17 research outputs found

    Nonlinear Constrained Adaptive Backstepping Tracking Control for a Hypersonic Vehicle with Uncertainty

    Get PDF
    The control problem of a flexible hypersonic vehicle is presented, where input saturation and aerodynamic uncertainty are considered. A control-oriented model including aerodynamic uncertainty is derived for simple controller design due to the nonlinearity and complexity of hypersonic vehicle model. Then it is separated into velocity subsystem and altitude subsystem. On the basis of the integration of robust adaptive control and backstepping technique, respective controller is designed for each subsystem, where an auxiliary signal provided by an additional dynamic system is used to compensate for the control saturation effect. Then to deal with the “explosion of terms” problem inherent in backstepping control, a novel first-order filter is proposed. Simulation results are included to demonstrate the effectiveness of the adaptive backstepping control scheme

    Incremental twisting fault tolerant control for hypersonic vehicles with partial model knowledge

    Get PDF
    A passive fault tolerant control scheme is proposed for the full reentry trajectory tracking of a hypersonic vehicle in the presence of modelling uncertainties, external disturbances, and actuator faults. To achieve this goal, the attitude error dynamics with relative degree two is formulated first by ignoring the nonlinearities induced by the translational motions. Then, a multivariable twisting controller is developed as a benchmark to ensure the precise tracking task. Theoretical analysis with the Lyapunov method proves that the attitude tracking error and its first-order derivative can simultaneously converge to the origin exponentially. To depend less on the model knowledge and reduce the system uncertainties, an incremental twisting fault tolerant controller is derived based on the incremental nonlinear dynamic inversion control and the predesigned twisting controller. Notably, the proposed controller is user friendly in that only fixed gains and partial model knowledge are required

    A Biologically Inspired Framework for the Intelligent Control of Mechatronic Systems and Its Application to a Micro Diving Agent

    Get PDF
    Mechatronic systems are becoming an intrinsic part of our daily life, and the adopted control approach in turn plays an essential role in the emulation of the intelligent behavior. In this paper, a framework for the development of intelligent controllers is proposed. We highlight that robustness, prediction, adaptation, and learning, which may be considered the most fundamental traits of all intelligent biological systems, should be taken into account within the project of the control scheme. Hence, the proposed framework is based on the fusion of a nonlinear control scheme with computational intelligence and also allows mechatronic systems to be able to make reasonable predictions about its dynamic behavior, adapt itself to changes in the plant, learn by interacting with the environment, and be robust to both structured and unstructured uncertainties. In order to illustrate the implementation of the control law within the proposed framework, a new intelligent depth controller is designed for a microdiving agent. On this basis, sliding mode control is combined with an adaptive neural network to provide the basic intelligent features. Online learning by minimizing a composite error signal, instead of supervised off-line training, is adopted to update the weight vector of the neural network. The boundedness and convergence properties of all closed-loop signals are proved using a Lyapunov-like stability analysis. Numerical simulations and experimental results obtained with the microdiving agent demonstrate the efficacy of the proposed approach and its suitableness for both stabilization and trajectory tracking problems.</p

    Adaptive Neural Fault-Tolerant Control of a 3-DOF Model Helicopter System

    Full text link

    Review of advanced guidance and control algorithms for space/aerospace vehicles

    Get PDF
    The design of advanced guidance and control (G&C) systems for space/aerospace vehicles has received a large amount of attention worldwide during the last few decades and will continue to be a main focus of the aerospace industry. Not surprisingly, due to the existence of various model uncertainties and environmental disturbances, robust and stochastic control-based methods have played a key role in G&C system design, and numerous effective algorithms have been successfully constructed to guide and steer the motion of space/aerospace vehicles. Apart from these stability theory-oriented techniques, in recent years, we have witnessed a growing trend of designing optimisation theory-based and artificial intelligence (AI)-based controllers for space/aerospace vehicles to meet the growing demand for better system performance. Related studies have shown that these newly developed strategies can bring many benefits from an application point of view, and they may be considered to drive the onboard decision-making system. In this paper, we provide a systematic survey of state-of-the-art algorithms that are capable of generating reliable guidance and control commands for space/aerospace vehicles. The paper first provides a brief overview of space/aerospace vehicle guidance and control problems. Following that, a broad collection of academic works concerning stability theory-based G&C methods is discussed. Some potential issues and challenges inherent in these methods are reviewed and discussed. Then, an overview is given of various recently developed optimisation theory-based methods that have the ability to produce optimal guidance and control commands, including dynamic programming-based methods, model predictive control-based methods, and other enhanced versions. The key aspects of applying these approaches, such as their main advantages and inherent challenges, are also discussed. Subsequently, a particular focus is given to recent attempts to explore the possible uses of AI techniques in connection with the optimal control of the vehicle systems. The highlights of the discussion illustrate how space/aerospace vehicle control problems may benefit from these AI models. Finally, some practical implementation considerations, together with a number of future research topics, are summarised

    Adaptive neural fault-tolerant control of a 3-DOF model helicopter system

    Get PDF
    In this paper, an adaptive neural fault-tolerant control scheme is proposed for the three degrees of freedom model helicopter, subject to system uncertainties, unknown external disturbances, and actuator faults. To tackle system uncertainty and nonlinear actuator faults, a neural network disturbance observer is developed based on the radial basis function neural network. The unknown external disturbance and the unknown neural network approximation errors are treated as a compound disturbance that is estimated by another nonlinear disturbance observer. A disturbance observer-based adaptive neural fault-tolerant control scheme is then developed to track the desired system output in the presence of system uncertainty, external disturbance, and actuator faults. The stability of the whole closed-loop system is analyzed using the Lyapunov method, which guarantees the convergence of all closed-loop signals. Finally, the simulation results are presented to illustrate the effectiveness of the new control design techniques.Mou Chen, Peng Shi and Cheng-Chew Li

    Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk : Volume II East Asian Perspectives.

    Get PDF
    Artificial intelligence (AI) is not only undergoing a renaissance in its technical development, but is also starting to shape deterrence relations among nucleararmed states. This is already evident in East Asia, where asymmetries of power and capability have long driven nuclear posture and weapon acquisition. Continuing this trend, integration of AI into military platforms has the potential to offer weaker nuclear-armed states the opportunity to reset imbalances in capabilities, while at the same time exacerbating concerns that stronger states may use AI to further solidify their dominance and to engage in more provocative actions. This paradox of perceptions, as it is playing out in East Asia, is fuelled by a series of national biases and assumptions that permeate decision-making. They are also likely to serve as the basis for AI algorithms that drive future conventional and nuclear platforms

    Design and implementation of deep neural network-based control for automatic parking maneuver process

    Get PDF
    This article focuses on the design, test, and validation of a deep neural network (DNN)-based control scheme capable of predicting optimal motion commands for autonomous ground vehicles (AGVs) during the parking maneuver process. The proposed design utilizes a multilayer structure. In the first layer, a desensitized trajectory optimization method is iteratively performed to establish a set of time-optimal parking trajectories with the consideration of noise-perturbed initial configurations. Subsequently, by using the preplanned optimal parking trajectory data set, several DNNs are trained in order to learn the functional relationship between the system state-control actions in the second layer. To obtain further improvements regarding the DNN performances, a simple yet effective data aggregation approach is designed and applied. These trained DNNs are then utilized as the motion controllers to generate feedback actions in real time. Numerical results were executed to demonstrate the effectiveness and the real-time applicability of using the proposed control scheme to plan and steer the AGV parking maneuver. Experimental results were also provided to justify the algorithm performance in real-world implementations

    Aeronautical Engineering: A Continuing Bibliography with Indexes

    Get PDF
    This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences
    corecore