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ABSTRACT 

Wireless Sensor Networks (WSN) continues to find its use in our lives. 

However, research has shown that it has barely attained an optimal performance, 

particularly in the aspects of data heterogeneity, data prioritization, data routing, and 

energy efficiency, all of which affects its operational lifetime. The IEEE 802.15.4 

protocol standard, which manages data forwarding across the Data Link Layer (DLL) 

does not address the impact of heterogeneous data and node Battery-Level (BL) which 

is an indicator for node battery life. Likewise, mechanisms proposed in the literature – 

TCP-CSMA/CA, QWL-RPL and SSRA have not proffered optimal solution as they 

encourage excessive computational overhead which results in shortened operational 

lifetime. These problems are inherited on the Network Layer (NL) where data routing 

is implemented. Mitigating these challenges, this research presents an Enhanced 

Priority-based Adaptive Energy-Aware Mechanisms (EPAEAM) for Wireless Sensor 

Networks. The first mechanism is the Optimized Backoff Mechanism for Prioritized 

Data (OBMPD) in Wireless Sensor Networks. This mechanism proposed the Class of 

Service Traffic Priority-based Medium Access Control (CSTP-MAC). The CSTP-

MAC is implemented on the DLL. In this mechanism, unique backoff period 

expressions compute backoff periods according to the class and priority of the 

heterogeneous data. This approach improved network performances which enhanced 

network lifetime. The second mechanism is the Shortest Path Priority-Based Objective 

Function (SPPB-OF) for Wireless Sensor Networks. SPPB-OF is implemented across 

the NL. SPPB-OF implements a unique shortest path computation algorithm to 

generate energy-efficient shortest path between the source and destination nodes. The 

third mechanism is the Cross-Layer Energy-Efficient Priority-based Data Path (CL-

EEPDP) for Wireless Sensor Networks. CL-EEPDP is implemented across the DLL 

and NL with considerations for node battery-level. A unique mathematical expression, 

Node Battery-Level Estimator (NBLE) is used to estimate the BL of neighbouring 

nodes. The knowledge of the BL together with the priority of data are used to decide 

an energy-efficient next-hop node. Benchmarking the EPAEAM with related 

mechanisms - TCP-CSMA/CA, QWL-RPL and SSRA, results show that EPAEAM 

achieved improved network performance with a packet delivery ratio (PDR) of 95.4%, 

and power-saving of 90.4%. In conclusion, the EPAEAM mechanism proved to be a 

viable energy-efficient solution for a multi-hop heterogeneous data WSN deployment 

with support for extended operational lifetime. The limitations and scope of these 

mechanisms are that their application is restricted to the data-link and network layers, 

moreover, only two classes of data are considered, that is; High Priority Data (HPD) 

and Low Priority Data (LPD). 
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ABSTRAK 

Rangkaian Sensor Tanpa Wayar (WSN) masih terus mendapat tempat dalam 

kehidupan kita. Namun begitu, kajian menunjukkan bahawa ia hampir tidak mencapai 

prestasi yang optimum, terutama dalam aspek heterogeniti data, keutamaan data, 

penghalaan data, dan kecekapan tenaga, dimana ia mempengaruhi tempoh masa 

operasi. Protocol standard IEEE 802.15.4 yang menguruskan pemajuan data melintasi 

lapisan pautan data (DLL), tidak mengambilkira kesan terhadap kepelbagaian data dan 

tahap bateri (BL) nod dalam menentukan penanda aras jangka hayat bateri nod. 

Demikian juga, mekanisme yang dicadangkan dalam tinjauan literatur - TCP-

CSMA/CA, QWL-RPL dan SSRA belum memberikan penyelesaian yang optimum 

kerana ia mendorong kepada penggunaan komputasi yang berlebihan yang 

mengakibatkan jangka hayat operasi menjadi lebih pendek. Masalah-masalah ini 

diwarisi pada lapisan rangkaian (NL) di mana penghalaan data dilaksanakan. Untuk 

mengatasi isu ini, kajian terhadap Mekanisme Pengukuhan Tenaga Adaptif 

Berasaskan Keutamaan (EPAEAM) dilaksanakan. Mekanisme pertama ialah 

Mekanisme Undur yang Dioptimumkan untuk Data Keutamaan (OBMPD) dalam 

WSN. Mekanisme ini mencadangkan Pengendalian Akses Medium berasaskan 

Keutamaan Lalu Lintas Perkhidmatan (CSTP-MAC) dimana ia dilaksanakan pada 

DLL. Dalam mekanisme ini, ungkapan tempoh undur unik bagi menghitung jangka 

masa undur adalah berdasarkan kelas dan keutamaan kepelbagaian data. Pendekatan 

ini meningkatkan prestasi dan jangka hayat rangkaian. Mekanisme kedua untuk WSN 

ialah Fungsi Objektif Berasaskan Laluan Terpendek (SPPB-OF) dimana ia 

dilaksanakan di seluruh lapisan rangkaian (NL). SPPB-OF melaksanakan algoritma 

pengiraan jalur unik untuk menghasilkan laluan terpendek yang cekap tenaga antara 

nod sumber dan destinasi. Manakala mekanisme ketiga adalah Laluan Data Cekap 

Tenaga Berasaskan Keutamaan Lintas-Lapisan (CL-EEPDP) di mana CL-EEPDP 

dilaksanakan di seluruh DLL dan NL dengan mengambil kira tahap bateri nod. 

Ungkapan unik matematik, Node Battery-Level Estimator (NBLE) digunakan untuk 

mengira BL nod jiran. Pengetahuan berkaitan BL serta keutamaan data digunakan 

untuk menentukan hop nod seterusnya yang cekap tenaga. Penanda aras EPAEAM 

dengan mekanisme yang berkaitan - TCP-CSMA/CA, QWL- RPL dan SSRA, 

menunjukkan bahawa EPAEAM mencapai prestasi rangkaian yang lebih baik dengan 

nisbah penghantaran paket (PDR) 95.4%, dan penjimatan tenaga sebanyak 90.4%. 

Kesimpulannya, mekanisme EPAEAM terbukti menjadi solusi yang cekap tenaga 

untuk penggunaan kepelbagaian hop WSN dengan sokongan jangka hayat operasi 

yang panjang. Batasan dan ruang lingkup mekanisme ini ialah aplikasinya terbatas 

pada lapisan pautan data dan rangkaian, malah, hanya dua kelas data yang 

dipertimbangkan, iaitu; Data Keutamaan Tinggi (HPD) dan Data Keutamaan Rendah 

(LPD). 
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INTRODUCTION 

1.1 Overview of Wireless Sensor Network Lifetime 

The world as we know it is phenomenally evolving and everything in it is 

complying accordingly, bearing new names – smart cities, smart world, Internet of 

Things (IoT), fifth-generation telecommunication (5G) (Junior et al., 2020). This 

process generates huge volume of data that can be represented for gainful use using 

data analytics (Feng et al., 2020). This paradigm holds the promises of animating the 

world in such a way that it appears to have a virtual brain of its own, which is made 

up of living and non-living things, tagged with trackable wireless sensor devices/nodes 

forming the network termed as Wireless Sensor Networks (WSN) (Kalidoss et al., 

2020). These wireless nodes function cooperatively and collectively, making decisions 

that may be partially dependent or completely independent of human intervention. 

These sensors or nodes are so autonomous that they can act on their own as they are 

powered by long-span battery or by energy harvesting means such as solar or 

mechanical vibrations. Been an autonomous self-powered device (node), with an 

expected long working life, one of its major challenges is power/energy. While routing 

data from one node to the other in a multi-hop pattern, it becomes imperative to utilize 

routing and power-efficient mechanisms that can sustain the nodes and the network 

for a long duration even amid unfavourable situations such as network threats (attacks) 

and natural disasters. A typical wireless sensor network is formed by a tree-like 

hierarchical virtual routing graph consisting of the Sink (network coordinator) also 

referred to as the Root node and some sets of Relay nodes and Leaf nodes (also known 

as Edge or Boundary nodes). Nodes closer to the sink are referred to as Hotspot nodes, 

as they are the busiest of nodes besides the Sink. Data is constantly routed through 

them to the Sink. A typical WSN topological architecture is depicted in Figure 1.1. 
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Figure 1.1 A typical wireless sensor network topological architecture 

Network lifetime is a critical issue in WSN as sensor nodes are mostly 

autonomously powered by battery that are limited in capacity. It is defined as the time 

for which the first node completely runs out of battery energy (Tekin & Gungor, 2020). 

This leads to the creation of a hole in the network which encourages the shortening of 

the network operational lifetime. While the primary goal of the WSN is to monitor and 

transmit sensed data of its target environment, the network lifetime determines how 

long the network will remain operational to execute this primary function. 

. 
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1.2 Energy Efficiency Issues of Wireless Sensor Network  

The energy efficiency and network lifetime of WSN has become a major cause 

of concern as this is a factor that determines the extended operational network lifetime 

for large-scale WSN, particularly as it generates huge volume of data, which can which 

can be best represented by the concept of data analytics (Hossein Motlagh et al., 2020). 

This has attracted attention both from the academia and the industry. This is attributed 

to the autonomous battery powered nature of the sensor nodes/devices, which is mostly 

limited as this impact negatively on the network lifetime of the sensor network. 

An efficient and optimized operational mechanism is needed to efficiently 

manage the routing of data across the nodes while ensuring that energy is conserved. 

While the demanding request is for a node to remain operational for as long as possible, 

this leaves an open area of research on finding effective ways to optimizing the 

constrained/limited power of the observatory nodes in such a way as to extend the 

overall operational lifetime of the WSN (Balamurugan & Arulkumaran, 2019; Ghaleb 

et al., 2019; Muzakkari et al., 2020). 

The most important aspect of a sensor node in a sensor network is, keeping the 

nodes operational for as long as possible, as they operate in mostly harsh environments 

that are sometimes not easily accessible. The goal of a sensor network is defeated if 

the sensor node cannot operate for a long period in the harshest of conditions. 

However, sensor nodes are faced with lots of challenges, which adds pressure on them 

leading to early power drainage as they are mostly battery powered. The primary 

operation that drains the most power of a node is when it is under active operations 

(that is, sensing, processing, and transmitting). Keeping the node alive as long as 

possible is paramount and finding the best way of doing so will continue to be a 

lucrative open research area. 

Whether powered by energy harvesting means or by a battery, WSN faces 

power depletion challenges, especially under extended computation and data routing 

which may be under legitimate (normal operations) or illegitimate (under attack) 

operations. Over the years, researchers have been proposing various means to optimize 
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the network lifetime of WSN. However, to achieve this feat, it becomes important to 

practically understand the operations and components of the sensor node that drains 

its battery as well as the layers of the WSN protocol stack concerned with data 

forwarding, data routing and power consumption. 

Because the energy consumed by sensor nodes is very low, they can operate 

unattended for several months or even years, especially if working in ideal conditions. 

With little or no management cost, WSN supports large deployment of sensor nodes. 

Its advantageous small size has made it easy to be used for various applications, like 

in the military, health, logistics, farming, home automation, and education.  

1.3 Problem Background 

The heterogeneous nature of data generated by WSN has often been 

overlooked, as much attention has not been paid to it in the literature. Heterogeneous 

data are generated from various user-specific applications of WSN (Gupta & Biswas, 

2020; Masud et al., 2019). These data can be classified into real-time and non-real-

time, which defines the degree of timeliness and importance attached to the 

information been conveyed, where real-time data convey time-sensitive information 

and non-real-time data conveys delay-tolerant information. This overlooked yet 

significant aspect of WSN contributes largely to how the sensor node constrained 

energy is utilized. To achieve optimal WSN performance while improving power 

management, heterogeneous data need to be classified and prioritized into an order of 

importance, as non-prioritized or poorly prioritized data stream may lead to excessive 

power consumption, as the data routing mechanism will unintentionally handle all 

classes of data as the same without treating a particular class different from the other. 

This practice results in suboptimal network performances and eventual shortening of 

the network lifetime, bearing in mind that effective energy conservation is the key to 

extended operational lifetime.  
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The longevity of the network lifetime of a sensor node is dependent on how 

busy or active it executes operations (that is, data forwarding, data routing, data 

prioritization methods/mechanisms, and route rerouting/recovery mechanism). The 

amount of data transmitted and received, the time it takes to transmit and receive data, 

and the processing durations also affect the sensor node lifetime. In order words, the 

network lifetime of an entire sensor network is directly proportional to the lifetime of 

a single sensor node. The exhaustion of a single node in the network creates a hole as 

its responsibilities are shared among other active constrained nodes, leading to 

processing and communication overhead on the fewer available nodes, this results in 

excessive power consumption of available nodes, leading to a possible failure of the 

entire network. The major issues affecting optimal energy utilization of WSN are; 

inefficient classification and prioritization of IEEE 802.15.4 heterogeneous data across 

the data link layer, suboptimal prioritization and route estimation of heterogeneous 

data across the network layer, and unreliable and inefficient node battery-level 

estimation and forwarding paths for heterogeneous data. The following sections 

further provide details that describes the problem background for this research. 

1.3.1 Inefficient Classification and Prioritization of IEEE 802.15.4 

Heterogeneous Data 

The prioritization of heterogeneous data in WSN gives meaning to mission-

critical data that are time-sensitive as they may be conveying information that may be 

a matter of life and death, hence such data needs to be processed timely and with the 

highest available priority. However, the IEEE 802.15.4 standard which operates on the 

data link layer of the WSN protocol stack, does not consider the heterogeneous nature 

of WSN data, nor does it implement data prioritization (Masud et al., 2019; Society, 

2020). Subsequently, prioritization mechanisms proffered in the literature have not 

adequately addressed this issue as the proposed mechanisms either uses a single or 

complex backoff algorithm to estimate backoff time-slots for prioritized data. Also, 

the carrier sense multiple access with collision avoidance mechanism exhibits an 

exponentially increasing range of backoff times. These approaches are not only 
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inefficient but result in high latency and increased power consumption, which impacts 

negatively on the network lifetime of the WSN.  

The IEEE 802.15.4 nodes use the mechanism of carrier sense multiple access 

with collision avoidance (CSMA/CA) (Punia & Ziya, 2019) to gain access to the 

shared medium of transmission. According to application or user requirements, most 

WSN data conveys data of varying priorities which can be majorly grouped into real-

time (RT) and non-real-time (NRT) data. Without prioritizing these data, data with less 

importance can clog the shared medium of transmission, thereby denying data that 

needs urgent attention which may be conveying mission-critical information. This 

inadequacy in the standard IEEE 802.15.4 has prompted active research for 

improvement. In the CSMA/CA mechanism, nodes need to sense the medium of 

transmission to ascertain that it is free of any ongoing transmission before attempting 

to engage in data transmission. If the medium is perceived to be busy, the node backoff 

by a predetermined period before reattempting to transmit the data. The Binary 

Exponential Backoff (BEB) algorithm (Sahoo et al., 2019) is used to compute the 

backoff period. However, this computation is done without regard to the 

heterogeneous nature of the data. This practice results in depriving data of critical 

importance the timely access they need to access the shared transmission medium, and 

subsequently degrades the entire network performance. This leads to an open area of 

research that calls for improvements. 

Masud et al. (2019) proposed the TCP-CSMA/CA  mechanism which handles 

heterogeneous data. Data are classified into four categories namely the Critical Traffic 

Class (CTC), Reliability Traffic Class (RTC), Delay Traffic Class (DTC), and the 

Non-constraint Traffic Class (NTC). These classes are assigned priority levels and 

backoff periods unique to the class of data; however, the proposed backoff estimation 

algorithm appears rather complex which adds an extra layer of computational overhead 

on the already constrained nodes.  

While Wireless Body Area Network (WBAN) handles the heterogeneous data 

generated by the patient under observation, the data latency and energy consumption 

call for concern as this impact negatively on the performance of the heterogeneous 
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data. Based on data prioritization, Markov’s method was adopted to propose a 

mechanism that improves network delays and energy consumption (Rismanian Yazdi 

et al., 2019). The proposed mechanism classifies data into three categories; emergency, 

periodic, and normal. However, the prioritization and classification approaches were 

not clearly stated, and the unique backoff expression that estimates the backoff period 

for the categories of data was not provided in detail, leaving the reader with an unclear 

approach.   

The Energy-efficient Multi-constrained QoS aware MAC (eMC-MAC) was 

proposed by Pandit et al. (2015), to improve the handling of heterogeneous data in 

WBAN with regards to energy consumption, latency, and packet delivery rate. Data 

packets were categorized into four different categories with assigned priority status. 

subsequently, the superframe was enhanced to accommodate all these categories of 

data types. In this mechanism, the superframe structure was modified to entertain the 

immediate transmission of critical data whenever available. Furthermore, mini-slots 

was introduced into the standard Contention Free Period (CFP), which collects the 

requests of data that needs urgent attention and send them to the coordinator node as 

required in an energy-efficient manner. An energy-efficient algorithm was also 

developed to assist in the preemption of higher priority data to facilitate timely 

transmission to the coordinator node. While the mechanism claims to be optimal, the 

detailed implementation of preemption was not explained, as there is no proactive 

mechanism that interrupts lower priority data once they gain access to the shared 

medium of transmission. 

Rasheed et al. (2017) proposed the priority guaranteed MAC (PG-MAC) 

protocol with a modified superframe structure of the IEEE 802.15.4 standard. This 

mechanism claims to address the network lifetime challenge, which is a common 

problem of WSN. Subsequently, it addresses the issue of network delays and other 

related QoS requirements. To achieve this result, the mechanism modifies the standard 

superframe to accommodate heterogeneous data with varying priority tags. To save 

energy, a wake-up mechanism was also implemented. Also, the discrete-time finite-

state Markov’s model was used to find the state of the node, while analytical 

expressions were derived to estimate the average energy consumption, throughput, 
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packet loss rate, and latency. Though the results of this mechanism look promising, 

however, the complexity of the mechanism adds excessive computational overhead on 

the network leading to untimely power degradation. 

Finally, it is observed that most of the existing mechanisms generate 

suboptimal performances due to non or poorly implemented data prioritization and 

channel sensing mechanisms resulting in inefficient performances or excessive 

computational overhead which degrades the WSN scarce power.  To achieve an 

improved performance for various types of IEEE 802.15.4 applications, an improved 

mechanism should be designed that considers all noted shortcomings in the literature 

while considering the heterogeneous nature of the WSN data with overall optimized 

network performances, which encourages extended network lifetime.  

1.3.2 Inefficient and Suboptimal Prioritization and Route Estimation of 

Heterogeneous Data Across the WSN Protocol Stack Network Layer 

The Routing Protocol for Low-power and Lossy Networks (RPL), is the de 

facto routing protocol for the IoT which manages and administers the smooth 

transportation of data packets across the WSN. However, the mechanism fails to 

address the heterogeneous nature of data packets traversing the network layer, as these 

packets may carry different classes of data with different priority status, some real-

time (time-sensitive) while others non-real-time (delay-tolerant). The standard 

Objective Functions (OFs) (Solapure & Kenchannavar, 2020), which is used by RPL 

to create routing path, treats all classes of data as the same, this practice is not only 

inefficient but results in poor network performance. This inadequacy leaves an open 

area of research that has attracted attention from both academia and the industry. 

The Priority-based and Energy Efficient Routing was proposed by Safara et al. 

(2020). This mechanism focuses on improving the challenges of energy consumption, 

load balancing, and related QoS constraints associated with data aggregation towards 

the coordinator node and to the outside network. Improving upon the RPL mechanism, 

PriNergy uses timing patterns to send data to the coordinator node while considering 
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network traffic. Audio and image data are the two types of data considered. Using the 

Time Division with Multiple Access (TDMA) mechanism, in each time slot, the time 

and distance information of the sender node is sent to the destination node which 

synchronizes with each order before the data is sent. The result shows that the 

mechanism performs better than related mechanisms, however, the mechanism does 

not show in detail how the algorithm is established as there exist lots of assumptions 

in their approach. Subsequently, the heterogeneous nature of data is not adequately 

considered. 

The Queue and Workload-based condition RPL (QWL-RPL) was proposed by 

Musaddiq et al. (2020). This mechanism considers the bottleneck experienced by an 

already exhausted parent node that receives a stream of heterogeneous data due to the 

poor decisions of the RPL Objective Functions; Objective Function Zero (OF0) and 

Minimum Rank with Hysteresis Objective Function (MRHOF) which leads to 

excessive power consumption, hole in the network and shortening of the network 

lifetime. QWL-RPL targets to achieve a reliable routing path with improved network 

performance. Using packet queuing techniques with the knowledge of the link 

workload, QWL-RPL maps the child node to a less congested parent node, by this way 

the mechanism enforces optimized load balancing and reduces unnecessary power 

consumption which eventually leads to extended operational lifetime. Compared to the 

related mechanism, the result of the QWL-RPL mechanism shows better network 

performance. However, the heterogeneous nature of the WSN data was not adequately 

described, and the implementation of prioritization for the data packets was unclear.  

For concerns about the vulnerabilities and security of the WSN, Shi et al. 

proposed the am Improved Secure Routing (ISR) to secure the RPL protocol from 

malicious attacks (Shi et al., 2019). In this mechanism, the concept of trust value is 

used to define the integrity and status of the node. The trust value defines the attack 

probability upon the behaviors of the previously forwarded packets, the details of the 

node residual energy, and its distance to the sink. This helps to increase route integrity 

while securing the routing paths. The mechanism adopts the improved variant of the 

Dijkstra algorithm to generate a secured route while ensuring an optimized network. 

While results look promising, however, the mechanism does not consider the 
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heterogeneous nature of WSN data in its implementations. Subsequently, the 

complexity of the mechanism is likely to cause increased routing overhead which leads 

to increased power consumption.  

Learning Automata bases RPL (LA-RPL) was proposed by Homaei et al. 

(2019) to address the problems of energy consumption, communication constraints, 

data aggregation, resource, and routing challenges for WSN node deployment on the 

RPL protocol. The height of the routing graph is increased by restricting the degree, 

this results in reduced network congestions. Additionally, a dynamic data aggregation 

that is based on Learning Automata is implemented. This mechanism improved how 

nodes learn about the information of its neighboring nodes, which helped improved 

data aggregation and packet transmission. Results show that the LA-RPL mechanism 

performed better than related mechanisms. However, the mechanism does not consider 

the heterogeneous nature of WSN data, subsequently, the performance of the 

mechanism with a scaling network is not known. 

AlSawafi et al. (2020) proposed the Hybrid RPL-based Sensing and Routing 

Protocol (HRSRP). Their work describes both WSN and Mobile Crowd Sensor (MCS) 

technologies to face network and performance challenges such as poor packet delivery, 

lossy network, high latency, and limited lifetime which is a result of the constrained 

nature of sensor nodes. Their HRSRP mechanism mitigates these challenges by 

integrating the WSN and MCS technologies and allowing them to work as a hybrid 

routing protocol, whereby MCS is used in an opportunistic way to support static WSN 

node to enhance performance. To achieve their objective, the standard RPL control 

messages were modified resulting in a unique DODAG construction mechanism. In 

comparison with related mechanisms, results show improved performance. However, 

the application of the mechanism in the realistic scenario is not known, subsequently, 

the mechanism does not consider the heterogeneous nature of the MCS and WSN data. 

The outcome of the literature shows inadequate support for data heterogeneity, 

while those with proposed mechanisms are either poorly implemented or results in 

compromising the network performances which leads to unnecessary power 
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consumption, resulting in a shortened operational lifetime. These inadequacies open 

the door for improvements that will be addressed in this research. 

1.3.3 Unreliable and Inefficient Node Battery-level Estimation and Forwarding 

Paths for Heterogeneous Data  

As power is key for WSN, the question is, are the current data forwarding and 

routing mechanisms optimal enough for an extended operational lifetime? Are the 

priorities of data packets adequately addressed across the data link and network layers? 

Is the battery-level (BL) of node adequately monitored and managed to help make a 

good decision of data forwarding for an optimal extended operational lifetime? 

Answers to these questions have prompted researchers into further improvements of 

the WSN operations to support an extended operational lifetime.  

Queue and Workload condition RPL (QWL-RPL) was proposed by Musaddiq 

et al. (2020). The authors discussed the need for an improved objective function, as 

the standard RPL objective functions; OF0 and MRHOF do not adequately address the 

needs of heterogeneous data traffic. To achieve the improvements, the node to node-

link workload and mapping a child node to a parent node with the knowledge of its 

congestion state which is revealed in the node buffer memory and packet queue status. 

With the knowledge of the Weighed Cumulative Expected transmission Time 

(WCETT), which depends on the link in the network, the mechanism can determine 

the congestion state of the network while ensuring effective bandwidth utilization, 

flow control, and power control constraints. Simulation results show that the 

mechanism performed better than related mechanisms. Even though the mechanism 

shows considerations for heterogeneous data, it does not show support for battery-level 

monitoring which is an important parameter that helps in the decisions of child-parent 

node mapping and relationship for optimized routing. 

Hamrioui et al. (2018) argues that the complexity and heterogeneity of WSN 

make the existing routing protocols incapable of handling the growing needs and 

applications of WSN particularly in the area of smart cities. The authors proposed the 
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Smart and Self-organized Routing Protocol (SSRA) to address the performance 

degradation issues of the existing mechanism with regard to WSN applications in 

smart cities. The mechanism operates at the network layer of the WSN protocol stack 

by improving upon the route selection of nodes to improve packet forwarding. The 

mechanism shows support for node mobility, over time as packet routing takes place 

all neighboring nodes dynamically learn of each other’s parameters and with this 

knowledge can decide and select paths that are power efficient and optimized for a 

extended operational lifetime. Results show improvement over related mechanisms; 

however, the mode of implementations may pose a possible computational overhead 

for the already constrained node leading to a shortened operational lifetime. 

Additionally, the mechanism does not show adequate support for heterogeneous data 

of WSN, subsequently, the support for node BL monitoring is not implemented which 

limits the versatility of the mechanism. 

Nguyen et al. (2020) proposed the Balanced and constant Stretch protocol for 

bypassing Multiple Holes (BSMH) in their work. Network holes resulting from the 

power exhaustion of nodes due to suboptimal routing mechanisms result in shortening 

the network lifetime of the sensor network. Furthermore, routing path length, control 

packet overheads, and uneven load balancing pose major challenges for resource-

constrained nodes. Mitigating these shortcomings, the BSMH mechanism improves 

upon the operational longevity of the sensor network by the use of a dynamic base path 

that varies from packet to packet. The base paths are probabilistically selected such 

that a path close to the destination node is likely to be chosen. Subsequently, the base 

path ensures that the routing path upper bound is optimal to path generation. 

Additionally, a node is assigned a priority index indicates how far it is from a power 

exhausted node.  This mechanism helps nodes to avoid power exhaustion which leads 

to holes in the network. Results show improved performance as compared to related 

mechanisms, however, the complexity of the mechanism add extra computational 

overhead to the already power-constrained nodes. Moreover, the node prioritization 

implementation is not clear, subsequently, the mechanism does not show adequate 

support for heterogeneous data as well as support for node BL monitoring. 
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As power is key for WSN, the gradual increase and advancement of WSN 

applications are putting increasing demand on sensor nodes, leading to a huge 

generation of heterogeneous data that are resource-intensive which demands improved 

routing and forwarding mechanism as current standard and proffered mechanism in 

the literature are not optimal enough to cope with the robustness. The literatures have 

revealed that there is work to be done in improving upon node BL monitor and 

estimation which is a critical parameter in deciding data forwarding paths/ route 

computation, load balancing, and estimating expected network lifetime. To this end, 

this research aimed to proffer improved and optimized mechanisms for data 

forwarding/routing and power management, leading to improved operational lifetime. 

1.4 Problem Statement 

This research addresses the problems faced by heterogeneous data of WSN 

with regards to energy consumption while forwarding and routing data across the data 

link and network layers respectively, as it relates to performance requirements such as 

latency, packet delivery ratio, throughput, control messages overhead, and 

convergence time, all of which combine to determine the network operational lifetime. 

However, existing mechanisms as mentioned in Section 1.3 has limitations and had 

not sufficiently provided lasting solution to improve network lifetime. In this study, 

three critical problems are identified; the first is inefficient prioritization and 

classification of IEEE 802.15.4 heterogeneous data across the data link layer, the 

second is the suboptimal data prioritization and route estimation of heterogeneous data 

across the network layer, while the third is the unreliable and inefficient node battery-

level estimation and forwarding paths for heterogeneous data across the DLL and NL.  

These issues led to the formulation of the three research questions with each addressing 

the aforementioned problem statements respectively.  
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1.5 Research Questions 

Based on the discussions in Section 1.2, the following research questions are 

formulated: 

i. How to optimize the forwarding of heterogeneous data with support for data 

priority across the data link layer of IEEE 802.15.4, for extended network 

lifetime? 

ii. How to improve the routing of heterogenous data with support for data priority 

across the network layer for extended network lifetime?  

iii. How to optimize the monitoring and management of the instantaneous node 

battery-level for optimal forwarding and routing of heterogeneous and 

prioritized data with support for extended network lifetime? 

1.6 Research Aim 

The aim of this research is to develop an energy-efficient data forwarding and 

routing mechanisms across the data link and network layers respectively with support 

for heterogeneous data as well as node battery-level monitoring and management 

which enhances extended network lifetime.   

1.7 Research Objectives 

From the perspective of the problem statement, research questions, and 

research aim, the following are the objectives of this research. Each objective 

addresses each research question respectively. 
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i. To develop an energy-efficient data forwarding mechanism for IEEE 802.15.4 

heterogeneous data across the data link layer with support for extended 

network lifetime.   

ii. To develop an energy-efficient data routing mechanism for heterogeneous data 

across the network layer with support for extended network lifetime. 

iii. To design and develop a mechanism that monitors and manages the 

instantaneous node battery-level for an optimal forwarding and routing of 

heterogeneous data with support for extended network lifetime. 

1.8 Research Scope and Limitations 

The scope of this research focuses on the following: 

i. The research addresses data forwarding and routing issues across the data link 

and network layers of the WSN protocol stack. 

ii. The research focuses on performance optimization of the IEEE 802.15.4, and 

the Internet Engineering Task Force (IETF) Routing Protocol for Low-power 

and Lossy Network (RPL) standards  

iii. All data generated by the WSN are considered heterogeneous and of two 

classes; High Priority Data (HPD) and Low Priority Data (LPD) 

iv. The research focuses on data prioritization for optimized channel access and 

packet routing. 

v. The research also focuses on optimized energy utilization to extend the 

network operational lifetime  

vi. Homogenous nodes (that is, all nodes are of the same make and model) are 

considered under common energy and resource constraints 
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vii. Node deployment is on the open and flat network with a clear line of sight 

between neighbouring nodes (that is, there are no obstacles in-between nodes) 

viii. Sensor nodes sense and acquire data periodically (proactive sensing), thus 

event-based sensing is not considered. 

ix. The routing protocol is restricted to a proactive routing protocol 

x. Deployment of nodes can be in a structured and unstructured manner, as long 

as the nodes are within communication range with each other. 

1.9 Significance of Research 

The significance of this research is improving upon the operational 

mechanisms of the WSN across the data link layer and the network layer particularly 

as it applies to its real-life applications. One of the most paramount challenges of the 

sensor node is energy, bearing in mind that most sensor nodes are autonomously 

powered by a battery and are expected to work unattended for a long duration. 

However, to achieve this aim, the operational mechanisms must be optimal enough to 

guarantee extended network lifetime. The proposed EPAEAM mechanism addresses 

all of the existing shortcomings of the state-of-the-art mechanism and those proposed 

in related literature. The EPAEAM is suitable for a wide range of applications that 

requires energy-efficient, reliable multi-hop communications that generate 

heterogeneous data, such as smart home, smart logistics, smart campus, smart industry, 

smart medicine, and a host of WSN applications. The major advantage of the 

EPAEAM mechanism is its high tolerance to link instability and network workloads 

as its dynamic node battery-level monitoring mechanism guarantee effective load 

balancing by ensuring that data packets are not forwarded to a node whose 

instantaneous battery-level is below a predefined battery-level status. Overall, the 

EPAEAM mechanism provides an excellent enhance energy-aware mechanism that 

meets the everyday need of modern WSN applications. 
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1.10 Organization of Thesis 

This thesis comprises of seven (7) chapters. The rest of the chapters is 

organized as follow: 

Chapter 2 presents a comprehensive literature review of the standard 

operational mechanism and those provided by related and existing literature in the 

study area and elaborating on the problem background and existing solutions. In 

particular, the available solutions in the context of effective channel sensing for 

heterogeneous IEEE 802.15.4 data over multi-hop communication were thoroughly 

examined to highlight the contributions of the research. 

Chapter 3 describes the research methodological framework and experimental 

environment used to achieve and verify this research objective in line with standard 

performance requirements. In addition, the chapter presents the design, 

implementation, and validation process of the proposed EPAEAM mechanism. 

Chapter 4 presents the design and evaluation of the optimized backoff 

mechanism for prioritized data (OBMPD) in wireless sensor networks mechanism, 

which is developed to support optimal channel sensing and forwarding of 

heterogeneous data with consideration for data priority, across the data link layer, 

while reducing network overhead and extending operational lifetime.  

Chapter 5 presents the design and performance evaluation of the shortest path 

priority-based objective function (SPPB-OF) for wireless sensor networks mechanism, 

which provides optimal routing paths for heterogeneous data across the network layer 

with regard the priority of the data packet while ensuring improved performances 

which supports extended operational lifetime. 

Chapter 6 presents the design and evaluation of the cross-layer Energy-efficient 

priority-based data path (CL-EEPDP) mechanism for wireless sensor networks, which 

provides optimized data forwarding and routing mechanism across the data link and 

network layers by monitoring the BL of the intended next-hop node. The mechanism 
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ensures that data are not forwarded or routed to nodes whose BL is below a 

predetermined value. In this way, the mechanism ensures effective load balancing 

while guaranteeing an extended operational lifetime. 

Chapter 7 summarizes this study by presenting the achievements, challenges 

and future directions. 
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