62 research outputs found

    Not All Wireless Sensor Networks Are Created Equal: A Comparative Study On Tunnels

    Get PDF
    Wireless sensor networks (WSNs) are envisioned for a number of application scenarios. Nevertheless, the few in-the-field experiences typically focus on the features of a specific system, and rarely report about the characteristics of the target environment, especially w.r.t. the behavior and performance of low-power wireless communication. The TRITon project, funded by our local administration, aims to improve safety and reduce maintenance costs of road tunnels, using a WSN-based control infrastructure. The access to real tunnels within TRITon gives us the opportunity to experimentally assess the peculiarities of this environment, hitherto not investigated in the WSN field. We report about three deployments: i) an operational road tunnel, enabling us to assess the impact of vehicular traffic; ii) a non-operational tunnel, providing insights into analogous scenarios (e.g., underground mines) without vehicles; iii) a vineyard, serving as a baseline representative of the existing literature. Our setup, replicated in each deployment, uses mainstream WSN hardware, and popular MAC and routing protocols. We analyze and compare the deployments w.r.t. reliability, stability, and asymmetry of links, the accuracy of link quality estimators, and the impact of these aspects on MAC and routing layers. Our analysis shows that a number of criteria commonly used in the design of WSN protocols do not hold in tunnels. Therefore, our results are useful for designing networking solutions operating efficiently in similar environments

    A wireless sensor network system for border security and crossing detection

    Get PDF
    The protection of long stretches of countries’ borders has posed a number of challenges. Effective and continuous monitoring of a border requires the implementation of multi-surveillance technologies, such as Wireless Sensor Networks (WSN), that work as an integrated unit to meet the desired goals. The research presented in this thesis investigates the application of topologically Linear WSN (LWSNs) to international border monitoring and surveillance. The main research questions studied here are: What is the best form of node deployment and hierarchy? What is the minimum number of sensor nodes to achieve k− barrier coverage in a given belt region? iven an appropriate network density, how do we determine if a region is indeed k−barrier covered? What are the factors that affect barrier coverage? How to organise nodes into logical segments to perform in-network processing of data? How to transfer information from the networks to the end users while maintaining critical QoS measures such as timeliness and accuracy. To address these questions, we propose an architecture that specifies a mechanism to assign nodes to various network levels depending on their location. These levels are used by a cross-layer communication protocol to achieve data delivery at the lowest possible cost and minimal delivery delay. Building on this levelled architecture, we study the formation of weak and strong barriers and how they determine border crossing detection probability. We propose new method to calculate the required node density to provide higher intruder detection rate. Then, we study the effect of people movement models on the border crossing detection probability. At the data link layer, new energy balancing along with shifted MAC protocol are introduced to further increase the network lifetime and delivery speed. In addition, at network layer, a routing protocol called Level Division raph (LD ) is developed. LD utilises a complex link cost measurement to insure best QoS data delivery to the sink node at the lowest possible cost. The proposed system has the ability to work independently or cooperatively with other monitoring technologies, such as drowns and mobile monitoring stations. The performance of the proposed work is extensively evaluated analytically and in simulation using real-life conditions and parameters. The simulation results show significant performance gains when comparing LD to its best rivals in the literature Dynamic Source Routing. Compared to DSR, LD achieves higher performance in terms of average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining similar performance in terms of normalised routing load and energy consumption

    Applications of Wireless Sensor Networks in the Oil, Gas and Resources Industries

    Get PDF
    The paper provides a study on the use of Wireless Sensor Networks (WSNs) in refineries, petrochemicals, underwater development facilities, and oil and gas platforms. The work focuses on networks that monitor the production process, to either prevent or detect health and safety issues or to enhance production. WSN applications offer great opportunities for production optimization where the use of wired counterparts may prove to be prohibitive. They can be used to remotely monitor pipelines, natural gas leaks, corrosion, H2S, equipment condition, and real-time reservoir status. Data gathered by such devices enables new insights into plant operation and innovative solutions that aids the oil, gas and resources industries in improving platform safety, optimizing operations, preventing problems, tolerating errors, and reducing operating costs. In this paper, we survey a number of WSN applications in oil, gas and resources industry operations

    Enhanced priority-based adaptive energy-aware mechanisms for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSN) continues to find its use in our lives. However, research has shown that it has barely attained an optimal performance, particularly in the aspects of data heterogeneity, data prioritization, data routing, and energy efficiency, all of which affects its operational lifetime. The IEEE 802.15.4 protocol standard, which manages data forwarding across the Data Link Layer (DLL) does not address the impact of heterogeneous data and node Battery-Level (BL) which is an indicator for node battery life. Likewise, mechanisms proposed in the literature – TCP-CSMA/CA, QWL-RPL and SSRA have not proffered optimal solution as they encourage excessive computational overhead which results in shortened operational lifetime. These problems are inherited on the Network Layer (NL) where data routing is implemented. Mitigating these challenges, this research presents an Enhanced Priority-based Adaptive Energy-Aware Mechanisms (EPAEAM) for Wireless Sensor Networks. The first mechanism is the Optimized Backoff Mechanism for Prioritized Data (OBMPD) in Wireless Sensor Networks. This mechanism proposed the Class of Service Traffic Priority-based Medium Access Control (CSTP-MAC). The CSTP-MAC is implemented on the DLL. In this mechanism, unique backoff period expressions compute backoff periods according to the class and priority of the heterogeneous data. This approach improved network performances which enhanced network lifetime. The second mechanism is the Shortest Path Priority-Based Objective Function (SPPB-OF) for Wireless Sensor Networks. SPPB-OF is implemented across the NL. SPPB-OF implements a unique shortest path computation algorithm to generate energy-efficient shortest path between the source and destination nodes. The third mechanism is the Cross-Layer Energy-Efficient Priority-based Data Path (CL-EEPDP) for Wireless Sensor Networks. CL-EEPDP is implemented across the DLL and NL with considerations for node battery-level. A unique mathematical expression, Node Battery-Level Estimator (NBLE) is used to estimate the BL of neighbouring nodes. The knowledge of the BL together with the priority of data are used to decide an energy-efficient next-hop node. Benchmarking the EPAEAM with related mechanisms - TCP-CSMA/CA, QWL-RPL and SSRA, results show that EPAEAM achieved improved network performance with a packet delivery ratio (PDR) of 95.4%, and power-saving of 90.4%. In conclusion, the EPAEAM mechanism proved to be a viable energy-efficient solution for a multi-hop heterogeneous data WSN deployment with support for extended operational lifetime. The limitations and scope of these mechanisms are that their application is restricted to the data-link and network layers, moreover, only two classes of data are considered, that is; High Priority Data (HPD) and Low Priority Data (LPD)

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Application framework for wireless sensor networks [thesis]

    Get PDF
    Wireless Sensor Networks (WSNs) are based on innovative technologies that had revolutionized the methods in which we interact with the environment; i.e., through sensing the physical (e.g., fire motion, contact) and chemical (e.g., molecular concentration) properties of the natural surroundings. The hardware in which utilized by WSNs is rapidly evolving into sophisticated platforms that seamlessly integrate with different vendors and protocols (plug-n-play). In this thesis, we propose a WSN framework which provides assistance with monitoring environmental conditions; we focus on three main applications which include: a. Air-quality monitoring, b. Gas-leak detection, and c. Fire sensing. The framework involves four specifications: 1. Over the air programming (OTAP), 2. Network interconnections, 3. Sensors manageability, and 4. Alarm signaling. Their aim is to enhance the internetwork relations between the WSNs and the outside-world (i.e., main users, clients, or audience); by creating a medium in which devices efficiently communicate, independent of location or infrastructure (e.g., Internet), in order to exchange data among networked-objects and their users. Therefore, we propose a WSN-over-IP architecture which provides several renowned services of the Internet; the major functionalities include: live-data streaming (real-time), e-mailing, cloud storage (external servers), and network technologies (e.g., LAN or WLAN). WSNs themselves operate independently of the Internet; i.e., their operation involve unique protocols and specific hardware requirements which are incompatible with common network platforms (e.g., within home network infrastructure). Hybrid technologies are those which support multiple data-communication protocols within a single device; their main capabilities involve seamless integration and interoperability of different hardware vendors. We propose an overall architecture based on hybrid communication technology in which data is transmitted using three types of protocols: 802.11 (Wi-Fi), 802.15.4 and Digimesh (WSN)

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications
    corecore