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ABSTRACT

PROCESS CONTROL OF A LABORATORY
COMBUSTOR USING NEURAL NETWORKS

by
Thana Slanvetpan

Active feedback and feedforward-feedback control systems based on static-trained

feedforward multi-layer-perceptron (FMLP) neural networks were designed and

demonstrated, by experiment and simulation, for selected species from a laboratory two-

stage combustor. These virtual controllers functioned through a Visual Basic platform. A

proportional neural network controller (PNNC) was developed for a monotonic control

problem — the variation of outlet oxygen level with overall equivalence ratio (00). The

FMLP neural network maps the control variable to the manipulated variable. This

information is in turn transferred to a proportional controller, through the variable control

bias value. The proposed feedback control methodology is robust and effective to

improve control performance of the conventional control system without drastic changes

in the control structure. A detailed case study in which two clusters of FMLP neural

networks were applied to a non-monotonic control problem — the variation of outlet nitric

oxide level with first-stage equivalence ratio (4,) — was demonstrated. The two clusters

were used in the feedforward-feedback control scheme. The key novelty is the

functionalities of these two network clusters. The first cluster is a neural network-based

model-predictive controller (NMPC). It identifies the process disturbance and adjusts the

manipulated variables. The second cluster is a neural network-based Smith time-delay

compensator (NSTC) and is used to reduce the impact of the long sampling/analysis lags

in the process. Unlike other neural network controllers reported in the control field,



NMPC and NSTC are efficiently simple in terms of the network structure and training

algorithm. With the pre-filtered steady-state training data, the neural networks converged

rapidly. The network transient response was originally designed and enabled here using

additional tools and mathematical functions in the Visual Basic program. The controller

based on NMPC/NSTC showed a superior performance over the conventional

proportional-integral-derivative (PID) controller. The control systems developed in this

study are not limited to the combustion process. With sufficient steady-state training data,

the proposed control systems can be applied to control applications in other engineering

fields.
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CHAPTER 1

INTRODUCTION

1.1 Background

Minimization of both transient and steady state emissions through active process control

of combustion systems such as waste incinerators, furnaces, turbines, automobile engines

or power plants is an important research area. Classical controllers using the

proportional-integral-derivative (PID) algorithm are still widely used. However, they can

be challenged by process oscillations when large disturbances or setpoint changes are

encountered. Another drawback is that tuning the HD can be time-consuming and

requires a combination of operational experience and trial-and-error. The task becomes

even more difficult for highly nonlinear processes especially in the presence of

significant time delay, such as a sampling/analysis time lag.

To facilitate process control, a model-based approach is especially advantageous.

An accurate process model can be used either as the basis for classical controller design

methods or incorporated directly as the controller. Typically, the process model is based

on conservation laws (mass, species, energy, and momentum). The model for a chemical

process often turns out to be quite complex since most processes exhibit nonlinear

characteristics and time-varying behavior.

A supplement or alternative to a traditional conservation law-based model is an

approach using artificial neural networks (ANNs). The ability to learn a nonlinear

governing relationship from a sample input/output data set enables the ANN to generate

accurate nonlinear models for systems that can be difficult to model otherwise.

1
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Furthermore, the ANN models are data-driven and computationally efficient, provided

that their structure is not exceptionally complex. Therefore, they can be implemented

practically in a model-based control approach. Neural networks hold great promise in

modeling and control applications for complex dynamic processes in chemical

engineering fields.

There are several approaches to incorporating ANNs in a model-based control

structure. The neural networks used in most control schemes are feedforward multi-layer-

perceptron (FMLP) architecture networks. In order to incorporate the process dynamics,

lags, and other real factors into the process controller, one must carefully design a time-

history window of the process inputs and outputs from a period of time equal to the delay

in the process and then input them into the FMLP neural network (Bhat and McAvoy,

1990; Gomm et al., 1997; Nikravesh et al., 2000; Palancar et al., 1998; Syu and Chen,

1998; Tendulkar et al., 1998). This technique is possible when there are discrete-time

training data available. Thus, the important issue of using the FMLP neural network for

an active control problem is training-data acquisition. Typically, the model-based control

structure prevents the network from operating independently from the actual process

since the neural network model requires historical discrete-time data on both process

inputs and outputs. As a result, network learning is often performed online in the

presence of the real process. However, chemical processes are usually quite complex, so

the online network weight updating (i.e. training) is often difficult and time-consuming.

Therefore, in most cases, the neural networks are trained offline.

Recurrent neural networks offer a solution in dealing with a time-dependent

control problem (Chovan et al., 1996; Palancar et al., 1998; Gomm et al., 1997).
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Unlike the FMLP neural network, the recurrent network can develop an internal

representation of time history through learning due to its internal feedback connections.

Only current process inputs and outputs are required instead of a time history. As a result,

the recurrent neural network can operate independently from the process and can be used

in a generalized mode for offline simulation and development. Although the process

dynamics and delay time can be mapped to a fully recurrent neural network, the network-

training algorithm convergences slowly since it requires the use of all weights and

feedback activities in the network for a weight updating process (Chovan et al., 1996). In

addition, network-predicting performance can deteriorate with time since the recurrent

neural network operates independently from the process. Hence, any error in the network

output is also fed back into the network and can accumulate with time (Gomm et al.,

1997).

1.2 Objectives

Although there have been numerous recent studies in modeling and control applications

based on neural networks, the application of the neural networks in the case of emission

control are very scarce. In this study, online gas analyzers are combined with

computerized process control for a two-stage bench combustor. The objective is to

develop and demonstrate, by experiment and simulation, control systems based on static

back-propagation trained neural networks. The originality of this research can be mapped

into three parts to address three different functionalities of the neural networks.

First, a simple feedforward neural network is used in a proportional neural

network configuration. Based on the information it receives, the trained neural network
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serves as an intelligent tool to update the proportional controller's bias value. A

comparison of the open-loop and some closed-loop runs is presented to illustrate the

effectiveness of applying the neural network to the simple proportional controller.

Secondly, a model-based control configuration, consisting of two clusters of

trained neural networks, is demonstrated. The objective here is to present the basic

concept of using neural networks in a model-predictive control configuration for a highly

nonlinear system with significant sampling/analysis time delay where the conventional

PID controller is difficult to tune and has a potential to fail. The originality of the work

here lies in the structure and the functionalities of the two clusters of FMLP neural

networks. The first cluster serves as the process controller while the second serves as the

time-delay compensator.

Lastly, the neural network is used to model the laboratory-scale combustion

process. The trained neural network model for the combustor is embedded in the

simulator interface constructed in the Visual Basic 6.0 environment. Although the neural

network is trained by a steady state historical database, the time-dependent response of

the real combustion system is enabled by the built-in tool and mathematical functions in

the Visual Basic program. The simulation data are validated by results from existing

experimental runs and conventional modeling results. Once equipped with the selected

control application, the simulator serves as an actual combustion process replacement,

and provides a more flexible and more reliable platform to study process control. Several

of simulation runs under various control applications are made to gather more

information about the process behavior and gain more insight into how to optimize the

real process operation.



CHAPTER 2

LITERATURE SURVEY

2.1 Process Dynamics and Control

Chemical engineers are quite familiar with the virtues of feedback or feedforward process

control, which allows continuous chemical processes to operate with little human

intervention. Recently, the performance requirements for process plants as well as tough

environmental and safety regulations have become increasingly difficult to satisfy. In

order to meet plant quality standards and environmental regulations, modern chemical

plants are usually equipped with many controllers.

Since the proportional-integral-derivative (PID) controller found widespread use

in the process industries, great resistance often occurs to changing to other control

methodologies in practical situations. The main reasons are the simplicity, robustness,

and successful applications provided by PID-based control approaches (Hoskins and

Himmelblau, 1992; Olsson et al., 2001; Seborg et al., 1989; Stephanopoulos, 1984;

Martins and Coelho, 2000; Shu and Pi, 2000).

Olsson et al. (2001) presented a strategy for closed-loop control of a multi

cylinder turbo-charged homogeneous charge compression ignition (HCCI) engine using

HD controllers. The aim of the study was to demonstrate a functioning control system for

optimizing a dual fuel HCCI engine by manipulating fuel mixing ratio and fuel flow rate.

Although, the HD yielded promising control results in most cases, it was suggested that

the PID settings had to be set conservatively in some ranges of operations to avoid

process instabilities.

5
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The task of tuning the PID becomes more difficult for highly nonlinear processes

like combustion. In addition, time delay between sensor measurements and control

computation and between control computation and final control element actuation can be

a limiting factor when trying to achieve a fast process control response through the use of

the PID.

To facilitate process control and overcome the problems associated with the

traditional PID controller, a model-based control technique is an alternative approach that

has received widespread attention. In the last decade, model-predictive control

formalisms that employ an explicit model to predict the future process outputs and

calculate optimal control movements have been extensively studied and used to control

complex processes such as the nonlinear processes in chemical engineering fields.

Typically, a process model is based on conservation laws (mass, species, energy,

and momentum). The model for a chemical process often turns out to be quite complex

since most processes exhibit nonlinear characteristics and time-varying behavior. To

simplify the problem, the control formalisms frequently utilize linearized models and

some simplified assumptions even when systems behave nonlinearly. In the event that the

non-linearity is not severe, the linearized approaches can provide adequate performance.

In the case where the process is a highly nonlinear one, or is forced from the

region where the linearized model is acceptable, the linear controller often shows

significant deterioration in control performance or in some cases fails to keep up with

perturbations or process shifts. The situation becomes worse in the presence of process

lags since it is more difficult to tune the linearized model-based controller to compensate

for the lags. This traditional modeling approach can become vulnerable to modeling
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errors and thus, ultimately leads to control performance deterioration. In addition, the

mathematical model representation for a chemical process often turns out to be too

complex for practical implementation in a nonlinear model based controller. In such

cases, an attractive alternative is to generate an empirical relationship based on input-

output data.

2.2 Artificial Neural Networks

Neural computing is one of the fastest growing areas of artificial intelligence (AI). The

ability to learn and generalize a nonlinear governing relationship from a sample input-

output data set enables artificial neural networks (ANNs) to generate accurate nonlinear

process models for systems that can be difficult to model otherwise. As a result, ANN

holds great promise in modeling and control applications for complex dynamic processes

in many engineering fields. It has been studied intensively with special regard to

engineering applications.

Based on the nonlinear mapping capabilities, problems like identification,

simulation, and control of chemical processes have been widely studied and solved by

neural network methodologies. Allen et al. (1993) applied a neural network to process,

identify, and analyze the resultant emission patterns in a flame image from a utility

boiler. Booth et al. (1998) developed a neural-network-based program simulator to

empirically model the nonlinear relationship between the operating modes, load

conditions, and the emission NO from commercial boilers. Bhat and McAvoy (1990)

used a back-propagation neural network for learning the dynamic model from plant input-

output data, and outlined a possible scheme to use the neural network in place of a
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traditional model-approach control structure. Tendulkar et al. (1998) developed ANN-

based nonlinear process identification and model-predictive control strategies for the

phenol hydroxylation process in a pilot-scale fixed-bed reactor system. Nikrawesh et al.

(2000) presented a model predictive control strategy, which used a neural network to

model the process, and then applied the mathematical inverse of the process model as the

controller. Chovan et al. (1996) demonstrated the concept of using a recurrent neural

network for solving dynamic control problems.

Generally, neural networks are characterized by three basic parts: the network

topology, the computational characteristic, and the training rule. Neural networks can be

divided into two main classes by their topologies: feedforward networks and recurrent

networks. Figure 2.1 shows a schematic of the feedforward multi-layer-perceptron

(FMLP) topology, which is the most widely used and applied in this study. The network

in Figure 2.1 has three layers, the left column is an input layer, the middle column is a

hidden layer, and the right column is an output layer. Although the FMLP can have more

than one hidden layer, it has been proven and is widely accepted that a single hidden

layer is sufficient for most cases (Bhat and McAvoy, 1990; Chovan et al., 1996; Gomm et

al., 1997; Martins and Coelho, 2000; Nascimento et al., 2000; Shu and Pi, 2000;

Tendulkar et al., 1998).

The network consists of processing elements called neurons (nodes) and

information flow channels between the neurons called interconnections. Each neuron

carries out a local computation, which converts inputs to the neuron to an output. This

computation is based on the activation function assigned to each neuron. The information

flows in a forward direction, from the input layer to the hidden layer, and then the output
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layer. The FMLP neural network is useful for steady-state modeling. Unlike the recurrent

network (Figure 2.2), the outputs of the FMLP network are not allowed to be included as

inputs to any of the network's neurons. A more detailed description of the FMLP network

computation can be found in Chapter 4.

Figure 2.1 FMLP neural network architecture.

The final part, which is the key to most neural networks, is the training rule.

Training the network means finding a set of parameters (interconnection weights) that

produce the desired behavior. Training methods are generally divided into two classes:

supervised and unsupervised trainings. The back-propagation trained networks used in

this study are supervised networks. It means the networks need the input values and the

corresponding desired output values to learn. At present, the supervised back-propagation

has been applied to a wide variety of practical problem. It has proven very successful in
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its ability to model nonlinear relationships (Allen et al., 1990; Bhat and McAvoy, 1990;

Gomm et al., 1997; Hernández and Arkun, 1992; Miller and Lemieux, 1998; Nascimento

et al., 2000; Nikravesh et al., 2000; Palancar et al., 1998; Reinschmidt and Ling, 1994;

Shu and Pi, 2000; Syu and Chen, 1998; Tendulkar et al., 1998). Unlike the supervised

learning rule, unsupervised training systems develop their own rules by extracting

information from examples without a complete set of the input-desired output pair. Only

the supervised back-propagation training system is discussed and implemented in this

study (Chapter 4). Detailed descriptions of the supervised and unsupervised training can

be found elsewhere (Zurada, 1992).

Figure 2.2 Recurrent neural network architecture.
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2.2.1 Process Modeling Using Neural Networks

The use of ANNs for model development in recent years has overcome many limitations

and problems associated with the traditional modeling methods. The use of the ANNs

becomes even more attractive in the chemical engineering areas because of the non-

linearity present in most chemical processes and a potential to implement the ANNs in a

model-based control approach.

The simplest form when applying the feedforward neural network in modeling

applications is to use it as a steady-state forward process model wherein the process input

values serve as the network inputs. The network statically predicts as its output the

process state based on the information it receives. Since the neural network can be

statically trained by the steady-state training data prior to using it, the network usually

converges rapidly during the offline training process.

Reinschmidt and Ling (1994) developed and demonstrated the use of feedforward

neural networks to model the relationship of NO„ emissions from the utility boiler to

various parameters. Their objective was to generate a computer representation of the

response surface of NO„ production as a function of selected control variables. The

network input layer consisted of 21 nodes, which represent controllable input variables

(e.g. 02 rate, coal feed rate, auxiliary air, and etc.) and load to the actual process. There

are two hidden layers; each employs a sigmoid function as an activation function. The

measured NO„ emission is the only network output. The bias signals were added to all

neurons in the hidden layers only. The number of neurons used in the two hidden layers

was determined by trial-and-error. All training and testing data were collected from a
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series of previous tests on an operating utility boiler at various loads and conditions. They

were randomly partitioned into two sets: a training set and a testing set. Each data point

has 22 data elements, i.e. 21 of them are used as inputs (e.g. controllable input variables),

the other one as output (NOx ). Although many modified back-propagation learning

algorithms were tried, including back-propagation with momentum, adaptive learning

rate, etc., it was concluded that the basic back-propagation algorithm was sufficiently

robust and led to an acceptable learning error reasonably fast after validating the neural

network model against the 20 randomly chosen testing set.

A simple FMLP neural network in conjunction with some programming

techniques can be used to simulate dynamic process responses. Booth et al. (1998) used

the static-trained feedforward neural network to empirically model a nonlinear

relationship between the operating modes, load conditions, and the emission NO„ from

commercial boilers. Additional programs were utilized to incorporate process and

equipment dynamics and instrumentation response time into the ANN-based model. The

objective was to provide gradual transitions for the setpoint and bias adjustments as the

model responds to changes in operating conditions or equipment performance. The ANN-

based process simulator was used in many process control studies in trying to reduce NO ),

emissions from commercially operating utility boilers (Booth et al., 1998; Radl and

Roland, 1995).

2.2.2 Dynamic Process Control and Neural Networks

The links between neural networks, dynamic process models, and process control are

provided by the concept of model-based control wherein the neural network is used in
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place of the traditional process model based on conservation equations. The neural

network model-based control approach has become increasingly advantageous in

chemical engineering for two major reasons. First, many chemical processes exhibit

nonlinear behavior, where relationships between the controlled variables and the

manipulated variables are complex. Second, the active control of most chemical

processes is often complicated by the process dynamics, lags, and other real factors

associated with process fluid, and time delays in sampling and species analyses. In trying

to incorporate these time-varying behaviors into a classical control theory, the traditional

Smith time-delay compensation method (Seborg et al., 1989; Stephanopoulos, 1984) can

be used to construct controllers when the transfer function of the system is known.

However the transfer functions of most chemical processes are too complex for practical

implementations. Therefore, recent developments in the applications of nonlinear models

based on neural networks are entering successfully into the fields of model-based control.

When using FMLP networks to model process dynamics and implementing them

in a model-based control structure, a careful design of the history time-window of process

inputs and outputs is necessary. The inputs of the network are typically formed by using

past, present, and future process inputs and corresponding process outputs. A detailed

assignment of inputs and outputs is determined according to the requirements of each

individual control problem.

There are two sub-classes when applying the neural network into a model-based

control structure: a direct control scheme and an indirect control scheme. In the direct

control scheme, wherein the feedforward neural network serves as a controller, the neural

network is trained to map the process inputs, outputs, and setpoint into the control action.
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This kind of solution can be used to train neural network controllers for tasks that are not

too complicated and usually can be successfully solved by human operators. Such a back-

propagation feedforward neural network was presented by Syu and Chen (1998) for

online control of a wastewater treatment system.

In coping with this time-dependent problem, the data from previous sampling

times become relevant and have to be included into the neural network input nodes. The

network structure, proposed by Syu and Chen (1998), is shown in Figure 2.3, where t, t-1,

t-2, and t-3 refer to the process states in the present and past time steps. The network

input nodes are present and past process outputs (e.g. measured chemical oxygen demand

COD) and past process inputs (manipulated variable, e.g. amount of added reagent H 2O2).

The network output node is the predicted control action, the amount of reagent H 2O2 (t)

to be added.

Regarding the dynamic characteristics of the system, a moving window node of

supplying data to the neural network for learning was used. The neural network was

trained in a dynamic mode during the online operation when the control action was not

called up. For each learning cycle, a fixed number of training data was provided to the

network. That is, once new data were added as time moved on, the oldest data would be

removed from the training set. When the network was switched to be a controller, the

present system output COD (t) was replaced by the desired process setpoint. Such neural

network adaptive control is notable for its ability in carrying out the online control of the

continuous wastewater treatment system successfully as long as the network parameters

and operation conditions are properly chosen.



Figure 2.3 Neural network in a direct control scheme (Syu and Chen, 1998).

Another model-based control approach is to use the neural network as a process

model in an indirect control scheme. The indirect control method uses an explicit process

model to predict the future process outputs from past and present inputs and outputs. In

this approach, the inverse of the model at each sampling time must be calculated via an

optimization routine to calculate an optimal control action. Many computing techniques

have been studied and incorporated into the indirect control scheme to calculate the

control output. The concept of employing neural networks in the indirect control scheme

has been successfully demonstrated by many researchers (Bhat and McAvoy, 1990;

Braak et al., 1998; Evenson et al., 1998; Gomm et al., 1997; Johnson, 1998; Nascimento

et al., 2000; Nikravesh et al., 2000; Palancar et al., 1998; Tendulkar et al., 1998).
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Bhat and McAvoy (1990) demonstrated the use of a back-propagation neural

network for dynamic modeling (BDM) and control of a nonlinear chemical process — pH

in a continuous-stired-tank-reactor (CSTR). The CSTR has two input streams, one

containing a base reagent (NaOH) and the other containing an acid reagent (HAC). There

are 15, 5, and 5 neurons in the network's input, hidden, and output layers, respectively.

The network inputs were formed from past and present values of process inputs and

outputs, and future values of the process inputs (a moving time-window of process inputs

and process outputs). It was noted that the future values of the process inputs were known

during the network training process since the training set was developed from the

historical time-dependent database. The network predicted the process output (pH) one to

five steps into the future. After several cycles through the training process, the BDM

converged and gave excellent predictions. Compared to a traditional modeling method

(e.g. autoregressive and moving averages), the neural network technique showed its

ability to learn more of the nonlinear characteristics of the process. Once trained, the

network can be used in a model-based control structure. However, as demonstrated, the

neural network only predicted the process output, but not the manipulated variable.

Therefore, an additional control element is needed in the indirect ANN-based control

scheme for computing an optimal control action, based on the neural network model

outputs and the future desired process setpoint.

The use of a process optimizer to calculate the manipulated variables was

proposed by many authors (Bhat and McAvoy, 1990; Braake et al., 1998; Nascimento et

al., 2000; Tendulkar et al., 1998). Figure 2.4 presents a schematic diagram showing how

the neural model and the process optimizer are constructed and used in the indirect
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model-based control structure. Typically, the process optimizer performs an iterative

computation of an inverse problem to calculate the manipulated variable based on the

neural network outputs and future desired setpoint. The optimizer suggested by

Tendulkar et al. (1998) uses the steepest descent method for iteratively adjusting the

neural network inputs representing the manipulated variables until the error between the

network-computed process outputs and the setpoint falls below a pre-assigned small

threshold. After convergence, the steepest descent search is terminated and the converged

value of the manipulated variable is applied to the process. This procedure is repeatedly

executed at every sampling instant. Since the neural network model is frequently

complex, the iterative computation of the manipulated variable through the process

optimizer often turns out to be difficult and time consuming. The task becomes too

difficult to implement for highly nonlinear processes.

Gomm et al. (1997) developed process models and predictive controllers using

FMLP neural networks. The capabilities of the neural network system were demonstrated

in practical applications to modeling and control of a nonlinear process. The FMLP

neural network was trained via back-propagation to model a nonlinear process. The

trained neural network was implemented in conjunction with a nonlinear process

optimizer in a model predictive control scheme. Improved setpoint tracking over the

traditional tuned PI controller was achieved over a nonlinear operating range with

significant reductions in the required movement of the process input.
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Figure 2.4 A FMLP neural network in an indirect control scheme.

Martins and Coelho (2000) reported a control methodology based on HD control

algorithms conjugated with the FMLP neural network. The objective was to apply the

neural network as a complementary tool to improve the PID-based control performance.

The neural network was used to predict future values of the controlled variable as a

function of process measurements and the process setpoint. This information was then

incorporated in a conventional ND control system structure.

Basically, the techniques used to compute the control action in an indirect control

scheme involve an iterative inverse adjustment of the neural network outputs and the

actual process outputs. Such computation is a time-consuming process especially for a

highly nonlinear process. To avoid time-consuming calculations of the inverse problems

in the indirect control structure, a neural network of the process inverse model can be
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used in place of the process optimizer or some types of controllers described above. For

example, referring to Bhat and McAvoy (1990), one could switch the future process

outputs with the future process inputs and develop an inverse system model. That is, the

inverse neural network model predicts what flow rates of NaOH (process inputs) are

necessary to achieve a desired pH (process output). Once the inverse model is available,

it can be used in many schemes of a model-based control approach such as an internal

model control (IMC) structure as shown in Figure 2.5.

Figure 2.5 Neural networks in a model-predictive control scheme.

The strategies of using and combining the neural network model and its

mathematical inverse for process control applications are diverse and have been

investigated and demonstrated by several researchers (Palancar et al., 1998, Chovan et

al., 1996, and Nikravesh et al., 2000).

Following the nomenclature for neural network study used in Bhat and McAvoy

(1990) and the field of process control, the neural network process model usually refers

to a direct network that predicts the outputs of the process based on the values of the
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input variables. The mathematical inverse of the process model refers to an inverse

network. The inverse network predicts future process input variables based on current

and past values of the process inputs, outputs, and desired outputs.

Palancar et al. (1998) designed a control system based on a combination of two

artificial neural networks for a pH control process in a CSTR. The purpose of the

controller was to maintain the pH of the exit stream of a neutralization tank as close as

possible to a given setpoint value. The proposed control configuration is shown in Figure

2.6. The two neural networks are feedforward multi-layer-perceptron (FMLP) types with

one hidden layer. Each network employs the sigmoid function as an activation function.

The input and output values used by the neural networks were normalized into the range

of 0 to 1. To incorporate the time delay in the system, the researchers included past data

of a number of sampling periods corresponding to the system lag into the networks inputs

and outputs.

The first neural network is a plant model that predicts future pH values

(Yk, Yk+1, • • -, Yk+5) from past and present values of pH (Yk-3, Yk-2.	 Yk) and valve

stem position (XVk-3, Xvk-2,	 Xvk) and future values of valve stem position (Xvk+1,

XVk+2,	 XVk+5)• Note that the valve stem position controls the flow rate of a

manipulated variable — the alkaline stream. The second neural network is a plant inverse

model that provides a control action by calculating the future values of valve stem

position (XVk+1, XVk+2, • • •, Xvk+5) from present and past values of pH (Yk-3, Yk-2, • • -, Yk)

and the valve stem position (Xvk-3, Xvk-2,	 Xvk) and future values of pH setpoint



Figure 2.6 ANN-based control configuration (Palancar et al., 1998).

Back-propagation was implemented for the network training process. The direct

network was first trained by using a historical discrete-time database (pH vs. time). The

online weight updating of the direct network was also made once at each sampling time

during the closed-loop operation. It served to adapt better networks for situations rather

different from the ones used during the first rough offline training. Because of the

structure of the control loop, the inverse network had to be always operated in a learning

mode (online training) during the closed-loop operation. Although it was not clearly

mentioned in the article, it would be assumed that the historical training data were not

sufficient to span all the possible operation ranges of the neutralization tank. The

experimental results show that the control efficiency is good only for perturbations that

do not involve strong buffering changes (e.g. small perturbations of setpoint, flow and
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concentrations of acids). Under these conditions, the neural networks were able to adapt

their weights online and effectively responded to the perturbations they had never seen

before. Nevertheless, the neural networks could not learn adequately under frequent and

large perturbations. Allowing for these limitations, the proposed controller could be

useful only for processes in which the expected perturbations and buffering changes were

small.

As demonstrated, the neural networks used in most control schemes are multi-

layer-perceptron feedforward (FMLP). The most frequently used approach to incorporate

the process dynamics, process lags, and other real factors into the process model is to

carefully design a time-history window of the process inputs and outputs from a period of

time equal to the delay in the process and then input them into the feedforward neural

network (Bhat and McAvoy, 1990; Gomm et al., 1997; Nikravesh et al., 2000; Palancar

et al., 1998; Syu and Chen, 1998; Tendulkar et al., 1998). This technique is possible

when there are discrete-time training data available. Thus, the important issue of using

the feedforward neural network for an active control problem is training-data acquisition.

Ideally, the training set should include enough training vectors to adequately

describe the modeled system behavior. However, in the indirect control scheme, the

output error of the neural network model is used in a standard back-propagation

algorithm to pass the error back to the controller output. This indirect control structure

inhibits the network from operating independently from the actual process since it

requires discrete-time data of both process inputs and outputs to be used for the neural

network inputs. As a result, network learning is essentially performed online in the

presence of the real process. Since most chemical processes are quite complex, such
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online weight updating is often difficult and time-consuming. Therefore, in most cases,

the neural networks cannot be adequately trained during the online learning process.

Recurrent neural networks offer a solution to cope with the difficulties and

limitations associated with the feedforward neural network especially when dealing with

a time-dependent control problem (Chovan et al., 1996; Palancar et al., 1998; Gomm et

al., 1997). Unlike the feedforward neural network, the recurrent network can develop an

internal representation of time history through learning due to their internal feedback

connections. Only current process inputs and outputs are required instead of their time-

history. As a result, the recurrent neural network can operate independently from the

process and can be used in a generalized mode for offline simulation and development.

Although the process dynamics and delay time can be mapped to a fully recurrent neural

network as demonstrated by Chovan et al. (1996), the network-training algorithm

convergences slowly since it requires the use of all weights and feedback activities in the

network for a weight updating process. Another drawback of using the trained recurrent

neural network, suggested by Gomm et al. (1997), is deterioration in the prediction

accuracy as time advances. The reason for this is that, in the recurrent operating mode, no

corrections are made to the network predictions — that is, the recurrent neural network

operates independently from the process. Hence, any error in the network output is also

fed back into the network and can accumulate with time.



CHAPTER 3

EXPERIMENTAL FACILITY

The overall experimental setup schematic is shown in Figure 3.1. This overall setup can

be divided into three different parts: a two-staged combustion system, a gas sampling and

analysis system, and a control system.

3.1 A Two-Stage Combustion System

An atmospheric pressure two-stage reactor presented in Figure 3.2 serves as the

combustion facility. It has been well characterized elsewhere (Mao, 1995; Mao and

Barat, 1996).

The first stage (primary zone) of the combustor is a 250-cm 3 well-mixed zone that

can be modeled as a perfectly stirred reactor (PSR) under most conditions. It is custom

cast from refractory alumina cement. An overhead cross section of the first stage is

shown in Figure 3.3. The feed stream enters the first stage from an outer stainless steel

circular manifold through a series of 32 jets positioned at the circumference of a torus.

Each jet is angled 20° off the radius of the stainless steel circular manifold. The feed

stream consists of metered C2H4, NH3, air, and diluent N2.

Polymer-grade purity (99.9%) ethylene (C2H4) is used as the primary fuel in this

study. Two ethylene cylinders are connected in parallel to the feed line. Ethylene at

cylinder pressure flows through a stainless steel coil bathed in hot water before the

regulator in order to compensate for Joule-Thomson cooling during the significant

pressure drop across the regulator. The hot water in the bath is continuously heated and

24
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controlled at 70 to 80 °C. After preheating and regulating to 40 psig, the ethylene gas

temperature measured at the regulator outlet is typically 20 °C, which is a desirable feed

temperature.

Anhydrous 99.99% purity ammonia (NH 3), which serves as the secondary fuel, is

used as a model dopant to simulate fuel-bound nitrogen, which produces NO. The

ammonia is regulated to 40 psig prior to its rotameter.

An in-house compressor provides pressurized air at 120 psig for the oxidant in

both first and secondary stages (PSR and PFR). A knockout filter is mounted on the

combustion air line to remove any oil particles and saturated moisture. The air is

regulated to 40 psig, for both primary and secondary stages, prior to the rotameters. The

primary air is delivered via two rotameters connected in parallel (Figure 3.1): one with a

large flow, manual valve, and the other with a small flow, electronic valve. The total

primary air flow rate is the combination of the flow from the two rotameters. The large

flow, manual valve is very essential during the system start-up, shutdown, and

changeover (fuel-lean to fuel-rich and vice versa) procedure. The secondary air is

injected into the second stage through a ceramic tube located at the base of the second

stage. One electronic control valve is installed for computerized control adjustment of the

secondary air flow rate. The three-way valve, located downstream of the secondary air

rotameter, provides a manual control option.



Figure 3.1 Overall experimental schematic.



Figure 3.3 Top cross section of the first stage.
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The fuel/air mixture composition is characterized by the equivalence ratio 4) given

where Fuel = volumetric or molar flow rate of C2114

Air = volumetric or molar flow rate of primary air

Nitrogen gas from a high pressure refrigerated dewar is used for diluting the fuel-rich

feed and controlling the reactor temperature. Additional nitrogen gas does not change the

feed equivalence ratio, but does change the feed and product concentrations and reactor

temperature. The diluent nitrogen gas from the dewar is regulated to 80 psig at room

temperature prior to its rotameter.

Residence times in the primary zone are 5-10 milliseconds based on mass flow

rate and actual temperature. A water-cooled extractive sampling probe and one uncoated

type R micro-thermocouple are inserted into the first stage from the bottom for sample

gas withdrawal and temperature measurement, respectively.

The hot effluent from the first stage passes over a flow straightener and then

enters the second stage — a linear flow zone (50 mm in inner diameter x 330 mm long)

that can be modeled as a plug flow reactor (PFR). The second stage reactor is made from

a pre-cast alumina cylinder. The secondary air can be introduced through a ceramic tube

installed at the base of the secondary zone. Second stage residence times are on the order

of 20 milliseconds at combustion temperature. A variable position water-cooled probe is

inserted axially into this secondary zone from the top for sample gas withdrawal.
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Four type R micro-thermocouples are radially inserted into this linear flow zone

approximately 6 mm from the wall for temperature measurement.

The exit gases from the secondary zone mix with large volumes of axially

injected excess air in a bluff body-stabilized afterburner. The exhaust gases are then

cooled down by water spray before venting.

3.2 Gas Sampling and Analysis System

A probe sampling system is shown in Figure 3.4. The sample gas stream passes

successively through a chilled bath and two droplet knockout drums to reduce the water

vapor mole fraction, before being drawn through a bellows pump that provides the

suction for sample withdrawal and the pressure head for sample gas passage to the online

continuous emission monitors.

Figure 3.4 Gas sampling and analysis system.
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The sample gases are split, with portions flowing to a paramagnetic O2 analyzer

and a non-dispersive infrared CO 2 analyzer. The remainder is dried using a membrane

fiber bundle gas drier prior to passing to a chemiluminescence NO x analyzer.

3.2.1 Paramagnetic 02 Analyzer

The oxygen level is determined by a Beckman model 755 O2 analyzer using a

paramagnetic method based on the ability of the oxygen molecule to become a temporary

magnet when placed in a magnetic field. Measurement is accomplished by a torque force

balance system. The force produced in this system is proportional to the sample oxygen

content. Variables that can influence the measurement precision are sample gas pressure

and operating temperature. Therefore, it is necessary to calibrate the instrument at the

same pressure as the actual sample, and to warm up and maintain the analyzer

temperature at 60 °C.

3.2.2 Non-Dispersive Infrared CO2 Analyzer

The Beckman model 880A is a non-dispersive infrared CO2 analyzer. Within the

analyzer, two equal energy infrared beams are directed through two parallel optical cells:

a flow-through sample cell and a static reference cell. The detector continuously

measures the difference in the amount of infrared energy absorbed within each of the two

cells. This difference represents the concentration of CO2 in the sample stream.
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3.2.3 Chemiluminescence NO-NO2-NOx Analyzer

The model 42C high-level chemiluminescence NO-NO2-NOx analyzer from

Thermo Environmental Instrument, Inc. is used to monitor the NO concentration in this

study. The model 42C uses the principle that nitric oxide (NO) and ozone (O 3) react to

produce a characteristic luminescence with intensity linearly proportional to the NO

concentration. Infrared light emission results when electronically excited NO2 * molecules

decay to lower energy states. The reactions involved are:

where h = Planck's constant

v = frequency, Hz.

From Equations 3.2 and 3.3, as NO (contained in the sample) and O 3 (produced by an

ozone generator in the analyzer) are mixed in a small reaction chamber, the

chemiluminscent reaction produces light emission that is directly proportional to the

concentration of NO contained in the sample. This emission is measured by a detector

and converted into an electric signal.

3.3 Control System

A schematic diagram for the control system is shown in Figure 3.5. The application of

process control for the combustor involved several components and tasks. Two

electronically proportional solenoid valves, one for primary air and the other for

secondary air, are the final control elements.



Figure 3.5 Process control schematic.
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Analog signals from stack gas analyzers (O2, CO2, and NO) are continuously

monitored and digitized by a Fluke data logger. All digital signals from the Fluke data

logger are then sampled at the user's preset frequency rate to the COM port of an

operating computer via an RS-232 interface.

Figure 3.6 Visual Basic operating interface.

The operating user interface, shown in Figure 3.6, is written in Visual Basic 6.0.

The Visual Basic programming source code is listed in the Appendix. The software and

hardware setup in the operating computer is shown in Figure 3.7. The operating interface

enables the operating computer to accept and display the signals from the computer COM

port. For a closed-loop experiment, the operating interface enables the operating



34

computer to process the signals to and from selected control modules. A PID control

algorithm is embedded as a module in the operating interface program, while the neural

networks are embedded in the operating interface program as dynamic link library files

(DLL). The operating interface allows manual control for an open-loop experiment as

well.

Figure 3.7 Control software and hardware setup.

The operating computer is a 333 MHz Pentium II processor with 64 MB RAM

and Windows 98 operating system. Based on instructions from the operating interface,

the computer generates control signals to the final control elements, which are the two

electronic control valves. The control signals are sent to the two electronic control valves

through a Keithley Metrabyte 12 bit 8-channel analog output board (DDA-08) installed
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into the operating computer. The DriverLINX driver, which is the 32-bit application

development device driver for custom data acquisition under the Windows environment,

is used as the programming interface between the Visual Basic application and the DDA-

08 analog output board. The DDA-08 analog output board provides selectable voltage or

current outputs. Each output channel contains a buffer for storing data, thus enabling the

board to achieve fast update rates. Two channels of the DDA-08 are utilized; one for

primary air control, another one is for secondary air control. In this study, the DDA-08

board was configured and tested for 4-20 mA signal outputs by the DriverLINX utility

program.

All experimental data from the Visual Basic operating interface are continuously

stored into a pre-assigned Visual Basic memory buffer. Once the buffer is filled up, the

data in the buffer are transferred and stored into a Microsoft Excel spreadsheet through

the use of Visual Basic for Applications (VBA) and Microsoft Excel macro recorder.

To summarize the operation of the control system, the detailed sequence of

measurements and calculations at each sampling time is as follows:

I. Measuring selected combustion effluent compounds by the stack gas

analyzers.

2. Monitoring and digitizing the analog signals from the stack gas analyzers by

the Fluke data logger.

3. Sampling digital signals from the Fluke data logger into the RS-232 COM

port of the operating computer.

4. Accepting the digital signals from the operating computer COM port into the

Visual Basic operating interface.
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5. Accessing the selected control module.

6. Updating the control signals.

7. Outputting the control signals to the final control elements through the analog

output board (DDA-08).

8. Storing selected experimental data into a pre-assigned buffer for transfering to

the Microsoft Excel spreadsheet in batch.

Figure 3.8 Electronic control valve circuit.

As mentioned, the two electronic solenoid valves serve as the final control

elements. Both electronic valves are from Omega (model PV-104) and configured to

receive 4-20 mA signals. Each electronic control valve is connected as a floating load to

two power supplies; one is a 12 VDC regulated power supply for powering the valve,

while the other is a 24 V unregulated power supplier (Omega model U24y101) for
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filtering signals to the valve. Higher current (control signal) results in more plunger

movement of the electronic control valve and more flow. A Keithley external screw

terminal panel (STP-37) allows easy access and wiring connections between the DDA-08

and the final control elements. A Diagram for the electrical circuit for the electronic

control valve is shown in Figure 3.8.



CHAPTER 4

NEURAL NETWORK TOPOLOGIES AND LEARNING ALGORITHM

4.1 Network Topologies

Feedforward multi-layer-perceptron (FMLP) networks were constructed and used in this

study. This architecture has been successfully used in several ANN-based control

applications (Allen et al., 1993; Bhat and McAvoy, 1990; Braak et al., 1998; Gomm et

al., 1997; Hernández et al., 1992; Martins and Coelho, 2000; Nascimento et al., 2000;

Nikravesh et al., 2000; Palancar et al., 1998; Reinschmidt and Ling, 1994; Syu and Chen,

1998; Tendulkar et al., 1998; Tao and Burkhardt, 1994). The FMLP network architecture

is shown in Figure 4.1. The network consists of layers of interconnected parallel

processing elements called nodes or neurons. "Feedforward" implies that network nodes

have to be connected to one another in a forward fashion, and the output of the network is

not allowed to be included as input to any of the network's nodes.

As shown in Figure 4.1, the left column is the input layer, the middle column is

the hidden layer, and the right column is the output layer. The overall input to the

feedforward neural network is the vector z that enters through the network input layer.

The circles represent the network nodes. The lines joining the circles represent the

network synapses or weighted information passed from one layer of nodes to the next

layer of nodes. Each input node is connected to each node in the hidden layer. The signal

from each input node is multiplied by a corresponding weight. The sums of each

weighted signal become the inputs to the node in the hidden layer. Each of the nodes in

the hidden layer is, in turn, connected to each node in the output layer. A similar
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algorithm is applied to each connection between the hidden nodes and the output nodes.

The overall network output is the vector U. The power of neural computation comes

from the massive interconnection among the nodes that share the load of the overall

processing task, and from the adaptive nature of the parameters (weights) that

interconnect the nodes.

Figure 4.1 FMLP neural network architecture.

Figure 4.2 shows a closer look at a particular node k. Every node model consists

of a processing element with synaptic input connections and a single output. The

processing element consists of two computing units called a summing node and a

threshold logic unit.
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Figure 4.2 Neural network computing node.

The inputs to the summing node are denoted by the vector y where

The output from the summing node k is called an activation value,

given by:

where w k., are weights to be determined during the training process. Once the activation

value is obtained, the node's output can be computed based on the selected mapping

function:

The function f(netk ) is often referred to as an activation function. The activation

function used in this study is a hyperbolic tangent function that can be expressed as

follow:
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Normally, a neural network can have several layers of nodes or processing elements. In

this study, a simple network structure with one hidden layer is used.

4.2 Network Learning Algorithm

In order to perform any processing tasks, the neural network must "learn" an input-output

mapping from a set of known input-output pairs. Back-propagation is by far the most

common form of learning (Allen et al., 1990; Bhat and McAvoy, 1990; Gomm et al.,

1997; Hernández and Arkun, 1992; Miller and Lemieux 1998; Nascimento et al., 2000;

Nikravesh et al., 2000; Palancar et al., 1998; Reinschmidt and Ling, 1994; Shu and Pi,

2000; Syu and Chen, 1998; Tendulkar et al., 1998). In this study, each neural network

was trained offline with a static error back-propagation training algorithm in a supervised

learning mode. The objective of the training is to find the series of weights that provides

the best possible approximation of the network outputs, based on the training set of input-

output pairs.

4.2.1 Supervised Learning Process

Network training involves minimization of an error function using a steepest descent

strategy known as the generalized delta rule wherein the network outputs are compared

with their desired values (known target value). The difference between the network

outputs and their desired values is then used to modify the interlayer connection weights.

The mapping error is propagated backward from the output layer through the hidden

layer toward the input layer. This mechanism of backward error transmission is used to

modify the network synaptic weights. The input-output mapping, comparison of target
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and actual values, and weight adjustment continue until all mapping examples from the

training set are learned with in an acceptable error. Usually, mapping error is cumulative

and computed over the full training set. The detailed description of the error back-

propagation training algorithm and delta rule learning can be found elsewhere (Zurada,

1992).

As shown in Figure 4.1, the input and output values of the network are denoted

z, and ok , respectively, for i = 1, 2, ..., I and k = 1, 2, ..., K. The signal values from the

hidden layer are denoted y i , for j = 1, 2, ..., J. The weight w ki connects the th neuron in

the hidden layer to the k th neuron in the output layer. The weight vji connects the

neuron in the input layer to the j th neuron in the hidden layer. During the classification,

usually called the recall phase, the trained neural network operates in a feedforward

manner as described in the following expressions:

where the input, hidden, and output vectors and the weight matrices are, respectively
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A nonlinear diagonal operator 1•1 is,

where f is the network activation function as described earlier.

In the supervised learning process, the desired (target) output vector has to be

provided from the set of known input-output (training set) data.

4.2.2 Output Layer Weight Adjustment Algorithm

To formulate the network-learning algorithm, the adjustment of the synaptic weights

between the network output layer and the hidden layer is first to be considered.

The delta-learning rule is simply derived from the condition of least squared error

between network output o k and desired output dk . The error expression for a neuron in

the output layer can be expressed as follows:

Minimization of the error based on the delta-learning rule requires the weight changes

Δwkij to be in the negative gradient direction (where η is a positive constant):
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The computation at each node in the output layer is

The k th neuron's output is

The error signal term S (called delta) produced by the k th neuron in the output layer is

defined as follows:

Using the chain rule, the term on the right-hand side in Equation 4.7 can be written as

follows:

The second term of the product of Equation 4.11 is the derivative of the sum of products

of weights and patterns wk1y1 + wk2y2+ wk3y+. ..+wkjyj.Thus, it can be written as

follows:

Combining Equations 4.10 and 4.12 leads to the following form for Equation 4.11:

From Equations 4.7 and 4.13, the weight change can be obtained
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Equation 4.14 represents the general formula for delta-learning weight adjustments. In

order to obtain the Δwkj  , the error signal term delta δok needs to be computed. From

Equation 4.10, it can be expressed as follows:

Denoting the second term in Equation 4.15 as a derivative of the activation function

From Equation 4.6, we know that

Equation 4.15 can be rewritten as follows:

Hence, the final formula for the output layer weight adjustment can now be obtained

from Equation 4.14 as

The update weight values wkj become

Thus, the updated individual weights under the delta training rule can be expressed for

The updated weights for the output layer can be expressed using the vector notation
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where the error signal vector 8 is defined as a column vector consisting of the

individual error signal terms:

4.2.3 Hidden Layer Weight Adjustment Algorithm

Layers with neurons whose outputs are not directly accessible are called internal or

hidden layers. In this study, all networks are two-layer networks with one hidden layer as

shown in Figure 4.1. The network shown in Figure 4.1 can be called a single hidden-layer

network. The delta-training rule, previously used for the output layer, is now generalized

for the weight increment Δvj i for the hidden layer.

The negative gradient descent formula for the hidden layer is

The error signal term 4„; is now defined as

With the chain rule,
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Similar to Equation 4.14, the second term of the product of Equation 4.25 is equal to z1.

Thus, the general expression for delta-learning weight adjustment in the hidden layer can

be expressed as follows:

The error signed term 4j is computed as:

From the definition of Equation 4.6, the first term of the product of Equation 4.27

becomes

The second term of the product of Equation 4.27 is equal to

Equation 4.28 can be simplified to a compact form by using Equations 4.8 and 4.18

Combining Equations 4.29 and 4.30 and substituting back into Equation 4.27

The weight adjustment Equation 4.26 in the hidden layer now becomes
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The modified weights of the hidden layer can be expressed as

The updated weights for the hidden layer can be expressed using the vector notation as

follows:

where

4.2.4 Summary of the Supervised Error Back-propagation Training

The flow chart summarizing the supervised error back-propagation training algorithm for

a two-layer network is shown in Figure 4.3. The weighting of the connections between

various nodes can be arbitrarily set at the beginning of the training process. With initial

weights W and V , the learning begins with the feedforward recall process of a single

known input-output training pattern (z and WI) ). It should be noted here that there are P

training patterns (P known input-output pairs) in the training set (i.e. there are P input

patterns of ,..., 4 and P desired output patterns of c7 1 ,



Figure 4.3 Back-propagation learning flowchart.
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After submitting the vector	 at the input layer, the hidden layer responses

yp and output layer responses Up are computed. The cumulative error is then computed

over the training cycle. The most commonly used measure of cumulative error, the root-

mean-square normalized error (En„), is employed here. It is given by

The next step in the training process is the computation of the error signals in the output

and hidden layer, respectively. Once the error signal vectors ( S0 and .3, ) are obtained, the

KxJ weight values in the output layer can be adjusted with in the matrix W . After the

updating of the matrix W , the JxI weight values in the hidden layer are adjusted in the

matrix 'V . This computation is repeated to complete all of the P training patterns in the

training set. After each complete training set, the final error value (based on Equation

4.36) is calculated for the entire training cycle. Typically, as the network learned, the

error Erms exponentially dropped toward zero. The learning procedure stops when the

final error value drops below the preset error limit E,,. The final weight metrics W and

V are then stored in the network as a result of the learning process.

Once the network is trained, it can utilize the experiential training patterns

(W , V) to process the actual (non-training) input, and map them to the optimal output

values. The more relevant the training set is, the more efficiently the network can be

generalized. Therefore, the training set must be carefully selected to span the whole range

of the possible combustion behavior conditions.
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It must be noted that the lower error Erms does not always mean a better network.

It is possible to overtrain the network. Overtraining is a phenomenon where the network

tends to memorize the training patterns rather than generalize or interpolate them. It was

suggested by Hecht-Nielson (1989) that the overtraining is typically illustrated by the

learning-curve behavior exhibited in Figure 4.4. The network's performance is measured

using two different data sets: the training set and the testing set. While the training set

error constantly decreases and levels out, the testing set error decreases for a while, but

then begins to increase again. The challenge is to keep monitoring both the training error,

and testing error and then stop the training when the testing set error is at its minimum,

while at the same time, the training set error reaches its minimum.

Figure 4.4 Overtrained neural network learning curves.
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4.3 Neural Network Construction and Implementation

The NeuroSolutions software package from NeuroDimension, Inc. was used to construct

all neural networks in this study. The software combines a modular, icon-based network

design interface with a built-in custom wizard. These allow the user to customize

networks, generate, compile executable dynamic link library (DLL) files, and embed

them into the existing Visual Basic controlling interface.

The NeuralWizard is an application that comes with the NeuroSolutions software

package. It aids in the design and construction of the neural network. The NeuralWizard

presents a series of user-interface panels that represent logical steps in the network design

process. At each panel, the user can specify preference choices of parameters in

constructing the desired neural network. A sample of the user-interface panel for

specifying the network topology is shown in Figure 4.5. It should be noted that although

a number of network nodes and layers configuration were tried in the following chapters,

it was found that an optimal network configuration can be well guided by the

NeuralWizard.

Each neural network is built on the NeuroSolutions worksheet. A worksheet is

called a breadboard. A sample of the 2-4-4 neural network architecture is shown in

Figure 4.6. For each network component (represented by an icon on the breadboard),

there is a one-to-one correspondence between the icons on the breadboard and the

numerical computations going on behind the graphic user interface (GUI).

Each network component also has a corresponding parameter set that the user can edit or

specify through a dialog box on the breadboard.
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Figure 4.5 NeuralWizard user interface.

Figure 4.6 A complete-built neural network on the NeuroSolutions breadboard.
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Data collection is crucial in the network training process. The training data should

cover conditions that the network may encounter during the feedforward recall process.

In this study, the training data were collected from an existing experimental and

CHEMKIN simulation run database at various steady states. An approach used to

minimize the overtraining was to visually examine and pre-filter the training with raw

data. Noisy data-points were purposely removed from the training set in order to prevent

the network from learning the noisy pattern that could potentially cause deterioration of

the network generalization performance.

The training data are coded and written in a column-formatted ASCII file before

being fed into the neural network. Each column of a column-formatted ASCII file

represents one channel of data. Each channel may be tagged as the input or desired

output.

Prior to the network training, the input-output data are partitioned into two sets:

the training set and the testing set. The former is used to update the network weights

while the testing set is used to evaluate the generalization ability of the network model.

All of the training and testing data are presented to the networks in random order. This

was proven to break up any serial correlations in the data, and lead to significant

improvements in convergence speed and performance of a trained network (Gomm et al.,

1997). Since the generalization ability of the network model was identified offline using

the testing set, the testing set had to be carefully selected to contain essentially every

possible case that the network would encounter in the actual experimental environment.

During the training process, the input and desired data from the training and

testing sets are repeatedly fed to the complete-built network shown on the breadboard
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(Figure 4.6). To monitor how well the network has learned, the cost function (Ems) of the

training and testing sets is observed. Typically, as the network learns, the Erms

exponentially drops toward zero. The typical learning curves for a well-trained neural

network are shown in Figure 4.7, wherein the errors of both training and testing sets level

out simultaneously. The term MSE, shown in Figure 4.7, stands for mean-square-error

and is used in the NeuroSolutions software package. It is equivalent to Erms-

Figure 4.7 Well-trained neural network learning curves.

The NeuroSolutions software package allows the user to specify the number of

training cycles or the learning error limit. In the former case, the learning process stops

when the number of training cycles reaches the specified number. In the latter case, the

learning process stops when the learning error drops below the user-input error limit

(Ern, < Emax ). In this study, the software package offers a cross validation function that
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allows the user to monitor the training and testing learning curves simultaneously

(as shown in Figure 4.7). Thus, the optimal number of training cycles can be found and

the overtraining effect is minimized.

Each well-trained neural networks is converted into a dynamic link library (DLL)

file that is compatible with the Visual Basic language by the Custom Solution Wizard.

The Custom Solution Wizard is an application, provided with the NeuroSolutions

software package, that takes a neural network created in the NeuroSolutions breadboard

and automatically generates and compiles a DLL file. The DLL file is an executable

module, integrated into the Visual Basic operating interface, that can be called from the

Visual Basic operating interface to perform the mapping input-output function (recall

process). All measurable combustor parameters are displayed and preprocessed in the

Visual Basic operating interface before being fed into the neural networks. The outputs

from the trained neural networks are displayed on the Visual Basic operating interface.

The outputs are then directed to computation modules for calculating the signals to the

final control elements (proportional valves).



CHAPTER 5

FEEDBACK PROCESS CONTROL

5.1 Introduction

The proportional-integral-derivative (PID) controller has been widely accepted as one of

the robust control techniques in the industry. However, the traditional PID controller can

be challenged by process oscillations when large disturbances or setpoint changes are

encountered. Another drawback of implementing the PID controller is that tuning can be

time-consuming and can require a combination of operational experience and trial-and-

error. The task becomes even more difficult for highly nonlinear processes especially in

the presence of significant time delay because of the many possible combinations of HD

parameter settings (see Equation 5.2).

A proportional controller is one of the simplest control configurations. Tuning the

proportional controller is simple and requires a lot less skill and time than tuning the PID.

However, the proportional controller has the inherent disadvantage of its inability to

totally eliminate the sustained error or offset when it encounters a process disturbance.

Theoretically, the offset can be eliminated by manually resetting the process setpoint or

the control bias value (refer to Equation 5.2).

An alternative control strategy that suppresses the offset, but with less tuning

complications, uses a neural network in conjunction with the conventional proportional

controller. This approach is introduced and tested in this chapter. The proposed control

strategy falls into one category of the model-based control methodologies. The goal is to

57



58

let the neural network represent the experiential operator's knowledge to update the

proportional controller's bias value, so that the process offset can be minimized.

5.2 Experimental Outlines

The stated control objective in this chapter is to control the 02 level in the combustor

outlet at the desired setpoint. Primary air is the oxidizer and only ethylene (C2H4) serves

as the fuel. The fuel/air mixture composition is characterized by the equivalence ratio (I)

given by:

where Fuel = volumetric or molar flow rate of C2H4

Air = volumetric or molar flow rate of primary air

There is no air injection into the second stage of the combustor; that is, the first stage and

overall equivalence ratios are equal (4 = (O. = (0). At a selected steady state,

a step-increase disturbance of the fuel (C2H4) is manually made. This step disturbance

causes changes in the equivalence ratio 40, consequently changing the 02 levels in the

combustor outlet. After a step disturbance, the controller, which receives signals from a

paramagnetic 02 analyzer, takes immediate action by computing and sending control

signals to a manipulated variable (primary air flow rate) and brings the process to the new

steady state. Time delay in the gas sampling and analysis system is not significant (less

than 45 seconds), so it does not have a severe impact on the control performance. The
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control signals are based on the deviation of the measured 0 2 from the user's preset

setpoint.

In order to establish a control experimental baseline, a series of open-loop runs

were made to examine the effects of the feed composition on an outlet 0 2 level. The feed

equivalence ratio was varied from 0.60 to 1.35 by changing the flow rate of the primary

air and C2H4. The first-stage reactor temperature was kept constant at 1673 K with

diluent N2. A monotonic relationship between the equivalence ratios (I) and the observed

02 level is shown in Figure 5.1. The result is consistent with the previous study by Mao

(1995).

Figure 5.1 Second-stage 02 concentrations at various steady states.

A control baseline is to first set the equivalence ratio at 0.63, which yields the 02

level at about 6.8%. A step disturbance is then manually applied to the fuel flow rate
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(C 2H4) that causes (I) to rise to 0.76. From Figure 5.1, this would yield about 14% of 02

concentration in the combustor outlet for the open-loop run. The control objective is to

bring the 0 2 level back 6.8% by manipulating the primary air flow rate. The performance

of the PID controller will be considered first, followed by the implementation of the

proportional-neural-network controller (PNNC).

5.3 Experimental Setup

5.3.1 A PID Controller

The experimental setup for the HD controller is shown in Figure 5.2. The computer

source code for the HD algorithm is obtained from CIMTechniques, Inc. The source

code was originally written in Basic. It is attached as a module in the Visual Basic

operating interface. The PID function is described by the following equation:

where p(t) = controller output

= bias value

= controller gain

= integral time

τD = derivative time

e(t) = error signal between setpoint and measured control variable

The PID controller is set to execute every sampling time period, chosed by an operator.

All HD parameters can be adjusted through the Visual Basic operating interface by the

operator. The adjustable parameters are summarized below:



- Proportional gain (K(.)

- Integral gain (τ1)

- Derivative gain (m)

- Period or control action frequency
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Figure 5.2 PID experimental schematic.

As the name implies, the proportional gain IC directly adds a contribution to the

control output proportional to the difference between the process setpoint and the

measured value of the control variable. If the proportional gain is high, the control

variable can reach the setpoint more quickly. However, if K c  is too high, the system will

not have time to react as the setpoint is approached and an overshoot or oscillation will

occur. The proportional gain can be reduced to minimize the overshoot and the

oscillation. A small IC may lead the system to reach equilibrium before the process
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variable approaches the process setpoint. The difference between the measured control

variable and the setpoint at the new steady state is known as the offset.

The integral term integrates the process error and adds a contribution proportional

to the integrated sum. The integral term causes the controller output to change as long as

an error signal e(t) # 0. One disadvantage of applying the integral control action is a

phenomenon called reset windup. This results from a large integral term. The reset

windup can also occur as a consequence of a large sustained load disturbance that is

beyond the range of a manipulated variable. In both situations, the integral term in the

PID function continues to build up after the controller output saturates. This is because

the controller is already doing all it can to reduce the error, but a physical limitation of

the final control element (i.e. the maximum flow rate through the electronic control

valve) prevents the controller from reducing the error signal to zero. To reduce the reset

windup effect, in this study, the control signal is limited to between 0 — 100% control

output.

Derivative control takes action according to the speed and direction of the change

of the process variable. It tends to improve the dynamic response of the controlled

variables, especially if there are some time lags in process response, by anticipating and

correcting the future process behavior. Ideally, this decreases the process settling time,

i.e., the time it takes the process to reach steady state.

The control time interval (period) or frequency of control actions (1/period) is

another important parameter. Several time intervals were tried in the preliminary test.

Small time intervals tend to make the process response faster, which in turn, minimize the

process settling time. However, the process might exhibit an undesirable process
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response (e.g. setpoint overshoot or process oscillation) if the time interval is too small.

Factors used to determine the time intervals in this study are the actual process residence

time, sampling and analysis time, and the speed of the operating computer. The time

interval of 5 seconds yields the best response to control action. It is also the shortest

interval during which the operating computer can still effectively process all

programming tasks.

Tuning the PID is time-consuming because of many possible combinations of the

parameter settings. In this study, a process reaction curve tuning method, originally

proposed by Ziegler and Nichols, was used to develop a process model. With the

controller in the manual mode, a step change in the controller output (primary air flow

rate) was introduced and the measured process response (0 2 concentration) was recorded.

The process reaction curve and the controller output are shown in Figures 5.3 and

5.4, respectively. The initial (I) was 0.80 and the controller output was 12.30 mA. The

controller output was then manually increased to 17.69 mA and thus caused (I) to drop to

0.64. From Figure 5.3, the second-stage 02 concentration rose from 4% to 7%. Based on

the process reaction curve and the transfer functions for the individual instrument in the

control loop, the PID control setting can be calculated from the Cohen and Coon

controller design relations (Seborg et al., 1989) as IC = 1.04, τ1 = 7.6, and 'lb = 1.2.

The control setting, derived through the process reaction curve, is based on the

assumption that the process is a first-order system with a short time-delay. Therefore, it is

possible that the approximation may be poor and may need further adjustments. In this

study, the final tuning process was made experimentally (online) wherein the Cohen and

Coon setting was used as an initial guess.



Figure 5.4 Controller output.
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The control baseline case presented in section 5.2 was used during the online

tuning process. The process responses under various control settings are shown in Figure

5.5. It is noted that P, I, and D are equivalent to Kc , 1/11, and TD, respectively. The plots in

Figure 5.5 especially illustrate the effect an increase in the integral term (1/τ1) has on

minimizing the process offset. The proportional gain IC of the PI controller was set lower

than that of the P controller because the integral control mode makes the system more

sensitive which potentially leads to instability (Stephanopoulos, 1984). It was also found

that the derivative term τD  has no significant impact on the controller performance. This

is due to the fact that the combustion system is stable and the time delay in the sampling

and analysis process is not too long.

Figure 5.4 Second-stage 0 2 responses under various PID settings.
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From Figure 5.2, one sees that two inputs are fed into the PID controller. One is a

process setpoint, which is the desired 0 2 level; the other is the measured 02 level from the

outlet of the second stage of the combustion chamber. In trying to maintain the process at

the desired process setpoint, the PID controller computed the control signal that

corresponds to the flow of the manipulated variable (primary air). The control signal is

based on the information the PID receives and the HD parameter setting. The control

signal is then sent to the electronic control valve that adjusts the flow of the manipulated

variable (primary air). The performance of the system with the MD control will be

illustrated later in this chapter.

5.3.2 A Proportional Neural Network Controller (PNNC)

A proportional neural network controller (PNNC) is a result of combining a trained

neural network with a simple proportional controller. The schematic of the PNNC is

shown in Figure 5.6. The proportional controller can be described as a function in

Equation 5.2, with the integral and derivative terms set to zero (i.e. Uzi = τD  = 0). Unlike

the traditional HD controller, the control bias value 1-5 in the proposed PNNC

configuration can be updated by the trained neural network at every sampling time step,

thus the process offset can be minimized.

Because of the monotonic relationship between the second-stage 02 level and the

feed composition (0), the neural network has a simple architecture with one node in the

input layer, two nodes in the hidden layer, and a single node in the output layer. The node

in the input layer is the measured 02 concentration. The output node is the process

equivalence ratio (I).
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Figure 5.6 PNNC experimental schematic.

The neural network was trained and tested by training and testing data sets,

respectively. These consisted of 30 known pairs of input-output values from existing

experimental data and CHEMKIN simulation data. The training data is shown in Table

5.1 The first column represents the network input, which is the measured 02 level. The

second column represents the network output, which is the process equivalence ratio (1).

The last six pairs of samples are used as the testing set. All data were randomized and

normalized to —1 to +1 by subroutines in the NeuroSolutions software package before

being presented to the neural network. The learning curves for both training and testing

sets are shown in Figure 5.7. The learning cost functions (MSE) for both training and

testing sets exponentially level out and reach their minimums. Thus, there is no evidence

of overtraining. This can be attributed to the fact that the relationship between the 02

concentration and the equivalence ratio 4 is fairly simple.



Table 5.1 Neural Network Training and Testing Data (PNNC)
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Sample No. Second-stage 02 (%) Equivalence ratio 4)

1 8.30 0.58

2 7.90 0.58

3 6.20 0.64

4 5.20 0.68

5 4.10 0.72

6 3.60 0.76

7 2.40 0.82

8 0.80 0.90

9 0.20 1.18

10 0.03 1.35

11 8.50 0.58

12 6.40 0.64

13 5.30 0.68

14 4.60 0.72

15 3.00 0.76

16 2.70 0.82

17 1.40 0.90

18 7.50 0.59

19 0.08 1.18

20 3.35 0.76

21 0.00 1.18

22 0.00 1.35

23 7.90 0.58

24 7.69 0.59

25(test) 6.60 0.64

26(test) 5.30 0.68

27(test) 4.23 0.72

28(test) 2.43 0.82

29(test) 1.20 0.90

30(test) 0.07 1.35
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Figure 5.7 Neural network learning curves (PNNC).

From Figure 5.6, one sees that at each sampling time step, two inputs are fed into

the proportional controller. These two inputs are the 0 2 setpoint and the measured 02

level from the second stage combustion chamber. The proportional control function

adjusts the manipulated variable, in this case the primary air flow rate, in response to the

error in the control variable, the 0 2 level.

At the same sampling time step, the trained neural network takes part in the

control action by identifying the current process equivalence ratio (I) based on the

information it receives, in this case the measured 02 level. Once the current equivalence

ratio (I) is identified by the neural network, a calculation for the new proportional control

bias value is done in the Visual Basic computation routine as described by the following

steps:
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1. A current fuel flow rate is computed, based on the following modified

equivalence ratio relationship:

where Air = current known primary air flow rate

(I) = current equivalence ratio obtained from the neural network.

2. A new control bias value, corresponded to a new primary air flow rate, is

computed, based on the following modified equivalence relationship:

where Fuel = current fuel flow rate obtained in the previous step

Φsetpoint =desired equivalence ratio that yields the desired 02level.

Once the new proportional control bias value is obtained and updated, the final control

signal output can be calculated using Equation 5.2. The control signal output is then sent

to the electronic control valve, which adjusts the primary air flow rate.

Since there are no integral and derivative terms involved in the tuning process,

tuning the PNNC is much simpler than tuning the PID controller. The optimal

proportional gain IC, obtained from the previous section, is used in the PNNC structure.

Here, the IC value becomes less detrimental to the control performance. This is due to the

fact that the variable control bias value T. dictates the controller output.

Unlike the setting in the traditional HD controller, the control time interval for the

PNNC has to be set equal to the average time-delay in the sampling and analysis process
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(40 seconds) at the very minimum, in order to ensure that the neural network receives the

true feedback value from the combustion system.

5.4 Experimental Runs and Results

As mentioned earlier, the control baseline was to first set (1) at 0.63, which yielded the 02

level at about 6.8%. This value was then used as the process setpoint. A step disturbance

was then manually applied to the fuel flow rate (C2H4) and caused the equivalence ratio

to change to 0.76. From Figure 5.1, this would yield about 3.4% of 0 2 in the combustor

outlet for the open-loop run. The control objective is to bring the 02 level back to where

it was before the disturbance.

Figure 5.8 Open-loop and closed-loop second-stage 02 response.
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The second-stage 02 profile under the PNNC is shown in Figure 5.8. As a basis of

comparison, the open-loop experimental results as well as the process responses under P

and PID controller, obtained earlier in section 5.3.1, are illustrated here as well. Although

the proportional controller is the simplest control configuration, Figure 5.8 once again

confirms the inherent disadvantage of the proportional controller — its inability to

eliminate the sustained error or offset. The PID and PNNC controllers yield a promising

result in this study. The PNNC was able to identify the changes in the fuel feed flow rate

and effectively took part in the control action by performing the simple O2-to-Φ mapping

and updating the control bias value. Although the offset was not completely eliminated,

the PNNC shows a considerable improvement of setpoint tracking and process settling

time over the conventional proportional controller. The process offset can be attributed to

several sources, most prominent of which is the error caused by the electronic control

valve. The electronic control valve is very sensitive to the pressure and becomes

inaccurate over time especially when the control signal changes direction. Such

phenomena severely affected the controller performance. Nevertheless, the neural

network approach is proven to be effective in improving the simple-to-tune proportional

controller performance without any drastic change in the control configuration.

5.5 Conclusions

Although tuning the HD controller is a time-consuming process, the HD controller is

shown to be a robust technique for a monotonic control problem — the variation of outlet

oxygen level with overall equivalence ratio (0). In this study, the PID controller was

initially tuned by the process reaction curve method, followed by the online fine-tuning

process. The inherent disadvantage of the proportional controller — its inability to
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eliminate the process offset, is shown experimentally. The PNNC represents the use of

the FMILP neural network in conjunction with the simple proportional controller. Without

the tuning complication and drastically changing the control configuration, the

experimental results show significant performance improvement of the proportional

controller when the neural network is applied as an intelligent tool for updating the

proportional controller bias value.



CHAPTER 6

FEEDFORWARD-FEEDBACK PROCESS CONTROL

6.1 Introduction

To facilitate process control and overcome the problems associated with the traditional

PID controller, a model-based control technique is an alternative control strategy that has

received widespread attention. In the last decade, schemes that use an explicit predictive

model to predict future process outputs and calculate optimal control movements have

been widely studied. They have been used to control complex nonlinear processes in

chemical engineering fields.

Typically, a process model is based on conservation laws (mass, species, energy,

and momentum). Such a model often turns out to be too complex for practical

implementation as a controller. To simplify such nonlinear problems, linearized models

and some simplifying assumptions are often used. In the event that the nonlinearity is not

severe, the linearized approaches can provide adequate performance. However, if the

process is a highly nonlinear, or is driven away from the linearized region, the linear

controller performance can be poor or even fail to keep up with perturbations or process

shifts.

An alternative to a traditional conservation law-based model is an approach using

artificial neural networks (ANNs). The links between neural networks, dynamic process

models, and process control are provided by the concept of model-based control. Here,

the neural network is used in place of the traditional process model. The neural network

model-based control approach has become increasingly popular in chemical engineering.

74
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Many chemical processes exhibit nonlinear behavior, where relationships between the

controlled variable and the manipulated variable are too complicated to model by the

traditional modeling methods. Also, the active control of most chemical processes is

often complicated by the process dynamics, lags, and other real factors associated with

fluid mechanics, and time delay in sampling and species analyses. In trying to incorporate

these time-varying behaviors into a classical control theory, the traditional Smith time-

delay compensation method can be used to construct controllers when the transfer

function of the system is known. However, the transfer functions of most chemical

processes are too complex to be incorporated into a traditional control algorithm.

The neural networks used in most control schemes are feedforward

multi-layer-perceptron (FMLP). The most common approach to incorporating the process dynamics,

process lags, and other real factors into the process controller, by far, is to carefully

design a time-history window of the process inputs and outputs from a period of time

equal to the delay in the process and then input them into the feedforward neural network

(Bhat and McAvoy, 1990; Gomm et al., 1997; Nikravesh et al., 2000; Palancar et al.

1998; Syu and Chen, 1998; Tendulkar et al. 1998). This technique is only possible when

there are discrete-time training data available.

In this chapter, feedforward multi-layer-perceptron (FMLP) neural networks are

used in a model-based control approach to control a two-stage laboratory combustor

operating in a mode wherein the process variable under control is a nonlinear function of

a key variable. A process model, based on trained neural networks, is used as (1) a

controller in a conventional feedback control configuration and (2) a process emulator in

a Smith time-delay configuration to compensate for a significant sampling/analysis time
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delay. The objective of this study is to experimentally demonstrate a control system based

on static back-propagation trained neural networks. The originality of this work lies in the

structure and the functionalities of the two clusters of FMLP neural networks. The control

configuration based on the two clusters of FMLP neural networks represents a

feedforward-feedback control scheme. It combines advantages of the conventional

feedforward and feedback control (Stephanopoulos, 1984). The first cluster serves as the

process controller in the conventional feedback control configuration while the second

facilitates the feedforward process control by serving as the time-delay compensator. The

proposed neural-network-based control structure enables the networks to be statically

trained offline with existing steady state experimental data. A Visual Basic control

interface enables the statically trained neural network to transiently respond to the

process.

6.2 Experimental Outlines

The stated control objective is to control NO emission from the two-staged combustor.

Ethylene (C 2H4) serves as the main fuel. Ammonia (NH 3), which serves as the secondary

fuel, is used as a model dopant to simulate fuel-bound nitrogen, which produces NO.

Primary and secondary airs are the oxidizer. The fuel/air mixture compositions in the

primary stage and overall combustor are characterized by the equivalence ratio 01 and 00,

given as follows:



where (1) 1 = first-stage equivalence ratio

000= overall equivalence ratio

F 1 = volumetric or molar flow rate of C2H4

F2 = volumetric or molar flow rate of NH 3

A l = volumetric or molar flow rate of primary air

A2 = volumetric or molar flow rate of secondary air

The fuel-bound nitrogen in the feed can be characterized by the ammonia dopant ratio,

given by:

where F1 = volumetric or molar flow rate of C2H4

F2 = volumetric or molar flow rate of NH3

The purpose of the controller is to adjust the first-stage equivalence ratio 0 1 and maintain

the overall equivalence ratio 00 in order to keep the emission levels of NO and CO below

the desired levels. The detailed reaction mechanism and the relationship between NO,

CO, and first and overall equivalence ratios (10 1 and 00) are described elsewhere (Mao,

1995; Mao and Barat, 1996).

At a selected steady state, a step increase disturbance of the ammonia (NH 3 ) is

manually made. This step disturbance causes changes in the NO levels in the combustor



78

outlet. After a step disturbance, the controller, which receives signals from an online

chemilumisnscence NO analyzer, takes immediate action by computing and sending

control signals to the manipulated variables — the primary and secondary air flows, and

brings the control variable (NO) to the setpoint. The long time delay in the NO gas

sampling and analysis system is long, so it complicates the control problem and has a

severe impact on the control performance.

In order to establish a control experimental baseline, a series of open-loop runs

were first made to examine the effects of the ammonia dopant and the first-stage

equivalence ratio (0 1 ) on the NO level. An overall fuel-lean baseline (00=0.9) was set.

The feed equivalence ratio (1)1 was sequentially increased from 1.15 to 1.45. The fuel-

bound nitrogen in the feed was characterized by the feed molar ratio NH 3/C2H4 at values

of 0.022, 0.027, 0.057, and 0.078. Diluent N2 was used to keep the first-stage temperature

within the safety-operating limit (less than 1673 K). Figure 6.1 shows the nonlinear

relationship between the fuel-bound nitrogen dopant in the feed (NH3/C2H4 on a molar

basis); the first-stage equivalence ratio (( 1 ); and the second-stage NO levels at constant

(00 = 0.9. Consistent with Mao and Barat (1996), emission of NO from the second stage

outlet is minimized if (1) 1 is kept at about 1.35. However, this minimum lies at the bottom

of an approximately parabolic well. In trying to control the classical PID controller

can fail. For example, the integral term (refer to Equation 5.2) can give rise to a build-up

of process error, causing the controller to fail in the saturated mode when the process

reaches the minimum point of the response curve. In other words, the control signal could

continue to change monotonically due to the accumulation of error in the integral term,

even though it should "reverse direction," i.e., the sign of its derivative should change.
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A control baseline is to initially set the first-stage equivalence ratio (1) 1 at 1.14 and

overall equivalence ratio 0 0 at 0.9. With the ammonia dopant of 0.027, the measured NO

concentration from the second stage is 460 ppm. This number becomes the process

setpoint. A step disturbance is then manually applied to the NH3 flow rate to raise the

dopant ratio to 0.057. From Figure 6.1, one sees that the open-loop NO level rose to 620

ppm. The control objective is to bring the NO level back to the setpoint by manipulating

the primary air and secondary air flow rates.

Figure 6.1 Second-stage NO concentrations at various steady states (0 0 = 0.9).

6.3 Experimental Setup

6.3.1 Neural Network-Based Model-Predictive Controller (NMPC)

The experimental setup for the neural network-based model-predictive controller

(NMPC) is shown in Figure 6.2. The NMPC is based on a cluster of two FMLP neural
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networks connected in series. Both neural networks have the same architecture, two

nodes in the input layer, four nodes in the hidden layer, and one node in the output layer.

The first neural network serves as the process identifier. It identifies the relative

amount of unknown fuel-bound nitrogen dopant in the feed stream based on the

information it receives — the current 0 1 and the measured NO. The neural network was

trained and tested using 30 known input-output pairs of existing experimental data

(Figure 6.1). It should be noted that two data points in Figure 6.1 were purposely

removed and not included in the neural network training set. Based on the knowledge

gained from the previous study (Mao, 1995), the reported second-stage NO

concentrations of 300 and 360 ppm at 0 1 = 1.1 and ammonia dopant ratios of 0.022 and

0.027 respectively, were not accurate. This can be attributed to systematic error in the

sampling and analysis system. These inaccurate data were considered as the noisy data

patterns that could potentially deteriorate the network generalization performance as

earlier described in Chapter 4. In this study, a full advantage of knowing the process was

taken, which in turn, allowed the raw training data to be visually examined and pre-

filtered. This approach however cannot be applied for systems that are inherently more

complicated. In particular, the system that has more than a three-dimensional input-

output relationship or the system that requires many training patterns that beyond the

capability of the network user to visually characterize (pre-filter) based on the previously

gained knowledge.



Figure 6.2 NMPC experimental schematic.
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The training data is shown in Table 6.1. The second and third columns represent

the network inputs, which are the first-stage equivalence ratio 0 1 and the measured NO

level. The fourth column represents the network output, which is the ammonia dopant

ratio in the feed. The last five rows serve as a testing set. All data are normalized by the

subroutine in the NeuroSolutions software package before presentation to the neural

network breadboard.

As mentioned earlier, the diluent N2 was used to keep the first-stage temperature

below 1673 K. The use of the diluent N2 could affect the combustion-related effluent

concentrations. However, it appeared in this study that the diluent N2 did not have any

significant impact on the control variables (NO and CO 2) or the control performance.

This can be attributed to the fact that the first-stage equivalence ratio (0 1 ) was exercised

in a small range (1.15 < < 1.3) throughout the control experimental program. As a

result, the recorded first-stage temperature only fluctuated in a narrow range (less than 20

K), which in fact did not pose any potentially hazardous situation nor require much

adjustment in the diluent N2 flow rate. In contrast, if the control variables become

strongly first-stage temperature dependent, the reactor temperature information (i.e.

diluent N2 flow rate vs. first-stage equivalence ratio (01) should be added into the neural

network input as an additional input vector.
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Table 6.1 Neural Network Training and Testing Data (NN#1 in NMPC)

Sample No. (I), Second-stage NO (ppm) NH3 dopant ratio

1 1.15 440 0.027

2 1.20 530 0.057

3 1.20 318 0.022

4 1.15 660 0.078

5 1.30 440 0.078

6 1.25 490 0.057

7 1.40 650 0.078

8 1.35 270 0.027

9 1.20 580 0.078

10 1.30 300 0.027

11 1.40 530 0.057

12 1.10 770 0.078

13 1.25 320 0.022

14 1.45 914 0.078

15 1.15 620 0.057

16 1.30 420 0.057

17 1.45 683 0.057

18 1.35 420 0.078

19 1.25 345 0.027

20 1.30 260 0.022

21 1.35 230 0.022

22 1.35 400 0.057

23 1.45 400 0.022

24 1.45 500 0.027

25 1.40 300 0.022

26 (test) 1.40 350 0.027

27 (test) 1.20 370 0.027

28 (test) 1.15 370 0.022

29 (test) 1.10 630 0.057

30 (test) 1.25 520 0.078
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The learning curves are shown in Figure 6.3. The minimum mean square errors

(MSE) for both training and testing sets constantly decrease and reach their minimums.

Hence there is no overtraining effect. This outcome can be attributed to the fact that the

training and testing data used in this study were visually examined and pre-filtered such

that any process noise that might cause detrimental impacts to the network generalization

performance was purposely removed from the training set. As a result the network

training converges readily with no evidence of the overtraining.

The first neural network output is fed into the second neural network (NN#2)

along with the desired NO setpoint. The second network is a predictive controller. It takes

control action by computing the new 0 1 for the next time step aimed to yield the desired

NO setpoint and corresponding to the predicted fuel-bound nitrogen dopant level in the

feed.

The second neural network was trained and tested using 13 known input-output

pairs from existing experimental data and some interpolations of the existing

experimental data. The training data are shown in Table 6.2. The second and third

columns represent the network inputs, which are the desired NO setpoint and the relative

nitrogen-bound dopant level. The fourth column represents the network output, which is

the first-stage equivalence ratio (h. Again, all data are normalized to —1 to +1. The

training procedure is fairly simple since only two NO target setpoints were included in

the training set. Three out of thirteen pairs of known input-output were held out for using

as a testing set. The same conclusion for the learning curves shown in Figure 6.4 can be

drawn from the previous sections.



Figure 6.3 Neural network learning curves (NN#1 in NMPC).

Figure 6.4 Neural network learning curves (NN#2 in NMPC).
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Table 6.2 Neural Network Training and Testing Data (NN#2 in NMPC)

Sample No. NO Setpoint (ppm) NH3 dopant ratio Φ1

1 440 0.032 1.18

2 500 0.058 1.24

3 500 0.078 1.26

4 500 0.048 1.20

5 440 0.035 1.20

6 440 0.041 1.24

7 440 0.057 1.28

8 500 0.043 1.16

9 440 0.027 1.15

10 500 0.038 1.14

11 (test) 500 0.045 1.18

12 (test) 440 0.045 1.26

13 (test) 440 0.035 1.22

The two neural networks function in series in the Visual Basic platform

application. All the data inputted into and outputted from the neural networks are

displayed on the Visual Basic operating interface. Once the next first-stage equivalence

ratio 01 is found from the second neural network, the primary and secondary air flow

rates are computed in the Visual Basic computation routine. A detailed-sequence of the

calculations can be described by the following steps:

1. A relative nitrogen-bound dopant is identified by the first neural network,

based on the current (0 1 and the measured second-stage NO concentration.

2. The relative nitrogen-bound dopant, identified by the first neural network, and

the user-input NO setpoint, are fed into the second neural network.

3. The new 01, corresponding to the predicted relative ammonia dopant ratio and

the desired NO setpoint, is computed by the second neural network.
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4. The ammonia flow rate (F 2) is computed, based on the nitrogen-bound dopant

relationship (Equation 6.3).

5. The new primary air flow rate (A 1 ) is computed, based on the first-stage

equivalence ratio relationship (Equation 6.1), where F 1 , F2 . and (1) 1 are known.

6. The secondary air flow rate (A2) is computed, based on the overall

equivalence ratio relationship (Equation 6.2), where F1, F2, 00, and A l are

known.

7. The primary and secondary air flow rates are normalized to the current scale

(4-20 mA) and outputted to the electronic control valves.

6.3.2 Neural Network-Based Smith Time-Delay Compensator (NSTC)

In this current work, there is a significant time lag (-240 seconds) between a change in

the process and the reported change in the second-stage NO concentration. This is due to

a long sampling path and a slow NO analysis process. An effective strategy to reduce the

impact on control process of such a time lag is the Smith predictor technique (Seborg et

al., 1989; Stephanopoulos, 1985).

The block diagram of a "generic" Smith predictor is shown in Figure 6.5. The

actual process model is divided into two parts: the process model without a time delay

(PM), and the time delay term (DM). At each cycle of the control output computation, the

process model (PM) is used to predict the effect of the control action on the process

output. The output C 1 from the process model (PM) is fed into the time delay term (DM)

to incorporate the process time delay into the C2. The delay process model response C2 is

compared with the actual process output C. The difference (C - C 2) is the correction term
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used to incorporate any modeling errors and load disturbances into the controller output.

The controller utilizes the predicted response C 1 and the correction term (C - C2) to

calculate its output for the next time step. That is, if the process model were perfect with

no load disturbance, C = C2 and E' = R - C 1 , where R is the process setpoint. In this case,

the controller output is based on the error signal that would occur if no time delay were

present. In classical control theory the Smith technique can be used to design controllers

when the transfer function of the system is known. But the transfer function of a practical

system is not easy to measure or model.

A cluster of two feedforward neural networks with a pre-assigned memory buffer

in the Visual Basic operating interface serves as the actual process model in this study. It

represents the Smith time-delay compensator, and is incorporated into the existing

feedback control loop. The Smith time-delay compensator enabled the feedforward

process control. The feedforward control is especially advantageous for slow systems or

systems with significant dead time (Stephanopoulos, 1984). A modified NMPC

incorporating the neural network-based Smith time-delay compensator (NSTC) is shown

in Figure 6.6. The combined NMPC-NSTC falls into the feedforward-feedback control

configuration. The NSTC is divided into a process model without time delay (NN#3),

referred to as the current network, and a process model with the time delay (NN#4 plus

the pre-assigned memory buffer), called the delay network. Both neural networks are

identical, with two nodes in the input layer, four nodes in the hidden layer, and one node

in the output layer. The network inputs are (1) 1 and fuel-bound nitrogen ratio in the feed.

Both networks output the second-stage NO emission. The only difference between the

two networks is that the current neural network (NN#3) utilizes the current 01, t (predicted
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by the NMPC cluster, 0 1n ) while the delay neural network (NN#4) utilizes the delayed 0 1 ,

t-d from the memory buffer (0 1 '). This approach allows the delay network to detect the

variation in the load disturbance (NH 3 dopant). The pre-assigned Visual Basic buffer is

filled by an array of the values of (1) 1 for the past d seconds (013, 001,t-2, • • • , 01,t-d) to

emulate a transfer function of the actual average dead time in the sampling line. For each

time step of control output computation, the delayed 01, t_d is utilized by the delayed

network (NN#4). Finally, the buffer is updated by time shifting, i.e., the value of Φ1,t-i

becomes the new value for and the current value of 0 1 is entered for 01, t .

Both neural networks were trained and tested using 30 known pairs of input-

output data from existing experimental data shown in Table 6.3. The second and third

columns represent the network inputs, which are the first-stage equivalence ratio Φ 1 and

the relative nitrogen-bound dopant ratio (NH3/C2H4). The fourth column represents the

network output, which is the second-stage NO concentration. The last five rows serves as

the testing set. All data are normalized to —1 to +1 before presentation to the neural

networks.

The learning curves are shown in Figure 6.7. The minimum mean square errors

(MSE) for both training and testing sets constantly decrease and level out. The network

converges easily with no overtraining effect. The same conclusion can be drawn from

previous network training process and the discussion in Chapter 4.



Figure 6.5 Smith time-delay compensator configuration.



Figure 6.6 NMPC/NSTC experimental schematic.
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From Figure 6.6, the NMPC cluster uses the predicted NO concentration (NO')

from NN#3 to ultimately calculate the manipulated variable, which is the primary air

flow rate (A 1 ). Since the predicted NO concentration (NO") from NN#4 is already

delayed by the memory buffer, it is compared to the measured NO concentration from the

actual process (NO). The difference between NO" and the actual NO is directed to the

controller in order to incorporate any modeling errors into the controller. That is, if the

process model were perfect and there were no load disturbance, then NO - NO" = 0. It is

noted that the network weights for the networks in the NMPC cluster (NN#1 and NN#2)

remain unchanged while incorporating the NSTC cluster (NN#3 and NN#4).

Figure 6.7 Neural network learning curves (NN#3 and NN#4 in NSTC).
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Table 6.3 Neural Network Training and Testing Data (NN#3 and NN#4 in NSTC)

Sample No. 4), NH3 dopant ratio Second-stage NO (ppm)

1 1.15 0.027 440

2 1.20 0.057 530

3 1.20 0.022 318

4 1.15 0.078 660

5 1.30 0.078 440

6 1.25 0.057 490

7 1.40 0.078 650

8 1.35 0.027 270

9 1.20 0.078 580

10 1.30 0.027 300

11 1.40 0.057 530

12 1.10 0.078 770

13 1.25 0.022 320

14 1.45 0.078 914

15 1.15 0.057 620

16 1.30 0.057 420

17 1.45 0.057 683

18 1.35 0.078 420

19 1.25 0.027 345

20 1.30 0.022 260

21 1.35 0.022 230

22 1.35 0.057 400

23 1.45 0.022 400

24 1.45 0.027 500

25 1.40 0.022 300

26 1.40 0.027 350

27 1.20 0.027 370

28 1.15 0.022 370

29 1.10 0.057 630

30 1.25 0.078 520
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6.4 Experimental Runs and Results

The two experimental programs included both open-loop and closed-loop runs, exercised

with two different sets of setpoints and disturbances. The desired second-stage NO

concentration was set at 460 ppm for the first experimental program. Figures 6.8 and 6.9

show the first experimental results. The initial 0 1 was 1.14, while 00 was set at 0.9. The

initial dopant/fuel ratio in the feed was 0.027. The measured NO concentration from the

second stage was 460 ppm. Based on Figure 6.1, it should be noted that, at this NH3

dopant level, the second-stage NO concentration could be made lower than 460 ppm by

increasing the first-stage equivalence ratio (h. The reason for not doing so is that the CO

burnout rate in the second stage will not be sufficient to achieve the low level of CO

emissions if 01 is too high.

A step disturbance was then applied to the NH 3 flow rate (t 0 in Figure 6.8) to

raise the dopant ratio to 0.057. From Figure 6.8, the open-loop NO level rose to 620 ppm.

The closed-loop NO level is shown in Figure 6.9. The total time lag between process

change on recorded NO is about 240 seconds. In closed-loop response without lag

compensation (Figure 6.2 scheme), the NMPC ultimately increased 01 to 1.3 by reducing

the primary air flow rate (A 1 ) in order to bring the NO back to the setpoint (460 ppm).

The secondary air flow rate (A2) was simultaneously increased in order to maintain 00.

The control action was set to execute every 240 seconds to facilitate the observed time

delay due to the long gas sampling line and the slow NO analyzer response. This action

ensured that the NMPC received the true value of the feedback signal from the NO

analyzer. The NO level achieved the setpoint after about 1500 seconds.



Figure 6.8 Open-loop second-stage NO response (experiment 1).
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Figure 6.9 Closed-loop second-stage NO response (experiment 1).
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To confirm that the overall equivalence ratio 0 0 was simultaneously brought back

to the setpoint (00 = 0.9) by adjusting the secondary airflow rate (A 2), the CO2 level from

the second stage was measured. Before the disturbance, the second-stage CO2 level at the

second stage outlet was 8.8%. As shown in Figure 6.10, the CO2 level varied in a small

range and settled slightly higher (about 9.25%) after some fluctuation caused by the

changes in the primary and secondary airflow rates.

Figure 6.10 Closed-loop second-stage CO2 response (experiment 1).

The second experimental program was to set the desired second-stage NO

concentration at 500 ppm. Figures 6.11 — 6.13 show the experimental results. The overall

equivalence ratio remained unchanged at 0.9. The initial 0 1 was set at 1.15, with initial

dopant/fuel ratio at 0.035. This setting result in 500 ppm of second-stage NO
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concentration. This value was then used as the process setpoint. A step disturbance was

then applied to the NH 3 flow rate (t = 0 in Figure 6.11) to raise the dopant ratio to 0.078.

From Figure 6.11, the open-loop NO level rose to 660 ppm. The closed-loop NO level is

shown in Figure 6.12. Unlike the first experimental program, the second-stage NO

concentration settled at 440 ppm, 12% lower than the setpoint. Based on the observation

during the experiment, the most prominent factor that caused the process offset was an

inaccuracy of the two electronic control valves. The electronic control valves were

sensitive to the pressure and became inaccurate over time especially when the control

signal reversed direction. This phenomenon severely affected the controller performance

as clearly shown by the second-stage NO responses in Figure 6.12. While NMPC

provided control signals to adjust the manipulated variable, the electronic control valves

did not response to the control signal precisely. The errors between the control signals

and the control valve movement were continuously accumulated and fed into the NMPC,

thus deteriorating the control performance as time advanced. The second-stage CO 2 level

was measured and shown in Figure 6.13. Consistent with the first experimental program,

the second-stage CO 2 profile has an upward trend (over time), which confirms that the

overall burnout rate in the reactor was achieved.



Figure 6.11 Open-loop second-stage NO response (experiment 2).
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Figure 6.12 Closed-loop second-stage NO response (experiment 2).
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Figure 6.13 Closed-loop second-stage CO 2 response (experiment 2).

Dead time in the sampling process introduced a phase lag between the system

output and the input signal. To reduce the impact of the large time-delay, the Smith

predictor technique is applied here (Figure 6.6 scheme). Figure 6.14 shows the closed-

loop response for the NMPC with the Smith time-delay compensator (NSTC) for the

same step change in the nitrogen-bound dopant in the feed. The controller settings and

process conditions are the same as those used in the previous experiment except for the

frequency of the control action. With the NSTC, the controller was set to execute every 5

seconds. A comparison of Figure 6.14 and 6.9 shows the improvement in performance

(process settling time of 400 seconds vs. 1500 seconds) obtained using the Smith

predictor algorithm. The NSTC enables the control system to respond more dynamically
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to process changes. The second-stage CO2 concentration profile is shown in Figure 6.15

to verify that the overall equivalence ratio O.) was brought close to the setpoint.

Although the experimental results with the lag compensation show the average

model errors (NO - NO") are sometimes as much as ±15%, the Smith time-delay

compensator, based on the cluster of neural networks, is robust enough to provide

improvement over the uncompensated control configuration. This result is consistent

with Seborg et al. (1989), that such compensation is effective as long as model errors are

no greater than approximately ±30%. It should be noted that the model errors observed in

these experiments were primarily caused by a variation in the time-delay in the sampling

process and not due to the neural network process emulator. It was observed during the

experiment that the NO sampling and analysis times fluctuated in the range of 200 to 240

seconds.

Lastly, regardless of the robustness of the controller, a small process offset after

the system settled at the new steady state cannot be completely eliminated. The offset

observed in this study can be primarily attributed to the imprecision of the electronic

control valves. It was observed during the experiment that the electronic control valves

are very sensitive to the pressure and become inaccurate over time especially when the

control signal changes direction. The valve movement errors to the control signals were

sometimes as high as ±20%. This phenomenon severely affected the controller

performance.



Figure 6.14 Closed-loop second-stage NO response (NMPC/NSTC).
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Figure 6.15 Closed-loop second-stage CO 2 response (NMPC/NSTC).
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6.5 Conclusions

In this chapter, the usefulness and effectiveness of applying neural networks in a model-

based control strategy to control a combustion reactor have been demonstrated. The

experiment provided a detailed case study in which neural networks were applied to the

nonlinear NO control problem with long process lags due to species sampling/analysis.

With the neural network-based model-predictive controller (NMPC), the process was

successfully brought back to the setpoint after a step disturbance in the feed stream. To

improve the settling time in the presence of significant time delay, the feedforward

control technique was applied to the existed feedback control loop through the use of

another cluster of neural networks. This cluster of two FMLP neural networks served as

the Smith time-delay compensator (NSTC). The combination of NMPC and NSTC

represents a feedforward-feedback control configuration. Results show that the Smith

time-delay compensator, implemented with the neural networks, is robust and accurate. It

is valuable in overcoming the inherent response time lag of sampling and analysis

system.

In this study, the active control movement (i.e. transient network response) was

enabled by the time stepping function in the Visual Basic program interface. This

arbitrary time stepping response, through the programming interface, was possible based

on the fact that the combustion process was inherently stable. A stable behavior of the

combustion system allowed the time-series characteristics associated with the process

(e.g. analysis and sampling lags) to be secluded from the neural network training data.

The time-series information was incorporated into the control system by employing a
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conventional mathematical function and technique (e.g. pre-assigned memory buffers

through the Visual Basic program interface).

Without time-series information in the network training data, the neural networks

were easily trained with existing steady-state experimental data. This procedure allowed

rapid convergence during the training process and avoided any complex weight update

algorithms often used in online learning processes. Finally, it should be noted that the

time stepping approach, however, is not applicable to processes that are inherently

unstable. One of the most common of these unstable systems is a "broomstick balancer"

problem, wherein a comprehensive time-series information about the process dynamics

has to be incorporated directly into the neural network controller (Hecht-Nielsen, 1989).



CHAPTER 7

PROCESS SIMULATOR

7.1 Introduction

To establish that the ANN-based virtual process control is a viable alternative to existing

control strategies, a test using a PID controller was conducted. While PID might not

represent state of the art in conventional controllers, it is still a widely accepted standard

(Martins and Coelho, 2000; Olsson et al., 2001; Seborg et al., 1989; Stephanopoulos,

1984).

Initial attempts to use a virtual PID in the existing laboratory combustor system

were not successful. While trying to tune the PID, a series of continuous cycling process

responses occurred as the system was being pushed to its stability limit. The continuous

cycling process response can also occur after a large disturbance. With the lab-scale

combustor, a potentially hazardous situation resulted from the continuous cycling

process.

In order to avoid these safety concerns, a transient process simulator, i.e., a virtual

combustor, was created for use in this and future control studies. The simulator is very

useful for gathering more information about process behavior, especially if

experimenting with the real process is time-consuming, expensive, or a safety concern.

Through multiple simulation runs, it is possible to gain insight into how to optimize the

real process operation.

Process modeling is a key part in constructing the process simulator. Modeling a

chemical process is often a complex task because the exact relationship between input
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and output variables of most chemical processes are complicated by nonlinear and time-

varying behavior.

A theoretical model such as PSR + PFR that accesses the CHEMKIN for the two-

staged combustion reactor has been published (Glarborg et al., 1986; Kee et al., 1989).

Although, the CHEMKIN simulation is satisfactory in modeling steady-state combustion

behaviors from most points of view, its structure and computation algorithm inhibit it to

be effectively used as a transient process simulator.

A process model based on artificial neural networks (ANNs) is an alternative

simulation approach that has received widespread attention (Booth, 1998; Evenson and

Kempe, 1998; Johnson, 1998; Miller and Lemieux, 1998; Radl and Roland, 1995;

Reinschmidt and Ling, 1994). The advantages of using the neural networks are twofold.

First, the neural network is capable of approximating any continuous nonlinear function

to an arbitrary degree of accuracy and should be able to model complex process dynamics

successfully. Secondly, a neural network-based model is data-driven and computationally

efficient, if its structure is not too complex. As a result, ANN can be easily constructed

and integrated into most programming platforms.

In this chapter, a process simulator based on a feedforward multi-layer-perceptron

(FMLP) neural network is designed and developed to study the application of process

control of the two-stage combustion system. The steady-state combustion behavior is

modeled by using a FMLP neural network. The neural network-based combustion

process model is statically trained and tested using existing steady-state experimental and

simulation data. The simulator is developed on the Windows 98 platform PC using Visual

Basic 6.0 as the simulator interface. The transient response of the laboratory combustion
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system is emulated and enabled by the time-stepping function in the Visual Basic

program. The transient process response (open-loop and closed-loop) from the simulator

was thoroughly tested and validated against the existing experimental results. Upon

validating its performance, the simulator for the combustion system could serve as a

supplementary tool, and provide a more flexible and reliable platform in process control

studies. The process simulator is especially advantageous in the ranges of operations that

are physically limited in the actual experiment. A series of simulation runs under various

conditions were made to examine the accuracy of the process simulator. Included in the

simulation runs are open-loop with no controller, closed-loop with the PID controller, and

closed-loop with the neural network-based controller (NMPC/NSTC).

7.2 Neural Network-Based Steady-State Process Model

7.2.1 Neural Network Structure

A feedforward neural network, shown in Figure 7.1, was developed to model the

relationship of various effluent gases from both first and second stages of the combustor

to the process inputs. A single-hidden-layer neural network model has two inputs, which

are first-stage equivalence ratio (0 1 ) and NH3 dopant ratio (NH3/C2H4). There are four

nodes in the hidden layer. The network has four outputs, which are the first-stage (PSR)

CO and CO2, and the second-stage (PFR) CO2 and NO concentrations. The first-stage CO

and CO 2 and second-stage CO2 concentrations as the network outputs demonstrate the

effectiveness of staged combustion in the CO burnout process. It is essential to verify that

while increasing Φ1 in trying to minimize the NO concentration, the effluent CO can be

suppressed through the CO to CO2 burnout process. The second-staged CO concentration
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is not included in the network output since the overall equivalence ratio (0 0) is

maintained at 0.9 at all time in this study. At this fuel-lean overall equivalence ratio (0 0 <

1), it was previously found by Mao and Barat (1996) that the second-stage CO

concentration is quite low (less than 0.3%).

Figure 7.1 Neural network combustion process model.

A total of 30 steady state data points for use in the training process was drawn

from the existing experimental and the CHEMKIN simulation database. All chemical

reactions and kinetic parameters used by the CHEMKIN simulation were taken from the

GRI mechanism (Gas Research Institute, 1994). The training data are shown in Table 7.1.

The second and third columns represent the network inputs, which are the first-stage

equivalence ratio Φ1 and the NH3 dopant ratio. Columns four to seven represent the

network outputs. The fourth and fifth column are first-stage CO and CO 2 concentrations,

drawn from the CHEMKIN simulation data. The sixth and seventh columns are second-

stage CO2 and NO concentrations, drawn from the existing experimental data.
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Table 7.1 Neural Network Training and Testing Data (Process Model)

Sample
No. 01

NH3 dopant
ratio

PSR CO
(%)

PSR CO2

(%)
PFR NO

(ppm)
PFR CO 2

(%)
1 1.35 0.078 5.58 4.76 470 11.5

2 1.45 0.078 6.45 4.31 914 11.7

3 1.20 0.078 3.33 5.38 580 10.2

4 1.45 0.057 6.38 4.47 680 11.9

5 1.30 0.027 4.73 5.21 300 11.2

6 1.25 0.057 3.81 5.07 490 10.9

7 1.10 0.078 2.20 6.22 770 9.4

8 1.40 0.022 5.91 4.6 300 11.4

9 1.25 0.022 3.95 5.5 320 10.7

10 1.35 0.027 5.47 4.95 270 11.6

11 1.15 0.057 2.73 5.85 620 9.6

12 1.35 0.022 5.45 4.96 230 11.3

13 1.20 0.022 3.16 5.59 318 9.9

14 1.30 0.022 4.71 5.23 260 11.1

15 1.15 0.027 2.65 5.94 440 9.7

16 1.35 0.057 5.53 4.84 400 11.7

17 1.10 0.057 2.15 6.28 630 9.16

18 1.40 0.078 5.91 4.51 670 11.5

19 1.15 0.022 2.05 6.21 370 9.92

20 1.20 0.027 3.17 5.58 370 9.8

21 1.30 0.078 4.87 5.00 440 11.4

22 1.25 0.027 3.97 5.49 345 10.5

23 1.45 0.027 6.56 4.44 500 11.7

24 1.40 0.057 5.96 4.48 500 11.9

25 1.40 0.027 6.02 4.64 350 11.6

26 1.20 0.057 3.27 5.46 530 10.02

27 1.45 0.022 6.37 4.58 400 11.6

28 1.30 0.057 4.81 5.09 420 11.4

29 1.15 0.078 2.69 5.88 660 9.6

30 1.25 0.078 3.81 5.46 520 11.2
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In trying to optimize the network performance and prevent overtraining effects,

the training technique suggested by Hecht-Nielsen (1989) is implemented in this study to

determine the optimal number of training cycles. The technique is especially

advantageous when there are enough data to adequately train the neural network, but not

enough to hold out for validation and acceptance testing sets. Here, the network was

trained five different times. Each time, the training set consists of 30 examples with 6

different examples were randomly held out for using as a testing set (i.e. 24 examples for

training and 6 examples for testing). Each time, the network error and the overtraining

effects were monitored through the learning curves. After doing this five times, the

optimal training cycle was estimated from the average of the five different training cycles

where the training and testing error curves level out. Once the training cycle is identified,

the network is retrained for one last time using all 30 examples as the training set with no

examples held back.

The five sets of the learning curves are shown in Figures 7.2 to 7.6. The optimal

learning cycle for each of them are identified by the point where both the training and

testing curves level out. The optimal learning cycles are 60, 400, 500, 500, and 1000 with

the training errors (MSE) 0.0060, 0.0040, 0.0039, 0.0048, and 0.0040 respectively. The

average training cycle is approximately 500 and is used for retraining the network with

the complete training data of 30 examples. As shown in Figure 7.7, the final training error

is 0.0039. This low value indicates that the neural network model is well-trained and

should be sufficiently accurate for our purposes.



Figure 7.2 Neural network learning curves (training set 1).
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Figure 7.3 Neural network learning curves (training set 2).



Figure 7.4 Neural network learning curves (training set 3).

Figure 7.5 Neural network learning curves (training set 4).



Figure 7.6 Neural network learning curves (training set 5).
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Figure 7.7 Neural network learning curve (complete training set).
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7.2.2 Steady-State Model Validations

In trying to maximize the network performance, all existing experimental and CHEMKIN

simulation data were utilized in the network training and testing process. To validate the

neural network model accuracy, the 30 examples of known output-input pairs, used in the

training process, are reused as a testing set in this section. Figures 7.8 to 7.10 show

comparisons between the first-stage CO and CO2 and second-stage CO2 concentrations

generated from the trained neural network model and the testing data under various

conditions. Higher first-stage equivalence ratio RIO results in an increase in the first-stage

CO and the second-stage CO2 concentrations, and a decrease in the first-stage CO2

concentration. It is noted that the NH3 dopant has no significant impact on the CO and

CO2 concentrations. The deviation between the network output and the testing set is

minimal. Figures 7.11 also shows a minimal deviation of the network predicted second-

stage NO concentrations from the actual experimental results. Modeling results are in

good agreement with the experimental data. In addition, based on the observation in this

study, but not shown in the validation results, the neural network model showed a good

generalization performance for the data it never seen before (i.e. points between the

training-data points). It is, therefore, concluded that the neural network provides an

accurate steady-state model, in particular for CO, CO2, and NO concentrations.



Figure 7.8 First-stage CO concentrations (NH3/C2H4 = 0.057).
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Figure 7.9 First-stage CO2 concentrations (NH3/C2H4 = 0.027).



Figure 7.10 Second-stage CO2 concentrations (NH 3/C2H4 = 0.078).
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Figure 7.11 Second-stage NO concentrations.
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7.3 The Process Simulator

The neural network process model is embedded into the Visual Basic process simulator

program in the form of a dynamic link library file (DLL). The DLL file is an executable

file of the trained neural network process model. It performs a network mapping function

between the process inputs and outputs.

Figure 7.12 Process simulation flow chart.

The simplified flow chart of the simulation program is shown in Figure 7.12. The

simulation interface was programmed in Visual Basic 6.0 environment on a Windows 98

platform PC. The simulation interface was integrated into the main operating interface.

The program source code is listed in the Appendix. The simulation interface is shown in

Figure 3.6. Here, instead of sampling process outputs from the Fluke data logger, the

process outputs are generated internally by the neural network process model embedded

in the simulation interface. The timer, a built-in tool in Visual Basic, is an essential tool

for enabling the simulation program to run almost continuously. The simulator was

designed to include all adjustable inputs to the combustor as they appeared in the actual
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laboratory facility. These adjustable inputs are the feed flow rates of the primary air (A l ),

secondary air (A?), primary fuel (C 2H4), secondary fuel (NH3 ), and dilution N2. As shown

in Figure 3.6, the number in each textbox represents the actual laboratory rotameter

reading for each feed flow rate. The user can simply adjust these settings through the spin

button next to each textbox on the simulation interface. The simulator was set to execute

at every preset timer interval (5 seconds). For each timer interval, the process simulator

inputs the combustion process inputs from the Visual Basic interface and computes

essential information to be directed into the neural network model.

Additional programming tools are used to address the time-dependent behavior

associated with the process and equipment dynamics, instrumentation response times, and

time lags between the process inputs and gas monitors. In particular, a Visual Basic built-

in hyperbolic tangent function is used to provide gradual transition effects of selected

signals and process disturbances, which in turn make simulated process responses look

mechanically similar to real process behaviors. Additionally, the timer component in

Visual Basic is utilized to emulate the dead time in the gas sampling system. For

simplicity in this study, lag-times in each gas analyzer are the same, here set to the value

of 200 seconds. The impacts of adjusting the manipulated variables (primary and

secondary air flow rates) on the process outputs are instantaneous.

The neural network model predicts the process outputs, which are the first-stage

CO and CO2 and second-stage CO2 and NO concentrations. All of these are displayed in

the textboxes on the process simulator interface.
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7.4 Validation Runs and Results

7.4.1 Open-Loop Validation

For the purpose of validation, the same experimental program described in the previous

chapter is exercised here. The initial 4 was 1.14, while (00 was set at 0.9. The initial

NH3/C2H4 ratio in the feed was 0.027. A step disturbance was then applied to the NH 3

flowrate to raise the dopant ratio to 0.057. A comparison of open-loop second-stage NO

profiles between actual experimental and simulation results is shown in Figure 7.13. The

simulated open-loop second-stage NO profile is in good agreement with the result from

the actual experiment.

Figure 7.13 Open-loop second-stage NO responses (validation).
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7.4.2 Closed-Loop Validation

Finally, a process control simulation is exercised. The neural network-based controller,

used in the previous chapter, is put into the test. Again, the simulation was carried out

using the same condition and disturbance as previously demonstrated in Chapter 6 and

used in the open-loop validation above.

Figure 7.14 shows comparison between the simulation and experimental results of

the second-stage NO profiles under neural network-based model-predictive controller

(WPC) equipped with the neural network-based Smith time-delay compensator

(NSTC). The simulation result of NO control process is in good agreement with the

experimental result obtained earlier in Chapter 6. Figure 7.15 shows a simulated second-

stage CO2 profile under the same control condition and disturbance setting. Comparing

with the experimental second-stage CO 2 profile obtained earlier (Figure 6.10), the

simulated second-stage CO2 profile looks somewhat different from the actual

experimental results. However, the two profiles share one thing in common — an upward

trend of the CO2 concentrations as time advances (i.e. as Φ1 increases in trying to

minimize NO concentration). The difference between the CO2 simulation and the CO2

experimental results can be attributed to several sources, most prominent of which are the

sensitivity of the CO2 gas analyzer, the control signal lags, and the movements of the two

electronic valves (one controlling primary air flow rate and the other controlling

secondary air flow rate). The impact of the imperfect valve movements is imminent

especially for a process with a short residence time like the lab-scale combustion system

in this study as it is shown by the fluctuation in the CO 2 response in Figure 6.10.



Figure 7.14 Closed-loop second-stage NO responses (validation).
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Figure 7.15 Closed-loop second-stage CO2 response (validation).
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To test the performance of the neural network-based controller, we compared it

with a classic PID controller. The PID control loop was put into service by attaching it to

the process simulator. The PID had to be conservatively tuned by a trial and error method

and set to execute every 90 seconds in order to avoid a built-up integral term that could

cause a run away process. It was observed during the PID tuning process that the PID

controller becomes unreliable when the process approaches the bottom of an

approximately parabolic well surface (Figure 7.11). Figure 7.16 shows a simulated

second-stage NO profile under the tuned PID controller after a step disturbance of the

NH3 in the feed. All settings are the same as previously exercised with the neural

network-based controller.

Figure 7.16 Simulated second-stage NO response (HD, setpoint 440 ppm).
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Comparing Figure 7.16 to Figure 7.14, the performance of the neural network-

based controller is better than that of the PID. The presence of process lags does not alter

the neural network-based controller performance in a significant way. Although the PID

controller is capable of eliminating the process offset, the process response under the PID

controller tends to be sluggish with a very long process settling time (1800 seconds). The

long process settling time is partly the result of the conservative combination of PID

settings used to avoid the undesirable process response caused by the build-up integral

term. It should also be noted that the Smith time-delay compensation structure cannot be

implemented in a traditional PID control configuration because the PID does not have the

capability of identifying the unknown feed stream composition (i.e. the feed stream

composition is an essential input to the neural network-base Smith time-delay

compensator). Clearly, the process settling time under the PID is significantly longer than

the neural network-based controller.

7.5 Simulation Runs and Results

Using the process simulator, more general studies and insight into the NO control process

can be gained. One of the most important issues that should be addressed is the

usefulness and capability of the staged-combustor to suppress the effluent CO. In

particular, while NO concentration is minimized by reduced oxygen availability at higher

(1)1 values, CO burnout is reduced with a resulting increase in the CO concentration in the

first stage. However, a very low effluent CO can be achieved by increasing the second-

stage air flow rate. This is especially well illustrated by Mao and Barat (1996).
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In addition to the control base-case as demonstrated so far, a new control

simulation program is presented here for a fuller investigation and to ensure that the

neural network-based controller is robust within the range of training data.

Here, the initial 0 1 was 1.15, while 00 was set at 0.9. The initial NH 3/C 2H4 ratio in

the feed was 0.035. The measured NO concentration from the second stage was 500 ppm.

This value was then used as the process setpoint. Noted that this NO value is not at the

minimum of the second-stage NO vs. 0 1 curve (Figure 6.1). A step disturbance was then

applied to the NH 3 flow rate to raise the dopant ratio to 0.078. Figure 7.17 shows the

simulated open-loop second-stage NO concentration. The NO concentration rose to 660

ppm, which is in good agreement with the actual experimental result obtained earlier

(Figures 6.1 and 6.11).

Figure 7.17 Simulated open-loop second-stage NO response.
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In closed-loop, the controller increased (1) 1 to about 1.25 by reducing the primary

air flow rate in order to bring the NO back to the setpoint (500 ppm). The secondary air

flow rate was simultaneously increased in order to maintain 00 . Figures 7.18 to 7.19 show

simulated closed-loop profiles of various species under the traditional PID controller. The

PID successfully brought the NO concentration to the desired setpoint within 1800

seconds. The same observation about the second-stage CO 2 concentration can be made as

in the previous section. From Figure 7.19, the first-stage CO concentration dramatically

increases (from 2.1 to 4.2%) as 0 1 increases in trying to maintain the effluent NO at the

desired setpoint. However, regardless of how high the first-stage CO concentration is, the

effluent CO from the second-stage outlet (not shown) is much lower, thus reflecting the

additional conversion from CO to CO2 attained in the second stage. This statement is

confirmed by the increase in the second-stage CO 2 concentration illustrated in Figure

7.19.

Figures 7.20 and 7.21 show the simulated closed-loop profiles of various species

under the neural network-based model-predictive controller (NMPC) equipped with the

neural network-based Smith time-delay compensator (NSTC). As shown in Figure 7.20,

the second-stage NO concentration is brought back to the setpoint within a much shorter

time frame than the PIP controller does. The first-stage CO and CO 2 and second-stage

CO2 profiles are illustrated in Figure 7.21 All profiles are very consistent with the

detailed reaction pathway described earlier and elsewhere (Mao, 1995; Mao and Barat,

1996).



Figure 7.18 Simulated second-stage NO response (PID, setpoint 500 ppm).
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Figure 7.19 Simulated CO and CO 2 responses (PID).
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Figure 7.20 Simulated second-stage NO response (NMPC/NSTC).

Figure 7.21 Simulated CO and CO2 response (NMPC/NSTC).
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7.6 Conclusions

A combustion process simulator was developed in this chapter. A statically trained FMLP

neural network is proven to be an effective tool in modeling the steady-state two-stage

combustion process. The training data were drawn from the existing experimental results

and CHEMKIN simulation data. The training technique suggested by Hecht-Nielsen

(1989) was applied to determine the optimal training cycle.

A process simulator was built on the Visual Basic programming platform. The

well-trained neural network process model was embedded into the simulator interface as

a DLL file. The simulator provided an accurate transient model for the actual combustion

system and proved to be an effective approach for a process control study. With its help,

it is possible to make a fuller investigation and establish that the proposed neural

network-based virtual process control is a viable alternative to the conventional PID

controller. A closed-loop simulation using the PID controller was carried out. The neural

network-based controller shows a superior performance over the PID controller in terms

of both process settling time and compatibility with the Smith time-delay algorithm. The

process simulator also provided insight into the suppressing of the effluent CO through

the staged combustion. In this study, the CO burnout rate was indicated by the

measurements of the first-stage CO and CO2 and the second-stage CO2 concentrations.

Finally, it is important to point out that with a more advanced programming skill -

specifically that one would be building on the work done here, as well as a fuller

experimental database, a more sophisticated process simulator, which incorporates more

detailed mechanical-combustion behaviors, more combustion-related species, and

essential temperature information, can be obtained.



CHAPTER 8

CONCLUSIONS AND COMMENTS

8.1 Summary

This research effort has demonstrated the usefulness and effectiveness of applying

artificial neural networks in a process model-based strategy to control a combustion

process. The experiments and simulations provide detailed case studies in which neural

networks were applied to both linear and nonlinear control problems.

In detail, an overview of the limitations associated with conventional control and

modeling methods was provided in Chapter 1, followed by the objectives of the

dissertation. Chapter 2 reviewed the relevant research literature. Included in this

discussion are the topics of process dynamics and control, the model-based control

concept, and the roles of artificial neural networks in various control applications.

Detailed descriptions of the combustion facilities, gas sampling and analysis

system, and control system were presented in Chapter 3. Chapter 4 contained an

overview of the neural network topologies and computation algorithms. A detailed

discussion of the neural network supervised learning process was included.

A feedback process control study for a monotonic control problem was presented

in Chapter 5. The statically trained neural network was used in conjunction with the

proportional controller in the proportional neural network control (PNNC) structure for

controlling second-stage 02 level. Without the complication of tuning the HD controller

and drastically changing the control configuration, the experimental results showed

significant performance improvement over the proportional controller when the neural
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network was applied as an intelligent tool for updating the bias value. The proposed

PNNC structure offers a great potential to apply toward other feedback control problems.

The usefulness and effectiveness of applying neural networks in a model-based

control strategy to control a staged combustion process was demonstrated in Chapter 6.

The experiment provided a detailed case study in which two clusters of neural networks

were applied to the nonlinear NO/CO control problem with significant time delay due to

the species sampling/analysis process. The proposed control system falls under the

feedforward-feedback control category. The key novelty in this study lies in the structure

and the functionalities of the two clusters of steady-state trained FMLP neural networks.

The first cluster (NMPC) consists of two neural networks. The first network identifies the

amount of ammonia in the feed. Based on that value and the NO setpoint, the second

network adjusts the first-stage equivalence ratio 0 1 . The second cluster (NSTC) also

consists of two neural networks. It is the process emulator and serves as the Smith time-

delay compensator. The NMPC/NSTC successfully brought NO emissions under control

after a step disturbance in the feed composition stream. Unlike those neural network-

based control applications in the control field, which typically involve a time-consuming

and ineffective network learning process, training NMPC and NSTC was simple with

existing steady-state experimental data. With a limited number of neurons and steady-

state training patterns, the network training converged readily. The active control

movement was incorporated into the controller indirectly thought the use of the

mathematical function and programming technique. This approach proved to be reliable

and effective in coping with the time-dependent characteristics associated with the

inherently stable process.
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The process simulator for the combustion system was built and validated in

Chapter 7. A neural network was used to model the staged combustion process inputs and

outputs. The well-trained neural network model was embedded into the Visual Basic

simulator interface. Although the neural network was trained with a steady state historical

database, the transient network responses were enabled by additional programming tools

and techniques. The process simulator was especially useful for some operating ranges

that are physically restricted in the real experimental process. Through the simulation

runs, the superiority of the neural network-based process controller over the PID

controller was demonstrated in terms of both process settling time and compatibility with

the Smith time-delay algorithm. With the process simulator, more insight and process

control knowledge were effectively obtained.

Finally, it is important to mention that the control applications originally designed

and developed in this study are not limited to the combustion process. With sufficient

steady-state training data, the control systems are applicable to processes in others

engineering and science fields.

8.2 Future Work

Although the research objectives outlined in Chapter I have been achieved, it is

important to point out the potential work to be done in the future. The ability of the neural

network-based controller system to handle several inputs, as well as the general

improvement possible if sampling/analysis delay were shortened, suggest that an online,

multi-species, fast analyzer working together with the new controllers would be helpful.
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The main focus now is shifted toward a real-time, online, optical-based species

monitoring system, namely a compact Fourier transform infrared (FTIR) spectrometer.

Early in this research, a short collaboration existed with Optomechanical Enterprise, Inc.

This firm developed a wavefront-dividing FTIR interferometer that was compact and

online. The unit had the potential for near-simultaneous detection of multiple species of

interest to staged combustion; namely, NO, CO, CO2, C2H2, C6H6, etc. As demonstrated

in Chapter 7, a multiple input neural network-based controller is very robust. Therefore, a

marriage of the FTIR unit with the neural network controller seemed logical.

The FTIR system was interfaced to the staged combustor. Infrared transmitting

windows were mounted on the exhaust chamber. A specialty heat exchanger to cool the

gases just upstream of the detection area was installed. Operation of the combustor with

this modified exhaust system proved to be difficult, though not impossible.

Considerable effort was spent on the electronic-interfacing of the FTIR to the

neural network PC. The FTIR itself interfaced to a laptop PC, which was connected to the

main PC. Error-free transfer of information between the interferometer laptop and the

main PC was successfully demonstrated.

It was found that the process of collecting the optical spectrum was long and thus

inhibited the real-time measurement method. The optical spectrum of the combustion

effluent was very complex, and suggested several unknown compounds, some of which

were beyond the capability of the optical detector tO characterize. In addition, some

unburned hydrocarbons had their detectable wavelengths in a very close proximity and

thus made it even more difficult to characterize.
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Operation of the FTIR spectrometer with the combustor proved to be problematic,

and was suspended. Research on the neural network-based control proceeded. A fuller

process control investigation could be carried out by experiment if and when the FTIR

spectrometer becomes available and reliable. Many benefits could be potentially gained

by using the FTIR spectrometer for monitoring sample gases from the combustor while

controlling with the neural networks.

First, the long lag time in the hydrocarbons sampling and analysis process could

be minimized through the use of the FTIR spectrometer. Typically, the unburned

hydrocarbons are measured through a batch process by a gas chromatography method.

The long gas chromatogram batch process inhibits the process monitoring and control of

the hazardous unburned hydrocarbons.

Second, a process control of some hydrocarbons such as CH4, C2H2, C2H4, and

C6H6 could be achieved. As demonstrated by Mao and Barat (1996), in addition to the

dramatic increase of the CO in the first stage as the first-stage equivalence ratio Φ1

increases, the higher also results in increased concentrations of unburned hydrocarbons

such as CH4, C2H2, and C2H4. These species, however, can be consumed in the second

stage. Along with the NO, CO, and CO2 measurements, it would be helpful to have a fast

and reliable mean to measure these unburned hydrocarbon compounds.

Such an optical measuring method would integrate well into the neural network-

based controller for a multi-species control exercise. Data collected through the FTIR

spectrometer could be used for developing and training the neural network-based

controller as well as for expanding the current neural network



APPENDIX

VISUAL BASIC 6.0 SOURCE CODES

The operating and simulation interfaces are written in Visual Basic 6.0. The original

source codes developed in this study, along with essential subroutines from

NeuroDimension, Inc. (NeuroSolutions) and Keithley Instruments, Inc. (DriverLinx), are

listed in this section.
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txtFilter.Text = Val(txtFilter.Text) - 10
DFilter = Val(txtFilter.Text)
End Sub

Private Sub UpDown14_UpClick()
txtFilter.Text = Val(txtFilter.Text) + 10
DFilter = Val(txtFilter.Text)
End Sub

Private Sub UpDown15_DownClick()
txtPeriods.Text = Val(txtPeriods.Text) - 1
End Sub

Private Sub UpDown15_UpClick()
txtPeriods.Text = Val(txtPeriods.Text) + 1
End Sub

Private Sub UpDownl8_DownClick()
txtF2.Text = Val(txtF2.Text) - 0.2
End Sub

Private Sub UpDown18_UpClick()
txtF2.Text = Val(txtF2.Text) + 0.2
End Sub

Private Sub UpDown I9_DownClick()
txtMaxValve2.Text = Val(txtMaxValve2.Text) - 0.1
End Sub

Private Sub UpDown19_UpClick()
txtMaxValve2.Text = Val(txtMaxValve2.Text) + 0.1
End Sub

Private Sub UpDown2_DownClick()
txtFl .Text = Val(txtFl.Text) - 0.5
FlagF1 = 0
BufferF1 = Val(txtActualF1.Text)
End Sub

Private Sub UpDown2_UpClick()
txtFI.Text = Val(txtFl.Text) + 0.5
FlagFl = 1
B ufferF I = Va1(txtActualF1.Text)
End Sub

Private Sub UpDown20_DownClick()
txtMinValve2.Text = Val(txtMinValve2.Text) - 0.1
End Sub

Private Sub UpDown2O_UpClick()
txtMinValve2.Text = Val(txtMinValve2.Text) + 0.1
End Sub

Private Sub UpDown21_DownClick()
txtBias2.Text = Val(txtBias2.Text) - 5
End Sub

Private Sub UpDown21_UpClick()
txtBias2.Text = Val(txtBias2.Text) + 5
End Sub

Private Sub UpDown22_DownClick()
txtPHloSetpoint.Text = Val(txtPHloSetpoint.Text) - 0.01
End Sub

Private Sub UpDown22_UpClick()
txtPHloSetpoint.Text = Val(txtPHloSetpoint.Text) + 0.01
End Sub

Private Sub UpDown23_DownClick()

txtF2F1.Text = Val(txtF2F1.Text) - 0.05
End Sub

Private Sub UpDown23_UpClick()
txtF2F1.Text = Val(txtF2FI .Text) + 0.05
End Sub

Private Sub UpDown24_DownClick()
txtPHllSetpoint.Text = VaI(txtPHllSetpoint.Text) - 0.05
End Sub

Private Sub UpDown24_UpClick()
txtPHIlSetpoint.Text = Val(txtPHIlSetpoint.Text) + 0.05
End Sub

Private Sub UpDown25_DownClick()
txtSmithlnterval.Text = Val(txtSrnithInterval.Text) - 1
End Sub

Private Sub UpDown25_UpClick()
txtSmithInterval.Text = Val(txtSmithInterval.Text) + 1
End Sub

Private Sub UpDown26_DownClick()
txtLag.Text = Val(txtLag.Text) - 5
End Sub

Private Sub UpDown26_UpClick()
txtLag.Text = Val(txtLag.Text) + 5
End Sub

Private Sub UpDown3 DownClick()
txtN2.Text = Val(txtN2.Text) - 0.3
FlagN2 = 0
BufferN2 = Val(txtActualN2.Text)
End Sub

Private Sub UpDown3 UpClick()
txtN2.Text = Val(txtN2.Text) + 0.3
FIagN2 = 1
BufferN2 = Val(txtActualN2.Text)
End Sub

Private Sub UpDown4_DownClick()
txtA2.Text = Val(txtA2.Text) - 0.2
FlagA2 = 0
BufferA2 = Val(txtActualA2.Text)
End Sub

Private Sub UpDown4_UpClick()
txtA2.Text = Val(txtA2.Text) + 0.2
FlagA2 = I
BufferA2 = Val(txtActualA2.Text)
End Sub

Private Sub UpDown5_DownClick()
txtAladd.Text = Val(txtAladd.Text) - 0.5
FlagAlAdd = 0
BufferAlAdd = Val(txtActualAlAdd.Text)
End Sub

Private Sub UpDown5_UpClickO
txtAladd.Text = Val(txtAladd.Text) + 0.5
FlagAlAdd = 1
BufferAlAdd = Val(txtActualAlAdd.Text)
End Sub

Private Sub UpDown6_DownClick()
txtBias.Text = Val(txtBias.Text) - 5
End Sub
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