4,808 research outputs found

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference

    Applications of recurrent neural networks in batch reactors. Part II: Nonlinear inverse and predictive control of the heat transfer fluid temperature

    Get PDF
    Although nonlinear inverse and predictive control techniques based on artificial neural networks have been extensively applied to nonlinear systems, their use in real time applications is generally limited. In this paper neural inverse and predictive control systems have been applied to the real-time control of the heat transfer fluid temperature in a pilot chemical reactor. The training of the inverse control system is carried out using both generalised and specialised learning. This allows the preparation of weights of the controller acting in real-time and appropriate performances of inverse neural controller can be achieved. The predictive control system makes use of a neural network to calculate the control action. Thus, the problems related to the high computational effort involved in nonlinear model-predictive control systems are reduced. The performance of the neural controllers is compared against the self-tuning PID controller currently installed in the plant. The results show that neural-based controllers improve the performance of the real plant.Publicad

    Modelling and control for composition of non-isothermal Continuous Stirred Tank Reactor (CSTR) using fuzzy logic

    Get PDF
    As a matter of fact, several of chemical or petrochemical industries still using the old technology of conventional control; one of it is PID controller. This is due to the limitation budget of the companies provided. But it stills had a lot of weaknesses that need to be concerned, which it’s the accuracy and it’s precision. Due to that reason, the researchers had found the initiative to solve this situation by creating the Artificial Intelligence (AI), one of it is the Fuzzy Logic. For this research paper, it will introduces the concept of Fuzzy Logic approach towards the control system of non –isothermal continuous stirred tank reactor (CSTR). This simulation study had been made by using the MATLAB SIMULINK, and there will be a comparison with PID controller in order to justify the effectiveness of the modern technology concept in the control system. The result had shown that the fuzzy logic approach can gives the most favorable result in term of its accuracy and robustness. It is clear that this modern approach is better compared with the conventional PID controller

    Application of AI in Chemical Engineering

    Get PDF
    A major shortcoming of traditional strategies is the fact that solving chemical engineering problems due to the highly nonlinear behavior of chemical processes is often impossible or very difficult. Today, artificial intelligence (AI) techniques are becoming useful due to simple implementation, easy designing, generality, robustness and flexibility. The AI includes various branches, namely, artificial neural network, fuzzy logic, genetic algorithm, expert systems and hybrid systems. They have been widely used in various applications of the chemical engineering field including modeling, process control, classification, fault detection and diagnosis. In this chapter, the capabilities of AI are investigated in various chemical engineering fields

    Process control of a laboratory combustor using neural networks

    Get PDF
    Active feedback and feedforward-feedback control systems based on static-trained feedforward multi-layer-perceptron (FMLP) neural networks were designed and demonstrated, by experiment and simulation, for selected species from a laboratory two stage combustor. These virtual controllers functioned through a Visual Basic platform. A proportional neural network controller (PNNC) was developed for a monotonic control problem - the variation of outlet oxygen level with overall equivalence ratio (Φ0). The FMLP neural network maps the control variable to the manipulated variable. This information is in turn transferred to a proportional controller, through the variable control bias value. The proposed feedback control methodology is robust and effective to improve control performance of the conventional control system without drastic changes in the control structure. A detailed case study in which two clusters of FMLP neural networks were applied to a non-monotonic control problem - the variation of outlet nitric oxide level with first-stage equivalence ratio (Φ0) - was demonstrated. The two clusters were used in the feedforward-feedback control scheme. The key novelty is the functionalities of these two network clusters. The first cluster is a neural network-based model-predictive controller (NMPC). It identifies the process disturbance and adjusts the manipulated variables. The second cluster is a neural network-based Smith time-delay compensator (NSTC) and is used to reduce the impact of the long sampling/analysis lags in the process. Unlike other neural network controllers reported in the control field, NMPC and NSTC are efficiently simple in terms of the network structure and training algorithm. With the pre-filtered steady-state training data, the neural networks converged rapidly. The network transient response was originally designed and enabled here using additional tools \u27and mathematical functions in the Visual Basic program. The controller based on NMPC/NSTC showed a superior performance over the conventional proportional-integral derivative (PID) controller. The control systems developed in this study are not limited to the combustion process. With sufficient steady-state training data, the proposed control systems can be applied to control applications in other engineering fields

    Overview of rocket engine control

    Get PDF
    The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented

    Novel strategies for process control based on hybrid semi-parametric mathematical systems

    Get PDF
    Tese de doutoramento. Engenharia QuĂ­mica. Universidade do Porto. Faculdade de Engenharia. 201
    • …
    corecore