advanced 

force control 

Adaptive force 

control 

Adaptive compliant motion control  [60] 

Adaptive impedance or admittance 

control  
[61, 62] 

Adaptive position/force control  [63-65] 

Adaptive explicit force control  

Robust force control 

Robust compliant motion control  

Robust impedance or admittance 

control  
[66-68] 

Robust position/force control  [65, 69] 

Robust explicit force control  

Learning algorithm  [70-73] 

Neural network techniques [74, 75] 

Fuzzy control  [75-77] 

The two most basic approaches are hybrid position/force control and impedance 

control. Hybrid position/force control regulates position and force in orthogonally 

separate frames [10, 30, 51, 78]. This approach can be naturally applied to 

many tasks, such as deburring and polishing. On the other hand, impedance 
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control does not control position and force directly. Alternatively, it regulates the 

mechanical impedance of the manipulator, which is the ratio of force to velocity 

[45, 79, 80]. The main difference between the two approaches is whether the 

force feedback loop is explicitly enclosed [12].  

Both the hybrid position/force control and impedance control started on 

controlling external forces, i.e. when a robot comes into contact with its 

environment. However, in cooperative manipulation, internal force also needs to 

be controlled. Tension and compression forces are examples of internal forces. 

Both hybrid position/force control and impedance control can be applied to 

cooperative manipulation [46, 47, 54, 77, 81-83], but this process is not 

straightforward because of the increasing system complexity. Schneider and 

Cannon used object impedance control to explicitly control internal forces in 

cooperative manipulation [46]. The differences between three controllers were 

also compared: coordinated joint PD, coordinated endpoint impedance and 

object impedance. Bonitz and Hsia applied impedance control to internal force. 

Force feedback was transformed to trajectory correction through a compliance 

function [47]. Leksono et al. proposed an impedance control on cooperative 

motion with variable compliance gain [82]. Perdereau and Drouin considered 

each cooperative manipulator as an autonomous, independently controlled 

system and used stiffness like force control [54]. This simplifies the 

implementation of the coordinated controller. Although the above three groups 

of authors achieved good force and position tracking, the exact following of the 

desired force profile is impossible using impedance control strategies [84]. In [81] 

only the interaction forces at manipulator end points are controlled, not the 

internal force. The internal force is a subset of the interaction forces that do not 

contribute to any of the acceleration of the object. Tinos et al. studied 

cooperative manipulators with passive joints with decomposed motion and 

squeeze force controls [83]. Inertia matrices are not required by the controller; 

however, a new Jacobian matrix has to be built. Gueaieb used robust adaptive 

control for cooperative manipulator tasks in order to cope with dynamic model 

uncertainties by assuming a closed chain model [77].  

In recent years, compliant devices were used on traditional industrial robots. 

Lange et al. employed a compliant force sensor to reduce force errors when 

approaching unexpected objects [85]. Dai and Kerr designed and tested a force 
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measuring device based on the six DOF mini Stewart platform [86]. Lopes and 

Almeida developed a similar active auxiliary device [87]. It can be mounted on 

an industrial manipulator and used to execute the impedance and force control 

laws. Whereas Kim et al. achieved simultaneous force and position control 

through a mechanical method [56]. The authors built a new actuator unit 

composed of two actuators and a planetary gear train connected in series, 

where one high-torque low-speed motor controls the position while the other 

low-torque high-speed motor regulates the stiffness.  

Khatib proposed a unified framework for motion and force control of robot 

manipulators [78, 88, 89]. Given tasks were specified by the generalised task 

specification matrix and an active force control term was unified into the 

operational space command vector. Yoshikawa presented a similar approach 

with explicitly described end-effector constraint hypersurfaces [52, 90]. In [91], 

Yoshikawa and Zheng proposed a dynamic hybrid controller for position and 

force control of multiple manipulators handling a common object. Although the 

dynamics of the robots and the object were taken into account, a complicated 

nonlinear state feedback law was employed as the control technique. Frictions 

and gravity were not included in the robot dynamics.  

The controller proposed in this thesis utilises Lagrangian methods to simplify the 

calculation of the control inputs. An extended motion definition is the key to 

combine both motion and force demand in inverse dynamics calculation.  

2.3 Parameter Estimation 

Parameter estimation has been an active area of research for decades [92]. 

Many methods have been used to model and estimate parameters of robotic 

systems [93-96]. There are several major factors, such as model formation, 

estimation algorithm, and excitation trajectory, which can affect the outcome of 

the process. Section 4.3 presents a new approach to design excitation 

trajectories for estimating inertial parameters of a robot manipulator.  

There are three major methods in terms of robot inertial parameter estimation: 

physical experiments; CAD models; identification [97]. The first method involves 

disassembling the robot and obtaining the parameters of individual links. For 

example, mass can be weighed; COG can be measured by counterbalancing; 
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pendulous motions can be used to determine the diagonal elements of the 

inertia tensor. However, this method should ideally be employed by the 

manufacturer before assembling the robot because disassembly and assembly 

are labour intensive and technically challenging tasks. The second method 

needs a CAD model of the robot and sometimes that is simply not available (as 

in the case of this thesis). Even if the CAD model is available, the method is 

likely to produce errors because of the complicated nature of robot hardware 

and often ignored small component parts. Thirdly, the identification method is 

based on the behaviour analysis of the robot input and output signals, during or 

after a predefined motion. This method is widely used and tested and therefore 

it is chosen to obtain the robot parameters later in this thesis.  

There are two major approaches in the identification of robot parameters: 

sequential testing and overall trajectory optimisation [92], both of which have 

their pros and cons. The sequential test method uses several trajectories which 

excite different sets of parameters at a time. However, errors accumulate due to 

the reuse of the parameters from preceding estimations. The overall trajectory 

optimisation methods often involve solving nonlinear optimisation problems with 

a large number of parameters. There are various formulations of overall 

trajectory optimisation process, but these are cumbersome and do not 

guarantee a global optimum solution.  

Armstrong et al. [98] described an approach in which the DOF are points of a 

series of joint accelerations. This general approach results in a large number of 

DOF, such that optimisation becomes intractable. Gautier and Khalil [99] 

optimised a linear combination of the condition number and the equilibrium of 

the set of equations that generate the parameters. The DOF are a finite set of 

joint angles and velocities separated in time. The actual trajectory is continuous 

and smooth, and is calculated by interpolating a fifth-order polynomial between 

the optimised points, assuming zero initial and final acceleration. However, only 

a very small part of the final trajectory, the finite set of joint angles and velocities, 

is optimised. As a result, the total smooth trajectory cannot be guaranteed to 

satisfy all motion constraints or to be optimal with respect to the condition 

number or the covariance matrix criterion.  
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Swevers et al. [100, 101] presented a robot excitation that is periodic. The 

excitation trajectory for each joint is a finite Fourier series. This approach 

guarantees improving the quality of the measured signals by time-domain 

averaging; estimating the noise characteristics without performing additional 

measurements; and calculating more accurate and less noise sensitive joint 

velocities and accelerations, which are required to calculate the identification 

matrices. This approach, however, still results in a relatively large number of 

trajectory parameters to optimise, depending on the number of harmonics 

chosen in the Fourier series.  

In Section 4.3, a new approach is proposed toward the design of robot 

excitation trajectories, which is based on the Schroeder Phased Harmonic 

Sequence (SPHS). This approach will overcome the drawbacks mentioned 

above. The SPHS signal has fewer parameters; furthermore, using this method 

guarantees optimal trajectories.  

2.4 Concluding Remarks 

Following the above review of multi-robot position and force control, this thesis 

will focus on the development of an inverse dynamics controller for multi-robot 

motion and force control on single object with tight cooperation. The controller 

should be simple to implement with all dynamics of the robots and object taken 

into account. Detailed derivation is described in Chapter 3.  

In estimating manipulator dynamic parameters, the previous excitation trajectory 

design methods mainly use polynomial curves or finite Fourier series as base 

trajectories. Then the parameters of these trajectories are optimised according 

to criteria related to identification matrices. However, these trajectories often 

comprise a large number of parameters, which prolongs the optimisation and 

may cause the optimisation to end up in local minimums. These problems are 

easily overcome by the use of SPHS signals proposed in this thesis because 

SPHS signals consist of fewer parameters. More details can be found in Section 

4.3.  
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 Extended Inverse Dynamics 3
Controller  

In this chapter, a novel method is introduced and derived to calculate inverse 

dynamics. This method deals with both motion and force inputs at the same 

time. The advantage of this approach is a simplified calculation of inverse 

dynamics that integrates force and position demands within the same 

framework. The conventional method needs to separate the system properly 

according to the demanded forces. Once separated, the inverse dynamics need 

to be calculated on each subsystem. This is particularly difficult when the 

system is complicated, so more human input is needed. The new method 

involves the construction of a feedforward controller from inverse dynamics.  

The chapter is organised as follows: Section 3.1 introduces the new method for 

calculating inverse dynamics with both motion and force inputs; Section 3.2 

presents the control strategy using the proposed inverse dynamics calculation; 

Section 3.3 presents the simulations of a simplified system using the new 

controller. Section 3.4 concludes this chapter.  

3.1 Description of an Extended Inverse 
Dynamics Controller  

Conventional inverse dynamics formulations do not allow motions with higher 

DOF than that of the system. This eliminates the use of inverse dynamics for 

redundant systems, where there are more actuators than the DOF of the system. 

Even if a manipulator is fully actuated, it may become redundant when 

cooperating with two or more manipulators to perform a joint task, or there may 

be external constraints imposed on the motion. In this situation, the proposed 

extended inverse dynamics is able to calculate control inputs with higher DOF 

motions.  

In this section, the inverse dynamics of robot manipulators is derived, starting 

with developing differential equations to describe the relationship between 

forces/torques and motion. Both forward dynamics and inverse dynamics are 

derived in the following subsections.  
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3.1.1 Lagrangian Dynamics 

Dynamic analysis is important for the design of robots and control algorithms 

[102]. Newton’s three laws and the concept of virtual work may be regarded as 

the foundation of classical mechanics. However, the basic laws of dynamics can 

be formulated in several ways other than that given by Newton, such as 

d’Alembert’s principle, Lagrange’s equations, Hamilton’s equations and 

Hamilton’s principle. All are basically equivalent, but vary in terms of ease of 

developing the equations of motion. Although Newton’s equations are 

convenient for simple cases, Lagrange’s equations offer significant advantages 

when dealing with multi-body and/or multi-physics mechatronics systems and 

widely used in robotics. The first part of this section will cover Lagrange’s 

equations, also referred as Euler-Lagrange equations, to describe the system 

dynamics.  

There are two general types of dynamical problems. Almost every problem in 

classical dynamics is a special case of one of the following general types:  

 Forward dynamics: Allows to find the “motion” of the system (i.e. the 

position, velocity and acceleration of each mass as a function of time) 

from the given forces and torques acting on the system, constraints, and 

known position and velocity of each mass at a given instant of time (e.g. 

initial conditions).  

 Inverse dynamics: Allows to calculate a possible set of forces and torques 

as a function of time to produce a specified motion.  

The Lagrangian dynamics offer many advantages over conventional Newton’s 

method of writing equations of motion. These include:  

 For a large class of mechanical systems, the Lagrange equations provide 

a unique and sufficiently simple method of constructing equations of 

motion that is independent of the form (complexity) of the actual system.  

 Only work and energy are used, which are scalar quantities and have the 

same unit for any branches of physics whether mechanical, electrical or 

chemical.  

 The chief advantage of the Lagrange equations is that the number of 

equations is equal to the number of DOF of the system and is 

independent of the number of points and bodies in the system.  
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 Internal forces or any forces not contributing any work are not needed in 

the derivation. This is a great advantage over Newton’s reaction force 

balancing method for any slightly complicated system. Nevertheless, the 

forces can still be calculated when required.  

 Lagrange’s equations take the same form for any coordinate system, so 

that the method of solution proceeds in the same way for any problem.  

 It is invariant under coordinate transformations.  

 Only positions and velocities but not accelerations (unlike Newton’s 

method) are needed in the derivation.  

3.1.1.1 Lagrangian Formulation  

Using Lagrange’s equation of motion [102], the dynamic model of an n-DOF 

rigid body manipulator is derived. It can be stated as: 

 
𝑑

𝑑𝑡
(
𝜕𝑳

𝜕𝑞�̇�
) −

𝜕𝑳

𝜕𝑞𝑖
= 𝑄𝑖, 𝑖 = 1⋯𝑁 (3.1) 

where:  

qi, i = 1 … N are the generalised coordinates  

Qi, i = 1 … N are the generalised inputs (forces/torques) 

N is the number of generalised coordinates (normally equal to the number of 

DOF of the system M) 

Defining 𝐪  and �̇�  as the vectors of generalised coordinates and derivatives, 

respectively  

𝑳(𝐪, �̇�, 𝑡) is the Lagrangian function 𝑳 = 𝐸 − 𝑉 

𝐸(𝐪, �̇�, 𝑡) is the kinetic energy function 

𝑉(𝐪, 𝑡) is the potential energy function 

When Lagrange’s equations of motion are developed for any manipulator, the 

resulting dynamic equations will be in the following general form:  
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 𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�) +  𝐆(𝐪) =  𝐐  (3.2) 

where M(q) is the N × N mass matrix, 𝐂(𝐪, �̇�) is an N × 1 vector of centrifugal 

and Coriolis forces/torques, G(q) is an N × 1 vector of gravity forces/torques, 

and Q is the vector of generalised inputs. If M is not constant, there may be a 

position where the corresponding q values cause the determinant of M to 

become zero. This is known as singularity, and there is no solution for the 

equations of the motion at the singular position. 

3.1.1.2 Generalised Coordinates 

A great variety of coordinates can be employed as generalised coordinates. 

Consequently, the choice of generalised coordinates specifies generalised 

inputs. For example, in a system with a two-link manipulator with a point-mass 

load, as shown in Figure 3.1, if the angles θ1 and θ2 are selected as the 

generalised coordinates, then the torques τ1 and τ2 acting on θ1 and θ2 become 

the generalised inputs. However, if, say x3 and y3 are used as generalised 

coordinates, then the forces acting in the direction of x3 and y3, Fx and Fy 

respectively, become the generalised inputs.  

 
Figure 3.1 A system of a two-link manipulator with a point-mass load 
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3.1.1.3 Generalised Inputs 

There may be external forces acting on the system which are not along the 

direction of generalised coordinates. One method of expressing these forces 

along the generalised coordinates is to utilise the principle of virtual work.  

The work done by forces 𝐹𝑣𝑖, 𝑖 = 1⋯𝐻 , acting in infinitesimal displacements 

𝑣𝑖, 𝑖 = 1⋯𝐻, is: 

 𝛿𝑊 =∑𝐹𝑣𝑖𝛿𝑣𝑖

𝐻

𝑖=1

 (3.3) 

If the system has N DOF represented by N generalised coordinates 𝑞𝑖, 𝑖 = 1⋯𝑁, 

the coordinates (vi’s) can be eliminated by using the constraint or transformation 

equations as follows: 

 𝑣𝑖 = 𝑣𝑖(𝑞1, 𝑞2,⋯ , 𝑞𝑁), 𝑖 = 1⋯𝐻 (3.4) 

This gives 

 𝛿𝑣𝑖 =∑
𝛿𝑣𝑖
𝛿𝑞𝑗

𝑁

𝑗=1

𝛿𝑞𝑗, 𝑖 = 1⋯𝐻 (3.5) 

Substituting (3.5) into (3.3) gives the total virtual work in the following general 

form:  

 
𝛿𝑊 = [⋯ ]⏟ 𝛿𝑞1 + [⋯ ]⏟ 𝛿𝑞2 +⋯+ [⋯ ]⏟ 𝛿𝑞𝑁

      𝑄1                𝑄2                         𝑄𝑁
 (3.6) 

where the brackets represents the generalised inputs for the Lagrange’s 

equation of motion.  

Take the two-link manipulator in Figure 3.1 as an example, the absolute angles 

are used as generalised coordinates when developing the equations of motion. 

However, the system inputs are the torques generated by the two motors driving 

each joint. Therefore, the generalised inputs in terms of the motor torques Tm1 
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and Tm2 need to be calculated. Motor torque inputs Tm1 and Tm2 act on the 

relative angles θm1 = θ1 and θm2 = θ2 - θ1, respectively. The total virtual work 

 𝛿𝑊 = 𝑇𝑚1𝛿𝜃𝑚1 + 𝑇𝑚2𝛿𝜃𝑚2 (3.7) 

Replacing motor coordinates with generalised coordinates (i.e. absolute angles) 

gives 

 𝛿𝑊 = 𝑇𝑚1𝛿𝜃𝑚1 + 𝑇𝑚2(𝛿𝜃2 − 𝛿𝜃1) (3.8) 

or 

 𝛿𝑊 = [𝑇𝑚1 − 𝑇𝑚2]𝛿𝜃1 + [𝑇𝑚2]𝛿𝜃2 (3.9) 

Hence the generalised inputs:  

 𝑄1 = 𝑇𝑚1 − 𝑇𝑚2, 𝑎𝑛𝑑 𝑄2 = 𝑇𝑚2 (3.10) 

or 

 𝐐 = [
1 −1
0 1

]𝐓𝑚 (3.11) 

3.1.1.4 Constrained Lagrangian Equations 

When developing equations of motion, it may be convenient to use more 

generalised coordinates than the number of DOF, i.e. N > M. Since only M 

independent variable can exist for an M - DOF system, N - M constraint 

equations are needed:  

 𝑓𝑗(𝑞1, 𝑞2,⋯ , 𝑞𝑁) = 0, 𝑗 = 1⋯(𝑁 −𝑀) (3.12) 

or in vector form 

 𝐟(𝐪) = [𝑓1⋯𝑓𝑁−𝑀]
𝑇 = 𝟎 (3.13) 
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These are called holonomic constraints, i.e. it is possible to eliminate N - M 

superfluous coordinates by using (3.12). Of course, superfluous coordinates can 

be eliminated from the Lagrangian function before developing the Lagrange’s 

equations of motion. However, this may increase the complexity of the algebraic 

manipulations. The advantages of using superfluous coordinates can be 

appreciated if the motion were specified in the workspace, as there would be no 

need to convert the motion into joint coordinates.  

The following alternative version of the Lagrange’s equations of motion allows 

the use of more generalised coordinates than the number of DOF:  

 
𝑑

𝑑𝑡
(
𝜕𝑳

𝜕𝑞�̇�
) −

𝜕𝐿

𝜕𝑞𝑖
+ ∑ 𝜆𝑗

𝑁−𝑀

𝑗=1

𝜕𝑓𝑗

𝜕𝑞𝑖
= 𝑄𝑖 , 𝑖 = 1⋯𝑁 (3.14) 

where fj and λj are the jth constraint equation and Lagrangian multiplier, 

respectively, for i = 1… N and j = 1… (N - M). This would produce N equations of 

motions in the following general form:  

 𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�) +  𝐆(𝐪) + 𝐉𝑇(𝐪)𝛌 =  𝐐 (3.15) 

where λ is the vector of Lagrangian multipliers. The matrix J is the (N - M) × N 

constraint Jacobian matrix containing the partial derivatives of constraint 

equations with respect to generalised coordinates.  

 𝐉 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑞1

𝜕𝑓1
𝜕𝑞2

⋯
𝜕𝑓1
𝜕𝑞𝑁

⋮ ⋱ ⋮
𝜕𝑓𝑁−𝑀
𝜕𝑞1

𝜕𝑓𝑁−𝑀
𝜕𝑞2

⋯
𝜕𝑓𝑁−𝑀
𝜕𝑞𝑁 ]

 
 
 
 

 (3.16) 

and 

 𝛌 = [𝜆1 𝜆2  ⋯ 𝜆𝑁−𝑀] (3.17) 

Equation (3.15) provides N second order differential equations. Together with N 

- M constraint equations in (3.13), these provide enough differential-algebraic 
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equations to solve for 2N - M variables (N generalised coordinates and N - M 

Lagrangian multipliers).  

To combine algebraic and differential equations (3.13) and (3.15), the algebraic 

constraint equations (3.13) can be differentiated twice.  

Differentiating once: 

 𝐉�̇� = 𝟎 (3.18) 

Differentiating twice: 

 𝐉�̈� + �̇��̇� = 𝟎 (3.19) 

Adding this to (3.15) gives the following equations of motion 

 [
𝐌(𝐪) 𝐉𝑇(𝐪)
𝐉(𝐪) 𝟎𝑁−𝑀,𝑁−𝑀

] [
�̈�
𝛌
] = [

𝐐 − 𝐂(𝐪, �̇�) −  𝐆(𝐪)

−�̇��̇�
] (3.20) 

or in a simpler form  

 
[
𝐌 𝐉𝑇

𝐉 𝟎
]

⏟    
[
�̈�
𝛌
] = [

𝐃 + 𝐐

−�̇��̇�
]

𝐀(𝐪)                           

 (3.21) 

The vector D contains the centrifugal, Coriolis and gravity forces and torques.  

Accelerations and Lagrangian multipliers can now be calculated 

 [
�̈�
𝛌
] = [

𝐌 𝐉𝑇

𝐉 𝟎
]
−1

[
𝐃 + 𝐐

−�̇��̇�
] (3.22) 

For a forward dynamics simulation and a given set of initial conditions 𝐪(0) and 

�̇�(0), the acceleration �̈� obtained from (3.22) can be double integrated to obtain 

the motion of the system in terms of the time history of the coordinates and their 

derivatives.  
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It is obvious that in order for a solution to exist, the determinant of the above 

square matrix A(q) (which is dependent on q) must have full rank. Although the 

A matrix is structurally invertible for any physical system, it can be less than full 

rank at certain q values. Configurations of the manipulator, which make the 

above determinant zero, are called singular positions.  

3.1.1.5 Constraint Forces 

The Lagrangian multipliers are automatically calculated, and can be used to 

determine the generalised constraint forces Fc as: 

 𝐅𝑐 = −𝐉
𝑇𝛌 (3.23) 

It is also possible to calculate specific constraint force 𝐹𝑐
𝑖,𝑗

 acting along qi as a 

result of the jth constraint, as follows: 

 𝐹𝑐
𝑖,𝑗
= −𝐽𝑗,𝑖𝜆𝑗 (3.24) 

where Jj,i, is the partial derivative of the jth constraint with respect to qi, or the jth 

row and ith column of J.  

One of the problems with (3.21) is that the integration accumulates errors in the 

constraint equations. This is because the formulation only uses 𝐟̈ = 0, but not 

𝐟 =  0  (for holonomic constraints) and 𝐟̇ = 0 . There are many different 

approaches proposed in the literature, but Sahinkaya stated that the following 

approach works well with variable step integration methods [103]. Treating the 

constraints as a second order system, the second block row in (3.21), i.e. 𝐟̈ = 0, 

can be replaced with  

 𝐉�̈� = −�̇��̇� − 2휁𝜔𝑛𝐟̇ − 𝜔𝑛
2𝐟 (3.25) 

where ωn and ζ are the effective natural frequency and damping ratio of the 

constraint stabilization process. A large ωn value slows the integration, and a 

small value reduces the accuracy and hence the effect of the stabilization 

process.  
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In the current application, the selection of ωn is based on the estimated suitable 

step size, h. This estimate can be based on the average step size used by the 

variable step integrator during the initial part of the simulation without 

stabilization. If the integration is treated as a discretization process and the 

average step size as the sampling interval, the Nyquist sampling theorem 

dictates that ωn should be less than half of the sampling frequency. However, in 

practice, a factor of 5 to 10 is used instead of 2. By conveniently selecting a 

factor of 2π, the parameter values of ωn = 1/h and ζ = 0.7 are used. Lower ζ 

values cause the filter output gain exceeds one, which could destabilise the 

whole system. Whereas higher ζ values reduce the gains near the cut-off 

frequency so that more information is lost.  

3.1.1.6 Inverse Dynamics 

Inverse dynamics allow the calculation of required control inputs in order to 

achieve a desired motion. The solution of inverse dynamics relies on the 

forward dynamic equations written either in the form of (3.2) where N = M or 

(3.15) where N > M. In the same way, the motion can be specified in terms of K 

independent generalised coordinates, where K is the number of degrees of the 

motion and can be either K = M or K < M. Table 3.1 shows all five possible 

cases. Only cases A, B and C are covered here. Conventionally, a manipulator 

cannot perform a motion with a higher number of DOF than M. However, if a 

force demand is included in the motion definition and considered another DOF, 

it is possible for a manipulator to perform when K > M. This will be explained in 

the following subsections.  

Table 3.1 Different cases for the inverse dynamics problem in terms of modelling and 
motion definitions 

Motion 

Modelling 
K = M K < M K > M 

N = M A D - 

N > M B E C 
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3.1.1.7 Inverse Dynamics - Case A 

This is the simplest case where the Lagrange’s equations of motion are 

developed by using N = M generalised coordinates as in (3.2), and the motion is 

defined by K = N = M generalised coordinates.  

 𝐁�̈� = 𝐲(𝑡) (3.26) 

where B is the K × N matrix specifying the motion defining generalised 

coordinates, and y is the desired acceleration functions describing the motion. 

There must be K control inputs for a unique solution to exist [104].  

The motion definition means that 𝐪(𝑡), �̇�(𝑡), and �̈�(𝑡) are given. Rewriting (3.2) 

to include the generalised control input vector u 

 𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�) +  𝐆(𝐪) = 𝐐 + 𝐮 (3.27) 

Therefore, the control input can easily be calculated as:  

 𝐮 = 𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�) +  𝐆(𝐪) − 𝐐 (3.28) 

Depending on the generalised coordinates, the generalised control inputs can 

be either torque or force, i.e. if qi is angle then ui is torque; if qi is displacement 

then ui is force. 

It is important to note that no integration or solution of differential equations is 

needed for this case.  

If the motion is specified by using M superfluous coordinates v = v(q), then the 

inverse kinematics can be used to calculate the time history of the generalised 

coordinates, and then the first and second derivatives by using the Jacobian:  

 �̇� = 𝐉�̇�, �̈� = 𝐉�̈� + �̇��̇� (3.29) 

to give  

 �̇� = 𝐉−𝟏�̇�, �̈� = 𝐉−𝟏�̈� + 𝐉−𝟏�̇��̇� (3.30) 
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3.1.1.8 Inverse Dynamics - Case B 

Case B deals with Lagrange’s equations of motion using more generalised 

coordinates than the number of DOF of the system, i.e. N > M, as generalised 

by (3.21). This removes the need to eliminate redundant coordinates when 

writing the Lagrangian function. It also eliminates the need to perform inverse or 

forward kinematics when processing the simulation results, and allows the 

automatic calculation of constraint forces.  

The motion is specified by defining K = M generalised coordinates and their first 

and second derivatives. The K = M unknown control inputs, 𝑢𝑖, 𝑖 = 1⋯𝑀, are 

added to the right hand side of the corresponding M equations in (3.20).  

Then the inverse dynamics solution involves two stages: 

1. Discarding the M equations corresponding to the M unknown control 

inputs, solve for the remaining 2(N - M) equations for the (N - M) 

unknown elements of �̈�  and (N - M) Lagrangian variables. Double 

integrating the accelerations would enable the calculation of the 

unspecified Lagrangian variables and their first derivatives.  

2. Having calculated all 𝐪, �̇�, �̈� and λ, the unknown control inputs u can be 

calculated by using the discarded M equations in the first stage.  

3.1.2 Extended Inverse Dynamics Concept - Case C  

The new approach is based on the inverse dynamics Case B. It extends the 

definition of motion to cover not only the acceleration of the generalised 

coordinates, but also the Lagrangian multipliers (or constraint forces) as follows:  

 𝐁�̈� + 𝐂𝛌 = 𝐲(𝑡) (3.31) 

With this new definition of motion, it is now possible to specify a motion with 

higher DOF than that of the system, i.e. K > M. Hence, conventional inverse 

dynamics methods can be implemented. The following three-step formulation of 

the inverse dynamics solution is implemented here: 

Step 1: Write the equations of motion of the system (forward dynamics) 

including the constraints that allow the reaction forces to be calculated by 
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selecting any number of suitable generalised coordinates. This is in the general 

form as in (3.21). 

In order to demonstrate the steps mathematically, the rows in (3.21) are re-

ordered so that the generalised inputs corresponding to K control inputs are 

grouped together (not needed in the numerical solution), i.e. 

 

𝐾{
[

𝐌𝑈 𝐉𝑈
𝑇

𝐌𝑂 𝐉𝑂
𝑇

𝐉 𝟎

] [
�̈�
𝛌
] = [

𝐃𝑈 + 𝐐𝑈
𝐃𝑂 + 𝐐𝑂
−�̇��̇�

] + [
𝐮
𝟎
𝟎
]  (3.32) 

where subscript U denotes the sub-matrices or vectors containing the rows 

corresponding to the control inputs, and O the other rows.  

Step 2: Replace the K equations involving unknown control forces u with the 

motion definitions in (3.31) to obtain: 

 

𝐾{
[

𝐁 𝐂
𝐌𝑂 𝐉𝑂

𝑇

𝐉 𝟎
] [
�̈�
𝛌
] = [

𝐲
𝐃𝑂 + 𝐐𝑂
−�̇��̇�

] (3.33) 

This is in the same form and size as (3.21), therefore it can be solved to obtain 

the motion and the Lagrangian multipliers as in the forward dynamic analysis.  

Step 3: Use the discarded K equations in Step 2 to calculate the required control 

inputs at each integration step: 

 𝐮 = 𝐌𝑈�̈� + 𝐉𝑈
𝑇𝛌 − (𝐃𝑈 + 𝐐𝑈) (3.34) 

The above three-step formulation of a general inverse dynamics analysis is valid 

for both conventional and the extended motion definitions, and can be applied to 

any system with any level of complexity as long as the equations of motion are 

represented in the general form as in (3.21), and the motion as in (3.31).  

In order a solution to exist in Step 2, the (2N - M) × (2N - M) coefficient matrix in 

(3.33), which is a function of q, must have a full rank. The choice of motion 

defining generalised coordinates (i.e. the structure of the B matrix) and the 

control input locations will determine the structural rank as discussed in [104].  
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If the motion definition does not include reaction or constraint forces, i.e. C = 0, 

then defining a motion with K > M would make the coefficient matrix structurally 

singular.  

3.1.3 Numerical Example - a Constrained Two-Link 
Manipulator  

In order to demonstrate the proposed formulation, the two-link manipulator in 

Figure 3.1 is utilised with the load mass being constrained on a sliding surface, 

as shown in Figure 3.2. The data used in the example is shown in Table 3.2. The 

manipulator, without the constraint on the motion of the load, has two DOF, and 

can be driven by two motors at the two joints. However, with the constraint on 

the load motion, the DOF of the mechanism reduces to M = 1. This makes one 

of the motors redundant. Hence a desired achievable 1- DOF load motion can 

be obtained by using one of the motors K = M = 1, and the required torque input 

can be calculated by using conventional inverse dynamics. However, if the 

motion definition also includes the specification of the ground reaction force on 

the load, then the proposed extended inverse dynamics analysis can be used to 

calculate the required torque inputs of two motors (K = 2 > M) uniquely to 

achieve the desired motion and reaction force.  

 
Figure 3.2 Slider-crank mechanism 

Table 3.2 Data for the slider-crank mechanism in Figure 3.2 

Elements Length Li (m) Mass Mi (kg) Inertia Ii (kgm
2
) 

1 Crank 0.5 0.5 0.01 

2 Connecting rod 1.0 1.0 0.08 

3 Sliding block - 2.0 - 

The sliding surface is defined by (3.35). 

  

m1, x1, y1 

θ1 

y 

O 

x 

θ2 

 

FN 

m
2
, x

2
, y

2
 

m
3
, x

3
, y

3
 



27 

 

 −0.3𝑥3 + 𝑦3 + 0.3 = 0 (3.35) 

The desired extended motion is specified as: 

 𝑥3(𝑡) =  𝑥3(0) + ∆𝑥3(1 — 𝑒
−𝜀3) (3.36) 

 𝐹𝑁(𝑡) =  15 (3.37) 

This represents a point-to-point smooth motion of m3 starting at x3(0) and ending 

at x3(0) + ∆x3. The normalized time variable ε is defined as: 

 휀 =
1.66

𝑇𝑠
𝑡 (3.38) 

where Ts is the desired 1% settling time, or duration of the motion [105].  

Step 1: Ignoring the constraint on the load that causes the reaction force FN, the 

equations of motion of a two-link manipulator with a load mass m3 can be 

generated by using Lagrangian dynamics with or without superfluous 

coordinates.  

If, say, four Lagrangian coordinates are selected 

 𝐪 = [𝜃1, 𝜃2, 𝑥3, 𝑦3] (3.39) 

Then two constraint equations are needed as follows: 

 𝐟 = [
𝑥3 − 𝐿1𝑐𝑜𝑠𝜃1 − 𝐿2𝑐𝑜𝑠𝜃2
𝑦3 − 𝐿1𝑠𝑖𝑛𝜃1 − 𝐿2𝑠𝑖𝑛𝜃2

] = 𝟎 (3.40) 

Now adding the third constraint equation to represent the slider mechanism that 

causes the reaction force FN, will result 

 𝐟 = [

𝑥3 − 𝐿1𝑐𝑜𝑠𝜃1 − 𝐿2𝑐𝑜𝑠𝜃2
𝑦3 − 𝐿1𝑠𝑖𝑛𝜃1 − 𝐿2𝑠𝑖𝑛𝜃2
−0.3𝑥3 + 𝑦3 + 0.3

] = 𝟎 (3.41) 
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In this formulation, the ground reaction forces on m3 in the x-y directions can be 

calculated as: 

 𝐹𝑐
𝑥3,3 = 0.3𝜆3   𝑎𝑛𝑑   𝐹𝑐

𝑦3,3 = −𝜆3 (3.42) 

This gives the normal ground reaction force FN as: 

 𝐹𝑁 = √1.09𝜆3 (3.43) 

The constraint Jacobian matrix is  

 𝐉 = [
𝐿1𝑠𝑖𝑛𝜃1 𝐿2𝑠𝑖𝑛𝜃2 1 0
−𝐿1𝑐𝑜𝑠𝜃1 −𝐿2𝑐𝑜𝑠𝜃2 0 1

0 0 −0.3 1
] (3.44) 

The differential algebraic equations of the motion can now be written as:  

 

[
 
 
 
 
 
 
𝑀1,1 𝑀1,2 0 0 𝐽1,1 𝐽2,1 0

𝑀1,2 𝑀2,2 0 0 𝐽1,2 𝐽2,2 0

0 0 𝑚3 0 1 0 −0.3
0 0 0 𝑚3 0 1 1
𝐽1,1 𝐽1,2 1 0 0 0 0

𝐽2,1 𝐽2,2 0 1 0 0 0

0 0 −0.3 1 0 0 0 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
�̈�1
�̈�2
�̈�3
�̈�3
𝜆1
𝜆2
𝜆3]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝐷1 +𝑄1
𝐷2 +𝑄2
𝑄3

𝑄4 −𝑚3𝑔

−𝐿1𝑐𝑜𝑠𝜃1�̇�1
2 − 𝐿2𝑐𝑜𝑠𝜃2�̇�2

2

−𝐿1𝑠𝑖𝑛𝜃1�̇�1
2 − 𝐿2𝑠𝑖𝑛𝜃2�̇�2

2

0 ]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
𝑢1
𝑢2
0
0
0
0
0 ]
 
 
 
 
 
 

 

(3.45) 

where the elements are defined as follows: 
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𝑀1,1 = 𝑚1𝑎1
2 + 𝐼1 +𝑚2𝐿1

2

𝑀2,2 = 𝑚2𝑎2
2 + 𝐼2

𝑀1,2 = 𝑚2𝐿1𝑎2𝑐𝑜𝑠 (𝜃2 − 𝜃1)

𝐽1,1 = 𝐿1𝑠𝑖𝑛𝜃1
𝐽1,2 = 𝐿2𝑠𝑖𝑛𝜃2
𝐽2,1 = −𝐿1𝑐𝑜𝑠𝜃1
𝐽2,2 = −𝐿2𝑐𝑜𝑠𝜃2

𝐷1 = 𝑚2𝐿1𝑎2 𝑠𝑖𝑛(𝜃2 − 𝜃1) �̇�2
2 − (𝑚1𝑎1 +𝑚2𝐿1)𝑔𝑐𝑜𝑠𝜃1

𝐷2 = −𝑚2𝐿1𝑎2 𝑠𝑖𝑛(𝜃2 − 𝜃1) �̇�1
2 −𝑚2𝑔𝑎2𝑐𝑜𝑠𝜃2

 

Step 2: Remove the first two rows of (3.45) and insert the two motion 

specifications: 

 

[
 
 
 
 
 
 
0 0 1 0 0 0 0

0 0 0 0 0 0 √1.09
0 0 𝑚3 0 1 0 −0.3
0 0 0 𝑚3 0 1 1
𝐽1,1 𝐽1,2 1 0 0 0 0

𝐽2,1 𝐽2,2 0 1 0 0 0

0 0 −0.3 1 0 0 0 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
�̈�1
�̈�2
�̈�3
�̈�3
𝜆1
𝜆2
𝜆3]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝛥𝑥3 (

1.66

𝑇𝑠
)
2
(6휀 − 9휀4)𝑒−𝜀

3

15
𝑄3

𝑄4 −𝑚3𝑔

−𝐿1𝑐𝑜𝑠𝜃1�̇�1
2 − 𝐿2𝑐𝑜𝑠𝜃2�̇�2

2

−𝐿1𝑠𝑖𝑛𝜃1�̇�1
2 − 𝐿2𝑠𝑖𝑛𝜃2�̇�2

2

0 ]
 
 
 
 
 
 
 

 

(3.46) 

The solution of (3.46) would give the whole motion and the Lagrangian 

multipliers.  

Step 3: The two control inputs using the discarded two equations in Step 2 

(ignoring the zero columns): 

 [
𝑢1
𝑢2
] = [

𝑀1,1 𝑀1,2 𝐽1,1 𝐽2,1
𝑀1,2 𝑀2,2 𝐽1,2 𝐽2,2

]

[
 
 
 
�̈�1
�̈�2
𝜆1
𝜆2]
 
 
 

− [
𝐷1 + 𝑄1
𝐷2 + 𝑄2

] (3.47) 
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If motor torques Tm1 and Tm2 act on the relative angles, then they can be 

calculated from the generalised control inputs as follows: 

 [
𝑇𝑚1
𝑇𝑚2

] = [
1 1
0 1

] [
𝑢1
𝑢2
] (3.48) 

A typical result is shown in Figure 3.4 to Figure 3.6 for a motion of Ts = 1 s, x3(0) 

= 0.5 m, and ∆x3 = 0.8 m. The calculated motor torques in Figure 3.6 ensure that 

both the desired motion for m3 in Figure 3.4 and the desired normal reaction 

force in Figure 3.5 are achieved.  

 
Figure 3.3 Initial and final positions of the crank mechanism in the simulation, with a 

sliding constraint 

For comparison purposes, the results for a conventional inverse dynamics 

analysis for a 1- DOF desired motion are also included in Figure 3.5 and Figure 

3.6, where the same desired motion of m3 is achieved by the crank motor. 

Obviously, in this case there is no control on the reaction forces.  
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Figure 3.4 Motion definition for the simulation of a constrained crank mechanism 

 
Figure 3.5 Simulation result normal reaction forces on m3 of a constrained crank 

mechanism.  
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Figure 3.6 Motor torques for the simulations of a constrained crank mechanism.  

3.2 Control Scheme  

In this section, the controller is developed for different experimental 

configurations. In general, the proposed extended inverse dynamics method is 

used as a feedforward part of the control inputs. The controller for each joint 

consists of three loops: position feedback, force feedback, and inverse 

dynamics feedforward input, as shown in Figure 3.7.  

 

Figure 3.7 Control system diagram 

 𝛕𝑃𝑜𝑠+𝐹𝑜𝑟𝑐𝑒+𝐹𝑀𝐹𝐹 = 𝛕𝐹𝑜𝑟𝑐𝑒𝑀𝑜𝑡𝑖𝑜𝑛𝐹𝐹 + 𝛕𝑃𝑜𝑠_𝐹𝑏 + 𝛕𝐹𝑜𝑟𝑐𝑒_𝐹𝑏 (3.49) 
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where τPos+Force+FMFF is the total control input; τForceFF is the input from the 

extended inverse dynamics model feedforward loop; τPos_Fb is the input from the 

position feedback loop; τForce_Fb is the input from the force feedback loop. This 

controller is called Controller 1 and noted as “Pos + Force + FMFF”.  

For comparison, different controllers are introduced in the experiments. A 

conventional motion-only inverse dynamics model is built [102].  

 𝛕𝑃𝑜𝑠+𝐹𝑜𝑟𝑐𝑒+𝑀𝐹𝐹 = 𝛕𝑀𝑜𝑡𝑖𝑜𝑛𝐹𝐹 + 𝛕𝑃𝑜𝑠_𝐹𝑏 + 𝛕𝐹𝑜𝑟𝑐𝑒_𝐹𝑏 (3.50) 

where τMotionFF is the input from the conventional motion-only inverse dynamics 

model feedforward loop. This controller is called Controller 2 and noted as “Pos 

+ Force + MFF”. It represents conventional inverse dynamics controller. 

 𝛕𝑃𝑜𝑠+𝐹𝑜𝑟𝑐𝑒 = 𝛕𝑃𝑜𝑠_𝐹𝑏 + 𝛕𝐹𝑜𝑟𝑐𝑒_𝐹𝑏 (3.51) 

This controller is called Controller 3 and noted as “Pos + Force”. It represents 

the conventional hybrid position/force controller.  

 𝛕𝑃𝑜𝑠+𝐹𝑀𝐹𝐹 = 𝛕𝐹𝑜𝑟𝑐𝑒𝑀𝑜𝑡𝑖𝑜𝑛𝐹𝐹 + 𝛕𝑃𝑜𝑠_𝐹𝑏 (3.52) 

This controller is called Controller 4 and noted as “Pos + FMFF”. 

 𝛕𝑃𝑜𝑠 = 𝛕𝑃𝑜𝑠_𝐹𝑏 (3.53) 

This controller is called Controller 5 and noted as “Pos Only”. 

Controllers 1-5 represented by (3.49) - (3.53) are used to carry out the 

experiments and performances are compared in the later sections.   

3.3 Application to Multi-robot Cooperative 
Systems  

In this section, the above-proposed controller is built and simulated for an 

example cooperative system. This example is a simple version of the 

experimental configuration Case II as described in Section 6.1. In this simulation, 
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the two Omni robots are simplified to two two-DOF manipulators moving on a 

vertical plane, where a load object is being held between the manipulators, as 

shown in Figure 3.8. The simulated system is presented in the following 

subsections.  

3.3.1 System Description  

The two identical manipulators are used to perform a cooperative handling job. 

There are in total four actuators in the system, i.e. one electric motor at each 

joint. Figure 3.8 shows the simulated mechanism. The positive direction of each 

motor angle and torque is shown in the figure. The two manipulators are located 

2.2 m apart from each other, and each link and motor is numbered as shown. 

They are both connected to the load from their end-effectors, i.e. Link 1-2 and 

Link 2-2. At the initial position, the centre of the load is located at point (0.8 0) 

and its orientation is parallel to the x-axis, i.e. θ5 = 0°. The parameters are listed 

in Table 3.3.  

 
Figure 3.8 Initial position and final position 

Table 3.3 System parameters 

 Link 1-1 Link 1-2 Link 2-1 Link 2-2 Load (Link 3)  

Mass (kg) 1 1 1 1 2 

Length (m) 1 1 1 1 0.6 

Inertia (kgm
2
) 0.08333 0.08333 0.08333 0.08333 0.1667 
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In the simulation, the forward and inverse modelling of the system is provided by 

Dysim (Section 4.1.2.3) blocks. The variable step ode45 (Dormand-Prince) 

solver is selected, with a relative tolerance setting of 10−6. The whole simulation 

runs for five seconds.  

In the simulation, a straight-line point-to-point motion is given as the desired 

motion. The following path equations will specify a motion with zero initial and 

final velocity and acceleration, and it is continuous for all t ≥ 0 [106].  

 𝑥𝐿 = 𝑥𝐿(0) + Δ𝑥𝐿(1 − 𝑒
−𝜀3) (3.54) 

 𝑢 = 𝛼𝑡 (3.55) 

ΔxL denotes the required change in xL, and ε is the normalized time. The time 

scaling parameter α determines the speed of the motion and relates to the 1% 

settling time, Ts, as follows:  

 Ts =
1.66

𝛼
 (3.56) 

The path equation also has continuous first and second derivatives: 

 �̇�𝐿 = 3Δ𝑥𝐿휀
2𝑒−𝜀

3
 (3.57) 

 �̈�𝐿 = 3Δ𝑥𝐿(2휀 − 3휀
4)𝑒−𝜀

3
 (3.58) 

A unit point-to-point profile is shown in Figure 3.9, i.e. when xL(0) = 0 m, ΔxL = 1 

m, and α = 1.66 thus Ts = 1 s.  
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Figure 3.9 Point-to-point motion when xL(0) = 0 m, ΔxL = 1 m, and α = 1.66 

The same desired motion equations are used for yL with ΔYL and θ5 with Δθ5 

denoting the required change in yL and θ5. The initial position and orientation of 

the load is xL(0) = 0.8 m, yL(0) = 0 m and θ5(0) = 0°. It is desired to move to the 

destination at xL(Ts) = 1.6 m, yL(Ts) = 0.8 m and θ5(Ts) = 30° on a straight line. 

The 1% settling time Ts and simulation period T are selected as 3 s and 5 s, 

respectively, so that the motion lasts 3 s with 1 s before and after the motion.  

3.3.2 Simulation with Conventional Hybrid Position/Force 
Control  

Since the motion requires only three DOF, there is one redundant actuator in 

the system. Thus, this actuator can be used to control the force which the 

manipulators apply to the load, i.e. compression or tension force. This is one of 

the simplest forms of the hybrid force/position control [51].  

In the simulation, three motors control the linear and rotational movements of 

the load, which leaves one motor to be in charge of controlling the reaction force. 

To choose the force controlling actuator in this motion, test runs are carried out 

on each motor. The inverse dynamics fails if Motor 1-1 or Motor 2-1 is chosen 

as the redundant one, because the desired motion is physically impossible to be 

realized using the other three motors. Hence, one of the upper joint motors is 
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selected for the task. Figure 3.10 shows the motor torques when Motor 1-2 is 

chosen and set to a constant torque value. 

 
Figure 3.10 Motor torques when Motor 2 is selected as the force controlling motor and 

given a constant torque 

Forces in generalised coordinates can be calculated by the Dysim Simulink 

block (Section 4.1.2.3) using equation (3.24), which simulates means of force 

sensing. In particular, the forces between each upper link and the load are 

computed. In terms of the reaction forces, the forces in generalised coordinates 

calculated by Dysim forward dynamics have to be transformed into the body-

fixed coordinate of the load object in order to simulate the reaction forces.  

The generalised forces calculated by the forward system block are the forces in 

earth-fixed coordinate directions, one in horizontal x direction and the other in 

vertical y direction. To transform the forces to the load coordinates, the angular 

displacement of the load is needed.  

 [
𝐹𝑥𝐿𝑜𝑎𝑑
𝐹𝑦𝐿𝑜𝑎𝑑

] = [
𝑐𝑜𝑠𝜃5 𝑠𝑖𝑛𝜃5
−𝑠𝑖𝑛𝜃5 𝑐𝑜𝑠𝜃5

] [
𝐹𝑥5
𝐹𝑦5
] (3.59) 

0 1 2 3 4 5
-21

-20.5

-20

-19.5

-19
Motor 2

T
o
rq

u
e
 (

N
m

)

0 1 2 3 4 5
20

30

40

50

60
Motor 4

0 1 2 3 4 5
5

10

15

20
Motor 1

Time (s)

T
o
rq

u
e
 (

N
m

)

0 1 2 3 4 5
-20

0

20

40

Motor 3

Time (s)



38 

 

where FxLoad and FyLoad are the reaction forces that Link 1-2 and Link 2-2 exerted 

on the load in the load’s body-fixed coordinates. Figure 3.11 shows the load 

coordinates. 

 
Figure 3.11 Load coordinates 

A block diagram of the control system is illustrated in Figure 3.7. Combined with 

the force controlling torque, the inverse dynamics model of the system is able to 

generate three torques for Motors 1-1, 2-1 and 2-2, which perform the motion. 

The forward model of the system then calculates the motion and the internal 

forces which both upper links exert on the load. The forces are then transformed 

into the load’s coordinates in order to perform the feedback control.  

The system passes a singular configuration in this motion. The singular point is 

reached when the load and the upper link of the second manipulator turn into a 

straight line. The determinant of the inverse dynamics (the matrix on the left-

hand side of (3.33)) [104] indicates the singular point as shown in Figure 3.12. 

To avoid the simulation collapsing, the minimum step size is set to 0.01 in the 

configuration parameters. In a real system, the mechanism is able to pass the 

singularity point due to the momentum of the load and links.  
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Figure 3.12 Determinant of inverse dynamics indicating a singular point during the point-

to-point motion 

At first, without any force feedback, a constant torque of -20 Nm is given to the 

force controlling motor while the other three are controlling the motion. Figure 

3.13 illustrates the reaction forces in the load x direction. It is noted that the 

directions of the forces are changing during the motion. From the load’s point of 

view, the forces exerted by both links change from squeezing to pulling during 

the motion. The force from Link 1-2 remains in the same direction throughout 

the motion - pushing the load, whereas the force from Link 2-2 changes 

direction at the singular point - from pushing the load to pulling. The combined 

force of around 10N from Link 1-2 and Link 2-2 at the end position is evidence 

for part of the weight of the load.  
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Figure 3.13 Reaction forces in XLoad direction using constant torque on the force 

controlling motor 

However, if a desired reaction force is specified, then a closed-loop force 

feedback controller is necessary to achieve the goal. The desired reaction force 

for Link 1-2 is set to - 20 N, i.e. a compression force on the load. A PI controller 

is introduced to regulate the motor torque according to the force error. The 

proportional gain and integration gain are both set to 100 after trial and error.  

Figure 3.15 shows the reaction forces detected in the cooperative motion in load 

coordinates. It is noticed that the two reaction forces from the two manipulators 

are not equal. The reason is that the weight of the load and the forces from the 

motion have not been excluded from the total reaction forces. The zoomed in 

result in Figure 3.16 shows that the force error from Link 1-2 is within ± 0.2 N, i.e. 

±1% of the desired force.  
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Figure 3.14 Motor torques when Motor 2 is used as the force controlling motor  

 
Figure 3.15 Reaction forces on the load (FxLoad) using feedback control on the force 

controlling motor 
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Figure 3.16 (Zoom in on Figure 3.15) Reaction force on the load (FxLoad) from Link 1-2 

with closed loop control 

3.3.3 Simulation with the Extended Inverse Dynamics 
Feedforward Inputs  

With the same point-to-point motion and force demand, simulation is carried out 

with the extended inverse dynamics feedforward input. The difference now is 

that all the motor torques are calculated by the extended inverse dynamics 

(3.34), combining both motion and force torques.  

Figure 3.17 shows the motor torques calculated using the extended inverse 

dynamics model. It is noted that the torques are almost the same as those from 

the hybrid position/force control, in Figure 3.14. This is because the motion and 

force demands are the same therefore the torques needed to achieve such 

motion and force should be the same regardless of how they are obtained, 

whether recorded from the hybrid controller or calculated by the extended 

inverse dynamics. Similar to Figure 3.15, Figure 3.18 shows the reaction forces 

acting on the load by the links.  
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Figure 3.17 Motor torques for the simulation calculated using the extended inverse 
dynamics controller 

   

 
Figure 3.18 Reaction forces on the load (FxLoad) using the extended inverse dynamics 

controller 
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3.4 Concluding Remarks  

This chapter introduced a new formulation to calculate the inverse dynamics of 

a system with both motion and force demands.  

The inverse dynamics modelling is based on the constrained Lagrangian 

formulation. The use of redundant coordinates allows different coordinates to be 

used to specify the trajectory, control inputs, motion measurement, and 

disturbances. The idea of extended definition of motion allows the calculation to 

be performed with conventional inverse dynamics analysis. 

A cooperative control system of two 2- DOF manipulators has been simulated. 

The two manipulators are carrying a common load trying to complete a given 

load motion with desired internal force. A control strategy for both motion and 

force tracking of the non-linear system based on the extended inverse dynamics 

controller is examined.  

The following chapter introduces the experimental set-up and modelling of the 

robot involved. Then a new approach for finding optimal excitation trajectories 

for the purpose of dynamic parameter estimation was explained and 

demonstrated.  
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 Experimental Set-up and 4
Dynamic Modelling  

The previous chapter introduced a new approach to calculate the inverse 

dynamics of redundant manipulator systems, taking into account of both force 

and motion inputs. A controller was then built using the new inverse dynamics 

model as a feedforward path.  

In this chapter, the experimental set-up and modelling of the robot systems is 

performed. The first half of this chapter presents the hardware and software 

involved and two experimental configurations which will be used in experiments 

in Chapter 5 and 6. The second half of the chapter presents a new approach 

toward the design of optimal robot excitation trajectories and its application to 

parameter estimation for dynamic modelling. Briefly, the method uses the 

fundamental frequency, number of harmonics and overall gain as the 

parameters of a Schroeder Phased Harmonic Sequence (SPHS) signal to 

define optimised excitation trajectories. The results of this approach are also 

published in [107].  

The chapter is organised as follows: Section 4.1 presents all the hardware and 

software that is used later in the simulations and experiments; Section 4.2 

presents different configurations for the experiments; Section 4.3 presents the 

dynamic modelling of the robot. Section 4.4 concludes this chapter. 

4.1 Hardware and Software  

The system is implemented on the Geomagic® Touch™ Haptic Device (formerly 

SensAble Phantom Omni, hereafter referred to as the “Omni robot” or “Robot”) 

by using a “soft real-time” control interface with Simulink developed by Quanser 

[108, 109].  
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4.1.1 Hardware Description  

4.1.1.1 Geomagic Touch Haptic Device and Custom Made Stands 

The Omni robot, shown in Figure 4.1, is originally an input device that has some 

force feedback capability. In this thesis it is used as a robot manipulator, utilising 

the motors fitted originally to provide force feedback.  

The Omni robot is a force feedback haptic device, it has relatively low gear 

ratios (approximately 1:8 for Joint 0, 1 and 2) for exerting sensible forces, which 

makes it a good experiment subject for the extended inverse dynamics 

controller.  

The Robot has six revolute joints and the configuration is similar to a typical 

serial industrial manipulator. However, among all six joints only the first three 

are actuated by DC electric motors; the other three are free rotating wrist joints. 

The three actuated joints are shown as J0, J1 and J2.  

The inputs to the robot are Pulse Width Modulation (PWM) indices, which 

control the DC voltage across the motor armatures. The outputs of the robot are 

joint angles which come from two types of sources: digital encoders and 

potentiometers. The three encoders on motors 0, 1 and 2 output digital readings 

directly through the interface. The three potentiometers in the wrist joints output 

analogue voltages which in turn are converted by analogue to digital converters 

(ADCs) into digital readings. All readings are then translated into practical units 

to indicate the angle for each joint.  

Due to the lack of detailed information from the manufacturer’s specification 

document, experimental parameter estimation is required. Parameters such as 

link mass, moment of inertia, and various friction coefficients will need to be 

identified. Table 4.1 lists some relevant specifications from the document 

provided by the manufacturer [108].  
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Figure 4.1 Geomagic Touch Haptic Device (formerly SensAble Phantom Omni) with joint 

and link labels  

Table 4.1 The PHANTOM Omni Device specification (partial) 

Backdrive friction < 1 oz (0.26 N) 

Maximum exertable force at nominal 

(orthogonal arms) position 
0.75 lbf. (3.3 N) 

Continuous exertable force (24 hrs.) > 0.2 lbf. (0.88 N) 

Stiffness 

X axis > 7.3 lb/in (1.26 N/mm) 

Y axis > 13.4 lb/in (2.31 N/mm) 

Z axis > 5.9 lb/in (1.02 N/mm) 

Inertia (apparent mass at tip) ~0.101 lbm. (45 g) 

Position sensing 

[Stylus gimbal] 

x, y, z (digital encoders) 

[Pitch, roll, yaw (± 5% linearity 

potentiometers)] 

To avoid unwanted movements during experiments, the Omni robot has to be 

securely mounted. There are no readily available parts, therefore a stand is 

designed and manufactured. The design is in Solid Edge, as shown in Figure 

4.2. Each stand is made from aluminium plate, aluminium columns, acrylic plate 

and medium-density fibreboard. It is then made and assembled. A holding 

fixture to lock Link 2 is also designed and made, it is part of an experiment 
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J2 

Link 2 
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design to facilitate a physical constraint, more details can be found in Sections 

4.2, 5.1, and 6.1.  

 
Figure 4.2 CAD assembly of the robot stand and a holding fixture for Link 2 

 
Figure 4.3 The actual robot stand and the holding fixture for Link 2 
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The robots are secured on the stands with screws, as shown in Figure 4.4. The 

stands are then clamped down on the table so that the robots are fixed without 

any relative movement.  

 
Figure 4.4 One of the Omni robots on the stand 

4.1.1.2 Design, Production and Installation of the Load Assembly 

As shown in Figure 4.1, the Omni robot has a pen-shaped end-effector, also 

known as a stylus, at the end of Link 2. It is designed for easy manoeuvre by 

hands. However, this makes it difficult to be connected to other objects, such as 

a force sensor or another Omni robot. In order to use the Robot in experiments, 

a rigid connection has to be made either between one robot and its environment 

or between two robots. Because there are no ready-made parts for the job, a 

connection part has to be made, which also acts as part of the load of the 

system.  

According to the product manual, the upper half of the stylus can be taken off 

and exchanged for service purposes. The connecting mechanism between the 

upper and lower halves is a 6.35 mm jack socket and plug, respectively. After 

removing the upper half, the jack plug, as shown in Figure 4.4, can be used as a 
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connection point for the custom-made part. This configuration also utilises the 

wrist joints as a free rotating load gripping point.  

The connection part is also designed in Solid Edge. Then it is produced from a 

3D printing machine. The CAD drawing and printed part are shown in Figure 4.5. 

It is designed to utilise the jack plug on the lower half of the stylus and it is 

secured by bolts.  

 
Figure 4.5 Load part: CAD model and 3D printed part 

The part is also designed to accommodate a force sensor in the middle. The two 

separate halves are bolted to the force sensor; and together they form the load 

for the experiments. Here it is assumed that the connections between the load 

and two end-effectors can rotate without any friction as the load is being moved; 

and the centre of gravity of the load is in the middle.  

4.1.1.3 Force Sensor Installation and Calibration  

Force and motion control of robot manipulators is in the core of all robotic 

applications concerning robots and environment interactions. An increasing 

number of applications require accurate force manoeuvrability among 



51 

 

manipulators [110]. In order to have successful collaborative robot control, 

control of the interaction force is essential. With the ability to measure reaction 

force or forces, for example, redundant actuators can be utilised to regulate the 

force in a feedback loop while motion is executed by the other actuators.  

In this thesis, force measurement is required for both force feedback control and 

to verify the control performance. The force measurement between the robot 

and its environment and between two robots is accomplished by a miniature 

load cell mounted in the middle of the link (Figure 4.6). The load cell used here 

is the one-axis miniature ‘S’ beam DBBSMM series made by Applied 

Measurements Limited [111]. The model chosen for the experiment has a 2 kg 

capacity or approximately 20 N in both directions along its working axis, i.e. 

tension and compression. The ‘S’ beam model is chosen because it is able to 

withstand lateral force. It is used to measure the internal force of the load alone 

its primary axis. 

 
Figure 4.6 Force sensor mounted in the middle of the load, which together with the rest 

of the ‘pen’ from both robots, forms the load. 

The input voltage of the force sensor is 10 volts. The rated output of the sensor 

is 10 mV/kg. The output is then amplified by a conditioning circuit to improve the 

resolution of the ADC. Although the maximum static force the Omni robot can 

exert is 3.3 N [108], the dynamical force can be larger when the robot is moving 

fast. Hence the range of the force sensor is set to 10 N in both directions, i.e. to 

adjust the conditioning circuit to amplify the force sensor output of ±10 mV by a 

Finternal F
internal
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factor so that the output fits the input range of the ADC, maximising the 

resolution. The input to ADC channels has a range of 0 to 3.2 volts.  

The data acquisition for the force sensor is achieved by using one of the Omni 

robot’s existing ADC channels. As mentioned in Section 4.1.1.1, potentiometers 

are used at the wrist joints of the Omni robot to measure angular displacement. 

The voltages are then fed into the ADCs inside the robot. Given that the angle of 

the last joint, to twist the stylus, is not needed in the experiments (planar 

experiments only), hence the connection to the ADC channel that corresponds 

to the last joint is disconnected from its potentiometer to make use the existing 

channel. The newly available channel is then connected to the force sensor 

amplifier output. This allows the ADC to convert the amplified force reading into 

digital form. It also means that measurements are synchronised by the robot’s 

hardware. The interpretation of this measurement will be force instead of angle.  

The advantage of using existing components is that no extra hardware, such as 

ADC cards, is needed. Furthermore, the entire system is easier to implement, 

because it uses the same software interface as the robot. This significantly 

reduces the effort and time to integrate separate hardware and software 

systems.  

To calibrate the force sensor, a 100-gram weight set is used to exert both 

tension and compression forces. As shown in Figure 4.7, the weights are added 

in 100-gram increments. Then the ADC outputs are recorded three times for 

each increment and average values are obtained. The graph shows that the 

force sensor reading behaves linearly and the relation between force and ADC 

reading can be extracted, resulting in a constant, Cforce. The value of the 

constant, -1.8515, can be read out from the graph and this value will be used in 

all the experiments in this thesis. 

 𝐹 =
𝑔

−1.8515
𝑏 (4.1) 

where f is force; g is the acceleration of gravity; b is ADC reading.  
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Figure 4.7 Force sensor calibration data points, fitted line and equation 

4.1.2 Software Description  

The software used in this study, Matlab/Simulink, Quanser QUARC, and Dysim, 

is described below. 

4.1.2.1 Matlab Simulink  

Matlab is a computer program developed by Mathworks. It is widely used in 

universities and industry to carry out calculations and simulations in various 

situations. One of its main abilities is to solve differential equations. Another 

advantage is that it provides the Simulink graphical programing and simulation 

platform. The simulations and experiments in this thesis are all carried out on 

this platform, in either normal mode or external mode. The version of Matlab 

used is 2009b.  

4.1.2.2 Quanser Realtime Control  

Quanser’s real-time controller QUARC provides a soft realtime environment in 

which the experiments are carried out. QUARC 2.0 is used in all the 

experiments.  
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QUARC is Quanser's new, state-of-the-art rapid prototyping and production 

system for real-time control. It is able to generate real-time code directly from 

Simulink designed controllers for the same PC. QUARC integrates seamlessly 

with Simulink to allow Simulink models to be run in real time on a Windows 

target. Its user interfaces enable parameters of the running model to be tuned 

by changing block parameters in the Simulink diagram and viewing the status of 

a signal in the model through a Simulink Scope while the model runs on the 

target. Furthermore, data can be streamed to the Matlab workspace or to a file 

on disk for off-line analysis. The advantages are summarised as follows [109]: 

 Online parameter tuning right from the Simulink diagram  

 Plotting right from Simulink  

 Code generation for multiple targets from a single Simulink diagram  

 Incremental compiling  

 The ability to dynamically reconfigure a running system from a supervisory 

Simulink model  

 Data archiving 

Quanser also provides a Simulink library that works with its QUARC 

environment, in which there is a set of Simulink blocks that can be used in 

combination with each other to interface with the Omni robot in various ways. 

Within the library, there are two types of block that can be used to interface with 

the Omni robot, namely the HIL (hardware in the loop) Read/Write blocks and 

the third party phantom block. The HIL Read and HIL Write blocks are raw data 

output and input. The HIL Read block outputs encoder counts from the motors 

and potentiometer ADC values from the wrist joints. The HIL Write block inputs 

PWM indices to the motor drivers. The third party phantom block (Figure 4.8) 

comes with integrated input and output ports which are already translated into 

physical units, i.e. joint angle in radians, force input in N, and joint torque input 

in Nm. There are two modes for input, namely joint torque input and Cartesian 

force input. The joint torque input mode is chosen for the experiments due to the 

nature of the controller.  
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Figure 4.8 Quanser QuaRC Phantom Simulink block 

4.1.2.3 Dysim  

For the purposes of this study, it is anticipated that one program, developed in-

house by Prof M N Sahinkaya, will be used to perform the required system 

synthesis and modelling tasks. This program, known as Dysim, is a multi-body 

and multi-physics modelling, simulation and analysis tool. Complicated multi-

body systems can be modelled using this tool. The program uses the principles 

of Lagrangian dynamics [104] to model the complete system; each body in the 

system is described in terms of the amounts of kinetic and potential energy it 

possesses accordingly. For the purposes of control scheme design, each 

mechanical link is considered to be an individual body. Further energy functions 

can be entered to the system to simulate effects such as energy losses in the 

system through, for example, friction.  

The user must define which of the system variables are dependent and 

independent once the equations of motion have been derived. Initial conditions 

for the independent variables must then be specified. These initial conditions 

can be expressed in terms of basic units (i.e. displacement or angle) and first 

derivatives (i.e. velocities). Using this information with the equations of motion, 

Dysim calculates the corresponding initial conditions for the remaining 

dependent variables. On some occasions, more than one initial configuration 

may be possible. For instance, a redundant manipulator can have multiple arm 

positions for a same end point. To ensure that the desired configuration is 

identified by Dysim, it may be necessary to state further, approximate, values for 

the initial conditions of some or all of the dependent variables, to direct the 

system effectively towards the desired arrangement.  

With the construction of the model now complete, the model can be exported 

from Dysim in the form of an S-function block for use within a Simulink 
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environment allowing complex analysis of the system to be carried out. Two 

forms of Simulink block can be created using Dysim.  

The first mode is forward dynamics. Through this method, the user must specify 

the input signal in selected generalised coordinates to the system. The 

response of the system in generalised coordinates to the input signal is then 

calculated.  

The second mode is the inverse dynamics modelling as shown in Figure 4.9. 

The user needs to specify the desired output of the system in terms of 

acceleration of selected generalised coordinates. The input signal in selected 

generalised coordinates required to generate this output motion is then 

calculated. The control input and motion-specifying coordinates can be different. 

However, there must be the same number of motion-specifying coordinates as 

required control inputs, and this number must be less than or equal to the DOF 

of the system. In addition to the desired output, the user can also specify other 

external inputs as in the forward dynamics modelling. It then becomes a hybrid 

forward/inverse dynamics system, which means the calculated inputs of 

selected generalised coordinates become the signals that merge with the 

external generalised inputs to achieve the desired outputs [104].  

 
Figure 4.9 Hybrid forward/inverse dynamics block 

The inverse dynamics mode also incorporates the new method developed in 

Chapter 3. The user can also include desired force in addition to the motion 

input. The constraint force can be set up in the program. A demonstration of the 

Dysim program can be found in Appendix A.  

4.2 Experimental Set-up  

In order to test the algorithms and controller developed in this thesis, a set of 

incrementally more complex experiments are designed:  

Forward Dynamics 
 

Inverse Dynamics Desired Output 

Generalised 
External Input 

Calculated 
Control Input 

Generalised 
Output 
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 Case I: one robot manipulate the load in a constrained motion;  

 Case II-a: remove the constraint and introduce a second robot to hold the 

position as if there is still a constraint;  

 Case II-b: both robots move the load together following motion and 

internal force trajectories.  

The details of these different configurations are described in the experiment 

chapters - Chapter 5 and 6.  

The generic experimental test-bed uses two Omni robots which will be 

configured differently according to the experiment. The configuration consists of 

two Omni robots. They are considered identical, therefore their physical 

parameters are assumed to be the same. Figure 4.10 shows the notations of the 

components; Figure 4.11 shows the notations of the length and distance. Figure 

4.12 shows the global coordinates, angle notations, and positive directions.  

The length of the load between grabbing points and the distance between robot 

bases are needed (as shown in Figure 4.11). They can be either measured 

directly or determined from kinematic relations, known link length, and joint 

angles. Here both methods are employed to acquire the length and the distance. 

Hence, an experiment is necessary to estimate the length and the distance 

kinematically. The links are moved manually in arbitrary motions without any 

motor commands and load angle and joint angles are recorded. By solving the 

forward kinematic equations of the rig, the distance and the length are obtained. 

The values are then used in the parameter estimation process and the 

controllers.  
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Figure 4.10 Schematic diagram of the experimental set-up with Robot and link 
definitions 

 
Figure 4.11 Schematic diagram of the experimental set-up with lengths and distances 

Table 4.2 Physical parameters of the experimental set-up 

Name L11 L12 L21 L22 Lload Lgrip Ldistance 

Value (m)  0.132 0.132 0.132 0.132 0.274 0.206 0.475 
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Figure 4.12 Schematic diagram of the experimental set-up with the coordinate frames 

and generalised coordinates 

4.3 Modelling and Parameter Estimation of 
the Omni Robot Dynamics  

This section deals with the dynamic modelling and parameter estimation of the 

Omni robot. A new approach is presented for designing optimal robot excitation 

trajectories. It is based on the Schroeder Phased Harmonic Sequence (SPHS), 

in order to overcome the drawbacks mentioned in Section 2.3. The SPHS signal 

has fewer parameters to optimise compared to the Fourier series. Then the 

trajectory is implemented on the Omni robot for parameter estimation. The 

estimated model is verified  

This section is divided into five subsections. Section 4.3.1 describes the 

generation of the robot dynamics model, and the formulation of Linear Least 

Squares (LLS) regressor to be applied to identify the robot parameters. Section 

4.3.2 introduces the SPHS signal. Section 4.3.3 presents the new approach 

toward the design of optimal robot excitation trajectories. Section 4.3.4 presents 

the application of the presented techniques for the experimental estimation of 

the first three axes of the Omni robot. Section 4.3.5 validates the estimated 

model against test motions.  
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4.3.1 Modelling of the Omni Robot Dynamics  

As described in Section 3.1.1, the dynamic model of an Omni robot can be 

stated as:  

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞�̇�
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 , 𝑖 = 1, 2, 3 (4.2) 

and in a general form: 

 𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�) +  𝐆(𝐪) =  𝐐  (4.3) 

These equations are linear in terms of the parameters if they are combined in 

the so-called Barycentric parameters [101]. Barycentric parameters can be 

grouped and written as a minimal set of linear equations  

 𝐘(𝐪, �̇�, �̈�)𝚯 = 𝛕 (4.4) 

where q is the n × 1 vector of the joint angles, τ is the n × 1 vector of actuator 

torques, )q,qq,Y (  is the 3d × r regression matrix, depending on the joint angles, 

velocities, and accelerations, d is the number of data points, Θ is the r × 1 vector 

containing the unknown parameters and friction coefficients, r is the number of 

independent robot parameter sets.  

Barycentric model parameterisation is generally known to be difficult to derive 

[112]. It is done by manually re-grouping the expressions (4.3) according to both 

common factors and common variables. The resultant regressor matrix Y and 

parameters Θ are listed below.  

Joint frictions are also taken into account. The i -th joint frictions are modelled as  

 τfriction,𝑖 = 𝑐𝑣𝑖�̇�𝑖 + 𝑐𝑐𝑖𝑠𝑖𝑔𝑛(�̇�𝑖) (4.5) 

where cv is the viscous friction coefficient, cc is the column friction coefficient [8].  

Add (4.5) to (4.4), the regressor matrix Y of the first three joints (actuated by 

motors) of the Omni robot is 𝐘T = [𝐘1
T, 𝐘2

T, 𝐘3
T], where 
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𝐘1
T = [𝐘1,1

T , 𝐘1,2
T ,⋯ , 𝐘1,𝑑

T ]

𝐘2
T = [𝐘2,1

T , 𝐘2,2
T ,⋯ , 𝐘2,𝑑

T ]

𝐘3
T = [𝐘3,1

T , 𝐘3,2
T ,⋯ , 𝐘3,𝑑

T ]

 (4.6) 

where d is the number of data points, and  

 𝐘1
T =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̈�1𝑐(𝑞3) − �̈�1𝑐(2𝑞2 + 𝑞3) + 2�̇�1�̇�2𝑠(2𝑞2 + 𝑞3) +

… �̇�1�̇�3𝑠(2𝑞2 + 𝑞3) − �̇�1�̇�3𝑠(𝑞3)
�̈�1

1

2
�̈�1𝑐(2𝑞2) − �̇�1�̇�2𝑠(2𝑞2)

−
1

2
�̈�1𝑐(2𝑞2 + 2𝑞3) + �̇�1�̇�2𝑠(2𝑞2 + 2𝑞3) + �̇�1�̇�3𝑠(2𝑞2 + 2𝑞3)

0
0
0
0
0
�̇�1

𝑠𝑖𝑔𝑛(�̇�1)
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.7) 

 𝐘2
T =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2�̈�2𝑐(𝑞3) + �̈�3𝑐(𝑞3) − �̇�1

2𝑠(2𝑞2 + 𝑞3) − �̇�3
2𝑠(𝑞3) − 2�̇�2�̇�3𝑠(𝑞3)

0
1

2
�̇�1
2𝑠(2𝑞2)

−
1

2
�̇�1
2𝑠(2𝑞2 + 2𝑞3)

�̈�2
�̈�3

−𝑠(𝑞2)
−𝑠(𝑞2 + 𝑞3)

𝑞2
0
0
�̇�2

𝑠𝑖𝑔𝑛(�̇�2)
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.8) 
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 𝐘3
T =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 �̈�2𝑐(𝑞3) − �̇�2

2𝑠(𝑞3) −
1

2
�̇�1
2𝑠(2𝑞2 + 𝑞3) +

1

2
�̇�1
2𝑠(𝑞3)

0
0

−
1

2
�̇�1
2𝑠(2𝑞2 + 2𝑞3)

0
�̈�2 + �̈�3
0

−𝑠(𝑞2 + 𝑞3)
0
0
0
0
0
�̇�3

𝑠𝑖𝑔𝑛(�̇�3) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.9) 

The ‘s’ and ‘c’ are short for ‘sin’ and ‘cos’ respectively.  

The dynamic equation of the Omni robot results in 15 parameters:  

 𝚯 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑀3𝐿2𝑃3

𝐼1𝑧 +
1

2
𝐼2𝑦 +

1

2
𝐼2𝑧 +

1

2
𝐼3𝑦 +

1

2
𝐼3𝑧 +

1

2
𝑀3𝐿2

2 +
1

2
𝑀2𝑃2

2 +
1

2
𝑀3𝑃3

2

𝐼2𝑧 − 𝐼2𝑦 −𝑀3𝐿2
2 −𝑀2𝑃2

2

𝐼3𝑦 − 𝐼3𝑧 +𝑀3𝑃3
2

𝐼2𝑥 + 𝐼2𝑥 +𝑀3𝐿2
2 +𝑀2𝑃2

2 +𝑀3𝑃3
2

𝐼3𝑥+𝑀3𝑃3
2

𝑔(𝑀2𝑃2 +𝑀3𝐿2)
𝑔𝑀3𝑃3
𝑘𝑠𝑝𝑟𝑖𝑛𝑔
𝑐𝑣1
𝑐𝑐1
𝑐𝑣2
𝑐𝑐2
𝑐𝑣3
𝑐𝑐3 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.10) 

where Mi, Li, Pi, Iix,iy,iz, g, i = 1, 2, 3 are link mass, link length, link centre of 

gravity (COG) distance to previous axis, link inertia moments and gravitational 

acceleration respectively.  
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4.3.2 Schroeder Phased Harmonic Sequence (SPHS) 
Signal  

A Schroeder Phased Harmonic Sequence (SPHS) signal is used to generate 

multi-frequency trajectories. This is a periodic low-peak-factor signal with a 

given power spectrum [106, 113]. The SPHS signal consists of sine waves with 

selected frequencies in the following form:  

 𝑠(𝑡) = 𝐴𝑎∑𝐴𝑖𝑠𝑖𝑛 (𝑖𝜔0𝑡 + 𝜑𝑖)

𝑁𝐻

𝑖=1

 (4.11) 

where ω0 is the fundamental frequency, NH is the number of frequency 

components, Aa is a gain of the overall signal, Ai and φi are the amplitude and 

phase of the i-th harmonic frequency component, which are calculated from the 

given power spectrum as follows:  

 𝐴𝑖 = √
𝑃𝑖
2

 (4.12) 

where Pi is the ratio of the power at ω = iω0 to the total power and can be written 

as 

 𝑃𝑖 =
𝐴𝑖
2

∑ 𝐴𝑗
2𝑁𝐻

𝑗=1

 (4.13) 

and hence  

 ∑𝑃𝑖

𝑁𝐻

𝑖=1

= 1 (4.14) 

The phase of each frequency component is provided by 

 𝜑𝑖 = 𝜑𝑖−1 − 2𝜋∑𝑃𝑗

𝑖−1

𝑗=1

, 𝑖 = 2,… ,𝑁𝐻 (4.15) 
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In the experiments the amplitudes are fixed at Ai = 1 for i = 1, ..., NH, i.e. flat 

spectrum. Then the fundamental frequency, number of harmonics and overall 

gain Aa are chosen as the parameters for trajectory optimisation. Figure 4.13 

illustrates some examples of SPHS signals with a different number of harmonics 

and overall gains.  

 
Figure 4.13 Example SPHS signals with different parameters.  

It is worth mentioning that Schroeder's formula only works well (for obtaining low 

peak-to-peak) if all harmonics within the specified range are present, or all odd 

harmonics within the specified range are present; otherwise, the formula does 

not work well. If all harmonics are present, then the signal looks like a swept-

sine, as can be seen in Figure 4.13.  

4.3.3 Optimal Trajectory Design for Identification 

Excitation trajectories should have large coverage of the robot workspace and 

comply with limits in both joint and Cartesian space [114].  

The advantages of using SPHS are [11, 12]: 

 Controllable frequency spectrum  

 Periodic  

 Low peak factor (low noise to signal ratio) 

 Fewer parameters (ω0, NH, and Aa for each signal).  
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To optimise SPHS signals, a trajectory is required for each DOF. In this case, 

three trajectories are needed for q1, q2, and q3, of the Omni robot. The aim of the 

optimisation is to achieve minimum correlation among all three trajectories, thus 

ensuring maximum coverage of the manipulator workspace.  

The fundamental frequency determines the overall period of the motion. 

Therefore, it is a compromise between low frequency coverage and cost of data 

collection time. The fundamental frequency should not be too small to avoid 

long data collection time. It should also not be too large to allow the lower 

frequency range to be excited.  

The trajectory design process consists of three steps:  

Step 1: This step ensures that each joint trajectory covers the full motion range 

within the position, velocity and acceleration constraints. For each joint, the 

fundamental frequency is set to a small value with a single harmonic component, 

and overall amplitude to one, i.e. ω0=0.1 Hz, NH = 1, and Aa=1. Then, the 

number of harmonics is increased until 90% (for safety reasons) of the 

maximum joint velocity limits are reached. The method is generally to cope with 

acceleration or higher derivative limits if known. At the same time, the amplitude 

of overall signal Aa must be adjusted to satisfy the joint position limits, which are 

also set to 90% of the actual limits. Figure 4.14 shows an example of the 

trajectories produced after this step with physical and trajectory limits in Table 

4.3 and Table 4.4, respectively. The mean value of each signal represents the 

midpoint of each corresponding joint angle range.  

Table 4.3 Actual Ranges of Actuated Joints 

Joint 

No. 

Position 

(degree) 

Velocity 

(degree/s) 

1 [33.7 146.2] 310 

2 [-15.6 73.8] 300 

3 [86.7 119.3] 350 
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Figure 4.14 One period of SPHS signal of q1, q2 and q3 after step 1.  

Table 4.4 Trajectory Parameters and Limits 

Joint 

No. 

ω0 

(Hz) 
NH Aa 

Position 

(degree) 

Velocity 

(degree/s) 

1 0.1 10 0.2232 [39.3 140.6] 256.4 

2 0.1 12 0.1612 [-11.1 69.3] 258.8 

3 0.1 38 0.0347 [88.3 117.7] 314.1 

Step 2: Trajectories should have low correlation in order to cover more space in 

fixed motion ranges. To facilitate this, a trajectory is chosen (e.g. q1) and the 

others (q2 and q3) are shifted in time (delayed) with respect to the selected 

trajectory. The optimal delays will be those that reduce the correlation 

coefficients between q2 and q1 (C1,2), and q3 and q1 (C1,3). Arbitrarily small delays 

are incrementally added, up to one period. As shown in Figure 4.15, several 

zero correlation points can be found for both correlation coefficients (16 delay 

values for q2 and 12 for q3 in this case). Then these optimal delay values are 

used to calculate the correlation coefficients between q2 and q3 (C2,3). Then, a set 

of delays (five in this example) that result in the smallest |C2,3| values are 

selected for the final step.  
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Step 3: The sub-set of signals from step 2 are used to calculate the determinant 

of the covariance of the regressor matrix, Y
T
Y. The combination with the 

maximum determinant is chosen as the optimal excitation trajectories, in order 

to minimize the standard deviation of the estimated coefficients.  

The three-stage optimisation results in two delay values for two of the 

trajectories. In this case, 93.17% and 86.84% are the delays for q2 and q3 

respectively. The cross plot between the optimised trajectories q2 and q3 is 

shown in Figure 4.25. The figures on the right hand side illustrates that joint 

spaces are well covered.  

Table 4.5 Optimal Trajectory Parameters 

Joint No. ω0 (Hz) NH Aa Delay (%) 

1 0.1 10 0.2232 0 

2 0.1 12 0.1612 93.17 

3 0.1 38 0.0347 86.84 

 
Figure 4.15 Correlation coefficients between q1 and q2 (C1,2), and q1 and q3 (C1,3) as a 

function of delays on q2 and q3 respectively.  
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Figure 4.16 A heat map showing correlation coefficients between q2 and q3 (C2,3) using 

delay values which have zero correlation with q1.  

It should be noted that the difficulty in performing Step 2 increases when there 

are more DOF (for instance, six). Take an ordinary industrial manipulator as an 

example; it consists of six DOF. The first three define the position of the wrist 

centre relative to the robot base, and the last three define the orientation of the 

tool around the wrist centre. This method can be applied to the first three and 

the last three DOF separately. Because those two parts usually possess 

parameters whose values are in different order of magnitude.  

4.3.4 Application to Estimation of the Omni Robot  

A few issues that are unique to the Omni robot need to be dealt with before the 

method mentioned above can be applied, namely angle limits and joint velocity 

limits.  
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Figure 4.17 Phantom Omni schematic diagram (only the first three links) 

Because of the mechanical design of the Omni robot (Figure 4.17), the angle 

limits between Joint 2 and Joint 3 have a unique shape as shown in Figure 4.18. 

Unlike typical manipulators, the Link 3 is powered by the motor inside Link 1 

through a cable connected parallel mechanism. Therefore, both ranges are 

dependent upon each other’s position. To use the method described in the 

previous section, the joint space trajectory has to be inside the shape and cover 

as much of the space as possible. In order to achieve this, one needs to find the 

angle limits that do not violate physical limits and at the same time cover the 

widest range in both joints, i.e. to find the biggest rectangle inside the shape.  

A Monte Carlo simulation has been used to determine the size and position of 

the rectangle inside this shape.  

In the q2-q3 plane, a rectangle can be defined by its centre position and size in 

the unit of angle. By observing the shape, it is found that the biggest rectangle is 

most likely to appear around the graphical centre of the shape. Therefore, the 

centre is used as a reference point for the Monte Carlo simulation.  
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Figure 4.18 Physical limits between Joints 2 and 3 of the Omni robot in absolute angle 

(dashed line). The centre and size of a rectangle need to be determined for Step 1. 

To find the graphical centre of the shape, the Matlab command ‘getframe’ is 

used. It captures the image from the plot and generates an image region object. 

Then a command ‘regionprops’ from Image Processing Toolbox is used to find 

the centre of the shape utilising the object property ‘Centroid’. The resultant 

centre coordinates are q2= 46.2564 deg and q3=57.0200 deg.  

Using this centre as a reference point, the four parameters for the simulation are 

two shrink ratios (4.16) and two distances of centre shift (in degree). The two 

shrink ratios act on each of the physical ranges. The centre shifts are the 

distances that the rectangle centre moves in each dimension. The simulation 

range of the parameters is obtained by trial and error and is listed in Table 4.6. 

Any ratio larger than 75% results in no trajectory in range, and any ratio smaller 

than 55% produce too small rectangles that cannot cover well the range. The 

correlation coefficients are calculated using Matlab command ‘corrcoef’. Figure 

4.19 and Figure 4.20 show the simulation results. In both figures, the columns of 

small figures stand for different shrink ratios on the q2 range, and the rows stand 

for different shrink ratios on q3. In any of the small figures, the axes stand for the 

distance the rectangle centre moves in each dimension. In Figure 4.19, the 
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colour stands for the number of trajectories in range when the parameters are 

changed, the cooler the more, ranging from 0 to 100. In Figure 4.20, the colour 

stands for the minimum correlation coefficients of the number of trajectories in 

range at that point.  

 Shrink ratio =  
𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 𝑠𝑖𝑧𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑔𝑙𝑒 𝑟𝑎𝑛𝑔𝑒
× 100% (4.16) 

Table 4.6 Monte Carlo simulation parameter initial values on rectangle centre and size 

Parameter Width 

Ratio 

Height 

Ratio 

Centre Shift Right 

(deg) 

Centre Shift Up 

(deg) 

Range 55% - 75% 55% - 75% 0 - 10 0 - 10 

Choosing parameters is a compromise between keeping potential trajectories 

and covering maximum possible range. In Figure 4.19 and Figure 4.20, a trend 

can be observed showing that the smaller the rectangle the more trajectories lie 

within the physical limits, hence smaller correlation coefficients can be found 

among those trajectories. Although more trajectories and smaller correlation 

coefficients are found in even smaller rectangles (in the top left corners of both 

figures), the aim of this whole process is to find the largest rectangle. Hence, 

more simulations are carried out in the bottom right corner between 70% and 75% 

shrink ratios. Figure 4.21 and Figure 4.22 show the results.  

From Figure 4.21 and Figure 4.22 one can observe that the shrink ratio 71% on 

both q2 and q3 is the largest rectangle which both has more than 10 trajectories 

and has lower correlation coefficients (shown in blue). Therefore, the size of the 

rectangle can now be obtained.  

However, in terms of the centre shifts, there are a number of identical 

trajectories, in a diagonal sense as shown in Figure 4.21 and Figure 4.22. This 

is because of the special shape of the physical limits. Three trajectories are 

plotted in Figure 4.23, they are from the two ends and the centre on the 

diagonal line.  
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Figure 4.19 Monte Carlo simulation results in finding the joint angle ranges. The colour 
stands for the number of trajectories that are in the hard limits when the size and centre 

of the rectangle change.  
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Figure 4.20 Monte Carlo simulation results in finding the joint angle ranges. The colour 
stands for the minimum correlation coefficient of the trajectories found in Figure 4.19. 
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Figure 4.21 More Monte Carlo simulation results that zoom into the bottom right corner 

of Figure 4.19 
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Figure 4.22 More Monte Carlo simulation results that zoom into the bottom right corner 

of Figure 4.20 
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Figure 4.23 Three trajectories with the smallest correlation coefficients 
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Figure 4.24 Test of motions in different regions in Cartesian space 

To choose the best trajectory from these three shown in Figure 4.23, another 

test is designed. Six small regions across the working range are selected to 

carry out a same profile figure-of-eight motion, as shown in Figure 4.24. The 

centre coordinates of the figure-of-eight are listed in Table 4.7. The joint angles 

and torque demands are recorded. The measurements are fed into different 

models estimated from different trajectory positions - SW, MID and NE. The 

calculated joint torques are then compared with the actual torque demands. The 

MID model shows the best correlations (Table 4.8), hence the MID trajectory is 

chosen.  

Table 4.7 Figure-of-eight centre coordinates 

x (m) 0.125 0.190 0.030 0.230 0.190 0.145 

z (m) 0.115 0.090 0.015 0.015 -0.040 -0.085 

Table 4.8 Correlation coefficients between actual torques and calculated model torques 
from different trajectory positions 

 MID SW NE 

Correlation coefficient 0.8568 0.8539 0.8429 
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The resultant joint angles are shown in Figure 4.25 and Figure 4.26, where the 

difference between high correlation and low correlation is clearly shown. The 

non-optimised trajectories have less coverage of the joint space. Figure 4.27 

shows the corresponding Cartesian trajectories. The set of non-optimised 

trajectories is used to estimate the parameters for a model called the non-

optimised model.  

 
Figure 4.25 Cross plots among three trajectories for q1, q2 and q3 before (left) and after 

(right) correlation minimization. The dotted boxes are the joint position limits.  
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Figure 4.26 Final trajectories after Step 3 

  
Figure 4.27 Trajectory of the Omni robot’s end point in one period in Cartesian space 

before (left) and after (right) correlation minimization 
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Matlab/Simulink environment. The measurement is taken for 20 periods. Due to 

lack of torque measurement, the torque demands are recorded instead and later 

transformed into joint torques [115]. The data are then averaged. The angles 

are fed through an integrator based second-order low-pass filter which can also 

provide velocity and acceleration with relatively low noise (Figure 4.28). The 

sampling rate is 1000 Hz.  

 
Figure 4.28 An integrator based second-order low-pass filter with derivative outputs 

Estimations are carried out using the linear least squares. The estimated 

parameters with corresponding standard deviation are listed in Table 4.9. For 

comparison purposes, the model using these parameters is called the optimised 

model.  

Table 4.9 Parameters (4.10) estimated from optimal excitation (with standard deviation 
in brackets) 

1θ̂  1.42 (0.08)×10
-3

 cv1 -1.86 (1.88)×10
-3

 

2θ̂  2.37 (0.16)×10
-3

 cc1 3.94 (0.41)×10
-2

 

3θ̂  -2.36 (0.39)×10
-3

 cs1 3.54 (0.60)×10
-2

 

4θ̂  1.50 (0.32)×10
-3

 cv2 2.00 (1.77)×10
-3

 

5θ̂  4.63 (0.09)×10
-3

 cc2 5.04 (0.39)×10
-2

 

6θ̂  1.58 (0.03)×10
-3

 cs2 5.16 (0.56)×10
-2

 

7θ̂  2.92 (0.51)×10
-1

 cv3  4.50 (1.29)×10
-3

 

8θ̂  9.92 (0.32)×10
-2

 cc3 7.83 (2.97)×10
-3

 

9θ̂  1.76 (0.43)×10
-1

 cs3 6.63 (5.09)×10
-3
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4.3.5 Estimated Model Validation  

A test motion is used to validate the estimated models. The motion is generated 

from arbitrarily chosen sine waves. For all the joints, the amplitude is 20 

degrees. Frequencies are set to 0.4, 0.5, and 1.2 hertz for Joints 1, 2 and 3 

respectively. Table 4.10 shows the measured and estimated torques of both 

optimised and non-optimised models. The RMS of the torque residues is shown 

in Table 4.10. It shows that the optimised model improves the overall torque 

predictions, reducing at least by half the RMS for joint 2 and 3.  

The estimated models have been tested in a control set-up where the optimised 

and non-optimised models are used as feedforward compensators as shown in 

Figure 4.30. The feedback control gains are the same for both controllers. 

Figure 4.31 illustrates a figure-of-eight demand trajectory and the achieved 

trajectories for both models. The period of the motion is one second. Table 4.10 

shows the position RMS error in both x and y-axes. As can be seen, the 

optimised model follows the trajectory more accurately, and thus is a preferred 

model.  
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Figure 4.29 Estimated torques and measured torques on a test motion 

Table 4.10 Torque Residue RMS (Nm) 

Model Joint 1 Joint 2 Joint 3 

Optimised 0.01186 0.02868 0.01751 

Non-optimised 0.01326 0.06673 0.03110 

 

Figure 4.30 Control system diagram with the feed-forward compensator 

10 11 12 13 14 15
-0.1

0

0.1
Joint 1

T
o
rq

u
e
 (

N
m

)

10 11 12 13 14 15

-0.2

-0.1

0

0.1
Joint 2

T
o
rq

u
e
 (

N
m

)

 

 

10 11 12 13 14 15

-0.1

-0.05

0

0.05
Joint 3

Time (s)

T
o
rq

u
e
 (

N
m

)


meas.


opt

 
model


non

 
opt

 
model

Motion 

Demands 

Model 

PID Robot 

Motion 
Torques 

+ 

- 



83 

 

 
Figure 4.31 Figure-of-eight motion of the wrist centre in a horizontal plane 

Table 4.11 Cartesian Position Error RMS (m) 

Controller Type X Y 

PID + optimised model 0.0118 0.0096 

PID + non-optimised model 0.0123 0.0101 

PID only 0.0136 0.0139 

The correlation coefficients between the total torque and individual components 

are calculated to show the performance of the feedforward model. It can be 

seen that in general the controller performs better with feedforward 

compensation. Furthermore, the feedforward component contributes 

significantly, as shown in Figure 4.32 to Figure 4.35, Table 4.12, and Table 4.13. 

These figures and tables show clearly that the model provides most of the 

torque demands, whereas the PID controller provides compensation mainly for 

friction modelling errors.  
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Figure 4.32 Total torque input of Joint 2 in an SPHS motion, and its components from 

feedforward model and PID controller. 

 
Figure 4.33 Total torque input of Joint 3 in an SPHS motion, and its components from 

feedforward model and PID controller. 

Table 4.12 Correlation coefficient between total torque and each component 
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Joint 2 Torque 0.9484 0.6080 

Joint 3 Torque 0.9105 0.5762 
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Figure 4.34 Total torque input of Joint 2 in a figure-of-eight motion, and its components 

from feedforward model and PID controller. 

 
Figure 4.35 Total torque input of Joint 3 in a figure-of-eight motion, and its components 

from feedforward model and PID controller. 

Table 4.13 Correlation coefficient between total torque and each component 
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4.4 Concluding Remarks  

In this chapter, system components and two cases of experimental set-ups are 

presented first, followed by the modelling of the robot system. Lastly, a new 

approach is proposed toward the design of robot excitation trajectories and its 

application to parameter estimation.  

In this new method of designing optimal excitation trajectories for robot 

parameter estimation, SPHS signals have been utilised. The concept behind the 

method is based on synchronisation of the signals such that maximum 

information can be extracted from the system.  

An SPHS signal has the advantage of being a low peak factor signal which 

contains only three parameters to optimise. This leads to a method with a 

reduced search space when compared to other traditional methods. In more 

detail, the SPHS signal for each of the robot’s DOF is delayed to find minimum 

correlation trajectories, ensuring good coverage of the robot’s workspace.  

The major advantages of the method are twofold: it has fewer parameters to 

optimise compared to traditional methods such as the Fourier series; and it does 

not dwell on local minimum.  

The proposed method is tested experimentally using the Omni robot. The model 

derived from the optimised trajectories shows a better joint torque prediction 

compared to a non-optimised one. The resulting models have also been tested 

and compared as part of a feedforward controller; the results compare positively 

for the optimised model. The controller with the optimised model shows a 4% 

improvement on position tracking.  

Experiments are carried out using the above-estimated parameters and results 

are presented in the following chapters.  
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 Initial Experiments on a 5
Constrained Single Robot 

In this chapter, results of the experimental applications of the extended inverse 

dynamics analysis procedure are given to illustrate the proposed technique. 

First, a single two-link manipulator carries out constrained motions while force 

tracking. The motions are designed to compare the performance of different 

controllers.  

The chapter is organised as follows: Section 5.1 presents the experiment set-up 

in details; Section 5.2 presents the results in terms of figures and performance 

indicators; Section 5.3 presents the analysis of the results; Section 5.4 presents 

the conclusions. 

5.1 Case I: One Robot Interacting with the 
Environment  

The experiments start with the simplest possible case - Case I: one robot 

manipulates the load in a constrained motion. At least two DOF are needed to 

carry out both position and force control. The Omni robot is used which has two 

actuated links. The manipulator controller is developed so that it controls the 

force interaction with its environment.  

The simplest type of active motion and force control on both moving and 

keeping contact is the end-effector sliding on a flat surface. The motion is 

relatively simple; however, it is not straightforward to mount a force sensor to 

accurately measure the forces perpendicular to the surface. Another possible 

solution for both force and position control is to have the manipulator connect 

with the environment through another link, and the link can rotate freely on the 

gripping point and the ground point. There is another advantage of this 

configuration, which is that the force sensor can be mounted on the link to 

measure reaction forces.  

As shown in Figure 5.1, Robot 1 is controlled to rotate the load about a pivot 

point. The pivoting point is provided by Robot 2 with one of its wrist joints. Link 
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2-2 is clamped down on the robot stand so that the position of the pivot point is 

fixed.  

The robot dynamic parameters obtained in Section 4.3 are used in the Dysim 

program and inverse dynamics models are generated for experimental use. For 

each experiment case, two Dysim models are produced: the extended inverse 

dynamics model and the conventional motion-only inverse dynamics model. 

They are used in the controllers (3.49), (3.50) and (3.52).  

 
Figure 5.1 Case I: Schematic diagram (top) and actual rig (bottom). Robot 1 interacting 
with environment; Robot 2’s arm is clamped down to the stand so that the wrist joint can 

be used as a free rotating pivot point 

Robot 1 

Load 
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A set of motion demands is designed for the experiments. There are two major 

types of motion: smooth point-to-point motion and SPHS motion, a periodic 

multi-frequency sum of sine waves. The three motions are a slow point-to-point 

motion, a fast point-to-point motion and a fast SPHS motion.  

The force demand is set to 0.5 N in the x3 direction (Figure 4.12) throughout all 

experiments. It should be noted that 0.5 N is a relatively low value because for 

safety reasons it has to be set inside the continuous exertable force limit [108].  

For experiment Case I, the motions are all demanded in the absolute angle of 

the load. Table 5.1 and Table 5.2 list the motion specifications. The time series 

of the demand signals are shown in Figure 5.5, Figure 5.10, and Figure 5.15.  

Table 5.1 Motion specification for experiment Case I  

Motion 

ID 
Signal Type 

Duration/

period (s) 

Coordinate 

applied 

Initial 

position (deg) 

Final position 

(deg) 

1 Point-to-point 2 Load angle θ3 0 -20 

2 Point-to-point 0.25 Load angle θ3 0 -20 

3 SPHS 2 Load angle θ3 -10 - 

Table 5.2 SPHS signal specification for experiment Case I 

ω0 (Hz) NH Aa Range (deg) Initial velocity (deg/s) 

0.5 10 0.0436 20 55.8137203641739 

Figure 5.2 and Figure 5.3 show the Simulink models that run the experiments. In 

Figure 5.2, the inverse dynamics model is used to generate torques with given 

motion and force demands in advance of the main experiments. Note that the 

inputs of the Dysim Inverse block consist of both motion and force demands. 

The demand signals are saved in an array ready to be used in the main 

Simulink model. In Figure 5.3, the main Simulink model is shown, consisting of 

demand, controllers, outputs, and data logging. Figure 5.4 shows the subsystem 

for force interpretation and filtering. The input is the ADC values from the Omni 

Robot board; the output is force in newton. Force sensor calibration data from 

Section 4.1.1.3 is used here. The cut-off frequency for the low-pass filter is 50 

rad/s. 
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Figure 5.2 Simulink models of inverse dynamics to generate torques offline for the 
feedforward path and motion demand. Top: point-to-point motion. Bottom: SPHS motion 
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Figure 5.3 Simulink model of the control system and data collection 

 

Figure 5.4 Force interpretation and filtering subsystem in Figure 5.3 

PD plus gravity compensation is a popular position control scheme for 

manipulators [116]. It could be used on the Omni robots. However, the integral 

path is needed to overcome the steady state errors that are caused by the 

relatively high joint frictions, especially the stiction. Therefore, the PID controller 

is chosen for the joint position control.  
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The position and force PID controllers’ gains are determined through separate 

experiments using the Tyreus-Luyben method. The Tyreus-Luyben tuning 

method is based on oscillations as in the classical Ziegler-Nichols' method, but 

with modified formulas for the controller parameters to obtain better stability in 

the control loop compared with the Ziegler-Nichols method [117].  

The base joint is not concerned in the experiments so only a proportional gain of 

1 is set. The PID gains for the remaining joints (motors) are listed in Table 5.3. 

The gains are adjusted slightly from the Tyreus-Luyben’s results to ensure the 

position feedback loop and force feedback loop are stable. The filter coefficient 

(N) for the PID controller is set to 35. It determines the pole location of the filter 

in the derivative action. 

The output of the force PID controller is transformed to joint torques with the 

transposed Jacobian matrix of the Robot. The torques are then added to the 

input on Motors 1-1 and 1-2 respectively, as shown in Figure 3.7. The reason to 

use two motors rather than just one motor to control the force is to avoid 

possible singular positions that will cause large torque inputs. For example, 

when Link 1-2 is aligned with Load, Motor 1-2 loses control of the force along 

Load’s primary axis.  

Table 5.3 Case I position loop and force loop PID gains 

 Kp Ki Kd 

Motor 1-1 2.409 8.423 0.04971 

Motor 1-2 0 0 0 

Force 1 60.667 0.04946 

All experiments are running at 1 kHz rate, i.e. using 0.001 fixed-step size in the 

Simulink configurations, and the solver ode1(Euler) is selected, if not stated 

otherwise.  

Angles and force are then recorded and analysed. All motions are executed for 

11 cycles so that data can later be analysed in a statistical manner. Data from 

the first cycle is discarded to avoid any transient effects there may be when the 

robots start to move from their resting positions to initial positions. All time series 

plots show only one of the cycles for clarity. The last cycle is chosen, arbitrarily, 

to be displayed. The results are presented in the following section.  
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5.2 Experimental Results 

Time series of torque input components, angle errors and forces for each 

motion type are presented in this section, as well as their error distributions. The 

distributions of load angle errors and internal force errors in different controllers 

are also plotted, using the ‘boxplot’ command in Matlab. On each box, the 

central red mark is the median, the edges of the box are the 25th and 75th 

percentiles, the whiskers extend to the most extreme data points not considered 

outliers, and outliers are plotted individually [118]. Numerical results are also 

reported.  

5.2.1 Time Series and Error Distributions 

The figures are gathered into three groups by motion type:  

 Slow point-to-point motion 

 Fast point-to-point motion 

 SPHS motion 

In each motion type, there are five figures, in the following order:  

 Angle demand and errors  

 Angle error distributions 

 Force demand and actual force 

 Force error distributions 

 Joint torque components   

Table 5.4 Table of figures presented in Case I 

 

Slow point-to-point Fast point-to-point SPHS 

Angle demand and errors Figure 5.5 Figure 5.10 Figure 5.15 

Angle error distributions Figure 5.6 Figure 5.11 Figure 5.16 

Demand and actual force Figure 5.7 Figure 5.12 Figure 5.17 

Force error distributions Figure 5.8 Figure 5.13 Figure 5.18 

Joint torque components Figure 5.9 Figure 5.14 Figure 5.19 
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Figure 5.5 Case I experiment results: load angle in slow point-to-point motion.  

Top: angle demand. Bottom: angle errors in different controllers. 

 
Figure 5.6 Case I experiment results: load angle error distribution in slow point-to-point 

motion.  
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Figure 5.7 Case I experiment results: internal force in slow point-to-point motion.  
Top: controllers with force feedback. Bottom: controllers without force feedback. 

 
Figure 5.8 Case I experiment results: internal force error distribution in slow point-to-

point motion. 
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Figure 5.9 Case I experiment results: Controller 1 Joint 1 torque inputs in slow point-to-
point motion. 

 
Figure 5.10 Case I experiment results: load angle in fast point-to-point motion.  

Top: angle demand. Bottom: angle errors of different controllers.  
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Figure 5.11 Case I experiment results: load angle error distribution in fast point-to-point 

motion.  

 
Figure 5.12 Case I experiment results: internal force in fast point-to-point motion.  
Top: controllers with force feedback. Bottom: controllers without force feedback. 
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Figure 5.13 Case I experiment results: internal force error distribution in fast point-to-
point motion. 1.Pos + Force + FMFF; 2.Pos + Force + MFF; 3.Pos + Force; 4.Pos + 

FMFF; 5.Pos only 

 
Figure 5.14 Case I experiment results: Controller 1 Joint 1 torque inputs in fast point-to-

point motion. 
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Figure 5.15 Case I experiment results: load angle in SPHS motion.  

Top: angle demand. Bottom: angle errors of different controllers.  

 
Figure 5.16 Case I experiment results: load angle error distribution in SPHS motion. 
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Figure 5.17 Case I experiment results: internal force in SPHS motion.  

 
Figure 5.18 Case I experiment results: internal force error distribution in SPHS motion. 
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Figure 5.19 Case I experiment results: Controller 1 Joint 1 torque inputs in SPHS 

motion. 

5.2.2 Numerical Results 
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errors (RMSE) of the variables. Table 5.5 to Table 5.7 list the position errors and 
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Table 5.6 Position and force errors of fast point-to-point motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF 1.060×10
-2

 4.035×10
-2

 

2 Pos + Force + MFF 7.378×10
-3

 8.535×10
-2

 

3 Pos + Force 7.229×10
-2

 1.684×10
-1

 

4 Pos + FMFF 1.207×10
-2

 1.977×10
-1

 

5 Pos only 5.792×10
-2

 8.475×10
-1

 

Table 5.7 Position and force errors of SPHS motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF  6.780×10
-2

 2.163×10
-1

 

2 Pos + Force + MFF 8.571×10
-2

 2.963×10
-1

 

3 Pos + Force 1.818×10
-1

 5.960×10
-1

 

4 Pos + FMFF 5.506×10
-2

 2.737×10
-1

 

5 Pos only 1.637×10
-1

 7.967×10
-1

 

5.3 Analysis and Comparison  

In general, the faster the motion, the better performance the feedforward 

controllers deliver compared with the other controllers. This is because at lower 

speed, the system appears to be linear and the basic PID controller works well 

near the linearization points, but at higher speed, the nonlinearity becomes 

dominant so the PID controllers cannot cope. The nonlinearity is a result of 

system dynamics.  

Amongst all motions, the best force tracking is consistently achieved by 

Controller 1.  

Take Controller 3’s performance as a benchmark. In slow point-to-point motion, 

Controller 1 improves force tracking but worsens position tracking. In contrast, 

Controller 2 improves position tracking but worsens force tracking. In fast point-

to-point and SPHS motions, both Controllers 1 and 2 improve position and force 

tracking.  

When comparing Controllers 1 and 2, the former performs better in SPHS 

motion for both position and force tracking, and in point-to-point motions for 

force tracking; and the latter only performs better in point-to-point motions for 

position tracking.  



103 

 

It is noticed that in the SPHS motion, Controller 4 performs better than 

Controllers 2 and 3 in both position and force tracking. This means that the force 

feedforward controller works better without force feedback loop.  

It is clear that Controller 5 performs the worst in force tracking due to its lack of 

any form of force control. It is also interesting to notice that, when comparing 

Controller 3 with Controller 5, one would expect Controller 3 to produce worse 

position tracking with added force feedback loop, which is the fact in the fast 

point-to-point motion and SPHS motion. However, counter-intuitively, Controller 

3 improves position tracking in the slow point-to-point motion.  

Figure 5.9, Figure 5.14, and Figure 5.19 reveal the torque inputs of Joint 1 and 

the contributions from different control loops. They all show that the feedforward 

loop makes up the most of the input signals.  

5.4 Concluding Remarks 

This chapter presents the details of the experimental set-up from the initial 

experiments of Case I. A two-DOF robot is carrying a bar-shaped load at one 

end. The other end of the load is fixed to ground but can rotate freely. Different 

motions on load angle are designed for the experiments: slow point-to-point 

motion, fast point-to-point motion, and SPHS motion. The results are then 

reported and analysed. Results show that Controller 1 performs the best force 

tracking in all the three types of motion. In addition, the controllers with 

feedforward loop perform better at higher speed motions, i.e. the fast point-to-

point motion and SPHS motion.  

The results confirm the performance of the proposed controller hence further 

experiment can be carried out on cases that are more complicated. In the next 

chapter, the second robot is introduced and experiments with cooperating 

robots are carried out.  
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 Experiments on Cooperative 6
Robots  

The previous chapter reports the set-up and results of experiment Case I: the 

single robot moving under constraint. The results for the proposed extended 

inverse dynamics controller were promising. This chapter presents further 

experiments using the method for collaborative robots. 

In this chapter, detailed set-ups are described and results of the experimental 

Case II are given. First, a second manipulator (Robot 2) is introduced to hold the 

position of the pivoting point on the load and Robot 1 carries out the same 

constrained motions as in Case I. Then both robots are commanded to move 

the load while tracking internal force. These results were also published in [119] 

The chapter is organised as follows: Section 6.1 presents the experiment set-up 

in details for Case II; Section 6.2 presents the results in terms of figures and 

performance indicators; Section 6.3 presents the analysis of the results; Section 

6.4 concludes this chapter.  

6.1 Case II: Two Robots Cooperating 

In Case II, two experiments are designed, Case II-a and Case II-b. In Case II-a 

(Figure 6.1), following the experiments on Case I, the fixture on Robot 2 is 

removed to release the Link 2-2. The Robot 2 is separately commanded to hold 

the position of the load as if it is still fixed. Then the same experiments from 

Case I are repeated. In Case II-b (Figure 6.5), Robot 2 is included in the 

feedforward model and both robots move the load cooperatively with internal 

force tracking.  

The same dynamic parameters are used for Robot 2 in the Dysim program and 

inverse dynamics models are generated for experimental use.  

The base joints are not concerned in the experiments so only a proportional 

gain of 1 is set. The PID gains for the remaining joints (motors) are the same as 

in Case I and listed in Table 6.1. The filter coefficient (N) for the PID controller is 

set to 65. It determines the pole location of the filter in the derivative action.  
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The output of the force PID controller is transformed to joint torques with the 

transposed Jacobian matrix of the Robot. The torques are then added to the 

input on Motors 1-1 and 1-2 respectively, as shown in Figure 3.7.   

Table 6.1 Case II position loop and force loop PID gains 

 Kp Ki Kd 

Motor 1-1 2.409 16.846 0.0994 

Motor 1-2 0 0 0 

Motor 2-1 2.409 16.846 0.0994 

Motor 2-2 2.091 5.867 0.1075 

Force 1 12.133 0.05 

6.1.1 Case II-a:  One Moving Robot and One Static Robot 

In this case, the fixture used to hold the arm of Robot 2 is removed, thus active 

control is required to maintain the position. Instead, Robot 2 is programmed to 

hold the position with PID controllers on the actuated joints as shown in Figure 

6.1. The motion of the load remains the same as in Case I.  

 
Figure 6.1 Case II-a: Schematic diagram. Robot 1 moving the load while Robot 2 holds 

position 

For experiment Case II-a, the motions are all defined on the absolute angle of 

the load. Same motions from Case I are used: slow and fast point-to-point 

motions, and SPHS motions. The motion specifications are listed in Table 5.1 

and Table 5.2.  

 

Robot 1 Robot 2 

Load 
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Since the motions are the same as in Case I, the Simulink models used to 

generate the feedforward torques are the same as shown in Figure 5.2. 

However, the main program is slightly different as shown in Figure 6.2. In 

addition to demand signals, controllers, outputs, and data logging, there is a 

separate position controller for Robot 2 in the top right corner of the screenshot. 

Figure 6.3 shows the subsystem for the Robot 2 position control.  

 
Figure 6.2 Simulink model of the control system and data collection 

 

Figure 6.3 Subsystem in Figure 6.2 for Robot 2 position control 
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6.1.2 Case II-b:  Two Moving Robots 

In this case, both of the robots are moving the load together. Both robot models 

are used in the new controller. In other words, the robots are now actively 

cooperating with each other to achieve both motion and force tracking (Figure 

6.5).  

 
Figure 6.4 Case II-b: the actual rig. Two robots moving a load with force sensor 

 
Figure 6.5 Case II-b: Schematic diagram. Two robots moving a load with force sensor 

 
Robot 1 Robot 2 

Load 
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Due to the introduction of the second robot, there are now four actuators. 

Moreover, because of the connection made through the load, there are three 

motion DOF left in the system. Therefore, new motions are designed for two 

robots’ cooperation. For experiment Case II-b, the motions are demanded on 

the position and absolute angle of the load (Figure 4.12).  

For point-to-point motions, different motions with the same duration are applied 

to the load global axes x and z, and absolute load angle. Table 6.2 lists the 

motion specifications. The time series of the demand signals are shown in 

Figure 6.24 and Figure 6.29.  

Table 6.2 Motion specifications for experiment Case II-b point-to-point motion 

Motion ID Signal Type 
Duration/ 

period (s) 

Coordinate 

applied 

Initial 

positions 

Final 

positions 

4 Point-to-point 2 

Load angle θ3 15 (deg) -5 (deg) 

Load x axis 0.22 (m) 0.27 (m) 

Load z axis -0.1 (m) 0 (m) 

5 Point-to-point 0.4 

Load angle θ3 15 (deg) -5 (deg) 

Load x axis 0.22 (m) 0.27 (m) 

Load z axis -0.1 (m) 0 (m) 

For SPHS motion, it is not practical to apply SPHS signals to all three DOF due 

to the limited workspace. The links, especially the Load, would hit physical limits, 

i.e. the Load hitting the robot base. Therefore, the SPHS signal is applied only 

to the Load angle. On the z-axis, two identical point-to-point motions are applied 

with opposite directions, so the Load goes up then comes down after a certain 

amount of time. The Load remains the same position in x-axis. Consequently, in 

the combined motion the Load should move up and down while rotating around 

its COG. Table 6.3 and Table 6.4 list the motion specifications. The time series 

of the demand signals are shown in Figure 6.34 

Table 6.3 Motion specifications for experiment Case II-b combined motion 

Motion 

ID 
Signal Type 

Duration/

period (s) 

Coordinate 

applied 

Initial 

positions 

Final 

positions 

6 

SPHS 5 Load angle θ3 15 (deg) - 

Point-to-point 5 Load x axis 0.25 (m) 0.25 (m) 

Point-to-point 5 Load z axis -0.1 (m) 0 (m) 

Figure 6.6 and Figure 6.7 show the Simulink models that are used to run the 

experiments.  
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Figure 6.6 Simulink models of inverse dynamics to generate torques offline for the 
feedforward path and motion demand. Top: point-to-point motion. Bottom: combined 

SPHS motion 

Table 6.4 SPHS signal specification for experiment Case II-b  

ω0 (Hz) NH Aa Range (deg) Initial velocity (deg/s) 

0.2 10 0.0654 30 33.8685379465 
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Figure 6.7 Simulink model of the control system and data collection 

 

Figure 6.8 Subsystem for two Robots in the main model in Figure 6.7 
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In Figure 6.6, the inverse dynamics model is used to generate torques with 

given motion and force demands in advance of the main experiments. Note 

there are two point-to-point motion generators for up and down motions.  

In Figure 6.7, the main Simulink model is shown, consisting of demand, 

controllers, outputs, and data logging. Figure 6.8 shows the subsystem of the 

inputs and outputs of Robots 1 and 2.  

Angles and force are then recorded and analysed. All motions are executed for 

11 cycles. Data from the first cycle is discarded to avoid any transient effects 

there may be when the robots start to move from their resting positions to initial 

positions. All time series plots show only one of the cycles for clarity. The last 

cycle is chosen, arbitrarily, to be displayed. The distributions of load angle errors 

and internal force errors in different controllers are also plotted. The results are 

presented in the following section.  

6.2 Experimental Results 

Same as previous chapter, time series of torque input components, angle errors 

and forces for each case are shown in the following pages, as well as their error 

distributions. Numerical results are reported as well.  

6.2.1 Case II-a: One Active Robot and One Static Robot 

In this case, Robot 2 is holding its position, while Robot 1 performs the motions 

defined in terms of load angle.  

6.2.1.1 Time Series and Error Distributions 

Table 6.5 Table of figures presented in Case II-a 

 

Slow point-to-point Fast point-to-point SPHS 

Angle demand and errors Figure 6.9 Figure 6.14 Figure 6.19 

Angle error distributions Figure 6.10 Figure 6.15 Figure 6.20 

Demand and actual force Figure 6.11 Figure 6.16 Figure 6.21 

Force error distributions Figure 6.12 Figure 6.17 Figure 6.22 

Joint torque components Figure 6.13 Figure 6.18 Figure 6.23 
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Figure 6.9 Case II-a experiment results: load angle in slow point-to-point motion.  

Top: angle demand. Bottom: angle errors in different controllers. 

 
Figure 6.10 Case II-a experiment results: load angle error distribution in slow point-to-

point motion.  
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Figure 6.11 Case II-a experiment results: internal force in slow point-to-point motion.  

Top: controllers with force feedback. Bottom: controllers without force feedback. 

 
Figure 6.12 Case II-a experiment results: internal force error distribution in slow point-to-

point motion. 
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Figure 6.13 Case II-a experiment results: Controller 1 Joint 1 torque inputs in slow point-
to-point motion. 

 
Figure 6.14 Case II-a experiment results: load angle in fast point-to-point motion.  

Top: angle demand. Bottom: angle errors of different controllers.  
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Figure 6.15 Case II-a experiment results: load angle error distribution in fast point-to-

point motion.  

 
Figure 6.16 Case II-a experiment results: internal force in fast point-to-point motion.  

Top: controllers with force feedback. Bottom: controllers without force feedback. 
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Figure 6.17 Case II-a experiment results: internal force error distribution in fast point-to-

point motion. 1.Pos + Force + FMFF; 2.Pos + Force + MFF; 3.Pos + Force; 4.Pos + 
FMFF; 5.Pos only 

 
Figure 6.18 Case II-a experiment results: Controller 1 Joint 1 torque inputs in fast point-

to-point motion. 
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Figure 6.19 Case II-a experiment results: load angle in SPHS motion.  

Top: angle demand. Bottom: angle errors of different controllers.  

 
Figure 6.20 Case II-a experiment results: load angle error distribution in SPHS motion. 
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Figure 6.21 Case II-a experiment results: internal force in SPHS motion.  

 
Figure 6.22 Case II-a experiment results: internal force error distribution in SPHS 

motion. 1.Pos + Force + FMFF; 2.Pos + Force + MFF; 3.Pos + Force; 4.Pos + FMFF; 
5.Pos only 
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Figure 6.23 Case II-a experiment results: Controller 1 Joint 1 torque inputs in SPHS 

motion. 

6.2.1.2 Numerical Results 

The performances of the controllers are measured by RMSE of the joint angles. 

Table 6.6 to Table 6.8 list the position errors and force errors for different 

controllers from different motions. The error values in the tables are averaged 

over ten cycles for each motion. The highlighted cells in each column denote the 

smallest errors among different controllers.  

Table 6.6 Position and force errors of slow point-to-point motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF  5.873×10
-3

 3.604×10
-2

 

2 Pos + Force + MFF 4.540×10
-3

 9.402×10
-2

 

3 Pos + Force 6.959×10
-3

 9.453×10
-2

 

4 Pos + FMFF 5.251×10
-3

 9.302×10
-2

 

5 Pos only 1.646×10
-2

 1.065×10
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Table 6.7 Position and force errors of fast point-to-point motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF 6.677×10
-3

 3.842×10
-2

 

2 Pos + Force + MFF 9.266×10
-3

 2.010×10
-1

 

3 Pos + Force 6.254×10
-2

 1.897×10
-1

 

4 Pos + FMFF 4.648×10
-3

 5.716×10
-2

 

5 Pos only 4.647×10
-2

 8.655×10
-1

 

Table 6.8 Position and force errors of SPHS motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF  3.053×10
-2

 1.116×10
-1

 

2 Pos + Force + MFF 4.523×10
-2

 2.155×10
-1

 

3 Pos + Force 1.502×10
-1

 5.196×10
-1

 

4 Pos + FMFF 2.983×10
-2

 1.579×10
-1

 

5 Pos only 1.297×10
-1

 8.582×10
-1

 

6.2.2 Case II-b:  Two Active Robots 

In this case, Robots 1 and 2 are working together to move the load while 

maintaining a constant compression force.  

6.2.2.1 Time Series and Error Distributions 

Table 6.9 Table of figures presented in Case II-b 

 

Slow point-to-point Fast point-to-point SPHS 

Angle demand and errors Figure 6.24 Figure 6.29 Figure 6.34 

Angle error distributions Figure 6.25 Figure 6.30 Figure 6.35 

Demand and actual force Figure 6.26 Figure 6.31 Figure 6.36 

Force error distributions Figure 6.27 Figure 6.32 Figure 6.37 

Joint torque components Figure 6.28 Figure 6.33 Figure 6.38 
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Figure 6.24 Case II-b experiment results: load angle in slow point-to-point motion.  

Top: angle demand. Bottom: angle errors in different controllers. 

 
Figure 6.25 Case II-b experiment results: load angle error distribution in slow point-to-

point motion.  
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Figure 6.26 Case II-b experiment results: internal force in slow point-to-point motion.  

Top: controllers with force feedback. Bottom: controllers without force feedback. 

 
Figure 6.27 Case II-b experiment results: internal force error distribution in slow point-to-

point motion. 
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Figure 6.28 Case II-b experiment results: Controller 1 torque inputs in slow point-to-point 
motion. 

 
Figure 6.29 Case II-b experiment results: load angle in fast point-to-point motion.  

Top: angle demand. Bottom: angle errors of different controllers.  
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Figure 6.30 Case II-b experiment results: load angle error distribution in fast point-to-

point motion.  

 
Figure 6.31 Case II-b experiment results: internal force in fast point-to-point motion.  

Top: controllers with force feedback. Bottom: controllers without force feedback. 
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Figure 6.32 Case II-b experiment results: internal force error distribution in fast point-to-

point motion. 1.Pos + Force + FMFF; 2.Pos + Force + MFF; 3.Pos + Force; 4.Pos + 
FMFF; 5.Pos only 

 
Figure 6.33 Case II-b experiment results: Controller 1 torque inputs in fast point-to-point 

motion. 
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Figure 6.34 Case II-b experiment results: load angle in SPHS motion.  

Top: angle demand. Bottom: angle errors of different controllers.  

 
Figure 6.35 Case II-b experiment results: load angle error distribution in SPHS motion. 
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Figure 6.36 Case II-b experiment results: internal force in SPHS motion.  

 
Figure 6.37 Case II-b experiment results: internal force error distribution in SPHS 

motion. 1.Pos + Force + FMFF; 2.Pos + Force + MFF; 3.Pos + Force; 4.Pos + FMFF; 
5.Pos only 
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Figure 6.38 Case II-b experiment results: Controller 1 torque inputs in SPHS motion. 

6.2.2.2 Numerical Results 

Table 6.10 to Table 6.12 list the position errors and force errors for different 

controllers from different motions. The error values in the tables are averaged 

over ten cycles for each motion. The highlighted cells denote the smallest errors 

among different controllers.  

Table 6.10 Position and force errors of slow point-to-point motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF 1.460×10
-2

 2.827×10
-2

 

2 Pos + Force + MFF 2.479×10
-2

 8.017×10
-2

 

3 Pos + Force 1.827×10
-2

 6.712×10
-2

 

4 Pos + FMFF 1.973×10
-2

 1.311×10
-1

 

5 Pos only 1.473×10
-2

 9.036×10
-1

 

Table 6.11 Position and force errors of fast point-to-point motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF 1.100×10
-2

 1.096×10
-1

 

2 Pos + Force + MFF 2.135×10
-2

 1.395×10
-1

 

3 Pos + Force 3.183×10
-2

 1.022×10
-1

 

4 Pos + FMFF 9.678×10
-3

 1.791×10
-1

 

5 Pos only 3.084×10
-2

 6.869×10
-1
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Table 6.12 Position and force errors of SPHS motion  

Controller Position RMSE (rad) Force RMSE (N) 

1 Pos + Force + FMFF  3.740×10
-2

 4.853×10
-2

 

2 Pos + Force + MFF 3.696×10
-2

 1.388×10
-1

 

3 Pos + Force 4.119×10
-2

 1.173×10
-1

 

4 Pos + FMFF 3.601×10
-2

 2.402×10
-1

 

5 Pos only 5.381×10
-2

 7.303×10
-1

 

6.3 Analysis and Comparison  

In general, as in Case I, the faster the motion, the better performance the 

feedforward controllers deliver when compared with the other controllers. 

Amongst all motions, the best force tracking is always achieved by Controller 1 

except for once where Controller 3 is slightly better; however, with much poorer 

position tracking.  

6.3.1 Case II-a: One Active Robot and One Static Robot 

Similar to Case I, Case II-a has an almost identical pattern for the performances. 

Controllers 1, 2 and 4 are better at position tracking and Controllers 1 and 4 are 

better at force tracking. This means the extended inverse dynamics controller 

always improves the performance of both position and force tracking. It only 

affects the performance of position tracking slightly in slower speed motion. This 

may be caused by the modelling errors of the joint frictions.  

Figure 6.13, Figure 6.18, and Figure 6.23 reveal the torque inputs of Joint 1 and 

the contributions from different control loops. They all show that the feedforward 

loop makes up the most of the input signals, which means the operational and 

practical effectiveness of the controller is demonstrated.   

6.3.2 Case II-b: Two Active Robots 

Similar to the previous cases, controllers with the force feedforward loop 

(Controllers 1 and 4) show very promising performance. Again, take Controller 

3’s performance as a benchmark. In slow point-to-point motion, Controller 1 

improves both position and force tracking. In contrast, Controller 2 worsens both. 

In fast point-to-point and SPHS motions, both Controllers 1 and 2 improve 

position tracking, but only Controller 1 improves force tracking.  
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When comparing Controllers 1 and 2, in point-to-point motions, the former 

performs better for both position and force tracking; and in SPHS motion, it 

performs better for force tracking and similar for position tracking.  

Figure 6.28, Figure 6.33, and Figure 6.38 reveal the torque inputs of all four 

joints and the contributions from different control loops. They all show that the 

feedforward loop makes up the most of the input signals.  

6.4 Concluding Remarks 

This chapter gives the details of Case II experimental set-ups. New motions are 

designed for the experiments. The results are then reported and analysed from 

the experiments on Case II-a and Case II-b. Results show that Controller 1, 

which is based on the extended inverse dynamics controller, has the best 

combined position and force tracking.  
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 Conclusions and Future 7
Work 

7.1 Conclusions 

This thesis develops a novel model-based method to control the position and 

interaction forces during a cooperative robot handling task. Although the method 

is very generic and can be applied to many different systems, the thesis uses a 

task of moving a shared object using two robots as a case study. The method 

developed is based on using an accurate dynamic model of the robots and the 

object being handled, and computing the forces required to produce the motion 

as well as force resulting from the constraints. In order to produce accurate 

models of the robots and manipulated objects, the thesis develops a novel 

approach for designing optimal excitation trajectories for dynamic parameter 

estimation. This new technique improves the quality of the parameters inferred 

from the data thus improves the fidelity of the models. This improvement on the 

parameters also means an improvement in the control performance of the 

cooperative system.  

This thesis makes two novel contributions to the field of robotics. First, an 

extended definition of force and motion in inverse dynamics analysis allows the 

calculation of internal force to be performed with conventional inverse dynamics 

analysis. Second, the use of SPHS signals simplifies the process of finding 

optimal excitation trajectories for manipulator dynamic parameter estimation.  

Conventional inverse dynamics models only take motion demand as inputs to 

calculate required control signals. Internal and external forces are calculated 

separately through inverse kinematics then added to the control inputs. The 

proposed extended inverse dynamic formulation integrates both force and 

motion inputs in predefined coordinates, which simplifies calculation in control 

applications. The inverse dynamics equations of the entire system have been 

derived based on the constrained Lagrangian formulation. The proposed control 

method takes both robots and load dynamics into consideration. The use of 

redundant coordinates allows different coordinates to be used to specify the 

trajectory, control inputs, and motion measurement.  
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The extended inverse dynamics model is used to control the motion of the 

robots as well as the internal force applied on the load. The effectiveness of the 

method is verified by simulation and experiments. The experiments utilise both 

low speed and high-speed motions. Results show that the proposed controller 

has better position and force tracking in higher speed motions, compared to 

traditional hybrid position/force controllers.  

The new method of calculating feedforward control inputs could be beneficial to 

many industrial and research applications. The method simplifies the 

computation of inverse dynamic controllers of manipulators under the influence 

of known or modelled internal or external force or torque, compared to methods 

previously stated in the literature. It has great potential of improving the 

performance of online calculation. Furthermore, generalized method is derived 

using Lagrangian method, which is applicable to all types of manipulators.  

In the new approach for finding optimal excitation trajectories, SPHS signals 

have been utilised so that the synchronisation of the signals can lead to 

maximum system information extraction. An SPHS signal has the advantage of 

having only three parameters to optimise, which leads to a method with a 

reduced search space when compared to traditional methods such as the 

Fourier series. The method also guarantees an optimal solution because it does 

not use generic algorithms where the optimisation may result in local minima.  

The proposed method is tested experimentally on an Omni robot. The model 

estimated from the optimised trajectories shows a better joint torque prediction 

compared to the model estimated from non-optimised trajectories. The resulting 

models are also tested as part of a feedforward controller in a position-tracking 

task. The results show that the optimised model has more improvement over a 

PID-only controller in tracking the robot’s position compared with the non-

optimised model.  

In the field of robotic control, accurate dynamic models are essential to the 

performance of model-based controllers. The new designing method reduces 

the effort to obtain excitation trajectories for experimental parameter estimation.  
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7.2 Recommendations for Future Work 

The following recommendations can be considered if further research is to be 

continued.  

 The feedforward part of the controller is provided by running the inverse 

dynamics model offline prior to the main experiment. If the Dysim Simulink 

block can be made compatible with the Quanser QuaRC environment, 

then the feedforward model is able to be applied in real-time.  

 Adaptive control law can be added to alter the parameters of the inverse 

dynamics model online in order to better handle the unmodelled robot 

and/or load dynamics.  

 The force sensor currently used has only one axis. This has not been a 

problem in the experiments carried out during this research. However, a 

six-axis force/torque sensor is needed if the controller is to be expanded 

into three-dimensional space. The data acquisition of the force sensor is 

accomplished by one of the ADC channels inside the Omni Robot. An 

external arrangement that is compatible with the QuaRC environment is 

needed for the six-axis force/torque sensor. 
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Appendix A 

Dysim Program Demonstration 

To demonstrate how Dysim program works, the constrained two-link 

manipulator in Section 3.1.3 is used as an example. First of all, there are two 

kinds of user interfaces: the Default Interface and the Planer (2D) Mechanism 

Interface. In the Default Interface, the user enters the Lagrangian function, 

constraint Jacobians, and constraint equations. In the Planer (2D) Mechanism 

Interface, the user specifies parameters for each element and connection of a 

two-dimensional mechanism, and then the interface automatically derives the 

Lagrangian function, constraint Jacobians, and constraint equations. The Planer 

Mechanism Interface is demonstrated here.  

First, the mass and inertia of the two links and the mass of the load are created. 

Then their connections are specified in terms of each object’s local coordinates 

(Figure A.1). The system variables, initial conditions, the Lagrangian function, 

constraint Jacobians and constraint equations are then derived automatically 

(Figure A.2 to Figure A.5). Next, in the case of inverse dynamics, motion input 

coordinates need to be specified (Figure A.6). Force input can also be specified 

on according constraints. Finally, command files can be generated for the use in 

Simulink (Figure A.0.7).  
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Figure A.1 Dysim program interface: objects and connections 

 
Figure A.2 Dysim program interface: variables and initial conditions 
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Figure A.3 Dysim program interface: Lagrangian functions 

 
Figure A.4 Dysim program interface: constraint Jacobians 
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Figure A.5 Dysim program interface: constraint functions 

 
Figure A.6 Dysim program interface: motion definition (including constraint force) 
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Figure A.0.7 Dysim program interface: model output 

Figure A.8 shows the Dysim block in the Simulink environment. User can 

choose the input and output coordinates, and the constraint force (Figure A.9).  

 

Figure A.8 Dysim Inverse Simulink block 
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Figure A.9 Dysim Simulink block parameters 
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