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ABSTRACT

The desirability of effective control of anaerobic digesters as a means of avoiding imbalance in 

the microbial population has become clearer and this can be seen from the literature in recent 

years. A number of published control strategies have been encouragingly successful, however the 

non-linear and time varying nature of the process generally requires a bespoke, engineered system 

dependant on the characteristics of the system. The 'cost of knowing' in employing control 

systems, is generally high. The ideal scenario for operators would be the availability of a generic 

control system at reasonable cost, which would be applicable to a large group of high rate reactor 

designs, operating on a limited (but broad) variety of waste streams. The system would be able to 

control from commissioning through to steady state and should be able to cope with reasonable 

expected shock loading conditions, albeit perhaps at some degree of sub-optimality. The aim of 

this work is to develop a control strategy, which will lead in future to this end.

Bicarbonate alkalinity (BA) is a key parameter which indicates the buffering capacity of the 

anaerobic digestion system and which has the potential for helping to maintain a stable system in 

the face of changing organic and toxic load. This is particularly the case when used in association 

with other informative on-line parameters such as gas production rate, %CO2 concentration in the 

gas, TOC, pH and volatile fatty acids. All but the last of these have been investigated using a 

fluidised bed reactor and the degree to which the anaerobic process is non-linear and time varying 

has been assessed, as the level of complexity required to represent anaerobic digestion 'well 

enough' was not clear. Simple linear black box models of low order were investigated, predicting 

over a limited horizon and relying on current and recent data values to refine the prediction. 

Independent black box ARX models were identified for gas production rate, % CO2 , bicarbonate 

alkalinity and Total Organic Carbon using on-line data from a fluidised bed reactor at varying 

organic load. Model predictions looked ahead one sample step (30 minutes) and when validated 

using data obtained in a different time period (separated by 4-8 weeks) gave significant 

predictions in each case. The non-linear nature of the process was found to have little effect over 

the operating conditions investigated. Also the variation of the process within 4-8 weeks period 

was not sufficient to cause the models to predict badly.

The performance of three black box models which were parameterised and validated using data 

collected from the same laboratory scale fluidised bed anaerobic digester, were compared. The 

models investigated were all ARX (auto regressive with exogenous input) models, the first being a
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linear single input single output (SISO) model, the second a linear multi-input multi-output 

(MIMO) model and the third a non-linear neural network based model. The performances of the 

models were compared and it was found that the SISO model was the least able to predict the 

changes in the reactor parameters (bicarbonate alkalinity, gas production rate and % CO2). The 

MIMO and neural models both performed reasonably well. Though the neural model was shown 

to be superior overall to the MIMO model, the simplicity of the latter should be a consideration in 

choosing between them. A simulation with a horizon approaching 48 hours was performed using 

this model and showed that the method was not sufficiently accurate for use in situations where 

pure simulation was required.

This thesis includes the use of a two population deterministic model calibrated using data from a 

fluidised bed reactor operating on a simulated yeast waste, in the development of a Model 

Reference Adaptive Control (MRAC) strategy. The strategy uses a three term adaption 

mechanism, which is described in the thesis as a Fast Adaption Trajectory (FAT) strategy, as it 

was found to be necessary to respond to catastrophic events over short time scales, in order to 

maintain the viability of the bacterial population. Numerical optimisation in a simulation 

environment was used to parameterise the controller, and this was done on the basis of only basic 

design information being available for the reactor which was to be controlled.

The controller was tested on a significantly different Expanded Granular Sludge Blanket (EGSB) 

reactor operated on a sucrose based feed and which did not inform the controller design process 

beyond basic physical information. Two actuation strategies were explored over several months 

of operation, using a single on-line bicarbonate alkalinity monitor, which in the event proved to 

have significant reliability problems.

Not withstanding the problems with the alkalinity monitor, which was dominant in determining 

the success or failure of the control strategy, it was found that the control strategy was able to 

maintain control during start-up, which was the ambition of this part of the experimentation. Both 

actuation methodologies showed promise although the variation of loading rate was not 

adequately tested by the experimentation, which was conducted. The actuation by dosing with 

bicarbonate proved to be better at maintaining control in the face of repeated and severe 

perturbations caused by failure in the bicarbonate monitor system. It is believed that the FAT 

controller is likely to be a transferable technique provided that unmodelled dynamics are not 

excessively dominant and that the reactor system is comparable to a CSTR design with 

predominantly soluble waste in the feed.
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NOMENCLATURE

Symbol Description Units

Kinetic constants

Hamax

Anaerobic system
components
X
S
V
HAc
C
P

Q 
B 
Suffices

da, dm

(S)

Yield coefficients

Acidogenic bacteria growth rate 
Acidogenic bacteria maximum growth rate 
Acidogenic bacteria half-velocity 
Acidogenic bacteria decay rate 
Methanogenic bacteria maximum growth rate 
Methanogenic bacteria maximum growth rate 
Methanogenic bacteria half-velocity 
Methanogenic bacteria decay rate 
Methanogenic bacteria inhibition concentration

Bacterial concentration
Substrate concentration
Product concentration (acetic acid) or reactor volume
Sodium acetate (and sodium hydroxide) concentration
Carbon dioxide concentration
Pressure
Gas flow rate
Bicarbonate dosing

Acidogenic bacteria (2 population model)
Methanogenic bacteria (2 population model)
Input to the reaction vessel
Endogenous metabolism
Generalised index for (-population model
Total, as in total pressure
Gas phase

Substrate —> Acidogenic bacteria
Substrate —> acetic acid
Substrate -» CO2
Acetic acid —» Methanogenic bacteria
Acetic acid -> methane
Acetic acid —*• CO2

h' 1 

mg.r 1h- 1 h- 1 h- 1
mg.r 1h- 1
mg.r 1

mg.1" 1
mg.l" 1
mg.l" 1
mg.l" 1
mg.l" 1
atmosphere
ml.min"
mg.r 1

Physico-chemical constants and reactor design parameters 
Cco2 mole -> mg.l" 1 conversion constant for CO2 
CcM mole ->• mg.l" 1 conversion constant for CH4 
P, Total pressure in gas phase 
V Liquid phase volume 
Vg Gas phase volume 

Liquid flow rate 
Liquid/solid dilution rate ratio 
CO2 mass transfer rate coefficient

F
S
KLa
pH
Bv
%CO2
TOC

Organic loading rate 
Percentage of CO2 in the biogas 
Total organic carbon

atmos 
1 
1 
l.h- 1

h- 1

g.COD.l'.d

mg.r 1
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Symbol Description Units
Parameters and constants
Kit Henry's constant
Ka Acetic acid (CH3COOH) dissociation const.
Kw Water dissociation constant
KC02 H2CO3 (bicarbonate) dissociation constant
Kid Mass transfer coefficient
Sv Avogadro's number

atmos/mol fraction

mol.g"'.mor

Simulation model parameter notation
PCO2
Qch4
Qco2
Va, Vain
HAc
C
Xt
Si
Xm
Xa

"in

BA
F
D
Bv
OLR

Partial pressure of CO2
CH4 fraction of biogas production rate
CO2 fraction of biogas production rate
Acetic acid substrate concentration and supplied at the ingress
Undissociated part of acetic acid Va
Inorganic carbon concentration
Particulate concentration for fraction i
Soluble substrate or product concentration for fraction i
Methanogenic bacterial concentration
Acidogenic bacterial concentration

Substrate concentration at ingress 
Bicarbonate alkalinity 
Flow rate to the reactor 
Dilution rate 
Organic loading rate 
Organic loading rate

Control system parameters
R Control system reference input
y Control system output
em Model error (MRAC structure)
ym Model output (MRAC structure)
/ Cost function used in numerical optimisation
J Loss function
U Control effort
Kp, Ki, Kd Controller adaption mechanism gains

atmos 
l.min" 1 
l.min" 1
mg.r'
mg.r 1
mg.r 1
mg.r 1
mg.r 1
mg.r 1 
mg.r 1

mgCOD.r 1
mg.l" 1 CaCO3 equiv. 
m3.d-'

gCOD.r'd 
kgCOD.ni 3^ 1

Modelling parameters
G,H
A,B,C,D,F
na, nb
ab bi c,, d,, ft
x.y
nk
y 
e
w, W

General transfer functions notation
Black box model polynomial notation
Length of regression vectors used in black box modelling
Black box model coefficients for polynomial of order i
Input and output vectors
Sample retardation
Model prediction
Parameter vector
Feature vector
Neural network weights
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1.0 Introduction

1.0 INTRODUCTION

Biological processes occur naturally in all but the most hostile environments. The origins of the 

use of bacteria in the treatment of waste streams lie unrecorded in the distant past, probably owing 

more to fortune than any understanding on the part of our antecedents. Understanding built 

rapidly over the 20th century, till in this early part of the 21 st century there are a large number of 

learned journals devoted to this field of science. The aims of biological treatment of waste 

include:

• the stabilisation of carbonaceous Biological Oxygen Demand (BOD),

• the removal of nutrients such as nitrogen and phosphorus,

• the elimination or reduction of pathogens,

• the production of energy (biogas) and

• removal of odour or colour before discharge to the wider environment.

These aims are achieved by virtue of the metabolic processes of the various bacterial species, and 

as a result, growth of biomass will occur. This growth will be achieved by the depletion of the 

BOD and nutrients in the waste stream that forms the substrate for the bacteria, thus reducing the 

pollutants. Physical and chemical separation processes generally separate the biomass from the 

treated waste stream in order to minimise the polluting materials, (of which the biomass would 

otherwise form part). These include separation processes such as settling, polymeric additives to 

aid settling, biomass retention by fixed film, e.g. biofilters, sludge blankets and membrane 

techniques. Any surplus (biomass) sludge requires disposal by routes such as incineration, 

agricultural or other land disposal, de-watering and land filling, amongst others.

1.1 ANAEROBIC DIGESTION

Anaerobic digestion (AD) is a subset of biological waste treatment and Graef and Andrews (1973) 

noted that it has been used to treat municipal and industrial wastewater since the nineteen thirties. 

In 1999 a survey referred to by Steyer et al. (2002) indicated that 1300 anaerobic digesters had 

been reported in the literature across the world. Anaerobic digestion occurs naturally in the 

digestive systems of rumen and oxygen free or depleted regions of ponds, lakes soils and marshes. 

With the growth in understanding following research into the field of AD and its underlying 

processes, there has developed a desire to improve the performance of anaerobic treatment 

systems, motivated by economic, environmental and operational concerns. When compared to 

aerobic processes, it is notable that aeration (with its associated equipment and costs) is not 

required and the specific production of biomass in anaerobic digestion is small compared with 

aerobic processes (McCarty (1964a)). This reduces the burden and cost of disposal of excess 

biomass generated by the process compared to aerobic processes. Many other advantages have
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been attributed to anaerobic processes, such as the production of energy rich biogas, by for 

example Zeeman (1994) and Raizada et al. (2002). The high rate of start-up and improved 

flocculation are cited by Lettinga (1995) as further advantages. Anaerobic treatment is often used 

in the disposal of sludge from aerobic systems as a means of reducing the overall biomass wasted 

from the treatment plant. AD also finds considerable application in the treatment of primary 

sewage in septic tanks and relatively small municipal wastewater treatment facilities and in the 

treatment of a wide variety of industrial waste streams.

Organic and inorganic matter is decomposed in the absence of molecular oxygen during AD and 

produces various end products including carbon dioxide and methane. A large variety of bacterial 

species are involved in the AD process, which is often considered to be a three stage sequential 

process. Synergistic interaction between the micro-organisms facilitates the availability of 

suitable substrates and environmental conditions for all the species. The main metabolic pathways 

are routed through the following three bacterial stages (Pavlostathis and Giraldo Gomez (1991)):

First stage bacterial group (Hydrolysis and Fermentation)

Fermentative bacteria — relatively high molecular weight solids such as proteins, carbohydrates 

and lipids are hydrolysed to simpler and more soluble molecules by enzymes, possessed 

fermentative bacteria. Proteins and carbohydrates decompose to amino acids and sugars 

(monosaccharides), while lipids form fatty acids and alcohols, which can be metabolised further. 

The fermentative bacteria metabolise the amino acids and sugars and produce acetate, though 

other volatile fatty acids (VFAs) and organic acids like propionate, butyrate, valerate, lactate and 

others, are often produced as intermediates. Fermentative bacteria are also involved in the 

anaerobic oxidation of fatty acids and alcohols to produce acetate, hydrogen and CO2 . The 

bacteria involved in hydrolysis and acidogenesis are either facultative or obligate anaerobes. The 

former group could grow using molecular oxygen, so can remove oxygen entering the process, but 

also function anaerobically.

Second stage bacterial group (Acetogenesis)

Hydrogen producing acetogenic bacteria - this group uses the higher molecular weight VFAs 

(those other than acetate and including long chain fatty acids and aromatic compounds) as a 

substrate and produce acetate, hydrogen and CO2 . They are inhibited by hydrogen levels in excess 

of about 10"4 atmospheres.
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Third stage bacterial group

Hydrogen consuming acetogenic bacteria - use hydrogen and CO2 to produce acetate.

Fourth stage bacterial group (Methanogenesis)

CO2 reducing methanogenic bacteria — these bacteria perform reductive methanogenesis, which 

involves the reduction of CO2 by hydrogen.

Acetoclastic methanogenic bacteria - provide the alternative methanogenic path from acetate.

The third and fourth stage bacterial groups are obligate anaerobes which are inhibited by oxygen 

and act to maintain low hydrogen partial pressure which would otherwise inhibit the second stage 

acetogenic group.

The micro-organisms involved, particularly the methanogens, have a relatively limited pH range in 

which their metabolism is not inhibited. Over production and under consumption of volatile fatty 

acids may lead to reactor acidification. Under an atmosphere of CO2 and methane, the main pH 

buffering agent is bicarbonate, which may be determined off-line by a simple alkalinity titration. 

Alkalinity is measured by reference to CaCO3 and according to Speece (1996), should be above 

1000 mg T 1 CaCO3 equiv. for stable operation.

Numerous variations to this three-stage model have been postulated, some of which are reviewed 

by Pavlostathis and Giraldo Gomez (1991). The stability and efficiency of the entire process 

depends on the maintenance of balanced consumption and production rates of intermediate 

substrates during changes in operating conditions or disturbances. Imbalance will result in poorer 

treatment efficiency or, in the limit, death of one or more groups of the microbial population. 

Controlling the state of the reactor is therefore a desirable ambition and initial strides in this 

direction were based on improvements to the reactor designs and design procedures (based on 

simulation) as argued by Andrews and Graef (1971), Andrews (1975 a) and Andrews (1975b) who 

considered control actions. Simulation studies would ensure that a specific reactor design would 

maintain bounded operation when subjected to worst case loading and disturbance scenarios. 

Currently AD reactors are grouped into standard and high-rate variants. The former is often used 

for sewage sludge, requiring retention times in the region of 30-60 days. In comparison high-rate 

reactors are able to reduce these retention times to a few days or less. This is achieved by heating 

(which increases the metabolic rate of the microbial population), mixing (which ensures good
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contact with substrate and dispersion of products) and most importantly biomass retention by 

attached film growth or granulation/flocculation. The influent composition is also significant in 
determining the retention time.

In practice, the reactor is seldom at steady state, so it is not possible to assume that the loading 
rate is constant. This implies that appropriate methods are needed to ensure that the state of the 
reactor is within suitable limits, (or preferably, at the optimal conditions). Alternatively, the 
reactor must be designed for the worst case conditions to ensure the survival of the reactor's eco­ 
system. Further improvement has been sought through on-line monitoring of key parameters such 
as pH, gas production and composition, bicarbonate alkalinity and others. Allied to this have been 
strategies aimed at controlling the environmental and metabolic conditions of the anaerobic 
bacteria, (see for example Andrews (1975a); Andrews (1975b); Rozzi and Brunetti (1980a); Rozzi 
and Eng (1984a); Rozzi et al. (1985a); Dochain et al. (1988); Hawkes et al. (1995); Guiot et al. 
(1995)). The control strategies have to date included a range of techniques from human 
intervention and automation, through to fuzzy techniques and expert systems. The research 
reported in Chapter 2 is concerned with investigating a control strategy, to determine if it is an 
appropriate solution for this non-linear, time varying and on occasions, somewhat brittle process.

The waste streams supplied to AD processes are widely variable, deriving from municipal or 
industrial sources. Their constituents are often a combination of particulate and soluble organic 
materials such as proteins, lipids, carbohydrates, polysaccharides, volatile organic compounds (in 
municipal wastes) and these are alongside a bewildering array of other compounds in industrial 
waste streams. A number of models of AD or its stages, have been developed in the literature. 
From the early work of McCarty (1964a); McCarty (1964b); McCarty (1964c) and Andrews 
(1968); Andrews (1969), to later developments e.g. Andrews and Graef (1971); Lawrence (1971); 
Costello et al. (1991a); Rozzi et al. (1985c), amongst many others. Modelling has been a key 

issue in AD research.

1.2 CONTROLLING ANAEROBIC DIGESTION

The desirability of effective control of anaerobic digesters as a means of avoiding imbalance in 

the microbial population has become clear from the literature in recent years. Steyer et al. (1995); 
Rozzi et al. (1994); Dochain et al. (1991) and Renard et al. (1988), have all argued the need for 

control on the basis that the uptake of AD is limited by the brittle nature of the process (perceived 

or otherwise). The resulting focus on control has been achieved by an increasing understanding of
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reactor behaviour particularly in conditions of rapid changes in load. Some control strategies have 

been encouragingly successful (Steyer et at. (1999)), however the non-linear and time varying 

nature of the process is likely to prove taxing in situations where deviations from a tightly 

specified performance are undesirable, for reasons of process stability. Significant successes have 

been reported where adaptive strategies have been employed, such as in the work of Ryhiner et al. 

(1992) and Renard et al. (1988). Many of the reported control strategies have been investigated 

through simulations, although a fast growing body of work reports success on laboratory and pilot 

scale systems. The strategies employed are either based on soft computing techniques, simplified 

non-linear models of the biological process linearized by means of appropriate feedback, or 

models in which the parameters have no significance with respect to the biological or physical 

processes involved.

A number of anaerobic digester studies (which will be discussed further in Chapter 2) have used 

on-line Bicarbonate Alkalinity (BA) as a control parameter. BA is a key parameter, which 

indicates the buffering capacity of the system and which has the potential to help to maintain a 

stable system in the face of changing organic and toxic load. This is particularly the case when 

BA is used in association with other informative on-line parameters such as gas production rate, 

%CO2 concentration in the gas, and pH. Volatile Fatty Acids (VFA's) would make a good 

alternative and have been monitored on-line by automatic titration (commercial instruments are 

now available), infrared spectrometry (Steyer et al. (2001)), and UV adsorption techniques, but 

there are at this time significant problems in discriminating between the VFA species. However, 

on-line GC (Find et al. (2001)) is capable of individual VFA determination and it is arguable that 

the cost of such systems is not excessive, although this technology is not in general use 

industrially. BA gives a measure of the buffering capacity of the reactor against the effects of 

VFA build up, which is analogous to a safety margin, which as usual is introduced as a 

precautionary measure. VFA measurements alone do not give this 'margin'.

In order to control the AD process, it is necessary to take an action, which is causal. The control 

actions available in anaerobic digestion are not numerous, but altering the organic loading rate or 

dosing with alkali are amongst the contenders. Control actions are considered in Section 2.0.1.

1.3 OBJECTIVES OF THIS STUDY

i. AD is well known to be a non-linear process, but the degree to which this process could be 

modelled parsimoniously using linear and non-linear black box models was not clear from 

the literature. Therefore the first objective was to discover if simple models of the type
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mentioned were sufficiently accurate to represent an anaerobic digester subject to relatively 

high loading and stressed conditions over many weeks (which would also consider time 

variations in the reactor behaviour). An existing fluidised bed reactor was used in this study, 

in the belief that the results would be reasonably transferable to any high rate reactor, which 

was well mixed.

ii. Having determined the success, or otherwise, of the simple black box approach, the second 

objective was the establishment of a suitable modelling strategy which could be used in the 

design of a control strategy.

iii. The third objective was to select and investigate a suitable control strategy by simulation 

techniques using Computer Aided Control System Design (CACSD) tools. The control 

strategy would be developed with an ultimate goal (partly beyond the current study), to 

deliver a generic control system, which could be shown to be applicable to anaerobic 

digesters, which are different in design and operation. The control system, based on BA as a 

measured variable, should require a minimum of instrumentation, expertise and prior 

knowledge of the reactor and should be able to control the anaerobic digester from 

commissioning and start-up to steady state under realistic loading conditions.

iv. The control strategy would at this point, be tested on a laboratory scale reactor and its 

performance investigated.

1.4 THE ORGANISATION AND STRUCTURE OF THE THESIS

The thesis has been organised in the style of a typical engineering report. The content is presented 

chronologically to a large extent, because of the nature of the work, which reflects the synthesis of 

a control system, its realisation and subsequent analysis.

Chapter 1 has introduced the reader to the wider context of AD and places the control of 

bicarbonate alkalinity into perspective within this field. It then goes on to state the four main 

objectives of the study.

In Chapter 2, the thesis considers the current state of the literature concerning the modelling and 

control of AD and the historical source from which it grew and from which the study draws and 

seeks to push forward the science in later chapters. As the control of AD is a highly 

multidisciplinary subject, an attempt has been made in this chapter to deal with the literature in a 

modular way. The chapter starts with a general look at control and modelling in AD and focuses
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later on the specific parameter of interest, bicarbonate alkalinity and its use in monitoring and 

control.

Chapter 3 presents the materials and methods employed in the experimentation, modelling, and 

data analysis and control system synthesis.

Chapters 4 and 5 present the results, discussion and the conclusions drawn from the work. 

Appendix A contains associated software files that were used in the execution of the work and are 

stored on a CD. Appendix B includes publications derived from the work that have been 

published in journals or at conferences.
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2.0 CONTROLLING ANAEROBIC DIGESTION

AD is generally considered to be a non-linear, time varying and complex process (e.g. 

Emmanouilides and Petrou (1997) and Simeonov et al. (1996)). Anaerobic digesters will 

eventually convert organic materials into methane and carbon dioxide, however the digesters can 

differ with respect to their bacterial populations, prevailing environmental conditions and 

sequence of reactions to obtain the end products. The bacterial species in the inoculum or seed, 

substrate composition, temperature, loading rate, hydraulic retention time (HRT), solids retention 

time (SRT), mixing and reactor design determine the final operational characteristics. 

Maintaining efficient operation depends on effective control (be it manual or automatic). This is 

particularly true in industrial waste treatment, where a build up of volatile fatty acids can occur 

rapidly and can lead to reactor failure. Prevention of such failures normally requires knowledge 

of the characteristics of the particular digester and waste, so that by monitoring specific control 

parameters, impending failure can be detected and information suggestive of an appropriate course 

of action can be extracted.

What is possible in control or what is good control in the field of AD is largely a question of 

opinion, though at the extremes of poor operation where there is a clear tendency to sour, 

consensus is likely. In aerobic systems, where a unifying model has existed since Henze et al. 

(1987), there have been benchmarks published, such as Vrecko et al. (2001), Vrecko et al. (2002) 

and Vanrolleghem and Gillot (2002). In the anaerobic systems, there remains little to compare 

with these and therefore benchmarking control strategies is not in this sense possible at this stage. 

The data must therefore be assessed in the context of the researchers' own expectations and 

against any comparable published information.

2.0.1 A perspective on monitoring and control of anaerobic digestion

A discussion of the factors which govern the nature of AD was presented by Kotze et al. (1969), 

with specific reference to control, not necessarily in the automatic sense. In the past, many others 

(e.g. Andrews and Graef (1971); Weiland and Rozzi (1991)), have considered the relevant 

parameters for controlling AD, in what has since become a rather active field of research. Early 

on, Andrews (1975a) and Andrews (1975b) had already gained considerable understanding of the 

possible approaches to control and detailed the commonly used variables including:

a) volatile acid concentration,

b) pH,

c) alkalinity,
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d) gas flow rate,

e) gas composition,

f) volatile acid/alkalinity ratio,

g) unionised acid concentration and 

h) rate of methane production.

The measurement of these and more recent additions and techniques such as Total Organic 

Carbon (TOC), turbidity/suspended solids and many others, were reviewed and presented by 

Guwy (1995), Vanrolleghem (1995) or specific methods for example IR spectrometry methods by 

Steyer et al. (2001). Steyer et al. (2002) concluded later, as a result of four years of operating a 

well-instrumented up-flow anaerobic fixed bed reactor of 1 m3 volume, that current monitoring 

technology offered a trade off between reliability and high information content. Temperature, pH 

and flow could be measured reliably, but parameters such as TOC, COD and VFA were described 

as 'fragile'. The possibility exists to use fault diagnosis, as proposed by Genovesi et al. (1999), 

Steyer et al. (2001) and Lumley (2002). Andrews, as early as 1971, went on to propose the 

following control actions:

a) temporary halt in organic loading,

b) decrease in the rate of organic loading,

c) base addition (such as soda ash or lime),

d) dilution of the digester content,

e) addition of well digested sludge from another digester and

f) recycling and scrubbing of CO2 from the digester gas to reduce carbonic acid.

In terms of control actions (or actuation) possible, there has been little which is fundamentally 

different to add to the above, though some issues are worth considering. CO2 and hydrogen gas 

stripping by means of a silicon membrane was tested by Voolapalli and Stuckey (1998), during 

organic shock loading, demonstrating that pH could be stabilised and that improvements in acetate 

and VFA degradation could be improved. Biofilm build-up on the membrane was however, cited 

as a concern. Nitrogen sparging by Mollah and Stuckey (1992), with regulated levels of CO2 and 

hydrogen in the circulating gas, affected the reaction pathways. The system for acetone-butanol 

production using a continuous culture of alginate-immobilised Clostridium acetobutylicum, 

showed that hydrogen biased the reaction away from acids toward solvents and CO2 affected the 

acetone/butenol ratio. Similarly, Mollah and Stuckey (1993) found that stripping the product 

affected the reaction dynamics, but not in a straightforward manner. The prospect of controlling 

the methanogenesis and generally the COD removal in AD using CO2 and hydrogen stripping by
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sparging would appear to have some merit, with the former affording pH control through the 
carbonic acid depletion and the latter decreasing inhibition of the hydrogen producing acetogens.

Vandenheuvel et al. (1995), suggested that the application of fluctuating hydrostatic pressure 
could aid mass transfer in methanogenic granules and in as much, could improve biological 
processes where gas entrapment may occur.

Looking at the more speculative end of the control actions spectrum, for the related process of 
ruminant digestion, the use of ionophore antibiotics, methane inhibitors, inhibitors of proteolysis 
or deamination;, elimination of protozoa or fungi from rumen and probiotics, was investigated by 
Jouany (1994). The aim was to control the products of digestion available to the animal and 
hence tailor the growth to specific production of say, meat or milk. It is conceivable that similar 

dosing strategies could be adapted to AD applied to waste treatment or the production of acids etc. 
However with the likely cost of operation and the build-up of resistance which is likely to accrue 
with the overuse of such drugs, it is difficult to foresee widespread use of such techniques.

AD takes place in a three phase (solid, liquid and gaseous) environment, where each of the phases 
has significance for this physical, chemical and biological system. The carbonaceous material, 
which forms the feed in a continuous reactor, is in general a composite particulate suspension in 
combination with soluble components, which have associated with them a chemical oxygen 
demand (COD). The biodegradability of the feed is not necessarily complete, and the degree to 
which it is has a considerable effect on the efficiency of the system to remove COD.

Refractory, or inert (with respect to biodegradation) components, be they soluble or otherwise, 

will not be converted regardless of their residence time in the reactor and methods are required to 
either make the materials biodegradable or to perhaps chemically oxidise them. It is possible that 
the disintegration/hydrolysis steps can become rate limiting in the AD process overall and 
Pavlostathis and Gossett (1986) and Gossett and Belser (1982) discuss hydrolysis with respect to 
the commonly encountered problem of the digestion of sludge from aerobic systems. The use of 
pre-processing by heat treatment (Gossett et al. (1982)) or ultrasound (Tiehm et al. (1997)) has 

been considered, in order to improve the disintegration and subsequent hydrolysis, but would 

require specialised equipment and energy input. Separation of the acidification and methanogenic 

stages has been used to good effect e.g. by Ghosh (1991), Strydom et al. (1997) and Dinsdale et 

al. (2000), (Appendix Bl). This dynamic effect derived from the hydrolysis and disintegration of 

particulate, which is dependent on the chemistry and physical nature of the waste, can be
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significantly different between applications and it is therefore difficult to quantify this variability 

without empirical investigations.

There has been considerable process development, with the combination of various designs of 

anaerobic digester with aerobic, physical and chemical (mainly oxidation) systems in the 

treatment of difficult wastes such as dye waters (e.g. OTsfeill et al. (1999)).

The composite particulate fraction is enormously variable, but will generally comprise lipids, 

proteins and carbohydrates, along with inert components. In industrial waste streams, processed 

and synthesised materials can considerably complicate the chemistry of the stream. The 

extracellular processes, which disintegrate and hydrolyse the solids to simpler monosaccharides 

and amino acids are catalytic reactions, which use enzymes secreted by bacteria in close proximity 

to the particulate fraction. As is stated by Batstone et al. (2002), modelling the disintegration from 

fundamental principles is not viable because of the many mechanisms by which it takes place. 

The disintegration process and the subsequent hydrolysis takes time and is therefore a dynamic 

process, which is usually represented as a first order process. Some researchers have included 

more complex mechanisms, such as Jain et al. (1992), who allowed for variation in the 

concentration of enzymes, within the Michaelis-Menten equation.

The physico-chemical state of a reactor depends on the bacterial consumption and products and 

the fluxes between the phases (Rozzi (1980b)). Parameters such as pH, BA and the partial 

pressures of the gases that are present are coupled to the biochemistry of the system. To describe 

the biochemistry of AD, without including the physico-chemical pathways is to oversimplify the 

process, as static operating conditions of the physico-chemical state cannot be maintained, even by 

complex intervention.

2.1 MODELLING OF THE ANAEROBIC PROCESS

The understanding of a system is greatly enhanced if a model can be deduced and validated and 

AD is no exception. Ljung (1987) gives ample justification that a model is necessarily a 

simplification of a real system and as such cannot comprehensively represent the behaviour of the 

system. The purpose to which the model is to be put will often drive the assumptions that can be 

made, the dynamic processes that are used (and how they are represented) and the mathematical, 

physical or other techniques employed. Models are often used to support our understanding of the 

underlying processes (Vassos (1993)). This has been very true of AD, where hypotheses have 

been tested with models (e.g. Bozinis et al. (1996)) and over time have significantly increased our
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confidence to the point that the first generalised model of AD (ADM1) has been published by 
Batstone et al. (2002).

Models are usually judged on their fitness for purpose and may be used in the design of new 
processes and upgrades to assist in the operation of systems and the training of operators, and/or 
in the diagnosis of unexpected behaviour as opposed to normal operation. A common aim of 
modelling studies (e.g. Jones et al. (1992)) is to identify a dynamic model which would be suitable 
for on-line estimation and forecasting, providing accurate predictions of digester behaviour 
sufficient for use in process control and controller design. The applicability of various models is 
not clearly prescribed, so models such as ADM1 may be useful in a number of areas. The 
suitability of a model is however dependant on the application and its quality is judged by its 
ability to predict certain parameters over a desired time horizon. The prediction horizon will vary 
between applications, but the degree of difficulty in maintaining relatively accurate predictions 
becomes more difficult as the horizon is extended. It is often possible and desirable to improve 
the performance of a model by supplying the model, continually and in real-time, directly with 
data from the process that is the object of interest. This is much the same as weather forecasting 
which is indeed a dynamic model.

The basic underlying processes, which must be modelled are; hydraulic, physical (such as mass 
transfer), chemical and biological and are generally coupled in complex interactions. This 
complexity is evident in the large process rate and stoichiometry matrix for biochemical reactions 
and several physico-chemical rate equations of ADM1, which is itself a rationalised and 
simplified model.

The normal approach to the modelling of bioreactors, commonly starts with a notional reactor of 
fixed volume (batch or continuous) the content of which is well mixed (e.g. McCarty and Mosey 
(1991)). In practical terms, this is almost achieved by a well-designed Continuous Stirred Tank 
Reactor (CSTR). This approach simplifies the hydraulic behaviour of the process and allows the 
assumption that the biochemistry is straight forwardly coupled to the hydraulic regime, with 
assumed complete access of the bacteria to substrates and similar issues. It is clear that as the 
complexity of the reactor design is increased, by including, say, suspended growth, fioculation, 
recirculation, channelling, membrane separation of phases and sequencing systems, then the 
simple CSTR approach will break down. For example Harmand et al. (2002), by using 
constrained optimisation to determine the trend in effective volume and biomass concentration in 
the reactor, produced a model to predict clogging in a fixed bed anaerobic digester and,
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significantly, the work shows that the process is time varying because of clogging. Often, these 
complications are dealt with by modifications to the CSTR concept.

An example of unmodelled dynamics in ADM1, is the access to substrates and exposure to 
inhibitory agents by various species of bacteria in a floe, which is governed by the physical 
characteristics of the floe and the distribution of bacterial species within the floe. Access is also 

affected by the internal and external hydraulic and gas transfer characteristics of the floe and 
reactor respectively. Some of this complexity can be seen for example in Uyanik et al. (2001) and 
Tay and Show (2001).

2.1.1 Issues of complexity in the modelling of anaerobic digestion

It is not the intention of the author to produce a comprehensive treatise on the modelling of 
biological processes such as the work of Olsson and Newell (1999) or AD in particular, as in 
Bastin and Dochain (1990), however key issues are worth presenting.

The extent to which the basic processes in AD are considered determines the complexity of the 
model. There is a tension between the accuracy and discrimination of the model and the problems 
derived from complexity in the model. On the one hand, it would be desirable to have a 
comprehensive representation of all the processes involved, but on the other hand, this would 
normally be at the expense of simplicity, with large numbers of parameters. Many of the 
parameters would need to be calibrated or identified, (in the system identification sense). Ljung 
(1987) suggests that in situations where a large number of parameters of a non-linear model 
require calibration, the practical identifiability requires testing by looking at the sensitivity of the 
input/output relationship with respect to the parameters and the variances of the estimates (which 
should be related). The risk that the system becomes impossible to identify, within the noise and 

accuracy of available measurements, becomes higher with increasing complexity.

The principle of parsimony is a sensible approach to modelling in general and is particularly 
relevant in control system design and analysis. Theoretical and practical identifiability plays a 
key role in limiting the model complexity to the minimum number of parameters able to represent 

the system 'well enough' for the desired function.

In considering the anaerobic process, it is usual to define the conversion routes by which the 

biodegradable fraction of the feed is converted eventually to the end products of AD. With this
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approach, the specific bacterial species are not defined or considered, as the mixed culture 

includes trophic groupings, which metabolise the various substrates to specific products along the 

defined conversion routes. Some bacterial species can be included in a number of trophic groups 

and may change their metabolism depending on the reactor conditions. This is well illustrated by 

a block diagram such as that shown in Figure 2.2.1 which is repeated from Batstone et al. (2002).

Complex paniculate and inactive biomass

Figure 2.2.1 Biological processes included in the anaerobic model (ADM1).

(1) Acidogenesis from sugars; (2) Acidogenesis from amino acids; (3) Acetogenesis from Long Chain Fatty 

Acids (LCFA); (4) Acetogenesis from propionate; (5) Acetogenesis from butyrate (HBu) and valerate (HVa); 

(6) Acetotrophic methanogenesis; and (7) Hydrogenotrophic methanogenesis. (after Batstone et al. (2002))

In essence, the soluble substrates that result from hydrolysis, such as amino acids, 

monosaccherides and some lipids are consumed and converted to volatile fatty acids, (eventually 

acetic acid, balanced by their base equivalents) and CO2 , CH4, H2 and HCO3". The possibility 

exists therefore, to consider different trophic groupings for each conversion path as has been done 

by numerous researchers and rationalised and summarised into the ADM1 presented by Batstone
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et al. (2002) more recently. As all the VFAs reduce eventually to acetic acid, (though not 

exclusively as hydrogen can also be formed), there exists scope for simplification, normally at the 

cost of model accuracy.

Lactate for example, was considered by Costello et al. (199la) and Romli et al. (1995), and more 

recently by Skiadas et al. (2000) in their work on the periodic anaerobic baffled reactor, (PABR). 

Also, the production of ethanol in preference to acetate, was discussed by Ren et al. (1997), in the 

context of a high rate acidogenic reactor. Lactate and ethanol have often been neglected from the 

list of products because they are only of relevance in the case of high loading and transient shocks 

or low pH levels. In testing control strategies, shock loading is often employed and in any case is 

a key reason for adopting control in the first place. It has been shown by Romli et al. (1995), that 

lactate is an intermediary product with a short life that only becomes apparent during shocks, but 

because of its pKa value, will cause an over estimate of pH if not included (Batstone et al. 

(2002)). Ethanol, according to Ren et al. (1997) is only produced in preference to acetic acid, in 

conditions where the pH<5.

The importance of hydrogenotrophs and acetate utilising bacteria was considered by Voolapalli 

and Stuckey (1999), to try to assess their influence in the degradation of butyrate and propionate. 

Spiking the reactor with cultures enriched with the trophic groups of interest, they were able to 

conclude that improvements in the degradation of butyrate and propionate were much greater 

when acetate utilising bacteria were increased as opposed to hydrogen and formate utilizers. 

Voolapalli and Stuckey (2001) went on to show that when the culture had acclimatised to pH>7, a 

shock load would cause the degradation to proceed through the formate route, while if 

acclimatised to pH<6.5, hydrogen production would be preferred. It is clear therefore that initial 

conditions are not only influential in the kinetic behaviour of AD but can redirect the metabolic 

pathways. Furthermore, in the case of hydrogen/formate, the conclusions of Voolapalli and 

Stuckey (2001) and Guwy et al. (1997), suggest that hydrogen is not as useful as a control variable 

as might be expected (e.g. Guiot et al. (1995)), because of its dependency on the historical state of 

the reactor. Ren et al. (1997) looked at the production of ethanol and acetic acid as opposed to 

propionic acid and the influence of pH on the routing. They concluded that the production of 

propionic acid was not necessarily related to high hydrogen partial pressure, as this parameter was 

high (50kPa) at about pH 4.5 when acetic acid was produced in preference to propionic acid. Ren 

et al. (2002) went on to consider the reasons for the production of propionic acid and conclude 

that it was a function of oxidation reduction potential (ORP) and pH and not hydrogen partial 

pressure. The linkage with hydrogen might be deduced from Vavilin et al. (1995), though they

PhD Thesis - Giuliano C Premier 2003 15



2.0 Controlling anaerobic digestion

observe only the coincidence of hydrogen partial pressure decrease with the start of propionic acid 

production.

A measured consideration by Batstone et al. (2002) and also the author, has concluded that the 

model resolution is relatively untouched by the exclusion of these and other degrees of freedom, 

provided the control strategy can be formulated to avoid the most sensitive parameters such as 

formate, hydrogen and lactate.

It becomes clear therefore that simplification of the model, by which one can understand the 

anaerobic process, leads to degradation of its predictive capacity. For example, by considering 

only soluble waste when particulate is present, a single volatile fatty acid species, or by assuming 

that the pH will be maintained above pH 5, these simplifications will limit the applicability of the 

resulting control strategy, which relies on the model for its development. A similar argument 

follows for inhibition through hydrogen, pH, toxic substances and the effect of temperature, along 

with any other unmodelled dynamics. However, many reactors are operated on waste streams 

which are not rate limited by particulate at the ingress, and that can sustain reasonably stable 

operation under control thus maintaining pH and avoiding lactic acid build up, or H2 inhibition of 

the acetogens. Temperature is also independently controllable and as such, may be eliminated 

from dynamic considerations. The reactor design (Grasius et al. (1997)), can vary considerably, 

but it is often possible to find a degree of equivalence to the CSTR configuration, and as such all 

well mixed single stage reactors that are reasonably represented in this way, are again to a degree, 

equivalent.

The structures of the models, though often based on the basic underlying processes, are not 

necessarily so. The problem can be viewed as a 'black' or 'grey' box where the model structure is 

essentially a mathematical device, which will produce appropriate cause and effect relationships 

and the model parameters may be partially or totally unrelated to the underlying processes. Where 

the model structure is related to the underlying processes, the models are usually of the lumped 

parameter model type, while those employing grey or black box techniques can use various 

devices from regression models to neural networks, fuzzy modelling, wavelets and expert systems, 

to name some examples.

A number of dynamic and structured mathematical models have been described for AD by many 

researchers such as Andrews (1969); Mosey (1983); Costello et al. (199la); Costello et al. 

(1991b); Jones et al. (1992); Vavilin et al. (1994)). As introduced above, the first AD model,
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(analogous to the ASM models for aerobic systems) ADM1 (Batstone et al. (2002)), has been 

published. Such models may require information, such as bacterial kinetic parameters, substrate, 

product and bacterial concentrations (which are not easy to determine), for use in mass balance 

equations. A common approach adopted by for example Simeonov et al. (1996), was to use an 

identification process to estimate some of these parameters in a non-linear and time-varying 

scheme, or Marsili-Libelli and Beni (1996) who similarly identified parameters in mass balance 

type models. Hoh and Cordruwisch (1996) proposed a kinetic model which allows for the effects 

of substrate inhibition without the need to determine a large number of parameters experimentally. 

Bastin and Dochain (1990) presented a rigorous study of parameter estimation in this field, which 

has been central to numerous adaptive control studies. In general, model calibration is required 

and this usually involves considerable experimental effort and limited confidence can be 

maintained over a long time period because of selection and shift in the bacterial population.

When used in control, the model is not necessarily used to achieve a deeper understanding of the 

underlying process (though this is normally beneficial). There are significant benefits derived 

from the use of the simplest model, which is able to represent the system to an arbitrary accuracy 

specified by the designer. Furthermore the need for a non-linear model may not be paramount if 

the process can be represented by a piece-wise linear model, which would be the case if the model 

were to adapt 'rapidly enough' to represent the process at differing operating conditions and times 

in its life. Given that this is possible, black box adaptive control schemes could be employed. 

Fuzzy (Marsili-Libelli and Muller (1996); Muller et al. (1997)) and Expert Systems (Chynoweth 

et al. (1994); Pullammanappallil et al. (1998)) are two alternative approaches which like neural 

networks, (Boskovic and Narendra (1995)) show considerable scope. Others methods are 

mentioned by Olsson and Newell (1999).

The work of Premier et al. (1997) (Appendix B2), investigated whether a fluidised bed anaerobic 

digester can be represented adequately by simple linear black box models of low order. The 

models were employed to predict over a limited horizon and rely on current and recent data values 

to refine the prediction. Marsili-Libelli and Muller (1996) looked at parameterising typical 

lumped parameter models from data collected from the same reactor and influent as that used by 

Premiere/ al. (1997).

The need for modelling in the analysis and design of control systems stems from the lack of any 

realistic alternative. Models have the ability to enhance understanding of complex non-linear, 

time varying and highly coupled processes such as the AD process. It is important to differentiate
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between steady state models and dynamic models, which consider the transient and steady state. 

The former, though often useful for system design, is limited in that it cannot predict the 

consequences of perturbations in the short to medium time scale, and as such is of limited use in 

control system design. By using a representative model and a suitable simulation environment, it 

is possible to rapidly investigate the characteristics of the process for a number of differing 

situations. The experimental costs of an equivalent laboratory based study may be prohibitive. 

Naturally the model's limitations and the assumptions made are crucial to the reliability of the 

modelled information. Never the less, in the design of control strategies for the non-linear AD 

process, simulation is an important tool.

2.1.2 Lumped parameter modelling and kinetics of the AD process

The principals of lumped parameter modelling are in widespread and multi-disciplinary use. 

Ohms law is a simple example, where the impedance is assumed to be concentrated at a point, 

though in reality we know that it is distributed throughout the devices and wiring. The resulting 

model however, is sufficiently accurate to be useful. A similar approach is often adopted to model 

biological process, with Andrews (1968), Andrews (1969), Andrews and Graef (1971), Andrews 

(1993) and Graef and Andrews (1973) being early prime protagonists. Many others such as 

Lessard and Beck (1991), Husain (1998), Rozzi et al. (1985a), Pavlostathis and Giraldo Gomez 

(1991), Elfadel et al. (1996) and Batstone et al. (2002), have followed.

The dynamics of the models mentioned above are usually developed by considering the mass, 

energy or ionic balances:

(rate of change of reactor content)=(rate of inflow)-(rate of outflow)+(rate generated)-(rate consumed),

Volumes defined by the phase boundaries and the assumption of perfect mixing are used as a 

starting point from which deviations can be modelled by simple mathematical mechanisms. 

Components of the flows may have different residence times and would therefore need to be 

accounted for. This is particularly true of particulate solids. The assumptions made in modelling 

will naturally have significant effects on the resulting model. For example, consideration of 

hydraulic behaviour of a reactor may assume that an increase in inflow will immediately be 

reflected in an increased outflow, if the liquid volume is to remain constant. The reality may be 

that slight volume changes occur because of a pressure drop across a restricted outflow. Dilution 

effects are normally considered first order, based on the fact that complete mixing exists and
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component densities remain constant. Mass transfer between phases, such as the transfer of CH4 

or H2 to the gas phase or the reversible transfer of CO2 between the liquid and gas phases, is 

usually modelled as a physical (in the case of say CH4) or physico-chemical (in the case of CO2 ) 

effect. The physical effects are governed by a lumped factor K,a which is a coefficient 

incorporating the adsorption coefficient K, and a factor a which is an area/volume ratio, (Olsson 

and Newell (1999)). The physico-chemical model of the CO2 , bicarbonate and pH equilibrium is 

set out by several authors such as Rozzi (1980b), Marsili-Libelli and Beni (1996) and Batstone et 

al. (2002) and is considered in detail in the lumped parameter model used as the basis for 

controller design in this study.

Kinetic models of biological systems

The kinetics of biological processes have been discussed in depth by Pavlostathis and Giraldo 

Gomez (1991), Olsson and Newell (1999) and Dochain and Bastin (1986), for example. A survey 

of kinetic models of specific growth rate is included in Bastin and Dochain (1990)). Though not 

exhaustive, it details models with dependence on:

> Substrate concentration

> Biomass concentration

> Substrate and biomass concentrations

> Product concentration

> Substrate and product concentrations

> Substrate and dissolved oxygen concentrations (aerobic processes)

> Substrate and dissolved oxygen and product concentrations (aerobic processes)

> Substrate concentration and inhibitory metabolite concentrations

> pH

> pH and temperature

> pH and substrate concentration

The overall specific growth rate is then calculated as the product of the specific growth rates for 

the various dependence factors.

The most widely used models are dependent on substrate concentration and are the Monod, 

(related to the Michaelis-Menten Law which deals with enzymes as opposed to microbial growth)
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And Haldane (Andrews (1968))

—— ̂ <£> (2 .2)

Where //0 = //,._ 1 + - (2.3)

Equations 2.1 and 2.2 use the Monod kinetics which assumes that the biomass growth rate 

and the rate at which substrate is consumed (y//^), would be proportional to the amount of 

biomass in the reactor. The logical assumption from which this derives is that if the population 

doubles, so the requirement for nutrition doubles.

Rate limiting kinetics

The single population and single substrate CSTR described above is, for many situations, an over­ 

simplification. In most reactors there will be a consortium of different bacterial species 

metabolising a number of limiting substrates and as a result, producing extra-cellular metabolites 

which may be substrate or inhibitory to other species and may be in the liquid or gaseous phases 

of the reactor. They will often affect the ionic equilibrium of the reactor. Furthermore, the notion 

of 'rate limiting' step in the sequential anaerobic process, as postulated by Lawrence (1971), 

suggests that one of the steps (usually methanogenesis or hydrolysis) is significantly slower than 

the other steps and will therefore dominate the dynamics. This step is effectively the weak link in 

the process and is the likely cause of instability within the process when it is subjected to stress 

(in terms of loading or disturbances). Another element of complexity is added by the endogenous 

respiration of bacteria resulting from death, maintenance, lysis, self-destruction or predation, but 

all having the effect of reducing the mass concentration of bacteria. As AD is essentially a low 

growth rate process, accounting for endogenous respiration is important and is often dealt with by 

the introduction of a net growth rate to include positive and negative contributions to growth.

2.2 APPLICABILITY OF CONTROL STRATEGIES TO ANAEROBIC 

PROCESSES

The field of automation and control is very wide and has demonstrable applicability to AD, in 

many ways (Vassos (1993)). There is little that one would wish to exclude from this field, as a 

possible tool to aid the robust and reliable control of AD. This makes a definitive study of the
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control of AD beyond the reach of any single treatise. Works such as Olsson and Newell (1999) 

and Bastin and Dochain (1990), have a considerable impact on the direction of research, while at 

the same time reflecting the work that has previously been published in this area. Essentially, the 

research into the control of AD (without considering many underlying process issues) is aimed at 

several coupled outcomes (Olsson and Newell (1999)), which include: 

> the efficient use of reactor (and even storage and sewer) volumes 

> diagnostic systems; software sensing using model based estimation 

> the development and management of process models and simulation tools and methodologies

and protocols for calibration of models

> the measurement of active biomass and the development of mixed populations 

There is considerable uncertainty with regard to the cost effectiveness surrounding the balance 

between reactor volumes and the use of control systems. The break point will be different for 

different situations, with considerations such as land value and labour and finance costs having 

major effects on the decision to adopt control. However, clear and accurate information on 

performance, provided at the design stage, will assist in the decision making. It is believed, 

(Steyer et al. (2002)) that the cost effectiveness will swing progressively towards control, with 

improvements derived from research. This is particularly true with regard to sensing systems, but 

modelling and simulation will improve confidence at the design stage. The difficulty in 

establishing biomass activity in anaerobic systems is a key issue in both the initial conditions for 

modelling and in considering the development of the microbial population. Guwy et al. (1998), 

have demonstrated alternatives to respirometry in aerobic activity measurement, whereby catalase 

present in the cells is considered to be a measure of the activity of the biomass and is measured by 

its ability to evolve oxygen from peroxide. Analogous measures are required for anaerobic 

activity.

It remains true to say that AD is a non-linear time varying process and as such, the vast literature 

regarding the control of such systems is to some degree applicable.

Start-up of an AD reactor can be considered to be a prolonged and particularly critical shock- 

loading regime and the first start-up of such a process would be accompanied by considerable 

uncertainty. In general, the design of the control strategy requires a representative model of the 

reactor and its associated processes. If a model were available, it is likely not to have been 

parameterised for the specific digester. Considering the likely scenario at the point of 

commissioning, knowledge of the specific reactor will be limited to design specifications. In the 

case of restart, historical operating data would also be available, but the use of these data in
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parameterising a model would be at once a significant intellectual effort and an exercise which 

would produce dubious model performance with respect to the restart reactor characteristics. The 

accuracy of a model depends on the source of the data from which it is parameterised. These 

models may be traditional in their structure as in Andrews (1968), or fuzzy in a general sense (e.g. 

Marsili-Libelli and Muller (1996) or Premier et al. (1999)). On-line identification would take care 

of time variations, but usually depends on a number of on-line measurements, and consequently, 

and not withstanding the exceptions mentioned in the review of literature, may involve 

considerable instrumentation.

It would be beneficial to the AD operator and commissioner to be able to control the start-up over 

its entire duration, using a minimum number of on-line sensors and relying as far as possible on 

the generation of model information from a system other than the one being commissioned. The 

benefit of such an approach would be reduced commissioning costs from the reduced 'cost of 

knowing' and reduced instrumentation requirements. It could be postulated that start-up can be 

accelerated compared with a manual approach and that risk of failure might be reduced.

Controlled start-up of AD is considered to be an important objective of AD reactor control and is 

not necessarily unrelated to normal operation. Start-up control of biological reactors has been 

considered by a number of authors such as Moller and Jorgensen (1997); Renard et al. (1991); 

Rozzi et al. (1994); Weiland and Rozzi (1991). As is the focus of this work, Rozzi et al. (1994) in 

particular used Bicarbonate Alkalinity (BA) as a control variable, but used a markedly different 

control strategy. Maintaining a BA buffering margin is a means of controlling the pH drop caused 

by a build up of Volatile Fatty Acids (VFAs), (McCarty (1964b); Rozzi et al. (1985a)). When the 

seed is introduced to a digester at start-up/commissioning, it is often derived from systems 

operating on waste streams with significantly different characteristics. The size of the population 

could also be relatively small and in any case the viable fraction of the biomass and its distribution 

in terms of trophic groups would be difficult to ascertain. The combination of these factors means 

that feeding can be increased only slowly, with the expectation that the microbial population is 

time varying, in its ability to treat the waste. This time variation is not necessarily restricted to 

start-up, so that a controller suitable for start-up may be able to cope with disturbances during 

normal operation.

2.2.1 Automatic control strategies used in anaerobic digestion

There have been several hundred publications with direct relevance to the control of AD. These 

are spread widely, from those concerned with the parameters of significance, such as the work of
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McCarty (1964a), Kotze et al. (1969) and Andrews (1975a) and Andrews (1975b), in the earlier 

work in this field to those concerned with highly specific applications and/or techniques such as 

Alcaraz-Gonzalez et al. (2001), Tay and Xiyue (1999), Hilgert et al. (2000) and Tartakovsky et 

al. (2002) more recently. Apart from this 40 year spread, there is also a significant spread in 

complexity of approaches. Control strategies which had simplicity as a positive ambition have 

been considered by a number of authors e.g. Ryhiner et al. (1993), Swamy et al. (1997), Steyer et 

al. (1999), Muller et al. (1997), Perrier and Dochain (1993) and Marsili-Libelli and Beni (1996). 

The latter looked at the feasibility of FDD control using bicarbonate alkalinity as a control 

parameter, and thus has relevance to the current study. Steyer et al. (1999) adopted pH and gas 

flow rate as measured variables and adjusted the loading rate to regulate the system. This 

approach has the major advantage that the reliability and cost of the sensors involved are of an 

order that they would be likely to be used industrially. The philosophical approach and execution 

have resonance to this study, which seeks to minimise the instrumentation and has as a goal 

widespread adoption of control in anaerobic digester operation. A small number of measured 

variables would give an incomplete indication of the state of the process and would be sensitive to 

sensor failures, with less possibility for associated diagnostics and correction.

Hybrid systems sometimes help by increasing the possibility to actuate (and so control) the 

process, as was reported by Polito-Braga et al. (2002), demonstrating a system which had an 

anaerobic UASB followed by an activated sludge process. Control of the effluent COD and 

suspended solids concentrations were maintained by using two independent PI controllers to 

manipulate the flow rate of recycled sludge from the clarifier.

Hydrogen has been considered as a control parameter and early warning indication of reactor 

failure by Cord-Ruwisch et al. (1997), who used a silicon tube and trace gas analyser to determine 

the dissolved hydrogen concentration in the liquid phase. Others e.g. Strong and Cord-Ruwisch 

(1995), Guiot et al. (1995) have also considered hydrogen as a control variable. The control 

strategies used by Cord-Ruwisch et al. (1997) were simple set point bang-bang control (20% steps 

in feed rate) and a proportional only controller. The feed used was glucose based and the 

resulting control was comparatively good. The use of hydrogen as a control parameter remains a 

concern in cases of more complex and variable waste for the reasons that the metabolic pathways 

can change depending on reactor history as mentioned in Section 2.1.1.

PhD Thesis - Giuliano C Premier 2003 23



2.0 Controlling anaerobic digestion

In recent years, efforts to establish adaptive control strategies, have been seen by some research 

groups as a promising line of investigation, as have the 'fuzzy' approaches associated with soft 

computing techniques, which have gained in popularity across the spectrum of process control.

A generalised and comprehensive lumped parameter modelling approach has been presented by 

Bastin and Dochain (1990), which is developed into a treatise for adaptive linearizing control in 

biological processes and relies on on-line estimation of unknown parameters associated with the 

reaction kinetics. These are notoriously difficult to model accurately because of their time 

varying non-linear characteristics. Furthermore, consensus exists regarding models of reaction 

kinetics, only in so far as Batstone et al. (2002) has assumed as much in the publication AMD1. 

Several kinetic reactions are not included, as evidenced by the numerous functions in Appendix 1 

of Bastin and Dochain (1990), which do not find application in ADM1. The problems of 

identifiability of the reaction constants within these functions are also discussed by Bastin and 

Dochain (1990), further justifying their on-line estimation approach.

The techniques presented by Bastin and Dochain (1990) are reported with reference to specific 

control variables in Dochain et al. (1988), who present the control strategy investigated by 

simulation, using volatile fatty acids, BA and H2 concentration (again considered by Dochain et 

al. (1991)) as control variables. The H2 was considered at this stage to be promising because of its 

rapid dynamics and the assumption was made that equilibrium would exist between the gas and 

the liquid phases, thus on-line measurement of gaseous H2 would be the only requirement. More 

recently, Bernard et al. (2001) investigated a combined linearizing controller and fuzzy controller 

the objective of which was to maintain the ratio of total to intermediate alkalinity at a pre-set 

value. Renard et al. (1988) sought to maintain a constant substrate concentration by altering the 

feed dilution rate on a pilot scale plant CSTR. The controller (based on a non-linear model of the 

fermentation process) was implemented using off-line COD measurements with a sampling time 

of 2 hours. Since then, Steyer et al. (2001) has shown the practicality of directly measuring COD 

and others including Aubrun et al. (2001) have used software sensor techniques. Renard et al. 

(1991) continued to employ an adaptive algorithm for 161 days (including start-up) on a 

completely mixed, once through reactor, by using the propionate concentration as a control 

variable, with promising results. The propionate concentration in the reaction vessel was 

compared to a prescribed level, and the error between them minimised over time exponentially. 

The adaptation came from the fact that the conversion yield factor from substrate to propionate 

needed to be estimated on-line.
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The measurement of VFAs has been demonstrated by Steyer et al. (2001) using IR, but can be 

determined by titrometric methods (e.g. Dehaas and Adam (1995)) and commercial on-line GC 

devices, though the cost of the latter is as yet relatively high. The principle was extended to batch 

fed reactors in a general treatise by Dochain and Bastin (1990). Further, Dochain et al. (1991) 

undertook a simulation study looking at the adaptive control of AD by using hydrogen 

concentration. This simulation did not include the formate/hydrogen path selection resulting from 

acclimatisation, which was described in Section 2.1.1. Dochain and Perrier (1993) then went on 

to publish accounts of the design and evaluation of adaptive non-linear control algorithms (model 

reference adaptive linearizing control law) for activated sludge and AD processes, with the 

controller validation again performed by simulation. Van Breusegem et al. (1990) used 

simulations to investigate the technique with BA as a control variable, comparing it with the L/A 

control strategy. The L/A technique involves the use of a logarithmic function to ensure positive 

control actions at all times, and is described in the paper. Adaptive linearizing control strategies 

were adopted by Monroy et al. (1996), though altered to avoid the need for on-line bio-gas flow 

rate measurement.

The work of Alcaraz-Gonzalez et al. (1999), Alcaraz-Gonzalez et al. (2000) and Alcaraz- 

Gonzalez et al. (2001), showed the application of an adaptive scheme which regulated to its 

nominal target value. The system settled exponentially and did so in the accepted presence of 

uncertainties and Alcaraz-Gonzalez et al. (2001) went on to demonstrate the approach by 

simulation and experimentally on a 1 m3 anaerobic reactor. The idea that the process is liable to 

experience uncertain inputs is important, as they may lead to an undetectable (i.e. cannot be 

identified) system. The control is handled by a non-linear observer which requires that the inputs 

such as mass, energy and feeding rates be known. The fact that they are not, but a priori 

knowledge of their bounds is available, allows a second observer (so called interval observer), to 

estimate these uncertain inputs and thus makes the overall control become bounded and 

guaranteed to converge exponentially. The methodology was applicable to SISO situations and 

demonstrated that with an estimation of the input variations, the reactor performance could be 

predicted and controlled within well-defined bounds. This would appear to be a powerful 

technique in the presence of a priori knowledge, from which the bounds could be set. The 

applicability could extend to more general application where the bounds could include typical 

anaerobic digesters, though the wider the bounds of certainty, it is expected that the bounds of 

prediction will also widen.
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Adaptive optimal control was employed by Ryhiner et al. (1992). The technique employed a 

performance index, which was used to adjust the control conditions of the ever-changing reactor 

and process. Under simulated conditions, the control strategy was reported to have performed 

well. Again, however, the shortcomings of simulation studies are essentially that the unmodelled 

dynamics are not considered and equally, the noise and aberrations which are expected with a 

degree of resignation, are assumed not to exist, or else are instigated in a predictable model.

Self-tuning PID control of a fermentation process was considered by Dostal et al. (1994) and 

Jones et al. (1996), however the former considered reaction temperature and the latter was in 

order to control the dissolved oxygen in a Saccharomyces cerevisiae fermentation. Self-tuning 

systems are essentially automated controller design systems based on a model of the process, 

which is recursively identified. To this extent, the techniques of Bastin and Dochain (1990) have 

similarities. In the broadest sense, all these systems 'learn' by parameterising a model with data 

measured in the past and at each sample interval. Self-tuning systems rely on the integrity of the 

data to converge on a representative model and spurious data can cause them to deviate from this. 

In essence there is little difference between model reference adaptive techniques and self-tuning in 

this regard.

Some researchers such as Punal et al. (2002) have given attention to so called 'soft computing' 

techniques such as expert systems, fuzzy logic and neural networks, in order to implement control 

strategies. The primary attraction of these methods is that they are able to represent systems with 

non-linear characteristics, without the, often difficult, task of dealing with deterministic non-linear 

mathematics. Fuzzy logic and expert systems rely on rules which have very intuitive basis such as 

if <condition> then<outcome>, although there are significant differences in 

implementation. Toxic substances in the feed will cause the efficiency of the bacterial population 

to treat the waste, to become reduced and is evident as inhibition. The difficulty in measuring 

toxicity with regard primarily to aerobic systems is discussed by Fearnside and Caffoor (1998) 

and Brown et al. (1996), though the arguments are relevant to anaerobic systems. They suggest 

that there is no way to comprehensively test the ingress for toxicity as the range and effect of 

substances is very large and complex. An approach analogous to respirometry for anaerobic 

systems which uses a Ranter, was proposed by Rozzi et al. (1995); Rozzi et al. (1997). The 

consistent criticism of such systems is that the microcosm does not represent the reactor 

ecosystem with fidelity, though this may be mitigated by renewing the culture in the Ranter from 

the main reactor periodically. The control system employed should consider the special nature of 

toxic loading in the control action which is taken. A reduction in say, gas production may be
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considered to warrant increased loading, but may be the result of inhibition which may require the 

reverse action. Methane production rate was used by Pullammanappallil et al. (1998) as the 

measured variable, along with an expert system, which was employed to ensure safe operation of a 

digester. The essential argument presented by Pullammanappallil et al. (1998) was that previous 

control research could not cope with the gain inversion, which is possible with shock loading of 

an inhibitory (or toxic) nature. When tested on an actual live process, the control system 

prevented failure when the reactor was dosed with phenol as well as other shocks. Broadly fuzzy 

control strategies have been adopted by Polit et al. (1995), Muller et al. (1997), Steyer et al. 

(1997), Estaben et al. (1997) and Flores et al. (2000), all reporting some success.

Neural networks rely on supervised or unsupervised learning, which avoids the need for modelling 

fundamental physical, biological and chemical laws of the underlying process. Control of 

anaerobic digesters using neural networks has been reported by Guwy et al. ( 1997) and Wilcox et 

al. (1995) who used bicarbonate alkalinity as a measured variable. Fell and Wheatley (1995) 

conducted a comparative study between neural and adaptive control, though the study was not 

exhaustive in its scope. The possibility exists to consider the measurement space as a series of 

fields, which are indicative of the state of the reactor. Rosen et al. (2002) applied principle 

component analysis and fuzzy c-means clustering to classify the operating status of a simulated 

aerobic system to then change set points in essentially a gain scheduling fashion. This principle 

should be applicable to anaerobic systems just as well. The 'soft computing' techniques above are 

in general non-linear in nature, and gain much of their usefulness from this fact. As far as the AD 

process is concerned, the degree to which it is non-linear and time varying has not been explicitly 

investigated, as this would require exhaustive experimentation.

An indication as to whether non-linear techniques are in fact desirable can be seen in Premier et 

al. (1997), which is discussed in some detail in section 5.0 of this document.
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2.3 CONTROL USING BICARBONATE ALKALINITY

The definition of the state of an AD system relies on the state variables however they are defined, 

with variables such as pH and BA coupled, as has been intimated above in Section 2.1.1. The 

assumptions made in modelling can make the coupling very strong, to the point that one or other 

becomes redundant. Techniques like principle component analysis, as described by Bishop (1995) 

and Freeman and Skapura (1991), can be used to determine the interdependence of measured data. 

Consideration of the underlying mechanisms is however an important part of determining the 

relevance of calibrating a particular on-line parameter such as gas production rate, %CO2 and 

temperature. If a single measured variable is desired, for reasons of simplicity or economy, then 

the selection of this variable or parameter (on-line measurement) is constrained by the information 

content of possible measured variables and the available measurement technology. Bicarbonate 

alkalinity compares favourably with others that have been proposed.

The physico-chemical equilibria considered by Rozzi (1980b), indicated that VFAs, CO2 , total 

inorganic carbon and carbonic acid, bicarbonate, pH and cations such as Na+, the solubility and 

partial pressures of the gas species (particularly CO2) and OH" from the dissociation of water, are 

all implicated. Rozzi concluded that parameters such as pH and the partial pressure of CO2 have 

high sensitivity to cations, VFAs, temperature and substrate concentration of the influent. This 

means that the simple measurement of pH or gas production rate or %CO2 individually will not 

give an indication of the true state (be it partially defined) of the system, because of their coupled 

interactivity. The measurement of VFAs will however give a direct measure of any imbalance 

between volatile acid production by the acidogens and consumption by the methanogenic bacteria. 

This is particularly true if the VFA species can be quantified. Bicarbonate alkalinity is similarly 

indicative of the imbalance because its reduction is as a consequence of an increased presence of 

VFAs, given that the total cations must be in equilibrium with the HCO3 and the acid anions.

Many anaerobic systems are employed in the degradation of materials rich in natural buffers such 

as NILtHCOa, which would increase the bicarbonate available in the reactor, which could then 

tolerate higher VFA levels without dropping the pH and risking souring. Considering VFAs 

would not account for the added intrinsic stability whereas considering the bicarbonate alkalinity 

(or buffering capacity) would. The information content of bicarbonate alkalinity is very high, 

structurally including many of the other measurable parameters within the physico-chemical
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equilibrium model, and at the same time being a relatively straight forward parameter to measure 

on-line, as discussed below.

The special case of start-up, reviewed by Hickey et al. (1991), is often a period of high risk and 

uncertainty with regard to the loading regime. As has been the case in this work, Rozzi et al. 

(1994) are notable for having used Bicarbonate Alkalinity (BA) as a control variable. However, 

they used a controller which dosed the reactor with alkali at a fixed rate, for a time proportional to 

the error, which in essence combines continues and bang-bang control strategies. Maintaining a 

BA buffering margin is a means of controlling the pH drop caused by a build up of Volatile Fatty 

Acids (VFAs) (McCarty (1964b); Rozzi et al. (1985a)).

The use of VFAs as a control variable has been shown to be practically achievable (as 

demonstrated by Renard et al. (1991), using propionate concentration), particularly since titration 

based, on-line measurement of VFAs has been shown to be feasible (Dehaas and Adam (1995)). 

The total VFAs that are measured do not discriminate between the species, whereas individual 

VFA measurement could indicate stress in the different bacterial groups within the biomass. 

Nevertheless, a measure of VFAs does indicate the balance between acidogenesis and 

methanogenesis, such that a build up in VFAs indicates a propensity to sour. BA gives similar 

information to the VFAs but is affected by the carbon dioxide equilibrium in the reactor (Rozzi 

(1980b)), through carbonic acid. The activity or stress levels, (particularly of the methanogens) is 

therefore intrinsically part of the BA measurement. The information content of BA measurement 

in the reactor makes it a good candidate for monitoring and control by a single variable. This is 

particularly true because it has been shown to be readily measured on-line, (Guwy et al. (1994); 

Hawkes et al. (1993); Rozzi and Labellarte (1984b); Tomei et al. (1994), amongst others).

2.3.1 Indicators of stability with particular reference to bicarbonate alkalinity

A great deal of effort has been expended in order to characterise the process and determine the 

most informative control parameters that could be measured on-line, (e.g. Steyer et al. (1995); 

Jones et al. (1992); Ryhiner et al. (1993); Denac et al. (1988); Ross and Louw (1987)). BA, and 

VFAs have, in the estimation of the author, emerged as important control variables. McCarty 

(1964b) considered the environmental conditions for anaerobic populations and the means by 

which the environment could be controlled. The issue of digester unbalance was central to the 

discussion of parameters, which may be suitable as indicators of unbalance or which showed 

promise as control variables. McCarty discussed the use of bicarbonate 'buffering capacity' in 

order to mitigate against the effect of increased volatile acid, without a large drop in pH, the
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corollary being that BA should be controlled. McCarty also looked at the CO2 in gas and liquid 
phases according to Henry's law and showed a strong link between pH, BA and CO2 partial 
pressure. Graef and Andrews (1973) went on to produce computer simulations to investigate the 
sensitivity of a number of process variables, including BA, which confirmed the buffering action 
of increasing levels of BA, as the reactor could tolerate commensurately greater substrate loading 
variations. Consideration was given to the modelling of BA by Rozzi et al. (1985a) and Rozzi and 
Passino (1985b) where it was argued that good stability indicators were not necessarily good 
control variables. They mentioned specifically the partial pressure of CO2 with its dependence on 
the 'stored' CO2 as bicarbonate and its reliance on the volatile acid levels in the system. They went 
on to propose BA as a control variable for its ability to indicate buffering capacity at any 
concentration and the plausibility of online measurement. Di Pinto et al. (1990) placed the use of 
BA as a control variable into an historical perspective, showing the importance of the use of BA 
as a control variable, was not widely understood till on-line measurement became available in the 
1980's. They along with Rozzi and Passino (1985b) further illustrated the connection between the 
partial pressure of CO2 , HCO3 " and pH.

Weiland and Rozzi (1991) compared the characteristics of three high-rate anaerobic treatment 
systems, with particular emphasis on the start-up phase of operation which they viewed as a 
particular problem in control terms and conceptualised as a prolonged overload. The focus of 
their treatise was on the monitoring and control of the systems, and as such, their paper establishes 
a good general review of the field. In their discussion on control variables in the liquid phase, BA 
is seen as a strong contender, again since the practicality of BA on-line monitoring has 
subsequently been demonstrated to be a feasible proposition.

2.3.2 On-line monitoring of bicarbonate alkalinity

The on-line monitoring of BA has had a crucial bearing on the use of BA as automatic control 
variables. Rozzi and Brunetti (1980a) proposed a simple procedure for the measurement of HCO3" 
alkalinity to avoid the protracted effort of determining total acids and volatile acids. This was 
developed in Rozzi and Brunetti (1981) to determine BA from volumetric CO2 measurements and 
Rozzi and Labellarte (1984b) by measuring CO2 pressure, as did Anstice et al. (1995). 
Subsequently Rozzi et al. (1985a) proceeded to discuss anaerobic process control by bicarbonate 
monitoring looking at the advantages of doing so and the available techniques for BA 
measurement at the time. Further developments are reported in Tomei et al. (1994). A similar 
approach to the measurement of BA was adopted by Guwy et al. (1994) using a sensitive gas flow 
meter developed for the purpose. This BA instrument was used subsequently in experimentation
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for process modelling and control (e.g. Hawkes et al. (1995)). The latter proved it to be reliable 

and robust, but later in the work of Premier et al. (2000) and Premier et al. (2001), and in 

experimental work included in this thesis, reliability became an issue. The carryover of 

particulate would seem to be the main reason for the differences in performance. A titrometric 

method was proposed by Pauss et al. (1990) and Dehaas and Adam (1995), who also showed that 

VFAs could be determined in a similar way. A manual method presented by Lahav et al. (2002), 

may be automated, however has yet to be considered so far, to the author's knowledge.

2.3.3 Controlling the anaerobic process using bicarbonate alkalinity as a control 

variable

The desirability of controlling anaerobic digesters using BA is long established (Andrews 

(1975a); Andrews (1975b); Rozzi and Brunetti (1980a); Rozzi and Eng (1984a); Rozzi et al. 

(1985a); Dochain et al. (1988)). The use of modelling again has been significant in establishing 

BA as a suitable control parameter. In Rozzi (1980b), the biological considerations of AD are 

modelled as an ideal catalyst, while the overall process is considered to include a physico- 

chemical dimension. The equilibrium between the gas and liquid phases is modelled by assuming 

that CH4 is insoluble and CO2 remains in solution according to Henry's law. Furthermore, the 

ionic balance in the digester governs the substrate conversion to CO2 . The simulations conducted 

by Rozzi (1980b) sought to show the variations in pH and CO2 partial pressure resulting from 

physico-chemical factors, while accepting that changes could arise from the biological process. 

The conclusions of the study were that parameters such as pH and CO2 partial pressure were quite 

sensitive to concentrations of cations, substrate and volatile acids. The implication is that in 

process control, parameters which are sensitive to physico-chemical variations will perhaps be 

more useful as indicators of instability than as control variables, which strengthens the case for 

parameters such as volatile acids and arguably BA for control variables, as BA is indirectly 

affected.

Testing control strategies in AD is a long and difficult task. Simulations were used by Rozzi and 

Eng (1984a), modelling a digester degrading carbohydrates to acetic acid by acetogenic bacteria, 

which were further degraded by methanogenic bacteria (acetoclastic) to produce CFL, and CO2 , to 

simulate ramped organic overloading. They went on to test and compare control strategies based 

on pH or bicarbonate-concentration monitoring and alkali dosing by simulation and investigated 

CO2 partial pressure as a stability indicator. They concluded that the best control would be a 

multi-variable system with CO2 scrubbing controlled by CO2 partial pressure and BA or pH 

control. Furthermore, BA and pH control would give comparable results and the choice would
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depend on the availability of sensors and their characteristics. Multi-variable control would 

naturally require appropriate sensors and current technology offers robust solutions for these 

parameters.

Dochain et al. (1988) describe a simulation based on an adaptive control strategy which is 

comprehensively described in Bastin and Dochain (1990). The justification for using BA is given 

as the lack of suitable reliable instruments for the on-line measurement of volatile acids. The 

situation is no longer as clear, with the advent of titrometric and IR methods already mentioned. 

This control strategy maintained stable operation in the presence of a toxic shock, which would 

otherwise have destabilised the reactor. As mentioned earlier, further BA control strategies were 

proposed by Van Breusegem et al. (1990) and supported by simulation studies. Adaptive 

linearizing and L/A controllers were investigated, considering alkali addition and dilution rate as 

control actions. The simulation showed that control of the influent dilution rate would control the 

volatile acid concentration and was suitable for this objective, whereas alkali addition did not 

control volatile acids, but did maintain them within admissible bounds.

2.3.4 Previous applications of bicarbonate alkalinity as a control variable

Some practical applications of automatic control of AD using BA are to be found in the literature, 

notably, Di Pinto et al. (1990) describing an on-line BA sensor which is then used in the control of 

two olive oil effluent reactors. These authors looked at the reaction to shock loading with and 

without BA control. They concluded that BA could be monitored cost effectively and BA control 

maintained stable performance using proportional control, which was not the case without the 

control of BA. This work was followed up in Rozzi et al. (1994) with similar results with respect 

to process stability, however the control was also active over the start-up phase of the digestion 

process and showed control could reduce start-up time.

Control experimentation using BA as a control variable was performed by Hawkes et al. (1995) 

who controlled a fluidised bed system using an on-off control strategy and compared this to a 

neural network, both controlling alkali addition and both displaying a measure of success. The 

neural network control study was published in more detail (Wilcox et al. (1995); Guwy et al. 

(1997)) and consisted of a feed forward network trained by back propagation. Work conducted in 

preparation for the control experimentation reported in this thesis, using the same reactor and 

fundamental control strategy, were presented by Premier et al. (2000) and Premier et al. (2001).
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2.4 A WAY FORWARD

In light of the preceding discussion, it can be seen that numerous researchers have, with varying 

success, applied a number of approaches to the control of anaerobic digesters. Even in the case of 

reactor start-up, some successes have been reported. The control variables adopted have been 

many and varied, often as single inputs and often as multiple input. Similarly, the actuation 

techniques have spanned the range of possibilities and have included special features in the 

reactor design, such as recirculation pathways and membranes. The take up of these techniques 

has been low in general, with the literature reporting very few full-scale applications of control in 

AD.

It is believed that the critical issues to making the application of control to AD attractive to 

operators are to minimise the cost and complexity by minimising the instrumentation and 

expertise required to set-up and operate the system. A SISO system, with a single control variable 

and a controller that requires little or no parameterisation by the operator, is most likely to be 

considered. The operator would expect the system to operate with minimal maintenance through 

start-up, restart, and shock loading of various types and also at steady state. The control strategy 

would not necessarily need to be transparent to the operator, but this would help to dispel doubt 

and aid diagnosis should failure occur. The research reported here takes these ambitions as a 

philosophical starting point.
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3.0 EXPERIMENTAL EQUIPMENT, MATERIALS AND 

METHODOLOGY

The experimentation detailed in this thesis used two reactor systems, which will be described 

below. The first was a fluidised bed reactor system used to determine the ability of black box 

models to represent the AD process, which were reported in Premier et al. (1997) and Premier et 

al. (1999). The same system generated the data used to parameterise the model reported by 

Marsili-Libelli and Beni (1996), whose model was used as the basis for the controller design 

reported herein. The second was an EGSB system, which was used to investigate the controllers, 
designed and optimised on the model of the fluidised bed system.

The development of the models and the testing of the control system are split into four tasks and 

to assist the reader, these are summarised in Table 3.1. Included in this table are section 

references to the descriptions of the experimental equipment and materials used. Furthermore, 

each task will be explained in turn in the section indicated in the table.

Table 3.1 Model development and controller testing tasks

Task Task description Materials and equipment used

Section 3.3.1
Low order linear black box models ability 
to predict one sample (30 minute) ahead 
on a fluidised bed reactor.
Section 3.3.2
Comparing the ability of low order linear 
and non-linear (neural network) ARX 
models to represent a fluidised bed reactor.

Section 3.1
Fluidised bed reactor and operating regime. 
Section 3.1.1
Instrumentation associated with the 
Fluidised bed reactor.

Section 3.3.3
The implementation of a deterministic 
model capable of representing appropriate 
control parameters in an anaerobic digester
Section 3.4
The development and implementation of
control strategies capable of maintaining a
different reactor (in design and operation)
to that which parameterised the
deterministic model. Start-up I to Start-up
4

Section 3.2
EGSB reactor and operating regime for 
control by feed strength actuation and BA 
dosing actuation
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3.1 FLUIDISED BED REACTOR SYSTEM FOR BLACK BOX MODELLING

The fluidised bed reactor used (Figure 3.1.1) in Tasks 1 and 2 (Table 3.1), was used in earlier 
control experimentation by Guwy et al. (1997), and is presented in their paper. The information 
contained, with some variation (particularly in the feeding arrangement), is presented here for 
convenience, though the reactor configuration and feed make-up were virtually the same.
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Figure 3.1.1 Fluidised bed anaerobic reactor.
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In the interest of clarity, it should be stated that Dr. A. J. Guwy, Dr. R. M. Dinsdale conducted the 

day to day operation and off-line sampling and analysis of the fluidised bed system and Dr. Guwy 
particularly was instrumental in its initial construction and instrumenting. The author, (with the 

exception of the software required to access the TOC data, written by Dr. S J Wilcox), did the 
computerised data collection system and process excitation and advised on the experimental 
requirements.

In previous experimental work conducted by Guwy et al. (1997), the reactor was operated using 
similar influent, which was made up every 4-5 days and stored in a refrigerated feed tank. This 

caused changes in biogas H2 and CO2 content thought to be due to changes in VFA content of the 
feed. Concentrated feed and dilution water delivery at the point of ingress eliminated these 
changes and stable baseline values for BA, gas flow and biogas H2 and CO2 content were 
achieved. The TOC:COD ratio for the effluent was 1:3.1 and the attached biomass content of the 
reactor system was determined to be 16.6 g.r'VSS, with some loss of biomass noted during the 
washing of the Siran carrier prior to measuring the volatile solids carried by it.

The system consisted of two Perspex™, 7 1 fluidised bed reactors connected in parallel as shown 

in Figure 3.1.2. The recirculatory and effluent configuration ensured that the reactor vessels were 
well connected and in contact with similar substrates as far as was possible. The reactors had 
previously been operated independently but were connected during the study (Guwy et al. (1997)), 
so that sufficient sample could be extracted for use in the BA monitor. The reactor had been 
operated on the same influent for two years prior to the experiments reported here, and supplied 
the data for Tasks 1 and 2. At the end of the experimental period the biomass content of the bed 
was measured by taking samples which were washed in deionised water and analysed for volatile 

suspended solids (VSS) by standard methods APHA (1989).

The total liquid volume of the connected reactor was 11 1, giving a head volume of 3 1. The 
reactor was operated at a temperature of 37°C, which was maintained by a water heating jacket 
system connected to a thermostatically controlled water pump/heater (Grant Instruments, 

Cambridge, U.K.). The support medium was a Siran® sintered glass carrier (Schott Glaswerke, 

Germany) which gave a total collapsed bed volume of 3 1, when allowed to settle. Recirculation of 

the liquor and consequent fluidisation was effected by a 1031 EHEIM recycle pump (supplier 

Monside Ltd, Letchworth, Herts., UK), with an up-flow velocity of approximately 0.55 m.mhV 1 , 
from a flow-rate of about 25 l.min" 1 . The feed was pumped into the reactors through a connection 

into the recycle line common to both reaction vessels, by using a Watson-Marlow (Falmouth, UK)

PhD Thesis - Giuliano C Premier 2003 3 6



3.0 Experimental equipment, materials and methodology

pump (type 503u) and diluted with water delivered by a Watson-Marlow 503u pump at the point 
of delivery to the reactor. The interconnection of the reaction vessels was such that the effluent 

from the top of each was recycled (through a small separation system to prevent Siran® carry-over 
and pump erosion), to the bottom of the other. This was done using two 1031 EHEIM recycle 
pumps (Monside Ltd, Letchworth, U.K.). The effluent was discharged through a manometer 
arrangement connected in common with both vessels, to points 5 cm below the level of the liquid.

Chamber to 
prevent Siran 
carry over

Chamber to 
prevent Siran 
carry over

Recyle 
pump

Recyle 
pump

Control 
pump

Feed 
pump

Figure 3.1.2 Schematic diagram of the fluidised-bed anaerobic digester, (after Guwy et al. 

(1997))

The influent feed was a simulated baker's yeast wastewater, the composition of which is detailed 
in Table 3.2, with a COD of approximately 6,700 mgO2 .r' and a steady state loading rate to the 
reactor between 17.6 - 18.8 kgCODm'3 day 1 with a corresponding hydraulic retention time 9.1 -
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8.2 hours. The influent was made up in a concentrated form with a COD of approximately 

247,000 mgO2.r', delivered using a Watson-Marlow (Falmouth, UK) pump (type 503u) and 

diluted, with water at the point of delivery to the reactor. It was not considered necessary to 

refrigerate the feed, even though it had been cooled by a Grant Flow Cooler (type FC15/FC20) 

during previous work, as at this concentration no COD reduction with time or acidification due to 

microbial growth was detected. The pump delivering dilution water remained at a fixed rate (19.5 

- 21.7, average 20.8 ml.min" 1 ) so that hydraulic retention time decreased by a maximum of 10% 

from a nominal average of 8.5 hours during the overloading evident from the data presented in 

Chapter 4. The feed pump voltage was directly related to the flow and hence the digester's loading 

rate (Bv).

Table 3.2 Composition of the simulated baker's yeast wastewater in 100 I tap water
(after Guwy et al. (1997))_______________________________________________ 
1200 g Yeastex (yeast extract) (CPC, U.K.)

310 g of molasses beet syrup (British Sugars, Cambridge, U.K.)

29 cm3 of 90% ethanol (Fisons, U.K.)

39 cm3of 99.8% acetic acid (Fisons, U.K.)

0.5 cm3 of trace metal supplement3

2.5 cm3 of anti-foam (Dehysan 32111, Henkle, Dusseldorf, Germany)

a NiCl26H2O 11.6 g I' 1 , CoCl26H2O 7.0 g I' 1 , MnSO4H2O 11.0 g I' 1 , Na2MoO42H2O 8.0 g I' 1 .

3.1.1 Instrumentation for the fluidised bed reactor system

The on-line instrumentation data were logged by a PC equipped with an interface card (MIO 16) 

and LabVIEW™, propriety virtual instrumentation programming software, (which were both 

supplied by National Instruments, Newbury, U.K.). Time and date, along with the data generated 

by the online sensors, were pre-processed and logged to a file periodically at a sampling interval 

of 2 minutes. This sample rate was very fast and although high sampling helps to increase 

confidence in the sampling of a continuous data stream it can lead to the deduced discrete time 

model having poles clustered close to z=l on the complex z plane as discussed by Wellstead and 

Zarrop (1991). The data was post-processed off-line using a separate software application, 

MatLAB™, to improve the resulting models identified from it. This involved filtering to eliminate 

what was perceived to be sensor noise (or noise unrelated to the process). The sampled data were 

filtered in both chronological directions in order to remove any phase effects and then re-sampling 

to produce a more appropriate sampling rate for the process dynamics. The digital filtering used a 

zero phase, forward and reverse low-pass Butterworth filter of 5 th order, which was parameterised
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by the Yule/Walker recursive least squares approach as described in the MatLAB™ signal 

processing toolbox (Krauss et al. (1995)). The data were then re-sampled at 30-minute intervals, 

which was considered at this stage to be a reasonable compromise with respect to the digester 

dynamics. In the case of Task 2, the data were normalised with respect to their mean and standard 

deviation, with a particular view to improving the performance of the neural network training as 

discussed by Bishop (1995). A different set of data was required to effect the parameter 

estimation (and network training), from that used in validation. The 'training' and 'validation' 

sets were chosen for their significant temporal separation (approximately four weeks, during 

which time the digester was fully operational), which might have allowed process time variance 

the opportunity to develop.

Measurement of gas stream parameters included the percentage of carbon dioxide and the 

hydrogen concentration in the biogas. An ADC monitor type SBG100-002-15290 (ADC Ltd. 

Hodderson, UK) and a GMI Exhaled Hydrogen Monitor (Gas Measurements Ltd., Renfrew, 

Scotland) respectively, monitored these on-line. It was necessary to remove the hydrogen 

sulphide from the biogas in order to measure hydrogen. This was achieved by passing the gas 

through a saturated solution of copper sulphate and by calibrating the monitor with standard gases 

on a monthly basis. The biogas flow-rate was measured with an on-line, low flow gas meter, 

(Guwy et al. (1995)). A bespoke bicarbonate alkalinity (BA) monitor developed and described 

previously by Guwy et al. ( 1994), was used on-line in the effluent stream to measure the BA as 

mgCaCO3 .r' equivalent. A Kent ELL9142 meter using an Ingold Xerolyte electrode (type HA405- 

DXK-S8/120) was used to measure the pH in each reaction vessel.

A high temperature IR method supplied by Rosemount-Dohrmann DC 190 (Sartec Ltd., Borough 

Green, UK), was used to measure the Total Organic Carbon (TOC). The instrument was 

automated by using an auto sampling, (50ul) injection system. A nylon fabric filter filtered 

effluent from the reactor, at a rate of 20 ml.min" 1 . The filter had a pore size of 15um, (Sericol 

Industrial Fabrics, Broadstairs, UK), and was contained in a specially designed (by the Institute 

for Biotechnology, KFA, Julich, Germany), chamber and fitted into the system, with a rotating 

brush for automatic cleaning. This filter reduced the measured COD by 15 fold, an amount 

equivalent to settling the effluent for an hour, or filtering with a Whatman G/FC filter. Unused 

filtrate was returned to the reactor in order not to remove any more effluent from the system than 

was necessary. The TOC measurement required the equivalent to 6.3 ml.min' 1 of filtrate, which 

passed through a 9 ml, mixed continuous flow cell on the auto-sampler tray. The sampling 

frequency was not constant and depended on the time taken by the machine to determine the
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Inorganic Carbon (1C), Total Carbon (TC) and the difference being them, the TOC. This took 

between 8 and 11 minutes and the data was logged by proprietary software from Rosemount- 

Donrmann, from which it was transferred to a spreadsheet for further processing.

3.2 EXPANDED GRANULAR SLUDGE BED (EGSB) REACTOR SYSTEM FOR 

CONTROL STRATEGY TESTING

The EGSB reactor employed in the testing of control strategies detailed in Table 3.4.1 and 

developed in this thesis, was a 38 1 Perspex™ vessel as shown in Figure 3.1.3, which had (for 

most of its height), a jacket heating arrangement, which was also constructed from Perspex™. A 

conical diffuser, (with a volume of 1.3 1) was placed in the bottom of the reactor to ensure even 

flow across the reactor, which reduced the total volume. However, the liquid volume was 

nominally 30 1, leaving a headspace of 6.7 1. The headspace was further reduced by other 

equipment, (such as sensors and pipe-work), such that a nominal headspace volume of 5 1 was 

used in the modelling of the reactor. The temperature of the reactor was controlled at a nominal 

35°C, by hot water circulated through the heating jacket using a FH-15 thermostatically controlled 

Flow Heater (Grant Instruments Ltd., Cambridge, U.K.). Peristaltic pumps (505S or 503U) and 

tubing (Watson and Marlow Ltd., Falmouth, UK) were used throughout the system to effect 

circulation or for the metering of fluid flows. The system is shown schematically in Figure 3.1.4.

Again in the interest of clarity, it is emphasised that the author was not involved with the day to 

day running of the EGSB reactor, and had only an advisory/discursive role in parameters 

associated with its establishment. The author was once more, instrumental in establishing the 

software and interfacing required to monitor and control the process. The operation and 

maintenance, as well as the offline sampling and analysis was conducted by Mr K Monson, or 

under his supervision, by the ERASMUS students listed in the acknowledgements of this thesis.

The reactor was initially seeded (with approximately 25% by volume of the liquid phase i.e. a 

settled height of 0.41m from the diffuser at the bottom of the reactor - 7.5 1), granules taken from 

a UASB reactor at Davidson's Paper Mill (Aberdeen, Scotland). The seed had been kept 

refrigerated for over 1 year prior to their use in this work. The total solids (TS) concentration of 

this sludge was 74.78 g.l" 1 and the volatile solids (VS) concentration was 50.21 g.l" 1 , at the time of 

seeding. These bacteria were used in experimentation, which was conducted over a ten-month 

period, some of which has been reported in Premier et al. (2000) and Premier et al. (2001).
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30 litre EGSB REACTOR

Figure 3.1.3 Expanded Granular Sludge Bed (EGSB) anaerobic reactor.

The first of these papers is not an integral part of this treatise, though the second forms part of 

Start-up 1, the first of four start-up experiments to test the optimised adaptive control strategies 

developed by the author. In fact, Start-up 1 and Start-up 2 used the bacterial seed described 

above, but the reactor was re-seeded for experiment Start-up 3 and again for experiment Start-up 

4. The final two start-up experiments were conducted on the same reactor system, which had been 

seeded by approximately 15 1 of sludge before each Start-up, from a UASB reactor used to treat 

molasses waste from a citric acid producing plant, (Tate and Lyle Citric Acid, Selby, N.
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Yorkshire). In the case of Start-up 3, a sample of the sludge revealed the total solids (TS) 

concentration was 104.9 g.l' 1 and the volatile solids (VS) concentration was 36.6 g.l" 1 . For Start­ 

up 4, the total solids (TS) concentration of this sludge was 109.7 g.l" 1 and the volatile solids (VS) 

concentration was 67.1 g.r 1 . This was after the reactor had been filled with tap water and 

recirculated at 61% of the rate used in Start-up 1 and 2, while dosing with BA at 2222 mg.l" 1 

CaCO3 equiv. for four days. The seed for Start-up 4 had been sourced at the same time as that for 

Start-up 3 and was stored in a refrigerator for approximately seven months.

Feed 
Concentrate

Water Supply

Bicarbonate 
Solution

vjry

k^

EGSB Reactor

\ X

Water 
Jacket 
Heater

K>
Figure 3.1.4 Schematic diagram of EGSB reactor, showing feed and circulatory 

arrangements.

The reactor was fed on an idealised synthetic waste with sucrose as its key constituent. The 

sucrose was diluted with tap water and to maintain reasonable concentrations of BA and sodium 

bicarbonate was added at the above concentration of 2222 mg.r 1 CaCO3 equiv., by continually 

pumping the solution into the reactor feed line using a peristaltic pump. Two fundamentally 

different control actuation strategies were adopted. The first of these was to alter the loading rate 

in order to affect the measured effluent BA and the second was the use of BA dosing dependant 

on the effluent BA measured.

3.2.1 Instrumentation for the EGSB reactor system

The personal computer (Macintosh Quadra 650) based monitoring system was arranged to log 

data from a number of on line sensors and was equipped with a virtual instrument software 

package (LabVIEW™). The control system was implemented on a separate PC (Viglen, 

Pentium), for convenience and to make the data logging system independent of the control and 

hence able to continue should failure occur in the control system. The on-line parameters 

(sampled at 1-minute intervals) were:
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• BA,

• pH,

• gas phase hydrogen concentration,

• gas production rate,

• % carbon dioxide in the biogas and

• reactor temperature.

BA, the most important parameter with regard to the control system, was measured on-line as 

described by Guwy et al. (1994). A constant flow of reactor effluent was saturated with CO2 in a 

well-mixed (saturation) chamber. The saturated sample was transferred to the instrument's 

acidification chamber, where the pH was dropped to about pH 2, but in any case below pH 4, 

which causes all the HCO3 " to evolve CO2 . A sensitive gas meter measured the evolved gas 

volumetric flow-rate, which was proportional to the HCO3 " in the sample. The low flow gas meter 

consisted essentially of a ballast chamber, which was pressurised to approximately 5 mmH2O by 

the evolved gas. At this point a 3-way solenoid valve was activated releasing the pressure in the 

ballast chamber while sealing the acidification chamber, until a low threshold pressure was 

achieved. This process was repeated at a rate dependent on the gas flow-rate and indeed, the gas 

release rate was calibrated (periodically with standard solutions), to indicate BA concentration. A 

microprocessor-based system designed and programmed by the author, to give frequency to 

voltage conversion with an output in the range 0-5 V.

The pH was measured using a temperature compensated ABB Kent-Taylor pH meter/controller 

(model EIL9142) connected to a Mettler Toledo HA405-DXK-S8/225 probe. The system required 

weekly calibration with pH buffer solutions at pH 4 and pH 9.2. The instrument supplied a 

voltage signal in the range 0-5 V which represented pH 0-14.

The rate at which biogas was produced by the reactor, was measured by a low-flow gas meter 

(Alexander Wright Low Flow Meter, LFM300, supplied by G H Zeal Ltd., London, U.K.), which 

had a range of 0.2 - 4.0 l.hr" 1 . The output of the meter was in the range 0-5 V. In operation, the 

reactor could and did produce biogas in excess of the maximum range of the LFM300. It was 

therefore necessary to include an instrument capable of measuring flows at higher rates. The 

available flow meters were not able to cover the complete range adequately, so both the LFM300 

and a mass flow meter (Honeywell AWM 3300V Mass Air Flow Sensor, Farnell, Leeds, U.K.), 

were used. The flow-rate was used in a subroutine in LabVIEW™, to activate a solenoid valve,
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which selected between the flow meters. Some hysteresis was included in the programming to 

avoid rapid and continual switching.

The % CO2 was measured using a Gascard II Infra-Red Monitor. Absorption of the IR by CO2 , 

CO and CH4 are frequency dependent. By measuring the characteristic frequency and intensity of 

absorption, the concentration of CO2 as a percentage can be determined. Once again, the output 

from the instrument was arranged to be 0-5 V, calibrated using 100% Nitrogen, 100% CO2 and 

40% CO2 sequentially.

The reactor temperature was measured by a single temperature sensing semiconductor device 

(LM35DZ, RS Electronics, U.K.) suspended in the liquid phase of the reactor, with a sensitivity of 
10 mV.°C'

The Monitoring Computer had both A/D and D/A I/O facilities, (MIO 16 data acquisition card 

from National Instruments, UK). The data from the on-line instrumentation were connected to the 

I/O card and read by a program created in Lab VIEW™. Facility to calibrate the signals was 

included and pre-processing such as filtering manipulation or correction, were also embedded in 

the software. The Monitoring Computer was also required to take some control actions, such as 

selecting flow-meters, switching to manual control, sending the BA signal to and receiving the 

control effort signal from the Control Computer and outputting control effort signals to the 

variable speed, feed and dosing pumps. However its primary function was to log the data to an 

ASCII file along with time and date information, every minute. The sampling-rate of the Control 

Computer was independent of the Monitoring Computer and was 1 sample.h" 1 . The BA signal was 

provided to the Control Computer, which in turn provided the Monitoring Computer with the 

control effort calculated by the controller at each sample. The control strategy determined if the 

OLR varied or if the BA dosing of the reactor varied. The control effort was converted to 

appropriate voltage signals to run the water, BA dosing and/or concentrate feed pumps such that 

the volumetric flow-rate reflected the desired HRT, but the feed strength varied, or the BA dosing 

rate varied accordingly. The Control Computer used a Lab PC+ I/O card (National Instruments, 

UK) and Lab VIEW™ virtual instrument package to effect the I/O function. The control algorithm 

was programmed using a graphical, block oriented Computer Aided Control System Design 

(CACSD) package, (MatLAB/Simulink™, The Mathworks, U.K.). Communications between the 

software packages was achieved using the Dynamic Data Exchange (DDE) facilities provided by 

both. In the system created in this work, MatLAB/Simulink™ was configured as a Client, 

whereby a number of functions were available for use in initiating the DDE conversation,
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requesting data and terminating the DDE conversation etc, while Lab VIEW™ acted as the Server. 

The Client was established by writing an M-File function, which included the DDE functions 

which established communication, requested data, checked to see if the data had changed (which 

was assumed to be the point at which LabVIEW™ had sampled, before passing the data to 

Simulink™ through a Function Block. Within LabVIEW™, the DDE was initiated and serviced 

through standard functions (check.vi and set.vi) provided by National Instruments Inc. The M- 

Files, Function Blocks and LabVIEW™ used are included in Appendix Al and A2, particularly 

in Figures A2.2 and A2.3. The BA set point could be adjusted within LabVIEW™ on the Control 

Computer. The set point and measured value (BA) were then provided to the control algorithm 

(presented in Section 3.4), at each sampling interval as illustrated by in Figure 3.1.5.

Me nitoring Computer

LabVIEW 

*

&'*

control Computer

LabVIEW
V ^^

^
MatLAB* >\

On-line data:
BA
PH
gas flow-rate
%CO2
Temperature

EGSB
Anaerobic
Digester

Figure 3.1.5 Schematic diagram of the communication between LabVIEW 

MatLAB/SimuIink™ via DDE.

rTM
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The current control effort was passed back to LabVIEW™ for delivery to the Monitoring 

Computer. All communications to and from the computers was through the Analogue to 

Digital/Digital to Analogue conversion (ADDA) facilities of the I/O cards used.

Arrangement for actuation through Loading Rate (Start-up 1,2 and 3)

A constant 18 ml.min' 1 of a 3733 mg.l" 1 NaHCO3 solution, equivalent to BA of 2222 mg.l "' 

CaCO3 equiv. was fed to the reactor. A summary is shown in Table 3.3 of a variable (according to 

the control effort), flow of a simple salts medium at a x20 concentration, (as in Cohen et al. 

(1979)) which was input to the reactor. The feed included a concentrate containing 1% glucose 

(W/V) which was mixed with tap water (tested to show negligible BA), so that a constant inflow 

volume of 21.5 ml.min" 1 was delivered to the reactor. Trace elements were added to the 

concentrate at a rate of 1 ml.!" 1 , according to the recipe of Table 3.4. The up-flow velocity (Vup) 

was kept constant at 4.78 m.h" 1 and similarly, the retention time was maintained at 24 hours.

Table 3.3 Summary of the feed composition for EGSB reactor___________________
Constituent solution________________________________Concentration [ml.l' 1 ]______
2M NaH2PO4.2H2O 1.25
4M NH4C1 6.25
2MKC1 1.5
1M Na2 SO4 0.4
1M Citric acid 0.5
0.25M MgCl2 .6H2O 1.25
0.02M CaCl2 .2H2O 0.25
0.001MNa2Mo04.2H2O__________________________0.025______________

The constant flow-rate to the reactor was achieved by regulating the flow from two feed pumps 

(one supplying feed concentrate, the other tap water), such that the sum of the flows was constant 

at a rate of 21.5 ml.min" 1 . The algorithm used to control the pumps was configured to adjust the 

flows to maintain a specified though changeable HRT. The 21.5 ml.min" 1 flow-rate corresponded 

to a 24 hour HRT.

Table 3.4 Summary of trace elements added to feed for EGSB reactor________
Trace element___________________________________Concentration [ml.l' 1 ]______
HC1 5.1
Fe2Cl2 .4H2O (dissolved in acid) 1500
H3BO3 60
MnCl2.4H2O 100
CoCl2 .6H20 120
ZnCl2 70
NiCl2 .6H2O 25
CuCl2 .2H2O 15
Na2MoO4.2H2O_______________________________25________________
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Arrangement for actuation through BA dosing (Start-up 4)

In the experiment where BA dosing was used as the control action, an algorithm similar to that for 

actuation through loading rate was used. In this case, the loading rate was manually set at a 

constant level (which was changed as the requirement to do so arose). A concentrated BA 

solution of 2222 mg.l ~' CaCO3 equiv. was supplied (according to the control effort), and mixed 

with tap water from a separate pump, again configured to maintain a constant inflow to the 

reactor. In the case of the BA dosing, the HRT was not always kept at 24 hours (in experiments 

beyond those reported here), so the flow-rate was changed as a consequence. The feed 

composition, with respect to trace elements and salts, remained the same as Tables 3.3 and 3.4, as 

did the recirculation rate and Vup.

3.3 MODEL DEVELOPMENT FOR CONTROLLER DESIGN

The choice of a model, for use in the design of a control strategy for AD is not necessarily obvious 

or straightforward. AD is known to be non-linear and time varying, but the extent to which this is 

of relevance within a model, is dependant on the use to which the model is to be put and the 

operational characteristics of the system it represents. As no techniques for rational and efficient 

elimination of alternative approaches could be discovered from the literature, it became necessary 

to investigate the possibilities presented by what was perceived to be the most promising of the 

different modelling approaches. Considering and comparing all the different modelling 

approaches would prove to be a prohibitive strategy. It was decided therefore, to consider the 

simplest approaches first and attempt to discover the point at which a sufficiently representative 

model was obtained. The strategy sought to determine if simple black box models could be made 

to represent the process with a 'good enough' degree of accuracy. In this work, several black box 

models were parameterised from measured data and investigated using separate validation data in 

order to find the most appropriate of these models. The apparent stability of the process begged 

the question; whether linear models could represent the process as accurately as non-linear 

models. To try to answer this, a comparison was made between linear and non-linear (neural 

network) models of similar structure. The parameterisation of the black box models relies entirely 

on identification and the parameters have little or no physical meaning.

The discussions of the development of such models are not easily divorced from the data and 

experimentation from which they are parameterised because the model is essentially a regression 

fit of the data (using least squares approaches in general). The model development for the ARX 

modelling will be presented as an identification process after having elaborated the model
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structures that were used. As the overarching conclusions of these studies showed significant 

differences between the model predictions and the real behaviour of the process, it was necessary 

to consider the use of non-linear lumped parameter models as are commonly used in AD research. 

These models had been validated in several studies, some of which are mentioned in Section 2.1.

Presented here are the modelling procedures used in the development of simple linear black box 

models of various structures and then proceeds to present the techniques (Task 1), and non-linear 

ARX model structures with which they are compared (Task 2). As the performance of these 

models was not considered sufficiently high with respect to predictions over large horizons, the 

section presents a suitable deterministic model (Task 3), which was then integrated with the 

control system and strategies adopted in Section 3.3, (Task 4). A summary of these tasks was 

presented in Table 3.1

3.3.1 Low order linear black box models (Task 1)
The model of a system need not be a complete description of its properties and seldom is. The 

accuracy is similarly context dependent in as much as the purpose of the model is the final arbiter 

of the accuracy of the model and consequently its suitability. The user of the model need not 

believe that the model is a true representation of the system, though some knowledge of the 

limitations of the model are useful a priori knowledge in its application. Given that broad 

agreement seems to exist that the AD process is a non-linear process and is time varying to some 

extent, which is not quantifiable and is system specific, the search for a suitable model can take a 

number of philosophical directions. Should the complexity derived from the process non-linearly 

be considered or not? Would the assumption of Linear Time Invariance (LTI) cause the resulting 

model to predict poorly, in the context of a specific application? Or, would the search for a 

suitable model from within a set of LTI structures yield a model with adequate performance? 

These questions would appear only to be answerable in specific (but hopefully representative) 

exemplar systems, though their analysis. It is therefore appropriate to attempt to predict the 

condition (in terms of at least some state variables) of the AD process in various states of 

excitation, for a laboratory scale fluidised bed AD reactor, as an example process.

Black box modelling

A similar analysis to that presented by Ljung (1987) on black box modelling and identification 

follows. LTI systems can be represented by Equation 3.3.1.
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~ l )u(t) + H(z~ l )e(t) 3.3.1

With the added knowledge of the probability distribution function (PDF) of the disturbance eft), 
denoted fe(.), and where G(z') represents the discrete transfer function to which the input is 
subject and similarly, the H(z') represents the discrete transfer function to which the disturbance 
is subject. Specifying any particular model becomes a matter of specifying the three functions 
G(z'), H(z~') andfe(.). Typically, the transfer functions G and H are specified as reasonably low 
order polynomials in z' 1 for practical reasons. They may also be defined in state-space 
representation of finite dimension. The PDF of eft) is often assumed to be Gaussian and as such, 
the expectation or mean value of eft) and its variance are respectively the first and second 
moments:

Ee(t) = \xfe (x)dx = 0 3.3.2

A 3.3.3

When the transfer functions G and H have coefficients, which are unknown, they become the 
object of interest in an identification process. We can assemble these parameters to be identified 
into a vector and denote it as 9. Equation 3.3. 1 then becomes:

y(t) = G(z~\9)u(t} + H(z~\9)e(t} 3.3.4 
and eft) is white noise. From this, a one step ahead prediction which does not depend on the PDF 
can be derived (as has been done by Ljung (1987) which he called the predictor model) to give:

3.3.5

LTI Model Identification is the process of producing a linear mathematical model which is able to 
predict future values of the data to an arbitrary degree of accuracy. Perhaps the most obvious 
parameterisation of Equation 3.3.4, is to replace G and //with rational quotients of polynomials 
where the parameters to be identified are the coefficients of these polynomials. These model 

structures are known as black box models.

A black box approach was adopted in Task 1, because of its simplicity and flexibility. In so 
doing, an input (U) and Gaussian white noise (e) were mapped through transfer functions G(z) and 
H(z) and added to give a resulting output (y), as discussed by Ljung (1987) or Soderstrom and 
Stoica (1989). The structure is shown schematically in Figure 3.3.1 (a)
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(a) (b) 

Figure 3.3.1 (a) Black box model structure and (b) General family of model structures.

The black box model can be represented more flexibly as a General Family of Model Structures 

by representing the transfer functions as ratios of polynomials in z~' (which can be considered as 

the delay operator), as shown in Figure 3.3.1 (b).

The family of models can be written as:

A 3.3.6

Where: A(z') = 1 + a,z' + a2z 2 ...+ anaz na, B(z) = b, + b2z' ...+ bnbz'"" ' and similarly for C(z'), 

D(z~') and F(z~'), and where z""* represents a pure delay as a multiple of sample periods. The model 

structure can be selected to include as many or as few of these black box parameters as is 

necessary to produce a sufficiently accurate model. Soderstrom and Stoica (1989), Ljung (1987) 

and Ljung (1993) discuss model structures at length. A synopsis of the types of LTI black box 

model structures available are shown in Table 3.3.1

Table 3.3.1 Standard LTI black box model structures (after Ljung (1987)) 

Polynomial used, Model Structure 

from Equation 3.3.6
B

AB

ABC

AC

ABD

ABCD

BF

BFCD

Finite Impulse Response (FIR)

Auto Regressive with Exogenous input (ARX)
Auto Regressive with Moving Average and Exogenous input (ARMAX)

Auto Regressive with Moving Average (ARMA)

Auto Regressive with Auto Regressive Exogenous input (ARARX)

Auto Regressive with Auto Regressive Moving Average Exogenous input (ARARMAX)

Output Error (OE)

Box-Jenkins (BJ)
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These models (Equation 3.3.6), if they could predict digester behaviour sufficiently accurately,

could be used in process control. Although the process is generally considered to be non-linear, it

could possibly be represented by a recursively parameterised linear model, where the model

adapts rapidly enough to represent the process at differing conditions and times in its operating

life. Simple linear black box models of low order are investigated here, (without recursion) and

predicting over a limited horizon, relying on current and recent data values to refine the

prediction.

After considering several of the structures presented in Table 3.3.1, black box ARX Single Input,

Single Output (SISO) models were adopted and identified for gas production rate, % CO2 ,

bicarbonate alkalinity and Total Organic Carbon. This was done using on-line data from the

fluidised bed reactor described in Section 3.1, which was subjected to varying organic load. More

complex model structures were able to reduce the sum of squared errors when tested against

validation data, however the added complexity of the model was not justified by the improvement

in forecasting. The model structure reduced to:

A(z' ] )y(t) = B(z-> )U(t - nk) + e(t) 3.3.7

in which (t-nk) represents the number of samples by which the input was retarded, or most

generally:

3.3.8

where:
y(t) Represents the model prediction,

U(t) Represents the regression vector of current and past inputs, outputs and additive pre-

filtered noise,

/(.) Is some function of U(t)

Parameter estimation of the linear ARX models followed a standard minimisation of the Sum 

Squared Errors approach (Wellstead and Zarrop (1991)). In the absence of noise, the model could 

be determined directly from linear algebra from very few data points, in a relatively trivial 

manner. In the ARX structures, it is assumed that the noise, which is always in evidence in 

experimental data (to a varying degree), is equivalent to pre-filtered white noise where the poles 

of the filter are identical to those of the resulting ARX model. Practically, this means that 

iteration may be necessary to ensure that deviation from this assumption does not have a 

deleterious effect on the model predictions. Again because of the noise we are forced to use an 

overly determined data set, and to solve using the least square approach.
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The Linear SISO ARX Model

y(t) +y(t)(al z- t +a2 z 2 +....... ana z"") = U(t-nk)(b, +b2 z~ l +...bnb z<-"b+t)) +e(t) 3.3.9

Where:

Oj, a2, ...ana and bh b2, ...bnb are constant coefficients which form the parameters to be identified

y(t) is the one-step-ahead prediction of y(t) the actual output.

z~' represents the delay operator.

U(t) is the input

eft) is the additive noise

nk number of delayed samples (minimum =1)

na length of the output regression vector

nb length of the input regression vector +1

Data sets for the parameterisation and validation of black box models

Model predictions looked ahead one sample step i.e. 30 minutes. The experiments reported here 

were performed over an 8-week period during which the fluidised bed reactor was run continually. 

Data used in parameter estimation for the modelling of %CO2 , BA and gas responses, were 

separated by one month from the model validation data and for modelling TOC model the data 

were separated by two months. Changes in organic loading rate (Bv) were brought about with 

minimal changes in hydraulic retention time by adjusting the feed pump flow delivering the 

concentrated feed to the reactor. The pump delivering dilution water remained at a fixed rate as 

described in Section 3.1. The feed pump voltage was directly related to the flow and hence Bv. 

Table 3.3.2 shows the experiments used for parameter estimation and validation of the predictive 

models.
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Table 3.3.2 Experiments used for parameter estimation and validation of models________

Expt.No. Min. Bv Max. Bv Description
___________[gCOD.r'.dl rgCOD.l-'.dl________________________________________

1 26.5 70.2 Series of step changes in Bv of varying amplitude and
duration; black box parameter estimation for BA, 
%CO2 and gas production rate models

2 17.8 38.6 Series of step changes in Bv of varying duration;
black box parameter estimation for TOC model; 
validation of the models of BA, CO2 , and gas 
production rate

3 16.1 69.9 Two step changes in Bv of similar duration and
amplitude; validation of TOC model

4 17.6 75.0 Single step change in Bv (8.8h duration); validation of
the models of BA, CO2 , and gas production rate

3.3.2 A COMPARISON OF THE ABILITY OF BLACK BOX AND NEURAL 
NETWORK MODELS OF ARX STRUCTURE, TO REPRESENT A FLUIDISED 
BED ANAEROBIC DIGESTION PROCESS (TASK 2)

Linear black box models described so far are all LTI and independent in so far as the coupling 
between say BA and %CO2 , or any other couplings are not considered. The question arises as to 
whether considering such couplings would improve the predictions of the model. Furthermore, 
the LTI approach does not attempt to represent the underlying non-linearity of the process and an 
intrinsically non-linear approach such as neural network modelling (given sufficient non-linear 
activation functions), would tend to do this.

Using the data collected from the fluidised bed reactor system, three different black box models 
were parameterised and validated so that their performance could be compared. The three models 
were all based on the ARX (auto regressive with exogenous input) structure, and were:

1. linear SISO model,
2. linear Multi-Input, Multi-Output (MEVIO) model and 
3 . non-linear neural network based model.

The linear independent SISO, ARX model is that described above in Section 3.3.1, and the basic 
structure remains the same as Equation 3.3.8, repeated here for convenience:

3 '3 '8
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In the case of linear black box models, this function /(.) consists of linear polynomial quotients. 

In the multivariable case (MIMO), Equation 3.3.8 represents a matrix equation with definable 
cross coupling between the data sets. The model parameter!sation follows the same procedure for 
both the SISO and MIMO linear structures as described in 3.3.1. For the case of the non-linear 
connectionist (or neural network) model, the function is a neural network of Multi-layer 
Perceptron architecture with a single hidden layer of non-linear squashing activation function 
neurones and a linear output layer, (Norgaard (1995)).

The Linear ARX Models

The Linear SISO ARX Model—This is of the form:

y(t) +y(t)(a,z- 1 +a2 z 2 +....... ana z"") = U(t-nk)(b, +b2 z~ l +...bnbzm) +e(t) 3.3.9

The Linear MIMO ARX Model—Similarly, the MIMO ARX model is of the form: 
A(z')y(t) =B(z') U(t)+e(t) 3.3.10

where:
A(z') =Iny+A,z'+.... +Ana z na 

B(z') =B0+B,z'+..... +Bnb z nb

As detailed in Ljung (1993)), the parameter vector is determined in a similar way to the SISO 
ARX, with the difference that the parameter vector 0=[Ai,.....,Ana, B],.....,Bnb], consists of matrices 

(bold type). 6 will include parameters which cross couple the data streams, such that the effect of 
past values of % CO2 for example can be made to have an effect on the prediction of bicarbonate 

alkalinity and gas production rate.

The Non-linear Neural Network ARX Model 
This model is after Norgaard (1995)

3.3.11

Where:

yt (w,W) is the prediction of the model as a function of network weights.

Fjis the output layer activation function, which is linear in this thesis.
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Wjj are the weights through which the hidden layer is connected to the output layer. Wi0 acts as a
bias.

fj is the hidden layer activation function, which is a tanh function in this paper.

Wj, are the weights through which £ is connected tofj . therefore wjo acts as a bias.

£i represents the feature vector of length m, presented to the input of a feed forward Neural
Network.

Training and validation data

The data used in parameter estimation (and training) is described by Premier et al. (1997)) and is 
shown in Figure 3.3.2. The data are normalised by subtracting their mean and dividing by their 
standard deviation (by using the M-File bishnorm.m in Appendix A), according to

Data"""" = ———'•—————. Where Data is the data vector with each element / being normalised to DataSD
give the vector Data"orm . However the ranges of the absolute values of the data are shown in 
Table 3.3.3. The normalised data can be returned to its original state by applying the inverse 
procedure.

The same data gathered from these experiments were used to determine the linear model 
parameters and the neural network model weights. Model validation was performed using the 
same validation data set (Figure 3.3.3) in all cases.
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Figure 3.3.2. Data used in Parameter Estimation and Neural Network Training for System 

Identification

(a) Normalised Feed Pump Control Voltage and Bicarbonate Alkalinity, (b) Normalised % 
CO2 and Gas Production Rate.

PhD Thesis - Giuliano C Premier 2003 56



3.0 Experimental equipment, materials and methodology

S3 nj •

to

I

BA
% Carbon dioxide 
Gas productbn rate 
Feed pump action

20 30 

Time [hours]

Figure 3.3.3. Normalised Bicarbonate Alkalinity, %CO2, Gas Production Rate and Feed 

Pump Data used in the Validation of the ARX Models for System Identification.

Table 3.3.3. Maximum and minimum true values of parameter estimation and validation 
data.

Data series
Parameter estimation data
Feed pump (volts)
Bicarbonate alkalinity (g.l" 1 )
%CO2
Gas production rate (ml.min" 1 )
Validation data
Feed pump (volts)
Bicarbonate alkalinity (g.l" 1 )
%CO2
Gas production rate (ml.min" 1 )

Maximum

2.5
1.8
60
80

1.5
1.7
52
39

Minimum

1.6
1.3
32
40

0.7
1.38
33
19

System identification procedure
Having determined appropriate data sets for the training and validation, all the selected models 

were trained and validated with the same data sets, to allow a basis for comparison. The number 

of previous samples in the regression vectors for inputs and outputs (lag space) was determined 

using a function implemented by Norgaard attributed to He and Asada (1993)). This confirms a 

heuristic approach taken in Premier et al. (1997)) on the basis of observation of the data time 

series. A MatLAB™ function (LIPSCHIT) implemented by Norgaard, determines an index which 

is high when the regression space is insufficient and becomes constant at a lower value when
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increasing the lag space has no further significant effect on accuracy in representing the data. The 
number of regressors effectively defines the model structure for the SISO linear ARX model. The 

MIMO linear ARX model however, still requires a decision as to the cross coupling between a 

particular output prediction ( %CO2 for example) and previous samples of the other time series 
(BA and gas production rate in this example). In all cases, second order polynomials (in the delay 
operator) were used. In the case of the neural network model, the training algorithm was based on 

the Levenberg-Marquadt non-linear least squares technique, while the remaining models were 
parameterised using a linear least squares approach, as implemented by Ljung (1993)).

3.3.3 The implementation of a deterministic model capable of representing 
appropriate control parameters in an anaerobic digester (Task 3)

The parameterisation of the MRAC control system developed in Section 3.4 is reliant on the use 
of a representative model of the AD process, so that by means of optimisation and simulation (at 
worst, using an heuristic approach), the parameters may be determined. The models considered 
above in Sections 3.3.1 and 3.3.2 turned out not to be sufficiently representative over long 
(virtually infinite) prediction horizons, as is required in controller design. It became necessary 
therefore, to use a deterministic model which had parameters based on the underlying 
physical/chemical/biological processes found in the AD process. A large quantity of literature is 
available on the subject of AD modelling, with numerous variations on trophic groupings and their 
associated kinetics and interrelationships, some of which have been discussed in Chapter 2.0. The 
model, which was to be used, must have a useful and representative description of the parameters 
used in the control of the process. In particular, BA should be considered, as this was to be the 
measured variable in the SISO control system investigated in this work. Models such as that of 
Costello et al. (1991a), which includes verification in Costello et al. (1991b), would be 
appropriate, had it not included unnecessary details and omitted others.

Verification of modelling techniques and application software
As a starting point and as a means of verifying the modelling tools and techniques adopted, the 

model used in the work of Alcaraz-Gonzalez et al. (1999), was described in MatLAB™ using the 

Cauchy and Simulink™ representations. Sufficient data was available to verify the coding, by 

comparing it to the simulations produced by Alcaraz-Gonzalez et al. (1999) model (although 

initial conditions were not available). BA in this model was considered dynamically, only in so 

far as the hydraulic characteristics of the system were concerned. The correlation between the 

published simulations and those carried out by the author was good and afforded considerable
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confidence in the modelling technique. The Simulink™ mdl-File description of the model 

allowed its easy inclusion with control strategies, and allowed the full functionality of this 

application to be made available. Appendix A contains the M-File narbonne.m used to verify 

the Cauchy methodology and includes the assumed initial conditions. This file calls the model 

admodeM.m which is essentially that from Alcaraz-Gonzalez et al., which was taken in turn 

from Bernard et al. (1998). This model was then implemented as a Simulink™ model 

(narbonne_model.mdl) and is included in Appendix A.

Lumped parameter deterministic model for controller design

A model was developed by the University of Florence as part of an EC funded project "Integrated 

Process Control for Carbon and Nitrogen Removal by Wastewater Treatment Plants", in which the 

University of Glamorgan was a partner institution. The model was later published by Marsili- 

Libelli and Beni (1996), in which data generated by the fluidised bed reactor described in Section 

3.2 was used to parameterise the model. The model included an ionic equilibrium treatment of the 

B A/VFA/CO2 system and as such was a suitable model for the design of the control system based 

on BA as a measured variable. Two interim reports written during the execution of the EC project 

(Marsili-Libelli and Beni (1993a); Marsili-Libelli and Beni (1993b)), which develop the model are 

somewhat different to the model published by Marsili-Libelli and Beni (1996). The model which 

was used is detailed below.

The model was developed on the following basis:

Hydraulic characteristics
The Hydraulic characteristics of the reactor were approximated by a CSTR configuration, 

although the reactor was in fact the fluidised bed reactor presented in Section 3.1, (Marsili-Libelli 

and Beni (1996) describe the reactor as an anaerobic filter with recycle). The need to develop a 

new model stemmed from the lack of a model in the literature, which would be suitable to 

represent the BA monitor developed by Guwy et al. (1994). The BA was to be modelled with a 

view to employing it to detect the onset of overload and to develop a local on-line regulator, which 

would determine the required dosing of BA to the reactor.

Acidogens
The rate of change of the concentration of acidogenic bacteria is related to the instantaneous 

concentration of the same, the substrate available to these bacteria and their endogenous decay. 

The retention of the bacteria will also affect their growth or otherwise.
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dXa
• a'*^ aat

Where n - '

F
^ da /"*" aV

* anm S £„+*„

3.3.12

i -j 1 1

kda endogenous decay term

S a factor to take account of the solids retention time

The first term of Equation 3.3.12 is the classical Monod substrate limited growth kinetics, with a

multiplying term, to make the half velocity constant (Ksa), have proportionality to the incoming

substrate. The second term includes the endogenous growth and a term, which takes account of

the retention of biomass, in a sense deviating from the CSTR assumption (that solids and

hydraulic retention times are the same), by the factor 8.

Methanogens

dX F
——^ = Vm Xm -(S- + kdm )Xm 3.3.14

Where // =———^^——— 3.3.15 
^m . Ksm HAc1 + —2»_ +——

HAc Kim

In this case, Haldane kinetics are used, which differ from the Monod kinetics by including an 

inhibition factor Kim where increasing the VFA's beyond a certain level causes the inhibition term 

to become more dominant, effectively reducing the population of methanogens compared to an 

uninhibited dynamic. The substrate for this group of bacteria (recalling that the model assumes 

only two populations, lumping all methanogens into the acetoclastic methanogenic grouping and 

ignoring the hydrogenotrophic methanogens), is in the undissociated part of the acetic acid (HAc 

and not CH3COO"). Rozzi et al. (1997) noted that acetoclastic methanogens are the most 

important as about 70% of the converted COD mass flow is routed through acetic acid. Acetic 

acid (Va) is assumed by the model to be the only product of the acidogens. Again, endogenous 

growth and retention of the bacteria also affect their rate of concentration growth.

Volatile fatty acids
The conversion of the feed to volatile acids is simplified in this model, to include only acetic acid. 

The higher molecular weight acids, though they would be produced, are assumed to be acetic acid. 

For the model to take these (butyric, propionic, lactic etc. acids), into account, each would need to 

be described by a differential equation, and have a bacterial population associated with it, thus
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increasing the number of parameters and model complexity, probably without significant 

advantage. The concentration of acetic acid (Va) is dependent on its presence in the influx, its 

production by the acidogenic bacteria and its consumption by the methanogens to grow, or to yield 

biogas.

~f-=~(Vaia-v a^^a xa y^ -vmxm (— + yco2a +ycl^ 3.3.16
s sm

The undissociated acetic acid can be determined from the total acid concentration as follows:

Where Ka is the dissociation constant of acetic acid.

Organic substrate

The organic substrate available for use would normally be a complex combination of soluble and 

paniculate biodegradable material. This model assumes that hydrolysis is not limiting, or in fact 

that all the carbonaceous material is soluble and available for metabolism by the acidogenic 

bacteria. The first term in Equation 3.3.18 considers the hydraulic behaviour of the system in the 

usual way, while the second term considers the consumption of substrate by the acidogens to grow 

or to produce acetic acid and CO2 .

= S-S-iJT- + + 3.3.18

Carbon dioxide dynamics

The first term of Equation 3.3.19 describes the loss of CO2 from the system by way of the biogas. 

Carbon dioxide is generated by both bacterial groups, depending on the usual Monod and Haldane 

kinetics and is considered in the second and third terms. The final term considers the gas transfer 

between the gas and liquid phases according to Henry's law, and depends on the partial pressure of 

CO2 in the system.

-C + f,aXayco2a + ^Xmyco2m + K!4Kh Pc02 -C) 3.3.19 
at V

Partial pressure of carbon dioxide
The solubility of CO2 in water (the main constituent of the effluent), is significant and cannot be 

ignored as it will affect the acid/alkali equilibrium of the reactor. The CO2 partial pressure and 

Henry's law govern its concentration in the liquid phase, and the rate at which it is transferred into 

the gas phase is governed by the CO2 mass transfer coefficient (Kp). The bracketed term which
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includes Sv (Avogadro's number), determines the proportion of CO2 in the gas phase. The second 
term in Equation 3.3.20 quantifies the CO2 lost from the reactor system through the outflow of 
biogas.

Production of carbon dioxide gas
As in Equation 3.3.20 the production of CO2 (Equation 3.3.21) and similarly CILj in Equation
3.3.22 are governed by partial pressure and mass transfer considerations.

e — v \v- / f D /~r\ t 1 Tl co2--\ ^~ \K AK l,^co2 ~ C > 3.3.21

Production of methane gas
Methane is considerably less soluble in the liquid phase than is carbon dioxide and the mass 
transfer rate is assumed to be irrelevant, although its production rate by the methanogenic bacteria 
must be considered, as can be seen by the inclusion of the Haldane kinetics through /^,.

3.3.22

Bicarbonate input
The bicarbonate supplied to the reactor through the feed is subject to the same transport dynamics,
so that its concentration in the reactor is defined by Equation 3.3.23.

-*-

pH and alkalinity
The pH and alkalinity depend on the ionic distribution in the liquid phase which are assumed to 
balance and which also depends on the CO2 equilibrium between the gas and liquid phases. 
Knowledge of the instantaneous [/T] ion concentration will determine the pH and the alkalinity 
expressed as sodium bicarbonate molarity will be determined from the [//CO/] ion concentration. 
The algorithm is developed fully in Marsili-Libelli and Beni (1996), but is considered here in the 
interests of understanding.

PhD Thesis - Giuliano C Premier 2003 62



3.0 Experimental equipment, materials and methodology

The distribution of CO2 between the liquid and gas phases is in accordance with Henry's law 

Kh=CO2<aq/CO2(g). When in the liquid phase, CO2 forms carbonic acid, which dissociates 

(dissociation constant for CO2 is Kco2), in accordance with the equilibrium Equation 3.3.24.

.^

So that from Henry's law, [// 2 CO3 ] = Kh CO2(g)

Partial dissociation of CO2(g) requires that an ionic balance exists, yielding Equation 3.3.25.

3.3.25

If all the [H*] ions come from the carbonic acid, then electrical equilibrium would mean that 

[//*]= [HCO3 ], then by substituting and by rearranging Equation 3.3.25, it would give:

[H + ] 2 + Kco2 [H + ]-K,Kco2 C02(g} =0 3.3.26

If we assume that the entire BA is derived from H2CO3 , then the middle term of Equation 3.3.26 is

eliminated giving:

[H+] 2 =Kh Kco2 C02(g} 3.3.27

Which is used throughout the modelling of pH and BA in Marsili-Libelli and Beni (1996), who 

incrementally proceed to model the inclusion of a weak acid such as acetic acid (CH3COOH), the 

effect of CO2 partial pressure and other ionic species. 

The dissociation of the weak acid HA is governed by Equation 3.3.28.

j/nm 3.3.28
HA 

and similarly the ion product of water:

= \Q-" 3.3.29

The ion concentrations should balance to give:

[/T] + [*«+]* + [Na+] NaAc = [A~] HAc+NaAc + [OH ~ ] + (HCO~ } 3.3.30 

Where the suffices bic refers to sodium bicarbonate and NaAc and HAc refer to sodium acetate 

and acetic acid respectively. Equation 3.3.30 can be written:

3.3.31

and from Equation 3.3.29
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also from Equation 3.3.24

3 ' 3 -32

~,, ,
[HCO;]= c° 2 2(g} 3.3.33 

L# J

The total acid HA0 becomes the sum of the CH3COOH and others acetic species (sodium acetate 

(and sodium hydroxide).

— I- -I I IHc+NaAc ,T A--\ 171/1—————————— ———————— + [* 3 - 3 ' 34

Combining Equations 3.3.31 to 3.3.34

[/T]3 + Al[H + ] 2 +A2[H + ] + A3 = 0 3.3.35

where :
A\ = (Ka+ [Na+]bic+ [Na + ] NfiAc )
A2 = (-Ka (lHAc°]-[Na+]bic -[Na + ] NaAc )-Kw -a)
A3 = -Ka (Kw+ a)
and

Equation 3.3.35 was encoded in a MatLAB™ M-File which was based on the work of Marsili- 

Libelli and Beni (1993a) and which determines the pH and [HCO3 "] (bicarbonate alkalinity). The 

function was embedded in a Simulink™ 'MATLAB Function' block, and the function is included 

in Appendix A as pH_BA.m.
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Figure 3.3.4 Simulink™ block representation (top level) of a two-population lumped- 
parameter AD model showing inputs to and outputs from the block (for verification 

purposes).

The complete two-population lumped parameter model of the AD Process, including a model of 
BA was constructed in Simulink™, and Figure 3.3.4 shows the top level of the model with all 
available input (with arbitrary signals connected) and output connections as listed in Table 3.3.4 
(after Marsili-Libelli and Beni (1996)). The two-population model is included in Appendix A and 
has the filename florence_model_verification.mdl.
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Table 3.3.4 List of input and output parameters
Parameter

Dilution rate
Sodium bicarbonate NaHCO3
Organic substrate
Volatile fatty acids supplied
Liquid phase volume
Gas phase volume
Acetic acid added
Sodium acetate or Sodium hydroxide (NaOH) added
Acidogenic bacteria
Methanogenic bacteria
Inorganic carbon
Bicarbonate (considering transport dynamics)
Substrate in effluent
VFA's in effluent
Gas production rate
Methane production rate
CO2 production rate
CO2 Volume produced
pH
Bicarbonate alkalinity
CO2 partial pressure

Symbol [units]
D [m3 d" 1 m~3=d~'l
S(n [mgCaCOj.l ']
srtmgcop.r 1 ]
K[m3 ]3

Acetic Acid [mg.r 1 ]
HAc [mg.r 1 ]
Xa [mg.1- 1 ]
Xm [mg.r 1 ]
Cfmg.r 1 ]
B [mgCaCOj.r 1 ]
S [mgCOD.l - 1 ]
Va [mg.r']
Q [ml.min- 1 ]
Qch4 [ml.min- 1 ]
Qco2 [ml.min" 1 ]
gasCO2 [ml]
pH
BA [mgCaCOj.l" 1 ]
Pco2 fatmos]

Input-I 
Output-O

O
O
o
o
o
o
o
o
0
o
o
0
o

The model inputs

The dilution rate D=F/V, is a quotient of the flow rate to the reactor (F [m3 .d"']), and the volume 

of the liquid phase, into which it is diluted (V [m3]). The Sodium Bicarbonate (Bin) input to the 

system is assumed to enter through the feed tank (which includes the transportation dynamics of 

the hydraulic regime). Similarly, the substrate feed (Sin) is assumed to enter via a feed tank and 

the model supplies the possibility to take account of pre-acidification in this storage tank, by 

applying an extra supply of VFAs as an input (called Vain in the model). The liquid and gas phase 

volumes (V and Vg respectively), define the reactor size and the hydraulic regime as a 

consequence. The only supplement to this is the parameter ^in Equation 3.3.12, which is able to 

give a mechanism by which account can be take of retained solids for durations that exceed the 

HRT. The model is also able to simulate shock loading (spiked directly into the reactor without 

considering the transportation dynamics) from acetic acid and sodium acetate and/or sodium 

hydroxide.

The model outputs
The outputs allow key process parameters to be monitored during simulation. These include the 

concentrations of acidogens and methanogens, which are assumed to be the only two trophic 

groups. Substrates in the form of primary organic feed (S) and possibly acetic acid (acetic acid), 

as well as secondary product from the acidogens (Va, assumed to be totally acetic acid), can be
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monitored. Of particular importance to this work is the effluent bicarbonate alkalinity (BA) which 

is the measured variable in the control strategy and pH and gas production parameters, which are 

of interest in assessing the operation of the system.

Model performance verification

A major problem, acknowledged by Marsili-Libelli and Beni (1996), is that the model is very 

sensitive to initial conditions. They solved the problem of selecting initial conditions (so that the 

model could be parameterised), by exploring the steady state performance of the model. As the 

initial conditions were not published, the only course of action open to the author was to take the 

initial conditions from the steady state plots and to use the parameter values published in Marsili- 

Libelli and Beni (1996). The model could be thought of as 'almost' an optimal process as the 

fluidised bed reactor was working well, at a high loading rate at the time of the data capture 

(baseline OLR of 9.5 kg.COD.m~3 .d ] and overloads reaching 27 kg.COD.m"3 .d~'). The purpose to 

which the model would be applied would be to design a control strategy able to take a similar but 

different reactor (EGSB as opposed to a fluidised bed reactor) from start-up to relatively high 

loading rate. The expectation was that there would be variations in the model performance, 

particularly due to time variance. The initial conditions will take account of the differences to 

some extent, such as the lower populations of active bacteria, though accurately determining the 

true active biomass concentrations would be almost impossible practically. The activity and 

acclimatisation of the bacteria are not considered other than through identified parameters such as 

yield coefficients in the model, nor are populations of bacteria or products other than those 

presented.

It is also worth considering the time variation, about which little is known as it may involve 

imponderables such as toxic shocks which have not been detected or perhaps variations in the 

hydraulic characteristics of the reactor over long time periods, due to silting or channelling 

perhaps. Also drift in the demography of the bacterial populations through selection or de­ 

selection on the basis of the environment may occur.

Verification of the implemented lumped-parameter model

In order to be satisfied that the model has been replicated, there needed to be a reasonable 

comparison between the model results published by Marsili-Libelli and Beni (1996) and those 

obtained by the author. As stated, the initial conditions of the model are not explicit in the paper 

and for that matter nor are the operating conditions. However the paper does give some 

information from which to estimate the values. Table 3.3.5 shows the parameter values obtained
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from Marsili-Libelli and Beni (1996), as well as others not given in that paper and Table 3.3.6 

shows the initial and loading conditions used in the verification simulations.

Table 3.3.5 Model parameter values (after Marsili-
Symbol Value Units
Kinetic constants
Un™r

Ksa
kda

\immnr
K-sm 
kdm
Kim

L"

c
C

L
C

0.5033
238.1±3.7 
0.03104±0.000484057
0.00227±9.6834xlO-6
0.01453±0.000226874 
0.0008
35.47±0.4923

Yield coefficients
y,a
Vvfa
Vco2a

L
L
C
L

0.688
0.427
0.5+0.00704515
3.2702

h' 1
mg.r 1 
h' 1
h" 1
mg.r 1 
h' 1
mg.r 1

Purpose

Acidogenic bacteria maximum growth rate
Acidogenic bacteria half-velocity 
Acidogenic bacteria decay rate
Methanogenic bacteria maximum growth rate
Methanogenic bacteria half-velocity 
Methanogenic bacteria decay rate
Methanogenic bacteria inhibition concentration

Substrate — » acidogenic bacteria
Substrate — > acetic acid
Substrate -» CO2
Acetic acid — » methanogenic bacteria

(Marsili-Libelli and Beni (1996) writes acidogenic 

bacteria it is believed, in error)
yCM
Vrn2m

L
C

Physico-chemical
Kw
CC02
Cch4
P,
V
v.
F
5
K,a

L
L
L
E
E
E
E
E
C

20.7321
5.174±0.4923

constants and reactor design1 x 10- 14
44000
16000
1
10
2.5
0.48
0.01666
6.328+0.100045

parameters

atmos
1
1l.h- 1

h- 1

Acetic acid — > methane
Acetic acid — > CO2

Water dissociation constant
mole — » mg.l" 1 conversion constant for CO2
mole — > mg.l" 1 conversion constant for CH4
Total pressure in gas phase
Liquid phase volume
Gas phase volume
Liquid flow rate
Liquid/solid dilution rate ratio
CO2 mass transfer rate coefficient

Q

C=calibrated; E=experimental; LMiterature

Parameters and constants required but not included in Marsili-Libelli and Beni (1996) 
L 1080 atmos/mol Henry's constant

fraction

Kh

Ka 
Kw 
Kc

L 
L 
L

2100

1.85e-5 
le-14
5e-7

atmos/mol Henry's constant - alternative form Tchobanoglous 
fraction and Burton (1991) used in Figure 3.3.5

Acetic acid (CH3COOH) dissociation const.
Water dissociation constant
H2CO3 (bicarbonate) dissociation constant___
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Table 3.3.6 Initial and loading conditions for model based on Marsili-Libelli and Beni (1996)
D La 
Sin L

Xa ES 
PC02 L 
QCH4 ES 
pH ES 
BAout ES 
Va ES 
Sodium acetate 
and/or NaOH added 
Pt L 
Vg L 
BA ES

Xm ES
Qco2 ES
Q ES
H+ L
C ES
VFA's
Acetic acid added

with 8 hr initial shock of 12470
0.069 d' 1 Dilution rate
Background of 4468 mg COD.l
mg COD.l'
1500mg. I' 1
23 x 10"2 atmos
0.7 l.min- 1
7
1700mgCaCO3 .r'
100 mg. I' 1
0

1 atmos (Gas Phase Pressure)
2.5 1 (Gas Phase Volume)
1700 mgCaCC^.r 1 (Marsili-Libelli and Beni (1996) show steady
state plot against D to be under 800 mgCaCOs.!" 1 continually)
lOOOmg. r 1
0.2 l.min- 1
0.9 Lmin' 1 (sum of Qco2 and Qch4)
5e-8 in fact equiv. to pH 7.3
300 mg. I' 1
0
0

L = Literature; ES = Estimate
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Figure 3.3.5 Verification results of the model derived from Marsili-Libelli and Beni (1996).

Figure 3.3.5 shows the results of the verification simulation using 
florence_model_verification.mdl, with initial and loading conditions as stated in Table 3.3.6 and 
parameter values as indicated in Table 3.3.5. The loading conditions represent 'Experiment 2' in 
the paper of Marsili-Libelli and Beni (1996), for which they plot their model performance for BA, 
Acetic acid, %CO2 and pH, as in Figure 3.3.5. The aim of the verification was to show that the 
model coded by the author was similar to that published by Marsili-Libelli and Beni (1996). This 
comparison can only be done using the published data and thus is taken directly from the Figure 9 
of Marsili-Libelli and Beni (1996), and key values, reproduced as faithfully as possible, (indicated 
by asterisks '*') have been included in Figure 3.3.5. The validity, in all cases is approximately 
5% or better, of the estimated full variation (Figure 3.3.5), which was thought to be sufficiently 
accurate, given the lack of information regarding initial conditions. With regard to all the 
parameters, Marsili-Libelli and Beni (1996) noted the sensitivity of their model to these initial 
conditions but did not publish these values. Furthermore, they did not publish the values they 
used for dissociation constants (of bicarbonate and acetic acid), or the integration method used. 
While these may not be expected to yield large discrepancies in the simulation results, it is

PhD Thesis - Giuliano C Premier 2003 70



3.0 Experimental equipment, materials and methodology

possible that, cumulatively, they could account for the differences. It is felt that the pH simulation 

results of Marsili-Libelli and Beni (1996) were high, and this is supported by comparison to the 

data against which they were measured in their paper. In comparing the simulation of Figure 3.3.5 

(d), with this 'real' data (indicated by 'o'), the model used by the author shows significantly better 

correlation. The indicated plot in Figure 3.3.5 (d) is a further improvement which was obtained 

by using temperature corrected values for the Henry's constant of CO2 from Tchobanoglous and 

Burton (1991). The important factor is that the model herein is thought to be a reasonable 
representation of the AD process from which it was parameterised.

3.4 DEVELOPMENT OF A CONTROL STRATEGY

The development of a strategy for the control of the AD process depends greatly on the ambitions 

of the project. There would be significant differences between control systems which had, for 

example, markedly different designs of reactor as their focus of attention. The AD process is 

essentially a multivariate non-linear system when viewed as a lumped parameter model and the 

definition of its state would require several parameters to be measured or deduced from other 

measurements. The system could then be treated as a MIMO (multi-input, multi-output), state 

space process, and appropriate control strategies developed to suit. State space is a matrix 

representation of the coupled differential equations written in such a manner that a notional 'state' 

is defined for the system. The practical applications of such systems are rare, other than in 

industries that have a tradition of high levels of instrumentation. The possibility of a control 

system finding full-scale application is greatly enhanced by minimising the number of measuring 

instruments required and increasing the transparency of its functionality. Once more invoking the 

principle of parsimony, the appeal of SISO (single-input, single-output) control systems is 

therefore high, provided the performance obtained from the controller is sufficient.

The development that follows was informed by the desire to use a single measuring instrument (or 

measured variable) and to use this information in situations which might otherwise make the AD 

process unstable. Furthermore, this should be possible with the minimum prior knowledge of the 

reactor and its content. The operator would wish to have an instrument, (instrumentation and 

control system) which could be applied to the process, without the need for extensive modelling or 

data collection and analysis.
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3.4.1 Choosing an available strategy for control

The following is not intended to be an exhaustive view of control strategies, which could have 

application in the control of AD. This would be a prohibitively large treatise. Instead, it is hoped 

that the presentation of important adaptive schemes will lead the reader into the techniques used in 

this study. This section starts by establishing broadly, the requirements which were considered 

during the development of the control strategy which was eventually employed. It then briefly 

examines a number of candidate strategies before detailing the development of the strategy used.

Requirements which inform the development of the control strategy

The control strategy was to be developed by simulation and computational techniques, which are 
considered to be the only viable possibility in view of the slow nature of the process dynamics and 
the difficulty in operating the process.

The control actions to maintain stable operation of the AD process are somewhat limited. It is 

possible to:

1. Reduce the organic loading rate (OLR) in response to a tendency of the reactor to sour, which 
would allow the trophic groups which use VFAs as substrate to reduce VFA levels and 

convert the heavier species to acetate. The reduced loading will also allow the hydrogen 
consuming acetogenic bacteria to reduce the dissolved hydrogen to levels, which are not 

inhibiting to the methanogenic bacteria.
2. Dose the reactor with an alkaline flow, which would increase the buffering capacity against 

the build up of VFAs, thus stopping those bacteria with pH sensitivity being inhibited in this 

way.
3. Increase the bacteria available to deal with the excessive products from various shock 

loadings or stressed operation. This is likely be of little benefit, as the bacteria will need to be 

farmed specifically for this purpose and may as well be in use continually.
4. Use hydrogen stripping by sparging or other techniques, but this would not increase the 

metabolism of the methanogens beyond their potential and hence may still allow the VFA 

build up to progress.
5. Increasing HRT and/or SRT, which is similar in consequence to changing the OLR, however 

in this case extra time is available for hydrolysis, and the metabolising of VFAs etc.
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Of the above control actions, the most appropriate were considered to be the first two. It is 

conceivable that the ORL can be altered in order to protect the eco-system in the reactor by 

diverting the remaining waste stream to a buffering tank. Naturally this could not be done 

indefinitely, but the respite provided may be sufficient to avoid damage to the bacterial 

consortium. In any event, maintaining the viability of the bacteria would be preferable to 

restarting with a new inoculate when the reactor totally fails. Maintaining an alkalinity-buffering 

margin is also a practical proposition, though the cost of adding say, calcium carbonate or sodium 

bicarbonate may give pause for thought. It was decided that both systems would be considered 

and appropriate control strategies designed.

As discussed above, the SISO control philosophy was considered to be desirable and BA was 

selected to be the control variable on the basis of the information content it represents with respect 

to reactor stability. The BA was measured using the instrument developed by Guwy et al. (1994), 

because of its admirable record on reliability in previous experimental work.

It is normal to define a specification to which the implemented control is expected to conform. In 

this treatise, the response of the system to disturbances was defined as a target time evolution of 

the measured variable (BA), which then became an embedded element of the control strategy. 

The selection of this time response was made heuristically, on the basis of previous experience of 

the fluidised bed reactor described in Section 3.1, when subjected to overload conditions. The 

time constants derived from these data were estimated and initially a first order reference model 

which was thought to be achievable was defined, as shown below in Figure 3.4.1. This proved to 

be a very tight constraint which led to severe control actions being applied, so the reference model 

was relaxed to the second order model shown in Figure 3.4.1.

—— 2nd Order Reference Model
-.- 1st Order Reference Model

Figure 3.4.1 Reference models for target system performance showing initial first order 

model and the selected second order model.
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The associated transfer functions are:

First order reference model ——^- = °-33(z + 1) f3 4
BA (z-0.33) l '

c A A c j i BA»f 0.03059z + 0.02677Second order reference model —^- = ———————— n 4 2)
BA z 2 -1.613z + 0.6703

No further specification was defined beyond defining the reference model, accepting that the 

reference model was not likely to be achieved accurately, but would form the basis of the 

motivation to adapt the control and, as such, be used in performance optimisation, which will be 

discussed in Section 3.4.2. The convergence criteria associated with the optimisation and applied 

in a least squares sense to the reference model defined the required performance of the control 

system and can be thought of as the control specification. However the optimisation process was 

iterative in its execution which implies an iterative and flexible approach to specifying the 

controller performance. It was felt that this philosophical approach was justified in the interest of 

trying to achieve the highest performance in the given circumstances.

Adaptive control vs other techniques

The preceding discussions have highlighted the fact that the AD process has non-linear and to 

some extent time varying dynamics. This may preclude the use of standard linear control 

techniques because the tuning of such controllers will only be relevant (or optimal) for the 

operating conditions for which the controller is designed. Should the process characteristics alter 

with time (or any other parameter), the controller will not be optimally tuned. This may or may 

not cause the control to fail depending on how far the system has diverged from its original 

dynamics, hi many situations the linear controller will cope with the variance, treating it as 

disturbances, and perhaps giving acceptable performance. It is also possible that the controller 

can be re-tuned by human intervention as necessary, though this would seem an undesirable 

modus operandi.
In the case of AD, the justifications for using a more complicated control strategy are: 

• Plant components may degrade or malfunction causing the plant characteristics to change over 

time. Silting, clogging and other physical processes may be apparent, as is the case in most 

process plant. Prolonged stress or toxicity in the feed amongst other reasons may cause 

changes in the kinetic rates of the bacterial groups.

PhD Thesis - Giuliano C Premier 2003 74



3.0 Experimental equipment, materials and methodology

• The plant may be subject to disturbances, which will also be variable over time, such as the 
composition of the waste stream due to upstream changes such as new industrial processes or 
sewer system alterations.

• The non-linear characteristics of the anaerobic biological process itself, which may cause 
changing requirements and responses at differing operating or initial loading conditions.

• Plant modifications can have marked effects on the AD process, even though they may be 
modest, like the changing of a valve or the alteration of a recirculatory flow. Variations in 
transport delays can also have a significant effect.

There is significant difficulty in defining adaptive control, as adaption is the process of adjustment 
to changing circumstances, which is essentially the purpose of normal closed loop control. 
However, without becoming involved in such semantic debate, it is the intention of the author to 
consider adaptive control to constitute systems which are able to improve their performance over 
what would be possible with simple closed loop control. Adaptive control could then be 
considered a suitable control strategy to address the points listed above. There are arguably three 
fundamental approaches to adaptive control:
• Gain scheduling control

• Self-tuning control

• Model reference control

Gain scheduling control
Gain scheduling (Astrom and Wittenmark (1989)), can be thought of as the piecewise 
linearization of a process for the purpose of applying a linear control strategy. It is often the case 
that parameters within a system will vary in response to variations of some other parameter. An 
example of this is, (and indeed, the original application impetus for gain scheduling control) the 
variation of aerodynamic properties of the atmosphere with respect to altitude, which is of 
particular concern to control systems in aircraft. In the case of AD, it would be possible to make 
an analogue between the aircraft altitude and the reactor temperature, and the forces generated by 
the aircraft control surfaces and the metabolic rates of the bacterial consortium. There are 
however more appropriate solutions in the case of AD as the relationship between temperature and 
metabolism have been determined empirically and are well known. The main benefit in this type 
of adaption is the speed at which the processing can be performed is very high, which is crucial 
for systems which experience rapid changes in circumstances (e.g. an aircraft in vertical, 
supersonic flight). The disadvantage lies in the need to characterise the system at all the operating
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conditions, which are likely to be encountered. The gain-scheduling element of the system is in 

fact an open loop arrangement, with all the intrinsic disadvantages which follow from this.

Self-tuning control strategy

Self-tuning control (Wellstead and Zarrop (1991)), was initially used in the digital control of 

industrial chemical processes which employed PID controllers. The typical empirical methods for 

tuning these controllers (e.g. Zeigler-Nichols methods) are often used even in complex plants. 

However with several hundred individual control loops the effort can become prohibitive, 

particularly when system changes occur in areas such as dead-time, non-linearities, and variation 

of plant gain with set-point and load conditions. Furthermore, the economic and environmental 

imperative to reduce energy consumption has also motivated the use of controllers that can retune 
automatically to ensure the process is maintained at a high state of efficiency.

The block diagram for a typical self-tuning controller is shown in Figure 3.4.2. The inner loop 

behaves like a typical feedback control loop, and outside this there is another loop, which acts to 

optimise the inner loop controller parameters. The 'self-tuner' needs to perform two tasks:

1. It estimates the plant dynamics.

2. It uses this estimate to determine appropriate values for the controller parameters.

estimated 
parameters

R(z) o-

Figure 3.4.2 Block diagram of a typical self-tuning adaptive control system

The parameter estimation is normally conducted on the basis of a known or assumed model 

structure using normal recursive identification techniques as detailed in for example, Ljung (1987) 

or Wellstead and Zarrop (1991). The controller design then proceeds in an automated sense using 

techniques such as pole placement or minimum variance. The self-tuning can and is often done 

perpetually and at each sample interval, thus maintaining an optimal controller. There is a

PhD Thesis - Giuliano C Premier 2003 76



3.0 Experimental equipment, materials and methodology

requirement of persistent excitation in order that the identification procedure can be relied upon to 

deliver acceptable estimates of the plant model parameters.

Model reference adaptive control (MRAC) strategy

MRAC relies on the generation of a so called model error (em), which is the difference between 

the process output and the output from a reference model (ym~), where the reference model defines 

the desired behaviour of the process when under control. If the process output matches the 

reference model output, there is no model error and perfect control is assumed at that time instant. 

In the case where a model error exists, an adaption mechanism is used to alter the controller 

parameters in such a way as to drive the model error to zero. Numerous adaption mechanisms 

exist, and a discussion of the approach adopted is presented in this section. A stated advantage of 

this technique is that the primary feedback loop (if indeed one exists), remains intact and if the 

controller is stable for all allowed controller values, then the system will still be in control even if 

the adaptive loop fails in some way. However this was not the case in the arrangement that was 

used which is described below. The fundamental assumption behind the method is that the 

adaption mechanism can force the system to behave in the manner specified by the reference 

model.

R(s)

1 ————— *" Reference
Model

/< ——— 
1

y™(s)

Adaption 
Mechanism

em(s)^

/ —— N. —————— * ————— ———————————— ^

. . / \ rVmtfnlW Prnr.ess

Figure 3.4.3 Typical scheme for Model Reference adaptive Control (MRAC)

Controller architecture and adaption mechanism used for MRAC

The method by which the controller parameter vector (0) is adjusted is termed the adaption 

mechanism. The parameter vector can be considered to define an n-dimensional hyperspace with 

each element representing a dimension, which is plotted in turn against the model error (em). The 

problem then becomes one of minimising the model error with respect to the n parameters, which 

is essentially an optimisation problem (in which all the methodologies of this discipline could 

apply). There are several alternative methods of adjusting the parameter vector such that the 

model error is minimised. The approach taken was a development of the normalised MIT

PhD Thesis - Giuliano C Premier 2003 77



3.0 Experimental equipment, materials and methodology

(Massachusetts Institute of Technology) adaption rule as discussed by Astrom and Wittenmark 

(1989). It should be noted that the stability of the system is not guaranteed. The original MIT 
rule is shown in Equation 3.4.3.

dQ_ = _ de^ dt ye~
dQ (3.4.3)

where the partial derivatives of model error with respect to the parameter vector are known as the 

sensitivity vectors. The adjustment rate is determined by a constant (y).

The MIT rule assumes that the controller parameters change more slowly than the system 

parameters and that to reduce the (em)2 in the hyperspace of controller parameters, it would be 

logical to change the parameters in the direction of negative gradient of em . The loss function is 
defined as:

(3.4.4)

So to reduce J we need to alter the parameters in the direction of negative slope.

8Q m 50

It can be stated that
dQ dJ dem - — = -y — = -yem — 
dt dQ m 8Q

,, . „ (3.4.5)

The implementation of the adaption rule in Equation 3.4.5, in the typical MRAC arrangement of 

Figure 3.4.3 is shown in Figure 3.4.4, in what as known as the error model.
em(s)

e

Figure 3.4.4 Schematic representation of the typical MRAC error model with a Proportional 

controller

Astrom and Wittenmark (1989) discussed the application of the MIT rule to a Proportional 

controller (or feed-forward gain, K) and this is paraphrased for continuity here. Figure 3.4.4 

shows the control effort (U) generated from the model error (ej, but 0 in this case is multiplied by 

the difference between the reference signal and the process output (R-y) to produce U. It is
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possible to arrange the system as shown in Figure 3.4.5, which can be seen to be equivalent to the 

system shown in Figure 3.4.6

56
X n 1 —— »• L 

s

e Controller

\IT)

R

Figure 3.4.5 Schematic representation of an alternative error model for MRAC

R

Reference model 
6°G(s)

Figure 3.4.6 Block representation of an MRAC adaption of a feed-forward gain based on the 

MIT rule.

(after Astrom and Wittenmark (1989))

Assuming that the process model is known and it is possible to determine the reference model 

such that 9° is a constant parameter vector from its structure, the model error is therefore

em =y-ym =RKG(S)-VG(s)R
e=G(s)(K-Q°)R

Also

From the MIT rule,

Which in this particular case gives... 

And from equation 3.4.6

Lumping the constants together in y... 
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dK 
dt (3.4.7)

In this implementation of the MIT rule, it is possible for the adaption mechanism to perform 
adequately at a particular reference signal (R) and be unstable or with adaption being too slow, at 
another. The adaption rate, in other words, is dependent on the reference signal. In this work the 
signal has been normalised according to Equation 3.4.8.

dQ

where a >0 to avoid division by zero. 
From Equation 3.4.6, this reduces to...

dQ

ae

dQ_ 
dt

= —y

(3.4.8)

(3.4.9)

The need for normalisation of the MIT adaption mechanism

To illustrate the possibility of instability, a discretised system has been created in 
MatLAB/Simulink™, showing the system without normalisation (Figure 3.4.7 and Appendix A - 
mitdig.mdl) and with normalisation (Figure 3.4.8 and Appendix A - modmit.mdl). The reference 
signal is a square wave of unit amplitude initially and the time evolution of the output is shown in 
Figure 3.4.9, and a reference input of five times this to demonstrate the onset of instability, shown 
in Figure 3.4.10. Finally, Figure 3.4.11 shows the system response where R=5 and when 

normalised MIT rule is used.
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Figure 3.4.7 Illustrative system without normalisation (Simulink™ model)

Scope

Figure 3.4.8 Illustrative system with normalisation (Simulink™ model)
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Figure 3.4.9 Illustrative system without normalisation R=l
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Figure 3.4.10 Illustrative system without normalisation R=5
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Figure 3.4.11 Illustrative system with normalisation R=5

3.4.2 Development of the control strategy - Feed-forward gain

The reactor was started up as described in Section 3.2, where four Start-up experiments are 

outlined. Each of the control strategies adopted will be presented here, although the results will 

be considered elsewhere in Chapter 4. Prior to the first start-up experiment (Start-up 7), some 
preliminary work was conducted in order to establish the viability of the control strategy and these 

were reported in Premier et al. (2000); Premier et al. (2001), which are included in Appendix B.

Initially, the controller architecture was that of a normalised MIT rule acting upon a feed-forward 
gain, as illustrated in Figure 3.4.12 (and Appendix A - modmit2.mdl). The reactor model was 

grossly simplified in the initial development, by using a second order model with a natural 

frequency of 16.67 x 10"3 rad.s" 1 and an over-damped, damping ratio of 1.5. This was converted 

to discrete time using the Tustin transformation. The reference model was initially taken to be 

first order with a time constant of 1.5 hours and was discretised in the same way. Bandwidth- 

limited white noise was added to the measured variable in recognition of the measurement noise 

that was expected from the BA sensor in the experimental arrangement.
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Figure 3.4.12 Initial Simulink™ development model for first experiment control strategy

The subsequent simulations are shown in Figure 3.4.13, both with and without the bandwidth- 

limited white noise.
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Figure 3.4.13 Simulation showing the response of the first control strategy, with and without 

band limited white noise (of power of 10% of input amplitude)

There is a markedly reduced deviation between the reference model output and the system output 

after t=100 hours, where the adaption has settled. It can be seen however that the noise has a 

significant effect, even at a power level of 5% of the step size on the reference input.

As discussed in Section 3.2, the control system was implemented in MatLAB/Simulink™ and run 

on a personal computer. Lab VIEW™ effected the Input/Output and communication between the
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applications was conducted using DDE. The control strategy required testing to ensure that any 
asynchronous behaviour caused by the DDE did not introduce inordinate delays and by so doing 
affect the control strategy. This was achieved by implementing a model in LabVIEW™, the 
parameters of which could be altered at will to simulate time variation in the reactor system. A 
more demanding reference model was at this stage also employed, to improve the response of the 
control system. In this case, a first order model was used, yielding a discrete time model of
ym = 0.1429(z + l 
R z-0.7143

The LabVIEW™ Virtual Instrument (VI) included two models. The first

would be used to settle the adaptive controller prior to switching to the second model, which 
would represent (nominally), the AD reactor. Suitable I/O, to include the reactor hardware in the 
control loop would then replace the 2nd LabVIEW™ model. The complete VI (ddemrac_4.vi) is 
included in Appendix A along with the MatLAB/Simulink™ model used in its control 
(modrn.it6.mdl). The response of the complete system, including the DDE communications, is 
shown in Figure 3.4.14. The signals would require inversion to effect a reduction in OLR at a 
time when BA was below the set point and vice versa.

—— Reference model output
—— System output
—— Reference input
—— Adaption rate

20 40 60 80 100 120 140 160 180 200

Figure 3.4.14 Simulation including DDE communications between MatLAB™ and 

LabVIEW™

Figure 3.4.14 shows the initialisation using the first model, between 0 and 50 hours, when the 
controller is switched to the second model (simulation of the AD process). Beyond this, a series 
of steps and a ramp are applied to the reference signal. Beyond 150 hours, the second model
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parameters are altered in steps of roughly 10% of the parameter value, in order to demonstrate 

adaption to time variation in the AD process.

Development of the control strategy - 3-term, Fast Adaption Trajectory (FAT)

Consideration of the results from the MIT feed-forward control strategy indicated that the 

adaption rate was not sufficiently high to preserve the system (biological consortium) from 

periodic damage. Increasing the value of y would cause the integration function of the adaption 

mechanism, to 'wind-up' rapidly. This would lead to intrinsically oscillatory (in the extreme, 

unstable) behaviour. Heuristically it was evident that a rapid error dependent and proportional 

adjustment was desirable. Derivative action may also prove useful for the same reason, however 

the slow integral action was still required to 'trim' the adaption rate. A 3-term (Proportional + 

Integral + Derivative) adaption mechanism, as opposed to a 3-term controller, was employed 

along side the feed-forward gain as in the previous strategy. This strategy will, for the sake of 

convenience, be called the Fast Adaption Trajectory (FAT) controller henceforth. The 

MatLAB/Simulink™ implementation of this strategy is shown in Figure 3.4.15. (and Appendix A - 

mrac_ugsb_startup_3).
This reference modaMs-e

syetem with zeta=0.75 wn=0.267

Saturationo of 0-36000 represents 
5v-0.75v at the feed cone pump

Ref. model output
System output

Reference input
ntegrator saturation

-U

Figure 3.4.15 Simulink™ model of Fast Adaption Trajectory (FAT) controller
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The values of three parameters in the adaption mechanism of the FAT controller are critical to the 
stability and performance of the control strategy. Given that start-up and commissioning was a 
key control objective of the research, the controller would need to be parameterised on the basis of 
limited knowledge as discussed in Section 2.4. The information available (particularly in the 
commissioning phase) is limited to a model in which one could have only limited confidence. 
Such a model would be one which has for example been parameterised using data from a different 
reactor or perhaps operating on different waste streams. The model described in Section 3.3.2 
(Marsili-Libelli and Beni (1996)), would be a possible candidate. Parameterisation of the FAT 
controller could then proceed by using non-linear numerical optimisation techniques as described 
below in Section 3.4.3.

3.4.3 Optimisation of the Fast Adaption Trajectory (FAT) controller
Optimisation, in the sense used herein, is a synthesis process, which generally seeks to minimise 
or maximise a cost function (or objective function), which may be subject to constraints and 
convergence criteria. It is essentially an armoury of numerical techniques, each having advantages 
or limitations and often arranged as a mathematical toolbox, as is the case with that used in the 
current study.

The adaption mechanisms used in the control scheme for the experiments were optimised using a 
non-linear least squares optimisation routine:

, 3.4.10
2 ;

which is able to deal with multi -objective functions, as is the case in time series problems such as 
that in question. In control type problems, the output (in general a vector), y(x,t) is required to 
mimic some trajectory, <fi(t). The function that is to be minimised then becomes:

3 -4 - n
2 ,

The optimisation of the 3 -term FAT controller strategy was performed numerically using 
functions available in the Optimisation toolbox supplied by The Mathworks Inc. (Branch and 
Grace (1996)). The problem was as suggested above, essentially a non-linear multi-objective 
function, which was modelled in Simulink™. The aim of the optimisation was to minimise a cost 
function for all time instances over a fixed period of time, each time instant representing a 
separate objective function.
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Two optimisation functions were used, the first being leastsq from MatLAB™ 5 and the second 
was Isqnonlin from MatLAB™ 6, the second having marginal improvements to the algorithm over 
the first. Both solve problems of the form:

mn * = - F(X = /7(*) 3.4.12 
x<=Kn 2 2 '

Here the function can be a Simulink™ model as indeed is the case in this work. The non-linear 
least squares algorithm used was the Levenberg-Marquardt method which uses a search direction 
governed by the solution of a linear set of equations:

(J(xk yj(xk } + \I)dk = -J(xk }F(xk } 3.4.13

As described in Branch and Grace (1996), where F(xk) represents the residuals, J(x,J, its Jacobian 
and At controls the magnitude and direction of dh the search direction. The value of A* in the 
MatLAB™ implementation is determined interatively by estimating the non-linearity of the 
objective function.

Convergence criteria
Various options are available in the optimisation functions, but the most important of these are the 
convergence criteria. If the convergence criteria are constrained too tightly, it is possible that the 
solution will not converge within the limit of iterations set. The default setting, (which is a 
measure of the precision required) of the objective function for the optimisation routines used was 
1x10"4 . Similarly, the precision required of the variables (in our case controller parameters), was 
also 1x10"*, but both these constraints often need to be relaxed or tightened depending on the 
circumstances of the optimisation.

Cost functions for optimisation
A series of optimisations were performed in an iterative manner to try to improve the controller 
performance. In all cases the model of Marsili-Libelli and Beni (1996), developed in Section 
3.3.2, was used to simulate the AD reactor. Table 3.4.1 indicates the cost functions used in the 
optimisation runs and the comments describe key criteria used. In all cases, the reference signal 
was varied in steps, as is evident in Figure 3.4.16 and 3.4.19. The parameter vector shows the 
resulting values of proportional (Kp), integral (Ki) and derivative (Kd) actions in the adaption 
mechanism. The shaded optimisation runs were not used in experimental work and are included 
here to show the iterative steps used in arriving at the parameterised controllers. These were used 
later in the experiments identified as Start-up 1 (controller defined in g)), Start-up 2 and Start-up 
3 (controller defined in 0) and Start-up 4 (controller defined in £)).
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Table 3.4.1 Numerical optimisation of controller parameters
ParameterCost function
vector 

JKp,Ki,Kd| T

Comments

a / = 0.01(2- -76.0098
-0.1462
-2.6150

Not used - OLR actuation
Using leastsq function 
Using trackflorPID.m (Appendix A) 
Termination criteria [O.lxlO"3 O.lxlO'3] 
Start time - 0 hrs Stop time - 600 hrs 
First order reference model

b f = 0.\(2-XJ + em -45.3763
-4.6393
-0.5767

Not used - OLR actuation
Using leastsq function 
Using trackflorPID.m (Appendix A) 
Termination criteria [O.lxlO'3 O.lxlO"3] 
Start time - 0 hrs Stop time - 300 hrs 
Max number of iterations exceeded 
First order reference model

/ = 0.1(2 -XJm' m
-10.2738
-9.6089
-0.4989

Sot used - OLR actuation
Using leastsq function 
Using trackflorPIDb.m (Appendix A) 
Termination criteria [O.lxlO"3 O.lxlO'3] 
Start time - 100 hrs Stop time - 300 hrs 
First order reference model

-61.8821
-4.2291
-2.3905

Sot used - OLR actuation
Using leastsq function
Using trackflorPIDb.m (Appendix A)
Termination criteria [1 1]
Start time - 100 hrs Stop time - 300 hrs
First order reference model

-57.1624
-4.3402
-2.2981

Sot used - OLR actuation
Using leastsq function
Using trackflorPIDb.m (Appendix A)
Termination criteria [10 10]
Start time - 100 hrs Stop time - 120 hrs
Max number of iterations exceeded
First order reference model

= 0.1(2 - 0.001 -86.1688
-7.9323
-1.7557

Sot used - OLR actuation
Using leastsq function
Using trackflorP I D2nd.m (Appendix A)
Termination criteria [1 1]
Start time - 100 hrs Stop time - 200 hrs
Max number of iterations exceeded
2nd order reference model

g / = 0.1(2 -XJ + \em \ + 0.001 U -80.3543
-7.9973
-1.5604

Start-up 1 - OLR actuation 
Using leastsq function 
Using trackflorPID2nd.m (Appendix A) 
Termination criteria [1000 1000] 
Start time - 100 hrs Stop time - 200 hrs 
Max number of iterations exceeded 
2nd order reference model 
Implementation Software (Appendix A) 
mrac ugsb startup 3.mdl and mrac 3.vi

= 0.1(2 - 0.001 U -20.0
-3.8445
-2.3049

Not used - OLR actuation
Using Isqnonlin function
Using track2florPID2nd.m (Appendix A)
Termination criteria [O.lxlO 0.1]
parameter limits [-20 -10 -10]
Start time - 100 hrs Stop time - 200 hrs
Max number of iterations exceeded
2nd order reference model
Transport and sampling delays in BA
measurement included.
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Table 3.4.1 Numerical optimisation of controller parameters... continued
~ ' " ' Parameter CommentsCost function

vector 
IKp.Ki.Kdl 1

I / = 0.1(2 -Xm ) + \em \ + 0.001 U -27.1952
-5.0322
-2.6103

Start-up 2 and 3 - OLR actuation
Using Isqnonlin function
Using track2florPID2nd.m (Appendix A)
Termination criteria [0.1x10" 0.1]
parameter limits [-30 -10-10]
Start time - 100 hrs Stop time - 200 hrs
Max number of iterations exceeded
2nd order reference model
Transport and sampling delays in BA
measurement included
Implementation Software (Appendix A)
mrac_ugsb_startup_4.mdl and mrac_4.vi
mrac ugsb startup S.mdl and mrac 5.vi

J / = 0.1(2- +0.001 U -13.6498
-0.8804
-0.2077

Not used - BA dosing actuation
Using Isqnonlin function
Using track2florPID2nd.m (Appendix A)
Termination criteria [0.1x10 0.1]
parameter limits [-20 -10 -10]
Start time - 120 hrs Stop time - 200 hrs
Max number of iterations exceeded
2nd order reference model
Transport and sampling delays in BA
measurement included. _________

/ = 0.1(2 -Xm ) + \em +0.001 U -11.8812
-1.2157
-0.1867

Start-up 4 - BA dosing actuation 
Using Isqnonlin function 
Using track2florPID2nd.m (Appendix A) 
Termination criteria [0.1x10" 0.1] 
parameter limits [-20 -10-10] 
Start time - 40 hrs Stop time - 200 hrs 
Max number of iterations exceeded 
2nd order reference model 
Transport and sampling delays in BA 
measurement included. 
Implementation Software (Appendix A) 
mrac ugsb startup S.mdl and mrac_6.vi

Controller optimisation for OLR actuation
The optimisation iterations that were applied experimentally and are highlighted and summarised 

in Table 3.4.1 will be considered in this section. It was necessary to investigate the predicted 

performance and to assess if it would be acceptable in practical terms. The file 

florence_Simules_Sin_PID_2nd .mdl, included in Appendix A, was used to simulate control 

strategy (g) of Table 3.4.1 and this is associated with Experiment 1 presented in Sections 3.1 and 

4.3. The simulation used the same model as was used in optimising the controller. Figure 3.4.16 

shows the first and last iterations in the optimisation process, where the initial values of the 

adaption mechanism parameters were Kp=-10; Ki=-1.0; Kd=-0.1 and the converged resultant 

values were Kp=-80.3543; Ki=-7.9973; Kd=-1.5604.
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2000

1500

500

0

a)

Reference model output 
BA Set-point 
Measured BA

40 60 80 100 120 140 160 180 200 

b)

Reference model output 
BA Set-point 
Measured BA

0 20 40 60 80 100 120 140 160 180 200
Time [hours]

Figure 3.4.16 Simulation of the controller response at starting:
a) [Kp=-10.0;Ki=-1.0;Kd=-0.1] and converged conditions,
b) [Kp=-80.3543;Ki=-7.9973;Kd=-1.5604], of optimisation

2000

1000

fi o 50 100 150 200 
Time [hours]

50 100 150 200 
Time [hours]

Figure 3.4.17 Optimisation parameters for starting conditions (first iteration) with [Kp=- 

10.0;Ki=-1.0;Kd=-0.11

PhD Thesis - Giuliano C Premier 2003 91



3.0 Experimental equipment, materials and methodology

It can be seen that the optimisation procedure has tended to eliminate the model error to a large 

extent and that the measured value of BA follows the reference model output closely. This is 

confirmed in Figures 3.5.17 and 3.4.18, which show the model error reduces from the first to the 

last iteration, while the growth rate of the methanogenic bacteria and the rate of change of the 

control effort are increased and reduced respectively, when looking over the entire time series. 

These three parameters form part of the cost function detailed in Table 3.4.1 (g), and it is evident 

from Figures 3.5.17 and 3.4.18 that the cost function has also reduced.

150 200

50 100 150 
Time [hours]

200 50 100 150 
Time [hours]

200

Figure 3.4.18 Optimisation parameters for convergence conditions (final iteration) with 

[Kp=-80.3543;Ki=-7.9973;Kd=-1.5604J

The experimental results forced a reappraisal of the model used in optimisation (g). A unit sample 

delay caused by the communication between MatLAB™ and Lab VIEW™ was included, as was a 

first order model of the settling device described in Section 3.1, for removing particulate in the 

flow between the reactor and the BA monitor. Similar optimisations to (g) were conducted and 

are summarised in Table 3.4.1 (h and /)• The effects described above are typical, as can be seen 

from Figures 3.4.19 to 3.4.22, though the detail alters depending on the model and the time at 

which the optimisation was invoked. The controller response for optimisation (/) has not been 

included as it differed little from that of optimisation (h) shown in Figure 3.4.19.
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Control parameters Control parameters
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J — — Reference model output
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f \ / —— Reference model output
J V> —— BA Set-point 
r —— Measured BA
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D 20 40 60 80 100 120 140 160 180 200
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Figure 3.4.19 Simulation of the controller response at starting.
a) [Kp=-10.0;Ki=-1.0;Kd=-0.1] and converged conditions,
b) [Kp=-20;Ki=-3.8445;Kd=-2.3049]
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Figure 3.4.20 Parameters for Optimisation (h) starting conditions (first iteration) with [Kp= 
10.0;Ki=-1.0;Kd=-0.1]

fi 0 50 100 150 200 
Time [hours]

150 200

50 100 150 200 
Time [hours]

Figure 3.4.21 Parameters for Optimisation (h) convergence conditions (last iteration) with 

[Kp=-20;Ki=-3.8445;Kd=-2.3049]
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Figure 3.4.22 Parameters for Optimisation (/) convergence conditions (last iteration) with 

[Kp=-27.1952;Ki=-5.0322;Kd=-2.6103]

Optimisation (/), was used in Experiments 2 and 3 as the convergence parameters were not limited 

in the optimisation procedure as was the case in (h). Simulations were conducted to determine the 
long-term behaviour of the system with these adaption parameters. In Figure 3.4.23 (optimisation 

(A)) it can be seen that the bacterial growth did not adversely affect the response of the system, 
even when Gaussian white noise was added to the measured variable at a variance that one might 

expect experimentally. The noise variance was 500 mg.r 1 CaCO3 equiv. at a sample rate of 1 
hour. The BA set point was varied in a series of random steps according to a Gaussian 

distribution of variance 500 mg.1" 1 CaCO3 equiv., added to a base line of 1700 mg.l" 1 CaCO3 

equiv., at a sample time of 10 hours. Figure 3.4.23 b) shows that the measured BA under the 

simulation conditions varies roughly ±100 mg.1" 1 CaCO3 equiv.
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Reference model output 
BA Set-point 
Measured BA

500

b)

1000 1500

Reference model output 
BA Set-point 
Measured BA

500 1000 
Time [hours]

1500

Figure 3.4.23 Simulation of controller response for optimisation (/»).

a) without measurement noise,
b) with measurement noise of variance 500 mg.I' CaCO3 equiv.

Closer inspection of the data generated from optimisation (/z), (Figure 3.4.24) shows the effect of 

random noise on the measured BA signal. The true nature of the noise on the BA monitor is 

however likely to be coloured, and will include drift as a significant component. One of the main 

causes of the drift is the gradual deterioration of pumping efficiency of the peristaltic pumps used 

in the B A monitor.
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A similar analysis can be undertaken with reference to optimisation (i), with the long-term time 
evolution of the data shown in Figure 3.4.25, using the same simulation conditions as Figure 
3.4.23, with the exemption of the adaption parameters. A comparison of these two figures shows 
similar behaviour. Furthermore, a comparison between the enlarged portion of data in Figure 

3.4.24 and the corresponding enlargement for optimisation (i) in Figure 3.4.26, show only a slight 
deterioration with respect to the noisy signal, while showing a marginal improvement where noise 
is not included.

a)

parameters
j. _». _i N •j oo co c 5 o o c3 0 0 C

2 
1 1600

15005(

(2 i 1900

E E 1800 
2 g
S. | 1700
O 0

1 £ 160°

5(

—— Reference model output
—— BA Set-point 
• •••-• Measured BA

)0 505 510 515 520 525 530 535 540 545 550 

b)

—— Reference model output 
—— BA Set-point 
•••••• Measured BA

..: • •'• i":..:"" •

^s-r/'" LJ "-
DO 505 510 515 520 525 530 535 540 545 550

Figure 3.4.26 Simulation (zoom in on Figure 3.4.25) of controller response.
a) without measurement noise,
b) with measurement noise of variance 500 mg.l"1 CaCO3 equiv.

Care should be taken to maintain reasonably sedate variations in control effort. Figure 3.4.27 
shows by simulation, the resulting control effort from three different adaption mechanism 
parameter vectors, which in turn resulting from three optimisation procedures (Table 3.4.1, g, h 
and i). The first (Figure 3.4.27a) represents the optimisation (g) conducted without consideration 
of the unit delay and B A monitor model in the feedback path, and was used to control the system 
for a considerable period and will be detailed elsewhere (Chapter 4). The second and third plots, 
(Figure 3.4.27 b and c) which correspond to subsequent optimisations (h and i), included the delay 

and the BA monitor model. The only difference between them is that in Figure 3.4.27 a, the Kp
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value was limited to 20 while it was not in Figure 3.4.27b. The steadily rising trend in all cases 

reflects the increased microbial population brought about by growth.

^ x 10

1500

1500

500 1000 
Time [hours]

1500

Figure 3.4.27 Comparison of control effort by simulation with sensor noise.
a) [Kp=-80.3543;Ki=-7.9973;Kd=-1.5604l
b) [Kp=-20.0;Ki=-3.8445;Kd=-2.3050]
c) [Kp=-27.1952;Ki=-5.0322;Kd=-2.6103]

Controller optimisation for BA dosing actuation

Previous optimisations have used the OLR as the control action and the experimental work is 

reported in Chapter 4. Although the reliability of the BA monitor was a significant problem, some 

success was noted. The indications were that the control action was causal in adjusting the BA in 

the reactor, but that it was not overly accurate in maintaining the set point.

The use of an alternative control action, namely the dosing of BA, would be of considerable 

interest, to see if the resulting control would show improvement. This would require the 

controller to be re-parameterised and this was undertaken in the same way as the optimised 

parameters were determined above for the OLR actuated system, (which included using the same 

cost function). The parameter values and optimisation conditions are summarised in Table 3.4.1 (/ 

and k).
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The significant differences between the two actuation modes were that the control action in BA 

dosing would need to be inverted compared to that of the OLR actuation. This is because an 

increase in OLR would tend to reduce the measured BA while an increase in BA dosing would 

tend to increase the measured BA. This is shown in the Simulink™ model 

Florence_Optim4_BA_PID_2nd .mdl, in Appendix A. The control effort (BA dosing) was 

limited to the range 0 to 3000 mg.l" 1 CaCO3 equiv. and the Sin was set to 7000 mgCOD.l" 1 . This 

loading rate is dependant on the initial conditions in the model, particularly the concentrations of 

the bacterial groups. For example, an Sin of 15000 mgCOD.1" 1 made the system unstable to the 

point of catastrophic failure, (at least as far as the simulation was concerned). As the biomass 

increases, so higher loading rates are possible.

Optimisation (/) yielded parameter values, which were then investigated by simulation in model 

florence_simul_cont_BA_PID_2nd.mdl, which is in Appendix A. Figure 3.4.28 shows the 

control effort for differing conditions of additive Gaussian noise on the measured BA (with 

sample time of 1 hour). This optimisation was conducted with the threshold (before which the 

cost function was not minimised), being 120 hours.
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Figure 3.4.28 Comparison of control effort by simulation with sensor noise (ranging from 

variance 0 to 500 mg.l" 1 CaCO3 equiv.).

a) variance 0
b) variance 100
c) variance 500

The control effort was seen to react in a 'stiff manner as a result of optimisation (/), tending to 

oscillate. The threshold was then altered to include earlier data in the same 

simulation/optimisation, by positioning it at 40 hours, according to optimisation (K). The effect 

was to reduce the 'stiffness'. The figures below show the optimisation parameters using initial 

conditions (Figures 3.4.29), and after convergence in two cases (/ and k), (shown in Figure 3.4.30 

and Figure 3.4.31 respectively). In both optimisations, the simulation had a time span of 200 

hours but the optimisation threshold was set at 120 hrs for Figure 3.4.30 and 40 hrs for that shown 

in Figure 3.4.31. Appendix A contains the model (Florence_optim4_BA_PID_2nd .mdl), used in 

the optimisation.
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Figure 3.4.32 Simulation of controller response:
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b) with [Kp=-13.6498;Ki=-0.8804;Kd=-0.20771
c) with [Kp=-11.8812;Ki=-1.2157;Kd=-0.1876]

Figure 3.4.32 shows the responses of the system to the initial conditions and optimisation (/ and k) 

parameters, where it can be seen that the oscillatory behaviour derived from optimisation (/), 

Figure 3.4.32 b, has been significantly reduced through optimisation (k), Figure 3.4.32 c. In so 

doing there has been little, if any loss in expected performance from the system.
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4.0 RESULTS AND DISCUSSION
The following is an analysis of the results obtained from the techniques and tasks presented in 
Chapter 3. The order of presentation will follow the Tasks as presented in Table 3.1, and seeks to 
make clear to the reader:

• The identification and performance of SISO black box models representing BA, % CO2 in the 
biogas, biogas production rate and TOC - Task 1 in Section 4.1.1

• The comparative performance of SISO, MIMO and neural network based black box models of 
ARX structure representing BA, % CO2 in the biogas and biogas production rate - Task 2 in 
Section 4.1.2

• A simulation study of the performance of two-population lumped-parameter deterministic 
models - Task 3 in Section 4.2

• Model reference adaptive controlled reactor start-up performance, (using the system designed 
and detailed in Section 3.4) - Task 4 in Section 4.3

4.1 IDENTIFICATION OF BLACK BOX MODELS (TASKS 1 & 2)
The simplicity of the black box modelling approach was at once its strength, and a major influence 
in the consideration of such models, and its weakness, in so far as the integrity of the results 
obtained were difficult to judge. The nature of this methodology meant that the underlying reason 
for accuracy or its absence was largely imponderable, particularly in the case of the connectionist 
approach using neural networks. The 'blackness' of the model made the prospect of incremental 
improvement difficult to achieve and the process became one of'informed trial and error'.

The ARX model structure was selected on the basis of a brief study of the behaviour of a number 
of linear SISO black box models (such as the AR, ARMAX, OE and Box Jenkins). The iterative 
procedure indicated that the linear ARX model's performance was for the most part superior to 
the alternatives. As suggested by many authors (including Bishop (1995)), Occam's Razor, which 
paraphrased affirms that the simplest adequate solution is the best, was employed and the ARX 
structure was extrapolated to include the MIMO and Neural Network models in Task 2.

4.1.1 Identification and performance of the SISO black box approach (Task 1)
The parameter estimation for the respective models was performed using the data shown in 
Figures 4.1.1 and 4.1.2, which presents gas production rate and % CO2, and BA and TOC 
respectively, varying with organic load (represented by the feed pump voltage). Figure 4.1.3 
shows the parameter estimation data after filtering and normalisation.
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Figure 4.1.1 SISO black box modelling (Task 1), data for parameter estimation: (a) Gas 

production rate, (b) %CO2
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Figure 4.1.3 SISO black box modelling (Task 1), Filtered and normalised data for 

parameter estimation: (a) Gas production rate, %CO2 and BA and (b) TOC

There would be little chance of extracting a comprehensive model for the process with such 

excitation, as there is a need to excite all the modes of the system. The disturbance which 

would yield sufficiently information rich data is known as persistently exciting and is 

essentially the only way to experimentally search the entire state space. This would require 

exhaustive testing and would include running the digester to failure. Not withstanding the 

limitations of the models derived from this lack of complete modal excitation, it was possible 

to make significant predictions of BA, % CO2 , gas production rate and TOC using independent 

(SISO) ARX black box models. All the models consisted of only second or third order
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polynomials, with a single sample period delay between the input (loading rate) and the output 
(the relevant parameter e.g. BA). These are shown in Table 4.1, which includes:

• the mean and standard deviations used in normalising the data prior to the identification step

• the transfer functions and their polynomial coefficients and associated standard deviations 
(innovations variance)

• measures of quality of fit, namely the Loss Function which in the case of SISO systems, is the 
sample mean of the prediction errors and Akaike's Final Prediction Error (FPE) criterion 
(Equation 4.1.1).

4.1.1\-nlN

Where n is the number of estimated parameters, N is the length of the data time series and V is the 
quadratic fit loss function for the structure under consideration.

Table 4.1 ARX SISO models identified from data

Parameter

BA

%CO2

Gas 

production 
rate

TOC

Normalisation 

parameters

Mean

SD

1.7064

0.1150

37.7881

6.1471

46.1756

10.9628

1.2790x 103

0.2468 x 103

Polynomial 
coefficients

B
Coeff.
SD

-0.0133 
-0.0152

0.0123 
0.0125

0.0936 
0.0092

0.0054 
0.0075
0.0336 
0.0260

0.0185 
0.0194

0.0309 
-0.0178 
0.0177
0.0227 
0.0249 
0.0216

A
Coeff.
SD

1 .0000 
-2.3277 
2.1645 
-0.8256
0.0333 
0.0622 
0.0344
1.0000 
1.4833 
0.5817
0.0321 
0.0270
1 .0000 
1.7711 
0.7901
0.0398 
0.0430
1 .0000 
-1.5554 
0.5990
0.0995 
0.0968

Fit

Loss Fen

Akaike's 
FPE
0.0079056

0.0081459

0.0014063

0.0014404

0.014469

0.014819

0.021109

0.02404

Transfer function
(with Feed pump action as input)

-0.01333z-0.01519
z3 - 2.328z2 + 2.1645z - 08256

0.0936z + 0.0092 14
z 2 -l.483z-t-0.5817

- 0.03362z - 0.02596
z(z 2 -1.771z + 0.7901)

-0.03087z 2 -0.0178z + 0.01769
z(z 2 -1.555z + 0.599)
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The model validation was performed using data (Figure 4.1.4) unrelated to the parameterisation 

date, either temporally or in terms of levels or nature of the excitation, as summarised in Table 

3.3.2. Figure 4.1.4 (b) also shows the effect of filtering the TOC data, which was somewhat 

similar to all the other data streams.
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Figure4.1.4 Validation date for: (a) BA, %CO2, and gas production rate and (b & c) TOC 

for the SISO ARX models, raw and normalised data respectively.
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Figure 4.1.5 SISO black box modelling (Task 1), validation of (a) Gas production rate, (b) 

%CO2 and (c) BA models, showing predictions 30 minutes ahead.

The predictions of the %CO2 , gas production rate and the BA models are shown in Figure 4.1.5. 

This indicates that it was possible to predict with a relatively high degree of accuracy the future 

value (30 minutes, one step ahead) when subjected to loads comparable though different to those 

used in the parameter estimation. This was despite the fact that the models were essentially 

structurally simple (ARX) and assumed to be totally uncoupled. Similarly in Figure 4.1.6, 

predictions of TOC using step changes greater than those used in the parameter estimation data 

and show again a relatively high degree of accuracy. When the models for the other parameters, 

BA and gas production rate, where similarly tested with the large step change (Figure 4.1.7),
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similarly accurate predictions were obtained. In validation, no attempt was made to match initial 
conditions, but instead, account should be taken of this when assessing the predictions.

The horizon over which predictions are made (30 minutes) is considered to be ample in terms of 
time required to execute recursive parameter estimation for such linear models with a view to their 
use in a MRAC scheme similar to that proposed by Emmanouilides and Petrou (1997). However, 
consideration is given here to using a linear model as the reference model instead of a neural 
network as these have inherent problems of initial training and subsequent recursive parameter 
(weights and biases) estimation. It was found that looking more than one step ahead leads to a 
progressive deterioration in accuracy of prediction when using the above black box models.

The validation data sets were chosen to force the models to predict at operating conditions which 
were not used in the parameter estimation, which would, if non-linearity were significant, cause 
the model to deviate in its predictions. The non-linear nature of the process was found to have 
little effect over the operating conditions investigated. Also, when considering the variation of the 
process with time, separating the parameterisation data from the validation data (1-2 months) was 
not sufficient to cause the models to predict badly. It thus appears that simple, linear, independent 
black box models of gas production rate, %CO2 , BA and TOC are able to represent the AD 
process under the conditions tested with an accuracy which may be sufficient as the basis for 
process controller design. It should be noted however that the models were dependant on very 
recent online data of both the feed pump action and the corresponding measured variable (BA, 
%CO2 etc.), in order to achieve the accuracy described. The prospect of predictions over very 
large time horizons, using only past predictions to replace real data would not yield similar 
accuracy and is discussed further in Section 4.1.2.
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Figure 4.1.6 SISO black box modelling (Task 1) validation of TOC model, showing 
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Figure 4.1.7 SISO black box modelling (Task 1), validation of gas production rate, BA and 

%CO2 models, showing predictions 30 minutes ahead.

4.1.2 The comparative performance of SISO, MIMO and Neural Network black 

box models of ARX structure (Task2)
This work is seen as a continuation of Task 1, where the analysis looked at four key parameters 

(Gas production rate, %CO2 , BA and TOC), using SISO ARX models. Task 2 seeks to investigate 

different models applied to all but the TOC parameters. The justification for this is that TOC was
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not of primary concern in the control study and its measurement on-line caused difficulties. The 
question posed by the author was... would the adoption of increased complication in the ARX 
models by way of coupling the parameters or the introduction of non-linearity, improve their 
ability to predict reactor parameters over different time horizons?

The choice of say, second order functions in the delay operator (z" ; ) means that the models have a 
regression vector looking back over two samples, which at a sampling time of 30 minutes, will 
include data collected over an hour. Increasing the order of the models excessively would be 
likely to lead to lower normalised sum of squared errors (NSSE's), or error function, but would to 
an increasing extent cause over fitting to the data and hence the model would not represent the 
underlying dynamics of the process. The dimensionality of the neural network model is also 
dependent on the size of the parameter vector (i.e. the number of weights and biases) so is not 
directly comparable with the linear models, although significant similarity exists, as shown in 
Equation (3.3.8). The technique employed by Norgaard (1995) to determine the length of the 
regression vector, was to calculate the index of He and Asada (1993) and to look for a knee point 
in the index, beyond which, increasing the regression vector would have little effect. More weight 
was given to the insight obtained by investigating the responses of the process to a step input, 
which on a heuristic level appeared similar to over damped second or third order systems.

The sampling time of 30 minutes is considered to be relatively short, however a compromise was 
sought between that suggested by the process dynamics and that suggested by the dynamics of the 
slowest instrumentation (bicarbonate alkalinity monitor of Guwy et al. (1994)).

The time varying characteristics of the fluidised bed reactor are not known, so the time lapse 
between the data sets for training and validation were a matter of judgement. It is of course 
possible that the data selected, was not separated sufficiently in time to account for microbial 
population changes, or that the populations were by chance similar in their dynamics for both sets 
of data. The time variance was assumed to be unpredictable, though dependent on the reactor's 
operating history (loading, environmental and inhibitory episodes). Variations over time in 
parameters such as biomass yield or endogenous decay coefficients, were assumed to be small and 
as such could be treated as system disturbances. Furthermore, it was assumed that the loading 
regime, which extended over approximately 3 months, was sufficiently varied so as not to favour 
the development of specialised (and perhaps fragile) consortia of microbial populations. Figures 
4.1.8 to 4.1.10 show the BA, %CO2 and gas production rate, one-step-ahead predictions, (for the 
three alternative ARX models investigated), compared to the measured validation data set. It
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would be possible to compare the model predictions to the parameter estimation/training data, 

however one would expect a good fit in this case as the objective is to minimise the sum of the 

errors squared. The validation set is of key significance, as it indicates the ability of the model to 

generalise, (or represent an 'unseen' data set). The validation data and the corresponding 

predictions seem at first sight to be very close to each other, which is often the case with one step 

ahead prediction where the step size is of relatively short duration. It is difficult to assess the 

performance of the model by looking at such plots and statistical techniques are normally 

employed. Figures 4.1.8 to 4.1.10 do indicate however, the excellent predictions achievable with 

short temporal prediction horizons.

Non-linear (Neural Network) ARX Model for Bicarbonate Alkalinity—The neural network 

regressors were chosen to be the same as those used for the linear ARX model, these being 2 

previous inputs, 2 previous outputs and a single delay. The architecture of the network was 

initially a fully connected feed-forward network, with one hidden layer of 10 hyperbolic tangent 

activation function neurones and an output layer of one linear activation function neurones.

The predictions obtained from this model, (when considering the auto-correlation of residuals and 

cross-correlation of the input to the residuals, which are explained below) were poor. The auto­ 

correlation, in particular, remained consistently outside the 95% confidence band, implying that 

the model was over-fitting the data. The solution proposed by Norgaard (1995) is to reduce the 

dimensionality of the network by applying an OBS (Optimal Brain Surgeon) algorithm, which is 

used to 'prune' the weights to the point where near-optimal results are obtained. This involves 

retraining (for a limited number of epochs) the network, as its structure is altered by removing a 

single weight at a time, and keeping track of test errors, to see at which point they are minimised. 

In so doing, the predictive performance of the neural model was improved significantly, and the 

results are shown in Figure 4.1.8 to 4.1.10. The model structure was reduced to eight weights in 

total for the bicarbonate alkalinity neural model.

Non-linear (Neural Network) ARX model for % CO2 and gas production rate—A similar 

procedure was followed for these data streams, with similar results, although in both cases, the 

number of weights left after pruning was almost double that of the bicarbonate alkalinity.

PhD Thesis - Giuliano C Premier 2003 \ 15



4.0 Results and discussion

BA validation data 
BA one step ahead SISO 
BA one step ahead MIMO 
BA one step ahead NNET

Time [hours]

Figure 4.1.8 Bicarbonate alkalinity predictions for ARX models.
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Figure 4.1.9 %CO2 predictions for ARX models.
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Figure 4.1.10 Gas production rate predictions for ARX Models.

Correlation analysis
For the purposes of comparison, it is necessary to consider measures of performance from one 

model structure to another. Investigations of non-linear ARMAX (Auto Regressive with Moving 

Average and exogenous input) model performance, using synthesised and experimental data, were 

conducted by Chen et al. (1990), who applied a number of statistical tests which were based on 

correlation analysis and the Chi-squared tests. It is common in system identification to consider 

the correlation analysis as the primary measure of model performance in particular the auto­ 

correlation of the residuals (errors between predictions and real validation data), and the cross- 

correlation of the input (feed pump action) and the residuals.

The auto-correlation function of the residuals should ideally resemble an impulse. This would 

indicate that the residuals are 'white', i.e. no correlation exists between the residuals and any time 

shifted replica of the series. There should also be, according to Chen et al. (1990), no correlation 

between the residuals and any linear or non-linear combinations of past inputs and outputs.

If the identification of an ARX model were successful then one would expect the residuals to be 

unpredictable. The predictability and hence deviation from optimum can be assessed by using 

correlation analysis. Specifically the auto-correlation of the residuals should exhibit correlation 

only when the time series are not time shifted (one to the other). Similarly, in cross correlating, 

no correlation should exist between the residuals and the systems input signal (feed pump action).
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If the correlation functions are within a confidence interval of 95% of the conditions mentioned, 
then it is reasonable to accept the model as a fair representation of the system.

A comparison of the predictions produced by the models was performed, by analysing the 
residuals. The results for bicarbonate alkalinity, %CO2 and gas production rate, are presented in 
Figures 4.1.11 to 4.1.13 respectively. It can be seen from these figures that the SISO ARX model 
fails to achieve the 95% confidence criteria for %CO2 , although it gives adequate results for the 
BA and gas production rate. Comparing the MBVIO ARX to the neural network ARX model, it 
would seem that the former is able to represent the system with inferior accuracy in the case of 
BA and better accuracy for %CO2 and gas production rate. While it may be possible that the 
neural network could be improved by optimising the training process and network structure 
iteratively, the same can be said for all the models. It is not clear to what extent the models are 
optimised, which is usually the case in identification.

The underlying biochemical processes point to there being significant coupling in the data streams 
measured. It is perhaps not surprising therefore that the MEMO and neural network models which 
both include cross coupling, out perform the linear SISO model overall, with the %CO2 for the 
latter being significantly outside the confidence limits.

It is worth restating, (in order to highlight the increased computational effort), that in order to 
obtain the performance presented here, when using the neural network ARX model, a pruning 
algorithm was employed. This reduced the number of weights and biases so that the model did 
not over fit the data. Prior to its use the results from the correlation analysis were consistently 
outside the 95% confidence limits.
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Figure 4.1.11 Correlation Analysis for Bicarbonate alkalinity using non-linear, MIMO and 

SISO ARX models.
(a) Auto-correlation of residuals from prediction of validation data.
(b) Cross-correlation of feed pump action to the residuals from prediction of validation data.
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Figure 4.1.13 Correlation Analysis for Gas Production Rate using non-linear, MIMO and 

SISO ARX models.
(a) Auto-correlation of residuals from prediction of validation data.
(b) Cross-correlation of feed pump action to the residuals from prediction of validation data.

Given that the MIMO model is generally less complicated than the non-linear neural model, while 

producing comparable predictions, its use should be considered with some favour. To investigate 

the behaviour of the MEVIO model, it is useful to consider its performance in predicting over a 

long period of time. Figure 4.1.14 presents a pure simulation using the MIMO ARX model, which 

uses only initial (input and output) data as starting conditions and from then on uses the predicted 

data and the input (feed pump action) in order to predict subsequent steps ahead. If the MEVIO 

model were a perfect representation of the data generating mechanism of the anaerobic process, 

then the predicted response would be coincident with the validation data. It is unlikely that this
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would be achieved as the model is LTI and is attempting to represent a non-linear process. It is 
only feasible with the one step ahead prediction because this technique is essentially a piece wise 
linearization of the process dynamics by continually using the most recent measurements in 
making a prediction a short step in time ahead. Having accepted the limitations of a pure 
simulation, the general behaviour (rather than the absolute values) indicate that the model is at 
least similar dynamically to the anaerobic process under consideration. The least accurate 
predictions are those for bicarbonate alkalinity (Figure 4.1.14 (a)) which indicates significant 
deviation after about 15 hours. It is possible that the prevailing bacterial stress levels of the 
validation data set were higher than those produced by the parameter estimation data set. This 
fact is supported in part by the bicarbonate alkalinity time series of the parameter estimation data 
set reacting after a delay of circa 5 hours, (which is most visible after the final over load at 90 
hours on Figure 4.1.3 (a)). The response of the bicarbonate alkalinity to the end of the over load 
is much quicker, with a delay of less than 1 hour. The implication is that the biological system is 
able to cope with the increased loading rate for about 5 hours before the bicarbonate alkalinity 
starts to reduce. In the case of the validation data set however, the bicarbonate alkalinity begins to 
reduce more rapidly, indicating that the system is less able to generate bicarbonate alkalinity. The 
delay, (which may vary within each data set) is therefore built into the ARX models through the 
parameter estimation data and is an example of the time variance of the system.
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Figure 4.1.14 Comparison of validation data with predictions from a pure simulation, using 

the MIMO ARX model.

(a) Bicarbonate alkalinity
(b) %CO2
(c) Gas production rate
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The ARX model structure pre-supposes that the noise is filtered when passing through the system, 

by a transfer function, which has the same poles as the ARX model. If this assumption is not 

valid, the resulting model accuracy is deleteriously affected. There is no simple means known to 

the author for determining the consequence of the noise filtering, other than observing the 

performance of the model that results and determining if the model is 'good enough'.

Of the three ARX models that have been presented, all were parameterised and validated using the 

same data and in an attempt to make the resulting models comparable, the regression vectors (past 

data samples) were the same for all the models and all the data streams. While it is not claimed 

that the models were in any sense optimal, the approach of maintaining constant those parts of the 

identification procedure which were common to all models, has produced results which may form 

the basis of a selection procedure with respect to the three model structures used.

It can be seen that the performance of the MIMO model was superior to that of the SISO and 

comparable with the Neural Network approach when considering the 95% confidence intervals on 

the correlation analysis of the residuals. Overall, the neural network had higher performance than 

the linear models, however the added complexity of the neural network model and associated 

identification process is not considered to warrant its adoption, unless the accuracy of the model is 

a paramount factor. If recursive identification is to be performed, where the neural model would 

require repeated retraining, it is likely that the improvement in performance indicated by the 

results, may lead to the computing overheads becoming a significant mitigating consideration. 

Not only would the training of the network require a considerable number of presentations of the 

data (epochs), but a large amount of training data would be needed to ensure adequate training. 

There are in contrast, well established recursive identification algorithms used in linear black box 

techniques which require very little historical data to be stored and are fast in their execution, 

(Soderstrom and Stoica (1989)). There are however training techniques which significantly 

increase the speed of training neural networks, such as that proposed by Venugopal and Pandya 

(1992), and provided the sampling time is similar to that chosen in this work, processing time 

should not be a significant problem with modern computers.

The key issue in deciding to adopt a black box approach to the representation of the AD process 

during the controller design task is that the pure simulation performance of the ARX model, 

regardless of detail, is poor. Significant deviations are evident after a relatively small period of 

time. The design of a control strategy and its subsequent optimisation depend on a representative 

model, which the ARX models (at least in pure simulation) are not thought to be. In a situation
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where the model is employed in on-line identification, then the ARX structure does appear to be 
useful and judging by the above comparison, any of the model structures could give useful 
performance.

4.2 A SIMULATION STUDY USING DETERMINISTIC MODELS (TASK 3)

The behaviour of the BA and other parameters within the AD process while the system is under 
control is not totally intuitive. The complex interactions (or couplings) between the differential 
and algebraic equations make it difficult to foresee the long-term behaviour of the process. It was 
considered necessary to run simulations, which would consider key parameters over a period of 
about 2 months.

• The first simulation sought to investigate a relatively relaxed control strategy which, as a 
consequence, demonstrates a notional lower limit of likely behaviour, which could then be 
compared to the more aggressive control derived from the numerical optimisation procedures 
used.

• So the second simulation looked at the most severe controller generated during the 
optimisation procedure.

• The third simulation sought to explain the reason for oscillatory behaviour in the experimental 
work and verify that unmodelled dynamics and transmission delays in the software 
communications caused this behaviour.

4.2.1 Effects of a relatively relaxed control strategy on the AD process

The simulation that was considered in this section was conducted using the model shown in 
Figure 4.2.1, which is included in Appendix A as a Simulink™ model 
(ControlSimulationModeM.mdl). The control strategy was based on the MRAC architecture, 
which was the focus of this thesis, but used a heuristically parameterised P+I adaption mechanism 
and a reference model, which was undemanding and corresponded to an equivalent first order 
dynamic with a 5-hour time constant. The parameter vector for proportional and integral action 
respectively was [-10.0 -1.0]. The controller set point was placed at 1700 mg.r'CaCOa equiv., to 
which was added a Gaussian disturbance with zero mean and a variance of 500 mg.r'CaCOs 
equiv. at a sample time of 10 hours (i.e. this random disturbance changing every tenth hourly 
sample). The initial conditions of the concentrations of the bacterial populations in particular 
were considered. This set of simulations showed that the initial conditions, with respect to the 
concentrations of acidogens and methanogens, had a critical effect on the steady state 
concentrations of the same and on the time taken to achieve this, as might be expected.
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Figure 4.2.1 Simulation of an MRAC controller using P+I adaption mechanism to 

investigate the behaviour of the BA when feed rate actuation is in use.
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Figure 4.2.2. shows the consequences of altering the initial bacterial population concentrations, 
when under the control of the regime described by Figure 4.2.1. The variations in concentration 
are relevant to the inoculum in particular, which can conceivably have very variable and often 
unpredictable concentrations of acidogens (Xd) and methanogens (Xni) depending on the history 
and source of the sample used as an inoculum. The four plots in Figure 4.2.2 all depict the same 
parameters (reference model output, BA set point including the Gaussian disturbance and the 
(would be) measured BA). It can be seen that with starting conditions of Xa=1500 mg.r'and 
Xm=\5QQ mg.r 1 (Figure 4.2.2 a)), the BA begins to saturate after 1000 hours because the 
maximum feeding rate (Sin) is reached. At this point the controller adaption would continue to 
'wind down', as is evident from Figure 4.2.3 and some mechanism such as a limit on the adaption 
rate would be necessary to avoid this situation. Figure 4.2.3 also shows that the biomass 
concentrations saturate when their respective substrates are depleted due to the limited control 
action (loading rate). Lower initial bacterial concentrations such as in Figure 4.2.2 b), lead to 
slow growth rates, particularly for the methanogenic bacteria, with slow increases in control effort 
and hence feeding (Sin), as can be seen from Figure 4.2.4. If the concentration of methanogens is 
comparatively low as in Figure 4.2.2 c), the feed rate evidenced by the control effort, increases at 
a low rate (Figure 4.2.5), with the methanogen concentration being the limiting factor once more. 
If the converse is true, with high concentration of methanogens compared to acidogens, then the 
saturation of the control effort, feeding and BA in the reactor, occurs rapidly, (Figures 4.2.2. d) 
and 4.2.6). Determination of the relative, active proportions of the bacterial groups and their 
absolute concentrations is difficult and seldom done industrially, though measures are possible, 
such as the Biological Methanogenic Potential (BMP) where the specific production of methane is 
measured. As this is unlikely to be known in industry, it was not considered in this work. Figure 
4.2.6 shows a rapid and somewhat spurious increase in all parameters but the adaption rate and 
volatile acids, which do the reverse. This is thought to be caused by mathematical instability in 
the model and cannot be ascribed to any biochemical phenomenon.
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Figure 4.2.2 Simulation with P+I adaption mechanism showing the effect of altering 

bacterial concentrations on Reference model output, Set-point and Measured BA.

a) Initial conditions, Kp=-10, Ki=-l; Xa=Xm=1500 mg.l'
b) As a) but Xa=500 mg.l' and Xm=100 mg.l 1
c) As a) but Xa=2000 mg.l"1 and Xm=100 mg.1" 1
d) As a) but Xa=200 mg.l' and Xm= 3000 mg.l 1
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Figure 4.2.7 Methanogenic bacterial concentration for the simulations of Figure 4.2.2 a) to

Figure 4,2.7 considers the concentration of methanogenic bacteria, as they have been shown to be 
the limiting population which govern the rate of increase of the control action and hence the 
feeding rate. The populations of these bacteria depend greatly on the initial concentration (over 
the time scales observed) and the simulation of Figure 4.2.2 d) indicates the highest final 
concentration even if the excess due to mathematical instability is removed. Simulation a) by 
contrast has the highest rate of increase at the end of the trajectory, but has a magnitude of the 
order of 100 mg.l" 1 . below simulation d). The steady state concentrations will probably tend to 
converge in these simulations, though the time required to do so may be many months in the worst 
cases. It is therefore obvious that the highest population of methanogenic bacteria should be 
present at start-up in order that it should be rapid. However the simulation gives an indication of 
how long it could take before a 'full' population is established.
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4.2.2 Comparison of two control strategies of differing structure and 
specification, on the AD process

If one compares the relaxed model of Figure 4.2.2 with the most aggressive parameterised model 
generated by the optimisation procedures described in Section 3.4.3, and shown in Figure 4.2.8, 
(ControlSimulationModel_2.mdl in Appendix A), it can be seen that the resulting performance 
has dramatically altered. This is true even though the simulation conditions have remained the 
same. Whereas previously, the 'Measured BA' saturated under conditions a) and c), saturation 
only occurs under conditions d), and then only after 1300 hours of operation, as can be seen in 
Figure 4.2.9 The associated parameters are plotted in Figure 4.2.10 and can be compared to the 
corresponding results plotted in Figure 4.2.3, where the most significant difference exists. This 
comparison indicates that the variations in adaption rate and control effort have greater amplitude, 
which is to be expected with the significantly higher adaption gains involved. The terminal 
biomass concentrations are similar for both trophic groups, though the aggressive control has 
allowed marginally less biomass to grow. The gas production too is slightly reduced, however, 
the pH and substrate levels have been maintained virtually constant. The interesting fact is that 
aggressive control action has not developed the reactor ecosystem more rapidly than the less 
aggressive control, though the control of BA has been maintained over a wider range of initial 
biomass concentrations, giving a more predictable performance.

Maintaining stability of the volatile acids in the reactor by adjusting the feed rate is intuitively a 
sensible means of maintaining the maximum feed rate to the reactor at all times. The ability of the 
methanogenic bacteria to cope with the VFAs produced by the acidogens is determined by the 
population and metabolic health of the methanogens which, it is suggested, is maximised by a 
stable and optimally bounded environment. This is not clearly evident from the simulations 
above, primarily because both controllers maintain reasonable control of the environment. If 
anything, the aggressive control causes continual fluctuations which are not present in the P+I 
adaption mechanism controller and which may be the cause of the slight retardation of the 
development of the biocultures.
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Figure 4.2.8 Simulation of an MRAC controller using P+I+D adaption mechanism to 

investigate the behaviour of the BA when feed rate actuation is in use.
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Figure 4.2.9 Simulation with P+I+D adaption mechanism showing the effect of altering 

bacterial concentrations on Reference model output, Set-point and Measured BA simulation 

experiments.
a) Initial conditions, Kp=-80, Ki=-8, Kd=-1.5; Xa=Xm=1500 mg.l 'CaCO3 equiv.
b) As a) but Xa=500 mg.r'CaCOj equiv. and Xm=100 mg.r'CaCO3 equiv.
c) As a) but Xa=2000 mg.l^CaCOa equiv. and Xm=100 mg.l'CaCOj equiv.
d) As a) but Xa=200 mg.r'CaCOj equiv. and Xm= 3000 mg.r'CaCO3 equiv.
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4.0 Results and discussion

4.2.3 A simulation investigation of the oscillatory behaviour evident in the 
laboratory experimentation

The experimental work described in Section 3.2, which was conducted on a laboratory scale 
EGSB reactor, showed oscillatory behaviour (and the data is presented later in Section 4.3, where 
the oscillations are evident in Figures 4.3.1 to 4.3.4 which show results from the first start-up 
experiment). The reason for this behaviour needed to be explained and reproduced in simulation 
as, in fact, the optimisation process indicated that the performance should be somewhat different 
to that in evidence. The behaviour may have been the result of unmodelled characteristics of the 
reactor, its seed and operating parameters, but if the behaviour could be simulated by an altered 
model which had justifiable amendments in place, then confidence could be built in respect of the 
reasons for the oscillation. The model used in the optimisation of the process was that shown in 
Figure 4.2.8. The resulting adaption parameter gains were somewhat higher than anticipated at [- 
80 -8 -1.5] for the proportional, integral and derivative gains respectively. Oscillatory behaviour 
could be expected in a situation where transport or other delays were not considered and should 
have been. A series of simulations were conducted in order to test this hypothesis using the model 
of Figure 4.2.8. Firstly, a model was set up as follows:

a) For 150 hour at 1 hour sample time, with a set point of 1700 mg.1" 1 CaCO3 equiv. disturbed 
with a discrete pulse generator signal with an amplitude of 100 mg.l" 1 CaCO3 equiv., a period 
of 80 hours and a pulse width of 40 hours.

b) As a) but with added measurement Gaussian noise with a mean of zero and variance of 500 
mg.1"1 CaCO3 equiv. and updated every sample

c) As a) with a unit delay representing communication delay between the software applications, 
in the BA feedback path and measurement noise as in b)

d) As c) but with a 1 st order transfer function with a time constant of 0.1875 hours, in the BA 
feedback path, (i.e. a 4 time constant delay of 45 minutes). The model simulation was used to 
investigate the effect of placing a model of the BA monitor and settler into the feedback path 
and the addition of perceived noise and a delay in the control action propagated through the 
Analogue to Digital/Digital to Analogue conversion (ADDA) scheme. The DDE approach 
and the control algorithm induced a sample delay, which was not accounted for in the original 
optimisation model based on ControlSimulationModel_2.mdl, Appendix A. This model, 
augmented with all noise and delay elements is included in Appendix A as 

ControlSimulationModel 3.mdl.
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measured BA. Controller gains [Kp= -80.0; Ki= -8.0; Kd= -1.5]

a) Set-point of 1700 mg.l" 1 CaCOj equiv. and an additive pulse disturbance of amplitude 
100 mg.r 1 CaCO3 equiv.
b) As a) with added noise of variance 500 mg.l" 1 CaCO3 equiv. on measured BA
c) As b) with unit delay on measured BA
d) As c) with added 1 st order model for BA monitor (T=0.1875 hrs)

Figure 4.2.11 shows the progressive inclusion of noise, communication delay and instrumentation 

dynamics from a) to d). The consequence is that the 'Measured BA' becomes progressively more 

prone to error from the reference model output, which is the intended behaviour. In Figure 4.2.11 

c) and d), the deviation is seen to be oscillatory and dependent on the delay. The latter 

corresponds quite well to the situation observed in the real data of, for example Figure 4.3.3 

(between 1300 and 1400 hours) which is also somewhat oscillatory and thus supports the 

hypothesis that the modelling was too ambitious in attempting to ignore the effects of sensor 

dynamics. Furthermore, it can be seen from Figure 4.2.12 to 4.2.15 that the control action 

becomes progressively more oscillatory in character till in Figure 4.2.15 it resembles quite closely 

the experimental behaviour shown in Figure 4.3.3. The other parameters (namely biomass 

concentrations, gas production rates and pH, also respond to the increased measured BA delay in 

an oscillatory manner.
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4.0 Results and discussion

It can be seen from Figure 4.2.16 that the limiting parameter of methanogenic bacterial 

concentration is retarded slightly by the degraded control action due to instrumentation delays, at 

least up to 150 hours of lapsed time (6.25 days). As the model does not include other trophic 

groups which are known to exist in the AD process, such as hydrogenotrophic methanogens, or 
the inhibitions so derived from hydrogen or other parameters such as pH, one might expect the 

variation to be increased slightly in reality. The increased physical effects of CO2 liberation 

variations are also not considered, but could have deleterious consequences on the granules and 

may increase selective washout dependant on the morphology of the bacterial species.
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Figure 4.2.16 Methanogenic bacterial concentration for simulations a)-d)

4.2.4 Simulation study to assertain the effect of discrepancies in the OLR actuated 
control implementation

Start-up 1,2 and 3 experiments were conducted on the basis of variations in OLR as a means to 
affect control. The FAT controller was parameterised according to the details presented in Table 

3.4.1 and Start-up 1 had significantly higher parameter gains then Start-up,2 and 3 which had the 

same parameter gains

A discrepancy was discovered in the implementation of the control system associated with the 

OLR actuated experiments. The parameterisation/optimisation and subsequent simulations were 

done with the substrate supplied to the reactor model (Sin) defined in [mg.COD.l~ 1 ], which is 

evident from a dimensional analysis of the model, while the implementation in the lab scale 

experimentation assumed Sin represented OLR with associated units, [kg.COD.m^.d" 1 ]. In other 

words, the units were inconsistent. The effect of this discrepancy was to include a gain of 5.943 
m3.d.r' [(mg.COD.r'Mmg.COD.n^.d"')"'] between the control and monitoring computers.
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4.0 Results and discussion

Comparison of predicted performances between the system as implemented and the 
optimisation model

The expected performance of the optimised control systems is compared here, with the simulated 

performance when the extra gain (5.943) derived from the discrepancy of dimensions incorporated 

during the control system implementation described above.

Each of the Start-up experiments (Start-up 1,2 and 3), were simulated using the control simulation 
model in Simulink™ ControlSimulationModel_2_Discr.mdl (Appendix A). In this model, the 
control effort signal connected to Sin has a gain of 5.943 associated with it, which takes account 
of the implementation discrepancy. With this gain replaced by unity, the system does not account 
for the discrepancy and represents the system as implemented. Simulations were conducted for 
each affected Start-up experiment and are presented as time evolutions of the system response 
below. 

Start-up 1

a)
2000

1500

ro ^-1000 -

1 E= — 500

r ————— 1 —— 3^-1 —————— 1 —————— r i I , i 1
, —— f*~r~> i _j tu • •*•" — ••*• - • •— • — *••••"••r— -

—— Reference model output 
—— BA Set-point 
—— Measured BA

i i i i
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Reference model output 
BA Set-point 
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160 180 200

Figure 4.2.17 Comparison of performance from controller used in Start-up 1

(Optimisation g) from Table 3.4.1 with parameter vector [-80.0000 -8.0000 -1.5000]) - 
Pulsed set-point and sensor noise variance 500 mg.1" 1 CaCO3 equiv.
a) expected performance without correction of the control effort gain discrepancy
b) expected performance with correction of the control effort gain error
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4.0 Results and discussion

Figure 4.2.17 indicates that the increased gain would result in a more erratic behaviour from the 

control system, which is comparable with the experimental performance observed in Figures 4.3.8 

to 4.3.12.

Figure 4.2.18 shows a similar comparison to Figure 4.2.17 with the exception that the set-point is 

held constant at 1700 mg.l" 1 CaCO3 equiv. Again the response is similar and hence for other 

Start-up comparisons only the pulsed situation will be considered.
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Figure 4.2.18 Comparison of performance from controller used in Start-up 1

(Optimisation g) from Table 3.4.1 with parameter vector [-80.0000 -8.0000 -1.5000]) 
Sensor noise variance 500 mg.l" 1 CaCO3 equiv.
a) expected performance without correction of the control effort gain error
b) expected performance with correction of the control effort gain error
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Start-up 2 and 3
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Figure 4.2.19 Comparison of performance from controller used in Start-up 2 an 3

(Optimisation i) from Table 3.4.1 with parameter vector [-27.1952 -5.0322-2.6103]) - Pulsed 
set-point and sensor noise variance 500 mg.l" 1 CaCO3 equiv.
a) expected performance without correction of the control effort gain error
b) expected performance with correction of the control effort gain error

It can be seen that even in the case where the adaption gains were reduced (Figure 4.2.19), the 

response was similar and somewhat erratic though to some degree periodic.
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4.0 Results and discussion

4.3 MODEL REFERENCE ADAPTIVE CONTROLLED REACTOR START-UP 

EXPERIMENTATION (TASK 4)

The fundamental question, which this work makes initial strides to answer, is: 

Would it be possible to design a generic adaptive controller for a variety of anaerobic digesters? 

More specifically, could the MRAC structure, a single measured variable and little prior 

knowledge of the reactor to be controlled, act as constraints on the design process, yet still yield a 

transferable generic controller for use in anaerobic digester commissioning, start-up and 

operation? The work in this thesis has not considered the transferability of such a controller, 

between a representative sample of specific anaerobic reactors, but has considered a design 

process, which may be fruitful in the final objective. The single measured variable implies that 

the cost of instrumentation is minimised. It is believed that the BA monitor used in the 

experimentation could be produced at a relatively low cost, (circa £5000 Sterling, in 2002, 

depending on sales of the instrument), even though significant development work would be 

required to improve reliability. Scale-up of the monitor, which would allow higher flow rates 

through the monitor, would increase the tube diameters throughout the measurement system and 

this would reduce its susceptibility to blockages.

At the commissioning stage of an anaerobic digester, the commissioner or operator would have 

little knowledge of the behaviour of the system other than the design information and any 

comparable, previously commissioned system from which experience may have been gained. The 

start-up and subsequent operation of the reactor could therefore require considerable expertise, 

which would have a cost associated with it. A control system, which would start-up the reactor at 

a sub-optimal but reasonable rate with minimal effort from specialist operators, should be a useful 

device. As each reactor has different operating conditions, feed and seed characteristics, one 

would in general expect variations in the operating regimes. Designing a control system would 

normally involve the characterisation of the reactor (i.e. modelling), from which a bespoke control 

strategy can be developed. The advantage of a generic controller, which could be placed directly 

into a system without any design effort, should be clear. The cost of model development at the 

commissioning stage in any case could be significant, particularly if experimentation is necessary 

in order to parameterise (or calibrate) the model. The first stage in testing the feasibility of such a 

system has been to design the controller on the basis of a particular reactor system and to test its 

ability to control a reactor of different design and operating characteristics. This section considers 

just such an approach. The optimised FAT controllers developed in Section 3.4 and summarised 

in Table 3.4.1 were used in four start-up experiments. The model used in the development of
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these controllers was derived from a fluidised bed reactor as described in Chapter 3.0 which was 

fed a simulated yeast waste. Whereas the experiments to study the performance of the same 

controllers were performed using an EGSB reactor fed with a sucrose solution. While this is not 

an exhaustive investigation as to the transferability of the control strategy, it does allow some 

conclusions to be drawn and further work to be identified.

The experimentation to test the control strategy and the specific optimised controllers were split 

into four start-up experiments. Start-up can be considered as a significant and protracted period of 

over load conditions, governed primarily by the rate at which the bacterial consortium is able to 

grow, and hence consume a continually increasing feed rate. By considering start-up, the 

experiments are considering a severe loading regime and extrapolating to generalise the controller 

performance at steady state or under conditions of hydraulic, organic or toxic shock, is at the very 

least, ponderable. Explicit experimentation considering hydraulic and organic over loads are 

currently the subject of a separate Ph.D. study at the University of Glamorgan. The start-up 

experiments indicating the FAT controller adaption parameters [Kp Ki Kd] and the actuation 

which constituted the causal action by which the system was controlled (briefly summarised) were 

as follows:

Start-up 1
Experiment run over 73 days from 26th March 2001 to 8th June 2001; Actuation - OLR;

Adaption parameters - [-80 -1.5 -8.0]; Seed - granules taken from a UASB reactor at

Davidson's Paper Mill (Aberdeen, Scotland). 

Start-up 2
Experiment run over 22 days from 16th July 2001 to 9 th August 2001; Actuation - OLR;

Adaption parameters - [-27.1952 -5.0322 -2.6103]; Seed - continued from Start-up 1 

Start-up 3
Experiment run over 47 days from 25 th October 2001 to 13 th December 2001; Actuation -

OLR; Adaption parameters - [-27.1952 -5.0322 -2.6103]; Seed- from a UASB reactor used to

treat molasses waste from a citric acid producing plant at Tate and Lyle Citric Acid, Selby, N.

Yorkshire 

Start-up 4
Experiment run over 70 days from 26th February 2002 to 9th May 2002; Actuation - BA

dosing; Adaption parameters - [-11.8812 -1.2157 -0.1867]; Seed- from a UASB reactor used

to treat molasses waste from a citric acid producing plant at Tate and Lyle Citric Acid, Selby,

N. Yorkshire.
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In order to have a clear indication of the performance of the control strategy and the associated 

controller parameters, it would be necessary to have uninterrupted data which was not perturbed 

by unforeseen events. The existence of such aberrations is not particularly rare as can be seen 

from Steyer et al. (2002), who, perhaps not to the same extent, experienced comparable incidents 

during the typical weeklong data set they presented. Failure free operation was not achieved 

during the experiments reported here and it is therefore necessary to detail what proved to be 

frequent aberrations. Furthermore, the control system employed is adaptive and depends to a 

significant extent on historical data so that a summary view is required in order to make sense of 

the controller performance. Presenting the entire time series for the four experiments, indicating 

the occurrence of critical events should help the reader in this respect. The data is presented in six 

graphs a) to f) showing %CO2 , pH, measured and set point BA, temperature, OLR (or BA dosed) 

and gas production rate respectively. Labelled vertical lines (indicating time instants) mark 

critical episodes, which are briefly explained in the associated tables.

4.3.1 A summary of the data from the optimised (FAT) controller experimentation

Start-up 1
Figure 4.3.1 shows the data collected by the data logging system in the first 20 days of Start-up 1 

and is followed by Table 4.3.1 explaining the aberrations marked on Figure 4.3.1. Similarly, 

Figures 4.3.2.to 4.3.4, show consecutive 20-day periods of data or in the latter instance, to the end 

of the data. Associated Tables 4.3.2 to 4.3.4 follow these figures, indicating the perturbations.
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Figure 4.3.1 Start-up 1 Performance of the optimised FAT controller over the first 20 days
a) %CO2 , b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas flow 
rate.
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Table 4.3.1 Start-up 1 Perturbations during the First 20 days of l" optimised start-up 
experiment___________________
A. The BA monitor had a susceptibility to becoming blocked by participate at the outlet to a U tube, which 

maintained the liquid level in its acidification chamber. Sediments would accumulate in the U tube and 
carry over to and block the small orifice, which formed its outlet. This had a direct influence on the gas 
flow measured and consequently, the BA measured. The peristaltic pumps were also prone to 
blockages and the position of the tube relative to the rollers needed to be moved frequently, which 
affected the associated flow rates and again the BA reading. The data shows a slight rise at this point, 
when the peristaltic tubes were moved and the U tube cleared of debris.____________________

B. At this point in the data, the antifoam supply tube in the BA monitor became blocked and hence 
changed the flow through the monitor and consequently caused a drop in measured BA__________

C. The U tube in the BA monitor became blocked, thus causing a sudden rise in the measure BA.______
D. Guwy et al. (1994) describes the BA monitor in which acid is supplied to the acidification chamber of 

the BA monitor in order to evolve all the bicarbonate as CO2 gas. The acid is supplied via a peristaltic 
pump and is connected to the suction is a centrifugal pump which acts as a mixer on the acidification 
chamber. The connection of the acid pipe to the pump suction became loose and the subsequent 
spillage (during a Sunday when the laboratory was not continually manned) cased the power to trip 
with a loss of instrumentation and ancillary equipment, though data logging continued. The problem 
persisted and after restoring power, air was pumped into the BA monitor from the pipe failure point, 
causing false high readings on the BA monitor. This caused the feed to increase to its maximum of 38 
kg COD m"3d"'. After this the monitor was stopped and a static BA reading supplied to the control in 
its place, while the feeding was suspended and BA was dosed into the reactor to stabilise it.________

E. Control was restored towards the evening of the 8th day
F. The acid pipe became disconnected once more with a rapid drop in BA ensuing.______________
G. A rapid rise in the BA data was observed to have occurred while the reactor was not being observed 

and was thought to be due to a blockage in the BA monitor U tube.______________________
H. The sudden increase in BA is due to the unblocking of the antifoam line.___________________
I. The BA monitor was erratic over night. This behaviour was probably due to blockages in the U tube.
J. The feed pump (peristaltic) stopped pumping when the tube became flattened and simultaneously, air 

was pumped into the BA monitor through the connection between the acid supply pipe and the mixing 
system on the acidification chamber.________________________________________

K. Further acid line problems lead to the restarting of the controller, with the minimum OLR threshold 
removed. Over night the liquid level in the reactor dropped to the point where the recycle line was 
pumping biogas and causing considerable disturbance to the sludge bed. The reactor was filled with a 
BA solution of 2222 mg i"'CaCO3 equiv., the BA monitor was recalibrated and the control was 
restarted. Initially the BA set point was 2000 mg r'CaCO3 equiv. and reduced in steps to 1700 mg 1" 
'CaCO3 equiv. by 342 hours into the experiment._________________________________

L. The feed pump failed as in J, with similar consequences.____________________________

The duration of Start-up 1 was approximately 75 day (1800 hours), which would normally be 

considered ample for starting an EGSB reactor, for example the 35 days start-up reported by Borja 

et al. (1995), is by no means exceptional. The measured BA and OLR in Figures 4.3.1 to 4.3.4 

show a tendency to behave in a very 'stiff manner, with large changes (spikes) in the control 

effort evidenced (by simple zero order relationship), with the OLR signal. Initially (say over the 

first 100 hours), these spikes are infrequent, but by 600 hours, the frequency has markedly 

increased. The frequency and amplitude of the OLR spikes continues to increase to 1550 hours, 

but is retarded and often reversed by system failures, which are predominantly due to the BA 

monitor's unreliability. It is fair to say that the behaviour of the control system over Start-up 1
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4.0 Results and discussion

was not well correlated to the expected behaviour indicated by the simulation of the optimised 

controller as indicated by Figure 4.2.1 a) and b). The control effort shown in Figure 4.2.13 is 

comparatively subdued compared to the control effort seen in Start-up ], even with the simulated 

Gaussian measurement noise, previously described. The adaption gains are necessarily high in 

order that the optimisation procedure should deliver close following to the reference model of the 

MRAC scheme. This however has the effect of making the system highly sensitive to the 

unmodelled dynamics and transport (or other) delays. At the time of running the experiment, the 

systems behaviour was suspected to be attributable to such dynamics and delays, and the 

simulation study of Section 4.2 lent support to this hypothesis. Subsequent controller 

parameterisations took account of the delayed measurement signal and showed some improvement 

in the dynamic behaviour of the control system. Never the less, the 'on-off behaviour of Start-up 

1 serves to illustrate the likely problems which may arise in trying to apply a generic control 

system to a variety of anaerobic digesters. High gains will produce rapid adaption but delays on 

the measured variable will lead to overshoot and a tendency toward marginal stability or possibly 

instability. It is conceivable that the control effort could be used to indicate the existence of 

unmodelled dynamics, and appropriate adjustments to the adaption mechanism could be made. 

The result of this feeding pattern is to prolong or slow down the start-up phase and in the case of a 

highly digestible waste such as sucrose, the conversion of the
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Figure 4.3.2 Start-up 1 Performance of the optimised FAT controller over days 21-40

a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas now 
rate.

Table 4.3.2 Start-up 1 Perturbations during days 21-40 of 1 st optimised start-up experiment
A. Antifoam stopped pumping, which lead to foam building up and obstructing the solenoid valve, which 

___was stripped and cleaned prior to re-commissioning._______________________________ 
B. Feed concentrate line became blocked due to a blockage caused by bacterial growth further upstream. 

___The blockages were cleared and were followed by a slight drop in pH.____________________ 
C. At this point, the U tube in the BA monitor was cleared and the peristaltic tubing for the acid supply in 

the BA monitor was changed, leading to a short lived increase in the measured BA. This was followed 
by the antifoam tube blocking and the saturation chamber overflowing, which lead to the acidification 
chamber foaming. This was all put right, by which time the BA read approximately 900 mg I" 1 CaCO3 
equiv., then rising once more to over 1700 mg 1"' CaCO3 equiv.________________________ 

D. BA monitor U tube blocked, leading to liquid in the solenoid. This was put right and the BA monitor 
re-calibrated with a 2000 mg I' 1 CaCO3 equiv. standard.____________________________

E. It was noted that the U tube was blocking (probably) with bacterial matter, with a remarkably regular 
frequency and that on occasions the control system samples at the extreme of the aberration. The
software based Butterworth filter was increased to 5 order from 2" order, to try to reduce the out- 
layer's effects, with some success. At this point, the gas pressure in the headspace had risen 
sufficiently to drop the liquid level and cause biogas to be re-circulated in the reactor. The reactor was 
filled with tap water.___________________________________________________

F. The antifoam system in the BA monitor had blocked and caused foaming in the acidification chamber 
and hence, the solenoid to be flooded. The solenoid was stripped and cleaned. The outlet of the U 
tube was replaced by a small bore stainless steel tube (in place of the original copper tube). The BA 
monitor was re-calibrated. _______________________________________
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G. The antifoam pump developed a fault and pumped air into the BA monitor, causing the BA reading to 
jump up to 2340 mg I' 1 CaCO3 equiv. This reading dropped rapidly once the fault was repaired, and 
the spike of feed made the system gas significantly, with %CO2 rising to 61%, indicating the BA was 
being converted to CO2 . Bacteria began to carry over to the BA monitor and some difficulty was 
experienced trying to maintain the liquid level in the reactor. The BA monitor blocked causing the 
solenoid to flood. Corrective action was taken and the system began to stabilise.______._______

H. Re-calibrated BA monitor. ______________—————.

substrate to volatile acids by the acidogenic bacteria would be very fast. Large spikes in the OLR 
will lead to similar surges in VFAs and in the presence of bicarbonate, will evolve CO2 at 
increased rates, reduce buffering and pH. This could disrupt the bacterial floes or granules at the 
same time as placing the methanogenic bacteria under some stress. Sucrose, though highly 
digestible, may paradoxically be a difficult substrate for control purposes, because of this 
susceptibility to favour some trophic groups over others.

There is a discernible trend, showing that the OLR and (by implication) the active microbial 
populations increase, as does the gas flow rate over the duration of Start-up 1, even though the 
control action is less than optimal and the measured BA gives false readings, (often with 
disturbing regularity). The control and the adaption of the control action are highly dependent on 
accurate and reliable periodic measurements of BA in order that appropriate actions can be taken. 
Given that BA sensor failure, blockages and recalibrations caused major perturbations to the 
measured BA, it is arguably an indication of the robustness of the method, that the system was 
able to maintain a living reactor over the period of Start-up 1.
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Figure 4.3.3 Start-up 1 Performance of the optimised FAT controller over days 41-60 

a) %C02, b) PH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas flow

Table 4.3.3 Start-up 1 Perturbations during days 41-60 of 1 st optimised start-up experiment
A. BA monitor failed as U tube became blocked. Reactor was recovered by pumping 5 1 of 30000 mg I" 1 

CaCO3 equiv. solution to the reactor, and running on manual until stability was restored. It was noted 
that a significant amount of granules had been washed out. A small settling chamber was placed 
between the reactor and the BA monitor, to try to remove the fine particulate which was frequently 
causing the BA monitor to become blocked at the U tube outlet._______________________ 

B. Back to normal operation._____________________________________________ 
C. Liquid level dropped to the point that gas was recirculating, causing bacteria to block the BA monitor. 

Recovery achieved by pumping 5 1 of 30000 mg I" 1 CaCO 3 equiv. solution to the reactor and running 
manually until stability was restored._______________________________________

D. Back to normal operation
______________________________A—————————————————————————————————————————

E. Antifoam pump system in BA monitor blocked.
_______________________________A———————*————t—

F. Antifoam blocked.
G. A larger tube (grey-grey replacing orange-white) was employed while increasing the dilution of the 

antifoam to maintain flow rate of antifoam to the system. BA monitor recalibrated on a single standard 

solution.___________________________________________________
H. Unblocked tubing, which had become clogged with biological growth. Beyond this point, the in-line 

settler between the reactor and the BA monitor was periodically drained of the settled biomass and the 
tubing in the BA monitor was cleared. These actions caused the measured BA to drop between 
approximately 200 to 700 mg I' 1 CaCO3 equiv._______________________________
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Figure 4.3.4 Start-up 1 Performance of the optimised FAT controller over days 61-75

a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas How 
rate.

Table 4.3.4 Start-up 1 Perturbations during days 61-75 of 1 st optimised start-up experiment
A. Control computer crashed so the system was put onto manual operation for approximately 6 hours, after 

which the controller was restarted.
B. CO2 Supply used to saturate sample in the BA monitor was found to be empty. The cylinder was 

___replaced._________
C. BA monitor recalibrated.__________ ___________________________________ 
D. Antifoam became blocked causing foaming in the acidification chamber and consequently liquid to

enter the solenoid valve. The valve was stripped and cleaned.________________________ 
E. Replaced peristaltic tubing (green-green) between saturation and acidification chambers._________ 
F. Antifoam supply system blocked. __________________________________ 
G. Controller stopped and the experiment was terminated._____________________________

Start-up 2

Figure 4.3.5 shows the complete time series for Start-up 2, which took account of the 

instrumentation delays at the point of optimising the adaption mechanism parameters. The 

resulting proportional and derivative gains were significantly reduced, meaning that the near 

instantaneous response of the adaption mechanism was also reduced. The integral gain was in fact 

increased, which means that persistent deviation from the reference model trajectory are 

'integrated out' more rapidly than previously.
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Figure 4.3.5 Start-up 2 Performance of the optimised FAT controller

a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas flow 
rate.

Table 4.3.5 Start-up 2 Perturbations: 2nd optimised start-up experiment____________
A. At start-up, the settled volume of biomass was approximately half of the original seed volume, although 

___the characteristics of the sludge would be different._______________________________ 
B. Control computer crashed and was restarted. CQ2 meter recalibrated.____________________ 
C. BA monitor recalibrated._____________________________________________ 
D. Settler emptied hence saturation chamber emptied and air was pumped into the acidification chamber

of the BA monitor causing a false high reading and a high OLR. The pH dropped significantly so that a 
___high rate of BA dosing was necessary to recover the reactor._________________________ 

E. Cleared tubing in the BA monitor of bacterial growth._____________________________ 
F. Similar failure to D and cleared tubing in the BA monitor of bacterial growth._______________ 

G. Similar failure to D.________________________________________________ 
H. Similar failure to D. Settler lowered to try to overcome the problem.____________________ 
I. BA dosing pump stopped pumping. _____________________________________ 
J. BA solution tank became soured, BA dosing stopped and pH dropped dramatically. Dosed with 15000

mg I" 1 CaCO3 equiv. at maximum pumping rate, to recover the reactor. The reactor was run in recovery

mode till K._____________________________________________________ 
K. Back to normal automatic operation.__________________________________ 
L. Experiment terminated as biomass washout had become a serious concern. The biomass volume at the

end of the experiment had reached approximately 25% of the original seed volume.____________

The set point in Start-up 2 remained persistently above the measured BA. It is believed that this 

occurred because the microbial population was heavily unbalanced toward the acidogenic stage, 

by the repeated and dramatic perturbations experienced through Start-up 1. The effect of the
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integral parameter in the adaption mechanism was not allowed to develop because of further 
perturbations and the OLR variations are primarily the result of derivative and proportional 
actions from the adaption mechanism.

Start-up 3

As mentioned in Table 4.3.5 point L., the washout of bacteria in Start-up 2 was significant and left 
only 25% of the original seed volume by the end. The reactor was seeded anew, with granules 
from Tate and Lyle Citric Acid, Selby, N. Yorkshire, as described in Section 3.2. Initially (around 
200 hours), the system seemed to cope reasonably well, however further perturbations from the 
BA monitor caused the measured BA to be less than the set point until a major interruption occurs 
between 400 and 800 hours. Again the microbial population was thought to be reduced and 
arguably stressed. In periods where control was relatively uninterrupted (170 to 210 hours), the 
control action appeared to be far less aggressive than Start-up 1. The consequence of the 
persistent perturbations was to make it difficult to assess the performance of the control strategy. 
If the reliability of the BA monitor was part of the investigation, then it would become very 
difficult to justify using control in the face of such an unpredictable sensor.
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Figure 4.3.6 Start-up 3 Performance of the optimised FAT controller
a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas flow 
rate.
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Table 4.3.6 Start-up 3 Perturbations; 3rd optimised start-up experiment____________
A. Start automatic operation.________________________________ __________
B. Acid supply to acidification chamber of BA monitor became blocked and was later cleared.________ 
C. BA monitor saturation chamber emptied as circulation pump (centrifugal) lost suction, thus preventing 

sample getting to saturation chamber.__________________________________________
D. Feed to reactor stopped pumping and was later put right.______________ _______________
E. Antifoam stopped pumping (ran out). Dosed reactor with BA. Manual operation till F._____________
F. Back to normal automatic operation. Followed by erratic (for unknown reason), behaviour of BA 

___monitor.____________________________________________________
G. System onto manual control as BA monitor U tube blocking and BA dosing to reactor not pumping. 

The period of constant OLR that follows showed that the reactor found the conditions more conducive 
to stable operation than the rapid variations in OLR caused by the disruptions in the BA monitor.______

H. Back to normal automatic control, shortly followed by a failure in the BA monitor, where the tubing 
between the saturation chamber and the acidification chamber had become blocked with bacterial 
growth. Increased concentration of bacteria in the reactor has increased the carryover of particulate to 
the BA monitor, despite the settler, which lead to serious reliability problems with the BA monitor. At 
this point, the control computer had crashed once more. Returned to manual operation_____________

I. Control computer restarted.____________________________ _____________________
J. Data logging computer crashed due to lack of memory, and continuing problems with blockages in the 

___BA monitor.________________________________________________________
K. Pumping failure on BA dosing system.____________________________________________
L. Pumping failure on BA dosing system. Periodic blockages in the BA monitor were experienced roughly 

on a daily basis, until the experiment was terminated 47 days after its start.________________.

Start-up 4
The reactor was again seeded and the control strategy in Start-up 4 was significantly altered from the 
previous start-up experiments. The primary difference was in that the actuation was achieved by dosing the 
reactor with a variable flow rate of BA at a concentration of 2222 mg.l" 1 CaCO3 equiv., while maintaining a 
constant HRT in an analogous fashion to the OLR actuation. The dosing of BA into the reactor had a far 
more direct influence on the measured BA than varying the OLR. The relationship between BA dosed and 
measured BA was naturally affected by the biological system in the reactor, but the CO2, BA and VFA 
equilibrium and the hydraulic regime in the reactor were a physical/chemical systems with relatively rapid 
responses to change. The VFAs were produced and consumed by biological metabolism, but while in the 
liquid phase they were readily accessible to the physical/chemical process mentioned above. So dosing BA 
has a more direct effect on measured BA than changing the OLR and waiting for the acidogenic bacteria to 
adjust their production of VFAs to closer match the consumption of the same by the methanogens and as a 
consequence affecting the BA buffering in the reactor. This is clearly visible in the far tighter control 
achieved in Start-up 4 which is shown in Figure 4.3.7 and shows closer following of the set point, by the 
measured BA, in spite of similar perturbations in the BA measurement signal to previous start-up 
experiments. The effect of perturbations is particularly evident from approximately 600 to 750 hours, and 
beyond approximately 1200 hours (Figure 4.3.7). Recovery elsewhere is relatively rapid.
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Figure 4.3.7 Start-up 4 Performance of the optimised FAT controller

a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, 0 Gas flow 
rate.

The OLR was set at (nominally) fixed levels, which are summarised in Table 4.3.7 and changed 

according to circumstances. In the main this was when the reactor was perceived as having 

improved in its ability to deal with the current loading rate, or when recovery from a perturbation 

warranted a reduction in loading rate.

The tendency to increase the gas production rate at the same time as the loading rate was 

increased and the %CO2 remained reasonably steady at 50%, indicated that the biological 

performance of the reactor was increasing during this start-up. Arguably, the BA dosing shows 

signs of reduction as the start-up proceeds (Figure 4.3.7 c)), which would suggest a strengthening 

of the methanogenesis stage of the AD process. However, as is discussed by Rozzi et al. (1994), 

the dosing approach is philosophically a means of maintaining suitable environmental conditions 

for the bacteria, as opposed to removing the cause (of the tendency to sour) at source. The latter is 

the case when control actuation is achieved by varying the organic loading rate. The nature of the 

reactor and particularly the feed it received in this study was such that BA dosing at some level 

was required regardless of actuation strategy. A more complex feed than sucrose may generate 

buffering as a natural consequence of its breakdown, as would be the case for a feed containing 

protein for example. The cost of dosing may therefore become a significant consideration.
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Table 4.3.7 Start-up 4 Perturbations; 4th optimised start-up experiment
'OLR set to 2.5 kg COD m'

B. Feed pump not pumping. Remedied by moving peristaltic tube.______________________
C. Changed peristaltic tube positions in BA monitor, feed and BA dosing pumps, causing a rise in 

measured BA. _______________________________________________
D. Liquid level in the reactor dropped because if either the water or BA pumps are not rotating (0 volt 

signal), the reactor could flow in reverse direction. The system was manually operated until refilled 
and then placed into normal automatic mode after approximately 1 hour. A non-return valve placed in 
the system to prevent this problem recurring. _________________________________

E. System stopped for short period (40 minutes) while 5 1 (settled volume) of granules were removed. 
This was necessary as growth was causing potential problems of bacteria carryover to the BA monitor. 
The sludge blanket was still high, so the recycle was reduced by 30% as a temporary precaution. _____

F. Over a 2 hour period, the system was stopped twice, and opened to remove more granules, (oxygen 
would have entered each time). Granules were visibly bigger than at seeding. __________________

G. QLR set to 6.7 kg COD m'3d''
H. Over 1 hour period, the system was stopped and a further 2.8 1 (settled volume) of granules were 

removed, Vup was reset to 4.78 rah' 1 . __________________________________
I. OLR set to 10 kg COD m'3d"'
J. pH probe cleaned. Liquid level low, so system filled while on manual control. Feed ran out soon after.
K. The BA monitor was blocked on two consecutive days, leading to liquid in the solenoid valve, which 

was cleaned and reinstated. The peristaltic tubing in the BA monitor was replaced throughout and the 
monitor was recalibrated. Over 1 hour period, the system was stopped and a further 1 1 (settled 
volume) of granules were removed. The recirculation rate was reduced by 57%. The system was run 
manually and the OLR was reduced to 5 kg COD m^d" 1 The Vup was increased to 100% a day later 
which appeared to reduce the headspace suspended solids, but also expanded the sludge blanket 
considerably. BA monitor problems persisted until L. and seemed to be foaming related. Antifoam 
increased ____________________________________________ _________

L. Back to normal automatic operation. ______________________________________
M. OLR increased to 8 kg COD m'3d''
N. Data logging computer crashed. ____________________________________________________
O. Reactor leaking and liquid level below outlet port, hence gas phase open to atmosphere. OLR increased 

to approx. 8 kg COD m'3d''. _________________________________________________
P. Pump failed in BA monitor, and peristaltic tubing in BA monitor changed. ___________________
Q. Electricity fused, system put to manual control. This was followed by persistent problems with the BA 

monitor until R., probably caused by foaming in the chambers. The result was a fragmentation of the 
granules and significant washout of biomass. Channelling was also observed in the reactor during this 
period. ____________________________ _ ___________________________

R. Stopped on day 70 ______ _ _____________ ___________________________
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4.3.2 Detailed observations from Start-up 1
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Figure 4.3.8 Start-up 1 from 0-120 hours
a) %CO2 , b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas flow 
rate.

Figure 4.3.8 shows the first 5-days of Start-up 1. It can be seen from the summary data presented 
in Figure 4.3.1 and Table 4.3.1 that aberrations occurred at about 55 hours and 73 hours, which 
would affect the evolution of the data series. Initially, very little gas production was evident and 
practically none recorded as gas flow rate during the entire 5-day period. However, it can be seen 
that the %CO2 , gradually increased over the first 60 hours, as the bacteria (previously dormant in a 

refrigerator for a year), recovered activity. It is noteworthy that feeding was essentially pulsed in 
character and occurred five times during the 5-day period and lasted approximately 5-hours. The 
amplitude of the pulses varied between about 5 and 15 kg m'3 d" 1 . The pH can be seen to respond 

to the feed pulses by dropping slightly (circa pH 0.5). Already, at this early stage, it can be seen 
that the control is overly aggressive, in that errors between the measured and desired values of BA 
provoke large control actions on the OLR. The realisation that this was the case could not be 

made immediately. Ideally, the control system would have slowly increased the control action and 

hence the OLR as the bacteria became able to consume the substrate. However, sub-optimal
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performance to an unknown extent, was expected, as the reactor under control was an unknown 

entity (with respect to performance) and had no part (other that physical dimensions etc), in the 

design of the control system. The degree to which the control was sub-optimal was expected to 

decrease as a function of the adaption characteristics of the control system. This in fact was the 

case, as can be seen from the data selected (for its minimal perturbations), in Figures 4.3.9 to 

4.3.12. It can be seen that the OLR and by implication the control effort, became progressively 

more frequent, though still pulse-like in character. The deviation of the measured BA from the set 

point (though oscillatory), tended to improve and the gas production was seen to increase.

A comparison was made by Premier et al. (2001), between the first and fourth weeks of Start-up 

1, showing that the mean OLR increased from 3.3 kgCOD.m 3 .d ', to 6.53 kgCOD.m~3 .d~', which 

was a continuing trend, somewhat retarded by the perturbations experienced.
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Figure 4.3.9 Start-up 1 from 520-640 hours
a) %C02 , b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, 0 Gas flow

rate.
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Figure 4.3.12 Sustained 11.25 day period of control during Start-up 1 from 1290-1560 hours

a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, 0 Gas flow 

rate.

Figure 4.3.12 shows a period of 11.25 days toward the end of Start-up 1 which was relatively 

undisturbed by instrumentation or ancillary equipment failures. The system gives the impression 

that it is operating slightly to the stable side of marginal stability, with under and overshoot of the 

measured BA compared to set point, reducing. It is possible that a prolonged period of failure free 

operation could have lead to convergence at a stable and acceptable operation, but the time taken 

to achieve this and the reliability of the system elements were beyond practical realisation.

Throughout Start-up 1, the affect of reactor temperature is difficult to discern, however by 

considering the cross-correlation of other data series with the reactor temperature, significant 

correlation is evident, (Figure 4.3.13). The diurnal variations are quite clearly visible in for 

example Figure 4.3.12 d), as are the variations due to weather patterns on a longer time scale. 

More accurate control could have reduced these fluctuations, but the 2°C daily variations and 

generally fluctuations between approximately 35°C and 40°C, while significant to microbial 

activity, are not excessive compared to practical temperature control of reactors. It is more 

difficult to ascertain if the correlation is caused directly by temperature variation, or if the modal 

frequencies of the system are similar to the frequency of temperature variations. The data in
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Figure 4.3.13 is presented as normalised data such that the auto-correlation of reactor temperature 
at zero lag is exactly one, (which is also shown in this figure). It can be said that there is a 
relatively high degree of cross-correlation to temperature, particularly in the cases of %CO2 , pH 
and BA. These are all parameters implicated in the BA/CO2/pH equilibrium (by definition) and 
are all susceptible to temperature through microbial metabolic rate and physico/chemical effects 
through dissolved CO2 equilibrium in particular. This is particularly evident from the correlation 
of temperature to pH which is almost identical to the auto-correlation of the temperature. There is 
also a high likelihood that the pH probe was affected by temperature, which would result in a 
strong correlation as indicated.

There is a possibility that many of the failures experienced by the BA monitor due to blockages, 
particularly those caused by bacterial carry-over, could have been temperature related. The 
mechanism by which this may have occurred could be described as a sequence of events all traced 
back to reactor temperature thus: A rise in temperature would increase microbial metabolism, 
increasing acidogenesis and hence reducing pH. This would cause BA to breakdown and CO2 to 
be evolved in greater proportion. The gas would further expand and disturb the sludge blanket 
causing carry-over of suspended solids to the BA monitor, leading to blockages.
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Figure 4.3.13 Cross-correlation between reactor temperature and various reactor 
parameters from 1290-1560 hours, looking 7-days into the past and future.
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Figure 4.3.14 Cross-correlation between reactor temperature and various reactor 

parameters from 1290-1560 hours, in Start-up 1, looking 7-days into the past and future.

The cross-correlation shown in Figure 4.3.13 considers the complete data set which constitutes 

Start-up 1, which when contrasted with Figure 4.3.14 which considers a subset of this data, shows 

that the cross-correlation which includes the perturbed periods of operation gives a higher 

correlation between %CO2 , pH and BA against temperature, and somewhat similar correlations for 

the remaining parameters. It is believed that Figure 4.3.14 gives a better indication of the 

correlations than Figure 4.3.13 as the saturated signals will appear to increase the correlation 

significantly if they persist for significant proportions of the overall duration of the experiment. 

Never the less, the cross- correlations are apparently significant and the modelling used in the 

preparation of the control strategy and described in Section 3.3.3, is unable to take account of 

temperature variation, as this has not been included as a variable. As presented by Batstone et al. 

(2002), the five main influences of temperature on biochemical reactions are:

1. Increased reaction rate with increasing temperature (as predicted by the Arrhenius equation)

2. Decrease in reaction rate with increasing temperature above optimum (>40°C for mesophilic 

and >65°C for thermophilic)
3. Decrease in yields, and increase in half saturation constant due to increased turnover and 

maintenance energy with increased temperature

4. Shift in yield and reaction pathway due to changes in thermodynamic yields and microbial 

population
5. Increase in death rate due to increase in lysis and maintenance
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They suggest that with temperature changes of ±3°C, AD can be modelled without temperature 

dependency, requiring only that suitably selected (for temperature) parameters be used in the 

model. For the most part, the data is close to this criterion but does drift over weeks and months. 

Even within the ±3°C, one would expect variations in the five main influences above to occur, and 

as a consequence, the normalisation of the data will lead to cross-correlation becoming evident.

4.3.3 Detailed observations from Start-up 2
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Figure 4.3.15 Start-up 2 from 180-300 hours
a) %C02, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas flow
rate.

Start-up 2 was run for considerably less time than Start-up 1. 12.5-days are presented in Figure 

4.3.15 which should be considered in the context of Figure 4.3.5 which indicates that the BA 

monitor or its associated solids separation system caused perturbations at 170, 210, 235, 245 and 

280 hours in the time series. These aberrations correspond to the sudden rise in measured BA and 

the consequential feeding that soon follows. The close following between BA and OLR indicate 

that the response is predominantly induced by proportional and derivative adaption elements, and 

the integral element has little chance to adapt over the time scale indicated and the repeated over 

and under shoot of the measured BA compared to the set point. The seed for Start-up 2, was the 

remaining bacteria, which had been considerably stressed from Start-up 1. The methanogens were
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suspected to have been depleted significantly because of the feeding regime induced by the 

adaption parameters used in Start-up 1. The repeated and severe perturbations experienced by the 

system during Start-up 2, do not allow clear analysis of the controller performance, other than to 

say that the tendency was toward increasing feeding with time, with gradual increases in OLR, 

punctuated with large feeding 'spikes' at the points where the BA reading was unreliably high. 

This retarded the progress of the controller adaption and the pattern in essence, was repeated. It is 

believed that a long period of uninterrupted operation would have lead to a more sedate control 

performance compared to Start-up 1. It was noted that the reactor temperature would have the 

same relationships to the remaining data as discussed above. There is a clear correlation between 

the perturbations and the diurnal fluctuations in temperature and the rising trend in the OLR could 

be associated with the rising trend in temperature (at least to some unknown extent). The 

observed breakdown of the granules that released substantial fine suspended solid and caused the 

BA monitor problems, lead eventually to the termination of the experiment.

4.3.4 Detailed observations from Start-up 3

hi the case of Start-up 3, the control and reactor arrangements were the same as Start-up 2, with 

variation of OLR as the control actuation and using the same adaption parameters as Start-up 2. 

The reactor however, was re-seeded with granules from a UASB reactor used to treat molasses 

waste as mentioned previously. Again, the experiment was perturbed frequently by 

instrumentation problems, so the 5-day period of operation, which was selected as being indicative 

of the controller performance is shown in Figure 4.3.16. Two perturbations occurred during this 

period at approximately 45 hours and 220 hours, and are summarised in Table 4.3.6 as events C 

and D. Beyond 230 hours, the cumulative effect of successive perturbations complicate the 

analysis of the data because of the cumulative damage done to the microbial consortium, from 

which it never had sufficient stable operating time to recover.

The key and interesting features of the controller performance shown in Figure 4.3.16 are the 

considerably improved set point following compared to Start-up 2, and the absence of the 

characteristic pulsed feeding regime experienced in Start-up 1. The OLR changes in a far less 

aggressive manner and shows an increasing trend until such time that the second perturbation 

occurs. The new seed seems to provide initial conditions from which the start-up can proceed 

fairly rapidly and it can be seen that the system reaches a sustainable (in the absence of 

measurement perturbations) OLR in the region of 10 kg m"3 d" 1 . There is every reason to believe 

that this loading rate could be improved upon as the methanogenic bacterial populations increase
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and the granules acclimatise and develop. This is of little consolation as once the system was 

badly over loaded at 220 hour and repeatedly so thereafter, the control was never re-established in 

the same way, but came to resemble the control achieved in Start-up 2.
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Figure 4.3.16 Start-up 3 from 110-230 hours
a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) OLR, f) Gas How 
rate.

4.3.5 Detailed observations from Start-up 4

Start-up 4 was, in comparison to the previous start-up experiments, significantly more successful 

in maintaining reactor stability. Similar measurement perturbations were experienced to other 

experiments, yet the control strategy was better able to cope with such events. Once more the data 

presented here is selective, to minimise the confusion caused by the untoward events summarised 

in Figure 4.3.7 and Table 4.3.7 which include the complete time series. The reader is therefore 

able to refer to the complete data to establish the context of the selected data, as before.

The intention had been to raise the OLR in Start-up 4 periodically as the operation of the reactor 

was seen to have stabilised. It was however, impossible to do this firstly because the perturbations 

described in Table 4.3.7 required the OLR to be reduced on occasions and secondly because the
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peristaltic pump supplying the feed behaved in a temperamental manner, and did not deliver at a 

constant rate. The influent COD was measured off-line roughly 24 hourly, so it has been possible 

to calculate the OLR at these instances. There is still uncertainty between samples, so as a means 

to visualise and estimate the OLR, the calculated (raw OLR) data was filtered using a bi­ 

directional filtering method (to avoid phase affects), and a 5 th order Butterworth filter. Both the 

raw and filtered OLR are represented in Figure 4.3.17. The variation in OLR is to some extent 

more representative of real processes than a constant OLR would have been, as it is seldom 

possible to control the OLR of an effluent waste stream on a continuous basis.

OLR raw data 
OLR filtered

500 1000 1500 
Time [hours]

2000 2500

Figure 4.3.17 OLR calculated from influent COD, over duration of Start-up 4

The first 5-day window of data presented in Figure 4.3.18 is from early on in the experiment, with 

subsequent selections presented in Figures 4.3.19 to 4.3.21 following chronologically. All present 

5-day periods, except Figure 4.3.21, which presents a 10-day period of uninterrupted operation.

The reader is reminded that the actuation in Start-up 4 was different from all previous start-up 

experiments in that it used BA dosing as opposed to variations in the OLR to effect control over 

the buffering available in the reactor. Figure 4.3.18 shows 5-days data from the first week of the 

start-up. The reactor had been re-seeded in the same way and using the same seed sludge as in 

Start-up 3 and the OLR was initially fixed at 2.5 kg COD m"3d"'. It can be seen (Figure 4.3.18), 

that the variations in BA added to the reactor are well able to maintain comparatively close 

following of the set point by the measured BA. A significant perturbation occurs at approximately 

75 hour, but recovery is rapid, though some mild oscillation is apparently induced. It is notable
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that the pH remains undisturbed and that gas is production for about 8 hours before this event then 
ceases.
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Figure 4.3.18 Start-up 4 from 20-140 hours
a) %CO2, b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) BA added, f) Gas flow 
rate.

Figure 4.3.19 shows 5-days in the 3rd and 4th week of operation where gas production is sustained 
and reasonably constant until a small drop in BA due to increased loading rate to nominally 10 kg 
COD m'3d~ l which causes maximum BA dosing. This continues for about 10 hours leading to an 
increased gas flow rate, in small part due to CO2 evolution, but prior to this increase, the gas flow 
rate was probably under recorded as several episodes of sludge removal and level reduction were 
required, as detailed in Table 4.3.7. This is likely to be the reason that little change is evident in 
the %CO2 , plot a), indicating that CH4 production was commensurately increased.

Although the measured BA is still oscillatory, it never exceeds about ±250 mg I" 1 CaCO3 equiv. 

error from the set point.
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a) %CO2 , b) pH, c) Measured (blue) and Set Point (red) BA, d) Temperature, e) BA added, 0 Gas How 
rate.

The data presented in Figure 4.3.20 starts about 4 weeks and 4 days into the experiment and lasts 

for 5 days. Similar performance is maintained to that shown in Figure 4.3.19, though a 

measurement perturbation is evident at circa 817 hours. The gas production appears to stop 

totally, but this was caused by problems with the gas measurement system, caused by foaming in 

the headspace of the reactor. In fact the gas production was maintained.

Figure 4.3.21 shows the last 10-day period, which can be analysed before the system was 

compromised by repeated and severe perturbations of the measured BA. Never the less this period 

suffered disturbances at 980 and 1150 hours. It is fair to suggest that reasonable control was 

maintained over this period, despite the perturbations. The BA in the reactor can clearly be seen 

to oscillate about the set point, as has been the case in previous data during this start-up. This 

would often indicate a tendency to instability, or marginal stability. It can be argued however, that 

the oscillation is a function of the temperature variation and the corresponding effects (discussed 

above). These have been dealt with as disturbances, in the development of the control system, 

because no mechanism for temperature variation was included in the deterministic model. This is 

supported by the cross-correlation presented in Figures 4.3.22 and 4.3.23. Again, as in Start-up 1,
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the cross-correlation of the indicated parameters with temperature are rather high. This is 

particularly true of the complete data set for Start-up 4, for the same reasons as mentioned 

previously, relating to Figures 4.3.13 and 4.3.14. The cross-correlation shown in Figure 4.3.23 

considers only the period and data presented in Figure 4.3.21. It can be seen that some saturation 

occurs on the BA dosing, and that there have been periods where the process is recovering from 
perturbations.
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Figure 4.3.21 Start-up 4 from 920-1160 hours (10 days)
a) %CO2, b) pH, c) Measured (blue) and Set point (red) BA, d) Temperature, e) BA added, f) Gas flow 
rate.

The correlation analysis presented in Figures 4.3.22 and 4.3.23 shows that the dependence on 

temperature, though significant, is reduced compared to Start-up 1.

Overall, a comparison of the control performance between the two actuation methods, shows that the control 

strategy most likely to be successful is that which used BA dosing. It is possible to argue that the actuation 

by variation of OLR has not been fully tested despite the very long duration of Start-up 1, 2 and 3, as the 

lack of reliable operation of the process and instrumentation made the performance difficult to assess with 

confidence. The very fact that such unreliability was present indicates the need for control strategies capable 

of maintaining reasonable control at these critical episodes. The avoidance of 'run away' on the control 

action is important, but was not implemented in the work done in this project.
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parameters during 920-1160 hours (10 days) of Start-up 4, looking 7-days into the past and 

future.
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4.3.6 Consideration of the effect of gain discrepancies between the control and 
monitoring computers

The simulation illustrations presented in Figures 4.2.17 to 4.2.19 can be compared with the data 

from Start-up 1,2 and 3 and if the aberrations caused by failures in the BA measurement are 

considered, it can be argued heuristically that the data is similar to that generated by the 

simulations. The discovery of the discrepancy has made the data appear more predictable with 

respect to the modelling that was employed and as a result, the confidence that the control strategy 

could be made to deliver significant improvements once the control effort gain discrepancy were 

corrected, has been increased.

Comparing Figure 4.2.17 b) with the data from Start-up 1 in Figures 4.3.1 to 4.3.4, shows 

significant similarities in the 'saw-tooth' responses evident in both simulated and real data. The 

periodicity of the responses is also similar though they become more frequent as the microbial 

populations strengthen in the experimental work. Again there is intuitively and arguably an 

equivalence between the simulations and the experimental data. The same correlation is evident 

when the detailed and selected data is viewed in Figures 4.3.8 to 4.3.11.

The data from Start-up 2 and 3 are more difficult to correlate to the performance of the 

simulations, though the responses appear to be more closely related to the 'corrected' system that 

they were to the 'uncorrected' system simulations. Figure 4.2.19 still exhibits the characteristic 

'saw-tooth' response and when compared to Figure 4.3.5, some evidence of this trend can 

arguably be said to exist. It is however the case that, the set-point is not reached for most of the 

duration of the experiment, which is not predicted by the simulation. The data from Start-up 3 in 

Figure 4.3.6 tells a similar tale, though the detailed enlargement presented in Figure 4.3.16 does 

show some tendency to behave like the simulation.

It should be noted that the same error did not exist in the case of Start-up 4, which dealt with BA 

dosing as a control action, and as a result, the performance was significantly better, though still 

oscillatory, as discussed previously.
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5.0 CONCLUSIONS AND RECOMMENDATIONS
This Chapter seeks to draw conclusions based on the four broad objectives set out in Section 1.3 

(and in boxes below). The first of these set out parsimoniously to establish if very simple models 

would be able to represent the AD process with sufficient fidelity to be usefully employed in both 

control system analysis and synthesis. Based on the outcome of this study, the second objective 

would select a suitable modelling method from literature or otherwise, for use in the design of a 

suitable control strategy which would start to fulfil the third objective. The third objective 

contained the main thrust of the project, and its ultimate ambition, which was a cost effective 

control system with industrial applicability and transferability between different high rate 

anaerobic digesters. The fourth objective was to experimentally investigate a philosophical 

approach, leading toward the ultimate ambition. This in essence, was to apply a specific control 

strategy parameterised using an specific model, which in turn is calibrated on an arbitrary but 

representative reactor and applied to a different (in design and operation), reactor.

The recommendations that follow are made with the same objectives in view and are intended to 

give direction to future work, without trying to be comprehensive and exhaustive. This thesis is 

considered to be the first stage of a development process, which will lead to the transferable 

generic anaerobic digester controller, which is the ultimate ambition of the work. An exhaustive 

list of possible directions of study would not serve this ambition well.

5.1 CONCLUSIONS DRAWN FROM THE INVESTIGATION INTO BLACK BOX 

MODELLING

Objective i.
AD is well known to be a non-linear process, but the degree to which this process could be modelled 
parsimoniously using linear and non-linear, black box models was not clear from the literature. Therefore 
the first objective was to discover if simple models of the type mentioned were sufficiently accurate to 
represent an anaerobic digester subject to relatively high loading and stressed conditions over many weeks 
(which would also consider time variations in the reactor behaviour). An existing fluidised bed reactor was 
used in this study, in the belief that the results would be reasonably transferable to any high rate reactor, 
which was well mixed.

The identification of low order linear, uncoupled black box models of various common structures 

such as ARX, ARMAX and Box Jenkins, from on-line sensors and data logging for BA, %CO2 , 

gas production rate and TOC, proved to be both possible and practicable. However the simplest 

model structure of choice was the ARX structure. ARX models in particular were parameterised 

using data resulting from substantively different variations in organic loading rates compared to
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temporally separate (by multiple retention times), verification data, generated on the same 

fluidised bed anaerobic digester. Predictions 30 minutes ahead, displaying significant accuracy, 

were demonstrated, despite the expected non-linearity, time variation and coupling between the 
measured data streams.

A comparison of ARX models which all used the same lag space, training and validation data was 

performed for linear SISO ARX, linear MIMO ARX and non-linear feed forward neural network 

ARX models. This showed that the performance of the linear SISO ARX, measured using 

correlation analysis was comparatively good in the case of BA, but less able to represent the 

%CO2 and gas production rate than the other models. The comparative study did not include 
TOC.

The correlation analysis showed that the linear SISO model produced auto-correlation and cross- 

correlation functions, which remained within the 95% confidence limits for the most part. The 

linear SISO model for %CO2 on the other hand, produced correlation functions predominantly 

outside the 95% confidence limits. In the case of gas production rate, the linear SISO ARX model 

showed performance comparable with the non-linear neural network ARX model, though inferior 

to the linear MIMO ARX model, in terms of the correlation functions.

In comparing the more complex structure of the non-linear neural network ARX model and the 

linear MIMO ARX model, it is evident from the correlations that the Neural network model was 

superior with respect to BA, but inferior with respect to gas production rate.

The results of the comparison of models with the underlying ARX structure showed that the 

selection between them is not straight forward, though it might be deduced that on the basis of 

correlation performance alone, the neural network and MIMO models would be preferred to the 

SISO model, because of the poor performance of this model with respect to %CO2 . Of the three 

models considered, the MIMO model would be preferred in situations where black box 

approaches are relevant, for its combination of its relative simplicity, accuracy and transparency.

The limitation of the black box approach lies in the fact that long prediction horizons degrade the 

performance of the model progressively, such that at the point where pure simulation is performed 

(infinite prediction horizon), the accuracy is greatly diminished. Some similarity in the dynamic 

behaviour or the underlying data generating mechanisms of the anaerobic process used remains. 

Reducing the horizon of the simulation to one step (30 minutes) ahead improves the accuracy of
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the model to the point that it can be considered a relatively accurate representation of the system. 
The limited pure simulation accuracy makes these ARX models less suitable than alternatives for 

use in the synthesis of control systems, though they could form part of the control strategy where 
online data is available, such as in self-tuning systems.

5.2 CONCLUSIONS DRAWN FROM MODEL SELECTION FOR CONTROL 

STRATEGY DEVELOPMENT

Objective ii.
Having determined the success or otherwise, of the simple black box approach, the second objective was the 
establishment of a suitable modelling strategy which could be used in the design of a control strategy._____

Deterministic dynamic models of varying complexity have been published along with calibrations, 
verifications and validations, to afford a large pool of candidate models with a high degree of 
transparency. These are considered preferable, for reasons of transparency, to models, which are 
in general terms fuzzy, such as fuzzy logic, neural network, expert systems and their hybrids and 
derivatives. In the context of this study, they are also considered to be preferable to the black box 
models, which were the subject of Section 5.1.

The selected model of Marsili-Libelli and Beni (1996) embodied the parsimonious attributes of 
minimum substrates, products and associated bacterial populations, while at the same time 
including the physical-chemical equilibria necessary to represent all the parameters of interest in 
the experimental work which was conducted. The model was calibrated using the same anaerobic 
digester used in the identification of black box models, and as such was known by the author and 

afforded continuity in model development.

It was possible to investigate the control strategy which was developed, by using simulations 
which included the Marsili-Libelli and Beni (1996) model. A relatively 'relaxed' control strategy 

demonstrated a notional lower limit of likely behaviour, which was then compared to the more 
aggressive control, derived from the numerical optimisation procedures based on the simulation 
model. The performance of the optimised control strategy was a significant improvement over the 

heuristically parameterised 'relaxed' controller.

Simulations were able to explain the reason for oscillatory behaviour in the experimental work 

and to verify that unmodelled dynamics and transmission delays in the software communications 

caused this behaviour.
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The simulations of a discrepancy in the control effort gain were able to demonstrate that the 
control that should have been expected was inadequate, but this analysis paradoxically improves 
the confidence that can be placed in the ability of the modelling to represent the system.

5.3 CONCLUSIONS DRAWN FROM CONTROL STRATEGY DEVELOPMENT
Objective in.

The third objective was to select and investigate a suitable control strategy by simulation techniques using 
Computer Aided Control System Design (CACSD) tools. The control strategy would be developed with an 
ultimate goal (partly beyond the current study), to deliver a generic control system, which could be shown to 
be applicable to anaerobic digesters which are different in design and operation. The control system should 
require a minimum of instrumentation, expertise and prior knowledge of the reactor and should be able to 
control the anaerobic digester from commissioning and start-up to steady state under realistic loading 
conditions.

The Fast Adaption Trajectory (FAT) adopted increased the propensity to instability, but allowed 
closer following of the desired value.

Tight optimisation constraints imposed through the selection of a cost function would lead to high 
adaption mechanism gains, which in the event of unmodelled dynamics, could cause stiff 
behaviour at the point of implementation on an anaerobic digester.

Sub-optimal performance should be expected, as the real world anaerobic digester was unlikely to 
be accurately represented by the Marsili-Libelli and Beni (1996), even if the same digester were 
used. This is because of variations in the operating conditions of the reactor and the consequent 
development of the microbial consortium it contained.

Within broad but ill-defined bounds, the control strategy is expected to adapt the control action to 
give sub-optimal, yet acceptable control on a variety of different high rate anaerobic digesters with 
a well-mixed content.

The strategy adopted required only a single sensor (BA monitor), neglecting the independent 
temperature control function and was aimed at a notional ill-defined reactor, which would be 
operated automatically from commissioning by non-expert personnel. The nature of the control 
strategy would tend to maximise the loading rate as a natural consequence of an improving 
biological performance, until steady state was achieved.
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5.4 CONCLUSIONS DRAWN FROM THE TESTING OF THE CONTROL 
STRATEGY DEVELOPED

Objective iv.

The control strategy would at this point, be tested on a laboratory scale reactor and its performance 
investigated._____________

The performance of the control strategy was overwhelmingly dependent on the reliable and 
reasonably accurate operation of the BA monitoring system. No mechanism was included in the 
control strategy to mitigate the effects of failure of the measured variable, and as a consequence, 
signal saturation due to failures, induced a control action response, which effectively over loaded 
(in some way), the reactor. Failures in other ancillary and auxiliary equipment had similar affects. 
For the system to be made industrially applicable, system (particularly BA monitor) failures will 
need to be detected and 'holding actions' taken till the problem can be remedied. A BA monitor 
designed for greater rates of flow from a larger reactor, is likely to be more reliable, as blockages 
will occur less frequently.

The unmodelled dynamics (particularly those evident in the measured variable and those caused 
by an implementation discrepancy in the gain of the control effort) have caused poor controller 
performance. The generic controller should be parameterised using a model which includes any 
significant delays and adopts a 'two standard deviations - worst case' philosophy in defining the 
dynamics of the system. This will lead to sub-optimal and less aggressive control in general, but 
will avoid the behaviour observed in Start-up 1.

The following arguments are made assuming that the measured variable remained reliable. 
Though this was not the case, there were numerous periods during the experimentation when 
stable operation allowed the characteristic behaviour of the controller to be deduced. The 
controller implemented in Start-up 1, which used OLR control actuation, showed that even in a 
situation where there had been significant omissions in modelling the system dynamics, sub- 
optimal control could still be shown. The control action was impulse-like and aggressive, but 
improvement occurred over time (albeit measured in weeks and months). The control was 
however poor and stemmed from the optimisation with unmodelled dynamics, which gave high 
adaption mechanism gains in the FAT controller. Re-optimisation, including measurement delays, 
showed (particularly in Start-up 3), that the control action was considerably improved and 
prolonged operation would have been expected to lead to increasing loading rate till steady state. 
In Start-up 4, the actuation was changed to BA dosing, and showed good control could be
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maintained over the reactor, and that the OLR could be increased progressively in the space of 
weeks.

Comparisons between the OLR actuation and BA dosing actuation show that tighter control can 

be maintained over the reactor system used in the experimentation in the latter case.

Reactor temperature was considered to have a significant affect on the control systems in all the 

start-up experiments and oscillation in Start-up 4 in particular, were in part at least, derived from 

temperature effects even though these variations were of the order of ±1°C over a days operation 

and approximately ±2.5°C over longer periods.

The experimentation has demonstrated that it is possible to control a reactor from the 

commissioning stage or re-start and see improvement in the biological performance. However 

complete start-up and steady state operation was not achieved because of the lack of reliability of 

the system elements, in particular the BA monitor, at this scale and flow rate of sample.

5.5 RECOMMENDATIONS FOR FUTURE WORK

While the control system has shown that it could control the EGSB reactor used in the 

experimentation, it has not yet been shown that this can be sustained up to high loading rates in 

the region of 20 kg COD.m^.d" 1 and above. All the experimentation used sucrose as the basic 

feedstock and required BA addition to maintain buffering. The simplicity of the feed obscures its 

problematic characteristics, which are less conducive to stable operation than many more complex 

feed mixtures and compounds. The control experimentation has been dogged by unreliability, 

which have highlighted an already known fact, which is that failures will occur during operation, 

and the control system should have the ability to detect and mitigate against their worst effects. 

While the experimentation has investigated the transferability of the control strategy between 

reactors of different specification, it has done so only to a limited extent. That is, the control 

strategy from commissioning for the sucrose fed EGSB reactor of 30 1 liquid volume was 

developed using a model calibrated from a fluidised bed reactor fed on a simulated yeast waste, 

having a liquid volume of 6 1. The scope for considering other reactor specifications is therefore 

very large. The control strategies were not tested (in a predefined and planned manner), with 

regard to over loading during the experimentation reported here. Disturbances such as toxic, 

hydraulic and over loading and sudden changes in feed characteristics (say from sucrose to lactose 

predominance), are common episodes in the treatment of industrial and municipal effluents. As
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such, knowledge of the ability of the control strategies to reject such disturbances is important in 
the understanding of the control performance. Some of this work has since been done as part of a 
separate PhD study.

Given the considerations above, the following recommendations for further work are presented:

1. The monitoring of the bicarbonate alkalinity as a single measured control variable would 
appear to be beneficial. It is clearly important that the instrument used should be reliable, and 
it is recommended that a thorough re-engineering of the BA monitor used is essential if it is to 
continue to be employed. One of the main reasons for the BA monitor failures was the 
blockage of small orifices with particulate carried over from the EGSB reactor. It is therefore 
important that a reliable filtration of separation system should be purchased or developed, 
which is able to cope with continuous operation. The prospect of increased flow rates from 
pilot of full-scale reactors would also improve the reliability of the monitor used in this work. 
Alternative methods to monitor BA, based on titration methods, are available and just such a 
device has been loaned to the University of Glamorgan by INRA (Narbonne, France), and 
should be investigated for their suitability in the generic control strategy.

2. Condition monitoring of AD has been considered by a number of researchers. These 
techniques should be considered for integration into the generic control strategy in order to 
prevent the excessive over or under feeding/dosing of the reactor in the event of a system 
failure.

3. It is recommended that the generic control strategy using OLR variations for actuation, should 
be reappraised in light of the recommendations 1., 2. and the discrepancy in the control action 
gain, the latter being discovered after the experimentation and which should be eliminated in 
future work.

4. The BA dosing strategy should be tested for its ability to deal with organic, hydraulic and 
toxic over loads, as well as its ability to cope with a sudden change in feed characteristics 
from say a sucrose to a lactose feed over a short period of time (say 2 hours). An experiment 
could be designed which took a reactor from start-up on sucrose feed, through various over 
loads and feed changes.

5. The generic control strategy should be tested for its transferability between high rate 
anaerobic digesters of different specification (including full scale), which would require re- 
optimisation of the adaption parameters to be performed using the existing fluidised bed 
reactor model and consideration of transport and instrumentation delays. This should be a
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5.0 Conclusions and recommendations

relatively trivial matter, which could be embedded into a tool which could be supplied as a 
generic controller for AD and may have commercial potential.

6. During the experimentation it was found that the pH was highly correlated to the BA, at least 

for the sucrose feed used. Furthermore, the reliability and accuracy of the pH meter was very 

good, as was the response time of this instrument. It is worth considering other measured 

variables such as pH and VFAs, despite their possible disadvantages, while adopting a similar 
philosophical approach to that used for BA in this work.
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Appendix A

APPENDIX A

Al LIST OF SOFTWARE INCLUDED

Table Al Software included in CD Appendix
Filename Description
mitdig.mdl
modmit.mdl
modmit2.mdl
ddemrac_4.vi
modmitG.mdl
mrac_ugsb_startup_1 .mdl
mrac_ugsb_startup_2.mdl
mrac_ugsb_startup_3.mdl
mrac_ugsb_startup_4.mdl
mrac_ugsb_startup_5.mdl
mrac_ugsb_startup_6.mdl
mrac_1 .vi
mrac_2.vi
mrac_3.vi
mrac_4.vi
mrac_5.vi
mrac_6.vi
DataloggerT.vi
Dataloggers.vi
trackflorPID.m
trackflorPIDb.m
trackflorPID2nd.m
track2florPID2nd.m
ddeadc.m
ddedac.m
ddetestl .mdl
bishnorm.m
myfilt_2.mat
florence_Simuls_Sin_Ponly_1 st
mdl
florence_Simuls_Sin_PID_2nd .m Simulation model - Start-up I, 2 and 3
dl
ControlSimulationModel_2_Discr. Simulation model - Discrepancy in OLR gain
mdl
florence_optim4_BA_PID_2nd .md BA Control action optimisation model
I
narbonne.m
Narbonne_model.mdl
pH_BA.m

Simulation of MIT rule
Simulation of normalised MIT rule
Simulation of normalised MIT rule with grossly simplified AD model
Virtual instrument for testing the effect of DDE communications
Controller model for testing the effect of DDE communications
Controller-experiment 1
Controller -experiment 2
Controller -experiment 3 - Start-up 1
Controller -experiment 4- Start-up 2
Controller -experiment 5- Start-up 3
Controller -experiment 6- Start-up 4
Virtual instrument interface - experiment 1
Virtual instrument interface — experiment 2
Virtual instrument interface - experiment 3- Start-up 1
Virtual instrument interface - experiment 4- Start-up 2
Virtual instrument interface — experiment 5— Start-up 3
Virtual instrument interface - experiment 6- Start-up 4
Virtual instrument data logging - experiments 1-5
Virtual instrument data logging - experiments 1-5
Optimisation routine for optimisations a) and b)
Optimisation routine for optimisations c), d) and b)
Optimisation routine for optimisations f) and g)
Optimisation routine for optimisations h), i), j) and k)
Dynamic data exchange M-File - from LabVIEW™ VI
Dynamic data exchange M-File - to LabVIEW™ VI
Demonstration program for Fnc BLOCK used hi DDE
Data normalisation function
Filter coefficients used with filtfilt.m
Simulation model - experiment 1

florence_model_verification.mdl

ControlSimulationModeM .mdl 
ControlSimulationModel 2.mdl

Cauchy model to validate the methodology
Simulink™ equivalent to narbonne.m
M-File for determining pH and BA based on Marsili-Libelli and Beni
(1993a)
2 population lumped parameter model of the AD Process, including a
model of BA
Control simulation study over 1500 hours - P+I adaption mechanism
Control simulation study over 1500 hours - P+I+D adaption
mechanism (aggressive controller)____________________
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A2 TEST SYSTEM FOR CONTROL IMPLEMENTATION

The following shows the software items used in the testing of the direct data exchange between 

the MatLAB/Simulink™ implementation of the control strategies and the LabVIEW™ vitrual 

instruments which would be used with a data acquisition card during experimentation.

Ddemrac 4.VI

Paramdei al copd fanoxia b1 copvl Paiamatg b2 coptl

Figure A2.1 Ddemrac_4.vi panel

[Set Poinl R copyl^
[Parametet a1 COBJJ i

U - Contiol effott 
y-model output copy

Figure A2.2 Ddemrac_4.vi diagram (true case)
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ontrol effort inversion 
s happens with BA. ie if feed rate 

ncreases so BA reduces.

0.1429UI>1 )+0 1429U(t-2|+0.7143y(t-1) 
b1 b2 a1

Figure A2.3 Ddemrac_4.vi diagram (showing false case)

\lodniit6.mcll

Band-Limited 
:e Noise

Reference/modi output/syst output/adapt rate

Figure A2.4 Modmit6.mdl Simulink™ model of control strategy development
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APPENDIX B

PUBLICATIONS ASSOCIATED WITH THE STUDY

This appendix contains copies of the papers published during the execution of the Ph.D. project, 
which are presented chronologically as follows:

Premier, G. C., R. Dinsdale, A. J. Guwy, F. R. Hawkes, D. L. Hawkes 
and S. J. Wilcox (1997). Simple black box models predicting 
potential control parameters during disturbances to a fluidised 
bed anaerobic reactor. Water Science and Technology 36: 229-
237.

Premier, G. C., R. Dinsdale, A. J. Guwy, F. R. Hawkes, D. L. Hawkes 
and Wilcox. S. J. (1999). A comparison of the ability of black box 
and neural network models of ARX structure to represent a 
fluidised bed anaerobic digestion process. Water Research 33: 
1027-1037.

Dinsdale, R. M., Premier, G. C., Hawkes, F. R., and Hawkes, D. L.
(2000). Two-stage anaerobic co-digestion of waste activated sludge 
and fruit/vegitable waste using inclined tubular digesters. 
Biosource Technology 72: 159-168.

Premier, G. C., Monson, K., Hawkes, F. R., Hawkes, D. L. and Wilcox S. 
J. (2000). Controlling the start-up of an EGSB anaerobic digester 
using on-line bicarbonate alkalinity monitoring and an adaptive 
control scheme. 1 st World Water Congress of the International 
Water Association (IWA), Paris, IWA

Premier, G. C., Monson, K., Hawkes, F. R., Hawkes, D. L. and Wilcox S. 
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model. 9th Anaerobic Digestion Conference, Antwerp, IWA
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ABSTRACT

Models of the anaerobic digestion process which predict digester behaviour sufficiently accurately could be 
used in process control. Although the process is generally considered to be non-linear, it could possibly be 
represented by an adaptive linear model, where the model adapts rapidly enough to represent the process at 
differing operating conditions and times in its operating life. Simple linear black box models of low order 
were investigated, predicting over a limited horizon and relying on current and recent data values to refine 
the prediction. Independent black box ARX models were identified for gas production rate, % CO 2, 
bicarbonate alkalinity and Total Organic Carbon using on-line data from a fluidised bed reactor at varying 
organic load. Model predictions looked ahead one sample step (30 minutes) and when validated using data 
obtained in a different time period (separated by 4-8 weeks) gave significant predictions in each case. AJ1 the 
models consisted of only second or third order polynomials. The non-linear nature of the process was found 
to have litUe effect over the operating conditions investigated. Also the variation of the process within a 4-8 
week period was not sufficient to cause the models to predict badly. © 1997 IAWQ. Published by Elsevier 
Science Ltd

KEYWORDS 

Anaerobic digestion; linear models; on-line measurement; prediction; identification.

INTRODUCTION

Anaerobic digestion is generally considered to be a non-linear, time varying three-stage process (e.g. 
Emmanouilides and Petrou 1997, Simeonov et al. 1996). The process depends on a synergistic relationship 
between bacterial populations and is influenced by physico-chemical conditions and the reactor process. A 
number of dynamic structured mathematical models have been described for anaerobic digestion (e.g. 
CosteOo et al. 1991, Jones et al. 1992, Vavalin et al 1996) based on Michaelis-Menten kinetics. Such 
models may require information, such as bacterial kinetic parameters, substrate and product concentrations 
and bacterial mass balances, which is not easy to determine. One approach adopted by Simeonov et al.

229



230 O. C. PREMIER et a!.

(1996) was to use an identification process to estimate some of these parameters in a non-linear and time- 
varying scheme. Marsili-Libelli and Beni (1996) similarly identified parameters in mass balance type 
models. Hoh and Cord-Ruwisch (1996) proposed a reversible kinetic model which allows for the effects of 
substrate inhibition without the need to determine a large number of parameters experimentally. A common 
aim of these modelling studies (e.g. Jones et al. 1992) is to identify a dynamic model which would be 
suitable for on-line estimation and forecasting, providing accurate predictions of digester behaviour 
sufficient for use in process control and controller design.

Models are always an approximation of real world systems and as such can only be judged on their fitness 
for purpose. When used in control, the model is not necessarily used to achieve a deeper understanding of 
the underlying process. It is perhaps wise to use the simplest model which is able to represent the system to 
an arbitrary accuracy specified by the designer. Furthermore the need for a non-linear model may not be 
paramount if the process can be represented by a piece-wise linear model, which would be the case if the 
model were to adapt rapidly enough to represent the process at differing operating conditions and times in its 
operating life. Given that this is possible, a Model Reference Adaptive Control (MRAC) scheme could be 
employed. Fuzzy (Marsili-Libelli and Muller 1996) and Expert systems (Chynoweth et al. 1994) are two 
alternative approaches which like neural networks show considerable scope.

The work of Marsili-Libelli and Muller (1996) was based on the type of reactor and influent described in this 
paper. The operation of the laboratory scale fluidised bed reactor used here on the same influent made up 
batch-wise has been previously described (Guwy et al. 1997). Significant variations in biogas composition 
resulted from batch-wise preparation of the feed, and in the work presented here these changes due to feed 
acidification were eliminated so that the effects of step changes in loading rate could be observed. This 
paper investigates whether a fluidised bed anaerobic digester can be represented adequately by simple linear 
black box models of low order. The models are employed to predict over a limited horizon and rely on 
current and recent data values to refine the prediction.

MATERIALS AND METHODS

Reactor operation and instrumentation

The reactor and influent to the process have been previously described (Guwy et al 1997). The anaerobic 
digester system, operating at 37°C, consisted of two perspex 7 litre fluidised bed reactors connected in 
parallel (11 litres total liquid volume, 3 litres gas headspace) using a Siran® sintered glass carrier (Schott 
Glaswerke, Germany) to give a total collapsed bed volume of 3 litres. A 1031 EHEIM recycle pump 
(supplier Monside Ltd, Letchworth, Herts., UK) was used to recycle the liquor contents through the reactor 
system at an up-flow velocity of approximately 0.55 m rniir 1 . The reactor had been operated on the same 
influent continually for two years before the experiments described here took place. At the end of the 
experimental period the biomass content of the bed was measured. Samples were washed in deionised water 
and analysed for volatile suspended solids (VSS) by standard methods (APHA 1985).

The influent was a simulated baker's yeast wastewater having a COD of approximately 6,700 mgO2l' 1 with a 
steady state loading rate to the reactor between 17.6 - 18.8 kgCODnr3 day 1 with a corresponding hydraulic 
retention time 9.1 - 8.2 hours. The influent was made up in a concentrated form with a COD of 
approximately 247,000 mgO2l' 1 , delivered using a Watson-Marlow (Falmouth, UK) pump (type 503u) and 
diluted with water delivered by a Watson-Marlow 503u pump at the point of delivery to the reactor. It was 
not found necessary to refrigerate the feed as at this concentration no COD reduction with time or 

acidification due to microbial growth was detected.

The percentage of carbon dioxide and the hydrogen concentration in the biogas were monitored on-line 
using an ADC monitor type SBG100-002-15290 (ADC Ltd. Hodderson, UK) and a GMI Exhaled Hydrogen 
Monitor (Gas Measurements Ltd. Renfrew, Scotland) respectively. For hydrogen measurements hydrogen 
sulphide was removed from the biogas by passing through a saturated solution of copper sulphate and
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calibration of the monitor with standard gases was performed at least once per month. The biogas flowrate 
was measured with a low flow on-line gas meter (Guwy et al. 1995). The pH was measured by a Kent 
EIL9142 meter using an Ingold Xerolyte electrode (type HA405-DXK-S8/120). A bicarbonate alkalinity 
(BA) monitor described previously (Guwy et al. 1994) was used on-line in the effluent stream, measuring 
BAasmgCaCO3H.

TOC was measured using the high temperature IR method using a Rosemount-Dohrmann DC 190 (Sartec 
Ltd., Borough Green, UK) with an autosampler injection system (50u.l volume). Effluent (20 ml min' 1 ) was 
filtered using a 15u,m nylon fabric (Sericol Industrial Fabrics, Broadstairs, UK) held in a chamber designed 
by the Institute for Biotechnology, KFA, Julich, Germany, and fitted in our laboratory with a rotating brush 
for automatic cleaning. The effect of the filter unit was to reduce the measured COD strength of effluent by 
15, equivalent to settling the effluent for one hour or filtering with a Whatman G/FC filter. Excess filtrate 
was returned to the reactor. For TOC analysis a continuous stream (6.3 ml min' 1 ) of filtered effluent flowed 
through a mixed 9ml continuous flow cell positioned in the autosampler tray. The sampling frequency 
corresponded to the time taken by the instrument for a complete 1C, TC and TOC analysis, approximately 8- 
11 minutes. Data was collected using software supplied by Rosemount-Dohrmann allowing transfer to a 
spreadsheet for evaluation.

Non-steady state operation

The experiments reported here were performed over an 8 week period during which the reactor was run 
continuaJly. Data used for parameter estimation for modelling CO2 , BA and gas responses were separated by 
one month from the model validation data and for the TOC model the data were separated by two months. 
Changes in organic loading rate (Bv) were brought about with minimal changes in hydraulic retention time 
by adjusting the feed pump flow delivering the concentrated feed to the reactor. The pump delivering 
dilution water remained at a fixed rate (19.5-21.7, average 20.8 ml min' 1 ) so that hydraulic retention time 
decreased by a maximun of 10% from the average of 8.5 hours during the shock. The feed pump voltage was 
directly related to the flow and hence Bv. Table 1 shows the experiments used for parameter estimation and 
validation of the predictive models.

Table 1. Experiments used for parameter estimation and validation of models

Espt.No. Min. Bv Max. Bv Description 
gCODl'd gCODl'd

1 26.5 70.2 series of step changes in Bv of varying amplitude and duration;
black box parameter estimation for BA, %CO2 and gas production 
rate models

2 17.8 38.6 series of step changes in Bv of varying duration; black box
parameter estimation for TOC model; validation of the models of 
BA, CO2 , and gas production rate

3 16.1 69.9 two step changes in Bv of similar duration and amplitude; validation
of TOC model

4 17.6 75.0 single step change in Bv (8.8h duration); validation of the models of
BA, CO2 , and gas production rate

Data logging and processing

Data from the instrumentation were logged on a PC with an interface card (MIO 16) using Lab VIEW™, 
both supplied by National Instruments (Newbury, UK). Sensor data, time and date were logged into files for
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off-line processing. The virtual instrument (VI) was configured to sample all the on-line sensors (except 
TOC) at 2 minute intervals. This sample rate was very fast and although high sampling helps to increase 
confidence in the sampling of a continuous data stream it can lead to intrinsic problems in oversampling 
discrete systems as discussed by Wellstead and Zarrop (1991). The post processing of the data involved 
filtering to enhance the signal and re-sampling to produce a more appropriate sampling rate for the process 
dynamics. The time series were digitally filtered using a zero phase, forward and reverse low-pass filter 
which was parameterised by the Yule/Walker recursive least squares approach as described in the MatLAB 
signal processing toolbox (Krauss el al. 1995). The data were then re-sampled at 30 minute intervals which 
was considered to be a reasonable compromise with respect to the digester dynamics.

Linear model identification

This is the process of producing a linear mathematical model which is able to predict future values of the 
data to an arbitrary degree of accuracy.

Model Structure. A black box approach was used, where an input (x) and Gaussian white noise (e) are 
mapped through transfer functions G(z) and H(z) and added to give a resulting output (y), as discussed by 
Ljung (1987) and Soderstrom and Stoica (1989) The system is shown schematically in Figure 1.

Figure 1. Black box model structure.

Figure 2. General family of model structures.

A General Family of Model Structures. The black box model can be represented more flexibly by 
representing the transfer functions as ratios of polynomials in z- 1 (which can be considered as the delay 
operator), as shown in Figure 2.
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The family of models can be written as:

.- ^MO.A(z)y(t) ••

where: A(z) = 1 + a^- 1 + a2z~2 ...+ anaz-na, B(z) = b, + b2z-' ...+ bnbz- nb+l and similarly for C(z), D(z) and 
F(z), and where z-"k represents a pure delay as a multiple of sample periods. The model structure can be 
selected to include as many or as few of these black box parameters as is necessary to produce a sufficiently 
accurate model. Model structures are discussed at length by Ljung (1987 and 1993) and by Soderstrom and 
Stoica(1989).

RESULTS AND DISCUSSION

Reactor operation

The operation of this reactor using similar influent made up every 4-5 days in a refrigerated feed tank gave 
changes in biogas H2 and CO2 content due to changes in VFA content of the feed (Guwy et al. 1997). 
responses. Feed delivery here eliminated these changes and stable baseline values for BA, gas flow and 
biogas H2 and CO2 content were obtained. The TOCCOD ratio for the effluent was 1:3.1. The attached 
biomass content of the reactor system was determined to be 16.6 gHVSS, although the washing process was 
observed to remove biomass from the sample which was then not measured.

The ARX model structure and parameter estimation

The ARX model, which stands for Auto Regressive with eXtra (or exogenous) input B(z)x(t), was found by 
trials to be the most appropriate model structure. More complex model structures were able to reduce the 
sum of squared errors when tested against verification data, however the added complexity of the model was 
not justified by the improvement in forecasting. The model structure can be written as:

A(z)y(t) = B(z)x(t-nk) +e(t) 

where y(t) is the predicted value. Model predictions looked ahead one sample step i.e. 30 minutes.

Figure 3 shows the gas production rate and % CO2 varying with organic load represented by the feed pump 
voltage and these data were used to estimate the black box model parameters for the respective models.

Figure 3. Experiment 1 data for parameter estimation: gas production rate and %CO 2.
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Figure 4. Experiment 1 data for parameter estimation: bicarbonate alkalinity.

Figures 4 and 5 show the data used in parameter estimation for the BA and TOC models respectively. There 
would be little chance of extracting a comprehensive model for the process with such excitation as there is a 
need to excite all the modes of the system. Such a disturbance is known as persistently exciting and is 
essentially the only way to experimentally search the entire state space. This would require exhaustive 
testing and would include running the digester to failure. Not withstanding the limitations of the models, by 
using data measured on-line, it was possible to make significant predictions of B A, CO2, gas production rate 
and TOC using independent ARX black box models. All the models consisted of only second or third order 
polynomials, with a single sample period delay between the input (loading rate) and the output (the relevant 
parameter e.g. BA).

3.00 T- 2000

0.50

Figure 5. Experiment 2 data for parameter estimation: TOC.

Validation of models

The validation of the CO2 and gas production rate models (Figure 6) and the BA model (Figure 7) showed 
that it was possible to predict with a relatively high degree of accuracy the future value (30 minutes ahead) 
when subjected to loads comparable to those used in the parameter estimation. This was despite the fact that
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the models were essentially structurally simple (ARX) and assumed to be totally uncoupled. Figure 8 shows 
predictions of TOC using step changes greater than those used in the parameter estimation data. The 
predictions show again a relatively high degree of accuracy, as do the models for the other parameters, BA 
and gas production rate, when similarly tested with a large step change (Figure 9). In validation, no attempt 
was made to match initial conditions.

The horizon over which predictions are made (30 minutes) is considered to be ample in terms of time 
required to execute recursive parameter estimation for such linear models with a view to their use in a 
MRAC scheme similar to that proposed by Emmanouilides and Petrou (1997), but using a linear model as 
the reference model instead of a neural networks as these have inherent problems of initial training and 
subsequent recursive parameter (weights and biases) estimation. Looking more than one step ahead leads to 
a progressive deterioration in accuracy of prediction when using the above black box models.

The validation data sets were chosen to force the models to predict at operating conditions which were not 
used in parameter estimation of the models, which would, if non-linearity were significant, cause the model 
to deviate in its predictions. The non-linear nature of the process was found to have little effect over the 
operating conditions investigated. Also the variation of the process with time (1-2 months) was not sufficient 
to cause the models to predict badly.

T 100

10 20 30 
Time (h)

40

Figure 6. Experiment 2 validation of gas production rate and %CO 2 models. Dashed lines show predictions 30
minutes ahead.

Figure 7. Experiment 2 validation of BA model. Dashed line shows predictions 30 minutes ahead.
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3000 -r

40

Figure 8. Experiment 3 validation ofTOC model. Dashed line shows values 30 minutes ahead.

0.00

Figure 9. Experiment 4 validation of gas production rate, BA and %CO 2 models (arrows denote step load). Dashed
lines show values 30 minutes ahead.

It thus appears that simple, linear, independent black box models of gas production rate, %CO2 , BA and 
TOC are able to represent the anaerobic digestion process under the conditions tested with an accuracy 
which may be sufficient as the basis for process controller design.

CONCLUSIONS

Using on line sensors and data logging for BA, % CO2, gas production rate and TOC, in a fluidised bed 
anaerobic digester, it was possible to identify black box ARX models which were linear, uncoupled and of 
low order, for each data stream. The black box parameters were determined from data which resulted from 
substantively different variations in Bv compared to the verification data and separated by multiple retention 
times from it. The models were shown to predict 30 minutes ahead with significant accuracy despite the 
assumed non-linear, coupled and time varying characteristics of the anaerobic process.
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Abstract—The performance of three black box models which were parameterized and validated using 
data collected from a laboratory scale fluidized bed anaerobic digester, were compared. The models 
investigated were all ARX (auto regressive with exogenous input) models, the first being a linear single 
input single output (SISO) model, the second a linear multi-input multi-output (MIMO) model and the 
third a nonlinear neural network based model. The performance of the models were compared using 
correlation analysis of the residuals (one-step-ahead prediction errors) and it was found that the SISO 
model was the least able to predict the changes in the reactor parameters (bicarbonate alkalinity, gas 
production rate and % carbon dioxide). The MIMO and neural models both performed reasonably 
well. Though the neural model was shown to be superior overall to the MIMO model, the simplicity of 
the latter should be a consideration in choosing between them. A simulation with an horizon approach­ 
ing 48 h was performed using this model and showed that although the absolute values differed signifi­ 
cantly, there were encouraging similarities between the dynamic behavior of the model and that of the 
fluidized bed reactor. :r> 1999 Elsevier Science Ltd. All rights reserved

Key words—anaerobic, digestion, modeling, ARX, black box, neural network, fluidized bed

INTRODUCTION

The difficulty in establishing mathematical models 
based on the underlying biochemical processes in 
an anaerobic reactor is evidenced by the large 
volume of literature directed to this end. The non­ 
linear and time varying characteristics of anaerobic 
digestion processes are well documented (Costello et 
al., 1991) so that deducing adequate models of such 
characteristics, by parameterizing large deterministic 
models (derived from an understanding of the bio­ 
logical, chemical and physical processes) is difficult 
because of the large number of parameters involved 
(Kotze et al.. 1969) although it is likely to remain a 
worthwhile objective. The volume of data required 
to determine kinetic and other constants is prohibi­ 
tive, in all but the most extensive studies (Simeonov 
et al., 1996) and when this is added to the fact that 
the system is (to an unknown and system specific 
extent) not stationary (i.e. is time dependent) it fol­ 
lows that the model parameters would need to be 
identified recursively. To do this recursive identifi­ 
cation, the system should ideally be persistently 
excited (in the sense that all the dynamic modes of

*Author to whom all correspondence should be addressed.

response are present in the data). An alternative 
may be to assume that time variation is simply a 
disturbance on the system, which may or may not 
be dependent on measurable state variables (or pro­ 
cess parameters).

Boskovic and Narendra (1995) have investigated 
the performance of various linear and nonlinear 
controllers for the control of batch fermentation 
processes by simulation and concluded that in cer­ 
tain circumstances neural networks have superior 
performance. Some authors (Jeppsson and Olsson, 
1993) have taken the view that reducing the order 
of the model, such that measurable physical vari­ 
ables are sufficient to recursively identify the model 
parameters, is an appropriate approach to the re­ 
duction of model complexity. This is in effect sim­ 
plifying the process model to the point that 
repeated and frequent estimation of the model 
(which includes significant a priori knowledge) can 
be achieved. The benefits of models with structures 
and parameters which are related to real system 
variables are significant in the understanding of 
process behavior (from simulations). However, it is 
conceivable that a black box approach (Ljung, 
1987) (as opposed to the grey box, reduced order 
type models of Jeppsson and Olsson, 1993) could
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be useful in situations where the input/output re­ 
lationships are of overriding importance and the 
significance of the model parameters is not under 
consideration. This situation arguably arises in the 
control of such processes, where a fast, workable 
and robust solution is of more importance than 
depth ot understanding and model elegance.

Given that a black box approach is acceptable in 
a particular situation, the model could be one of 
many possible structures. Previous work has investi­ 
gated the use of simple linear model structures 
(Premier et a/., 1997) and their ability to represent 
key variables in an anaerobic process. This paper 
seeks to compare discrete time SISO (single input, 
single output) with MIMO (multi-input, multi-out­ 
put) linear models and SISO nonlinear models 
based on feed forward neural network architectures. 
It is noted that the learning techniques adopted in 
neural network connectionist work (Levenberg- 
Marquate, detailed in Ljung, 1987 and used in this 
study) have similarities with the parameter esti­ 
mation techniques used by engineers and mathema­ 
ticians (Miller et al., 1990). In both cases, the 
objective is to estimate the values of a parameter 
vector in response to the performance of an objec­ 
tive function. Also in both cases (teaching in neural 
networks and parameter estimation in system 
identification) a set of example data is necessary 
and a best-fit model is sought from a set of possible 
models represented by the model structure.

Three model structures have been considered in 
this paper and the performance of the models were 
compared using correlation analysis. All are ARX 
models (auto-regressive with exogenous input) 
specifically SISO and MIMO and a comparable 
(same order) ARX neural network model. The 
functions operating on the regression vectors (past 
data samples) are linear polynomial functions (in 
the cases of SISO and MIMO linear ARX models) 
and a nonlinear neural network.

MATERIALS AND METHODS

Anaerobic reactor
The fluidized bed anaerobic digestion system which 

formed the basis of the study was described by Guwy el 
al. (1997). The total volume was 141, of which 21% was 
gas headspace volume. The solid support medium was 
Siran" 1 sintered glass (Schott Glaswerke, Germany) flui­ 
dized by recycling reactor liquor at an up-fiow velocity of 
approximately 0.55mmin~'. The bacterial population was 
well adapted to the feed, which had remained unchanged 
for two years prior to the experimental period described 
here.

The influent was a simulated baker's yeast wastewater 
having a COD of approximately 6700 mgO?!"' with a 
steady state loading rate to the reactor between 17.6- 
18.8kgCODtrT'day~' with a corresponding hydraulic 
retention time of 9.1-8.2 h. The influent was made up in a 
concentrated form with a COD of approximately 
247,000 mgO2 r', delivered using a Watson -Marlow 
(Falmouth) pump (type 503u) and diluted with water at 
the point of delivery to the reactor. The pump delivering

dilution water remained at a fixed rate (19.5-21.7, average 
20.8 ml min~') so that hydraulic retention time decreased 
by a maximum of 10% from the average of 8.5 h during 
the shock. The feed pump voltage was directly related to 
the flow and hence the digester loading rate (Bv).

The percentage of carbon dioxide and the hydrogen 
concentration in the biogas were monitored on-line, as 
was gas flow. The bicarbonate alkalinity of the reactor 
effluent was monitored continuously using an on-line bi­ 
carbonate alkalinity (BA) monitor described previously 
Guwy et al. (1994) measuring BA as mgCaCO,!' 1 . 
Further details of the reactor, instrumentation, influent 
and test regime are given in Premier et al. (1997).

Data selection and processing
Raw data were collected, on-line, from the fluidized bed 

reactor by a virtual instrument, implemented using 
LabVIEW®. The data were then processed off-line, using 
a separate software application, MatLAB®. Significant 
levels of measurement noise were present on the data and 
were dealt with by filtering with a Butterworth filter of 5th 
order. The sampled data were filtered in both chronologi­ 
cal directions in order to remove any phase effects. After 
filtering, the data were normalized with respect to its mean 
and standard deviation, with a particular view to improv­ 
ing the performance of the neural network training 
(Bishop, 1995).

A different set of data was required to effect the par­ 
ameter estimation (and network training) from that used 
in validation. The "training" and "validation" sets were 
chosen for their significant temporal separation (approxi­ 
mately four weeks during which time the digester was fully 
operational) which might have allowed process time var­ 
iance the opportunity to develop.

Model structures
The ARX structure (Ljung, 1987) uses delayed inputs 

and outputs in order to determine a prediction of the out­ 
put at one (or more) sample interval(s) in the future. It is 
of the form

v(f)=lv(0], (1)

where y(t) represents the model prediction, x(t) represents 
the regression vector of current and past inputs, outputs 
and additive prefiltered noise and J[.) is some function of 
x(t).

In the case of linear black box models, this function 
consists of linear polynomial quotients. In the multivari- 
able case (MIMO) equation 1 represents a matrix equation 
with definable cross coupling between the data sets. For 
the case of nonlinear connectionist models in this paper, 
the function is a neural network of multi-layer perceptron 
architecture with a single hidden layer of nonlinear 
squashing activation function neurons and a linear output 
layer (Norgaard, 1995).

The linear A RX models
Parameter estimation of the linear ARX models fol­ 

lowed a standard minimization of the sum squared errors 
approach (Wellstead and Zarrop, 1991). In the absence of 
noise, the model could be determined directly from linear 
algebra from very few data points, in a relatively trivial 
manner. In the ARX structures, it is assumed that the 
noise, which is always in evidence in experimental data (to 
a varying degree) is equivalent to prefiltered white noise 
where the poles of the filter are identical to those of the 
resulting ARX model. Practically, this means that iteration 
may be necessary to ensure that deviation from this 
assumption does not have a deleterious effect on the 
model predictions. Again, because of the noise we are 
forced to use an overly determined data set and to solve 
using the least squares approach.
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The linear SI SO ARX model. This is of the form

where a,, a,, .... a/| ancj /?| /,,_ _ £/|( are constanl coe r_ 
ncients which form the parameters to be estimated y(t) is 
the one-step-ahead prediction of y(t) the actual output. <•/"' 
represents the delay operator. w(r) is the input, <>(;) is the 
additive noise, ;i k number of delayed samples (mini­ 
mum = 1); na length of the output regression vector and 
nb length of the input regression vector + 1.

The linear MIMO ARX model. Similarly, the MIMO 
ARX model is of the form

+ e(r).
where

and

As detailed in Ljung (1993) the parameter vector is 
determined in a similar way to the SISO ARX, with the 
difference that the parameter vector 0 — [A,, .... A ni , B,, 
..., B,,J consists of matrices (bold type). 0 will include 
parameters which cross-couple the data streams, such that 
the effect of past values of %CO2 for example can be 
made to have an effect on the prediction of bicarbonate al­ 
kalinity and gas production rate.

The neural network ARX model 
This model is after Norgaard, 1995

Where: y,(u-, W) is the prediction of the model as a func­ 
tion of network weights. F, is the output layer activation 
function, which is linear in this paper. W,/ are the weights 
through which the hidden layer is connected to the output 
layer. Wif> acts as a bias. /} is the hidden layer activation 
function, which is a tanh function in this paper, ir,/ are the 
weights through which :/ is connected to /}. therefore »> 
acts as a bias. :, represents the feature vector of length m, 
presented to the input of a feed forward neural network.

Training and validation data
The data used in parameter estimation (and training) is 

described by Premier et al. (1997) and is shown in Fig. 1. 
The data are normalized using its mean and standard devi­ 
ation, however the ranges of the absolute values of the 
data are shown in Table 1.

The same data gathered from these experiments were 
used to determine the linear model parameters and the 
neural network model weights. Model validation was per­ 
formed using the same validation data set (Fig. 2) in all 
cases.

System identification procedure
Having determined appropriate data sets for the train­ 

ing and validation, all the selected models were trained 
and validated with the same data sets, to allow a basis for 
comparison.

The number of previous samples in the regression vec­ 
tors for inputs and outputs (lag space) was determined 
using a function implemented by Norgaard attributed to 
He and Asada (1993). This confirms a heuristic approach 
taken in Premier et al. (1997) on the basis of observation 
of the data time series. A MatLAB® function

(LIPSCH1T) implemented by Norgaard, determines an 
index, which is high when the regression space is insuffi­ 
cient and becomes constant at a lower value, when 
increasing the lag space has no further significant effect on 
accuracy in representing the data.

The number of regressors effectively defines the model 
structure for the SISO linear ARX model, but the MIMO 
linear ARX model still requires a decision as to the cross 
coupling between a particular output prediction (say 
% C'O2 for example) and previous samples of the other 
time series (BA and gas production rate in this example). 
In all cases, second order polynomials (in the delay oper­ 
ator) were used.

In the case of the neural network model, the training al­ 
gorithm was based on the Levenberg-Marquadt nonlinear 
least squares technique, while the remaining models were 
parameterized using a linear least squares approach, as im­ 
plemented by Ljung (1993).

RESULTS AND DISCUSSION

The ARX model structure was selected on the 
basis of a brief study of the behavior of a number 
of linear SISO black box models (such as the AR, 
ARMAX, OE and Box Jenkins). The iterative pro­ 
cedure indicated that the linear ARX model's per­ 
formance was for the most part superior to the 
alternatives. As suggested by many authors (includ­ 
ing Bishop, 1995) Occam's razor, which para­ 
phrased affirms that the simplest adequate solution 
is the best, was employed and the ARX structure 
was extrapolated to include the MIMO and neural 
network models.

The choice of second order functions in the delay 
operator (q) means that the models have a re­ 
gression vector looking back over two samples 
which, at a sampling time of 30 min, will include 
data collected over an hour. Increasing the order of 
the models would probably lead to lower NSSE's 
(normalized sum of squared errors) but would to an 
increasing extent cause over-fitting to the data and 
hence the model would be unrepresentative of the 
underlying dynamics of the process. The dimension­ 
ality of the neural network model is also dependent 
on the size of the parameter vector (i.e. the number 
of weights and biases) so is not directly comparable 
with the linear models, although significant simi­ 
larity exists, as shown in equation 1. The technique 
employed by Norgaard (1995) to determine the 
length of the regression vector, was to calculated 
the index of He and Asada (1993) and to look for a 
knee point in the index, beyond which, increasing 
the regression vector would have little effect. More 
weight was given to the insight obtained by investi­ 
gating the responses of the process to a step input, 
which on a heuristic level appeared similar to over- 
damped second order systems.

The sampling time of 30 min is considered to be 
relatively short, however a compromise was sought 
between that suggested by the process dynamics 
and that suggested by the dynamics of the slowest 
instrumentation (bicarbonate alkalinity monitor of 
Guwy et al., 1994).
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Fig. I. Data used in parameter estimation on neural network training for system identification, (a) 
Normalized feed pump control voltage and bicarbonate alkalinity, (b) Normalized % carbon dioxide

and gas production rate.

The time varying characteristics of the fluidized 
bed reactor are not known, so the time lapse 
between the data sets for training and validation 
were a matter of judgment. It is of course possible 
that the data selected, were not separated suffi­ 
ciently in time to account for microbial population 
changes, or that the populations were by chance 
similar in their dynamics for both sets of data. The 
time variance was assumed to be unpredictable, 
though dependent on the reactor's operating history 
(loading, environmental and inhibitory episodes). 
Variations over-time in parameters such as biomass 
yield or endogenous decay coefficients etc., were 
assumed to be small and as such could be treated 
as system disturbances. Furthermore, it was 
assumed that the loading regime which extended 
over approximately 3 months, was sufficiently var­ 
ied so as not to favor the development of special­

ized (and perhaps fragile) consortia of microbial 
populations.

ARX model predictions
Comparison of models. Figures 3, 4 and 5 show 

the bicarbonate alkalinity (BA) one-step-ahead pre­ 
diction as an example (for the three alternative 
ARX models investigated) compared to the 
measured validation data set. It would be possible 
to compare the models predictions to the parameter 
estimation/training data, however one would expect 
a good fit in this case as the objective is to minimize 
the sum of the errors squared. The validation set is 
of key significance, as it indicates the ability of the 
model to generalize (or represent an "unseen" data 
set). The validation data and the corresponding pre­ 
dictions seem at first sight to be very close to each 
other, which is often the case with one-step-ahead

Table 1. Maximum and minimum true values of parameter estimation and validation data

Data series Parameter estimation data Validation data

maximum maximum minimum

Feed pump (volts)
Bicarbonate alkalinity (g 1~')
%CO,
Gas production rate (ml min~')

2.5
1.8

60
80

1.6
1.3

32
40

1.5 
1.7

52
39

0.7
1.38

33
19
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bicarbonate alkalinity, CO2 , gas production rate and feed pump data used in the 
validation of the ARX models for system identification.

prediction, where the step size is of relatively short 
duration. It is difficult to assess the performance of 
the model by looking at such plots and statistical 
techniques are normally employed. Figures 3-5 do 
indicate however, the excellent predictions achiev­ 
able with short temporal prediction horizons.

In the case of the % carbon dioxide and gas pro­ 
duction rate, the results were similar in their devi­ 
ation to those in Figs 3-5 and, in the interest of 
brevity, have not been shown.

Nonlinear (Neural Network) ARX Model for 
Bicarbonate Alkalinity

The neural network regressors were chosen to be 
the same as those used for the linear ARX model, 
these being two previous inputs, two previous out­ 
puts and a single delay. The architecture of the net­ 
work was initially a fully connected feed-forward 
network, with one hidden layer of 10 hyperbolic 
tangent activation function neurons and an output 
layer of one linear activation function neuron.

The predictions obtained from this model (when 
considering the auto-correlation of residuals and 
cross-correlation of the input to the residuals, 
which are explained below) were poor. The auto­ 
correlation, in particular, remained consistently out­ 
side the 95% confidence band, implying that the

model was over-fitting the data. The solution pro­ 
posed by Norgaard is to reduce the dimensionality 
of the network by applying an OBS (optimal brain 
surgeon) algorithm, which is used to "prune" the 
weights to the point where near optimal results are 
obtained. This involves retraining (for a limited 
number of epochs) the network, as its structure is 
altered by removing a single weight at a time and 
keeping track of test errors, to see at which point 
they are minimized. In doing so, the predictive per­ 
formance of the neural model was improved signifi­ 
cantly and the results are shown in Fig. 5. The 
model structure was reduced to eight weights in 
total for the bicarbonate alkalinity neural model.

Nonlinear (Neural Network) ARX Model for 
% CO 2 and Gas Production Rate

A similar procedure was followed for these data 
streams, with similar results, although in both 
cases, the number of weights left after pruning was 
almost double that of the bicarbonate alkalinity.

Correlation analysis

For the purposes of comparison, it is necessary 
to consider measures of performance from one 
model structure to another. Investigations of non­ 
linear ARMAX (auto regressive with moving aver-

10 20 30 40 

Hours

Fig. 3. Bicarbonate alkalinity predictions for a linear ARX S1SO model.

50
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Fig. 4. Bicarbonate alkalinity predictions for a linear ARX MIMO model.
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age and exogenous input) model performance, using 
synthesized and experimental data, were conducted 
by Chen er at. (1990) who applied a number of stat­ 
istical tests which were based on correlation analysis 
and the x2-tests. It is common in system identifi­ 
cation to consider the correlation analysis as the 
primary measure of model performance in particu­ 
lar the auto-correlation of the residuals (errors 
between predictions and real validation data) and 
the cross-correlation of the input (feed pump) and 
the residuals.

The auto-correlation function of the residuals 
should ideally resemble an impulse. This would in­ 
dicate that the residuals are "white", i.e. no corre­ 
lation exists between the residuals and any time 
shifted replica of the series. There should also be no 
correlation between the residuals and any linear or 
nonlinear combinations of past inputs and outputs 
(Chen et al., 1990).

If the identification of an ARX model were suc­ 
cessful, then one would expect the residuals to be 
unpredictable. The predictability and hence devi­ 
ation from optimum can be assessed by using corre­ 
lation analysis. Specifically the auto-correlation of 
the residuals should exhibit correlation only when 
the time series are not time shifted (one to the 
other). Similarly, in cross correlating, no correlation 
should exist between the residuals and the system 
input signal (feed pump). If the correlation func­ 
tions are within a confidence interval of 95% of the 
conditions mentioned, then it is reasonable to

accept the model as a fair representation of the sys­ 
tem.

A comparison of the predictions of the models 
was performed by analyzing the residuals. The 
results for bicarbonate alkalinity, %CO 2 and gas 
production rate are presented in Figs 6, 7 and 8, re­ 
spectively. It can be seen from Figs 6-8, that the 
SISO ARX model fails to achieve the 95% confi­ 
dence criteria for %CO2 , although it gives adequate 
results for the BA and gas production rate. 
Comparing the MIMO ARX to the neural network 
ARX model, it would seem that the former is able 
to represent the system with inferior accuracy in the 
case of BA and better accuracy for % CO 2 and gas 
production rate. While it may be possible that the 
neural network could be improved by optimizing 
the training process and network structure itera- 
tively, the same can be said for all the models. It is 
not clear to what extent the models are optimized, 
which is usually the case in identification.

The underlying biochemical processes point to 
there being significant coupling in the data streams 
measured. It is perhaps not surprising therefore that 
the MIMO and neural network models which both 
include cross coupling, out perform the linear SISO 
model overall, with the %CO2 for the latter being 
significantly outside the confidence limits.

It is worth restating (in order to highlight the 
increased computational effort) that in order to 
obtain the performance presented in this paper, 
when using the neural network ARX model, a

-3

Fig. 5. Bicarbonate alkalinity predictions for a nonlinear ARX neural network model.
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Fig. 6. Correlation analysis for bicarbonate alkalinity using nonlinear, MIMO and SISO ARX models.
(a) Auto-correlation of residuals from prediction of validation data, (b) Cross-correlation of pump to

the residuals from prediction of validation data.

pruning algorithm was employed. This reduced the 
number of weights and biases so that the model 
was not over-fitting the data. Prior to its use the 
results from the correlation analysis were consist­ 
ently outside the 95% confidence limits.

Given that the MIMO model is generally less 
complicated than the nonlinear neural model, while 
producing comparable predictions, its use should be 
considered with some favor. To investigate the 
behavior of the MIMO model, it is useful to con­ 
sider its performance in predicting over a long 
period of time. Figure 9 presents a pure simulation 
using the MIMO ARX model, which uses only in­ 
itial (input and output) data as starting conditions 
and from then on uses the predicted data and the 
input (feed pump) in order to predict subsequent 
steps ahead. If the MIMO model was a perfect rep­ 
resentation of the data generating mechanism of the 
anaerobic process, then the predicted response

would be coincident with the validation data. It is 
unlikely that this would be achieved as the model is 
linear and is attempting to represent a nonlinear 
process. It is only feasible with the one-step-ahead 
prediction, because this technique is essentially a 
piece-wise linearization of the process dynamics by 
continually using the most recent measurements in 
making a prediction a short step in time ahead. 
Having accepted the limitations of a pure simu­ 
lation, the general behavior (rather than the absol­ 
ute values) indicate that the model is at least similar 
dynamically to the anaerobic process under con­ 
sideration. The least accurate predictions are those 
for bicarbonate alkalinity [Fig. 9(a)] which indicates 
significant deviation after about 15h. It is possible 
that the prevailing bacterial stress levels of the vali­ 
dation data set were higher than those of the par­ 
ameter estimation data set, which is supported in 
part by the fact that the bicarbonate alkalinity of
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Fig. 7. Correlation analysis for % carbon dioxide using nonlinear, MIMO and SISO ARX models, (a) 
Auto-correlation of residuals from prediction of validation data, (b) Cross-correlation of pump to the

residuals from prediction of validation data.

the parameter estimation data set reacts after a 
delay of ca. 5 h data [most visible after the final 
shock at 90 h on Fig. l(a)]. The response of the bi­ 
carbonate alkalinity to the end of the shock load is 
much quicker, with a delay of less than 1 h. The im­ 
plication is that the biological system is able to 
cope with the increased loading rate for about 5 h 
before the bicarbonate alkalinity starts to reduce. In 
the case of the validation data set however, the bi­ 
carbonate alkalinity begins to reduce more rapidly, 
indicating that the system is less able to generate bi­ 
carbonate alkalinity. The delay (which may vary 
within each data set) is therefore built into the 
ARX models through the parameter estimation 
data and is an example of the time variance of the 
system.

The ARX model structure presupposes that the 
noise is filtered when passing through the system, 
by a transfer function which has the same poles as

the ARX model. If this assumption is not valid, the 
resulting model accuracy is deleteriously affected. 
There are no simple means known to the authors 
for determining the consequence of the noise filter­ 
ing, other than observing the performance of the 
resulting model and determining if the model is 
"good enough".

A comparison of three ARX models has been 
presented. All the models were parameterized and 
validated using the same data and in an attempt to 
make the resulting models comparable, the re­ 
gression vectors (past data samples) were the same 
for all the models and all the data streams. While it 
is not claimed that the models were in any sense op­ 
timal, the approach of maintaining constant those 
parts of the identification procedure which were 
common to all models, has produced results which 
may form the basis of a selection procedure with 
respect to the three model structures used.
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Fig. 8. Correlation analysis for gas production rate using nonlinear, MIMO and SISO ARX models.
(a) Auto-correlation of residuals from prediction of validation data, (b) Cross-correlation of pump to

the residuals from prediction of validation data.

It can be seen that the performance of the 
MIMO model was superior to that of the SISO and 
comparable with the neural network approach 
when considering the 95% confidence intervals on 
the correlation analysis of the residuals. Overall, the 
neural network had higher performance than the 
linear models, however the added complexity of the 
neural network model and associated identification 
process is not considered to warrant its adoption, 
unless the accuracy of the model is a paramount 
factor. If recursive identification is to be performed, 
where the neural model would require repeated 
retraining, it is likely that the improvement in per­ 
formance indicated by the results, may lead to the 
computing overheads becoming a significant miti­ 
gating consideration. Not only would the training 
of the network require a considerable number of 
presentations of the data (epochs) but a large 
amount of training data would be needed to ensure

adequate training. These are in contrast to well 
established recursive identification algorithms used 
in linear black box techniques which require very 
little historical data to be stored and are fast in 
their execution (Soderstrom and Stoica, 1989). 
There are however training techniques which signifi­ 
cantly increase the speed of training neural net­ 
works, such as that proposed by Venugopal and 
Pandya (1992) and provided the sampling time is 
similar to that chosen in this paper, processing time 
should not be a significant problem with modern 
computers.

CONCLUSIONS

The comparison of a linear SISO ARX, linear 
MIMO ARX and nonlinear feed forward neural 
network ARX model (all using the same lag space, 
training and validation data) showed that the linear
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Fig. 9. Comparison of validation data with predictions from a pure simulation, using (he MIMO ARX 
model, (a) Bicarbonate alkalinity, (b) carbon dioxide, (c) gas production rate.

SISO ARX model's performance, measured by cor­ 
relation analysis, was comparatively good in the 
case of bicarbonate alkalinity, but less able to rep­ 
resent the %CO2 and gas production rate than the 
other models. For the linear SISO model bicarbon­ 
ate alkalinity, the auto-correlation function 
remained within the 95% confidence limits for the 
most part, as did the cross correlation function. In 
the case of the %CO2 prediction by the SISO 
model, the correlation functions were predomi­

nantly, outside the 95% confidence limits. The cor­ 
relation analysis for the gas production rate showed 
that the performance of the SISO model was com­ 
parable with that of the neural network model, 
though inferior to the MIMO model.

The neural network and MIMO models had com­ 
parable performance with respect to correlation 
analysis, though the MIMO model had better per­ 
formance in the case of the gas production rate and 
worse in the case of BA. Based on the results there
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would be no generally superior choice of model, 
however the neural network and MI MO models 
would both be preferred to the SISO model, 
because of the %CO2 correlation analysis of the lat­ 
ter.

Of the three models investigated, the MIMO 
model would be preferred in situations where black 
box approaches are relevant, for its combination of 
its relative simplicity, accuracy and transparency.

In considering the pure simulation using the 
MIMO model, it is concluded that the model 
dynamics are (although not accurate) similar to 
those of the fundamental data generating mechan­ 
isms of the anaerobic process used in the exper­ 
imental work. Reducing the horizon of the 
simulation to one step (30 min) ahead improves the 
accuracy of the model to the point that it can be 
considered a relatively accurate representation of 
the system.
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Abstract

The anaerobic co-digestion of a 10% total solids (7.4% VS) waste activated sludge/fruit and vegetable mixture with approximately 
25% of the VS arising from the fruit and vegetable waste was studied in duplicate two-stage systems. Acidogenic CSTRs and 
methanogenic inclined tubular digesters operated at 30°C achieved stable anaerobic digestion at an overall system loading rate of 5.7 
kg VS m~ 3 d' 1 , overall HRT of 13 days (3 day acidogenic HRT, 10 day methanogenic HRT), with 40% VS destruction and a system 
biogas yield of 0.37 m 3 kg VS~' added. The biogas methane content was 68% and bicarbonate alkalinity in the methanogenic stage 
was over 4000 mg CaCO 3 T', although TVFA levels were relatively high at 1300 mg 1~'. By increasing the overall system HRT to 17 
days (system OLR 4.3 kg VS m^ 1 d"') with the methanogenic HRT increased to 13 days, the average TVFA in the methanogenic 
stage was reduced to 300 mg 1~' and the overall VS destruction was 44%. Using these results an embodiment design was developed 
for a full-scale plant. The duty cycle was such that HRTs could vary from 4 to 26 days in the case of the acidogenic stage and 10 to 
65 days in the case of the methanogenic stage. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Anaerobic digestion; Two-stage; Waste activated sludge; Inclined tubular digester; Fruit/vegetable waste

1. Introduction

Owing to tighter environmental legislation in Europe, 
increasing numbers of aerobic plants are predicted to be 
built to treat wastewaters before their discharge to the 
environment. However the operation of these plants 
results in the production of large quantities of waste 
activated sludge (WAS) which due to the same legisla­ 
tion also presents difficulties for disposal because of the 
closure of some traditional disposal routes (Davis, 
1996). In the UK the volume of sludge is expected to 
grow by 60% to 1.6 million tonnes dry solids per annum 
(Davis, 1996). Legislation has also increased the cost of 
disposal of other organic wastes such as municipal solid 
waste (MSW) to landfill. In Europe the organic fraction 
of municipal solid waste can form up to 37% of the 
collected MSW. Because of the closure of these tradi­ 
tional disposal routes alternative routes for the disposal 
of these organic wastes such as co-digestion are being 
sought (Mata-Alvarez et al., 1992; Kiely et al., 1997;

Corresponding author.

Griffin et al., 1998; Zhao and Kugel, 1996; Callaghan 
et al., 1999). Anaerobic digestion has been applied to 
MSW (see e.g., Fruteau et al., 1997; Nopharatana et al., 
1998), to market wastes, the latter being highly digest­ 
ible (Mata-Alvarez et al., 1992) and other fruit and 
vegetable wastes (e.g., from food production, Raynal 
et al., 1998).

Anaerobic digestion is commonly used to treat a 
mixture of primary and secondary sludges, as it results 
in a smaller amount of waste with reduced polluting 
power, odour potential and number of pathogens, and 
greater dewaterability. A renewable energy by-product, 
biogas, also results. Activated sludge alone, unmixed 
with municipal primary settled sludge, is widely reported 
to show only 30-45% reduction in VS during conven­ 
tional anaerobic digestion, despite having a higher ulti­ 
mate biodegradability (Ghosh, 1991). Pre-treatment 
procedures to improve the anaerobic biodegradability of 
WAS have been reported, with thermal pre-treatment 
being the most common (Huag et al., 1983; Tanaka 
et al., 1997; Li and Noike, 1992). Shimizu et al. (1993), 
Tiehm et al. (1997) and Wang et al. (1999) showed 
beneficial effects of ultrasonic lysis on subsequent 
anaerobic digestion. Other pre-treatments have been

0960-8524/00/S - see front matter © 1999 Elsevier Science Ltd. All rights reserved. 
PII: S0960-8524(99)OOI05-4
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considered, e.g., by Novelli et al. (1995) who studied the 
solubilisation of municipal sludges using alkaline pre- 
treatments, and Hwang et al. (1997) using pressure to 
disrupt cells. These procedures are somewhat energy- 
intensive or costly (Takashima et al., 1996). The latter 
workers attempted membrane retention of particles and 
alkaline hydrolysis of the digested sludge, but overall 
degradation was not much improved over the long-term. 
Use of a specially adapted thickening centrifuge to 
partially lyse cells mechanically is reported as a prom­ 
ising technology, increasing the methane yield, and the 
digestibility from 59.5% to 76.6% (Dohanyos et al., 
1997).

Two-stage anaerobic digestion where the digestion 
process has been divided up into a acidification stage 
and a methanogenic stage, has been shown to improve 
biogas production from a mix of primary and WAS 
(Chang et al., 1989) and for WAS alone (Ghosh, 1991). 
The latter worker showed, using 7.5% TS WAS, that a 
two-stage system eliminated problems commonly 
experienced with foaming and could give a VS reduc­ 
tion of 56% as commonly calculated or of 73% calcu­ 
lated from the mass balance. However, for WAS alone, 
only small improvements in VS destruction from a 
two-stage system were reported by Bhattacharya et al. 
(1996), and by Shimizu et al. (1993) using sonicated 
WAS. A two-stage system applied to fruit and vege­ 
table wastes (Mata-Alvarez et al., 1993) in the absence 
of pH control to maintain a low pH in the acidogenic 
stage did not work effectively to give acidification, and 
thus showed no significant advantage over a one-stage 
system.

As part of the WAS treatment system the sludge is 
often thickened by the use of a centrifuge or belt press. 
The use of a thickened sludge would offer a number of 
advantages such as smaller reactor size, therefore re­ 
duced capital and running costs. If the sludge is to be 
transported to a central digester, thickened sludge 
would also result in lower transportation costs. The aim 
of this paper was to study (at laboratory-scale), the 
anaerobic digestion of high TS content waste (10% TS), 
composed of WAS and vegetable waste, in met­ 
hanogenic inclined tubular digesters with an acidifica­ 
tion' stage CSTR. Inclined tubular digesters (ITD ) have 
a number of advantages: they can be used to treat high 
total solid wastes, have a tendency to retain paniculate 
matter, have a small gas/liquid interface to minimise 
scumming and, as they do not require agitation, offer 
the advantage of lower energy input over CSTR type 
reactors (Chapman, 1986). The laboratory-scale results 
were then used to design, to embodiment stage, a full 
scale plant large enough to treat the biological sludge 
from an ANANOX™ process (Garuti et al., 1992) and 
putrescible wastes, (e.g., market waste) in a sensitive 
Mediterranean area with a seasonal peak population of 
8000 p.e.
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2. Methods

Waste activated sludge (WAS) was collected from an 
activated sludge plant owned by Hyder pic. treating 
domestic and industrial waste, without primary settle­ 
ment, in oxidation ditches operating at a 1 day HRT, 
approximately. The sludge had been dewatered by the 
addition of polyelectrolyte (OCI Posifloc CEF B90, OCI 
Ltd., Castleford, UK) at a dosage rate of 3 kg t~' TS 
and passage through a belt press giving 16% TS. The 
assumption was made that WAS was comparable with 
the biological sludge from an ANANOX™ process, as 
they are both composed of settled suspended bacterial 
biomass. Sludge was frozen until required and after 
defrosting was diluted with tap water to approximately 
11% total solids. The fruit and vegetable waste consisted 
of homogenised plums (185 g), lemons (76 g), lettuce 
(369 g), tomatoes (190 g), courgettes (85 g) and bananas 
(95 g) to give 86 g T 1 TS (76 g I" 1 VS). The feedstock 
was made up by adding approximately 75% by volume 
of 110 g r 1 TS, 73 g T 1 VS, waste activated sludge to 
25% by volume of fruit and vegetable waste. This gave a 
feedstock for the acidification reactors with an average 
100 g r 1 TS content and 74 g r 1 VS content, of which 
approximately 25% VS was from the fruit and vegetable 
waste.

The two acidogenic reactors consisted of 5 1 Quickfit 
vessels maintained at 30 ± 2°C and stirred continuously 
at 125 rpm by a RZ50 Heidolph Stirrer (LabPlant, 
Huddersfield). From day 0 to day 88 the reactors had a 
2.4 1 working volume and from day 100 to day 159 the 
reactors had a 3.2 1 working volume. The reactors were 
seeded by filling to the working volume with feedstock, 
then left to acidity for three days before the com­ 
mencement of feeding seven days per week. From day 0 
to day 74 the acidogenic reactors were operated at a 3 
day HRT and OLR of 26 kg VS m~ 3 d~'. Samples were 
analysed for VFA composition and pH. Samples were 
also taken from day 55 for TS and VS analysis.

To investigate the effect of changes in HRT, from day 
75 acidogenic reactor 1 was converted to a 2 day HRT 
(OLR 39 kg VS m 3 d~') by feeding twice a day and 
acidogenic reactor 2 was converted to 1 day HRT (OLR 
78 kg VS) by feeding 3 times a day. Over this two week 
period the reactors were not fed at weekends. Samples 
were taken each time the acidogenic stage was fed, to be 
analysed for VFA composition and pH. The acidogenic 
reactors were restarted on day 100 by seeding with 3.21 
of feedstock as described by the procedure given above 
and operated until day 159. A 3 day HRT over a 5 day 
week was used from day 103 to day 159 by feeding 1100 
ml Monday to Thursday and 1340 ml on Friday, aver­ 
aging a 4 day HRT over a 7 day week.

Two 8 1 inclined tubular digesters (ITD 1 and ITD 2) 
with an aspect ratio of 10 (body length of 1000 mm with 
an internal diameter of 100 mm), and 20° angle of in-
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dination, as designed by Chapman (1986), were used as 
methanogenic stages (Fig. 1). The two ITDs were fitted 
«th 5 sample acquisition ports (P1-P5) as shown and 
were maintained at 30 ± 2°C. The reactors were seeded 
by adding 6.5 1 of anaerobicatly digested WAS/vegetable 
waste mix from a previous experiment which was made 
up to 8 1 with 5% TS WAS sludge. The anaerobically 
digested seed sludge originated from a laboratory di­ 
gester, seeded with municipal anaerobically digested 
sludge, which had been fed WAS/vegetable waste for 6 
weeks and left unfed at room temperature for 5 months 
prior to use. From day 1 to day 74 ITD 1 and ITD 2 
were fed every day including weekends with output from 
the acidogenic reactors. The reactors were started up at 
an 18 day HRT, and over a 32 day period the HRT was 
gradually decreased to a 10 day HRT while maintaining 
biogas % methane, reactor pH and stable or increasing 
gas production rates. The reactors were operated at a 10 
day HRT from day 33 to day 74, feeding with output 
from the acidogenic reactors operated at a 3 day HRT. 
Gas was collected from the body of the reactor and the 
weir sections as shown in Fig. 1. Gas samples were an­ 
alysed daily for methane and CO2 . Gas production was 
monitored on a daily basis by the use of oil-filled ana­ 
logue gas meters (Alexander Wright, London, UK). 
Samples of effluent were taken on a regular basis for the 
determination of pH, TVFA and bicarbonate alkalinitv. 
From day 55 to day 74 samples for total solids and 
volatile solids destruction were taken. The meth­ 
anogenic reactors were unfed from day 75 until day 103. 
From day 103 to day 159 the ITD reactors were fed only 
on week days, by feeding 850 ml of acidogenic reactor 
contents on Monday to Thursday and 1340 ml of ac­ 
idogenic reactor contents on Friday, giving an average 
HRT calculated over a 7 day week of 13 days. The ITD 
reactors were then left at 30°C from day 160 to day 213 
with all ports, except the gas port, stoppered to prevent 
evaporation. On day 213 the reactor contents were an­ 
alysed for TS and VS to determine the ultimate biode- 
gradability of the substrate.
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Total and volatile solids analyses were performed in 
triplicate on a single grab sample according to standard 
methods (APHA, 1989). Temperature and pH mea­ 
surements were performed according to standard 
methods (APHA, 1989) and bicarbonate alkalinity 
(partial alkalinity) by titration to pH 5.75 (Jenkms et al., 
1983). Gas composition and VFA analysis were deter­ 
mined by gas chromatography (Peck et al., 1986).

3. Results and discussion

3.1. Acidogenic reactors

The initial WAS/fruit and vegetable feedstock aver­ 
aged pH 5.3 (ranging from pH 5.1 to 5.8, 18 samples 
SD = 0.3) with average TVFA levels of 1170 mg I" 1 
(Table 1). The performance of the acidogenic reactors is 
presented in Table 1. A pH controller was not used to 
control either the acidogenic or methanogenic stage or 
neutralise the feed, so the pH level in the reactors was 
allowed to float. In the acidogenic stage the pH floated 
between pH 4.4 and pH 6.2 despite an increase in TVFA 
from 1170 mg l' ] in the feed, to over 6000 mg T 1 in the 
reactor in most cases. The average pH varied little be­ 
tween the acidogenic reactors at 4, 3, 2 or 1 day HRT 
averaging 5.1 to 5.6 in all the reactors. A pH of 5.6 was 
achieved in a 3 day HRT CSTR acidifying WAS without 
pH control (Ghosh, 1991), so that the addition here of 
fruit/vegetable matter to 25% of total VS had little effect. 
A number of studies have found acidogenic reactors to 
operate successfully at pH of between 5.0 and 6.0 while 
utilising primary sludge (Eastman and Ferguson, 1981; 
Elefsiniotis and Oldham, 1994) or WAS (Ghosh, 1991)! 
Results from this study would support this, as signifi­ 
cant levels of acidification were achieved for around 160 
days without the use of a pH controller, suggesting that 
pH control was not necessary for the acidogenic stage. 

At a 3-4 day HRT an average of 6400 mg I" 1 TVFA 
was produced. This corresponds to a VFA yield of 0.09

Togas 
meter

Sample Acquisition Ports 
PI -P5

Feeding Port

Effluent Outlet

PI

Effluent Sample Port

Fig. 1. Inclined tubular digester (ITD).
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Table 1
Performance of acidogenic reactors"
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Mean pH

pH range
TVFA(mgr')

Acetate (mg I' 1 )

Propionate (mg 1~')

i-Butyrate (mg 1"')

n-Butyrate (mg 1"')

i-Valerate (mg r 1 )

n-Valerate (mg I" 1 )

Feed

5.3
(20)»
SD 03
5.2-5.8
1170
(12)
SD 750
598
SD 415
292
SD 193
28
SD 19
143
SD 101
70
SD 46
37
SD31

3 day HRT (days
1-74)
5.3
(78)
SD 0.2
4.7-5.8
6150
(36)
SD 1880
3570
SD 1370
480
SD 320
110
SD 50
1380
SD 500
200
SD 120
460
SD 280

4 day HRT (days
103-150)
5.63
(70)
SD 0.4
4.8-6.2
6620
(51)
SD 1500
4077
SD 1180
475
SD 200
151
SD 72
1100
SD 270
280
SD 130
520
SD 240

2 day HRT

5.1
(16)
SD 0.2
5.0-5.4
6100
(8)
SD 1970
3042
SD 1693
584
SD 283
89
SD48
1173
SD 517
167
SD 100
528
SD 201

1 day HRT

5.3
(24)
SD 0.4
4.4-5.4
4400
(11)
SD 1880
2608
SD 1457
198
SD 19
84
SD 54
826
SD 628

151
SD 107
250
SD 130

a SD = Standard deviation. 
b O = Number of samples.

g VFA g' 1 VS added. The VFA yield of WAS in acid­ 
ification reactors has been reported to vary from 0.11 to 
0.59 g VFA g- 1 VS added (Chiii et al., 1997). All C2 -C5 
VFAs were detected, however the VFAs were primarily 
acetic acid (60%) and rc-butyric (20%) (See Table 1). 
Ghosh (1991) achieved levels of up to 9500 mg 1~' 
TVFA, consisting mainly of acetic, propionic and n- 
butyric. Table 1 shows TVFA levels in reactors operat­ 
ing at a 3 day and 2 day HRT were similar, however 
TVFA levels decreased significantly from 6100 mg I" 1 to 
4400 mg r 1 with operation at a 1 day HRT.

3.2. Methanogenic reactors

The output of the acidogenic reactors was fed directly 
to the methanogenic stage without any pH adjustment. 
From day 1 to day 33, ITD 1 achieved daily gas pro­ 
duction of 1.6 1 I" 1 d~' and ITD 2 1.3 1 1' d '. The 
methane content of gas from ITD 1 was 69% CH4 (9 
samples SD = 4) and for ITD 2 70% CH4 (10 samples 
SD= 3). From day 33 the loading rate was increased to 
6.0 kg VS rrr 3 d~' and the HRT decreased to 10 days. 
By day 36 the average gas production had risen to 2.0 1 
1~' d~' and remained at around this value until day 74. 
Thus after 32 days start-up with decreasing HRT from 
18 to 10 days, using seed from a working digester which 
had remained unfed for 3 months, the reactors could be 
successfully operated at a 10 day HRT.

The data for the period day 53 to day 70 at a 10 day 
HRT are presented in Table 2. During this period daily 
gas production for ITD 1 was 2.1 1 T' d~' (15 samples, 
SD = 0.3). The average gas composition of 68% CH4

was the same as achieved by Ghosh (1991) using WAS. 
Using the gas production figure from ITD 1 and the 
loading to acidogenic stage, the biogas yield for the 
whole system was 0.37 in3 kg VS ' added.

During the period days 37-70 high levels of TVFA of 
up to 2350 mg I" 1 were experienced in both ITDs indi­ 
cating that the reactors were not operating at their op­ 
timum. An average of 1300 mg 1~' TVFA was found in 
ITD 1 and an average of 1800 mg I" 1 TVFA was found 
in ITD 2 (Table 2) between days 53 and 70. In contrast, 
levels of 172 mg I" 1 TVFA were found in the meth­ 
anogenic stage at a 10 day HRT and 6.2 kg VS m~ 3 d" 1 
organic loading rate by Ghosh (1991) indicating that 
lower levels of TVFA are possible for WAS alone. 
However the pH and the bicarbonate alkalinity of the 
methanogenic ITD reactors were high indicating good 
process stability. The pH in ITD 1 and ITD 2 averaged 
pH 7.8 (39 samples, SD = 0.2) with bicarbonate alka­ 
linity averaging 4800 mg CaCO3 1~' in ITD 1 and 4100 
mg CaCO3 I' 1 in ITD 2. A pH of 7.7 in the met­ 
hanogenic reactor of a two-stage process was reported 
by Ghosh (1991) without the addition of alkali. This 
work indicates that reactors could be operated with 25% 
of VS as fruit and vegetable waste also without any 
addition of alkali. However, despite the high TVFA, a 
VS destruction of 43% for ITD 1 and 39% for ITD 2 
were achieved. The VS destruction of WAS ranges from 
16% to 50% (Parkin and Owen, 1986), although in a 
two-stage system up to 56% was achieved by Ghosh 
(1991). The ultimate biodegradability, on day 213 after 
being left unfed for 54 days at 30°C, measured as the % 
VS reduction in ITD 1 was 47% and 41% in ITD 2. Thus
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Table 2
performance of mcthanogenic reactors'

Parameter

% Methane

TFVA levels (mg I" 1 )

VS destruction (%)

Bicarbonate alkalinity
(mgCaCO, I" 1 )

10 day HKT
ITD 1 (days S3 70)
68
(14)b
SD 4
1300
(8)
SD 500
43
(6)
SD 7
4800
(4)
SD 1100

ITD 2 (days M 70)
67
(14)
SD 5
1800
(5)
SD 690
39
(6)
SD 6
4100
(4)
SD 1200

M day HRT
ITD 1 (days 141 159j
(>X
(5)
SD 4
530
(10)
SD 364
43
(5)
SD 5
7290
(4)
SD 2250

ITD 2 (days 128 159)
70
(7)
SD 4
250
(16)
SD 250
44
(6)
SD 4
9090
(4)
SD 1320

"SD = Standard deviation. 
b () = Number of samples.

it appears that increasing the HRT above 10 days in the 
inclined tubular digester would give little improvement 
of overall VS destruction.

In an attempt to reduce the effluent TVFA levels from 
the methanogenic stage the methanogenic HRT was 
increased from 10 to 13 days with the acidogenic stage at 
a 4 day HRT. The effect on the VFA level of ITD 1 can 
be seen in Fig. 2 and ITD 2 in Fig. 3. At the 13 day HRT 
the TVFA levels in ITD 2 rose to 2900 mg 1 ' on day 110 
but fell to 1500 mg 1~' on day 124. The average TVFA 
for ITD 2 from day 128 to day 159 was 250 mg T 1 
(Table 2). This was taken to be the steady-state period, 
during which ITD 2 achieved a VS destruction of 44%. 
Operation at a methanogenic-stage HRT of 13 days 
rather than 10 days (system HRT 17 days rather than 13 
days) did not significantly improve %VS destruction, but 
significantly lowered TVFA content, so that the result­ 
ing effluent was less odorous.

In ITD 1 the TVFA rose from 400 mg T 1 on day 115 
to 7800 mg T 1 on day 117 to a peak of 10000 mg ]~' on 
day 127 (see Fig. 3). The reactor was found to have 
undergone a severe shock, with the effluent pH fallen to 
pH 5.8 on day 117 with a reduction in methane content 
from 41% on day 115 to 15 % on day 117. ITD 1 had 
low pH at port PI (pH 5.42) and pH 5.78 at port F5 on 
day 11 7. This was in contrast to ITD 2 which had a pH 
of 7.46 and 7.75 at these two ports on day 117. Despite 
the low pH of the acidified influent, lack of stirring in 
the reactors and high TS content, ITD 2 always main­ 
tained the pH within the optimum range for methano- 
genesis, although a slight pH gradient was seen with a 
lower average pH at port PI (pH 6.9) and pH 7.8 at P5. 
The average effluent pH of ITD 2 was pH 7.7 (21 
samples, SD = 0.2) from day 128 to day 159.

To recover ITD 1, on day 117 the reactor was fed 
with 850 ml of acidogenic-reactor effluent with 40 g
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sodium bicarbonate and subsequently 1.1 1 of ITD 2 
effluent. On day 120 and 122 ITD 1 was fed with 425 ml 
of acidogenic reactor effluent and 450 ml of ITD 2 eff­ 
luent. The normal feeding regime was restarted on day 
127. Using this regime the lower section of the reactor 
pH was above pH 7 on day 118 and by day 128 the 
entire length of the reactor was at pH 7 or above, al­ 
though the effluent pH was below pH 7 until day 128. 
From day 141 to day 159 the average effluent pH of ITD 
1 was pH 7.7 (14 samples, SD = 0.2).

The TVFA levels in ITD 1 had fallen sharply to 800 
mg r 1 by day 141 (Fig. 2). The average TVFA from day 
141 to day 159 (Table 2) was 530 mg T 1 and average VS 
destruction was 43%. The average gas composition was 
68% and 70% methane respectively in ITD 1 and ITD 2 
in the periods of stable operation. Thus despite having 
had TVFA levels of 10000 mg I" 1 , within 10 days the 
reactor could be returned to a 13 day HRT by addition 
of sodium bicarbonate and methanogenic effluent from 
normal operation. It appears useful to retain approxi­ 
mately 20% of the digester volume of digested effluent 
on site for the purposes of recovery of the reactor from 
acid-generating shocks.

33. Embodiment design

The difficulties of designing plant for the treatment of 
domestic sewage in sensitive coastal areas with a sea­ 
sonal dramatic increase in population are well recog­ 
nised (see e.g., Castillo et al., 1997). The results from 
these laboratory scale investigations were to form the 
basis of design of the full scale plant which would be 
capable of treating sludge from an ANANOX™ process 
(Garuti et al., 1992) and market waste produced by a 
Mediterranean tourist resort with a seasonal population 
peak of 8000 p.e. but a rural winter population circa

1200 p.e. The resort studied was remote and a conser­ 
vation area, so problems were experienced with solid- 
waste disposal. Fruit/vegetable market waste was iden­ 
tified suitable for disposal by co-digestion, alleviating 
problems experienced acutely in the summer months. 
This conceptual exercise is representative of many small 
coastal and island resorts in the Mediterranean.

Ghosh et al. (1975) and Ghosh (1991) discussed the 
advantages and disadvantages of two-stage digestion as 
a means to improve digestibility and system design. A 
degree of uncertainty existed prior to the laboratory- 
scale tests, with regard to suitable retention times in the 
acidogenic reactor. Using a model of the acidogenic 
stage based on the work of Eastman and Ferguson 
(1981) the acidogenic stage performance was simulated 
in order to ascertain that the hydrolysis could be 
achieved during a retention time similar to the 3.1 days 
reported for WAS by Ghosh (1991). The model used has 
been summarised in Table 3. The values, units and as­ 
sumptions made in the modelling are shown in Table 4.

The simulation showed that:
• The concentration of degradable particulate would 

reduce rapidly and asymptotically to zero, such that 
an SRT of 3 days would affect most of the reduction 
by solubilisation.

• The concentration of viable anaerobic biomass would 
be at a maximum at an SRT of approximately 1 to 2 
days, and reduce gradually with increasing SRT.

• As would be expected, the products of acidogenesis 
would increase in response to the solubilisation of de­ 
gradable particulates.
The model supported use of a HRT of around 3 days 

for the acidogenic stage when operated at 30°C. The 
sludge production from the ANANOX process was 
based on knowledge of the resort's population and was 
agreed as part of the design specification by the com-
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Table 3
Summary of acid stage model (after Eastman and Ferguson (1981)) 

Participate COD: '——————————

165

Soluble substrate COD.

o _

Biomass COD:

(2)

(3)

Products COD:

(XQ - (S0 - S) (4)

F
F0

S 
So

AT=

effluent concentration of degradable paniculate COD 
influent concentration of degradable particulate COD

effluent substrate concentration COD 
influent substrate concentration COD

effluent viable biomass concentration COD 
= influent viable biomass concentration COD

effluent product concentration COD 
= influent product concentration COD

= first order hydrolysis rate constant
maximum specific growth rate

=substrate concentration at 1/2 max. specific growth rale 
= decay coefficient

yield coefficient
hydraulic retenlion time ( = solids retention time in CSTR type system)

missioning agents (ENEA, Bologna, Italy). The pro­ 
jected flow rates over the year are shown in Table 5 
where the two stages of the sludge treatment system 
were sized at 5 m 3 for the acidogenic stage and 12.7 m3 
for the methanogenic stage, in order to give peak HRT 
of 4 and 10 days, respectively. The methanogenic in­ 
clined tubular digester design had an internal diameter 
of 1.3 m, an internal length of 10 m and a 20° inclina­ 
tion.

Two serpentine heat exchangers were designed using 
dynamic models of the two stages, in order to simulate 
the bulk fluid temperatures from start-up through to 
steady operation. The aim (based on a knowledge of 
temperature effects on the anaerobic process (Malina, 
1964)), was to maintain the temperature of the digester 
contents to within ± 3°C of the set point temperature 
(35°C). Closed-loop PID control systems were employed 
in the simulation, paying due regard to heater saturation 
and limiting the maximum temperature of the heating 
water to avoid damage to viable biomass and avoid 
fouling (50°C) in the reactors. The peak power (i.e., 
saturation) requirements suggested by the simulations

were 3 kW and 5 kW for the acidogenic and meth­ 
anogenic stages, respectively. The most significant un­ 
certainties in the heat-exchanger design were the 
rheological properties of the digester contents (since 
considered by Moeller and Torres (1997)).

The gas produced by the digesters at peak loading 
was estimated from the laboratory-scale results to yield 
approximately 6.7 kW. This would mean a significant 
deficit for heating the reactors, particularly when con­ 
sidering system efficiencies. Furthermore the temporal 
lag between the need for heating and the supply of di­ 
gester gas would further increase the need for a gas 
boiler suitable for an alternative gas supply. In winter 
the ITD methanogenic stage would operate with a 65 
day HRT and the acidogenic stage at 26 day HRT, and 
it is possible that operation below design temperatures 
would be satisfactory.

The functionality of the process would depend on the 
timed delivery of feed to the individual stages. The feed 
was to be conditioned by an angle disintegrator which 
would deal with the large particles of vegetable waste 
from markets and similar sources, while a centrifugal
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Table 4
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parameters and assumed data

Parameter.-—————- 
F

S
s.

X 
X*
p

Value
Eq. (1)
75.5

Eq. (2)

4.9

Eq. (3) 
0
Eq. (4)
2.58
0.125

Units
g COD/1 
g COD/1

g COD/1 
g COD/1

g COD/1

g COD/1 
g COD/1 
g COD/1 
g COD/1

Assumptions
Hydrolysis rate limited process
Based on 8% IS and determined using ratio of
TSrVSS from batch tests
Hydrolysis rate limited process
&S = S0 — S remains constant due to microbial
metabolism and estimated from reduction in
£CPL
&S = Sa — S remains constant due to microbial
metabolism and estimated from reduction in
SCPL
Hydrolysis rate limited process
No viable biomass in feed
Hydrolysis rate limited process
P0 - influent VA COD+ unutilised soluble COD
Hydrolysis rate similar to primary sludge
digestion

/

K>

ki
Y

0

6.2

0.142

0013
0.4

0.3-10

d-'

g COD/1

h- 1
g cell COD/
gCOD
utilized
d

As compared to 2.7-3.4 d" 1 for

Assumed same as Aerobic A",

Reference
Eastman and Ferguson (1981) 
Batch tests at (Jm of Glamorgan

Eastman and Ferguson (1981) 
Eastman and Ferguson (1981), 
Ghosh (1991)

Eastman and Ferguson (1981), 
Ghosh (1991)

Eastman and Ferguson (1981)

Eastman and Ferguson (1981) 
Eastman and Ferguson (1981) 
Eastman and Ferguson (1981)

Metcalf and Eddy (1994), Eastman
and Ferguson (1981)
Gosset and Belser (1982), Metcalf
and Eddy (1994)
Eastman and Ferguson (1981)
Eastman and Ferguson (1981)

decanter was to be used to further dewater the feed to 
10% TS and hence minimise the digester volumes. These 
physical processes would aid cell lysis and consequently 
acidogenesis. Fluid transfer would be effected by pro­ 
gressive cavity pumps, which would be controlled by 
logic controllers in conjunction with automatic valves.

The reactors were sized for the worst case and this 
imposed HRT varying from 4 to 26 day and 10 to 65 day 
for the acidogenic and methanogenic stages, respec­ 
tively. The acidogenic reactor could be operated partly 
filled at off-peak periods, and its spare capacity used to

buffer peak loads and protect the methanogenic reactor. 
Table 5 indicates that the peak loading would occur 
from mid July to late August. The acidogenic reactor is 
expected to operate successfully at all likely conditions. 
Table 5 shows that the methanogenic reactor is required 
to adjust from loading at a 19.5 day HRT to a 10 day 
HRT within 2 weeks (15-31 July). Start-up from no load 
to a 10 day HRT in 1 month was achieved in the work 
reported here at laboratory-scale. With careful moni­ 
toring it is possible that this time could be reduced, 
particularly as the reactor as proposed would be con-

Table 5
Seasonal variation in sludge production by the ANANOX™ process and of fruit and vegetable waste used to size the anaerobic digestion stages"

Month

January
February
March
April
May
June
1-15 July
15-30 July
August
September
October
November
December

ANANOX sludge 
(m3 d-')

0.09
0.09
0.09
0.09
0.09
0.18
0.40
0.81
0.81
0.20
0.09
0.09
0.09

Vegetable waste 
(kgd-')

86
86
86
86
86

129
171
347
347
129
86
86
86

Total feed 6 
(m 1 d-')

0.176
0.176
0.176
0.176
0.176
0.309
0.571
1.150
1.150
0.329
0.176
0.176
0.176

Acidogenic stage 
5 m' HRT (day)
26.0
26.0
26.0
26.0
26.0
14.9
8.1
4.0
4.0

14.0
26.0
26.0
26.0

Methanogenic 
127 m 3 HRT
65.0
65.0
65.0
65.0
65.0
37.2
19.5
10.0
10.0
35.0
65.0
65.0
65.0

stage
(day)

'HRT based on nominal peak HRT of 4 days (acidogenic phase) and 10 days (methanogenic phase)
Assuming vegetable waste has a density of 1000 kg m"
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tinuously fed at a low load, and it is recommended that 
experienced staff should be on hand in mid-July for 
several weeks until sufficient process management in­ 
formation is gained. It is also recommended that ap­ 
proximately 20% of the digester volume of successfully- 
digested stabilised effluent be retained onsite during this 
period, together with sodium bicarbonate, since as re­ 
ported here addition of these successfully recovered the 
ITD within 10 days from shock giving a dramatic rise in 
TVFA. In the unlikely event of a stress to the meth- 
anogenic digester, facility will be provided to recycle the 
effluent from either stage back to the ANANOX 
process.

TM

4, Conclusions

An embodiment design for a full-scale methanogenic 
inclined tubular digester with a prior acidogenic stage, 
treating the sludge from an ANANOX™ process with 
25% VS from added fruit and vegetable wastes has been 
developed for use in a sensitive coastal area with a 
seasonal population.

In laboratory-scale studies of this system, stable an­ 
aerobic digestion was achieved in a two-stage system at 
an overall system loading rate of 5.7 kg VS m~ 3 d~', 
overall HRT of 13 days (3 day acidogenic HRT, 10 day 
methanogenic HRT), with 40% VS destruction and a 
system biogas yield of 0.37 m3 kg VS' 1 added, although 
with relatively high effluent TVFA.

Increasing the overall system HRT to 17 days (system 
OLR 4.3 kg VS m' 3 d' 1 ) with the methanogenic HRT 
increased to 13 days much reduced the average effluent 
TVFA, giving VS destruction of 44%.
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ABSTRACT

The start-up phase of Anaerobic Digestion (AD) reactors is a critical period during 
which special efforts are made to ensure stability. Maintaining control is essential and 
is usually done manually at the expense of human effort and start-up time. Automatic 
control of the AD process with on-line monitoring of Bicarbonate Alkalinity (BA), 
should speed up the start-up procedure and make it a less labour intensive and 
uncertain phase of operation. This poster proposes to show the start-up of an 
Expanded Granular Sludge Bed (EGSB) Laboratory scale AD process which is 
controlled by a Model Reference Adaptive Controller (MRAC), using a simple 
adaption mechanism.
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INTRODUCTION

The control of anaerobic digestion (AD) start-up is an important research objective for many 
groups who are seeking to identify robust and workable implementations for the treatment of 
waste waters from a number of sources, (e.g. Moller and Jorgensen (1997); Perrier and Dochain 
(1993)). The non-linear and sometimes brittle nature of the AD process has been known for some 
time and is a limiting consideration in the design of reactors, (e.g. Denac et al. (1990); Monroy et 
al. (1996); Ryhiner et al. (1992)). Usually the research has been aimed at maintaining the stability 
of the system when faced with various perturbations such as fluctuations in loading rate, toxicity 
of the influent, temperature variations and so on. These often lead to increased levels of Volatile 
Fatty Acids (VFA's) which are a sign of an unstable reactor. The VFA's unfortunately are not 
easily measured 'on-line' and it is arguable that the levels of VFA's of the different species will be 
sufficient to determine the state of the AD process. BA however, is measurable on-line, with a 
good degree of accuracy and with a sensor which is reasonably robust in its operation, (Guwy et 
al. (1994)). The maintenance of a BA buffering margin is a means of controlling the pH drop 
caused by a build up of VFA's, (McCarty (1964); Rozzi et al. (1985)). It is possible to control the 
buffering by adding bicarbonate to the reactor contents. Such a control action could maintain 
conditions suitable for the microorganisms, but would not alter the metabolic imbalance. 
Alternatively, the rate of production of the VFA's can be adjusted by altering the loading on the 
reactor by changing (for example) the dilution rate, (Rozzi and Passino (1985)). In this work, the 
latter concept has been used during the start-up phase when in practice the load to the reactor 
could be varied.
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When starting an AD process for the first time, the bacteria introduced as an inoculant are often 
sourced from a process operating on a significantly different waste. The bacterial populations 
may undergo significant acclimatisation, and the loading rate may need to be incremented from a 
low level and at a slow rate. Ensuring that the rate of increase is as high as possible to give rapid 
start-up is not a trivial matter (even under automatically controlled conditions). However, the use 
of automatic control will allow the process to increase loading continuously and at short sampling 
intervals (in the case of this work, hourly, unlike manual operation which is not usually so 
frequent). The rate of loading is incremented automatically only if the margin of stability (BA 
buffering) is increased beyond a desired level, (set point). In the case of poorly buffered effluents 
(e.g. many food processing and chemical industry wastewaters, including those with no 
nitrogenous compounds to generate ammonium bicarbonate), the buffering must come from BA 
dosing. It is possible to maintain the level of dosing constant while using the loading rate to 
control the state of the process, as was done in this work.

REACTOR OPERATION

A 30 litre Expanded Granular Sludge Bed (EGSB) reactor was used (Fig. 1), seeded with granules 
from a UASB reactor at Davidson's Paper Mill (Aberdeen, Scotland). (Details of both EGSB and 
UASB reactors can be found in Grasius et al. (1997)).The reactor was fed a constant 20 ml/min of 
a 3.36 g/L NaHCO3 solution, (BA of 2000 mg/L CaCO3) with a variable flow of a concentrate 
(x20) of a simple salts medium containing 1% glucose (W/V) (Cohen et al. (1980)) combined 
with an inversely proportional volume of tap water to give a constant inflow volume of 21.5 
ml/min into the effluent recirculation tube. Upflow velocity (Vup 4.78 m/h) and retention time 
(24 hours) were constant. Peristaltic pumps and tubing (Watson and Marlow Ltd., Falmouth, UK) 
were used throughout.

Feed 
Concentrate

Water Supply

Bicarbonate 
Solution

EGSB Reactor

Water 
Jacket 
Heater

Figure 1. Schematic diagram of EGSB reactor

THE MONITORING AND CONTROL SYSTEM

The monitoring system was designed to log data from a number of on line sensors, using a 
personal computer equipped with a virtual instrument software program (LabVIEW™) and the 
control system was implemented on a separate personal computer for convenience. BA, the most 
important parameter with regard to the control system was measured on-line, as described by 
Guwy (1994). Other parameters (sampled at 1 minute intervals) monitored on line were pH, gas
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phase hydrogen concentration, gas production rate, % carbon dioxide in the biogas and reactor 
temperature. The sampling rate of the control computer was independent of the monitoring 
computer and was every 1 hour. The monitoring computer had both A/D and D/A I/O facilities, 
(National Instruments, UK). The BA signal was provided to the control computer, which in turn 
provided the monitoring computer with the control effort calculated by the controller at each 
sample. The control effort was converted to appropriate voltage signals to run the water and 
concentrate feed pumps such that the volumetric flowrate remained constant, but the feed strength 
varied. The control computer used a similar I/O card and virtual instrument package to effect the 
I/O function. The control algorithm was programmed using a graphical, block oriented Computer 
Aided Control System Design (CACSD) package, (MatLAB/Simulink™). Communications 
between the software packages was achieved using the Direct Data Exchange (DDE) facilities 
provided by both. The BA set point could be adjusted within Lab VIEW™ on the control 
computer. The setpoint and measured value (BA) were then provided to the control algorithm at 
each sampling interval as shown in Figure 2. The current control effort was passed back to 
LabVIEW™ for delivery to the monitoring computer.

Figure 2. Block diagram of the Adaptive Control strategy

The adaption mechanism is the normalized MIT (Massachusetts Institute of Technology) rule as 
discussed by Astrom and Wittenmark (1989). It should be noted that the stability of the system is 
not guaranteed.

EXPERIMENTAL PROCEDURE

The adaptive controller was initialised using a model. This allowed the duration of the initial 
'learning' and settling of the control system to be reduced. The controller was then switched to 
on-line data and the controlled start-up of the process was begun. The set point was adjusted to 
the desired buffering, which was below the known level of BA, which was being supplied to the 
reactor at a constant rate. This ensured that feeding would commence. The experiment 
progressed unaided apart from regular checks and maintenance on instrumentation and the taking 
of samples for off-line assays (COD, VFA, pH and BA).

RESULTS

Figure 3 shows the data logged by the system. From zero to about 80 hours, the controller was 
initialised using a linear model of the BA response.



Reference Model Output 
BA Measured Value 
BA Set Point 
Adaption Rate

Time (hours)

Figure 3. Plot showing the BA Set Point, Measured Value of BA, Reference Model Output and the 
Adaption Rate

The initialisation was not done in real time, but at a highly accelerated rate such that each hour 
passed in 2 seconds. Once initialised, the controller was switched onto real time and 
simultaneously started to control the real process. At about 100 hours, the BA set point was 
increased to begin feeding the process. After a further 10 hours (approximately), the set point was 
reduced once more and from this point the set point remained unchanged. The adaption rate acts 
as a simple gain, multiplying the set point, to give the control effort. As the adaption rate 
decreases, so the loading rate on the reactor is increased. All the signals in Figure 3 are displayed 
as voltages. At 150 hours, the measured value experienced a sudden drop due to a blockage in a 
pipe in the BA monitor. At approximately 225 hours, the BA measured value dropped 
dramatically and remained so for about 15 hours. This was due to the BA monitor running out of 

which is required to saturate the samples.

DISCUSSIONS AND CONCLUSION

It is evident from Figure 3 that the adaptive controller "learns" the appropriate action during 
initialization, up to about 80 hours. The reference model is somewhat ambitious, particularly 
during startup when there is impaired metabolism from an under developed bacterial population. 
Never the less, when the controller begins to control the process (after 80 hours on the time axis), 
the control action is sensible and tends to minimize the error between set point and measured 
value, regardless of absolute values. Uncharacteristic failures in the monitoring of the BA signal 
had the consequence of shutting down the feeding, but at the same time changing the adaption rate 
in a fail safe direction. It is possible to conclude at this stage that control can be maintained 
during start-up. The experimentation and controller development are on-going and it is expected 
that further data and conclusions will be available by the time of publication.
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ABSTRACT

Start-up of an anaerobic digester can be considered to be a prolonged and particularly critical shock-loading 
regime. The first start-up (e.g. from commissioning with an inoculant) is accompanied by considerable 
uncertainty. A control strategy that could bring the digester to its nominal loading rate, under controlled and 
reasonably optimal conditions, from the point of initial commissioning, would be a useful device for 
minimizing risk and human effort. Such a strategy is presented here, based on an MRAC controller designed 
using a model parameterized on a different anaerobic digester. A 30 1 EGSB reactor was used to test the 
strategy and it was found that the loading rate increased with time as the inoculant developed toward a working 
anaerobic culture.
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INTRODUCTION

The use of automatic control of anaerobic digestion (AD) has enjoyed significant success, employing a 
number of control strategies (e.g. Steyer et al. (1999), Perrier and Dochain (1993)). Start-up of an AD reactor 
can be considered to be a prolonged and particularly critical shock-loading regime and the first start-up of 
such a process would be accompanied by considerable uncertainty. In general, the design of the control 
strategy requires a representative model of the reactor and its associated processes. If a model were available, 
it is likely not to have been parameterized for the specific digester. Considering the likely scenario at the 
point of commissioning, knowledge of the specific reactor will be limited to design specifications. In the 
case of restart, historical operating data would also be available. The accuracy of a model depends on the 
source of the data from which it is parameterized. These models may be traditional in their structure as in 
Andrews (1968), or fuzzy in a general sense (e.g. Marsili-Libelli and Muller (1996) or Premier et al. (1999)). 
We should expect that the AD process will be time varying and therefore batch tests would be 
unrepresentative, as the microbiological culture would not have developed to represent the full load working 
digester. On-line identification would take care of time variations, but usually depends on a number of on­ 
line measurements, and consequently considerable instrumentation. It would be beneficial to the AD 
operator and commissioner to be able to control the start-up over its entire duration, using a minimum 
number of on-line sensors and relying as far as possible on the generation of model information from a 
system other than the one being commissioned. Start-up control of biological reactors has been considered 
by a number of authors such as Moller and Jorgensen (1997); Renard et al. (1991). As is the focus of this 
work, Rozzi et al. (1994) in particular used Bicarbonate Alkalinity (BA) as a control variable, but used a 
markedly different control strategy. Maintaining a BA buffering margin is a means of controlling the pH 
drop caused by a build up of Volatile Fatty Acids (VFAs), (McCarty (1964); Rozzi et al. (1985)).



The use of VFAs as a control variable has been shown to be practically achievable (as demonstrated by 
Renard et al. (1991), using propionate concentration), particularly since titration based, on-line measurement 
of VFAs has been shown to be feasible (Dehaas and Adam (1995)). BA gives similar information to the 
VFAs but is affected by the carbon dioxide equilibrium in the reactor, through carbonic acid. The activity or 
stress levels, (particularly of the methanogens) is therefore intrinsically part of the BA measurement, which 
has been shown to be readily measured on-line, (Guwy et al. (1994); Rozzi and Labellarte (1984); Tomei et 
al (1994)).

METHODS

Reactor operation

The reactor considered in this work was of an Expanded Granular Sludge Blanket (EGSB) design, running at 
mesophilic temperature. The EGSB had a liquid volume of 30 1 and was inoculated with granules from a 
UASB reactor at Davidson's Paper Mill (Aberdeen, Scotland). Both EGSB and UASB reactors are explained 
inGrasius et al. (1997)). The reactor was fed a constant 18 ml/min of a 3.73 g/L NaHCO3 solution, (BA of 
2222 mg/L CaCO3) with a variable flow of a concentrate (x20) of a simple salts medium containing 1% 
glucose (w/v) (Cohen et al. (1980)) combined with an inversely proportional volume of tap water to give a 
constant inflow volume of 21.5 ml/min into the effluent recirculation tube. Before this start-up, the bacteria 
were kept at room temperature and not fed for 1 year. Up-flow velocity (Vup 4.78 m/h) and retention time 
(24 hours) were constant. Peristaltic pumps and tubing (Watson and Marlow Ltd., Falmouth, UK) were used 
throughout.

Modelling the process

The digester model used was that published by Marsili-Libelli and Beni (1996), which was essentially a two 
population model of the anaerobic digestion process which employed both Monod and Haldane kinetics. 
The model was parameterized using data from a fluidized bed reactor as described by Guwy et al. (1997). It 
includes the CCVpH/Bicarbonate alkalinity ionic equilibrium with other cation species also considered. The 
important fact is that the model was parameterized on data generated by a lab scale fluidized bed anaerobic 
digester and not the EGSB digester, which is the focus of this work.

Controller design and optimization

The controller was based on the Model Reference Adaptive Control (MRAC) scheme presented by Astrom 
and Wittenmark (1989). The adaption mechanism was numerically optimized using the cost function: 
J = 0.\(2-Xm ) + \em \ + Q.OOlU , with terms relating to the methanogenic bacteria (Xm), growth rate 
(maximizing) and minimizing the so called model error (em) and rate of change of control effort (£/).

RESULTS AND DISCUSSION

Figure 1. presents the first 4.5 days of operation (approx.), while Figure 2. presents a similar time span in the 
fourth week. In the first week a 'technical hitch' caused the BA to increase suddenly by approximately 300 
ragCaC03/l, when 'fixed' the BA dropped by a similar amount to the original value, as indicated in Figure 1. 
The two data series illustrate clearly that the controller increased the ORL in such a way as to continually 
develop the methanogenic population. It can be seen from Figure 2. that the recovery rate has increased 
compared to that of Figure 1., which implies that the methanogenic population has become more efficient at



converting the VFAs, thus raising the BA. The mean ORL increased from 3.3 kgCOD/m3/day in the first 
week to 6.53 kgCOD/mVday in the fourth week.

34 
DAY OF EXPERIMENT

Figure 1. BA/SETPOINT/OLR Relationship 
during first week

CONCLUSIONS

2500
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Figure 2. BA/SETPOINT/OLR Relationship 
during fourth week

It can be concluded that the control strategy maintained a BA buffering level over the first four weeks of 
operation considered here, during which time the OLR increased and the methanogenic population showed 
signs of strengthening.
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