




iii 
 

  

 

 

 

 

 

 

©Najam us Saqib 

2017 

 

 

 

 

 

 

 

 

 



iv 
 

DEDICATION 

 

 

 

 

 

 

 

To my parents and brother. 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENTS 

First of all, I am grateful to Almighty Allah, the beneficial and merciful, who gave me best 

of health, knowledge and resilience to accomplish my thesis work. May the salutations and 

blessings be upon Prophet Muhammad (SAWS). 

I would like to seek this opportunity to express my heartfelt gratitude to my thesis advisor 

Dr. Muhammad Faizan Mysorewala for his continuous support and encouragement. He 

trained and motivated me and extended his utmost support during my time in the university 

and especially in my thesis. Furthermore, I would like to thank my thesis committee 

members, Dr. Lahouari Cheded and Dr. Moustafa El Shafei for their time and effort in 

evaluation regarding my research work. Also, I am grateful to the Chairman of Systems 

Engineering department Dr. Hesham K. Al-Fares and other faculty and department 

members especially Dr. Tariq Nasir, Mr. Shaukat Ali and Mr. Widodo for providing their 

support and guidance during my time here in graduate studies.  

I am also obliged to King Fahd University of Petroleum and Minerals for awarding me full 

time scholarship to pursue graduate studies as well as the Deanship of Graduate Studies 

which funded my research. 

Moreover, I would like to thank my parents and family for supporting me and providing 

encouragement with decisions that I make in my life. Finally, I want to extend my sincere 

thanks to my friends, Saad Waseem, Hassan Sheikh, Aneeq Nasir, Zeeshan Tariq, Taha 

Nasir, Ahmed Sadeed, Mutsaied Shirazi, Adil Ahmed, Abdul Asad, Owais Ahmed, Abdur 

Rehman and Abdul Majeed for their generous support and making my tenure at KFUPM a 

memorable one. 



vi 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................. v 

TABLE OF CONTENTS ................................................................................................ vi 

LIST OF TABLES ........................................................................................................... ix 

LIST OF FIGURES .......................................................................................................... x 

LIST OF ABBREVIATIONS ...................................................................................... xvii 

ABSTRACT (ENGLISH) ............................................................................................ xviii 

ABSTRACT (ARABIC) ................................................................................................. xx 

CHAPTER 1 INTRODUCTION ..................................................................................... 1 

1.1. Background .................................................................................................................. 1 

1.2. Problem Statement ........................................................................................................ 3 

1.3. Thesis Contributions ...................................................................................................... 4 

1.4. Methodology ................................................................................................................. 6 

1.4.1. Assumptions used in Thesis .............................................................................................. 7 

1.4.2. Research Methodology..................................................................................................... 8 

1.5. Thesis Organization ..................................................................................................... 11 

CHAPTER 2 LITERATURE REVIEW ....................................................................... 13 

2.1. Leak Detection and Location in Pipelines ....................................................................... 13 

2.1.1. Previous Work Done ..................................................................................................... 13 

2.1.2. Pressure and Flow Monitoring ......................................................................................... 14 

2.1.3. Acoustic and Vibration Monitoring .................................................................................. 17 

2.2. Pipeline Monitoring using WSNs ................................................................................... 19 

2.2.1. Previous Work Done ..................................................................................................... 20 

2.2.2. Energy-Efficient Techniques ........................................................................................... 27 

2.3. Approaches to Energy Conservation in WSNs ................................................................ 31 



vii 
 

2.3.1. Duty Cycling ............................................................................................................... 31 

2.3.2. Data Driven Approaches ................................................................................................ 41 

CHAPTER 3 SYSTEM DESCRIPTION ...................................................................... 51 

3.1. Introduction ............................................................................................................... 51 

3.1.1. Effect of Leak on Pressure .............................................................................................. 52 

3.1.2. Effect of leak on vibrations ............................................................................................. 53 

3.2. Vibration Modeling ..................................................................................................... 55 

3.2.1. Vibrations due to leak .................................................................................................... 55 

3.2.2. Vibrations due to flow ................................................................................................... 60 

3.3. Pipeline Network simulation based on Vibration Model ................................................... 63 

3.3.1. Simulation of Pressure Data ............................................................................................ 66 

3.3.2. Simulation of Vibration Data ........................................................................................... 69 

3.4. WSN Node Model ........................................................................................................ 77 

3.4.1. Energy Equations .......................................................................................................... 79 

CHAPTER 4 ENERGY EFFICIENCY BASED ALGORITHM FOR PIPELINE 

MONITORING ............................................................................................................... 86 

4.1. Duty Cycling ............................................................................................................... 87 

4.2. Adaptive Sampling Algorithm ....................................................................................... 90 

4.3. Adaptive Threshold Algorithm ..................................................................................... 97 

4.4. Data Compression Scheme ......................................................................................... 101 

4.4.1. Algorithm Details ....................................................................................................... 105 

4.5. Data Transmission Scheme ......................................................................................... 115 

4.6. Solution for Optimal Cost ........................................................................................... 118 

CHAPTER 5 RESULTS ............................................................................................... 128 

5.1. Adaptive Sampling Algorithm ..................................................................................... 129 

5.2. Adaptive Threshold Algorithm ................................................................................... 140 

5.3. Signal Compression ................................................................................................... 148 

5.4. Effect of Algorithms on Energy Consumption ............................................................... 155 

5.5. Effect of Compression on leak localization .................................................................... 163 



viii 
 

5.6. Cost Analysis of the Scheme........................................................................................ 169 

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS ................................ 177 

References: ........................................................................................................................ 179 

Vitae ................................................................................................................................. 189 

 

  



ix 
 

LIST OF TABLES 

Table 3-1: Simulation Parameters ..................................................................................... 65 

Table 3-2: CC2420 State Transition Times ...................................................................... 82 

Table 3-3: CC2420 State Currents .................................................................................... 83 

Table 3-4: Node Components power consumption for different states ............................ 83 

Table 3-5: Hardware constants for microcontroller .......................................................... 84 

Table 5-1: Solutions given by optimization algorithm for different target energies ...... 175 

  



x 
 

LIST OF FIGURES 

Figure 3.1:  Pressure Profile in Pipeline for fixed pressure boundary conditions, 𝐗𝐋 is  

the leak location ........................................................................................... 52 

Figure 3.2: Pressure profile in the Pipeline for fixed inlet flow and exit pressure, 𝐗𝐋 is  

the leak location ........................................................................................... 52 

Figure 3.3: Effect of distance on leak spectrum ............................................................... 54 

Figure 3.4: (a) No leak and Leak vibrations for DB3 and (b) No leak and Leak  

vibrations for position DB11. ...................................................................... 55 

Figure 3.5: Major Components of the leak vibration model [22]..................................... 56 

Figure 3.6: Vibration generation scheme to be used......................................................... 62 

Figure 3.7: MATLAB-EPANET Co-simulation scheme.................................................. 63 

Figure 3.8: EPANET Model of pipeline, the rectangular position is the leak location  

and the triangle node is the network exit node with demand of 40 liters  

per minute. ................................................................................................... 66 

Figure 3.9: Node pressure profile before and after leak for 1mm leak ............................. 67 

Figure 3.10: Node pressure profile before and after leak for 3mm leak ........................... 68 

Figure 3.11: Node pressure profile before and after leak for 5mm leak ........................... 69 

Figure 3.12: Vibrations at 4 different nodes before and after the leak for the 1mm leak 

case. Node 10 is 23m from the leak, Node 14 is 27m from the leak, Node  

7 is 73m from the leak and Node 18 is 77m from the leak. ......................... 70 

Figure 3.13: Vibrations at selected nodes for a 3mm leak, it is noticed that at nodes 10 

and 14 the leak signature is more prominent now. ...................................... 71 



xi 
 

Figure 3.14: Vibration signature at selected nodes for 5mm leak. The leak is more 

noticeable in Nodes 10 and 14 but at Nodes 7 and 18 there is no effect of 

leak. .............................................................................................................. 72 

Figure 3.15: Spectrogram of the different leaks at Node 10, 23m from the leak. ............ 73 

Figure 3.16: Spectrogram of the different leaks at Node 14, 27m from the leak. ............ 74 

Figure 3.17: Spectrogram of the different leaks at Node 7, 73m from the leak. .............. 75 

Figure 3.18: Spectrogram of the different leaks at Node 18, 77m from the leak. ............ 76 

Figure 3.19: WSN Node main components ...................................................................... 77 

Figure 4.1: Duty-Cycling Scheme used in the algorithm, dark grey bar indicates  

sampling with high-energy sensor at high-frequency sampling rate, and  

light grey bars indicate sampling with low-frequency sampling rate. ......... 88 

Figure 4.2: Sampling rate comparison between (a) a conventional sampling scheme  

and (b) adaptive sampling scheme. .............................................................. 90 

Figure 4.3: Adaptive sampling scheme visualization on a frequency variable signal. ..... 91 

Figure 4.4: Scheme of calculating the adjusted sampling frequency................................ 94 

Figure 4.5: Example 3 level Wavelet Packet Decomposition and band selection  

according to the scheme presented in figure 4.4. The shaded boxes  

represent sub-bands which are higher than the calculated threshold and  

are selected for further decomposition. ........................................................ 95 

Figure 4.6: Complete Scheme of the simulation for leak detection using adaptive 

threshold ....................................................................................................... 99 

Figure 4.7: (a) Compression and Encoding Scheme for HSVS and (b) for LSVS at  

WSN Node. ................................................................................................ 106 



xii 
 

Figure 4.8: Decoding procedures for (a) HSVS sampled data and (b) LSVS sampled  

data. ............................................................................................................ 106 

Figure 4.9: 3 level Wavelet Transform of signal x[n]. ................................................... 107 

Figure 4.10: Radio Transmission Scheme for the overall simulation. ............................ 116 

Figure 4.11: Paths the backtracking algorithm will take to find the most optimal  

solution. The solid arrows represent forward paths and the dotted arrows 

shows the backtracking when the cost function is not satisfied for the set 

parameters. ................................................................................................. 126 

Figure 5.1: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 23 m from 1mm leak. ............................................................. 130 

Figure 5.2: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 27 m from 1mm leak. ............................................................. 131 

Figure 5.3: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 73 m from 1mm leak. ............................................................. 132 

Figure 5.4: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 77 m from 1mm leak. ............................................................. 133 

Figure 5.5: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 23m from 3mm leak. .............................................................. 134 

Figure 5.6: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 27m from 3mm leak. .............................................................. 135 

Figure 5.7: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 73m from 3mm leak. .............................................................. 136 

file:///C:/Users/Najam/Downloads/KFUPM/Thesis/Thesis%20Writeup/Thesis%20Report%20Final%20Draft.docx%23_Toc484443556
file:///C:/Users/Najam/Downloads/KFUPM/Thesis/Thesis%20Writeup/Thesis%20Report%20Final%20Draft.docx%23_Toc484443556
file:///C:/Users/Najam/Downloads/KFUPM/Thesis/Thesis%20Writeup/Thesis%20Report%20Final%20Draft.docx%23_Toc484443556
file:///C:/Users/Najam/Downloads/KFUPM/Thesis/Thesis%20Writeup/Thesis%20Report%20Final%20Draft.docx%23_Toc484443556


xiii 
 

Figure 5.8: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 77m from 3mm leak. .............................................................. 137 

Figure 5.9: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 23m from 5mm leak. .............................................................. 138 

Figure 5.10: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 27m from 3mm leak. .............................................................. 138 

Figure 5.11: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 73m from 3mm leak. .............................................................. 139 

Figure 5.12: (a) The frequency spectrum and (b) the corresponding sampling  

frequencies 77m from 3mm leak. .............................................................. 139 

Figure 5.13: Median magnitudes of vibration readings different distances from 1mm  

leak for before and after leak. .................................................................... 141 

Figure 5.14: Median magnitudes of vibration readings different distances from 3mm  

leak for before and after leak. .................................................................... 142 

Figure 5.15: Medians calculated by the adaptive threshold algorithm and the leak 

detection using both low (LSVS )and high (HSVS) frequency sensor for 

Node 10 in 3mm leak. ................................................................................ 143 

Figure 5.16: Medians calculated by the adaptive threshold algorithm and the leak 

detection using both low (LSVS) and high (HSVS) frequency sensor for 

Node 14 in 3mm leak. ................................................................................ 145 

Figure 5.17: Leak detection and data request flags from the 4 Nodes in the system. ..... 146 



xiv 
 

Figure 5.18: Medians calculated by the adaptive threshold algorithm and the leak 

detection using both low (LSVS) and high (HSVS) frequency sensor for 

Node 10 in 5mm leak. ................................................................................ 147 

Figure 5.19: Medians calculated by the adaptive threshold algorithm and the leak 

detection using both low (LSVS) and high (HSVS) frequency sensor for 

Node 14 in 5mm leak. ................................................................................ 148 

Figure 5.20: Compression and distortion for 3mm leak signal at Node 10. ................... 149 

Figure 5.21: Compression and distortion for 3mm leak signal at Node 10, 80%  

threshold, 3 bits SAQ. ................................................................................ 150 

Figure 5.22: Compression and distortion for 3mm leak signal at Node 10, 65%  

threshold, 4 bits SAQ. ................................................................................ 151 

Figure 5.23: (a) Compression at Node 10 with different compression thresholds,  

(b) similar compression at Node 14 for 3mm leak. ................................... 152 

Figure 5.24: Effect of varying SAQ from 6 bits to 2 bits. .............................................. 153 

Figure 5.25: (a) Compression at Node 10 with different compression thresholds, 

(b) similar compression at Node 14 for 5mm leak. ................................... 154 

Figure 5.26: Energy consumption over time for 4 Nodes under study for 10s duty  

cycling. ....................................................................................................... 155 

Figure 5.27: Energy consumption over time for 4 Nodes under study for 60s sensor  

duty cycling and 3600s radio duty cycling. ............................................... 156 

Figure 5.28: Energy consumption over time for 4 Nodes under study for a 9 cycle 

adaptive sampling scheme for 1mm leak. .................................................. 157 



xv 
 

Figure 5.29: Energy consumption over time for 4 Nodes under study for a 9 cycle 

adaptive sampling scheme for 3mm leak. .................................................. 158 

Figure 5.30: Energy consumption over time for 4 Nodes under study for a 9 cycle 

adaptive sampling scheme for 5mm leak. .................................................. 159 

Figure 5.31: Energy consumption over time for 4 Nodes under study for compression 

applied using 80% threshold and 4-bit SAQ for 1mm leak. ...................... 160 

Figure 5.32: Energy consumption over time for 4 Nodes under study for compression 

applied using 80% threshold and 4-bit SAQ for 3mm leak. ...................... 161 

Figure 5.33: Energy consumption over time for 4 Nodes under study for compression 

applied using 80% threshold and 4-bit SAQ for 5mm leak. ...................... 162 

Figure 5.34: Percentage reduction in energy consumption across all energy  

conservation schemes for different leak sizes. ........................................... 163 

Figure 5.35: Cross-correlation result of 1mm leak for Nodes 10 and 14. ...................... 164 

Figure 5.36: Cross-correlation result of 3mm leak. ........................................................ 165 

Figure 5.37: Effect of compression on the cross-correlation peak for 3mm leak. .......... 166 

Figure 5.38: Effect of compression on the cross-correlation peak for 5mm leak. .......... 167 

Figure 5.39: Reduction in normalized cross-correlation peak with different packet  

losses. ......................................................................................................... 168 

Figure 5.40: Cumulative energy comparison between the three adaptive sampling 

schemes with varying n. ............................................................................. 170 

Figure 5.41: Effect of increasing duty cycle on energy consumption for fixed 𝑻𝑳. ....... 171 

Figure 5.42: Effect of compression on cumulative energy consumption for the nodes 

under study. ................................................................................................ 172 



xvi 
 

Figure 5.43: Effect of leak detection with different duty cycle times. ........................... 173 

Figure 5.44: Worst case leak detection of 120s scheme. ................................................ 174 

 

  



xvii 
 

LIST OF ABBREVIATIONS 

WSN   : Wireless Sensor Network 

WPD   : Wavelet Packet Decomposition 

DCT   : Discrete Cosine Transform 

CR   :  Compression Ratio 

PRD   : Percentage Root Mean Difference 

SAQ   : Sub-band Adaptive Quantization 

ANN   : Artificial Neural Network 

SVM   : Support Vector Machine 

PSD   :  Power Spectral Density 

MEMS   :  Micro Electro Mechanical Systems 

IQR   : Inter Quartile Range 

QMF   : Quadrature Mirror Filter 

HSVS   : High Sensitivity Vibration Sensor 

LSVS   : Low Sensitivity Vibration Sensor 

 

  



xviii 
 

ABSTRACT (ENGLISH) 

 

Full Name : Najam us Saqib 

Thesis Title : Energy-efficient Monitoring and Leak Localization in water pipelines 

using Wireless Sensor Network 

Major Field : Systems Engineering 

Date of Degree : May 2017 

Leak detection and localization in water pipeline networks is of paramount importance to 

industry, especially in regions where water is scarce. In this work we present a novel multi-

scale approach for leak detection and localization in water pipeline networks utilizing 

Wireless Sensor Networks (WSNs) by using a multipronged approach to reduce the WSN’s 

energy consumption. The algorithm presented is based on the use of vibration data because 

this way the leak can be localized without extensive knowledge of the network, and it is 

easier to acquire at arbitrary points as the vibration sensors are non-invasive. In order to 

validate the effectiveness of the approach for particular conditions in the pipeline, we 

simulate the pipeline model using EPANET. Then the vibration model is integrated with it 

in MATLAB, since EPANET do not include models for vibration measurements. In our 

multimodal sensing scheme, duty cycling is used to reduce the number of sampling 

instances. Additionally, our novel scheme hinges on the use of (a) an adaptive sampling 

scheme wherein the sampling frequency is computed using the wavelet transform, (b) 

adaptive thresholding to detect the leak and (c) signal compression to reduce the 

transmission energy. A test-bed of a water pipeline network is considered here, which uses, 

at various locations in the network, pressure and vibration sensors with different energy 

ratings and precision levels. The low duty-cycling vibration sensor (HSVS) adjusts the 
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sampling frequency of the high duty-cycling vibration sensor (LSVS) in the adaptive 

sampling scheme. Aided by the proposed energy efficiency scheme, the sensor node is able 

to detect and locate the leak while achieving a significant reduction in energy consumption. 

Furthermore a cost function is developed and for a given energy consumption requirement 

a backtracking based solving method is used which gives the most optimum parameters for 

the given constraints. 
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ABSTRACT (ARABIC) 

الرسالة ملخص  

 نجم يوس سقيب :الاسم الكامل
 

 التسريب وموقعه في شبكات أنابيب المياه باستخدام شبكات الاستشعار اللاسلكيةكفاءة الطاقة الرصد و  عنوان الرسالة:
 

 هندسة النظم التخصص:
 

  ٧١٠٢ مايو   :تاريخ الدرجة العلمية
 في سيما ولا في الصناعة، الأهمية بالغ أمرا المياه أنابيب شبكات في وتحديدموقعه  التسرب عن الكشف يعتبر

 عن التسريب وموقعه للكشف المقاييس متعدد جديدا نهجا نقدم العمل هذا في .شحيحة المياه فيها تكون التي المناطق

 الطاقة استهلاك من للحد الجوانب متعدد نهج باستخدام اللاسلكية الاستشعار شبكات باستخدام المياه أنابيب شبكات في

دون  معرفة مكان التسرب  يمكن الطريقة بهذه لأنه الاهتزاز بيانات استخدام على المعروضة الخوارزمية وتعتمد.

، وانه من الأسهل للحصول علي النقاط التعسفية وأجهزه استشعار الاهتزاز غير الغازية.  المام كبيربالشبكة، الحوجةالي

من أجل التحقق من فعاليه النهج لظروف معينه في خط الأنابيب ، ونحن محاكاة نموذج خط الأنابيب باستخدام ايانيت. 

لقياسات الاهتزاز. وفي نظامنا الخاص ثم يتم دمج نموذج الاهتزاز معها في ماتلاب ، لان الملاحم لا تشمل نماذج 

بالاستشعار المتعدد الوسائط ، تستخدم الدراجات الواجبة لخفض عدد حالات أخذ العينات. الاضافه إلى ذلك ، فان 

مخططنا الجديد يعتمد علي استخدام )ا( مخطط لأخذ العينات المتكيفة حيث يحسب تردد أخذ العينات باستخدام تحويل 

العتبة التكيفيه للكشف عن التسرب و )ج( ضغط الإشارات للحد من طاقة الإرسال. ويعتبر هنا  المويجات ، )ب(

اختبار سرير لشبكه أنابيب المياه ، والتي تستخدم في مواقع مختلفه في الشبكة ، وأجهزه استشعار الضغط والاهتزاز 

از المنخفض الرسوم علي الدراجات مع مختلف تصنيفات الطاقة ومستويات الدقة. ويضبط جهاز استشعار الاهتز

الهوائية تواتر أخذ العينات لجهاز استشعار الاهتزاز العالي الرسوم علي الدراجات في نظام أخذ العينات التكيفيه. 

وبمساعده من المخطط المقترح لكفاءة الطاقة ، فان عقده الاستشعار قادره علي اكتشاف وتحديد مكان التسرب مع 

في استهلاك الطاقة. وعلاوة علي ذلك ، يتم تطوير وظيفة التكلفة النسبة لاحتياجات معينه من  تحقيق انخفاض كبير

 علي التراجع الذي يعطي المعايير المثلي للقيود معينه.استهلاك الطاقة وتستخدم طريقه الحل القائم 
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1. CHAPTER 1 

INTRODUCTION 

1.1. Background 

A wireless sensor network consists of numerous sensor nodes deployed over a geographical 

area for monitoring and/or recording of a wide variety of physical phenomena including 

but not limited to temperature, location, vibrations, sound and magnetic field [1]. Typically 

a sensor node is powered by a battery and has a finite energy source that will run out over 

time, recharging schemes are applied but power harvesting from such schemes cannot be 

completely relied upon due to changes in the operating environment of the node. Energy 

efficiency techniques have to be applied so that energy usage is minimized and node 

lifetime increases. To this end researchers have done work on multiple ways to reduce 

energy consumption in WSN nodes and these methods are discussed in detail in the 

literature review. For example it was found that energy consumption for processing and 

sensing is much less than energy consumption due to communication [2], but in some cases 

sensing energy is very high so data acquisition has to be optimized. Similarly in cases 

where communication energy is high, communication has to be optimized. Using this 

information designing a node for a specific application becomes a complicated task as the 

design has to cater for functionality as well as energy efficiency, for this to happen multiple 

techniques for energy efficiency may be applied [3].   

As WSNs can cover a large area for monitoring they can be applied to pipeline monitoring 

in the oil and gas industry as well as to water pipeline monitoring. Since pipelines can 
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sometimes go through inhospitable or harsh terrain it is difficult or sometimes impossible 

to monitor such areas physically. Furthermore since the pipeline structure is scalable and 

it undergoes changes during its lifetime deploying a wired sensor network on it would be 

cost prohibitive. Much research has been done on deploying WSNs to pipelines [4], and 

the advantages that WSN offer are tested extensively in the field experimentally [5] and 

compared to traditional techniques they are generally more favorable. Some of the more 

notable works in which WSNs are used for pipeline network monitoring are projects such 

as PIPENET [6], in which WSN was applied to monitor a pipe network installed in a city 

for leaks and SWATS [7], which was used for steam flood monitoring and was shown to 

be more responsive than a normal SCADA based system towards detecting anomalies in 

pipelines. NAWMS [8] is also notable in which a scheme was developed to solely monitor 

the flow through vibration readings only using WSNs. Another mention is PipeTECT [9] 

in which the authors developed an energy conservative scheme for burst monitoring in 

pipelines using vibration sensors only.  

A sensor network is made up of multiple nodes which have processing, sensing and 

communication capabilities [10]. A sensor node is a module that includes four basic 

subsystems: a sensing subsystem for data acquisition from the environment, a processing 

subsystem for local data processing and storage, and a wireless communication subsystem 

for data transmission. In addition, a power source supplies the energy to the node. This 

often consists of a battery whose energy is limited. It is usually impossible to charge the 

battery manually because of harsh terrain. On the other hand, the sensor network should 

have a lifetime long enough to fulfill the application requirements. A recharging scheme 

using solar or wind power can also be applied to prolong the lifetime but the battery is 
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usually included such that the calculated network monitoring lifetime is fulfilled which 

may be in the order of months.  

As such monitoring of pipelines using WSNs is a vast area with improvements that can be 

applied in many sections of this field which can be improving existing methods or 

developing new methods for monitoring using the existing devices available. The next 

subsection highlights the problem statement for the thesis. 

1.2. Problem Statement 

Conventional pipeline monitoring techniques need to be augmented with sensor-based 

methods capable of sensing more phenomena related to fluid flow in pipe. These methods 

need to be energy-efficient and have the sensitivity to report effectively any anomalies such 

as leaks in the pipeline. This will be used to improve the pipeline monitoring by using less 

energy than the conventional techniques while maintaining effective leak detection and 

reporting. The conventional techniques related to flow and pressure monitoring may be 

used to monitor the operational status of the pipeline and the sensors used to augment the 

monitoring capabilities may be implemented using a wireless sensor network. For the 

implementation of sensors using a wireless sensor network, energy-efficient techniques 

will be needed to make sure that the network lifetime is maximized. To this end an 

overview of possible methods that may be used to improve network lifetime will be 

discussed in the literature review. Some of these methods can be used in pipeline 

monitoring and the methods that will eventually be used in this thesis to reduce energy 

consumption will be defined in the methodology section. 
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1.3. Thesis Contributions 

The main research objective was to design an algorithm for a system which is based on 

sensing nodes for pipeline leak detection. The nodes will be connected using a wireless 

sensor network that implements energy efficiency for both data acquisition and data 

transmission at the node level.  

This main algorithm uses multiple algorithms that have been developed so as to be 

implemented with the energy efficiency techniques in mind. We have implemented a 

scheme which reduces the energy consumed by having data driven schemes as well as a 

duty cycling scheme. These schemes are explained in detail in the methodology section. 

The reporting environment gives us a multimodal sensing scheme which enables us to rely 

on multiple data types from which to choose so as to achieve an energy conservative leak 

detection solution. 

The main contributions of the thesis are highlighted below: 

 Applying a duty cycling scheme for data acquisition. Data acquisition is usually 

periodic and when WSNs are deployed we do not need to stream data continuously 

from the sensor nodes even though it is desirable as it would drain the battery very 

quickly due to transmissions, WSN nodes are constrained with respect to battery 

capacity. Duty cycling reduced the amount of time the nodes and radios need to 

stay awake. This in turn saves energy and increases the energy efficiency.  

 Applying an adaptive sampling scheme. Usually sensors use less energy when 

data is being sampled at low rates. And methods are available in literature in which 

the adaptive schemes scale down the sampling frequency if they sense that the 
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variation in the sensed phenomena is low and they scale it up if they sense that the 

temporal variation in the data is high. The main premise of using adaptive sampling 

is to maximize the amount of information gained using the least amount of samples. 

Using adaptive sampling would help conserve energy by changing the sampling 

rate according to the sensed phenomena and reduce energy for sampling instances 

where variation in data is low for normal monitoring conditions. 

 Implementation of an adaptive threshold based scheme. As the pipeline is a 

dynamic environment and vibrations are random and chaotic by nature, it is not 

necessary that vibrations at all locations are at the same threshold for background 

noise due to flow and the sensor, an adaptive threshold based scheme will need to 

be implemented that would work at the node level and set a threshold for normal 

readings from the vibration sensor, it would then be used to indicate the leak when 

it happens due to anomalous readings.  

 Implementation of Data Compression algorithm to reduce the amount of data 

transmitted. The amount of data can also be reduced by data prediction schemes 

which model the incoming data to a stochastic model, this reduces the amount of 

data transmitted by predicting the queried value rather than sampling it. In our case 

noise is being used and it is random, so data compression will be used to reduce 

transmitted data instead of prediction. Data compression is desirable because it is 

used to represent a larger amount of data using fewer number of values and if the 

data is compressed using a lower amount of energy than is used to transmit the 

uncompressed data then it results in a net gain in terms of power efficiency. 
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 Localizing leaks using a Hierarchical Scheme. Leaks can be detected and 

localized using only the High Sensitivity Vibration Sensor (HSVS), but due to 

energy constraints a hierarchical scheme is developed in which a Low Sensitivity 

Vibration Sensor (LSVS) is used to monitor for long time periods as it is of lower 

energy consumption and is used for leak detection. The HSVS is used to further 

confirm the leak and then localize it as it more sensitive than the LSVS.  

 Optimize the energy consumption using a cost function. A cost function is 

developed which is used to optimize the most appropriate monitoring parameters 

given constraints. This would give us the best possible solution or multiple 

solutions that can be implemented with respect to the energy efficiency techniques 

that have been discussed above. 

In summary the main contributions of the thesis are application of data driven energy 

conservation schemes namely the application of an adaptive threshold based scheme, 

application of an adaptive sampling scheme, implementation of a data compression 

algorithm and to apply a duty cycling scheme using hierarchical scheme for localizing leaks 

which saves energy and then using a cross correlation scheme to localize leaks, finally 

designing of a cost function for optimum calculation of the most energy efficient solution 

using system parameters. All of these techniques will be applied to a simulation of a 

pipeline network. 

1.4. Methodology 

The thesis aims to address the issue of sensing and detecting leaks in a pipeline network 

using a wireless sensor network with energy constrained sensing nodes, the focus of the 

thesis will be on applying energy efficiency techniques to the problem. For this to be 
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successfully implemented, a simulation of a pipeline network has to be performed with a 

leak present at a known location. Some assumptions need to be defined regarding the 

pipeline and the sensing nodes that are present. These are highlighted in the section below. 

1.4.1. Assumptions used in Thesis 

For acquiring data regarding the pipeline conditions at normal operating conditions and 

under leaks EPANET will be used. Libraries are available which allow the pipeline 

simulator to integrate with MATLAB to allow for data acquisition. A certain pipeline 

network with equidistant node placement will be implemented in the simulation. Since 

EPANET does not have a module or extension in which vibration data can generated for 

certain pipeline conditions we will aim to use the data from works presented by different 

authors to generate vibration data along with the pressure and flow data for a simulated 

pipeline that we have from EPANET. Vibrations due to flow in a pipe will need to be 

generated according to models present in literature, since flow in pipelines will be assumed 

to be laminar these vibrations will not be of high magnitude in nature, we are assuming 

laminar flow because higher magnitude flow based vibrations negatively affect the cross-

correlation result. And leak based vibrations will need to be incorporated into the 

simulation, this will consist of the leak noise model and the noise propagation model that 

will be taken from the relevant literature. Using these we can approximate vibrations in a 

pipeline due to leaks. Using both of these types of vibrations we can approximate vibrations 

at different points in a pipeline. For these simulations the pipeline material and properties 

need to be defined and will be assumed for a PVC pipe of a fixed diameter. With the 

incorporation of vibration data we will have pressure, flow and vibration data for the 

pipeline which will be used in the algorithms for energy efficiency. 
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A power consumption model also needs to be implemented for a WSN node and examples 

are present in literature for consumption models. These models have power consumption 

profiles for different WSN components like the processor, sensor and the radio. These 

models can be applied according to the hardware that is usually available for WSN nodes. 

For sensing purposes we would need vibration and pressure sensors. A power consumption 

profile will be built according to the components that will be used. It will be determined 

which components will be used in the nodes. 

It is assumed that the nodes do not have any issues in communication and that data transfer 

is lossless. The multiple sink scheme will be assumed in which the individual sensor nodes 

will transmit their data to the sink in a single hop and the sink will forward the data to the 

server. A realistic power consumption profile will need to be assumed for the single hop 

scheme. 

The next section deals with the research methodology that will be used in the thesis.  

1.4.2. Research Methodology 

This section deals with the research methodology used in the main thesis for energy 

conservation which will be based on duty-cycling, adaptive threshold, adaptive sampling, 

data compression and a hierarchical sampling strategy that will be used to localize the leak. 

A sensing scheme will need to be implemented which applies duty cycling to save energy 

by periodically waking the nodes to sample the data. For simplicity a Fully Synchronized 

Scheme will be used which wakes up all the nodes at the same time because to calculate 

cross correlation the data from the sensors will need to be time synchronized. The duty 
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cycling period can be changed according to the required network lifetime while 

maintaining effective pipeline monitoring status.  

After the pipeline has been simulated along with the power consumption model an adaptive 

threshold based algorithm has to be applied for the detection of leak signatures in the 

pipeline. This will also improve the reporting model by only reporting events if the 

vibration thresholds cross a certain specified value. This would help reduce the data 

transmitted in the network and reduce the transmission energy consumption mostly for 

events related to leaks. An adaptive threshold based scheme has to be used because the 

background noise level in a pipeline will vary according to the flow in the pipe and will 

need to be readjusted according to the conditions in the pipeline. A fixed preset threshold 

value for vibrations cannot be used in the dynamic environment of a pipeline.  

The adaptive threshold scheme will be further augmented with an adaptive sampling 

algorithm that can change the sampling frequency based on the variation of the sensed 

phenomena. This would allow us to reduce the sampling frequency during periods of low 

vibrations and increase it when the vibrations increase or when the algorithm detects a leak 

has occurred. This would have a twofold effect on decreasing energy consumption as lower 

sampling frequency uses less energy and signals with less samples will be transmitted in a 

shorter duration thus reducing communication energy. For the adaptive sampling strategy 

it would be needed to see which algorithm fits best the conditions that are simulated for the 

pipeline. 

Finally for reporting purposes, the vibration signal will be compressed using a signal 

compression algorithm. There are many types of signal compression algorithms that are 

available for example the Discrete Cosine Transform, Wavelet Transform or Discrete 
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Walsh Hadamard Transforms as well as algorithmic procedures that are able to effectively 

filter out background noise and give a signal which is both smaller in size than the original 

signal but has all the relevant information encoded in it. The signal compression stage will 

be used in the leak localization stage as high frequency sampling will most probably occur 

at this stage of the process. All of these methods take up a great deal of the processor’s 

time and will therefore be energy-intensive but it will tradeoff between transmitting all of 

the data which takes up less energy, and instead increasing the processing time to 

accommodate the compression task which takes less energy. Between the data compression 

algorithms we will see which ones work best for the system, usually for vibration signals 

either Discrete Wavelet Transform or Discrete Cosine Transform are  used in literature and 

are effective in compressing the data. 

Using any of these methods for data reduction, it is believed that an acceptable decrease in 

energy costs will occur and the transmitted signal will have enough useful information for 

an accurate cross-correlation function estimation.  

The final step in the complete algorithm for leak localization is the cross correlation 

algorithm if only vibration signals are to be considered.  

In vibration data, the leak from two sensors can be used to localize the leak using cross 

correlation and it is aimed to find the leak location using the least possible amount of 

energy. The cross correlation scheme has been previously shown to work effectively to 

localize leak in simulations and in experiments but it needs to be improved for energy 

efficiency. Vibration sensors are units with the lowest power consumption amongst 

pressure, flow and vibration sensors, and it is desirable to use these to calculate the leak 

location from an energy minimization point of view. In cross-correlation the signal size 
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can also be reduced by applying a sign function to the vibration signals, this would reduce 

the number of bits that are required to represent the signal.  

Using all of these methods for energy conservation the cost function will need to be 

computed. This will be based on the amount of energy that the energy conservation 

algorithms save as well as the accuracy of the leak location. For a given configuration we 

can then find out the most optimal energy conservation scheme that can be implemented 

for maximum energy conservation as well as acceptable leak location. This will include 

terms for adaptive sampling and signal compression as well the leak localization accuracy 

and promptness in localizing the leak. It will need to be determined which form the cost 

function will take and how it will be solved. 

1.5. Thesis Organization 

The report is organized as follows, Section 2 deals with the literature review and in the first 

part of the literature review examples of leak detection in literature are given, two main 

methods were found and the methods that the researchers applied are discussed. After this 

the second part is related to pipeline monitoring using WSNs and some types of sensors 

used in pipeline monitoring are given as well as some examples in literature where 

monitoring is done using WSNs. The third part is related to energy efficiency in WSN is 

given in which different ways to apply energy efficiency techniques is discussed, three 

main different methods were found in literature that were applicable to pipeline monitoring 

and they are discussed with examples from literature. In Section 3 the pipeline model is 

introduced along with the Energy Consumption of the WSN node components. In Section 

4 the adaptive sampling scheme that will be used in the simulations is introduced and 
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developed and the signal compression scheme is developed. It is also related to the cost 

function with is developed to solve for optimal algorithm parameters. In Section 5 the 

results are presented and Section 6 concludes the report and future work and 

recommendations are given. 
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2. CHAPTER 2 

LITERATURE REVIEW 

The literature review is divided into three sections 

1. Leak Detection and Location in Pipelines 

2. Pipeline Monitoring using WSNs 

3. Energy conservation in WSNs 

The first section is related to instances in literature which are related to leak detection and 

location in pipeline, the second part mentions literature in which WSNs have been applied 

to pipeline monitoring and some papers which have applied energy efficiency techniques. 

The third section is related to energy efficiency techniques which have been applied to 

WSNs with respect to duty cycling and data driven approaches. 

2.1. Leak Detection and Location in Pipelines 

2.1.1. Previous Work Done 

Extensive work has been done by researchers with regard to detection of leaks in pipelines, 

most conventional methods are related to pressure or flow monitoring which can be 

compared against expected values to detect leaks. Other methods which have been 

developed relate to the leak noise generated in pipelines, these can be monitored using 

either acoustic sensors such as hydrophones or using vibration sensors to measure the 

vibrations induced in the pipes due to the leak noise.  
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Monitoring pipelines based on models of flow and pressure has been discussed in [11] 

where accurate leak magnitude is measured. 

Work has also been done by researchers to try to find a correlation between flow rate in 

pipe and the vibrations that are induced in the pipe and this has been both experimentally 

verified, along with verification from simulations [12], [13]. This can be used to build a 

model of pipeline vibration due to flows. This concept is further verified in [14] where 

researchers were able to verify that flow in pipelines create vibrations which are difficult 

to distinguish from leak vibrations if looked at the raw data, but comparison of the PSD of 

both were different because leaks have some frequency components of higher energy in 

some bands. The next subsection discusses works in which pressure and flow based 

monitoring of pipeline networks. 

2.1.2. Pressure and Flow Monitoring 

In this subsection some notable methods which were developed to detect leaks in pipelines 

are reviewed. 

In [15] the authors have developed a new mathematical model for pipelines which takes 

into consideration two phase flow. Pressure and flow rate is measured in the pipes for the 

experimental data collected. Leaks at various positions was introduced and the pressure 

and flow rates at the input and output was measured for two scenarios. The scenarios were 

then simulated using the model and it was observed that the experimental data and the 

simulation were very close in readings. The error for the flow rate was less than 6% and 

for the pressure was within 1% of the experimental value. In conclusion the authors have 

mentioned that the model can be used in leak detection. 
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In [16] authors have first done a comparison of acoustic detection methods and transient 

detection methods that are available in literature. It was found that the transient analysis 

methods discussed were mostly applicable to single pipes and had potential problems when 

multiple failures were encountered. The authors then further reviewed literature regarding 

Neural Networks and their application to pipeline monitoring in which quasi static pressure 

and flow readings were taken to detect and locate leaks in the pipe network. The networks 

were simulated and the ANNs trained on the leaking and non-leaking network parameters 

to detect leaks in the testing phase. It was found that ANNs worked very well for large 

leaks or in low noise environments. A SVM or Support Vector Machine was then trained 

for use in leak detection as SVMs are better than ANNs and are more general than them. 

A network was modeled in EPANET for leaking conditions for various emitter coefficients 

and leak locations. The SVM was then trained on 67% of the data set and tested on the 

remaining 33%. Differential Pressure and flow rates were used in the SVM to detect and 

locate leaks. The authors noted that the simulations were not exact replicas of the real 

network and that training the SVM using variations would entail having a very large data 

set and that noise has a negative effect on the accuracy so using SVMs are not feasible. 

In [17] the authors have presented an adaptive Kalman Filtering approach on the flow and 

pressure data from a water supply system. They attempt to detect pipeline bursts using 

residuals. A week of data is used to make a model. Data is taken for 15 minute intervals 

and it is assumed that consumption is the same every day for the whole week for a given 

time. Using this information a model is made for each time and the Kalman filter is used 

to compute the covariances. These will be used later in the sampled data. Tests were done 

by adding leaks to the system at various points and measuring the flow rates and computing 



16 
 

the residuals. A positive residual indicated a leak and it corresponded well with the 

simulated leak period. The system was then implemented on some areas and it was found 

that the system detected leaks well and it matched the customer complaints and the repair 

work carried out on the leaking lines. The Kalman filter was also applied to pressure data 

but it did not detect leaks as well as the flow data. 

In [18] the authors have proposed a new leak detection method using only pressure data. 

An algorithm based on the Head loss Ratio of different pressure sensors mounted in the 

network is proposed. Where data is acquired at a certain time instant from multiple pressure 

sensors and the head loss ratio is computed by taking the difference between some sensors 

and then taking the ratio between them, this can be done for three or four sensors. Some 

assumptions are taken that within the monitored network there are no prior leaks present 

and there is no pump and the water is from one source only, also the node consumption is 

a function of some kind that is it is model able. The network is then modeled in EPANET 

with leak introduced for two scenarios at different time periods. The HLR is then computed 

for three sensors and it shows that after leaks have been introduced in the network the 

system is able to properly detect leaks. It was noted that further research can be done as to 

which nodes to select for leak detection and localization and which Head loss ratio to use. 

In [11] a hydraulic model of a pipeline is derived in state space form and a simulation is 

run in MATLAB for initial steady state conditions. Pressure and Flow are modeled in to 

the system. The pipeline was divided into two branches from a main pipe. The pipes were 

segmented into 10m long pieces for the simulation. The state space model was built for all 

the segments present. A leak is then introduced and the leak magnitude is estimated for the 

simulation. The pipe segments all have flows estimated for them for known and unknown 
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leak positions both in the main pipe and in the branches. Simulations were run for small 

and large leaks and a Kalman Filter was used for state estimation. It was found that the 

Kalman Filter was able to successfully detect the leak but a constant deviation occurred in 

the estimated leak value, it took a very long time for the filter to converge too. The system 

was also able to detect in which location the leak occurred. The next subsection is related 

to methods which use acoustic principles to detect and localize leaks. 

2.1.3. Acoustic and Vibration Monitoring 

In [14] vibration is monitored to detect leaks in pipelines. Experimental work is done by 

the authors and data is collected for multiple scenarios. An algorithm is applied to 13 cases 

of leaks out of which 10 are successfully detected without filtering the data. The vibration 

is first monitored in leaking pipes at night then the pipe is repaired and the vibrations 

monitored for some nights. The motivation by the authors for such a method is that at night 

time water usage is at the lowest so only vibrations due to leaks will be monitored. 60 

samples are taken for each acquisition cycle. Standard Deviation is calculated and the 10 

lowest values are chosen and averaged, this is known as the MI or monitoring index. MIE 

(Monitoring Index Efficiency) is then calculated which is the ratio of the MIs for the 

leaking and non-leaking nights. The higher the MIE the better the leak detection. In data 

sets where leak detection was unsuccessful band pass filters were employed after observing 

the PSD of the signals and leaks were successfully detected for all 13 scenarios.  

In [19] experimental acoustic monitoring was done simultaneously using three types of 

sensors, hydrophones, accelerometers and geophones. Accelerometers were found to be 

the most appropriate for the testing rig used. Theory [20] is described in which cross 

correlation between two sensors is used to find the leak location. This can be done by the 
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time difference which the leak noise takes to reach both sensors, for this method to work 

the leak has to be located between the two sensors. Filtering effect of pipe and sensors is 

also discussed as the pipe acts as a low pass filter and attenuates high frequency signals 

over long distances. Experiment was then done for a strong leak and a weak leak. It was 

found that the leak localization worked fairly well in the strong leak case for all three 

sensors but for the weak leak case only the accelerometer managed to get a good 

localization. Previous work was done on this in [21] and it gives  a similar result, although 

in [20] the background noise prevented the hydrophone from obtaining a solution. 

In [22] a virtual pipe test rig using information from previous works [19]–[21] was 

constructed in which leak noise was generated from a computer using the leak noise model 

presented in [23] and the pipe propagation model. Using this they were able to generate a 

leak noise signal using a MATLAB routine and then send it to speakers. The speakers had 

accelerometers mounted on them and the readings from the accelerometer were used to test 

different cross correlation algorithms that were similar to the one mentioned in [20]. 

In [24] hydrophones are used to experimentally detect leaks in pipelines using acoustic 

data. The method used is invasive and the hydrophone is mounted inside the fluid flow. 

Since the sensor is inside the fluid there is considerable noise from sources other than leaks 

for example irregularities in pipe surface and bends. This needs to be addressed for better 

leak detection. Some theory is discussed regarding noise generated due to leaks and the 

low frequency components present along with the attenuation and filtering properties of 

the pipe. The experiment is set up and a large and a small leak are introduced at different 

pressure settings. The PSD of the signal is then analyzed and it was found that the PSD of 

leaks are higher in some frequency bands than of normal flow conditions. Different 
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positions of the sensor were tried and data was collected. It was found that leaks are better 

heard downstream and at the leak location and that bigger leaks were easier to detect. 

In [25] the work in [14] was extended and a similar scheme was carried out for leak 

detection. It was found that if non-leaking measurements were taken with some flow in the 

pipeline it became difficult to detect the leak, at higher flow rates it becomes impossible as 

the PSD of the pipe with high flow and PSD of pipe with leaks become similar. Data 

Acquisition was done at a 4 KHz rate as frequencies above 1.5 KHz were not observed, it 

was also observed that as the sensor is located further away from the leak location the pipe 

begins acting like a low pass filter and the higher frequency components are damped, at 

more than 10m only frequencies below 500 Hz are visible. Experimental work was carried 

out with a setup like a mains water distribution in which smaller diameter pipes come off 

a large diameter pipe, the accelerometers were mounted on the smaller pipes adhesively. 

A 16 bit ADC was used to measure the readings, Accelerometer of sensitivity of 1V/g was 

used. It was found that the statistical algorithm used in [16] was sufficient to detect leaks 

in pipelines if external noise was not present. The authors noted that more work needs to 

be done to verify a broader set of data.  

The section discussed above was related to pipeline monitoring using different types of 

methods 

2.2. Pipeline Monitoring using WSNs 

Pipeline Monitoring is problematic using regular sensors because there is associated 

problem with using wired sensors which are described below. 
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(i) The wires in the network may get damaged thus compromising the monitoring capability 

of the network. 

(ii) Wires can be cut be unauthorized personnel 

(iii) Faulty wires are difficult to locate in long networks, even more so where access is 

difficult.  

WSNs get around most of the problems wired networks have, the major problem that 

WSNs have is with battery power because since these networks are sometimes deployed in 

remote areas it may be difficult to replace them, these issues were discussed in the previous 

section and energy efficiency has come a long way in WSNs. Also if some nodes are non-

operational then redundant nodes can be deployed in the network. 

There are many instances in literature where pipeline monitoring using WSNs is discussed 

and some researchers have deployed their networks for leak and pipe monitoring 

applications [6]. 

There are some issues regarding pipeline monitoring mostly related to what sensors to use, 

what protocols to use for routing and how to sample the data, this is discussed in the 

following sections. 

2.2.1. Previous Work Done 

This section gives an overview of the more notable works which were done using WSNs 

to monitor pipeline networks, mostly experimental work was done by the researchers with 

some work related to simulation. 

In [6] PIPENET is introduced which does leak detection in pipelines using a variety of 

sensors which include pressure, ultrasonic, pH, acoustic and vibration sensors. PIPENET 



21 
 

is a complete water monitoring system with battery powered nodes and nodes which are 

connected to a power supply. The deployed network consisted only of nodes which were 

capable of using pressure and ultrasonic sensors. A data streaming algorithm was 

implemented because nodes did not have enough storage capacity to store and perform 

operations on data. Data was streamed from the sensors to the server. The sensors 

themselves had many configurable parameters such as sleep time, acquisition rate, and 

triggered data acquisition from lower energy sensors, in this case lower energy pressure 

sensors were used to trigger ultrasonic sensors. 

There are several paths of data presented in the paper, the first path is composed of powered 

sensors because these are continuously streaming data to the server and are monitoring 

pressure at all times. Since these are used for burst detection of large leaks whose pressure 

variations travel over large distances it is not required for them to be closely placed so they 

are installed at pumping stations or reservoirs. The second path consists of battery powered 

nodes which sample pressure data at intervals and these are sent to the server. Another path 

exists in which hydrophones are mounted densely and the data is sampled at a high rate 

periodically and this is also sent to the server for processing.  

In the analysis stage pressure data is continuously streamed and at the server a Haar wavelet 

transform is applied to find leaks, if the coefficients exceed a certain threshold a leak is 

signaled. For vibration data laboratory testing was done for leak detection using correlation 

method to find the leak location. The PSD of the sampled data was taken to first classify 

leaking and non-leaking signatures and then if a leak was present then cross-correlation 

was applied to the signals to find the leak location. It was found that sensor placement 3m 

apart can give an average error of 0.2m. 
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In the deployed network the battery life averaged 7 - 8 weeks for a 6V 12Ah battery, 

although the authors noted that it could be increased up to a year by reducing the 

communication and by applying adaptive sampling techniques. It was also noted that time 

synchronization between nodes was loosely applied and needs to be improved, the authors 

are working on an improved platform with better processing capabilities and that the 

current system has drastically improved monitoring of pipelines. 

In [8] the authors have proposed NAWMS, a system which uses accelerometers to measure 

flow rates in pipes which are installed in homes. They use a home water meter and 

accelerometers mounted on different pipes to measure the flow rates accurately. The 

accelerations in the pipes are modeled according to the flow rates and then they are 

calibrated according to an optimization algorithm. 

With regard to the flow rate [12] is used as a reference in which the authors through 

derivations show that the vibrations in the pipe is a direct result of the flow in the pipe. 

Using this theory the authors of [8] developed a correlation between flow and vibration 

and using vibration and flow data were able to fit them to an equation which gave flow 

based on vibration, this was not exactly like the equations described in the derivation due 

to the difference like sensor properties and pipe structure and un-modeled turbulences. 

Another issue that arose was that vibration propagated in pipes due to flow in other pipes, 

this was also modeled after taking data samples and fitting them to an equation. Using these 

two properties the authors were able to use Geometric Programming and Linear 

Programming to estimate the coefficients for the equations used to measure vibration 

coupling between pipes and the coefficients for the equations for the pipe flow and 

vibrations. 
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The system on which this method was tested on was for three pipes with two material and 

two different diameters. The models were tested for flow rates in individual pipes and two 

pipes, it was discovered at low flow rates the accelerometer did not have enough sensitivity 

(2g at 10bit ADC) to measure the flow and it improved at higher flow rates. The 

recalibration algorithm corrected the wrong coefficient values if they were fed into the 

system. Errors of less than 10% were observed when measuring flow through vibrations. 

The vibrations due to leaks was not modeled in the system and that could be done for the 

future so that leakage detection could be incorporated, till now the authors noted that the 

work only envisioned flow rate monitoring. A wireless network was implemented to read 

data from the sensors mounted on the pipes which periodically read the sensors and sent 

them to the central server for computation. 

In [9] authors have introduced PipeTECT which is a pipeline leak monitoring system based 

on accelerometers. The theory used is that there is a temporal change in Maximum Water 

Head Gradient when there is a burst event in a pipe. The authors propose another method 

based on measuring acceleration and monitoring the Maximum Pipe Acceleration gradient. 

The authors noted that a sharp change in pressure in pipe resulted in a sharp change in 

acceleration at that location. The researchers have proposed a system in which MEMS 

accelerometers are installed at all the joints in a pipe network so that if a leak occurs in a 

pipe it can be located by measuring acceleration at the pipe joints. The data is collected in 

real time using a WSN. 

The system uses a WSN with wireless bridging unit named roocas and sensor nodes named 

gopher. The communication interface between the sensors is a CAN bus and the nodes can 

be daisy chained together for up to 100 sensors per bus. These nodes are made to be dust 
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and water proof. The roocas nodes have three communication options using Xbee and Wifi 

communicators with three different data rates and three different ranges. Time is 

synchronized in the communication nodes with GPS and WWVB radios. The sensing 

nodes employ accelerometers in the x, y and z axis and are capable of measuring 2g at 16 

bit ADC resolution with filtering. Data is sampled at 150 Hz and is buffered for 1 second 

before being sent by Wi-fi to server. Nodes wake up for 100ms after every 900ms to send 

data and perform other tasks. The accelerometer data is time stamped and the acquisition 

process is initiated by the sink.  

The wireless sensor network was then implemented on an experimental pipe network with 

running water and simulated leaks at different locations. There was water flowing in the 

network and the accelerometers were set to log data and send to the sink, ambient noise 

due to water flow was observed. This correlates well to the research done in [9] as along 

the paths in which water flow was the highest the highest variation in acceleration was 

observed. After a certain time two valves were opened to simulate leaks and there was a 

corresponding acceleration spike in the readings after it happened. 

The results showed that the closer the nodes are to the leak the higher the acceleration spike 

was observed, farther away it was weaker. Also nodes which were nearer had encountered 

the spike first. Using this data the rupture location in the pipeline can be predicted. Also 

the PSD of the signals before, during and after the rupture was plotted and it was found 

that the PSD of the data before and during the leak is markedly different. The authors noted 

that leak detection and location can be predicted by using the acceleration gradient data. 

In [26] the authors have proposed a system of pipeline monitoring which uses a WSN for 

data transmission and ultrasonic sensors for data acquisition. The motivation behind using 
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such an approach is that it is non-invasive and easier to install as opposed to conventional 

systems which require working on pipes and delays to operation while installation is carried 

out. The authors then present a review of current pipeline monitoring schemes most of 

which have already been discussed.  

The authors propose a system using two types of ultrasonic sensors, DUF and TTUF, both 

have different schemes of measuring flow. DUF depends on the air bubbles present in the 

pipe flow to measure the velocity and TTUF measure using difference in speed of 

transmitted signals, TTUF accuracy decreases with increasing number of bubbles in the 

flow. Both are active sensors and use energy to acquire flow data. Since both these sensors 

work in different regimes a method to combine the readings of both sensors is developed 

which would adaptively determine which sensor is giving a more accurate and reliable 

reading based on the statistics of the acquired signal. Both types of sensors simultaneously 

acquire data and the best one is chosen.   

The sensing system is then simulated on a pipeline which is implemented in Matlab, the 

sensor is also modeled in Matlab and in the fluid flow different air bubble ratios are 

simulated. The simulations show that as air bubbles increase the accuracy of TTUF sensor 

is negatively affected while DUF accuracy increases and vice versa. Also the authors were 

able to verify their method of heuristically determining which sensor reading to be chosen. 

The individual sensors were simulated on the pipe and the combined sensors were 

simulated on the pipe flow and it was found that the trend line matched the combined flow 

readings with the real flow in the pipeline. The authors also discussed WSNs but did not 

show results pertaining to data transmission and only showed that their method of 

ultrasonic sensing works in accurately predicting the flow velocity in the pipeline.  
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In [7] the authors have proposed SWATS which is a steam flood and water flood pipeline 

monitoring system. The authors have developed a system which provides real time data 

acquisition and processing in-network to detect leaks and anomalies like blockage. They 

say that their system is better than the current SCADA systems implemented because it has 

got better coverage of the area and is more flexible and has better reporting capability. 

WSNs have not been used to monitor oilfields and the authors have proposed an algorithm 

which would consist of communication between nodes locally to solve problems related to 

anomaly detection. A decision tree algorithm is used which would detect what type of 

anomaly is occurring and where. 

The authors propose SWATS because the current SCADA system is inefficient in terms 

that anomaly detection takes a long time and the measurements are not fine grained. 

Multiple sensor nodes and in-network processing can overcome these challenges. The 

authors note that reliable detection of the problem along with correct identification is 

important. It also has to be done in a timely manner. For these situations an efficient 

communication protocol is needed that would give good reporting rates and would 

conserve energy. Also the data has to be delivered in a timely and reliable manner that 

would not be affected by interference from other nodes. 

The authors use a decision tree based approach to detect problems in the system, for 

example if it detects an anomaly in the readings at a particular node to correctly identify 

the issue it would query sensors both upstream and downstream of where it is residing. 

Spatial and Temporal patterns are made and in the decision tree to classify which problems 

are happening based on data from neighboring nodes and the time durations. The Steam 

flood monitoring algorithm is presented in which important steps are highlighted. First 
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processing is done at a single node which looks at the temporal data to check if an anomaly 

is occurring, then it uses multi-modal sensing to certify the readings and filters the signal. 

In the event detection section the node then does a temporal trend analysis in which changes 

in the value are monitored and their magnitude, then it collaborates with neighboring nodes 

using a decision tree algorithm to classify the problem. After it has been classified the 

algorithm then uses a voting scheme to find if neighboring nodes have reached the same 

result and then the system finds the best upstream node with the same result to localize the 

problem.  

The above section relates to the application of WSN in the monitoring of pipelines, the 

next section will discuss energy efficient techniques in WSN monitoring in pipelines. 

2.2.2. Energy-Efficient Techniques 

In this section the literature related to work in which the authors have focused on energy 

efficiency techniques are mentioned. 

In [27] the authors have proposed a mobile sensor node system in which mobile sensor 

nodes are deployed in the pipe and they are carried by the flow of the transported fluid 

through the pipe. Multiple sensors may be deployed in the pipeline and they localize 

themselves by RFID tags that are placed on the pipe in certain locations. 

The RFID tags are battery powered and they are spaced equidistant from one another. 

Multiple node model is employed and the active time of a node is the total transit time 

through the pipe divided by the number of nodes employed. Handover from one node to 

another node is based on either of the three methods, location based, time based and 

interrupt driven. In location based mode the nodes continuously locate themselves using 

the RFID nodes and wake up at the designated node. In the time based scheme the nodes 



28 
 

wake up after a set time, in this scenario it may be possible that one section of the pipe is 

not monitored due to varying speeds of individual nodes so time overlap can be employed 

so that monitoring can be complete. In interrupt driven mode the nodes are connected by 

wire and when one node is going to sleep it would wake up the neighboring node. 

All the three wakeup methods have their associated energy costs and it is discussed in the 

paper, then a simulation is run using all the three wakeup schemes and energy consumption 

for the nodes plotted. 

It was found that for localization and time based methods if the number of nodes was 

increasing the energy consumption of the last node was the highest, this was because the 

node has to be awake to monitor these activities and it slept only after sensing was activated 

and the sleep location or time passed. The first node consequently had the least energy 

consumption because it slept immediately after it encountered sleep time and it was 

activated only from the start. On the other hand in interrupt driven method the node energy 

consumption was significantly reduced and it was almost same for all the nodes, this was 

because a node is in deep sleep before interrupt signal was given for wakeup and 

consequently consumed no energy. The distance between RFID tags also had an effect of 

reducing the energy consumption when distance between them was increased. Also less 

RFID tags decreased memory consumption as nodes had to sample less data. 

In [28] the authors have introduced CON_NET, an algorithm which uses node power usage 

profile and an energy harvesting technique using vibration from pipeline flow. This then 

attempts to find the optimum number of sinks in a network. Or if the number of sinks is 

defined, then it attempts to find the optimum number of nodes in the network based on the 

maximum tolerable transmission distance and sampling frequency, on the other hand if the 
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number of sinks is defined than the maximum possible sampling rate can be calculated. 

The transmission power in a node is usually described in discrete steps and the authors 

have used that to determine connectivity and optimized the power usage in the network 

such that the nodes do not run out of power. The sampling rate can also be modified 

according to the number of sensor nodes available. The researchers have then run several 

simulations on a linear pipeline based on different energy harvesting rates and different 

packet sizes in the transmission and determined the maximum sampling rate that can be 

tolerated for a different number of sensors. It should also be noted that the focus of the 

paper was to optimize the power usage so that the sensor node does not run out of energy 

and is theoretically self-sustaining. 

In [29] the researchers have optimized the lifetime of nodes in the pipeline using 

transmission power. Usually when data is being transmitted in a pipeline the node just 

before the sink gets the most data passed through it and becomes the critical node in the 

network that is if the network will fail it will most probably be due to this node failing 

because of energy issues. It is also noted that most RF modules come with discrete power 

levels which can transmit up to certain discrete ranges and then simulated a network 

lifetime for certain power ranges and sensor numbers for a pipeline which showed that at 

the lowest power setting the maximum lifetime can be obtained with the maximum possible 

number of sensors. But this did not take into account the increase in traffic due to more 

nodes, factoring this into the simulation it was found that increasing the number of nodes 

actually decreased the network lifetime. This is for equal distance placement technique on 

the pipeline. The authors then did a simulation for equal power placement technique and 

ran two algorithms, one which increases the transmission power in discrete steps and 
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another which decreases it. They can compared the performance of both and found that 

both of them increased the network lifetime over conventional equal distant placement 

techniques but the High to Low power algorithm gave the best results with a network 

lifetime of 1.3 times the conventional placement technique for an optimum number of 

nodes. 

In [30] the authors have done leak localization in pipelines using noisy pressure data. A 

straight pipe section of 11km is taken with pressure sensors mounted at distance of 1km 

with a total of 11 sensors. A duty cycling scheme to conserve energy is applied when 

sensing in routing cases and sampling is done once every minute. A model of the node is 

defined with components that would give us an estimate of energy consumption for various 

tasks. Leak is detected by finding above normal pressure at a node under steady state 

conditions. In this scenario the first sensor downstream would detect a leak. After the leak 

is detected the nodes do into high rate sensing mode to sample pressure data and to locate 

the leak. Leak is located by applying least squares to sensors before the leak and after the 

leak to find the point of intersection and thus the leak. At this point leak localization can 

be done by two methods, either use all the sensors of the network or use the minimum 

amount of sensors i.e 4 to locate the leak, 2 on each side of the leak. It was found that using 

only 4 sensors gave an appreciable amount of reduction in energy costs while still giving 

relatively accurate leak localization along with the leak magnitude. 

In [31] the authors have introduced an adaptive thresholding algorithm that improves upon 

the work done in Pipetect [9] to detect leaks in pipelines. Various methods that may be 

used to improve the energy consumption profile of the existing system are discussed like 

adaptive sampling or computing the frequency spectrum of the leak signature before 
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reporting the event or algorithmic approaches that are used by other authors. Since the 

pipeline is a dynamic environment with several external factors to induce vibrations apart 

from the leak an adaptive thresholding algorithm with statistical analysis is used along with 

a cascaded wakeup hierarchy when the node detects an event to transmit the event 

parameters. The algorithm was then applied to an experimental system and was found to 

be working correctly with up to 80% reduction in energy costs compared to the previous 

system [9]. 

This section was related to the literature review of pipeline monitoring using conventional 

techniques as well as WSN schemes, also examples from literature were discussed in which 

energy efficiency of WSN based systems was the main focus of the work, the next section 

is related to the energy efficiency techniques that are normally used in WSNs. 

2.3. Approaches to Energy Conservation in WSNs 

The main focus of this section is discussing energy efficiency methods that are used in 

WSNs. These are general methods and can be applied to most systems, although not all 

methods are applicable everywhere, the next subsection is related to duty cycling which is 

the most used method in WSNs. 

2.3.1. Duty Cycling 

When we are talking about duty cycling in literature [10] we find that there are mainly two 

subclasses. Duty Cycling based on Topology Control and Duty Cycling through Power 

Management. 

In Topology Control the main idea is to exploit the network redundancy to prolong the 

network lifetime. This increase in the lifetime is based on how many redundant nodes are 
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there with respect to transmitting and data acquisition. In literature a network lifetime 

increase of 2 to 3 times is observed as opposed to a network with all nodes on at all times. 

Power Management based Duty Cycling refers to the switching of radio between sleep and 

wakeup times according to the network requirements and activities. Both of these Duty 

Cycling methods complement each other when used in tandem. 

Within Power Management the Sleep/Wakeup cycling can be implemented in two layers. 

It can be embedded in the MAC layer itself or they can be run on top of the MAC layer in 

the application itself. Running the Sleep/Wakeup Protocol in the application layer has the 

advantage that it can be run on any MAC layer and is very flexible. On the other hand 

MAC layer Protocols allow us to optimize the Medium Access at the physical level itself. 

2.3.1.1. Topology Control Protocols 

Topology control methods are used when dense sensor fields are employed to ensure good 

coverage of an area. The network is usually deployed at random. The high density ensures 

that redundancy is ensured in case of multiple node failures. The network lifetime can then 

be increased based on the minimum number of sensor nodes the protocol decides to fulfill 

the task at hand. This can be decided based on protocols which cover two broad categories. 

(i) Location Driven Protocols: These decide which nodes to use based on their location. 

(ii) Connectivity Driven Protocols: These decide which nodes to use to complete the 

connection path or to completely cover the area under surveillance. A brief summary of 

both these methods are given below. 
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2.3.1.1.1. Location Driven Protocols 

Geographic Random Forwarding or GeRaF [32] is a protocol in which nodes switch within 

a given duty cycle to listen to data transmissions and participate in routing. Forwarding is 

done in priority regions which is based on the nearness of the active nodes to the target. As 

soon as a node receives a packet it forwards it in a packet which contains the target location 

as well as the location of the forwarding node. Since the sleep wake up cycles of the nodes 

are random the chance that multiple nodes are awake when forwarding is taking place is 

present. In this scenario if multiple nodes within the same priority region forward a packet 

collision occurs. This collision is then dealt with a back-off scheme which retries 

transmissions for a certain amount of time. There can also a scenario in which all nodes in 

a certain priority region are sleeping. This can be handled by trying forwarding though 

nodes in a lower priority zone. This routing method only needs the target location to 

completely route the data. 

Another protocol is the Geographic Adaptive Fidelity [33] which breaks down the sensor 

field into grids. All nodes in one grid will be able to communicate with nodes in the 

adjacent grid. Sleep times are decided for the nodes in one grid after they have finished the 

discovery procedure. Periodic re-election of a leader is also done based on the residual 

energy of the node. This method ensures that network lifetime will increase based on node 

density. Only one node in a square is available at any one time to take care of routing, 

nodes will periodically wake up to check if any other node is available for routing, if other 

nodes are available it would go back to sleep. The main problem with such a method is that 

underutilization of the network resources take place with respect to communication 
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distance, less than half of the optimum distance for transmission is covered due to the grid 

structure of the method. 

2.3.1.1.2. Connectivity Driven Approaches 

SPAN [34] is a protocol which adaptively elects coordinators in a network environment. 

Coordinators are nodes which stay awake to ensure that the routing path is complete while 

other nodes sleep and function as normal, the other nodes also wake up to check if they 

need to become a coordinator. If two nodes of a node that is not a coordinator cannot reach 

each other than that node becomes a coordinator. In the process of selecting a coordinator 

it may happen that multiple nodes decide to become coordinator, because of this possibility 

the protocol provides for a random back-off delay before announcement. This random time 

is a function of residual energy present and the number of neighbors it can provide 

connectivity to. A coordinator withdraws if all its neighboring nodes can reach each other 

directly or through another coordinator, this way energy is saved as redundant paths are 

reduced. The Span algorithm needs information regarding neighbor and connectivity in 

selection of a coordinator node. 

ASCENT [35] is another protocol based on connectivity. It is based on the concept of active 

and passive nodes in the network. Passive nodes listen to transmissions and active nodes 

take part in routing of the transmissions till their energy is depleted. If packet loss becomes 

high enough at active nodes then they send out a message to passive nodes to take part in 

the transmission of the data packets. When active nodes join the network they broadcast 

their presence in a neighbor announcement message. The number of active nodes in the 

network are increased till the packet loss rate goes below a certain threshold. This method 

of maintaining connectivity is independent of the routing protocols. 
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Another connectivity based protocol is NAPS [36]. In this the node wakes up after a time 

period for a certain amount of time and then broadcasts a HELLO message. It then waits 

for a certain number of replies. If it receives the replies within its wake up period it goes 

back to sleep otherwise it remains awake till the threshold of number of replies has been 

reached. During this period it takes part in all the routing of the data. 

2.3.1.2. Sleep/Wakeup Protocols 

There are three main types of Sleep/Wakeup Protocols, these are independent of the MAC 

layer. These are mostly related to the radio power cycling and are listed below: 

(i) On-Demand Schemes 

(ii) Scheduled Rendezvous Schemes 

(iii) Asynchronous Schemes 

2.3.1.2.1. On-Demand Schemes 

In this scheme the node wakes up when it is about to receive a packet from another node. 

The main idea is that nodes need only communicate when it is needed such as when an 

event occurs otherwise nodes are in their monitoring state. Usually two radios are used in 

this scheme, one is low power and is on all the time and the other is high power and only 

turns on when is required. The drawbacks in such a configuration is that the low power 

radio has got significantly lesser range than the high power radio and consequently that 

radio is underutilized range wise, also the system node has two radios increasing its cost. 

STEM [37] uses two radios of same power for wake up signal and data transmission. Since 

wake up radio does not have low power it employs an asynchronous wakeup scheme in 

which it periodically wakes up and checks for beacon. The beacon is sent periodically by 
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a node which wishes to transmit data. Beacon is transmitted for a maximum time until 

target node responds. If collision occurs on the wakeup channel no acknowledgement is 

sent on that channel. 

Another variant of STEM known as STEM-T [38] the authors use a wakeup tone to wake 

all the neighbors of the initiator node. STEM has a problem in which path setup latency is 

very high. The active time for a node to detect a beacon is more than double the beacon 

transmission time plus the acknowledgment time. Combine this single hop delay over long 

networks and the transmission latency increases. Also the time to remain active would take 

up a lot of energy. 

PTW [39] Pipelined Tone Wakeup is a protocol which aims to achieve a tradeoff between 

energy and latency. This uses two radios like STEM but the sender now sends a wakeup 

tone that is long enough for the periodically waking receivers to be detected.  

Another method uses low power radio receiver in continuous on state [40] and when it 

receives the signal it turns on the data radio. The main problem with this approach is that 

since the wakeup radio is on at all times and power consumption has to be minimized the 

low power radio has a lesser range than the high power radio. It should be noted that the 

high power radio is underutilized as its transmission range is greater. 

Another method investigated is the radio triggered wakeup scheme [41]. In this the radio 

energy from the signal is used to turn on the data radio. This has the plus point of not using 

any standby radio which consumes energy to listen for the signal. The main issue in such 

a scheme is the lack of range.  
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2.3.1.2.2. Scheduled Rendezvous Schemes 

In this type of scheme all the neighboring nodes wake up at the same time. Typically nodes 

wakeup after a certain sleep time but the main advantage is that it is certain that neighboring 

nodes will be awake for transmission purposes. The main issue in this case is clock 

synchronization in that all nodes have a clock which is the same and does not drift over 

time. 

In Fully Synchronized Pattern [42] all nodes of a network wakeup at the same time 

periodically. Many systems use this, TinyDB [43], TASK [44], S-MAC [45], T-MAC [46]. 

Time to wake up and active time are fixed for a certain network. This scheme can be 

improved by turning the radio after a certain time if it does not detect any network activity. 

The drawbacks to this approach are that when nodes try to transmit simultaneously, 

collisions will occur and the network cannot scale up from the size of the original network. 

Staggered Wakeup Pattern [42] nodes at different levels in the data gathering formation 

wake up at different times but in a manner that they are staggered and at least one 

neighboring node which will carry data to the sink is awake. Advantageous because the 

number of collisions is lower as only a few nodes are awake a certain point in time. Cons 

are the same as Fully Sync Pattern in as all the nodes waking up at the same level will have 

high probability of collisions, also the wakeup and active times are fixed for a network. 

Flexible Power Scheduling [47] has a slotted approach for the time in which the node has 

to transmit data. The slot time is fairly large as to stop issues with synchronization and 

nodes can reserve slots in advance to overcome the inflexibility of fixed slot positions. 
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Other variations of the staggered scheme are also in literature like forward staggered [42] 

and two staggered pattern [42] and even and odd pattern [48]. 

2.3.1.2.3. Asynchronous Schemes 

Asynchronous schemes allow nodes to wake up independently of each other while making 

sure that neighbors always have overlapped active periods for communication. 

Asynchronous schemes were first introduced in [49] for IEEE 802.11 standard.  

In [50] Asynchronous Wakeup Protocol is implemented in a (7,3,1) configuration. 7 Time 

slots are allocated to a node out of which it has to be active for any 3 of them. The active 

slots are set such that only two schedules are overlapping for one slot. This ensures that 

whenever a node is active it has at least two neighbors to which it can communicate data. 

Random Asynchronous Wakeup (RAW) [51] takes advantage of dense networks and that 

several paths may exist between sources and sink. Random Wakeup of nodes occurs as 

they forward the data to the set of active neighbors. If the forwarding candidate set is large 

enough there is high probability that the packet will be forwarded otherwise if network is 

sparse then this gets difficult as very less nodes might have probability to wake up. The 

discovery of nodes for receiving data is done much like either STEM-B or PTW which 

were discussed previously. 

2.3.1.3. MAC Protocols based on Low Duty Cycle 

The following section deals with MAC protocols in literature [52] that are based on low 

duty cycle. Usually MAC protocols deal with channel access methods but for power 

management they implement low duty cycle. 

There are three main types of MAC Protocols available in literature: 



39 
 

(i) Time Division Multiple Access  

(ii) Contention Based  

(iii) Hybrid Protocols which employ a mix of the two 

2.3.1.3.1. TDMA Based MAC Protocols 

In these type of protocols [53] time is divided into frames which are further divided into 

slots. These slots are assigned to nodes according to a scheduling algorithm. Usually there 

are cluster heads in the network which are assigned this job. One common example of this 

protocol is Bluetooth [54]. 

TRAMA [55] divides time into two periods, a contention based random access period and 

a scheduled access period. In the contention based period nodes find two hop neighbor 

information to establish collision free schedules. Then they start an election procedure 

based on which slots which nodes will occupy based on this information. After this has 

been done a schedule is created on which nodes can communicate in a collision free 

manner. 

FLAMA [56] is derived from TRAMA and is optimized for periodic reporting applications. 

As the data transmission path in such applications is not random it sets up flows for the 

data and uses a method in which data is reported only when it is requested by the sink. 

LMAC [57] aims to reduce protocol overhead for energy efficiency. The slot assignment 

is based on the current occupied slot and random assignment among the free slots. The 

frame length is fixed and has to be specified before deployment. 
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2.3.1.3.2. Contention Based MAC Protocols 

In B-MAC [58] nodes wakeup after a duration known as the check interval and remain 

awake for a wakeup time. This is asynchronous. Nodes then listen for any ongoing 

transmission. If it detects transmission then it simply receives the packet. The packet is 

made up of a preamble and the payload, the preamble is long enough to be more than the 

check interval of the node so that if transmission is going on than any node waking up 

would be able to detect channel activity. 

In S-MAC [45] nodes exchange sync packets to coordinate their duty cycling patterns. 

Nodes can then make their own schedule or follow of their neighbor, nodes following the 

same schedule make a cluster. A node can follow two schedules if they do not overlap and 

can thus form a bridge between two clusters. Two time periods for channel access, listen 

period to exchange sync and control packets and remaining period to exchange data. Nodes 

not concerned with data transfer can sleep but if overhearing a transmission wakeup for 

short time at end of it so latency of receiving next packet if it is intended for the sleeping 

node is very low. 

D-MAC [59] is implemented in networks where a tree organization is done for the nodes. 

The nodes schedules are staggered according to their position in the tree. Nodes having 

more packets request for additional slots from the nodes above them. This way the active 

period is adaptively adjusted. 

IEEE 802.15.4 PAN [60] has got coordinators which manage nodes and if need be more 

coordinators which manage subsets of the nodes present in the network. In beacon enabled 

mode a special frame is periodically generated by the coordinators. These consist of an 

active period which has a contention access period controlled by a CSMA/CA algorithm 
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and a collision free period in which nodes are given time slots to communicate. The inactive 

period is for the nodes to sleep. In non-beacon enabled mode the nodes communicate using 

a CSMA/CA algorithm. Energy conservation is then applied in the application layer. 

2.3.1.3.3. Hybrid MAC Protocols 

PTDMA [61] is a scheme in which time is slotted and nodes are either owners or non-

owners of the time slot and the network switches between TDMA and CSMA based on the 

level of contention in the network. This was formulated for a one-hop wireless network so 

does not take into account topology changes and other issues which affect wireless 

networks. 

In Z-MAC [62] nodes populate a list of its two hop neighbors then apply a slot assignment 

algorithm so that any two nodes in neighborhood don't have the same slot. This guarantees 

that neighbors in the two hop neighborhood would be collision free. Z-MAC allows the 

nodes to maintain their own time frame based on the transmissions of its neighbors. Nodes 

are either in LCL or HCL. LCL is low contention level in which any node can compete for 

the slot but in HCL the owner of the slot and only its one-hop neighbor is allowed to 

compete for it. HCL mode is activated by an ECN or Explicit Contention Notification, this 

is sent out by nodes when they experience high contention. This section was related to the 

duty cycling schemes in WSNs, the next section is related to data driven approaches for 

energy conservation in WSNs. 

2.3.2. Data Driven Approaches 

Data driven approaches can be broken down into two main categories.  
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(i) Data reduction which aims to reduce the data transmitted in a network through various 

methods 

(ii) Energy Efficient Data Acquisition which aims to conserve energy by using various 

methods to reduce the energy during the data sampling phase. 

2.3.2.1. Data Reduction 

Data Reduction aims at reducing the amount of data that can be transmitted. There are 

basically three main methods through which this can be achieved. 

(i) In network processing 

(ii) Data Compression 

(iii) Data Prediction 

2.3.2.1.1. In network Processing 

In network processing refers to the various techniques like network coding and data 

aggregation which is applied to the data in the wireless sensor network. Network coding is 

a method in which instead of processing packets and sending them they apply a function 

on them beforehand. This way the nodes in the network will have to apply a function on 

them to decode them instead of receiving multiple processed packets from different nodes. 

The number of transmissions is reduced as the same data is being sent to all nodes and it 

only needs to be sent once. Adapcode [63] is a data dissemination protocol in which it 

forwards one packet per N packets received. This way flooding the network with packets 

is mitigated. This may not work for sparse networks as the number of nodes will already 

be low. So nodes can recover data by sending negative acknowledgement to recover data. 

Data aggregation is usually application specific but in wireless sensor networks it may be 
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used to reduce the amount of traffic. This way latency in a network can be improved. Data 

aggregation can be done by averaging at one node or by combining packets coming from 

higher levels in the network at one node. The disadvantage of such a technique is that the 

original data may be lost and may not be recoverable depending on the network. In [64], 

[65] data aggregation techniques are surveyed in detail. 

2.3.2.1.2. Data Compression  

Data Compression is the technique in which the number of bits used to represent a data is 

reduced. This increases energy efficiency as the time taken to transmit a packet is reduced. 

This ultimately reduces latency also. Data can be encoded at the source node and then 

decoded at the sink node for example, these techniques are not application specific to 

wireless sensor networks and can be generally applied. Also normal data compression 

techniques are resource and energy intensive and controllers at the node level are usually 

not equipped with that kind of hardware and specific techniques have been surveyed in 

[66], [67] for application in wireless sensor networks. 

There are many algorithms which can be applied to compressing data in wireless sensor 

networks which have been applied to vibration signals in particular, [68] uses the discrete 

cosine transform to compress the incoming data for transmission through the wireless 

sensor network, it is compared against LEC [69] which is also an algorithm for 

compression of data in the WSN. There are other types of compression methods which are 

also available for example the lapped orthogonal transform [70] and the discrete Walsh 

transform [71] which can also be applied to compress signals in WSNs. The discrete 

wavelet transform [72] is also extensively used in signal compression and [73] has applied 

to compressing speech signals using a DSP based microcontroller platform.  
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2.3.2.1.3. Data Prediction 

Data Prediction consists of building a model of the sensed value within certain error 

bounds. If the accuracy bound is not exceeded queries can be answered at the sink without 

any communication. On the other hand if the model has changed then communication has 

to take place to update the model. Normally prediction results in lower communication 

overhead. 

There are 3 basic data prediction schemes that are discussed in literature: 

(i) Stochastic Schemes 

(ii) Time Series Forecasting 

(iii) Algorithmic Schemes 

Stochastic Schemes: 

Stochastic methods are used for a probabilistic model of a random process. 

In [74] the authors have defined a procedure in which there are a number of models of the 

process at each node and at the sink. The model is based on a trained probability density 

function and when it is not considered valid anymore it is recomputed as the source node 

updates the sink node. In [75] a similar method has been used but it uses a Kalman filter 

for prediction. 

The work in [74] is extended in [76] where a Dynamic Probabilistic Model is used to show 

the user the hidden states of the system, this is possible through using a model of the system 

and using the sensed state to compute the other states which are hidden or not measurable. 

Particle filtering approach is taken for estimation of the sampled data. 
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Time Series Forecasting: 

Time Series forecasting of any process can be done using the AR, MA or ARMA models. 

These simple models can be used with acceptable accuracy rates in wireless sensor 

networks. 

PAQ  [77] uses a low order AR model. It first computes the model at the nodes using the 

sampled data and then sends only the coefficients of the model to the sink. If the values of 

the model and readings are within the user specified error bound the model is considered 

valid, otherwise if many consecutive readings start falling outside the range then the model 

is relearned and the values sent to the sink again. Clustering also takes place when multiple 

nodes have similar models, this reduces communication as nodes within the cluster have 

the same model and communication to sink is handled by the cluster head. 

SAF [78] improves upon the previous algorithm by including a trend element in the 

forecasting. Also outliers are accommodated by filtering and enlarging the model if 

possible. Even if then a stationary model is not possible then the model is rebuilt at the 

nodes at resent to the sink. 

In [79] multiple models are computed at the nodes. All are running in parallel. Models with 

the least predicted error are chosen over time. Also considered is the cost associated in 

updating a model. The more complex a model the higher the update cost but prediction 

may be better. Every time a new model is chosen at the nodes the model is updated at the 

sink. Over time a racing mechanism is employed to discard the poorly performing models. 

This results in selected models which best portray the process. 
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Algorithmic approaches: 

Algorithmic approaches are more application dependent and vary according to the needs 

of the network and the approach used by the authors of the paper, one approach in one 

application may not be applicable in another scenario. 

PREMON [80] uses the idea of nodes as pixels and attempts to uses spatial correlation. As 

the sensed data varies over time the authors present it like a movie where the sensors are 

the pixels in the image. Sensors send their initial readings to the sink where it computes 

the model and sends it back to the nodes. The nodes then use the model to predict the data. 

If it is within the error bound the data is not sent to the sink. Periodically the model is 

recomputed again at the sink to replace the older model. 

In [81] a buddy protocol is presented in which nodes form clusters with their neighbors. In 

each cluster there is a cluster head responsible for query processing and monitoring. This 

is periodically changed to conserve node energy. Communication between nodes and 

cluster head can be default mode in which it sends the raw data or like PREMON where 

model is computed. In systems where the sensed variable is changing rapidly default 

method is more suitable and in systems where data is smooth and stable PREMON method 

is more suitable. 

In [82] authors propose a system in which the sensor node sends the upper and lower bound 

of its readings to the sink. This is constantly updated if values fall outside these bounds. 

When sink receives query from user it checks the bounds, if it is within the acceptable 

range then the cached range is given, otherwise the sink requests the real value from the 

nodes and updates its bounds. Changing these ranges affects power consumption as it limits 
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communication between nodes. An optimal setting can be given for a scenario to save 

power. 

2.3.2.2. Energy Efficient Data Acquisition 

These techniques are born out of the belief that sensing is relevant from the energy 

consumption standpoint and that it may be greater than the energy for computation or for 

that matter communication. This can be due to some factors that are listed below: 

(i) Long Acquisition Time: The data acquisition time of sensors may be in the order of 

seconds, this will accumulate over time and even if the sensor uses low energy the total 

energy for one cycle of data acquisition may be high 

(ii) Power Intensive Sensors: Some sensors for some applications require high power, an 

example is the CCD array in a digital camera. 

(iii) Power Intensive ADCs: Some sensors [83], [84] require high precision, for this level 

of precision the ADCs are usually of high resolution and can provide data at a high rate, 

these requirements call for more power than is usually required. 

(iv) Active sensors: Some sensors require energy to be transmitted to sense a phenomena, 

examples are ultrasonic rangefinders and sonar. These require energy even if the sensing 

part uses low energy the active signal requires a high amount of power. 

In these cases, reducing the communications or even reducing data may not be feasible as 

sensing is more expensive. Methods have been researched in literature [85] to reduce 

sensing and there are three basic fields in which they can be broken down: 

(i) Adaptive Sampling 
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(ii) Hierarchical Sampling 

(iii) Model based Active Sampling 

2.3.2.2.1. Adaptive Sampling 

Adaptive sampling can reduce the number of unnecessary samples for a given time. For 

example in [86] temporal analysis of data is done dynamically to choose the correct 

sampling rate that can reconstruct the original signal according to the Nyquist criteria. The 

algorithm is executed at the sink and the updated sampling rate is sent to the nodes. In [87] 

a Kalman filter is used for similar purposes. 

In [88] the concept of a dense sensor field and spatial correlation is used. Sensor field is 

divided into blocks where variations of the sensed phenomena is low. Then in preview 

phase only a few sensors in a block are activated to sense the data. Each block is managed 

by a cluster head. If the variations in data is high and spatial correlation is low then 

refinement step is taken in which more sensors in the clusters are activated. If the variation 

in data is low only the preview phase is enough to get sufficient information regarding the 

data. 

Spatial Correlation is also used in CC-MAC [89] in which an Iterative Node Selection 

algorithm based on the calculation of the correlation radius based on maximum distortion 

that can be tolerated residing at the sink . The radius is transmitted to other nodes in the 

network. Two other MAC protocols E-MAC and N-MAC are used in the transmission. E-

MAC reduces the amount of redundant data in the system and N-MAC manages 

transmission of older packets in the network giving them higher priority against newer 
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packets. Also initially all nodes contend for access of network, the winning node becomes 

the representative of nodes in the radius. 

Floodnet [90] uses an application specific adaptive sampling system in which data from 

critical nodes with higher sampling rates are given higher importance and nodes with lower 

sampling rates are used to route the data. The idea being that nodes less loaded with 

sampling tasks would have more energy to spare for routing purposes, also if nodes with 

higher sampling rates are not used to route data then they would last longer. 

2.3.2.2.2. Hierarchical Sampling 

Hierarchical Sampling is based on the idea that some sensors providing coarse information 

use less energy and other sensors providing information with high resolution use a higher 

amount of energy, using this information we can use the lower power sensor for event 

detection and then use the higher power sensor for tracking or purposes requiring better 

information of the sensed phenomena [91], [92]. 

In [93] for structural health monitoring the sensors are split into two types, u-nodes 

containing accelerometers and m-nodes containing strain gauges. u-nodes are low power 

sensors and are used for continuous monitoring, if they find an anomaly and it is verified 

by cross checking with the neighbors then the m-nodes are activated and finer information 

is obtained. 

In [94] static sensors report to the sink, if there is an anomaly a mobile sensor is dispatched 

to the area with the anomaly for better information gathering and it reports back to the sink. 
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2.3.2.2.3. Model Based Active Sampling 

This approach is similar to data prediction. Data prediction methods periodically tune the 

model, this reduces communications as it does not have to be at all instants but it does not 

reduce sampling. This approach reduces the number of samples itself. 

In BBQ [95] a probabilistic model and planner are at the sink. The model has PDFs which 

are flexible enough to cater for the spatial and temporal correlations. The model is updated 

by combining the PDFs with the incoming samples. The model is constructed at the sink 

by the initial values sent by the sensors. The model is updated with answers received to 

queries. The planner decides the when and what of queries, what values it requires and 

when does it need to query, also what sensors it needs to use. 

In ASAP [96] clusters and sub-clusters are formed. The cluster heads are responsible for 

the cluster and within a sub-cluster only one node is the sampler. The cluster head forms 

the sub-clusters based on initial data received and selects samplers from them. Clusters and 

sub-clusters are periodically recomputed. The probabilistic models are computed for each 

sub-cluster and sent to the sink. The model is made at the sub-cluster so data is not needed 

to the sink all the time. Communication energy for the whole network reduced. 

In USAC [97] the sampling frequency is calculated at each node not at the sink. A linear 

regression model is used for forecasting. If the prediction is not in the confidence interval 

the sampling frequency is increased to fmax. This increases accuracy when updating the 

model. On the other hand if values lie in the confidence interval then sampling frequency 

is decreased till it reaches fmin. Also the authors propose a routing protocol in which paths 

are taken along which data is sampled at a lower frequency.  
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3. CHAPTER 3 

SYSTEM DESCRIPTION 

To implement the proposed WSN based energy conservative scheme for pipeline 

monitoring a method for simulating a pipeline and generation of data has to be devised. 

Also the node model will be introduced on which the scheme will be applied. This would 

allow us to best estimate the energy efficiency that we are achieving because of the energy 

conservation methods applied. First we will introduce how the leak effects the pressure and 

vibration in the network. 

3.1. Introduction 

Leak localization is a major problem in the water industry and, as such, remains an active 

area of research, with various methods [98] having been developed recently to localize 

leaks in water pipeline networks using pressure and flow data. The success of these 

methods is due to their use of artificial intelligence techniques and the recently available 

extensive computing power to localize leaks in pipe networks using pipe network models. 

In addition to pressure-based leak localization, the past years have also witnessed the use 

of acoustic-based leak localization methods [99], [100] to locate underground leaks which 

were difficult or impossible to locate using conventional methods. For acoustic localization 

the leak noise transmitted acoustically through the pipeline is picked off by sensors located 

at different distances. The next section discusses the effect of leak on the pressure and 

vibration in the pipe to understand how a leak detection and localization algorithm can be 

applied to the pipeline network. 
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3.1.1. Effect of Leak on Pressure 

When a leak happens in a pipeline or a pipe network the pressure and flow profile of the 

pipeline changes, this is mainly based on the way it is being simulated because of what the 

boundary conditions are being set in the simulator. 

For example there are two ways the boundary conditions can be set as shown figure 3.1 

and 3.2 below [15] for liquid based pipelines: 

 

Figure 3.1:  Pressure Profile in Pipeline for fixed pressure boundary conditions, 𝐗𝐋 is the leak location 

 

Figure 3.2: Pressure profile in the Pipeline for fixed inlet flow and exit pressure, 𝐗𝐋 is the leak location 

In figure 3.1 (a) and (b) the boundary conditions for the simulator are chosen as the pressure 

at the entrance and exit node of a straight pipeline under study, using these conditions for 

before and after the leak the pressure and flow are shown by dotted lines and solid lines 

respectively. We can see that in the pressure readings there is a sharp dip in the pressure 

gradient for a straight section of a pipeline when a leak is occurring, also the flow after 𝑋𝐿 

which is the leak location has been reduced due to the leak in the system. Similarly in the 
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second model we can see that the pressure gradient before and after the leak changes due 

to leak in the straight section of the pipeline. The boundary conditions for the second model 

are a bit different in that it assumes that the inlet flow and the exit pressure are taken instead 

of inlet and exit pressure like the first model. But we get similar response of the pipeline 

like that the pressure gradient changes and that flow after the leak is reduced. EPANET 

[101] also uses the same methods to generate a quasi-static pressure and flow profile for a 

pipeline network for simulation i.e. the pressure and flow data are generated assuming that 

they are static for the time duration that they are being acquired and that the results are 

generated assuming that the conditions given in the input have allowed the pipe network 

to settle in a steady state condition. In addition to this the boundary conditions that the 

simulator uses are the exit flow demand and the inlet pressure for the simulations, this way 

the simulator is able to run simulations for scenarios in which the inlet is able to fulfill 

demand of the whole network. In the next section the effect of leak on the vibrations in the 

pipeline are given. 

3.1.2. Effect of leak on vibrations 

Vibrations in pipelines are usually due to flow of the fluid occurring in it. Vibrations will 

also be present because of leaks in the pipeline. There has been much experimental work 

regarding leaks in pipelines done for detection of leaks using vibration measurements. For 

example in [14] the authors ran several experiments for leakage detections in pipelines for 

several different conditions. The major findings were that the leak spectrum is different 

from the flow spectrum within a certain range of values and that the standard deviation of 

the signals when the leak is present is different from the standard deviation when there is 
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no leak occurring in the system. In figure 3.3 below the effect distance on the leak spectrum 

is shown [14]. 

 

Figure 3.3: Effect of distance on leak spectrum 

From the above figure it can be seen that closer the vibration sensor is to the leak the higher 

the spectrum of the leak it is able to capture. In effect the pipe acts as a low pass filter as 

in it filters out the higher frequency components further away from the leak location. 

Furthermore in [25] the authors did some experiments to acquire vibration data under 

different conditions. It was found that if the leak signature was low enough and if there 

was enough flow in the pipeline the leak detection would become difficult because the flow 

vibrations were high enough to mask out the leak vibrations. The effect can be seen in 

Figure 3.4 [25]. In figure 3.4 (a) shown is the effect of the leak on the vibrations when there 

is no flow in the system, conversely in figure 3.4 (b) when there is maximum flow occurring 

in the pipe the leak vibrations cannot be detected easily. Leak detection was then done by 

filtering the appropriate bands of the signal as the energy spectrum of the leaking vibration 

signals is different. Mostly the flow vibrations are concentrated in the low frequency bands 

and the leak frequency bands are higher in the energy spectrum. Modeling of the vibrations 

due to flow and leaks is done in the next section. 
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Figure 3.4: (a) No leak and Leak vibrations for DB3 and (b) No leak and Leak vibrations for position DB11. 

3.2. Vibration Modeling 

Vibration modeling from relevant literature is done based on two things, firstly there is 

vibration due to flow in pipelines, this vibration varies due to the flow and is there has been 

a fair amount of work done to model it experimentally. And considered are vibrations due 

to leaks in the pipelines, this was briefly discussed in the previous section. The vibrations 

that happen due to leaks are more important in our work as leak detection is based on 

detecting these vibrations. Vibrations due to flow are important as they make up the 

dynamic noise floor that is present in the system, it is dynamic in a sense that it would vary 

based on the current condition of the pipe section under monitoring. The next subsection 

is related to the vibrations due to leak in the system. 

3.2.1. Vibrations due to leak 

Extensive work has been done by researchers to model the low pass filtering effect of the 

pipeline that was shown in figure 3.3. Researchers have studied the plastic pipe response 

to sound propagation and vibration and modeled it [102], [103] and found that the pipe acts 

as a low pass filter, the further the measurement point is from the leak location the lower 

the maximum frequency and higher the attenuation of the signal is going to be. Based on 
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this information the researchers further attempted to localize leak in pipelines in further 

work [20] and worked on cross correlation techniques to localize leaks in pipelines based 

on experimental data and an analytical model. The effect of filtering data was examined 

and it was found that it improved the result if applied up to a certain extent to the signals. 

This model was further used in experimental work to validate its practicability in locating 

leaks in underground pipelines [104]. Furthermore a virtual leak localization setup [22] 

was designed by the researchers based on all the experimental work done previously. The 

details of the model are based on the concept of leak sound propagation through the 

pipeline and it being picked up by the sensors, it most appropriately shown by figure 3.5. 

 

Figure 3.5: Major Components of the leak vibration model [22]. 

As shown in figure 3.5 there are 3 major components that contribute to the vibration signals 

that are picked up as signals 𝑥1(𝑡) and  𝑥2(𝑡) as shown in the figure above. The first major 

component is the leak noise, this is how the leak noise is generated acoustically at the leak 

source. This is based on several parameters such as the leak flow rate and the size of the 

hole through which the leak is occurring, based on these factors the leak noise is generated 

acoustically which then propagates through the pipe, this is represented as Pipe Filter 1 

and Pipe Filter 2 in the figure above, these two pipe filters correspond to two different 
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lengths, and the pipe effectively acts like a low pass filter. Finally the sensor comes into 

play, the sensor model is dependent on what type of signal is being picked up at the 

measurement points, the researchers in the work discussed have worked on hydrophones, 

geophones and vibration sensors, these three measure the sound pressure level, the velocity 

profile at the surface and the acceleration profile at the surface of the pipe, of these three 

the hydrophones are the invasive method as it requires measuring the signal in the pipe. In 

our work we will be focusing on the vibration so modeling related to it will be discussed. 

Moving on to the leak model extensive experimental work was done in [23] regarding leak 

sizes and the related sound pressure level that was generated. The leak noise signal is a 

signal that follows the 𝜔−1 power law until a specific frequency is reached for a specific 

leak and flow velocity. Numerous experiments were conducted for discrete diameter values 

and a relationship was derived for the leak noise spectrum. A signal based on this spectrum 

can be readily implemented in MATLAB. The empirical mathematical expression for the 

frequency spectrum that was derived in [23] is shown by equation (1): 

𝑆𝑙𝑙(𝜔) =  

{
 

 
𝐴(𝑉, 𝑑)

𝜔
                                    𝜔 ≤  𝜔𝑐

𝐴(𝑉, 𝑑)𝜔𝑐
𝑛−1

𝜔𝑛
                          𝜔 ≥  𝜔𝑐

                                (1) 

In equation (1) 𝐴(𝑉, 𝑑) is the magnitude of the sound pressure level in dB for a given exit 

velocity 𝑉 and hole diameter 𝑑 in units of meter. 𝜔 is the frequency. 𝜔𝑐 is the critical 

frequency after which the attenuation factor of the sound decreases by more than the factor 

1 as given in the first part of the expression. 

Since the sampling frequency used is below the critical frequency 𝜔𝑐 , for all cases of leaks, 

and therefore only the low frequency components of the signal are propagated through the 
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pipe. As such, only the first part of expression (1) is used. In previous works [105] the 

range of 0 – 250 Hz is used by the authors for leak noise as the higher bands get highly 

attenuated. This range is only present in the first part of expression (1). Regarding the first 

part of equation (1), 𝐴(𝑉, 𝑑) in is dependent on the following equation [23]: 

𝐴(𝑉, 𝑑) =  𝐴𝑜(
𝑑

𝑑𝑟𝑒𝑓
)3. (

𝑉

𝑉𝑟𝑒𝑓
)2. (

𝐷𝑟𝑒𝑓

𝐷
)2                                        (2) 

In expression (2) 𝑑𝑟𝑒𝑓 and 𝐷𝑟𝑒𝑓 are reference leak hole and reference pipe diameter, these 

are set at 1 meter and 𝑉𝑟𝑒𝑓 is the reference exit velocity of the fluid through the leak, this 

is set at 1 m/s and 𝐴𝑜 is the reference sound pressure level. This was experimentally found 

to be 104 Pa. Using the known leak diameter 𝑑, the pipe diameter 𝐷 and the leak exit flow 

velocity 𝑉, the leak magnitude can be found. This magnitude can then be used in equation 

(1) to generate the signal spectrum. To find the leak velocity 𝑉 the leak diameter will be 

needed. For the leak to be generated in EPANET we will be using the emitter property of 

the nodes available. In EPANET emitters are used as leaks which have the equation (3): 

𝑄 = 𝐶𝑝𝛾                                                                  (3) 

Here 𝐶 is the emitter coefficient for discharge, γ is the emitter exponent which is usually 

set to a default value of 0.5, 𝑝 is the pressure at the node and 𝑄 is the leak flow rate. 

For modelling purposes, the Bernoulli equation is used for fluid flow through an orifice of 

a known diameter [106]: 

𝑄 =  𝐶𝑛𝐴𝑛√
2(𝑝1 − 𝑝2)

𝜌(1 − 𝛽4)
                                                    (4) 



59 
 

In the above expression (4), 𝑝1 − 𝑝2 is the difference in pressure between the inside and 

outside of the pipe, 𝛽 is the ratio of the leak diameter to the pipe diameter, ρ is the density 

of the fluid, 𝐴𝑛 is the area of the orifice, 𝐶𝑛 is the flow coefficient which is equal to 1 for 

ideal cases but it usually has a lower value. In our case, we have taken it to be equal to 0.6, 

which is a reasonable assumption for a leak from a sharp edged hole [106]. 

If we take 𝑝1 − 𝑝2 equal to 𝑝 then 𝐶 in equation (3) can be written in terms of equation (4): 

𝐶 = 𝐶𝑛𝐴𝑛√
2

𝜌(1 − 𝛽4)
                                                       (5) 

Using equation (5), the emitter coefficient in EPANET for a certain diameter can be 

approximated. This would give us the node demand which would enable us to calculate the 

exit flow velocity which can be used to calculate the leak noise for propagation in the 

pipeline model.  

Once the leak noise is generated we will then propagate it through the pipe response model. 

This is given by equation (6) according to the work done previously in [104]: 

𝐻(𝜔, 𝑠) =  𝑒−𝜔𝛽𝑠𝑒−𝑗𝜔𝑠/𝑐                                                   (6) 

Expression (6) gives us the frequency response function of the pipeline based on the 

physical parameters of the pipeline. In expression (6) 𝑐 is the speed of sound in pipeline, 𝐸 

is the Young Modulus of the pipe, ℎ is the thickness of pipe, 𝜔 is the frequency and 𝑎 is 

the mean radius of the pipe. 𝑠 is the distance of the measurement point from the leak 

location, this is variable based on the distance of the measurement point from the leak. In 

expression (6) 𝛽 is the attenuation factor given by equation (7). 
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𝛽 = 
(𝜂𝐵𝑎 𝐸ℎ⁄ )

(𝑐𝑓(1 + 2𝐵𝑎 𝐸ℎ⁄ )0.5)
                                                  (7) 

In expression (7) most of the equation components have already been described before, the 

new things are 𝜂 which is the loss factor, 𝐵 which is the bulk modulus of water and 𝑐𝑓 

which is the free field velocity of sound in water. Furthermore 𝑐, which is the speed of 

sound in the pipeline is given by expression (8). 

𝑐 =  
𝑐𝑓

(1 + 2𝐵𝑎 𝐸ℎ⁄ )0.5
                                                       (8) 

Using the equations (6) – (8) we can construct the frequency response function of the pipe 

for the radial accelerometer response which is shown by expression (9) below. 

𝐺(𝜔) =  −
𝑎2𝜔2

𝐸ℎ
                                                            (9) 

Equation (6) and (9) are combined to give the complete frequency response function of the 

pipe at a measurement point which is given by equation (8): 

𝑃(𝜔, 𝑠) =  −
𝑎2𝜔2

𝐸ℎ
𝑒−𝜔𝛽𝑠𝑒−

𝑗𝜔𝑠
𝑐                                             (10) 

Thus using equations (1) and (10) we can generate vibration readings at an arbitrary 

distance 𝑠 from the leak. As discussed previously apart from vibrations due to leaks there 

are vibrations due to flow present also, these are discussed in the next subsection. 

3.2.2. Vibrations due to flow 

Vibrations due to flow in pipelines are essentially a function of the water particles hitting 

the surface of the pipe wall. The measured vibrations have been previously used to 

accurately measure the flow rate in a given pipe [8]. The researchers measured the 
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vibrations in different pipes and attempted to model the standard deviations of the 

vibrations against the flow rate in the pipe. A correlation found which predicted the flow 

rates relatively accuratel. This was done based on the work done in [12] where the authors 

through a nontrivial derivation showed that theoretically the standard deviations of the 

vibrations measured at a certain point in the pipeline is directly proportional to the flow 

rate at that point. The authors then ran a series of experimental tests in which their 

hypothesis was proved in which that they were able to show that the experimental results 

matched the theoretical results. This work was further extended in [13] where the authors 

also did numerical and experimental analysis of the theory. The experiments were run on 

a relatively wide variety of materials and pipe diameters and were able to correlate all of 

them to a single expression that describes the vibration as a function of the different 

parameters of the pipes. An empirical formulation based on flow was developed as shown 

in the following equation (11):  

𝐴′ (
𝑝𝑚
𝑝𝑤
)
0.5

(
𝑡

𝐷
) = 3.5 × 10−5 + (7.36 × 10−18)𝑅𝑒2.55                       (11) 

where 𝑡 is the thickness of the pipe, 𝐷 the diameter, 𝑝𝑚  the density of pipe material, 𝑝𝑤  

the density of water, 𝑅𝑒 is the Reynolds number and 𝐴′ the standard deviation of the noise 

signal in units of g. 

Using equation (11), the standard deviation of vibrations can be calculated and 

incorporated in the time series for the leak vibration data. It was noted that the vibrations 

became very low at low fluid velocities. Equation (11) will be used to calculate the flow 

based vibration as, experimentally, it shows a good fit for a wide range of pipe diameters, 

materials and flow rates [13]. 
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Finally the vibrations due to flow and leak are summed up at each sensor location to give 

the total vibration signal at that point. It can be written down as expression shown below 

[20]: 

𝑥𝑛(𝑡) = 𝑠𝑛(𝑡) + 𝑛𝑛(𝑡)                                                  (12) 

Here 𝑥𝑛(𝑡) is the time series data for the total signal available at node location n. The leak 

signal time series data is shown by 𝑠𝑛(𝑡) and is generated by passing the leak noise model 

equation (1) through the pipe response equation (9) for a particular distance. The noise in 

the signal is shown by 𝑛𝑛(𝑡) and represents the vibrations due to flow that are occurring in 

the background which are due to flow. The standard deviation for this noise is modelled by 

equation (11). Using this standard deviation, a random signal would be generated of the 

same length as the leak signal and the signals (leak and noise) would be summed up to get 

the complete signal at a particular sampling location. Using this formulation we can 

generate vibrations at different points in the pipeline as shown in the scheme in Figure 3.6. 

 

Figure 3.6: Vibration generation scheme to be used. 

In Figure 3.6, the Pipe Sound Propagation model is shown by (6) based on work in [19]. 

This equation is shown for a specific position 𝑠1 but will be similar for different positions 
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on the network with only the value of the distance 𝑠1 changing. Applying this procedure of 

generating the complete noisy signal, we can now proceed to the implementation of our 

simulation model in MATLAB, as discussed next. 

3.3. Pipeline Network simulation based on Vibration Model 

In this section we will be simulating the model described in the previous section for the 

pipeline network for no-leak and leak conditions. 

To simulate and validate the proposed sensor integration and simulation augmentation 

method, the scheme of Figure 3.7 is proposed which comprises EPANET where the desired 

pipeline characteristics and conditions are first set and then fed into MATLAB which 

simulates the EPANET environment and generates the required vibration data for the set 

pipeline conditions.   

 

Figure 3.7: MATLAB-EPANET Co-simulation scheme 

More specifically, the simulation is initiated by creating a simulation environment in 

EPANET specifying the pipe length, diameter and flow rate through the pipe. This is then 
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accessed from EPANET using a toolkit developed in [107] using MATLAB. This allows 

us to control the simulation and apply the leak localization algorithms to the pipe network 

simulated in EPANET. Furthermore using the flow information from EPANET, we can 

simulate the vibration in a pipeline. The vibration simulation block calculates the vibration 

based on the flows and leaks that are present in the system using the method described by 

(7) and gives the result for discrete measuring points that are defined in the EPANET 

simulation. Since the vibration can be measured at any point, an arbitrary point can also be 

defined in the pipe for vibration measurement purposes. In our simulation, the pressure 

sensor and vibration sensors are mounted at the same point. For the vibration signal, the 

length can be set arbitrarily depending on the signal length requirement of the algorithm, 

by setting the sampling frequency and the sampling time. In our case, a 5-second signal 

length are used. Longer signal lengths can be generated but they would increase the 

algorithm computation time.  

In the simulation process, the signal spectral range is not limited, a sampling rate of 2KHz 

is taken, this is because for the distances simulated in the leak detection scheme, it is to be 

noted that at larger distances, the leak’s power spectral density (PSD) drops as shown 

previously in data from [25], [103] and the leak signal, even if it were a broadband one, 

will mostly contain only data from the lower frequency bands as the pipeline attenuates the 

higher frequency bands. In [22], the authors have taken only a signal in the range of 0 – 

250 Hz as only the lower frequency bands would propagate through the pipeline, with the 

higher bands getting highly attenuated. Moving on to the simulation of the pipeline 

network, we have selected parameters for the pipeline from references [19] based on the 

assumptions that the environmental conditions are consistent since this is a simulation, for 
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example, if the temperature changes due season or time of the day, then this will 

consequently change both the Young’s modulus and the speed of sound, and hence the 

vibration-based localization accuracy. Therefore, we need readings of the environmental 

parameters that are very accurate if we are to achieve an accurate leak location. For a 

nominal operating temperature range, Young’s Modulus is between 2GPa and 3GPa [108]. 

The pipeline parameters used in the simulation are shown in Table 3-1. 

Table 3-1: Simulation Parameters 

Hydraulic Diameter of Pipe 0.096 Meters 

Pipe Wall Thickness 0.00856 Meters 

Mean Pipe Radius 0.05236 Meters 

Speed of Sound in Water 1500 m/s 

Bulk Modulus of Water 2.2 × 109 Pascal 

Young’s Modulus of Pipe 2.4 × 109 Pascal 

Pipe Section Length 50 Meters 

Distance Between Sensors 50 Meters 

Leak Location 21 Node 

Exit Node Demand  40 Liter/minute 

Leak Diameter 0.001 – 0.005 Meter 

 

An example of a pipeline network is considered, and simulated in EPANET using the 

conditions given in Table 1, such as pipe length, hydraulic pipe diameter, flow rate, 

distance between sensors to run the flow- and pressure-based simulation using MATLAB.  
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3.3.1.  Simulation of Pressure Data 

For the example considered in Figure 3.8, there are 19 nodes (labeled as nodes 1 to 19) for 

pressure data acquisition. The small rectangle labeled A is modeled as a 3mm-leak 

according to equations (3-5). Node 15 represented by the triangle is the output node, the 

leak is 23 meters from Node 10 and 27 meters from Node 14. The simulation is run in 

EPANET and the pressure data is acquired for 3 different scenarios for the leak. The leak 

diameter is varied from 1mm in size to 5mm in size and the simulation run to collect data 

for the different leak diameters. The pressure profile for the 1mm leak is shown in figure 

3.9. We can see that for the leak the pressure is dropping across all nodes in the network. 

This is mainly because the pump needs to pump more fluid to keep up with the exit node 

demand of 40 liter per minute as well the demand of the leak at position A. 

 

Figure 3.8: EPANET Model of pipeline, the rectangular position is the leak location and the triangle node is the 

network exit node with demand of 40 liters per minute. 
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Figure 3.9: Node pressure profile before and after leak for 1mm leak 

The plotting for pressure for the 3mm leak case is shown in figure 3.10.  
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Figure 3.10: Node pressure profile before and after leak for 3mm leak 

In figure 3.10 it can be seen that the pressure drops more than the 1mm leak case because 

the demand of the leak is higher at 3.1 liters per minute. The leak diameter was further 

increased to 5mm and the simulation was run again to find the pressure drop due to the 

leak, it is shown in figure 3.11. The pressure drop is higher compared to the other cases as 

the leak magnitude is higher at 8.56 liters per minute. The leak rate would also change with 

the pressure but a constant output is assumed and it wouldn’t change drastically with output 

flow rate near to the assumed 40 liters per minute. Moving on the next subsection is related 

to the vibration readings at different nodes that were generated by the developed simulation 

scheme described previously. 
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Figure 3.11: Node pressure profile before and after leak for 5mm leak 

3.3.2. Simulation of Vibration Data 

The vibration data was simulated according to equations (1 – 12) described in the sections 

previously. The simulation was run on four data acquisition nodes that were nearest to the 

leak location as the effect of the leak is largest nearest to the leak itself. We will be looking 

at the effect of the leak on Nodes 10, 14, 7 and 18 which are nearest to the leak location in 

a straight line, there are other nodes which are the same distance from the leak similar to 

Nodes 7 and 18, and the effect of the leak will be similar to them because they will be 

effectively the same distance from them. The noise floor is made up with the vibration due 

to flow. The vibration magnitude of the low leak is expected to be lower than the vibration 

magnitude of the high leak. We will see that effect in the results below. The vibration is 

sampled at a 2 KHz rate for 5 second intervals. Figure 3.12 shows the effect of leak on the 

vibration at the 4 mentioned measurement nodes for a 1mm leak. 
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Figure 3.12: Vibrations at 4 different nodes before and after the leak for the 1mm leak case. Node 10 is 23m 

from the leak, Node 14 is 27m from the leak, Node 7 is 73m from the leak and Node 18 is 77m from the leak. 

In figure 3.12 we notice that at the nodes nearest to the leak the magnitude of the leak 

signature is higher, also the standard deviation and interquartile range (IQR) of the signal 
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was calculated, it was found that both of these are directly proportional. In a WSN the IQR 

gives an attractive alternative to the standard deviation for signals as it only requires sorting  

 

Figure 3.13: Vibrations at selected nodes for a 3mm leak, it is noticed that at nodes 10 and 14 the leak signature 

is more prominent now. 
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of the signal. Also for the 3mm leak the vibrations are plotted in figure 3.13. In figure 3.13 

we can see that the leak is now more prominent at Nodes 10 and 14, also the IQR computed  

 

Figure 3.14: Vibration signature at selected nodes for 5mm leak. The leak is more noticeable in Nodes 10 and 14 

but at Nodes 7 and 18 there is no effect of leak. 



73 
 

at Nodes 10 and 14 registers an increase over the reading before the leak. Finally in figure 

3.14 we can see the vibrations for the 5mm leak case and we can see that at Nodes 10 and 

14 the vibration magnitude increases as they are very close to the leak location but at Nodes 

7 and 18 the vibration magnitude does not change as they are very far away from the leak 

location and the leak signature is attenuated by a large magnitude.  

 

Figure 3.15: Spectrogram of the different leaks at Node 10, 23m from the leak. 
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To further see the effect of leak on the vibration signals at Nodes 10 and 14 the 

spectrograms of the 1mm, 3mm and 5mm signals were plotted and compared. Figure 3.15 

shows the comparison of the frequencies at Node 10 for the three leak magnitudes.  

 

Figure 3.16: Spectrogram of the different leaks at Node 14, 27m from the leak. 

Here we can see that the IQR of the vibration signal at Node 10 is increasing along with 

the leak magnitude and that the bandwidth of the signal at Node 10 is also increasing as 

the leak magnitude increases, the spectrum is only till approximately 400 Hz as this is the 



75 
 

response of the pipe. With respect to the 3mm and 5mm leak in figure 3.15(c) and figure 

3.15(e) these both have the same bandwidth but the magnitude of the 5mm leak is higher 

as shown by the IQR in figure 3.15(e) as well as the intensity shown in figure 3.15(f) 

compared to figure 3.15(d). Next the vibrations at Node 14 were plotted and compared for 

1mm leak to the 5mm leak.  

 

Figure 3.17: Spectrogram of the different leaks at Node 7, 73m from the leak. 
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In figure 3.16 we can see that since the leak is further away from the measurement node 

the bandwidth of the signal is lower, for example in figure 3.15 the bandwidth was up to 

400Hz, in this case the bandwidth is up to 300Hz.  

 

Figure 3.18: Spectrogram of the different leaks at Node 18, 77m from the leak. 

For the 1mm leak case the vibration does have a minor component of the leak signal as 

evident in the spectrogram but it is very low in magnitude, and because of this reason the 

IQR and standard deviation of the signal are similar to the pre-leak values, on the other 
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hand for the 3mm leak the IQR and standard deviation is higher and the leak signature is 

more evident in the spectrogram and it is similar for the 5mm leak case. It should be noted 

that the bandwidth of the leak signature in 3.16(d) and 3.16(f) are similar and this is because 

of the pipe frequency response because of the distance involved, this is similar to the results 

obtained for Node 10 in figure 3.15. Similarly the effect of leak on Nodes 7 and 18 is 

plotted according to the frequency analysis in figures 3.17 and 3.18 respectively. It can be 

seen that the IQR and standard deviation of the signal is within the same range for all 

signals and it is evident from the spectrum that the leak signature is not present in the 

acquired data. This will be important when we would be applying energy efficiency based 

leak detection and localization technique to the problem. The next section is related to the 

model of the WSN node that will be used in the developed monitoring solution. 

3.4. WSN Node Model 

This section is related to the WSN nodes that will be used in the simulation. There are four 

main components [10] in the WSN node, the power supply, the sensing subsystem, the 

processing subsystem and the communication subsystem as shown in Figure 3.19. 

 

Figure 3.19: WSN Node main components 
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For pipeline monitoring applications usually pressure, flow [11], [16], [18], [30], [109] and 

acoustic or vibration [9], [19], [21], [25], [109], [110] sensors are used to detect and localize 

leaks in the network. As such, in the literature, a vast amount of alternatives are available 

for monitoring solutions and each one has its own strengths and applications which are 

described in more detail in [111]. Usually event detection is improved when a multi-modal 

approach is used in systems, and for such a scenario in pipeline monitoring, there are 

multiple approaches that can be used and we have used an approach in which pressure and 

vibration monitoring can be jointly used. In addition to this, most of the vibration sensors 

being discussed in the literature, are of either MEMs or piezoelectric type, and the main 

difference between both of them is that piezoelectric vibration sensors are more sensitive 

and have lower noise, As a result of this, they use higher energy. On the other hand, MEMs 

sensors have more noise and hence consume less power. Using both of them would give 

us a hierarchical scheme [93] in which energy consumption would be further reduced when 

using lower energy sensors in our adaptive sampling scheme, as discussed in the next 

chapter. The pressure sensor being used in our system is the standard 4-20 mA sensor used 

in the industry, and the vibration sensors are the SD-1221-002L for the Low Sensitivity 

Vibration Sensor (LSVS) and PCB Piezotronics 626B03 accelerometer for the High 

Sensitivity Vibration Sensor (HSVS). The microcontroller being used is from the MSP430 

line of microcontrollers as it has been used extensively in WSN applications and the radio 

is the CC2420, also selected because it is extensively used and sufficient literature is 

available to model it effectively. The next subsection will deal with the equations used for 

the energy modelling of these node components. 
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3.4.1.  Energy Equations 

The total energy consumption of the node depends on the components used, the operations 

it performs and the duty cycling scheme used. It is assumed that all communications take 

the minimum path and are accomplished in a single hop. In [112], [113], the power 

consumption model of all the node components is given for a single cycle as: 

𝐸𝑖 = 𝑒𝑟𝑎𝑑𝑖𝑜 + 𝑒𝑐𝑜𝑚𝑝 + 𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔                                            (13) 

Here 𝑒𝑟𝑎𝑑𝑖𝑜 is the energy consumed by the radio for transmission, 𝑒𝑐𝑜𝑚𝑝 is the energy 

consumed by the computation unit or processor and 𝑒𝑠𝑒𝑛𝑠𝑖𝑛𝑔 is the energy consumed by 

the sensing subsystem which includes the sensor and the ADC. This can also be written as: 

𝐸𝑖
𝑤 = (𝑒𝑟𝑎𝑑𝑖𝑜

𝑠 + 𝑒𝑐𝑜𝑚𝑝
𝑤 + 𝑒𝑠𝑒𝑛𝑠𝑜𝑟

𝑤 + 𝑒𝑎𝑑𝑐
𝑤 ) × 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 + (𝑒𝑟𝑎𝑑𝑖𝑜

𝑠 + 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑠 + 𝑒𝑎𝑑𝑐

𝑠 )

× 𝑇𝑐𝑜𝑚𝑝 + 𝐸𝑐𝑜𝑚𝑝
𝑤 + (𝑒𝑐𝑜𝑚𝑝

𝑤 + 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑠 + 𝑒𝑎𝑑𝑐

𝑠 ) × 𝑇𝑟𝑎𝑑𝑖𝑜

+ 𝐸𝑟𝑎𝑑𝑖𝑜
𝑤                                                                                                               (14) 

Here the superscript 𝐸𝑖
𝑤 indicates that this equation is for the wakeup period i and the 

superscript w and s indicate for each component that it is either awake or asleep. The radio 

will be sleeping for 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑇𝑐𝑜𝑚𝑝 which are the sampling and computation durations. 

The processor will be awake for the whole period and the sensor and ADC will only wake 

up for 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 which is the sampling period. Further on, the processor will be awake for 

the time the radio is active 𝑇𝑟𝑎𝑑𝑖𝑜  so its energy consumption during that time period will 

also be taken into account.  𝐸𝑟𝑎𝑑𝑖𝑜
𝑤  is the energy the radio uses the whole wakeup cycle for 

the different operations, the comprehensive model is given in [114]. For a duty cycling 

scheme the sleeping energies would also need to be accounted for also for sleep period i 

and it is given in the equation below: 
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𝐸𝑖
𝑠 = (𝑒𝑟𝑎𝑑𝑖𝑜

𝑠 + 𝑒𝑐𝑜𝑚𝑝
𝑠 + 𝑒𝑠𝑒𝑛𝑠𝑜𝑟

𝑠 + 𝑒𝑎𝑑𝑐
𝑠 ) × 𝑇𝑙                                (15) 

Thus the total energy consumption of the sensor for one complete sampling and sleep 

period i of the duty cycle will be: 

𝐸𝑖 = 𝐸𝑖
𝑤 + 𝐸𝑖

𝑠                                                            (16) 

For the processor energy consumption 𝐸𝑐𝑜𝑚𝑝
𝑤  , the model given in [112], [113] is adopted 

as it bases the energy consumption on the computational complexity of the algorithm. 

𝐸𝑐𝑜𝑚𝑝
𝑤 = 𝑂(𝑚) × µ (

𝑓

𝑘
+ 𝛽)                                              (17) 

Here µ is the switching capacitance, f the operating frequency and k and β the hardware 

constants. From (17) we can calculate the energy consumed at a specific processor 

frequency and find out the time consumed 𝑇𝑐𝑜𝑚𝑝 if we know the processor’s current and 

voltage at that frequency. From this time sleeping energy of the remaining inactive node 

components will be calculated. All the other components have the sleeping and active 

energies expended per second using the small e notation, as in 𝑒𝑟𝑎𝑑𝑖𝑜
𝑠 .  

For 𝐸𝑟𝑎𝑑𝑖𝑜
𝑤  , the expression, modified only for the wakeup period, is taken from [114] and 

the parameters used are also taken from it. The expression for 𝐸𝑟𝑎𝑑𝑖𝑜
𝑤   is shown below: 

𝐸𝑟𝑎𝑑𝑖𝑜
𝑤 = 𝐸𝑡𝑥 + 𝐸𝑟𝑥 + 𝐸𝑐𝑐𝑎 + 𝐸𝑖𝑑𝑙𝑒 + ∑𝐸𝑠𝑡𝑎𝑡𝑒−𝑠𝑤𝑖𝑡𝑐ℎ

𝑛

𝑖=0

                     (18) 

Here 𝐸𝑡𝑥 is the transmission energy, 𝐸𝑟𝑥 is the receiving energy, 𝐸𝑖𝑑𝑙𝑒 is the energy 

consumed in the idle state and 𝐸𝑐𝑐𝑎 is the energy consumed while performing CCA. Here 

𝐸𝑠𝑡𝑎𝑡𝑒−𝑠𝑤𝑖𝑡𝑐ℎ is the energy required to switch between states when the radio is switching 
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between idle, sleep, tx, rx and cca states, n is the number of switches required and is usually 

dependent on the number of operations that the radio will be doing in a single cycle. 

For 𝐸𝑡𝑥, the computational time is basically the number of bytes divided by the 

transmission rate. Since the packet is broken down into 102 byte packets [115] and each 

requires an overhead of 31 bytes, the transmission energy is then shown to be in the 

equation (19): 

𝐸𝑡𝑥 = 𝑉𝑟𝑎𝑑𝑖𝑜 × 𝐼𝑡𝑥 × 𝑇𝑡𝑥 

𝑇𝑡𝑥 = (
𝑑𝑎𝑡𝑎 𝑏𝑦𝑡𝑒𝑠

𝑇𝑥 𝑅𝑎𝑡𝑒
) + 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 (

𝑑𝑎𝑡𝑎 𝑏𝑦𝑡𝑒𝑠

102
) × (

31

𝑇𝑥 𝑅𝑎𝑡𝑒
)                (19) 

Here 𝑉𝑟𝑎𝑑𝑖𝑜 is the voltage provided to the radio and 𝐼𝑡𝑥 is the transmission current. For 𝐸𝑟𝑥 

, the calculation is similar. In (19), the Tx Rate is assumed at 250Kbps which is the nominal 

rate at which most 802.15.4 devices work at. 𝐸𝑐𝑐𝑎 is also calculated in a similar manner. 

CCA usually takes 128ms and in our case, we are taking the most ideal conditions with 

free channel and no interference so that it will only be performed once and the data 

transmitted right after it. The equation is shown below: 

𝐸𝑐𝑐𝑎 = 𝑉𝑟𝑎𝑑𝑖𝑜 × 𝐼𝑐𝑐𝑎 × 0.000128                                          (20) 

𝐸𝑖𝑑𝑙𝑒 will be calculated in a similar way. Idle time is between 2 consecutive tasks of the 

radio. Or when radio has been woken up by the microprocessor in the node and is awaiting 

to receive or transmit instructions. Between tasks the radio will go into idle mode, and the 

energy for such state switching must also be accounted for. Such a formula is already 

proposed in [114] and will be used accordingly. 
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For 𝑇𝑟𝑎𝑑𝑖𝑜 , the active time spent in the whole cycle will be calculated as the sum of the 

transmission time, receiving time, idle time, CCA time and total time spent between 

transitions, otherwise, i.e. if the radio is not being used, it will be equal to 0. An expression 

for typical 𝑇𝑟𝑎𝑑𝑖𝑜 in a single cycle for λ number of packet transmissions and ρ number of 

receiving packets is given below: 

𝑇𝑟𝑎𝑑𝑖𝑜 = 𝑇𝑠𝑙𝑒𝑒𝑝−𝑖𝑑𝑙𝑒 + 𝜌 × (𝑇𝑟𝑥 + 𝑇𝑖𝑓𝑠) + 𝑇𝑖𝑑𝑙𝑒−𝑐𝑐𝑎 + 𝑇𝑐𝑐𝑎 + 𝑇𝑐𝑐𝑎−𝑖𝑑𝑙𝑒 + 𝜆

× (𝑇𝑡𝑥 + 𝑇𝑖𝑓𝑠) + 𝑇𝑖𝑑𝑙𝑒−𝑠𝑙𝑒𝑒𝑝                                                                            (21) 

Here 𝑇𝑖𝑓𝑠 is equal to 640µs and is known as the inter-frame sequence which is the delay 

between 2 successive transmissions [115]. All the other times are defined in [114] and are 

given in table 3-2. The currents for the radio states are given in table 3-3. 

Table 3-2: CC2420 State Transition Times 

State Transition Type Time 

𝑇𝑜𝑓𝑓−𝑖𝑑𝑙𝑒 1 ms 

𝑇𝑐𝑐𝑎−𝑖𝑑𝑙𝑒 2 µs 

𝑇𝑖𝑑𝑙𝑒−𝑐𝑐𝑎 192 µs 

𝑇𝑠𝑙𝑒𝑒𝑝−𝑖𝑑𝑙𝑒 0.6 ms 

𝑇𝑖𝑑𝑙𝑒−𝑠𝑙𝑒𝑒𝑝 192 µs 

𝑇𝑡𝑥−𝑖𝑑𝑙𝑒 2 µs 

𝑇𝑖𝑑𝑙𝑒−𝑡𝑥 192 µs 

𝑇𝑟𝑥−𝑖𝑑𝑙𝑒 2 µs 

𝑇𝑖𝑑𝑙𝑒−𝑟𝑥 192 µs 
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Table 3-3: CC2420 State Currents 

State Current 

𝐼𝑜𝑓𝑓 0.02 µA 

𝐼𝑡𝑥 17.4 mA 

𝐼𝑟𝑥 19.7 mA 

𝐼𝑖𝑑𝑙𝑒 426 µA 

𝐼𝑐𝑐𝑎 17.4 mA 

𝐼𝑠𝑙𝑒𝑒𝑝 20 µA 

 

Using the information given in tables 3-2 and 3-3 the energy of the radio for transmission 

or receiving any amount of data from the node can be computed. Using the equations in 

this section, we would be able to model the energy consumption of the node components 

under different conditions and be able to simulate the energy profile of the nodes under 

study. The components that will be used for the nodes are already mentioned in the previous 

section and Table 3-4 lists the energy consumption of each component that will be used to 

calculate the energy from equations (14) and (15): 

Table 3-4: Node Components power consumption for different states 

Device State Symbol Voltage Current 

MSP430f series Microcontroller Active 𝑒𝑐𝑜𝑚𝑝
𝑤  2.2V 2.93 mA 

MSP430f series Microcontroller Sleep 𝑒𝑐𝑜𝑚𝑝
𝑠  2.2V 68 µA 

SD-1221-004L Vibration Sensor Active 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑤  5V 5 mA 

SD-1221-004L Vibration Sensor Sleep 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑠  0V 0 
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PCB 626B03 Vibration Sensor Active 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑤  24V 2 mA 

PCB 626B03 Vibration Sensor Sleep 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑠  0V 0 

Omega PXM-409 Pressure Sensor Active 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑤  24V 12 mA 

Omega PXM-409 Pressure Sensor Sleep 𝑒𝑠𝑒𝑛𝑠𝑜𝑟
𝑠  0V 0 

ADS1220 ADC Active 

2KHz 

𝑒𝑎𝑑𝑐
𝑤  5V,3.3V 540 µA, 95 

µA 

ADS1220 ADC Active 

1KHz 

𝑒𝑎𝑑𝑐
𝑤  5V,3.3V 340 µA, 75 

µA 

ADS1220 ADC Active 

250Hz 

𝑒𝑎𝑑𝑐
𝑤  5V,3.3V 95 µA, 55 µA 

ADS1220 ADC Sleep 𝑒𝑎𝑑𝑐
𝑠  5V,3.3V 0.3 µA, 0.1 

µA 

 

For microcontroller the hardware constants used in equation (17) are shown in Table 3-5: 

Table 3-5: Hardware constants for microcontroller 

Constant Value Unit 

µ 17.8 nF 

f 8 MHz 

k 7.9 MHz/V 

β 1.8 V 

 

Using the parameters in these tables and the energy consumption for each state of the radio 

defined in [114] for equation (21) , we can model the energy consumption of the node for 
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the whole simulation time. For the simulation, we are additionally assuming that the nodes 

will be transmitting at maximum power and there is only one hop from the node to the sink, 

and there are no nodes in between. We will be using the energy consumption model when 

gauging the performance of the energy efficiency techniques that we will be developing in 

the next section. 
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4. CHAPTER 4 

ENERGY EFFICIENCY BASED ALGORITHM FOR 

PIPELINE MONITORING 

This chapter is related to the energy efficiency techniques that will be developed and 

applied to the WSN nodes that will be monitoring the pipeline under different scenarios. It 

should be noted that we are aiming that timely leak detection and localization takes place 

along with energy conservation. The algorithm will provide a general framework along 

with the pipeline monitoring scheme will work at each WSN node and together as a 

complete system. Moving on to the algorithms that will be making up our monitoring 

scheme at node level for energy efficiency, we will be using duty cycling to wake up the 

sensor at pre-set intervals rather than keep them on the whole time, this would reduce the 

power consumption significantly by having the nodes sleep for the majority of the time and 

only wake up to sense for a small time and perform computations on the signal and if 

necessary perform data receiving and transmission by the radio. The second portion of the 

scheme will use an adaptive sampling algorithm with hierarchical sampling added, this 

would provide a two-fold reduction in energy consumption by first varying the sampling 

rate according to the frequency content of the vibration signal in the pipeline, and then 

using the lower energy sensor for extended sampling periods in which the vibration will be 

sampled at a lower frequency. After this step, since the signal will need to be transmitted 

to the sink a signal compression algorithm will be applied to reduce the amount of the data 
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that will be sent. For the last two steps the computation cost will be more involved than 

normal methods in which both of these techniques are not used but the energy savings due 

to both the HSVS and radio working less will pay off and give a net gain in energy 

consumption as opposed to a solution where no energy efficiency techniques are applied.  

We aim to apply here the developed algorithm in an energy-constrained environment for 

monitoring a water pipe network using WSN nodes. The nodes are placed at fixed locations 

in the pipeline network, and each location has a pressure sensor, and two vibration sensors, 

one of which is high-accuracy (and consumes more energy), and the other is low-accuracy 

(and consumes less energy).  All nodes carry a radio transmitter to transmit all the data to 

the sink. A low-energy microcontroller will be handling tasks for the system as these are 

extensively used in WSN applications. The algorithm that is being executed at each node 

is described in the following subsections. The first portion of the algorithm is the duty 

cycling described in the next sub-section. 

4.1. Duty Cycling 

For duty cycling a fixed-sampling scheme is adopted in which the node would wake up 

every fixed amount of time and sample the vibrations for a fixed duration of time and then 

go to sleep, this would ensure that all nodes are waking up at the same time and that the 

data is synchronized with respect to time, this would be helpful if the leak detection and 

localization algorithm is taking time synchronized data from multiple nodes to monitor the 

system. The timing equation for one complete cycle of the duty cycling scheme is shown 

below: 

𝑇𝑡 = 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑇𝑠𝑙𝑒𝑒𝑝                                                      (22) 
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Here 𝑇𝑡 is the total time duration of one cycle of the node which includes the wakeup 

time 𝑇𝑎𝑐𝑡𝑖𝑣𝑒, and the low power sleeping time 𝑇𝑠𝑙𝑒𝑒𝑝. 𝑇𝑡 is constant as the node would wake 

up at fixed time intervals, and 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 and  𝑇𝑠𝑙𝑒𝑒𝑝 will depend upon the number of operations 

that will take place during 𝑇𝑎𝑐𝑡𝑖𝑣𝑒. These are shown by equation (23) shown below: 

𝑇𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑟𝑎𝑑𝑖𝑜                                        (23) 

In equation (23) 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 is fixed, since we assume that the sampling duration is fixed and 

energy is saved through adaptive sampling by varying the sampling frequency. 𝑇𝑐𝑜𝑚𝑝 

depends on the number of computations that are carried out in one cycle of the scheme, 

𝑇𝑟𝑎𝑑𝑖𝑜 is the time taken by the radio to complete its operations if it is active. If the radio is 

not active, then 𝑇𝑟𝑎𝑑𝑖𝑜 is equal to 0 for that cycle, and due to these factors 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 will vary. 

However, if 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 is varying, then 𝑇𝑠𝑙𝑒𝑒𝑝 will be varying accordingly to keep 𝑇𝑡 constant. 

The duty-cycling scheme is illustrated in figure 4.1 assuming no radio usage. 

  

Figure 4.1: Duty-Cycling Scheme used in the algorithm, dark grey bar indicates sampling with high-energy 

sensor at high-frequency sampling rate, and light grey bars indicate sampling with low-frequency sampling rate. 
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In figure 4.1, it can be seen there is a dark grey bar labeled 𝑆ℎ1 and light grey bars labeled 

𝑆𝑙1and 𝑆𝑙2 till 𝑆𝑙𝑛. This denotes the sampling by the sensors done at a high frequency and 

low frequency respectively. When the node wakes up in the first sampling instant 𝑆ℎ1 it 

uses the high frequency vibration sensor to sample the signal at 𝐹𝑚𝑎𝑥  bandwidth and set a 

particular frequency of 𝐹ℎ bandwidth which denotes the highest detectable frequencies it 

is able to measure in the signal, it is assumed that 𝐹ℎ would be either less than or equal to 

𝐹𝑚𝑎𝑥 because 𝐹𝑚𝑎𝑥 is set sufficiently high that it would be able to measure all of the 

frequencies in the spectrum. The sampling duration during this step is taken as 𝑇𝑠𝑎𝑚𝑝𝑙𝑒. 

After this step, the WSN goes to sleep for period 𝑇𝑠𝑙𝑒𝑒𝑝. In the next cycle 𝑆𝑙1, the WSN 

would sample the vibration signal at the rate adjusted according to 𝐹ℎ and would perform 

threshold calculation operations for leak detection based on it and go to sleep. This cycle 

will continue until either an event has been detected or we reach 𝑆𝑙𝑛, the maximum number 

of times we can sample at the adjusted rate until 𝐹ℎ  will be readjusted. After this step, the 

high-frequency sensor would be used again to set 𝐹ℎ after sampling at 𝐹𝑚𝑎𝑥 in sampling 

instance 𝑆ℎ2. 𝑇𝑟𝑎𝑑𝑖𝑜 is not shown in figure 4.1 but will be within 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 for cycles where 

the radio will be used. Furthermore, in each high-frequency sensor sampling instance, the 

adaptive sampling algorithm is used. Apart from duty cycling for vibration sensors, it 

would also be applied to pressure sensors but in a separate loop for monitoring. The 

pressure sensor duty cycle would be of a longer duration because the pressure sensor is a 

higher-energy sensor and the readings would mostly be used for monitoring purposes and 

detecting leaks if vibration based methods are insufficient for leak detection. The next 

section is related to the discussion of the adaptive sampling algorithm which was 

mentioned above. 
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4.2. Adaptive Sampling Algorithm 

The adaptive sampling algorithm provides a contrast to fixed-rate sampling as an 

alternative strategy in which the sampling rate of the sensor is varied according to the 

frequency content of the signal under study. The main aim in such a scheme is to reduce 

the energy consumption of the sensor, which is sampling the signal, as well as reduce the 

amount of sampled data to be transmitted. This can be shown in figure 4.2 for a signal 

whose frequency content is varying and there are either one of two ways to sample it with 

regards to sampling frequency. 

 

Figure 4.2: Sampling rate comparison between (a) a conventional sampling scheme and (b) adaptive sampling 

scheme. 

Figure 4.2 shows the difference between conventional sampling and adaptive sampling 

scheme such that in an adaptive sampling scheme the frequency of sampling would adapt 

to the frequency of the signal. Since the frequency content of the signal is usually not 

known in cases where this sampling solution is to be applied, the usual method is to sample 

the signal at maximum frequency 𝐹𝑚𝑎𝑥 for short time period and then sampled at the 
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calculated frequency for longer time, this is selected such that it is at least twice as high as 

𝐹ℎ, which is the highest expected frequency in the signal for the system under study. From 

this information, we would then be able to select the desired sampling frequency according 

to Shannon’s sampling theorem. The periodic frequency re-calculation and sampling 

scheme can be best described by figure 4.3. 

 

Figure 4.3: Adaptive sampling scheme visualization on a frequency variable signal. 

In the literature, there are various methods that are used to calculate the sampling rate, 

including the wavelet transform which is the best to use since it is does not require as much 

computation as the Fourier transform for finding the frequency content of the signal, and 

it has been applied extensively in microcontroller-based environments. After finding the 

frequency content of the signal, the sampling in subsequent sampling instances will be done 

at the detected frequency until it is deemed necessary to resample the signal. To sample the 

signals, a duty cycling scheme is implemented in which the signal will be sampled in 

discrete sampling intervals. This was described in the previous sub-section. For sampling 

purposes, using the high-energy sensor, the highest frequency 𝐹ℎ, in the signal will be 

calculated in the adaptive sampling scheme so that the sampling rate for sampling at the 

adjusted lower frequency can be calculated. Likewise Shannon’s sampling theorem is 

shown (24) for a signal with frequency content at 𝐹ℎ and the confidence factor c, this is at 

least equal to 2 to satisfy the theorem. 



92 
 

𝑆𝑅 = 𝑐 × 𝐹ℎ                                                             (24) 

Equation (24) would need to be satisfied if we are sampling signals using our algorithm. 

Since we do not know 𝐹ℎ beforehand, it will be estimated by sampling at 𝐹𝑚𝑎𝑥 for a fixed 

sampling time and then calculating the highest possible contributing frequency in the 

signal, which is 𝐹ℎ. To decrease the effect of signal noise on the algorithm, the final 

sampling rate 𝑆𝑅𝑙𝑓 (lower frequency) will  be calculated based on the median of the last 

three readings, in a similar way used in the method of [112] for calculating the updated 

sampling rate of the lower frequency sensor. The authors of [112] used the maximum of 

the last n readings. It was felt that such a method will not be robust to random noise so a 

median of the last 3 readings will be used to calculate the updated sampling rate. The 

median is usually used because it is robust to outliers in the readings so for any case if the 

sampling rate calculated is very high or very low compared to the actual bandwidth of the 

signal, using the median of the last three readings would help select a nominal sampling 

frequency. This is shown by equation (25). 

𝑆𝑅𝑙𝑓 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝑅(𝑘), 𝑆𝑅(𝑘 − 1), 𝑆𝑅(𝑘 − 2))                            (25) 

Here k is the index of the high-frequency sampling instances at the node. To extract 𝐹ℎ 

from the sampled signal and set the sampling rate 𝑆𝑅, a wavelet transform scheme is used 

which decomposes the signal into subsequent high and low pass bands to determine the 

band with the dominant signal characteristics, so that this band would be used to calculate 

the sampling frequency.  

For the spectral decomposition process involved in the wavelet transform, both low-pass 

and high-pass filters are used. These are quadrature mirror filters (QMF) banks which are 
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constructed from orthogonal wavelet scaling filters [116]. Both the low-pass and high-pass 

filters have frequency responses of G(ω) and H(ω), respectively. The discrete-time impulse 

responses of both these filters are g[n] and h[n], respectively, and are applied in 

convolution form to the signal for wavelet transform computation as shown below: 

𝑥𝛽+1
2𝛼+1[𝑛] =∑ℎ[2𝑛 − 𝑗]𝑥𝛽

𝛼[𝑗]

𝑗

 

𝑥𝛽+1
2𝛼 [𝑛] =∑𝑔[2𝑛 − 𝑗]𝑥𝛽

𝛼[𝑗]

𝑗

                                            (26) 

In our algorithm, the wavelet transform will be applied to the highest selected sub-band in 

each level β such that the number of coefficients on which the transform will be applied 

will be reduced by a factor of 2 at each level, thus ensuring that the number of computations 

will be halved at each level of the transform. The algorithm used to calculate 𝑆𝑅 is 

described graphically in figure 4.4. Here the highest contributing band after each wavelet 

transform has been applied, is then selected for further decomposition, thus ensuring that 

no more than the necessary computations are done at each step. 
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Figure 4.4: Scheme of calculating the adjusted sampling frequency. 

In Figure 4.4, the first signal given to the algorithm will be the sampled signal 𝑥0
0(𝑡). This 

will then be passed through a low-pass filter G(ω) and a high-pass filter H(ω) to produce 

𝑥1
0(𝑡) and 𝑥1

1(𝑡) , respectively. The algorithm will then select the band with the coefficients 

above the threshold and break it down into two more signals to be filtered using wavelet 

transforms. This way, only one wavelet transform is required per level and the signal length 

on which we will apply the wavelet transform would get reduced by a factor of 2 at each 

level. This process will go on until we reach the desired decomposition level or the 

magnitude of the coefficients in both bands is below the calculated threshold. The threshold 

is calculated using the formula described below [117]: 

𝛾 = 𝜀√2𝑙𝑜𝑔𝑚 
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𝜀 =  
𝑚𝑒𝑑𝑖𝑎𝑛({𝑥1

1(𝑡)|: ∀𝑡 ∈ 𝑥1
1})

0.6745
                                         (27) 

Here m is the size of the data, and 𝑥1
1(𝑡) is the result of the first high-pass filtered 

coefficients of the wavelet transform. Any coefficient below 𝛾 is set to 0 using the hard 

threshold operation and any coefficient above the threshold is set to 1, with the resultant 

vectors being then summed to give 𝑠𝛽+1
2𝛼+1 for the high-pass band and 𝑠𝛽+1

2𝛼  for the low-pass 

band. The hard threshold operation is described by the equation below [73]: 

𝑋𝑡ℎ = {
𝑥        |𝑥| ≥ 𝛾
0         |𝑥| < 𝛾 

                                                      (28) 

This way the coefficients of each calculated sub-band are compared against the threshold 

in (27), if any coefficient is higher than the threshold for the sub-band then the sub-band is 

selected for further decomposition.  

 

Figure 4.5: Example 3 level Wavelet Packet Decomposition and band selection according to the scheme 

presented in figure 4.4. The shaded boxes represent sub-bands which are higher than the calculated threshold 

and are selected for further decomposition. 
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The band selection and decomposition process is shown in Figure 4.5 for 3 levels. In the 

figure we are showing an example in which at level 1 the low pass filtered coefficients are 

selected because they are higher than the calculated threshold, after this step the high pass 

and low pass filters are again applied to this band and the resulting sub-bands are again 

compared to the threshold, if both bands have coefficients higher than the threshold then 

the higher band is chosen for the next filtering operation as shown in Figure 4.5, otherwise 

the lower band is chosen. This will go on till either the required level has been reached or 

the coefficients of the sub-bands are lower than the calculated threshold. 

After the algorithm has finished running, the adjusted sampling frequency 𝑆𝑅 is calculated 

by the formula shown below: 

𝑆𝑅 = 𝑐 ×
𝐹𝑚𝑎𝑥
2𝛽

(𝛼 + 1)                                                   (29) 

Here 𝛽 is the highest decomposition level the algorithm achieved, 𝐹𝑚𝑎𝑥 is the bandwidth 

that is covered due to sampling at 𝑆𝑅𝑚𝑎𝑥 rate, 𝑐 is the constant which is greater than or 

equal to 2 as per Shannon sampling theorem, which is taken here to be 2 to satisfy the 

minimum requirements and 𝛼 is the sub-band number with coefficients above the threshold 

at the decomposition level 𝛽.  The corresponding computational complexity of the adaptive 

sampling algorithm is given below in expression (30) for the decomposition. 

𝑂(𝑚) =  ∑2[
𝑚

2𝑟−1
× 𝑄 + 𝑄(𝑄 − 1)]

𝛽

𝑟=0

                                     (30) 

Here m is the size of the data array on which the wavelet transforms are applied, 𝛽 is the 

decomposition level and Q is the size of the filter array used for the wavelet transform. The 
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filter array size varies from 2 to upwards of 40 coefficients for some transform pairs, these 

would correspondingly increase the computation complexity. Computation complexity is 

directly proportional to the energy consumption. 

Along with setting the sampling frequency using the adaptive sampling algorithm 

described above, we will also be trying to detect the leak using the vibration sensors while 

using the adaptive sampling approach. This approach is explained in the next subsection. 

4.3. Adaptive Threshold Algorithm 

To detect leaks in a dynamic environment of a pipeline network using vibration sensors an 

adaptive threshold based algorithm is needed as the value of the vibration will be changing 

dynamically based on the pipeline conditions. For detecting the leak in the pipeline using 

vibration sensors there are various ways in which the threshold can be applied to 

distinguish between different conditions, [25] used the standard deviation of the vibration 

signal to determine if leak is occurring in the pipe, likewise [118] used the raw vibration 

readings but based the leak detection on the change in vibration magnitude, also the data 

was being transmitted in real time to the sink. In [9] the authors used the threshold 

calculated at the sensor node to detect a burst event using the low energy sensors and then 

confirm it using high energy sensor by using the vibration median. There are many methods 

to which leaks can be detected in the pipeline as shown in the literature, and these are 

adaptive based on the vibration conditions. 

We have two vibration sensors as described previously, one of which is a high-precision 

sensor (HSVS) and consuming more energy and the other, being a low-precision sensor 

(LSVS), and hence consuming less energy. These are used in an adaptive threshold based 
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scheme [9], [31] which was previously used to detect bursts in pipelines. A hierarchical 

scheme is used in which LSVS are used for extended time periods to detect leaks and then 

wake the HSVS for event confirmation. The median of the vibration signal at these high 

frequency sampling instances will be needed to detect the leak, when the median is higher 

than the previous readings a leak is most likely present in the system. 

For the LSVS, we will be using the median of the signal after performing the wavelet 

packet decomposition (WPD) of the acquired signal as in [119] where the authors used the 

same technique to distinguish between different events in the pipe when using vibration 

sensors. WPD would divide the signal into different bands of equal bandwidth which would 

allow to compare the medians of the individual bands, this method would give a better 

metric for leak detection as the leak signal would have a higher energy in some bands of 

the signal as the leak signal is not broadband in nature. 

When using a HSVS, the median would be calculated without any additional operation as 

the HSVS has very low noise characteristics and would recreate the signal with fewer 

distortions. The median of the signal would be calculated at each HSVS sampling duration 

and LSVS sampling duration separately and compared to the respective previous ones to 

detect leaks in the system. The median of the LSVS signals would be reset after each 

frequency readjustment period because a new sampling frequency would be calculated 

which may not be equal to the last one. Using these steps, the final algorithm is shown in 

Figure 4.6 below. 
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Figure 4.6: Complete Scheme of the simulation for leak detection using adaptive threshold 

Figure 4.6 shows the complete scheme that will be used to run the algorithm. The first step 

is running the simulation with time step t and checking if the sleep duration is over for the 

duty cycling scheme, and if so, the algorithm checks whether to sample using the HSVS or 

using the LSVS. If the time is for a HSVS, the sensor samples at 𝑆𝑅𝑚𝑎𝑥. It then calculates 

the median of the signal 𝑀ℎ
𝑘 and compares it to the previous medians. If it is higher than 

the previous two medians by a factor of 𝜂ℎ, it then transmits an event to the sink that it has 

detected the leak. The equation for the comparison is shown below (31): 

𝐿𝑒𝑎𝑘 = (𝑀ℎ
𝑘 ≥ 𝜂ℎ. 𝑀ℎ

𝑘−2 𝑎𝑛𝑑 𝑀ℎ
𝑘 ≥ 𝜂ℎ. 𝑀ℎ

𝑘−1)                              (31) 

The next step is to calculate the adjusted sampling frequency 𝑆𝑅 using the adaptive 

sampling algorithm described in Figure 4.6. The algorithm then resets the counter for the 
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adjusted frequency sampling sensor and increments the simulation timer counter by the 

sampling period 𝑇𝑠𝑎𝑚𝑝𝑙𝑒. This process is different on the LSVS side where the signal is 

sampled using the low-frequency sensor and then divided into 4 sub-bands using the WPD 

algorithm. The algorithm passes the signal through one bank of low-pass and high-pass 

filters like the ones shown by equation (26) and generates one signal with low-pass 

coefficients and one with high-pass coefficients. These are then passed individually 

through the filter bands again to generate the low-pass and high-pass components and to 

generate 4 separate bands of the signal. The medians 𝑀𝑙
𝑛 of each sub-band are computed 

and are compared against the previous medians as shown by (32) and again if they are 

found to be higher in any sub-band compared to the first reading by a factor of 𝜂𝑙 then the 

high frequency sensor is used to confirm the event by comparing the current and previous 

high-frequency medians with each other, otherwise the low- frequency sensing routine 

counter increases by 1 and adds the algorithm computation time to the simulation time and 

then goes back to the start of the loop.  

𝐿𝑒𝑎𝑘 = (𝑀𝑙
𝑛 ≥ 𝜂𝑙 . 𝑀𝑙

2 𝑎𝑛𝑑 𝑀𝑙
𝑛 ≥ 𝜂𝑙 . 𝑀𝑙

1)                                  (32) 

The algorithm computation time is dependent on the operations that the processor does, for 

the high-frequency sampling routine, the operations of the algorithm include the adaptive 

sensing algorithm and finding the median, and for the low-frequency sampling routine, the 

operations include WPD and median calculation operations. The median calculations is 

done by sorting the values using a mergesort algorithm [120] which is computed in 

𝑂(𝑚𝑙𝑜𝑔𝑚) time. And the WPD takes the computations shown by equation (33) 

𝑂(𝑚) =  𝑅 × 2 [
𝑚

2−1
× 𝑄 + 𝑄(𝑄 − 1)]                                    (33) 
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Here 𝑅 is the number of levels the signal is decomposed into, in this case it is 2 and 𝑚 is 

the length of the signal and 𝑄 is the length of the filter. 

Along with this adaptive sampling routine, a monitoring solution will also be implemented 

in a parallel loop, which would transmit the data back to the sink even if there is no leak 

detection in the system. This would allow further data processing at the backend and would 

help in leak detection by applying more computationally expensive procedures on the 

gathered information if for some reason the proposed monitoring solution is unable to 

detect the leak. Before transmission of data the signals that are acquired by the onboard 

sensors will be processed by the compression algorithm, this is described in the next sub-

section. 

4.4. Data Compression Scheme 

Data compression is used to reduce the amount of bits to represent a certain amount of data. 

This is beneficial both in a sense that for storage purposes and for transmission purposes 

the amount of data required to represent a signal gets lesser than usual. Mostly for WSN 

based systems there are many different types of compression algorithms present in 

literature which are mostly based on the two broad categories of lossless compression and 

lossy compression. Lossless compression mostly is focused on retaining all the information 

in the signal while reducing the size, on the other hand lossy compression usually has an 

acceptable distortion of the signal from the original while reducing the size more than what 

lossless compression methods are usually able to achieve, it should also be noted that while 

both of them are computationally extensive, lossless compression methods use less 

computations but in the case of vibration signals provide less compression than the lossy 

compression methods [68], this is important because when transmitting the more 
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compressed signal the energy saved is higher as the transmission is a more energy intensive 

process than the computation. We can, from an energy standpoint, afford to use more time 

on computation as opposed to more time on data transmission. 

Regarding lossless compression methods there are algorithmic approaches like Huffman 

coding [121] in which the most occurring variable values are represented by the least 

amount of bits and the least occurring values are represented by the higher amount of bits, 

it is a form of variable bit length coding and there are many methods which exploit this 

while using the entropy of the signal. Using the entropy of the signal is most efficient in 

data where the signal is not varying very much and the difference of consecutive values is 

concentrated around zero. Dictionary-based Huffman coding is used in these scenarios [69] 

as well as adaptive dictionary based methods with multiple dictionaries to maximize the 

compression [122] around other values where the entropy of the signal may not be 

concentrated around zero. Again, these methods are effective only when the entropy of the 

signal is low and in vibration compression [68] it didn’t give better performance compared 

to lossy algorithms. Usually these methods are combined in an algorithm where both lossy 

and lossless compression methods are combined to give a better result than any one method 

alone.  

When discussing lossy signal compression, there is extensive work done in compressing 

ECG signals [123]. There are many methods that the authors have used to tackle the 

problem of signal compression while compressing the signal as much as possible while 

achieving the least amount of distortion possible. The most used method is the wavelet 

transform when compressing signals as it is computationally relatively simple compared to 

other transform-based methods like the discrete cosine transform [68] and the lapped 
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orthogonal transform [70]. Applied alongside the wavelet transform, in most of the works, 

entropy coding and quantization methods, are also applied. It was noted that most works 

focused on decomposition levels between 4 and 6 and that Wavelet Packet Analysis was 

not better compared to Wavelet Transform for the compression purposes as most of the 

frequency content of the signal is in the lower bands and the Wavelet Transform already 

does an effective job of dividing the signal into sub-bands. Most of the techniques in 

literature were focused on techniques which combined two or more techniques to compress 

the ECG signals, for example [124] removed a certain percentage of coefficients below a 

threshold and then quantized the signals using a fixed 8 bit quantization. In a similar 

fashion, [125] thresholded and quantized the wavelet coefficients using a different number 

of quantization bits and compared the change in compression ratio (CR) based on a user-

defined Percentage Root Mean Difference (PRD), which are two common methods to 

measure compression performance. Other methods used energy packing schemes [126] to 

reach a particular CR and PRD to set the threshold. Some other ways to improve the CR is 

by employing entropy coders like Huffman coding [124] and arithmetic coding [127] to 

reduce the size on the thresholded wavelet coefficients. Run-length coding [126] and 

significance map [124] are other methods used very frequently to increase the CR. Many 

different quantization techniques are also available in literature that aim to set the optimum 

number of bits to have the least PRD with the best CR, most of the works use a fixed 

quantization scheme or try to reduce the number of bits near zero to compress the signal. 

Sub-band adaptive quantization (SAQ) [128] is another method which is used to compress 

signals based on the variances of the different sub-bands. 
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In vibration signals, the simple Wavelet Transform thresholding technique [70] is also used 

to compress the signal of plane engines where it was found that at high compression ratios 

the wavelet transform does not perform as well compared to the Discrete Cosine Transform 

and the Lapped Orthogonal Transform with adaptive quantization like the one described in 

[128], the authors had used quantization with the lapped orthogonal transform to compress 

the vibration signals. The Discrete Cosine Transform [68] is also successfully used to 

compress vibration signals and it mostly gives a better compression performance than 

wavelets based methods for stationary signals in both the compression ratio and error in 

signal. This was compared against entropy-based methods [69] which were optimized for 

use in WSNs and was shown to be 10 times computationally expensive compared to it, but 

the data compression performance was better and the data transmission time was also less 

so it was better overall in terms of energy consumption. The downside is that the DCT is 

computationally expensive [129]. In [130] the authors introduced a method to compress 

vibration signals based on a combination of wavelet transform, adaptive quantization and 

arithmetic coding that gave a CR of up to 27 times that of the original signal with acceptable 

signal distortion. The adaptive quantization scheme is described in detail in [128] and is 

based on the variance of the coefficients of the wavelet transform. In [131] the author has 

introduced a method for choosing the most optimal wavelet coefficients using a Genetic 

Algorithm to reduce the Mean Squared Error (MSE) in the signal. While such a method 

will give the most optimal coefficient given certain restraints and will work better than the 

simple truncation of coefficients that is mostly used based on magnitude and energy 

methods it is more difficult to implement in an energy-constrained environment of WSN 
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nodes as Genetic Algorithm is an artificial intelligence based search method for the most 

optimum parameters for any given cost function. 

Based on the literature, a wavelet transform based approach will be used with sub-band 

adaptive quantization and an algorithmic approach to reduce the number of bits used to 

represent information. This is discussed in the next sub-section.  

4.4.1. Algorithm Details 

The proposed algorithm works in 3 steps, first the wavelet coefficients are thresholded 

according to the percentage of the absolute sum of the coefficients, then the remaining 

coefficients are quantized using a sub-band adaptive quantization scheme. The third and 

final step is the second main part of the compression in which the significance map is 

generated, this indicates the location of the non-zero coefficients in the transform and 

allows us to only transmit the non-zero coefficients. After this step, the significant 

coefficients are also coded using a Rice coding scheme. This will be described later. The 

algorithm procedure is shown in figure 4.7. 
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Figure 4.7: (a) Compression and Encoding Scheme for HSVS and (b) for LSVS at WSN Node. 

In the compression scheme the daubechies 5 wavelet is being used in the wavelet transform. 

Similar to the procedure shown in figure 4.7 an inverse process will be applied to the 

received bit-stream at the sink to decode the signal. This is shown in figure 4.8. 

 

Figure 4.8: Decoding procedures for (a) HSVS sampled data and (b) LSVS sampled data. 
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In figure 4.7(a) looking at the first step we will apply the wavelet transform. Here the filter 

banks used are similar to the ones used in WPD for the adaptive sampling algorithm, the 

only difference is that only the low-pass filtered coefficients are passed through the wavelet 

transform iteratively to get the result. For example if there are 3 levels in the wavelet 

transform the result of the coefficients from the original signal would be like the one shown 

in figure 4.9. 

 

Figure 4.9: 3 level Wavelet Transform of signal x[n]. 

This way for the signal, however many levels of decomposition are for the wavelet 

transform, there would be that many detail coefficient vectors of the signal and one 

approximation coefficient vector of the signal. After this step, the threshold operation will 

be applied to the signal, the threshold operation in this case would be based on the 

magnitude of the signal, [131] did a comparison of the number of retained coefficients and 

the mean squared error (MSE) of the vibration signal and found out that the relationship 

between them is logarithmic in nature, as such in literature there are many ways to define 

the threshold, [68] based the threshold on the energy of the coefficients that 95% of the 

energy of the signal is retained. Another work [70] did a comparison of different levels of 

compression by varying the amount of coefficients selected among other parameters, it was 

again found that more coefficients yielded better results. In [73], the authors discussed that 

over 90% of the wavelet coefficients are less than 5% magnitude of the highest coefficient 
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value. Based on the light of the literature, we have proposed a simple to implement 

algorithm which would select the threshold level based on the magnitude of the signal 

while being computationally simple, first the coefficients are generated from the signal by 

applying n-level wavelet transform, in our case we have done 5 level wavelet transform so 

there will be 5 detail coefficient vectors and 1 approximation coefficient vector in the 

wavelet coefficient vector 𝑊𝐶. 

𝑊𝐶 = (𝐴5, 𝐷5, 𝐷4, 𝐷3, 𝐷2, 𝐷1)                                             (34) 

This step will take up the computational complexity shown by equation (30) for the high 

frequency signal, but with the first decomposition vector already done by the adaptive 

sampling algorithm and saved and the subsequent decompositions being done by the signal 

compression scheme. 

The magnitude of all the vector elements are summed together as shown by the equation 

below. 

𝑀𝑇 = |𝐴5| + |𝐷5| + |𝐷4| + |𝐷3| + |𝐷2| + |𝐷1|                              (35) 

From this we can apply a value for example we need enough coefficients that make up Z% 

of the signal, we can say this value is the threshold so the threshold will be.  

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 
𝑍

100
× 𝑀𝑇                                                 (36) 

This will usually be lower than the number of coefficients required to complete this 

particular energy requirement because energy is squared of the coefficient value. After this 

step the magnitudes of the coefficients are arranged in one single vector and the number of 

coefficients selected is based on the cumulative sum of the arranged vector.  
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𝑉𝑠𝑜𝑟𝑡 = 𝑠𝑜𝑟𝑡(|𝐴5|, |𝐷5|, |𝐷4|, |𝐷3|, |𝐷2|, |𝐷1|)                                (37) 

The sorting in (37) is again done by the mergesort algorithm of 𝑂(𝑚𝑙𝑜𝑔𝑚) complexity 

[120]. 

Then the coefficient value is selected by the following algorithm. Here the coefficient 

below which all the remaining coefficients will be zeroed is chosen based on the magnitude 

threshold defined above in (36). 

𝑤ℎ𝑖𝑙𝑒 𝑖 < 𝑠𝑖𝑧𝑒(𝑉𝑠𝑜𝑟𝑡) 

𝑖𝑓 𝑉𝑠 < 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

𝑉𝑠 = 𝑉𝑠 + 𝑉𝑠𝑜𝑟𝑡[𝑖] 

𝑖 = 𝑖 + 1  

𝑒𝑙𝑠𝑒 

𝑇𝑐 = 𝑉𝑠𝑜𝑟𝑡[𝑖] 

𝑒𝑛𝑑𝑖𝑓 

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 

From the above algorithm all values below the magnitude of 𝑇𝑐 in the original coefficient 

vector 𝑊𝐶 are set below zero using the hard thresholding operation defined in (28) to 

generate 𝑁𝑍𝐶(𝐴5) up to 𝑁𝑍𝐶(𝐷1). After this step since all the sub-bands will have varying 

magnitudes as well varying amounts of significant coefficients (coefficients which are non-

zero after the threshold operation), sub-band adaptive quantization [128] will be applied to 

the vectors containing the remaining elements. The wavelet coefficients are already 
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ordered into their respective sub-bands, the method described in [128] calculates the 

variances of each sub-band and then distributes the available bits to each sub-band, a 

variation of the algorithm was used to calculate the bits based on simplifying the 

computations and is shown below:  

1. Compute 𝑅𝑎𝑘 for each sub-band of the wavelet transform, where 𝑅𝑎𝑘 = range of the 

wavelet coefficients in the 𝑘𝑡ℎ sub-band. 

2. Set 𝑅𝑘 = 0 for all k and let 𝑅𝑏 = 𝑀.𝑅, in which 𝑅𝑏= total number of bits available for 

distribution; R=desired average number of bits per sample to be used; and M=total number 

of sub-bands in the wavelet transform. 

3. Sort the ranges {𝑅𝑎𝑘}. Suppose 𝑅𝑎𝑞 is the maximum. 

4. Increase 𝑅𝑞 by one and divide 𝑅𝑎𝑞 by two. 

5. Decrease 𝑅𝑏 by one. If 𝑅𝑏 = 0 then stop; otherwise, go back to step 3 and repeat. 

In the algorithm shown above the bands with the highest ranges are allocated the highest 

number of bits and so on. This way it is ensured that quantization error is minimized for 

bands with high ranges. This differs from the original method that range is used instead of 

variance, since calculating variance is an extensive computation requiring multiple steps, 

this approach is proposed in which instead of calculating the variances the range of the sub-

bands are calculated. This way the computation cost will be minimal and we will get 

approximately the same result. Apart from this change the original bit allocation algorithm 

works in the same way as shown in the algorithm above. After the bits have been assigned, 

we will quantize the values of each sub-band based on the maxima and minima of the signal 

by the formula shown below: 
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𝑁𝑍𝐶𝑞(𝐴5) = (2𝑞 − 1)
𝑁𝑍𝐶(𝐴5) − 𝑁𝑍𝐶(𝐴5)𝑚𝑖𝑛

𝑁𝑍𝐶(𝐴5)𝑚𝑎𝑥 − 𝑁𝑍𝐶(𝐴5)𝑚𝑖𝑛
                        (38) 

Here 𝑁𝑍𝐶(𝐴5) are the non-zero coefficients that were generated from the thresholding 

operation for sub-band 𝐴5, 𝑁𝑍𝐶𝑞(𝐴5)  are the quantized coefficients for sub-band 𝐴5 and 

are quantized for q bits. 𝑁𝑍𝐶(𝐴5) 𝑚𝑖𝑛 and 𝑁𝑍𝐶(𝐴5) 𝑚𝑎𝑥 will be different for each sub-

band as each of them have different ranges, here we have taken values for 𝐴5. This will 

ensure most of the information is coded as near to the original value as possible for each 

sub-band because setting the range of the highest values for the sub-bands, which will 

usually be the approximation vector will distort the information for sub-bands which would 

have an entirely different range. This step takes up to 4 computation cycles for each 

coefficient in each sub-band. After this information has been generated the sub-bands will 

be Rice coded [132]. This is a lossless signal compression technique which reduces the 

amount of bits used to represent the data. 

To apply this scheme first we will find out the median value of the sub-band and see how 

many significant bits it uses, after that we would assign that bit number to be used for 

coding the sub-band. This bit value 𝑞𝑟 will be usually less then 𝑞, which were the bits 

originally used to quantize the signal using (37). After we have determined 𝑞𝑟 from the 

median we will then encode the coefficients of he vector using rice coding. This is done by 

the algorithm shown below as an example for sub-band 𝐴5. 

𝑓𝑖𝑛𝑑 𝑚 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑁𝑍𝐶𝑞(𝐴5)) 

𝑓𝑖𝑛𝑑 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑖𝑡𝑠 𝑞𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑒𝑛𝑐𝑜𝑑𝑒 𝑚 
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𝑤ℎ𝑖𝑙𝑒 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑍𝐶𝑞(𝐴5)) 

𝑗 =  𝑓𝑙𝑜𝑜𝑟(𝑁𝑍𝐶𝑞(𝐴5)[𝑖]/2
𝑞𝑟) 

𝑤𝑟𝑖𝑡𝑒 𝑗 𝑏𝑖𝑛𝑎𝑟𝑦 1′𝑠, 𝑜𝑛𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 0 𝑎𝑛𝑑 𝑎𝑑𝑑 𝑙𝑎𝑠𝑡 𝑞𝑟 𝑏𝑖𝑡𝑠 𝑜𝑓 𝑁𝑍𝐶𝑞(𝐴5)[𝑖]. 

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 

In this algorithm again the median is found by applying mergesort [120]. And each step 

takes up to 5 computation cycles for each nonzero coefficient. 

From the above algorithm we will be able to generate the rice coded bit-stream 𝐴5𝑟 for the 

𝑁𝑍𝐶𝑞(𝐴5), for example 1000 requires 10 bits to encode using normal bits shown like 

1111101000, but using for example 8 bits to encode it we will write it down like 

111011101000, this way values higher than the median would require more bits than usual 

to encode but if there are more values below the median then it results in a net gain in terms 

of bit conserved, as they will be encoded in 8 bits rather than 10 bits throughout the stream. 

After rice coding the coefficients for each sub-band and finding the maxima and minima 

for each of them we will be able to generate the final bit stream that is to be transmitted, 

for this we would need the significance map as we are only transmitting the significant 

non-zero coefficients of the signal, it is simply the length in bits of the whole vector, for 

example if there are 1000 coefficients then the significance map will be 1000 bit long and 

will contain 1 where the coefficient is non-zero and 0 where it is below the threshold. Then 

the significance map will be appended with the sub-header in the beginning which will 
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indicate how many bits are required to encode each sub-band and the maxima and minima 

of each sub-band. This is shown in the expression below: 

𝑆𝑢𝑏𝐻𝑒𝑎𝑑𝑒𝑟 = (𝑞𝑟(𝐴𝑛), 𝑞𝑟(𝐷𝑛), … , 𝑞𝑟(𝐷1),max(𝐴𝑛) ,min(𝐴𝑛) , … ,min(𝐷1))       (39) 

Here 𝑞𝑟 are each of 4 bits each and show that up to 16 bits can be assigned to each sub-

band using the SAQ algorithm described previously, and the maxima and minima for each 

sub-band are of 24 bits as per the ADC resolution and settings. This sub-header and the 

significance map will be appended in one bit-stream which will then be divided into bytes 

and coded using a fixed dictionary Huffman by the encoding procedure described in LEC 

[69]. This operation takes an approximate 57.86 instructions per byte. Another header 

would then be appended to this sub-header which would have the lengths of each of the 

components of the whole stream which comprises the LEC coded sub-header stream and 

the significant coded coefficients of the sub-bands. The final output of the whole 

compression scheme would look like the one shown below: 

𝐵𝑖𝑡𝑆𝑡𝑟𝑒𝑎𝑚 = (𝑆𝑢𝑏𝐻𝑒𝑎𝑑𝑒𝑟𝑙𝑒𝑛𝑔𝑡ℎ, 𝐴𝑛𝑙𝑒𝑛𝑔𝑡ℎ, … , 𝐷2𝑙𝑒𝑛𝑔𝑡ℎ, 𝑆𝑢𝑏𝐻𝑒𝑎𝑑𝑒𝑟, 𝐴𝑛𝑟 , … , 𝐷1𝑟) (40) 

In the 𝐵𝑖𝑡𝑆𝑡𝑟𝑒𝑎𝑚 the 𝑆𝑢𝑏𝐻𝑒𝑎𝑑𝑒𝑟𝑙𝑒𝑛𝑔𝑡ℎ is of 16 bits, and all the other lengths are 10 bits 

each, 𝐷1𝑙𝑒𝑛𝑔𝑡ℎ is not required because it is the last and remaining vector of the whole bit-

stream. 

The scheme for the low energy sensor would be similar but there would be no thresholding 

operation so no significance map would be required, so no dictionary based Huffman 

coding will be applied to it. Only sub-band adaptive quantization will be applied and since 

the signal will already be of low resolution and low length no Rice coding will be applied 

either. This way we would be able to reduce the amount of data to be transmitted by the 
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high energy sensor drastically but also reduce the amount of data that would be transmitted 

by the low energy sensor routine while keeping acceptable signal distortion rates. The 

signal distortion is shown by Percentage Root Mean Difference (PRD) which is commonly 

used to gauge compression algorithm performance apart from the compression ratio. PRD 

is given below as: 

𝑃𝑅𝐷 = √
∑ (𝑥𝑖 − 𝑥�̇�)2
𝑁
𝑖=1

∑ (𝑥𝑖)
2𝑁

𝑖=1

× 100                                           (41) 

Here  𝑥𝑖 is the original signal and 𝑥�̇� is the reconstructed signal. We will be calculating it 

in the simulation for different compression ratios as it would give us an approximation as 

to how much distortion there will be for a certain compression ratio, the compression ratio 

is given by: 

𝐶𝑅ℎ𝑖𝑔ℎ_𝑟𝑎𝑡𝑒 = 
𝑏𝑖𝑡𝑠 × 𝑠𝑖𝑔𝑛𝑎𝑙𝑙𝑒𝑛𝑔𝑡ℎ

16 + (𝑛 + 1) × 10 + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑢𝑏𝐻𝑒𝑎𝑑𝑒𝑟) +  𝑘
 

𝑘 =  𝑞𝑟(𝐴𝑛) × 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝑛𝑟) + ⋯+ 𝑞𝑟(𝐷1) × 𝑙𝑒𝑛𝑔𝑡ℎ(𝐷1𝑟)                 (42) 

The expression for 𝐶𝑅𝑙𝑜𝑤_𝑟𝑎𝑡𝑒 will be similar with 𝑘 similar to the expression shown below 

and no other value in the denominator as only SAQ will be applied. 

𝑘 = 𝑞(𝐴𝑛) × 𝑙𝑒𝑛𝑔𝑡ℎ (𝑁𝑍𝐶𝑞(𝐴𝑛)) + ⋯+ 𝑞(𝐷1) × 𝑙𝑒𝑛𝑔𝑡ℎ (𝑁𝑍𝐶𝑞(𝐷1))     (43) 

The process of decoding the stream will be similar but in reverse like the one shown in 

figure 4.8, first examine the header and extract the lengths and then go in reverse and 

reconstruct the coefficients and then go on to apply the inverse discrete wavelet transform 

to get the reconstructed signal. Before this could happen the encoded and compressed data 
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will be needed to be transmitted. For this the data transmission scheme is described in detail 

in the next subsection.  

4.5. Data Transmission Scheme 

For transmissions purposes, since we will not be transmitting at every cycle of the adaptive 

sampling algorithm, a different routine will be chosen. This can be at every hour or when 

the sink requires network information regarding monitoring data. Monitoring data in this 

case will be the pressure data which will be acquired for monitoring purposes and will be 

measured at a comparatively low rate of hourly or half hourly periods. The radio will be 

using significant energy only when pressure data reporting time will be present, and in such 

a transmission we would transmit all the medians of the LSVS and HSVS and the frequency 

at which the vibration sensors were sampling, along with the high-frequency vibration 

sensor  and low-frequency vibration sensor sampled data. If the pressure monitoring period 

is every 30 minutes, then the transmission would include the pressure reading and the data 

sampled by the HSVS and the LSVS in the previous 30 minutes, along with the medians 

of the HSVS  reading and the medians of the LSVS along with the sampling rates. Such a 

transmission scheme is described in Figure 4.10. 
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Figure 4.10: Radio Transmission Scheme for the overall simulation. 

In figure 4.10 there are 3 cases described for the transmission conditions, first if the duty 

cycle time for the transmission time is up and it needs to transmit the data, second if the 

radio has received the leak location flag and need to transmit data and third if the radio 

needs to transmit the leak detected flag. For all the three cases the radio transmissions are 

going to be different, in the first case, all the time stamped compressed vibration data 

between the previous radio transmission time and current radio transmission time will be 

transmitted along with the time stamped pressure data sampled at that time. In the second 

case, only the most recent high frequency sampled data will be transmitted, since the nodes 

are synchronized, all of them would sample the high frequency sensor at the same time 

when not detecting any leaks, this would have them send the most recent high frequency 

sampled data as the nodes would receive transmission if the sink requires data to locate 

leaks. The third and final condition will be when the node will be transmitting leak 

detection flag to the sink, this would happen at any sampling instance if the conditions of 

the threshold based leak detection algorithm have been satisfied. For all three conditions 



117 
 

the amount of data transmitted would be different, for the last case only the detection flag 

need to be sent so it wouldn’t require more than one packet of information so it is relatively 

quick to transmit that, the second case only requires the compressed and time stamped high 

frequency data so it will also be quicker than usual and the last case requires all the data to 

be transmitted between the previous and current transmission time. An expression for the 

approximate number of bytes 𝐵 transferred in the transmission time is shown by the 

expression below: 

𝐵 =∑3× (𝑇𝑠𝑡𝑎𝑚𝑝ℎ[𝑖] +
𝑆𝑎𝑚𝑝𝑙𝑒ℎ[𝑖]

𝐶𝑅ℎ[𝑖]
+ 𝑀ℎ[𝑖])

𝑁

𝑖=1

+∑3× (𝑇𝑠𝑡𝑎𝑚𝑝𝑙[𝑖] +
𝑆𝑎𝑚𝑝𝑙𝑒𝑙[𝑖]

𝐶𝑅𝑙[𝑖]
+ 4 ×𝑀𝑙[𝑖]) + 3 × 𝑆𝑎𝑚𝑝𝑙𝑒𝑝 + 3

𝑀

𝑖=1

× 𝑇𝑠𝑡𝑎𝑚𝑝𝑝                                                                                             (44) 

In the expression above everything is multiplied by 3 because the ADC gives data in 24 bit 

resolution, which is equivalent to 3 bytes. N is the number of times the high- frequency 

vibration sensor has been used to sample the vibrations, 𝑆𝑎𝑚𝑝𝑙𝑒ℎ[𝑖] is the sample vector 

of the high frequency sampled data and 𝐶𝑅ℎ[𝑖] is the corresponding compression ratio, 

using both of these we can find the size of the coded coefficient bit-stream that we will be 

transmitting, 𝑀ℎ[𝑖] is the median that will be calculated for each high-frequency vibration 

sampling instance and 𝑇𝑠𝑡𝑎𝑚𝑝ℎ[𝑖] is the corresponding timestamp. Similar is the case for 

the low frequency data where 𝑀 is the amount of vectors for the low frequency data.  

From the number of bytes, we can then find out the transmission time 𝑇𝑡𝑥 and thus calculate 

the energy used by the radio for transmissions and 𝑇𝑟𝑎𝑑𝑖𝑜, this was previously mentioned 
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in chapter 3 while discussing the energy model for the WSN node. Apart from this, the 

nodes would be receiving data every resampling time in the adaptive sampling algorithm 

and when the sink has confirmation from only one node in the network for the leak and 

would be requiring more data from other nodes to perform cross correlation to localize the 

leak. Other than this, the nodes would not be receiving data and will transmit only for 3 

possible conditions, when transmitting data for periodic monitoring, event detection and 

when specific data has been required from them for leak localization. 

This completes the discussion of the multi-faceted energy conservation scheme that we 

have developed for monitoring leaks using both vibration and pressure data in pipelines. 

The next section discusses the development of the cost function related to the proposed 

scheme. 

4.6. Solution for Optimal Cost 

Related to the cost analysis of the scheme there are different parameters in the algorithm 

that can be set which would give different distortion rates as well as different leak detection 

and localization times for any number of different parameter combinations. In an attempt 

to consolidate all of this information regarding the cost of the algorithm in terms of energy, 

time and distortion a cost function was developed which would give the conditions for the 

most appropriate parameters based on the information. There are many ways to approach 

a certain problem when solving it using a cost function [133] and in this scenario the 

promptness at which the leak is detected and located is under study along with the distortion 

in the signal. These are the three parameters which will be optimized as per the proposed 

scheme keeping in mind the energy cost of the algorithm. For calculating the energy cost 

the equations are already given in chapter 3 of the thesis in the WSN Node Model section. 
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This section further builds upon the equations given there and the corresponding costs of 

the adaptive sampling and signal compression algorithms in the following chapter. Before 

implementing the solving method some initial parameters of the node will need to be 

known, for example the controller type, its corresponding power consumption, the sensor 

types and their corresponding power consumption and finally the radio type and its 

respective power consumption. After these three things are known it would also be required 

to know the wavelet filter which is being applied to the algorithm, this is because the length 

of the filter varies and it usually takes a certain amount of time to run calculations based 

on the filter length as the number of computations is directly proportional to the filter 

length, also the signal length is to be known because both energy conservation algorithms 

are applied on the signal and again the longer the signal the higher the computations. Using 

equation (30) the computation cost can be evaluated for the high frequency sensing cycle 

for the adaptive sampling and signal compression scheme and using equation (33) the 

computation cost can be evaluated for the low frequency cycle that uses the WPD for signal 

compression as well as the threshold computation. The computation time in the high 

frequency cycle will set a limit to how low the minimum duty cycle time 𝑇𝑡 can be set as 

the computations are higher in this cycle. This computation is shown by the expression 

below: 

𝐶𝑐
ℎ = 𝐶𝐶𝑅 − 2 [

𝑚

2−1
× 𝑄 + 𝑄(𝑄 − 1)] +∑2[

𝑚

2𝑟−1
× 𝑄 + 𝑄(𝑄 − 1)]

𝛽

𝑟=0

        (45) 

Here 𝐶𝐶𝑅 are the different computation operations that are executed in the signal 

compression scheme, for 𝐶𝑐
𝑙 for the LSVS sampling the expression will be similar as only 

WPD is being performed.  
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𝐶𝑐
𝑙 = 𝐶𝐶𝑅 +∑2[

𝑚

2𝑟−1
× 𝑄 + 𝑄(𝑄 − 1)]

2

𝑟=0

                                     (46) 

The corresponding time 𝑇𝑐
ℎ can be found by first finding the energy consumption of 𝐶𝑐

ℎ by 

using equation (17) and then dividing by the power consumption of the controller to find 

the time, the case is similar for 𝑇𝑐
𝑙. This is shown by the equation below for the HSVS. 

𝑇𝑐
ℎ =

𝐶𝑐
ℎ × µ(

𝑓
𝑘
+ 𝛽)

𝑒𝑐𝑜𝑚𝑝
𝑤                                                     (47) 

Finding 𝑇𝑐
ℎ will give us the minimum duty cycle time the overall scheme can achieve as 

this the approximate time taken for the algorithm to complete the computations for the 

given sensing period and wavelet filter type employed in the adaptive sampling algorithm 

and signal compression algorithm. The time 𝑇𝑐
𝑙 can be calculated similarly. After this has 

been determined the energy consumption of the node for each high energy sensor sampling 

cycle and low energy sensor sampling cycle is calculated, this is based on the sensor 

energy, computation energy and radio energy and the active and sleeping times of the nodes 

under study, it is explained in detail in Chapter 3.4. Using equation (16) 𝐸𝑗
ℎ is the complete 

energy consumption of the HSVS sampling period for both the active and sleep time of the 

sensor and 𝐸𝑗
𝑙 is correspondingly for the LSVS, both of these are a function of sampling 

time, duty cycle time and active time of the controller, the active time is shown in equation 

(48). Using the energy consumption for HSVS duty cycle period and for LSVS duty cycle 

period the following expression is constructed for one complete resampling cycle of the 

adaptive sampling algorithm. 

𝐸𝑗
𝑎𝑑𝑎𝑝 = 𝐸𝑗

ℎ + (𝑛 − 1) × 𝐸𝑗
𝑙                                               (48) 
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During the HSVS sampling cycle the radio will also receive transmission request through 

radio and will either transmit data or not transmit based on the information. The adaptive 

cycle 𝑗 is made of 𝑛 cycles of sampling after which the algorithm needs to resample. 

Consequently 𝐸𝑗
𝑎𝑑𝑎𝑝

 is a function of 𝑇𝑐
ℎ, which is time for computation for HSVS cycle, 

𝑇𝑐
𝑙, which is for LSVS, 𝑇𝑡, which is time for one duty cycle duration (22) and 𝑛, which is 

the resampling time for the adaptive sampling algorithm, this can be written down in the 

form shown below: 

𝐸𝑗
𝑎𝑑𝑎𝑝 = 𝑓(𝑇𝑐

ℎ, 𝑇𝑐
𝑙, 𝑇𝑡, 𝑛)                                                  (49) 

Every 𝑖 seconds the radio will be transmitting the data acquired in the previous 𝑖 seconds 

as per equation (44). From this the radio energy consumption will be computed using 

equation (18) and the radio transmission time as per equation (21). This will give a basis 

for average energy that the algorithm uses in one transmission cycle and using these 

equations for the whole simulation time this will give a cost for the energy required for the 

whole simulation. For 𝐸𝑟𝑎𝑑𝑖𝑜
𝑤  from (18) the energy consumption is proportional directly to 

the number of bytes transmitted, which is directly proportional to 𝑇𝑠𝑎𝑚𝑝𝑙𝑒, Sampling rate 

𝑆𝑅𝑙𝑓 from equation (25), transmission time 𝑖 and 𝐶𝑅𝑇𝐻
𝐵 , which is the B number of bits for 

SAQ and TH threshold for the compression scheme. So 𝐸𝑟𝑎𝑑𝑖𝑜
𝑤  can be written as. 

𝐸𝑟𝑎𝑑𝑖𝑜
𝑤 =∑ 𝐸𝑘

𝑟𝑎𝑑𝑖𝑜

𝑘
= 𝑓(𝑇𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑆𝑅𝑙𝑓 , 𝐶𝑅𝑇𝐻

𝐵 , 𝑖)                             (50) 

Moving on the final expression is constructed for the energy consumption for both the 

sampling energies and transmission energies. If a simulation is run for 𝑡 seconds the total 

energy consumption for those 𝑡 seconds will be given by the expression shown below. 
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𝐸𝑇 = ∑ 𝐸𝑗
𝑎𝑑𝑎𝑝

𝑡
𝑛×𝑇𝐷

𝑗=0

+ ∑𝐸𝑘
𝑟𝑎𝑑𝑖𝑜

𝑡
𝑖

𝑘=0

                                           (51) 

Here again based on (49) and (50) we can write 𝐸𝑇 as: 

𝐸𝑇 = 𝑓(𝑇𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑆𝑅𝑙𝑓 , 𝐶𝑅𝑇𝐻
𝐵 , 𝑖, 𝑇𝑐

ℎ, 𝑇𝑐
𝑙, 𝑇𝑡, 𝑛)                                  (52) 

Since 𝑇𝑠𝑎𝑚𝑝𝑙𝑒 and  𝑖 are fixed they can be set as constants and 𝑇𝑐
ℎ and 𝑇𝑐

𝑙 are based on 

wavelet filters decided beforehand and 𝑇𝑠𝑎𝑚𝑝𝑙𝑒, they can be set as constants. 𝑆𝑅𝑙𝑓 can be 

estimated at an average for a certain scenario and set as a constant too. Finally the 

parameters that can be varied are the Duty Cycling time, the Resampling Rate for the 

adaptive sampling algorithm and the bits and threshold set for the compression algorithm, 

based on this equation (52) can be written down as: 

𝐸𝑇 = 𝑓(𝐶𝑅𝑇𝐻
𝐵 , 𝑇𝑡, 𝑛)                                                      (53) 

These will be the parameters which would need to be optimized for best leak detection and 

localization times based on the energy consumption as well as the maximum distortion in 

the signal since the distortion is a function of the compression ratio, the higher the 

compression the higher will be the distortion. For this the following conditions are given 

for defining the bounds of the solution. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑇𝐷 ,  𝑇𝐿 ,  𝑃𝑅𝐷𝐴 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐸𝑇 ≤ 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑃𝑅𝐷 ≤ 𝑃𝑅𝐷𝐴 ,  𝑇𝑡 ≤ 𝑇𝐷 𝑎𝑛𝑑 𝑛 × 𝑇𝑡 ≤ 𝑇𝐿 



123 
 

To solve such a scenario given the constraints of the algorithm regarding the minimum 

duty cycle time  𝑇𝑡, the number of times the adaptive sampling algorithm runs before it 

needs to resample 𝑛 and the optimum compression for a given signal based on 𝑃𝑅𝐷, a cost 

function solving method using an artificial intelligence based technique of backtracking 

algorithm [134] is proposed, the algorithm has constraints given to it according to which it 

will try to calculate the most optimum solution for the given data. It uses the maximum 

acceptable energy consumption 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 , maximum acceptable distortion 𝑃𝑅𝐷𝐴 , maximum 

acceptable leak detection 𝑇𝐷 and maximum acceptable leak localization times 𝑇𝐿 to 

calculate the best parameters falling within the parameters. The algorithm pseudo-code is 

given below: 

𝑇𝑎𝑘𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑛𝑜𝑑𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑠 𝑖𝑛𝑝𝑢𝑡 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑇𝑠𝑖𝑚. 

𝑇𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐿𝑒𝑎𝑘 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒. 

𝑇𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐿𝑒𝑎𝑘 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒. 

𝑃𝑅𝐷𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛. 

𝑆𝑒𝑡 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑇𝑐
ℎ 𝑎𝑠 𝑇𝑡. 

𝑆𝑒𝑡 𝑛 = 4, 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑. 

𝑆𝑒𝑡 100% 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 24 𝑏𝑖𝑡𝑠 𝑓𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛. 

1. 𝑆𝑒𝑡 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒.  

2. 𝑆𝑒𝑡 𝑛 𝑓𝑜𝑟 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 

3. 𝑆𝑒𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑙𝑒𝑣𝑒𝑙 𝑎𝑛𝑑 𝑏𝑖𝑡𝑠 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 
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4. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑠𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (51). 

5. 𝐼𝑓 𝑬𝑻 > 𝑬𝒕𝒂𝒓𝒈𝒆𝒕 𝑡ℎ𝑒𝑛 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑜𝑟⁄ 𝑏𝑖𝑡𝑠 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑟𝑜𝑚 𝟑 𝑢𝑛𝑡𝑖𝑙 

 𝑷𝑹𝑫 ≥  𝑷𝑹𝑫𝑨 𝑒𝑙𝑠𝑒 𝑒𝑥𝑖𝑡 𝑎𝑛𝑑 𝑔𝑖𝑣𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠, 𝑇𝑡 𝑎𝑛𝑑 𝑛. 

6. 𝐸𝑙𝑠𝑒 𝑖𝑓 𝑬𝑻 > 𝑬𝒕𝒂𝒓𝒈𝒆𝒕  𝑡ℎ𝑒𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑛 𝑏𝑦 1 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑟𝑜𝑚 𝟐 𝑢𝑛𝑡𝑖𝑙 𝒏 × 𝑻𝒕 ≥ 𝑻𝑳. 

7. 𝐸𝑙𝑠𝑒 𝑖𝑓 𝑬𝑻 > 𝑬𝒕𝒂𝒓𝒈𝒆𝒕  𝑡ℎ𝑒𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑇𝑡 𝑏𝑦 𝑇𝑠𝑡 𝑎𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡 𝑓𝑟𝑜𝑚 𝟏 𝑢𝑛𝑡𝑖𝑙 𝑻𝒕 ≥ 𝑻𝑫. 

In the algorithm shown above 𝑃𝑅𝐷 is the distortion in the signal due to the compression, 

this can be estimated by using a relationship between compression parameters and 

distortion for a particular set of wavelet filters used, for example the graphs of the 

relationship between distortion and compression are given in Chapter 5.3 for a daubechies 

5 wavelet, other wavelet types would give different relationships. Also 𝑇𝑐
ℎ will depend on 

the type of wavelet and the signal length used and 𝑇𝑡 derived from it for the first sampling 

duty cycle would be at least 15 seconds higher than this to allow the radio to transmit the 

data in between as per the scheme. For the first energy reduction scheme optimized as per 

the solving scheme in step 5 the algorithm would iteratively set lower threshold levels and 

number of bits for the signal and calculate the CR and PRD for the signal using the 

relationship for the particular wavelet type used and if 𝐸𝑇 is within 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 for any setting 

the algorithm would terminate the solving process and give the calculated threshold setting 

and number of bits and 𝑛, which is the resampling period of the adaptive sampling 

algorithm, also it would give 𝑇𝑡, which is the duty cycle time which it would calculate, if 

the 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 is not met for any of the conditions then the algorithm will move on to the next 

step after resetting the compression parameters. The second level of the energy 
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optimization process is in step 6 which is increasing the resampling period 𝑛 until it reaches 

a maximum threshold level of  𝑛 × 𝑇𝑡 > 𝑇𝐿, at each iteration n would be increased by 1 

and the algorithm re-run from step 2. Even if by using this method the energy consumption 

does not fall below 𝐸𝑚𝑎𝑥, the final step is to increase the duty cycle period 𝑇𝑡 by 𝑇𝑠𝑡 and 

then going back to step 1 to re-run the whole solver again. This solving process gives 

priority to leak detection time, then leak localization time and then signal compression 

given that they are within the constraints that are given to the solver and 𝐸𝑡𝑎𝑟𝑔𝑒𝑡 is 

achievable. For the algorithm shown the solver would go about the solving process as 

shown in figure 4.11. 
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In figure 4.11 the scheme for setting the parameters of the proposed algorithm is shown, 

the parameters would be set from the minimum duty cycle time, number of resampling 

periods and the compression parameters and iteratively increased as per the scheme shown 

until the cost function is satisfied, the algorithm will backtrack to the previous level, 

increase the parameters with step size and then again calculate cost of the new scheme. 

First the compression parameters would be iteratively increased in the third level of the 

algorithm, then the resampling period in the second level and lastly the duty cycle time in 

the first level, the motivation being to increase the duty cycle time at last to have a minimal 

effect on the leak detection time. The lines in bold give one possible choice which complete 

the constraints on the leak detection times, signal distortion and maximum allowed energy 

consumption and these parameters may be chosen for a given scheme. There are other 

solving methods also available and these would give different results based on the 

parameters used and the priority given to each of the energy efficiency techniques 

employed. For example artificial intelligence techniques like genetic algorithm or particle 

swarm optimization can also be used to solve the above mentioned optimization problem 

and would give a different result based on the cost function used for the solving process. 

Moving on, the next section is related to the simulation where the pipeline simulation 

model discussed in chapter 3 will be used to test the developed energy conservation 

algorithm in different cases of the leaks. 
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5. CHAPTER 5 

RESULTS 

This section is related to the testing of the whole scheme and the advantages in energy 

consumption it brings as a whole to the leak detection scheme, it will be seen if the changes 

are successful in maintaining acceptable leak detection and localization performance. First 

it will be checked how the adaptive sampling scheme that is described in the previous 

section calculates the sampling frequency and then selects the sampling frequency based 

on the median of the last three sampling frequency calculations, the sampling rate selected 

will be compared to the spectrum of the signal at that point, it will also be seen how much 

different leak magnitudes effect the signal as different leak strengths will be affecting the 

vibrations differently. Then the adaptive threshold based algorithm in which the leak is 

detected by using the medians of the vibration data will be discussed and its performance 

when detecting leaks of different magnitudes will be shown. Afterwards the compression 

algorithm will be discussed and the relationship between the CR and PRD of the signal 

will be discussed as it will be an important indicator when the algorithm will be used for 

localizing leaks. Afterwards the energy consumption gains that all three energy 

conservation schemes will be giving to the monitoring scheme will be discussed for 

different leak sizes and how much they will affect the timeliness of the leak detection and 

how will they be affecting the quality of the leak localization that will be done by cross-

correlation of vibration signals. The cross-correlation will be done to localize the leak at 

the end of the scheme at the sink, the quality of the cross-correlation result will greatly 

depend upon the strength of the leak and the compression level that will be used. It should 

be noted that we will be running the simulations for similar scenarios for all the different 
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energy conservation schemes, the simulation time is fixed at 12000s and the gain in energy 

savings will be compared regarding monitoring in this time period. Before analyzing the 

complete algorithm we will first see how the adaptive sampling performs for different leak 

sizes and different distances from the leak. This is shown in the next sub-section. 

5.1. Adaptive Sampling Algorithm 

The adaptive sampling scheme is designed such that it would sample the signal once using 

the high frequency sensor, calculate the frequency, use the frequency with the two most 

recent frequency calculations and then select the low energy sensor sampling rate using the 

median of the three readings. For the low energy sampling,  we will use the sensor for 𝑛 

cycles as specified in the algorithm shown in figure 4.6. During these low energy cycles 

the sensor would sample at the selected rate until conditions for resampling at high 

frequency will be met. Before discussing the adaptive sampling scheme however it is to be 

seen how the leak affects the vibration spectrum at different points in the pipeline, this was 

already discussed in chapter 3, figures 3.15 to 3.18 detail the effect of the leak size on the 

spectrum of the signal for each individual node. It was found that the closer the node is to 

the leak the higher the bandwidth of the signal reaches it, also the intensity of the signal 

will be higher. Consequently it is assumed that the Nodes nearer to the leak i.e. Nodes 10 

and 14 would react more with regards to change in sampling frequency as opposed to 

Nodes further away, i.e. Nodes 7 and 18. 

Related to this we will consequently be looking at how the sampling rate changes before 

and after the leak for different leak sizes, 𝑛 or the number of times the low energy sensor 

will sample the signal before resampling is required is 9. The daubechies 5 wavelet is used 

with 10 coefficients in the low pass and high pass filters. It should be noted that the wavelet 
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filters with higher the amount of coefficients will give better separation of the frequency 

bands when calculating the frequency but will give a higher amount of computation cost 

as a result. Figure 5.1 shows the performance of the adaptive sampling scheme for Node 

10 for a 1mm leak. Node 10 is 23 m from the leak location. 

 

Figure 5.1: (a) The frequency spectrum and (b) the corresponding sampling frequencies 23 m from 1mm leak. 

In figure 5.1(a) the frequency spectrum of the vibration signal can be seen for the whole 

simulation. From the whole 12000s simulation a total of 1000s of vibration data has been 

generated over 200 sampling instances of 5s sampling periods each. In (a) the signal that 

is being sampled by the sensors is shown, it can be seen that after 400s the spectrum of the 

signal slightly changes, this is due to the 1mm leak which has been introduced in the 

system. For the corresponding signal in part (b) the calculated and actual sampling rates 

have been plotted, it is seen that the adaptive sampling algorithm initially calculated higher 

than usual sampling frequency of 2KHz but due to the medians of the last 3 readings being 
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used settled to a level of 125 – 250 Hz, this is consistent with the frequency spectrum which 

shows significant energy around 50Hz before 400s. Also due to the medians being used, in 

subsequent sampling periods where higher than usual frequencies are calculated for one 

cycle due to noise in the signal the algorithm keeps the sampling rate consistent. After 400s 

as the frequency spectrum changes and reaches up to 200Hz, the algorithm also adapts and 

starts calculating the sampling frequency to be readjusted up to 500Hz. This can be seen in 

figure 5.1(b). Again it is observed that higher than usual sampling frequencies are 

suppressed by the algorithm as we take the median of the last 3 calculations to set the final 

sampling rate. Figure 5.2 is plotted similarly for Node 14.  

 

Figure 5.2: (a) The frequency spectrum and (b) the corresponding sampling frequencies 27 m from 1mm leak. 

In figure 5.2(a) the frequency spectrum of the signal for the simulation is shown again, here 

the scenario is the same but the node is further away from the leak, likewise it can be seen 

that the change in the frequency spectrum is not very visible after 400s but a slight change 
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in frequencies up to ~200Hz can be observed. The adaptive sampling algorithm that was 

introduced in Chapter 4 is again used here and it keeps the sampling frequencies fairly 

consistent up till 500s, after which the sampling algorithm starts calculating frequencies 

higher than the previous average and because of it the sampling frequency shift upwards 

to 500Hz and in some instances higher because of multiple calculation results of high 

frequency.  

 

Figure 5.3: (a) The frequency spectrum and (b) the corresponding sampling frequencies 73 m from 1mm leak. 

It should be noted that the frequencies that reach one location is a direct result of the pipe 

frequency response and the longer the distance of the pipe the more the signal would be 

attenuated and the more narrowband it would become as a result. Going by the observations 

and by the results shown in the figures above it can be safely concluded that weak leak 

signatures would not affect vibrations on the measurement points which are further away, 



133 
 

to see this effect we will plot the vibrations at nodes 7 and 18 and observe the effect of 

vibration over time for the leak in figures 5.3 and 5.4. 

 

Figure 5.4: (a) The frequency spectrum and (b) the corresponding sampling frequencies 77 m from 1mm leak. 

In figures 5.3 and 5.4 it can be observed from the frequency spectrums that the vibration 

spectrum is not changing before and after the leak. This is due to the attenuating and band-

limiting characteristics of the pipe. Likewise the sampling frequencies are fairly stable 

throughout the whole simulation for these two sensors at around 250Hz. 

In the figures shown above the effect of 1mm leak on the sampling frequencies calculated 

by the adaptive sampling algorithm was discussed, after this the effect of 3mm leak will 

also be seen. Figure 5.5 shows the effect of 3mm leak at Node 10 which is 23m from the 

leak. 
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Figure 5.5: (a) The frequency spectrum and (b) the corresponding sampling frequencies 23m from 3mm leak. 

Here the effect of leak on the frequency spectrum is more visible, this is mainly due to the 

fact that the leak is stronger and as a result is propagated further through the network, due 

to this it can be observed that up till 350Hz in the spectrum shown in figure 5.5(a) after 

400s the leak signature is very strong and due to this the algorithm calculates the sampling 

frequencies between 800Hz and 1000Hz in the leading cycles of sampling using the high 

frequency sensor as shown in 5.5(b). Similarly for Node 14, 27m away from the leak 

locations the vibrations are plotted and the performance of the adaptive scheme observed. 
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Figure 5.6: (a) The frequency spectrum and (b) the corresponding sampling frequencies 27m from 3mm leak. 

In figure 5.6(a) the spectrum is again changing drastically after 400s as the 3mm leak is 

occurring at that mark, the bandwidth however is lower, concentrated at ~300Hz, this 

would still increase the sampling rate however and in figure 5.6(b) we can observe the 

algorithm sets a sampling rate of 1KHz, however due to the median of three previous 

calculations it takes up to 10 cycles to sample at the adjusted rate. Similar to this the 

sampling rate for Nodes 7 and 18 are plotted in the following figures. 
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Figure 5.7: (a) The frequency spectrum and (b) the corresponding sampling frequencies 73m from 3mm leak. 

In figure 5.7(a) it is observed that the frequency spectrum reaches around 150Hz after the 

leak, this is again reflected in the sampling frequencies that the algorithm calculates, but in 

some instances the algorithm is consistently calculating higher frequencies than observed, 

this is due to the effect of the wavelet transform such that it doesn’t exactly divide the 

frequency spectrum in half due to this effect the adaptive sampling algorithm is not able to 

calculate the true sampling frequency which should be around 500Hz for this scenario, still 

keeping in mind the Nyquist sampling rate for such a signal the sampling demands are 

satisfied. Similarly the signal at Node 18 is plotted along with the sampling rates in figure 

5.8. 



137 
 

 

Figure 5.8: (a) The frequency spectrum and (b) the corresponding sampling frequencies 77m from 3mm leak. 

Again in figure 5.8(a) the minimal increase in bandwidth up to 150Hz is observed after the 

leak, it can be observed that the moderately strong leak effects the vibration further away 

from the leak position. In figure 5.8(b) the calculated frequency reflects this change but 

again the issue is with the wavelet type used in the algorithm, a filter pair which better 

divides the frequency into half will give a better result but would result in more 

computations. The results for the adaptive sampling for 5mm leak for the 4 Nodes under 

observation are plotted next, it should be noted that 5mm leak will be significantly stronger 

than either leak so the bandwidth of the signal will be larger across all Nodes that under 

observation in the simulation.  
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Figure 5.9: (a) The frequency spectrum and (b) the corresponding sampling frequencies 23m from 5mm leak. 

 

Figure 5.10: (a) The frequency spectrum and (b) the corresponding sampling frequencies 27m from 3mm leak. 
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Figure 5.11: (a) The frequency spectrum and (b) the corresponding sampling frequencies 73m from 3mm leak. 

 

Figure 5.12: (a) The frequency spectrum and (b) the corresponding sampling frequencies 77m from 3mm leak. 
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From the figures shown above it is observed that the adaptive sampling algorithm 

formulated is largely following the increase in bandwidth of the signal and sampling at 

higher than the previous 3mm case, also the sampling rate selected is satisfying the Nyquist 

criteria in that it is sampling at more than twice the rate of the bandwidth of the signal. One 

point to be noted is that in figures 5.11 and 5.12 the sampling rate is lower than the sampling 

rate in figures 5.7 and 5.8, this is mainly due to the fact that after the first level of 

decomposition the algorithm doesn’t find any more significant coefficients in the lower 

sub-bands, due to this it selects the sampling frequency at 1KHz, on the other hand the 

signal is stronger for the 5mm leak in the lower sub-bands, because of this reason the 

algorithm selects the lower sampling frequency of 500Hz. 

Next the adaptive threshold based algorithm is discussed. The median of the signal was 

taken among the multiple statistical parameters that can be used to quantify leaks or 

anomalies in pipelines, the results are discussed in the next chapter. 

5.2. Adaptive Threshold Algorithm 

In this section the performance of the proposed adaptive threshold based scheme is 

discussed, equations (31,32) proposed in Chapter 4 are designed such that the effect of 

noise on the signal will be minimized as the leak signature is noisy in nature and will be 

varying in a certain range given other conditions are kept constant. If the current reading is 

higher than two consecutive previous readings the leak is detected as per the algorithm. 

First the effect of the leak on the medians of the signal measured at the nodes will be plotted 

and compared.  
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To judge the performance of the algorithm first the effect of the leak on the medians of the 

vibration signal at different distances would be found out for different leak sizes, figure 

5.13 shows the plot of 1mm leak effect on the medians of the vibration signal. The median 

magnitude doesn’t change and follows the same trend as the effect of the leak is not very 

high. In this case the adaptive threshold based algorithm would not be able to detect the 

leak as the magnitude of the leak is insignificant enough that it doesn’t affect the vibration 

magnitude. 

 

Figure 5.13: Median magnitudes of vibration readings different distances from 1mm leak for before and after 

leak. 

For the other case of 3mm leak the vibration magnitudes are again plotted as shown in 

figure 5.14. Here it is observed that the leak is significant enough that it is affecting the 

signal at both Nodes 10 and 14, these two nodes are nearer to the leak and signal is not 

highly attenuated at these points, again further out the vibrations are not affected by the 
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leak as the larger distances have highly attenuated the leak signature, as such there is high 

chance of detecting leak at either nodes 10 or 14.  

 

Figure 5.14: Median magnitudes of vibration readings different distances from 3mm leak for before and after 

leak. 

On these scenarios the proposed adaptive threshold based leak detection algorithm will be 

applied. It should be noted that the threshold based algorithm cannot detect leaks of very 

low magnitude as evident from figure 5.13. And as shown in figure 5.14(c) and (d), the 

vibration sensors further from the leak wouldn’t be able to detect the leak either, this can 

be improved by installing a denser sensor network on the pipeline at the cost of increasing 

the system hardware cost. Furthermore for very weak signals filtering of the signal will be 

required to filter out the event from the noise to detect the signal, this would increase the 

detection time of the leak and increase the computations at the node. This result also 
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necessitates the need of a WSN monitoring solution for vibration sensing with multiple 

nodes to effectively cover the pipe network and detect leaks. The adaptive threshold 

scheme described previously will be applied with the adaptive sampling scheme and will 

show the effectiveness of the leak detection in the following figures. The adaptive sampling 

algorithm explained previously will sample at high frequency for 1 cycle and then sample 

at 𝑛 cycles using the low frequency sensor, in these two different sampling cycles the 

medians would be calculated, and for the low frequency equation (31) will be used to detect 

the leak and for the high frequency event equation (30) will be used to confirm the leak 

using the algorithm presented in figure 4.6. For the 3mm leak the leak detection by the 

algorithm using medians is shown in figure 5.15 for Node 10. 

 

Figure 5.15: Medians calculated by the adaptive threshold algorithm and the leak detection using both low 

(LSVS )and high (HSVS) frequency sensor for Node 10 in 3mm leak. 
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In figure 5.15 the medians of the vibrations measured by the sensors at different times by 

both (a) high energy and (b), (c) and (d) low energy sensors is shown, the low energy 

sensors have medians taken after the signal has been passed through 2 level wavelet packet 

decomposition to better divide the sub-bands, these sub-bands are designated LL, LH, HL 

and HH in order from lowest frequency sub-band to highest frequency, the range of each 

sub-band is 1/8 of the sampling rate. The percent which any band of the low energy data 

may be higher than the previous corresponding data is 35% and the median of the high 

frequency sensor is set at 17.5%. It was seen from data that this much change was 

detectable by the sensors. Here it can be seen that algorithm detects the leak in the 4th 

sampling instance in 5.15 (c) and subsequently calls the high frequency sensor in the 5th 

sampling instance to confirm the leak event, after this it continues sampling using the low 

frequency sensor until the resampling time occurs.  
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Figure 5.16: Medians calculated by the adaptive threshold algorithm and the leak detection using both low 

(LSVS) and high (HSVS) frequency sensor for Node 14 in 3mm leak. 

Similarly the sensor at Node 14 detected the leak and the result is shown in figure 5.16. 

Here the result is also similar to figure 5.15 in which the node detects the leak at the same 

time instance. The leak detection and localization flags are shown in figure 5.16 for this 

particular scenario, any node which detects the leak will send out a leak detection flag to 

the sink and the sink will then ask the other nodes at their next high frequency sampling 

cycle to transmit the relevant data in order to localize the leak. This is shown in figure 5.17. 
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Figure 5.17: Leak detection and data request flags from the 4 Nodes in the system. 

In figure 5.17 the nodes which transmit the data to the sink can have pairs programmed 

into them in which the sink requests data from specific adjacent nodes when the leak detect 

flag has been transmitted to it, this flag then triggers the leak localization request from the 

sink which it requests at the next high sampling routine from the Nodes, this is shown by 

the red dashed line which goes back to zero after the Nodes have transmitted the data to 

the sink. At this point the sink has enough information to localize the leak if it is occurring, 

in 5.17(c) and (d) the nodes detected a false positive and had localization request from the 

sink but in this case since there was no leak there would have been no result, on the other 

hand in figure 5.17(a) and (b) the nodes detected the leak at the time it occurs and sent the 

event to the sink which then sent the data request to the nodes in the next high frequency 

sampling cycle. The radio wakes up each high frequency sampling cycle to see if there is 
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any request from the node and goes to sleep so localization of leaks can only occur when 

the high frequency sensor wakes up, in this case it is every 10 minutes or 600 seconds and 

it depends upon the parameters used for the adaptive sampling algorithm like the ratio 

between the high frequency and low frequency sensors and the duty cycle.  

 

Figure 5.18: Medians calculated by the adaptive threshold algorithm and the leak detection using both low 

(LSVS) and high (HSVS) frequency sensor for Node 10 in 5mm leak. 

Leak detection however in this case can be done in 120 seconds or only 2 minutes as the 

duty cycle is set at 60s and a minimum of two sample periods are required as per the current 

proposed algorithm. Moving on the case for 5mm case was also considered and it has the 

same result, in fact leak detection was easier as the change in median was more pronounced 

than before. In figures 5.18 and 5.19 the effect of the leak on the medians is shown and it 

is fairly high compared to the 3mm leak case for both nodes 10 and 14. It can be seen that 
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the higher magnitude of the leak produces a higher response in both the low energy sensor 

and high energy sensor. 

 

Figure 5.19: Medians calculated by the adaptive threshold algorithm and the leak detection using both low 

(LSVS) and high (HSVS) frequency sensor for Node 14 in 5mm leak. 

Moving on from this aspect of the algorithm the next energy saving aspect will be discussed 

related to signal compression in the next sub-section. 

5.3. Signal Compression 

Signal compression is done to reduce the size of the data, this is beneficial for both storage 

and transmission of the data, it entails in extra computation but results in a net gain in terms 

of energy saved as the radio energy expended is lesser than previously. Compression 

usually entails a distortion in signal for different compression ratios as the compression 

used in this work is lossy in nature. The algorithm has already been explained in the 
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previous chapter in detail, first the wavelet transform is carried out up to level 5 on the high 

frequency data, then the threshold is applied to the coefficients and then sub-band adaptive 

quantization is applied. After this the signal is encoded in a bit-stream. Figure 5.20 shows 

the effect on the signal before and after compression has been applied to it sampled using 

high frequency sensor, 3mm leak case is considered. 

 

Figure 5.20: Compression and distortion for 3mm leak signal at Node 10. 

It can be seen in figure 5.20 that the signal has distortion up to 15% for a compression just 

above 8% of the total signal length, transmission wise this shows a gain of 92% in 

transmission cost but computation costs will be increasing on the other hand and will be 

taking up most of that 92% gain achieved but due to lower computation power there would 

still be net gain, for the above signal the threshold was set at 80% of the signal magnitude 
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sum and 4 bits for the quantization. 3 bits were used instead of 4 to see the effect on CR 

and PRD. The result is shown in figure 5.21. 

 

Figure 5.21: Compression and distortion for 3mm leak signal at Node 10, 80% threshold, 3 bits SAQ. 

In figure 5.21 it can be seen that the compression increased at the cost of slightly more 

distortion. Again decreasing the threshold to 65% we can see that the distortion increases 

in figure 5.22, this way we can create an approximate relationship between compression 

ratio and distortion which would be helpful in determining later how much distortion is 

expected from the signal for a given CR, as CR is easily calculated at the node and the 

distortion is computationally expensive. 
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Figure 5.22: Compression and distortion for 3mm leak signal at Node 10, 65% threshold, 4 bits SAQ. 

Using information from multiple leak magnitudes and different compression rates results 

are generated showing the trend of the compression ratio versus the distortion. Data was 

generated for a 3mm leak scenarios and the results plotted in the figures shown below.  
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Figure 5.23: (a) Compression at Node 10 with different compression thresholds, (b) similar compression at Node 

14 for 3mm leak. 

In figure 5.23(a) and (b) the effect of compression threshold can be observed, the threshold 

value was started at 90% and then reduced in 10% steps till 50% of the maximum sum 

using a 4 bit sub-band adaptive quantization (SAQ) scheme. It can be seen in both graphs 

that 90% of the value is contained in ~12% of the data with approximately 10% PRD, 

compressing the data further gives a logarithmic curve in which the PRD increases 

exponentially while achieving compression of ~3.5%. The further the Node is away from 

the leak the less leak signature is present and less distortion is present for a particular 

compression method as evident from graphs in figure 5.23. Next the effect of varying the 

bits is observed on the compression performance. The threshold level was set at 80% of 

the sum and the bits were varied from 6 bits to 2 bits. The result is shown in figure 5.24. 
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Figure 5.24: Effect of varying SAQ from 6 bits to 2 bits. 

In figure 5.24 the effect of varying the number of bits is plotted, the bits started from 6 bits 

and again a logarithmic effect is seen in which after 4 bits the distortion increases 

significantly when 3 and 2 bits are used. Again it is seen that the signal nearer to the leak 

has more distortion for a given compression setting. 

To observe the effect of compression on the leak magnitude another graph was plotted for 

a 5mm leak with similar compression settings as in figure 5.23 for the 3mm leak.  
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Figure 5.25: (a) Compression at Node 10 with different compression thresholds, (b) similar compression at Node 

14 for 5mm leak. 

In figure 5.25 for similar compression settings the performance is plotted and the trend is 

similar to figure 5.23. For distortion between 10 – 15% for most of the signals threshold 

level of 80% of the coefficient sum and 4 bits SAQ setting can be chosen based on the 

results shown in the above figures. Similarly for the low energy sensor a 4-bit SAQ scheme 

is shown to give a distortion of ~10% and a compression percentage of ~17%, this is 

optimal as reducing the number of bits further increases the distortion to ~25% which is 

fairly high. Next the effect of each energy efficiency technique on the overall energy 

consumption of the Node energy is discussed. There are 4 Nodes under study in the system, 

2 Nodes are nearer to the leak and 2 Nodes are further away from the leak. As discussed 

previously these are the nodes nearest to the leak as per the network at which the signal 

would be present the most and the algorithms will be effective in these nodes the most. 
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5.4. Effect of Algorithms on Energy Consumption 

To study the effect of energy efficiency techniques first the basic version of a monitoring 

scheme will be simulated, in which the data is continuously being sampled and sent to the 

sink for analysis, this is most similar to a case in literature of PipeTECT [9] in which near 

continuous data was streamed from the server in real time with approximately 80% duty 

cycle, in this simulation for a similar setting the data was sampled for 5s, the medians 

calculated and it was transmitted which approximately took 7s, further 3s the node was 

asleep and after 10s the cycle repeated for a 70% duty cycle rate. In this scenario the energy 

consumption was plotted for without leak for 12000s and the result is shown. 

 

Figure 5.26: Energy consumption over time for 4 Nodes under study for 10s duty cycling. 

Figure 5.26 shows the energy consumption over time for all the four nodes under study and 

the energy consumption of such a scheme is constant over time for each as the sampling 
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rate is constant, the complete data is also being transmitted, the energy consumption is 

approximately 420.5 Joules in such a case. Applying duty cycling to such a case, where the 

sampling is also duty cycled and the transmission is also duty cycled, a case is considered 

in which the sensor samples the vibrations data only every 60s and then transmits is at that 

time and another case in which the data is transmitted hourly along with the pressure data 

at that time. The result for the latter case is shown in figure 5.27. 

 

Figure 5.27: Energy consumption over time for 4 Nodes under study for 60s sensor duty cycling and 3600s radio 

duty cycling. 

In the result shown in figure 5.27 gives significant energy savings over the basic version 

simulated before, the energy cumulative consumption over 12000s is approximately 73.75 

Joules for a 10% duty cycle rate and this equates to 82.5% decrease in energy consumption. 

It should be noted that such a scheme would however give a delay in leak detection and 

localization as the sampling is done after every 60s instead of after every 10s in the previous 
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case. Furthermore the hierarchical sampling based adaptive sampling scheme was applied 

to the system in which the data is being sampled by a higher energy sensor and the 

frequency is calculated after which the lower energy sensor samples the data in the 

following sampling instances, this is expected to save further energy as the data will be 

sampled at lower rate for a longer period of time than being sampled at high frequency all 

the time. Figure 5.28 shows the results when the low energy sensor was used to sample 

every 9 cycles after the high energy sensor had sampled the data and calculated the 

sampling frequency. First the 1mm case was considered. 

 

Figure 5.28: Energy consumption over time for 4 Nodes under study for a 9 cycle adaptive sampling scheme for 

1mm leak. 

Here it can be observed that the energy consumption has dropped further down keeping the 

same conditions as the previous case shown in figure 5.27. The average energy over the 4 

nodes being monitored is 50.9 Joules, this represents a 31% reduction in energy 
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consumption over the previous scheme, here it is observed that as further energy 

conservation schemes are being applied to the system the rate at which the energy is saved 

is dropping, this is mainly due to the fact that adaptive sampling is a CPU intensive 

operation, but due to the CPU taking less energy than the sensor per time it gives a net gain 

in energy. Moving on, for similar sampling scheme setting the savings in energy for the 

3mm and 5mm leak are also plotted and shown below. 

 

Figure 5.29: Energy consumption over time for 4 Nodes under study for a 9 cycle adaptive sampling scheme for 

3mm leak. 

In figure 5.29 the energy consumption is plotted over time, the leak is occurring at 5000s 

so the leak is present for approximately 58% of the simulation duration. The average energy 

consumption of the nodes is 53 Joules which is still an energy conservation of 28% over 

the previous non-adaptive scheme, next the 5mm leak is plotted. 



159 
 

 

Figure 5.30: Energy consumption over time for 4 Nodes under study for a 9 cycle adaptive sampling scheme for 

5mm leak. 

The 5mm leak is the final case because it represents a maximum in what the adaptive 

sampling algorithm can set as the sampling frequency for the system which is 2000Hz. 

Even here it can be observed that the energy consumption over time is below the average 

consumption of the non-adaptive case, which is 55.17 Joules, this is again, 25% below the 

energy consumption of the previous scheme. This then concludes the part where energy 

conservation schemes were applied to the sensor of the system, for further energy 

conservation the radio energy is conserved by applying the compression scheme to reduce 

the energy consumption further. First the 1mm leak case was considered in which the 80% 

threshold and 4-bit SAQ scheme was applied as discussed in the previous section. 
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Figure 5.31: Energy consumption over time for 4 Nodes under study for compression applied using 80% 

threshold and 4-bit SAQ for 1mm leak. 

In figure 5.31 the results in figure 5.28 have the compression algorithm applied to them, 

this results in reduction of energy when transmitting data from 50.9 Joules to 49.2 Joules, 

this is a very low change in energy considering the conditions because at this time the data 

is already reduced by a fair margin as vibration magnitudes are not changing significantly, 

still there is a 3.34% reduction in energy from the previous scheme and gives a net gain in 

terms of energy conserved. This change is expected to be higher in leaks of larger 

magnitude. The energy consumption when the algorithm is applied to a 3mm leak is shown 

in figure 5.32 next. 
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Figure 5.32: Energy consumption over time for 4 Nodes under study for compression applied using 80% 

threshold and 4-bit SAQ for 3mm leak. 

In figure 5.32 the compression algorithm is applied to the results of figure 5.29 and it can 

be seen that the energy consumption has reduced to an average of 50.8 Joules which is less 

than the 53 Joules before, this represents a 4.15% reduction in energy consumption 

compared to the previous case. Next the 5mm leak case is plotted and the results plotted. 
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Figure 5.33: Energy consumption over time for 4 Nodes under study for compression applied using 80% 

threshold and 4-bit SAQ for 5mm leak.  

In this case the average energy of the system drops to 52.6 Joules which represents a 4.65% 

reduction in energy over the previous case. Moving on the percentage energy conserved by 

each step is plotted in a graph for each leak. 
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Figure 5.34: Percentage reduction in energy consumption across all energy conservation schemes for different 

leak sizes. 

The next section deals with the effect of the compression ratio on the leak localization 

which will be the final step in the algorithm.  

5.5. Effect of Compression on leak localization 

The final part of the algorithm is the leak localization which is done by applying cross-

correlation to the vibration signal from two sensors across the leak location, the leak is 

found by finding the difference in time one signal takes to reach the other and using the 

known sensor distance and the speed of sound in the water the leak can be localized using 

the formula shown below: 

𝑑2 =
𝑑 − 𝑐𝑇0
2

                                                            (54) 
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Here 𝑐 is the speed of sound propagation in pipe and 𝑇0 is the time delay at which the 

sensor correlation reaches its peak value. The time delay 𝑇0 is estimated at the peak value 

of the cross correlation function between the two signals measured by the sensors on either 

side. The vibration data for leaks is already generated in Chapter 3 of the thesis, and the 

results for energy and algorithm performance shown in the chapter above are for the same 

signals. Leak localization is done by cross-correlating data from Nodes 10 and 14 as these 

are the nearest to the leak location, in fact the main advantage of deploying  a WSN to such 

a pipeline network would be the benefit it provides in having readily available data from 

nodes nearest to the leak which would enable localization in such a scenario. Before 

applying the cross correlation the signal is high pass filtered [20] to remove low frequency 

noise and improve the cross-correlation result. First the cross-correlation result of the 1mm 

leak is plotted, it is expected to not give a result as the leak signature is minimal at the 

sampling nodes. 

 

Figure 5.35: Cross-correlation result of 1mm leak for Nodes 10 and 14. 
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Next the 3mm leak case is considered and the cross correlation peak plotted. 

 

Figure 5.36: Cross-correlation result of 3mm leak. 

From the result in figure 5.36 the leak was localized at 22.9645m from Node 10 using 

equation (44), in the simulation it is set at 23m. The maximum value of the peak is 0.0415 

and it is 8.95 times higher than the next highest value in the cross-correlation series. Next 

different compression ratios that were previously discussed applied to the same signal and 

the effect of compression on the peak of the cross-correlation examined for the 3mm leak 

case.  
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Figure 5.37: Effect of compression on the cross-correlation peak for 3mm leak. 

In figure 5.37 the effect of compression on the cross-correlation peak is described, the peak 

is decreasing in magnitude from figure 5.37(a) to (f). In 5.37(b) the peak remains the same 

at 0.0415, in (c) it decreases to 0.402, in (d) it is 0.0369 at 70% threshold setting, in (e) it 

is 0.0295 and in (f) it is 0.0198 which is still 5 times higher than the next highest value. 

From the results it can be concluded that 90% threshold settings produces the least amount 

of difference in the result but it may not be the best compression scheme as the 80% 

threshold compresses the signal further but still manages to be within 95% of the maximum 

possible value of the cross correlation peak, interestingly even at 70% threshold setting the 

peak is at 88% of the maximum possible threshold and gives an attractive alternate to a no 

compression scheme based system. Next results were plotted for the 5mm leak and are 
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shown in figure 5.38. The results are similar to the 3mm leak case but the peak is much 

higher due to the fact that the signal magnitude is higher. 

 

Figure 5.38: Effect of compression on the cross-correlation peak for 5mm leak. 

The maximum peak value in this case is 0.1951 which is 9.7 times higher than the next 

highest value in the correlation series and as the compression threshold level is reduced the 

signal magnitude decreases to 0.1937 in (b) and 0.1862 in (c), in (d) it is 0.1731 which is 

again 88% of the original value of the peak. The results suggest from the purely leak 

localization based standpoint the vibration signal can be compressed up to 50% threshold 

level but this brings about high levels of signal distortion which would make the signal 

potentially not suitable for other types of analysis which might be applied, in such a case a 

threshold level of 80% is best suited for the requirements of signal compression and leak 

localization as it retains more than 95% value of the original peak of the cross-correlation 
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as well as provides reasonable amount of compression and keeps the distortion below 20% 

for almost all the signals under study. Finally the sensitivity of the scheme to drops in 

packets is compared for different packet losses and the effect on the peak computed. It is 

expected the distortion of the signal will increase and it would result in a reduction in the 

peak of the result. This is shown in the figure below. 

 

Figure 5.39: Reduction in normalized cross-correlation peak with different packet losses. 

In figure 5.39 the effect of packet losses on the cross-correlation peak was investigated. 

Usually it was found the number of packets in which the signal content was around 10 

packets. That way if one packet was lost around 10% information was lost from the wavelet 

coefficients as these are transmitted to the sink. All the results are for 80% threshold and 4 

bit SAQ setting. Random packets were dropped for 5 cases to see the effect on the peak 

and the average value is shown for each number of packets dropped. It can be seen that the 

Normalized value of the cross-correlations reduces as the number of packets dropped 

increases. But it was found that even if 6 packets were dropped the cross-correlation result 
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gave a correct value of the location of the leak ~23m at a reduced peak of 40% of the 

original value. But at 7 packets the leak localization result gave erroneous readings of 10m, 

which were 13m from the actual leak location. The peak is also diminished to around 15% 

but it is at wrong position. So for environments in which the packet loss rate is high the 

scheme will eventually give a wrong result for the leak location. It should be noted that the 

scheme only uses 18 to 19 packets to transmit all the signal data including the coefficients 

and their positions, so 7 packets represents an approximate 35% packet loss rate which is 

fairly high. Keeping the results in the previous sections under consideration with regards 

to energy conservation techniques as well as leak detection and localization times a cost 

analysis of the whole scheme is done in the next sub-section. 

5.6. Cost Analysis of the Scheme 

In this section the comparative cost analysis of the leak detection scheme proposed above 

is presented. Previously the energy savings comparison was carried out and it was found 

that all three energy saving techniques in the proposed scheme and algorithm parameters 

were successful in reducing the energy consumption of the overall system to ~12% of the 

original scheme. This reduction in energy however comes at a disadvantage to other aspects 

of the system, in this case the leak detection and localization times of the leak detection 

scheme have increased as well as the signal received at the sink is distorted by up to 20% 

compared to the original signal depending on the conditions.  

Taking an example of 𝑇𝑡 of 60 seconds and different resampling period 𝑛 of 5, 10 and 15 

sampling instances and a threshold of 80% and 4 bits for the SAQ for a 3mm leak the 

following result can be plotted for the 4 Nodes under study.  
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Figure 5.40: Cumulative energy comparison between the three adaptive sampling schemes with varying n.  

In figure 5.40 the effect of varying the adaptive resampling period can be clearly observed, 

as per the settings the leak detection time is the same at 60s for each scheme and leak 

confirmation will be 120s but the localization times will be minimum of 300s, 600s and 

900s for each scheme. Next the effect of increasing the duty cycle period while maintaining 

𝑇𝐿 at 600 will be observed. 
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Figure 5.41: Effect of increasing duty cycle on energy consumption for fixed 𝑻𝑳. 

In figure 5.41 the effect of increasing the duty cycle time on the energy consumption for 

individual nodes is observed, this would affect the most on the energy consumption due to 

the fact that the sampling instances would be reduced and consequently the data for 

processing and transmission would be reduced as well. It is observed that the change in 

energy is much greater changing the duty cycle time as compared to increasing the adaptive 

sampling resampling instances. Because of this reason this is optimized last in the 

algorithm proposed in this section, also this would increase the leak detection time and in 

our algorithm the leak detection time would be minimized if it is last. Lastly the effect of 

compression on the energy consumption performance is observed. The duty cycle is set at 

60s with n equal to 10 and different compression ratios are applied to the system. 
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Figure 5.42: Effect of compression on cumulative energy consumption for the nodes under study. 

In figure 5.42 the effect of the compression for the nodes under study is observed, it is seen 

that over time the energy consumption of the nodes with compression is lower than when 

no compression is applied. Also different compression levels for the time under simulation 

did not generate sufficient differences in energy consumption for the small time duration 

simulated, but over a longer period of time 60% threshold will have a marginally lower 

energy consumption than 80% threshold. This warrants the compression to be first one to 

be optimized as per the algorithm as it effects the energy consumption the least but still 

gives a net positive gain in energy savings. Lastly the effect of the leak on the detection 

and localization times due to different schemes is shown in the next figure along with the 

leak detection indications. 
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Figure 5.43: Effect of leak detection with different duty cycle times. 

In figure 5.43 the sampling by high energy sensors is indicated for three different duty 

cycle times of 60s, 90s and 120s for a resampling ratio of 10 for the adaptive sampling 

algorithm. This means that every 600s, 900s and 1200s the adaptive sampling algorithm 

will use the high frequency sensor. This is also shown in the figure above by the stem plot 

of the high frequency sampling instances. It is also observed that after 5000s when the leak 

occurs the 60s and 90s duty cycle schemes sample the high frequency sensor earlier than 

the resampling duration, this is done when the low energy sensors detect the leak and the 

high energy sensors in the next cycle are activated to confirm the leak. This way within 2 

sampling cycles the leak detection occurs or 120s and 180s in these cases. For the 120s 

duty cycling period the leak is detected later in the next high frequency sampling instance 

as the leak occurs within the low frequency sensor sensing period, as a result the worst case 
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performance of the algorithm is also known for leak detection which is 1200s or the whole 

resampling time. The leak detection is shown in the figure below. 

 

Figure 5.44: Worst case leak detection of 120s scheme. 

In figure 5.44 the leak detection is within the 1200s worst case leak detection time though 

this can be rectified by using a different threshold setting than the one proposed in this 

work.  

After the leak has been confirmed as indicated in figures 5.43 and 5.44 the leak 

confirmation indication is transmitted at that instance of the high frequency sampling 

instance. This way the sink knows about the leak and at the next high frequency cycle the 

sink requests the data from the node.  

A solving method is introduced in chapter 4.6 for giving the optimal monitoring conditions 

for a given energy consumption and leak detection time. Using the method some scenarios 
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were run to solve the cost function to give us the parameters, for example our simulation 

is running for 12000s so we take the 12000s case for solving the cost function. 

Table 5-1: Solutions given by optimization algorithm for different target energies 

Parameter Type 

          Case No. 

Parameter 

Case 1 Case 2 Case 3 

Input Constraints 

Target Energy 50 40 60 

Maximum 𝑇𝐷 300s 300s 300 s 

Maximum 𝑇𝐿 1200s 1200s 1200s 

Maximum 𝑃𝑅𝐷𝐴 25% 25% 25% 

Algorithm Outputs 

Calculated 𝑇𝐷 60s 80s 50s 

Resampling Period 𝑛 9 8 7 

Calculated Threshold 86% 79% 91% 

Calculated Bits 3 bits 3 bits 3 bits 

 

In Table 5-1 the results for 3 different cases are discussed. Case 1 is for 50 Joules case, it 

was found that the algorithm returned a duty cycle time of 60s and a resampling period of 

9, with an 86% threshold and 3 bits for compression. This result closely matches the 

simulation parameters used in the simulation. Similarly for 40 Joules and 60 Joules target 

energy it was seen that the calculated duty cycle time is at 80s and 50s respectively. From 

the results it is apparent that given the constraints the most amount of change in energy 

consumption is due to the duty cycling scheme and for different energy consumption 

requirements in changes the most. 
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This wraps up the discussion of the proposed solver which minimizes the leak detection 

and localization times based on given energy. Next the conclusion is discussed. 
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6. CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

In this work we have introduced a novel multi-scale leak detection and localization scheme 

which uses vibration measurements for detection and localization of leaks in a pipeline 

network. This solution can be used without extensive knowledge of the network and is 

fairly accurate under optimal conditions, opposed to other techniques which would require 

extensive computation as well as relatively more knowledge of the network under study. 

In the simulation, using our leak detection and localization algorithm, we have shown that 

leak can be effectively detected and localized by the vibration data using the novel multi-

scale approach we are using here to solve the problem using sensors of different 

sensitivities. In our approach a duty cycling-based data-driven approach was used to reduce 

the energy due to the sampling operation for a WSN node. Furthermore for reducing the 

sampling energies further an adaptive sampling scheme was applied, the algorithm was 

able to successfully adapt the sampling rate according to the vibration conditions that are 

present and reduce energy consumption by sampling at the frequency required based on 

the bandwidth of the signal. Even though this has been used for different vibration 

monitoring scenarios, its application to pipeline vibration monitoring for leak detection has 

brought a significant improvement in energy saving to this important engineering problem. 

Before transmitting the signal is compressed, reducing the data further and optimizing the 

radio energy. We have shown that the proposed algorithm can successfully detect leaks in 

the system. Moreover, this work has also used an energy model for a WSN node for a 

simulated test-bed system using microcontrollers. Using this model, we have shown that 

significant savings of up to 88% in energy conservation can be achieved when using the 
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complete algorithm for the parameters we have used in the shown simulations, with a delay 

in confirming the leak compared to a non-adaptive approach. Finally the signal is cross-

correlated at the sink to localize the leak and the effect of compression on the result is 

investigated, it was observed that for detectable leaks even at distortion levels of up to 50% 

the localization can be done effectively. Furthermore the algorithm is shown to be resilient 

for packet loss rates of up to 30% if the header information is sent correctly. 

Based on the work a cost function approach to solving for optimum monitoring parameters 

is proposed which would allow to set the most appropriate parameters based on the given 

system conditions and parameters.  

This system allows us to have a framework in which a thorough simulation based study 

can be carried out based on theory. There is much scope for future work in our proposed 

framework that also allows for the investigation of further optimization techniques for 

accurate leak localization. It is also noted that we have used a simple model for 

communication in which the sensor nodes communicate directly with the sink without any 

hops or a chance for collision in the network. This work can be expanded and applied to a 

WSN environment with multiple hops to the sink, as this would have an impact on the leak 

detection speed of response due to the different delays associated with the hops engendered 

by the protocols being used. Also it was observed there can be improvements in the 

detection scheme by carrying out trend analysis of high frequency vibration signals to 

detect leaks. This analysis can be carried out at the sink. Different compression algorithms 

can also be applied to the problem to further optimize the solution. 
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