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Abstract

The design of advanced guidance and control (G&C) systems for space/aerospace vehicles has received a large amount of attention

worldwide during the last few decades and will continue to be a main focus of the aerospace industry. Not surprisingly, due to the

existence of various model uncertainties and environmental disturbances, robust and stochastic control-based methods have played

a key role in G&C system design, and numerous effective algorithms have been successfully constructed to guide and steer the

motion of space/aerospace vehicles. Apart from these stability theory-oriented techniques, in recent years, we have witnessed a

growing trend of designing optimisation theory-based and artificial intelligence (AI)-based controllers for space/aerospace vehicles

to meet the growing demand for better system performance. Related studies have shown that these newly developed strategies can

bring many benefits from an application point of view, and they may be considered to drive the onboard decision-making system. In

this paper, we provide a systematic survey of state-of-the-art algorithms that are capable of generating reliable guidance and control

commands for space/aerospace vehicles. The paper first provides a brief overview of space/aerospace vehicle guidance and control

problems. Following that, a broad collection of academic works concerning stability theory-based G&C methods is discussed.

Some potential issues and challenges inherent in these methods are reviewed and discussed. Then, an overview is given of various

recently developed optimisation theory-based methods that have the ability to produce optimal guidance and control commands,

including dynamic programming-based methods, model predictive control-based methods, and other enhanced versions. The key

aspects of applying these approaches, such as their main advantages and inherent challenges, are also discussed. Subsequently, a

particular focus is given to recent attempts to explore the possible uses of AI techniques in connection with the optimal control of

the vehicle systems. The highlights of the discussion illustrate how space/aerospace vehicle control problems may benefit from

these AI models. Finally, some practical implementation considerations, together with a number of future research topics, are

summarised.
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1. Introduction

1.1. Background

The impact of space and aerospace activities on our mod-

ern world is becoming more apparent than ever. In the past

decades, a number of remarkable achievements have been made5

in space/aerospace flight missions, including deep space explo-

ration [1], satellite surveillance [2], interplanetary travel [3],

Mars landings [4], space debris removal [5], atmospheric re-

entry or hopping [6], missile-target engagement [7], spacecraft

rendezvous and docking [8], spacecraft or unmanned aerial ve-10

hicle (UAV) swarms [9], and multi-spacecraft formation flying

[10]. Figure 1 provides a graphical depiction of some typical

examples. Behind these success stories, the development of

advanced guidance and control (G&C) methods has made sig-

nificant contributions and is of particular importance [11]. A15

promising guidance and control system can effectively output

∗Corresponding author

Email address: r.chai@ieee.org; r.chai@cranfield.ac.uk

(Runqi Chai)

instructions and execute operations for a space/aerospace vehi-

cle, thereby enabling the vehicle to fulfil the mission targets in

a reliable way [12].

By investigating the literature, two popular trends in the20

development of advanced guidance and control methods can be

identified. The first mainstream development was the develop-

ment of robust or stochastic control-based methods. In recent

years, numerous effective robust and stochastic control algo-

rithms have been successfully constructed to guide and steer25

space/aerospace vehicle motion in a variety of missions [13–

15]. Improving the system robustness as well as the fault tol-

erance ability should always be a crucial design requirement.

This is mainly because various model uncertainty, environmen-

tal disturbances, sensor measurement noise, and actuator faults30

frequently exist in real-world practice. If certain treatments

with respect to these negative effects are not performed, the en-

tire system is likely to become unstable, resulting in a failure

of the flight mission. Since most of the robust and stochastic

control algorithms originate from stability theory, it is natural35

to classify them into stability theory-based methods.
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(a). Interplanetary travel [3] (b). Mars landing [4] (c). Space debris removal [5]

(d). Atmospheric re-entry [6] (e). Missile-target engagement [7] (f). Rendezvous and docking [8] 

Figure 1: Typical examples: (a). Interplanetary travel [3]; (b). Mars landings [4]; (c). Space debris removal [5]; (d). Atmospheric re-entry or hopping [6]; (e).

Missile-target engagement [7]; (f). Spacecraft rendezvous and docking [8]

In addition to the stability theory-based guidance and con-

trol methods, the second mainstream approach is to apply opti-

misation theory-based methods to guide and steer the motion of

space/aerospace vehicles [16, 17]. This type of approach can be40

viewed as a direct result of merging the concepts of control and

optimisation, and it has become increasingly popular in recent

years. It is worth noting that this merge can bring advantages

for the design of guidance and control algorithms. This is pri-

marily reflected in the following characteristics:45

• Improved system performance: As the control problem

is reformulated for an optimisation task, a certain perfor-

mance index can be optimised to some extent during the

control process. This can meet the growing demand for

better system performance.50

• Enhanced algorithm flexibility and functionality: Tools

such as artificial neural networks (ANNs) [18], adaptive

methods [19], and disturbance observers [20] can be easily

combined with optimisation theory-based control meth-

ods, thereby enhancing the controller’s ability to identify55

system uncertainties and reject disturbances. In addition,

this type of algorithm has the capability of handling vari-

able and process constraints.

Recently, many effective optimisation theory-based con-

trol methods have been reported in the literature, such as60

(heuristic) dynamic programming-based methods, model pre-

dictive control-based methods, and other enhanced versions. In

addition, researchers have devoted a large amount of effort to

exploring the conditions that can provide theoretical guarantees

with respect to the system stability as well as the feasibility of65

the optimisation process [21, 22]. This further improves the re-

liability of using these optimisation theory-based methods for

space/aerospace vehicle guidance and control problems.

Benefiting from remarkable advances in machine learning

(ML), artificial intelligence (AI), and deep learning technology,70

a new interest can be found in the literature toward applying

ANNs or deep neural networks (DNNs) to achieve the online

guidance and control of space/aerospace vehicles. One impor-

tant feature of using these models is that they have the ability to

preserve the obvious advantages of optimisation theory-based75

control methods while simultaneously maintaining an accept-

able computational burden in real time [23, 24]. Specifically,

this type of algorithm aims to train some neural network mod-

els that are able to generate optimal guidance and control com-

mands, thus forming the onboard decision-making system for80

different mission profiles. Over the past decade, efforts have

been made to develop and investigate different network mod-

els, and successful explorations of these types of method can

2
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be found in a number of space-related or aerospace-related ap-

plications, including low-thrust orbital transfer [25], spacecraft85

atmospheric re-entry [26], and planetary pinpoint landing [27].

Although differences can be found in the applied network mod-

els and training strategies, they all share a similar design phi-

losophy. As a consequence, these kinds of method are denoted

as AI-based G&C methods throughout this paper for the sake90

of simplicity.

1.2. Motivation

Perhaps there is no single method capable of achieving a

generally acceptable guidance and control performance for all

space/aerospace vehicle guidance and control problems. How-95

ever, designing reliable guidance and control algorithms is a

fast-developing field, and each method has unique advantages

and disadvantages in various aspects, such as efficiency, flexi-

bility, functionality, and complexity. This indicates that select-

ing a proper guidance and control algorithm is usually problem-100

dependent.

The central objective of this article is to present a detailed

survey covering the latest research results as well as the poten-

tial follow-up research directions in this field. Moreover, it is

vital to understand the key features of different approaches and105

to be aware of the potential issues and challenges of applying

these algorithms. More precisely, we intend to:

• classify the existing approaches published in recent years

according to their design philosophies;

• summarise the advantages and disadvantages of different110

guidance and control approaches;

• analyse the current challenges of using different methods

for spaceflight and aerospace applications; and

• provide some guidelines for the development of stability

theory-based, optimisation theory-based and AI-oriented115

guidance and control methods.

1.3. Organisation of the Article

This review article is organised as follows: In Section 2,

a brief overview of space/aerospace vehicle guidance and con-

trol systems is provided. Section 3 describes a broad collec-120

tion of academic works researching stability theory-based guid-

ance and control methods. Next, various recently developed

optimisation theory-based guidance and control methods, in-

cluding dynamic programming-based methods, model predic-

tive control-based methods, and other enhanced versions, are125

reviewed in Section 4. Key aspects such as the main advan-

tages and inherent challenges of applying these approaches are

also discussed in detail. Following that, Section 5 has a partic-

ular focus on recent attempts to explore the possible uses of AI-

oriented techniques in connection with the guidance and control130

of different space/aerospace vehicles. Finally, some concluding

remarks, together with future research topics, are provided in

Section 6. We understand that it is relatively difficult to study,

comment on, and summarise all the important works existing in

this field. Hence, we mainly restrict our attention to works that135

have been published since the beginning of this century. More-

over, the works that have been published in the recent ten years

are prioritized.

2. Types of Guidance and Control Systems

Early development on the guidance and control systems140

may heavily rely on the separation principle [28, 29]. To be

more specific, the central idea behind a so-called separate guid-

ance and control (SGC) system for space/aerospace vehicles

can be demonstrated via the conceptual diagram shown in Fig-

ure 2(a).
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Figure 2: Typical space/aerospace vehicle guidance and control systems

145

In an SGC framework, the guidance and control systems

are separated as two loops, thereby allowing both loops can be

independently designed. In fact, researchers and engineers still

prefer to consider the guidance and control problems separately,

and research works reported to contribute the development of150

SGC can be found in a number of literature [29, 30]. How-

ever, according to some investigations [31–33], an SGC scheme

may suffer from various issues such as high-frequency oscilla-

tions, expensive parameter tuning process, and large time lags.

These issues are usually undesirable for practical applications,155

and this stimulates the development of integrated guidance and

control (IGC) systems [34–36] and partially integrated guid-

ance and control (PIGC) systems [31–33].

2.1. Integrated Guidance and Control System

In the past ten years, researchers have devoted significant160

effort to contribute the development of IGC systems, in appli-
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cations ranging from space autonomous vehicles to guided mis-

siles [34–36]. Different from the SGC, the IGC aims to synthe-

size the guidance and control loops together (e.g., as indicated

in Figure 2(b)). An important advantage of the IGC design is165

that such an integrated system can fully exploit the rich infor-

mation of the six-degree-of-freedom (6-DOF) vehicle dynam-

ics, thereby alleviating the time lag problem to some extent.

As more published works on developing IGC systems are be-

coming available in the existing body of literature, we briefly170

discuss some progresses in the this field and highlight some

features of existing IGC designs.

In the work presented by Luo et al.[34], an IGC system

was established for an air-to-air autonomous attack mission.

The nonlinear dynamics of the unmanned combat aerial vehi-175

cles and the guided missile were firstly introduced by the au-

thors. Following that, a robust control algorithm, along with a

parameter adaptive strategy, was proposed to serve as the main

controller. According to simulation results carried out by the

authors, certain advantages can be obtained by applying the180

proposed IGC in comparison to the traditional SGC. For exam-

ple, the proposed IGC is able to save about 25% of the control

effort while achieving a high attack precision.

Similarly, in [35], a rapid and robust IGC system was pro-

posed for the problem of 3-D interception of hypersonic vehi-185

cles. A compound control law was derived with signal com-

pensation such that the speed of the system response can be

increased. Numerical simulations, together with a number of

comparative studies, were carried out and presented. Based on

the obtained results, it was verified that the proposed IGC sys-190

tem can simultaneously enhance the robustness of the intercep-

tor as well as the response ability.

2.2. Partially Integrated Guidance and Control System

The concept of PIGC has been recently introduced in the

development of advanced guidance and control systems [31–195

33]. This concept aims to combine the merits of SGC and IGC,

thereby dealing with the limitations of the one-loop IGC sys-

tems such as the insufficient capability of exploiting time scale

separation and the relatively expensive parameter tuning pro-

cess [31]. Similar to that of SGC, the PIGC system formulates200

the problem by applying an inner-outer loop structure. Each

loop will manipulate a part of the 6-DOF dynamics. More

precisely, an graphical depiction of the PIGC is shown in Fig-

ure 2(c), from where it is obvious that in the outer loop, the

body rate commands will be generated and provided to the in-205

ner loop. Subsequently, the inner loop will track the body rate

command profiles utilizing the nonlinear body rate equations of

the 6-DOF dynamics.

In the context of PIGC, the works reported by Padhi et

al.[31, 32] are of particular importance. Specifically, in [31],210

the authors proposed a PIGC scheme for a missile-target en-

gagement mission, while in the work reported in [32], a PIGC

scheme was successfully developed for a UAV formation fly-

ing mission. According to the reported simulation results, the

developed PIGC successfully inherited the advantages of the215

IGC and the conventional SGC. As for the missile-target en-

gagement mission, it was shown that PIGC can lead smaller

miss distance values than that of IGC. In terms of the UAV

formation flying mission, the PIGC is able to bring multiple

UAVs into pre-specified formation quickly and maintain the220

formation. More importantly, it was shown that negative ef-

fects caused by time scale separation between the translational

and rotational vehicle dynamics were successfully addressed.

It is worth noting that some interesting branches such as

cost-effective IGC/PIGC systems, adaptive IGC/PIGC systems,225

networked IGC/PIGC systems start appearing in the literature

[37]. Detailed classification and discussion of these guidance

and control systems are beyond the scope of this article. In-

terested readers are referred to [37] for such a comprehensive

review. Alternatively, in this paper, we focus on reviewing230

the latest developments of guidance and control algorithms that

are effective and available for different space/aerospace vehicle

guidance and control systems.

3. Review of Stability Theory-based G&C Methods

Most of the newly developed guidance and control meth-235

ods for space/ aerospace vehicles are constructed based on sta-

bility theory. This can be attributed to the increasing theoretical

advances in branches of control theory, including robust con-

trol, adaptive control, stochastic system theory, and data-driven

control, since the beginning of this century. However, both the-240

oretical and practical challenges remain open for this type of

method, which has stimulated further research on this subject.

3.1. Design and Applications of Robust G&C Algorithms

Not surprisingly, due to the existence of various model un-

certainties or environmental disturbances, using deterministic245

guidance and control policies may fail to achieve the desired

control performance. Therefore, dealing with or rejecting these

negative effects is one of the primary objectives in the design

of robust guidance and control systems [13, 14]. In the recently

published literature, numerous robust guidance and control al-250

gorithms have been successfully constructed to guide and steer

the motion of various space/aerospace vehicles.

In the following subsections, we provide a summary of

the applications of several typical techniques in the design

of guidance and control systems. These techniques include:255

finite-time sliding mode control (SMC) theory-based schemes,

fractional-order control-based schemes, dynamic inversion-

based schemes, backstepping-based schemes, and other robust

methods.

3.1.1. Finite-Time SMC Theory-based Scheme260

Among various methods, one popular option is the vari-

able structure control method based on SMC [38]. Benefit-

ing from its insensitivity to disturbances and uncertainties, it

has been widely used for space/aerospace vehicle guidance and

control systems [38, 39]. Note that for the linear hyperplane-265

based SMC designs presented in [38] and [39], the asymptotic

stability and convergence may only hold true on the sliding

manifold. That is, the system errors might not converge to an
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equilibrium point in finite-time. Hence, to deal with this is-

sue, the development of guidance and control methods based270

on finite-time SMC theory has been stimulated [40–42].

As a variant of conventional SMC, the terminal sliding

mode control (TSMC) strategy is able to achieve the finite-time

stability. It is worth noting that in recent years TSMC-based

algorithms have been extensively researched, especially in the275

field of space/aerospace vehicle guidance and control systems.

For example, the authors of [40] established a TSMC algo-

rithm to generate the guidance commands for the Mars atmo-

spheric entry problem. In their work, TSMC was combined

with a second-order differentiator responsible for estimating280

the total external disturbance, thus creating a hybrid structure.

Simulation results were provided to illustrate the higher con-

trol precision obtained by applying their proposal. Also, it was

confirmed that the proposed approach can effectively steer the

tracking error between the actual spacecraft state trajectories285

and the desired references to a small neighbourhood of zero in

finite time.

However, it was highlighted in [41] and [42] that the

TSMC-based guidance and control algorithms may suffer from

the singularity issue. Therefore, the authors of these two290

works have devoted efforts on developing non-singular TSMC

(NTSMC) approaches to overcome this drawback. Specifically,

in [41], an NTSMC scheme was developed to produce control

commands in real time for a small satellite. More precisely,

bounded external disturbances were considered in the problem295

formulation, and the inherited singularity problem of using tra-

ditional TSMC was successfully avoided by applying the au-

thors’ design.

Moreover, a non-singular fast TSMC (NFTSMC) control

strategy was developed in [43], wherein a flexible spacecraft at-300

titude tracking problem was addressed. In addition, an adaptive

strategy was proposed such that the boundary of the unknown

external disturbances could be estimated. The motivation for

the design of NFTSMC is to combine the advantage of NTSMC

and the conventional SMC, thereby accelerating the algorithm305

convergence speed. Based on the reported simulation results, a

faster convergence speed can be achieved while simultaneously

guaranteeing the finite-time stability of the controlled system.

On the other hand, in the design of SMC guidance and

control laws, an important problem that needs to be carefully310

considered is the chattering phenomenon. This phenomenon

can stimulate the high-frequency dynamic characteristics of the

system and is not conducive to the realisation of the guidance

and control system. To effectively address this problem, a num-

ber of finite-time SMC theory-based guidance and control al-315

gorithms have been studied to extend and generalise standard

SMC [44–48]. For example, in [44], an higher-order SMC

(HOSMC) scheme was proposed to address a rigid spacecraft

attitude tracking control problem. By increasing the order of

the sliding mode (e.g., setting it higher than the relative degree320

of the spacecraft system), the chattering phenomenon was effec-

tively eliminated. Simulation studies were provided to support

the main argument discussed in this work.

The authors of [45] proposed a two-layer control structure

incorporating a TSMC manifold and an HOSMC to achieve325

the robust attitude synchronisation of spacecraft in finite-time

while simultaneously reducing the communication burden to

some extent. The validity of this hybrid design as well as

the chattering-free performance were confirmed by executing

a number of numerical simulations.330

Apart from the HOSMC, some integral SMC (ISMC)-

based guidance and control systems have been successfully pro-

posed to alleviate the chattering problem. For example, in [46],

the authors proposed an integral TSMC (ITSMC) scheme for

the rigid spacecraft attitude tracking problem in the presence of335

actuator uncertainties. The main theoretical conclusion, along

with the obtained simulation results, suggested that by adding

an integral term in the design of the sliding surface, the steady-

state error can be reduced and the chattering problem can be

alleviated while the finite-time stability is simultaneously main-340

tained.

In [47], a modified ISMC approach was applied to obtain a

spacecraft attitude control system that considered actuator sat-

uration and external disturbances. By applying this approach, a

robust tracking performance could be achieved, and the trajec-345

tory tracking error could be driven to zero in finite time. In addi-

tion, the authors of [48] advocated a composite spacecraft atti-

tude stabilisation system combining a disturbance observer and

an ISMC controller. Simulation examples were carried out to

illustrate the effectiveness as well as the enhanced disturbance350

rejection performance of their proposal.

3.1.2. Fractional-Order Control-based Schemes

In recent years, a growing trend has been witnessed in

terms of designing fractional-order control (FOC)-based strate-

gies for space/aerospace vehicle guidance and control prob-355

lems [49, 50]. Fractional order control methods take advan-

tage of their flexibility in meeting desired performance specifi-

cations and tuning the closed-loop response. In such a method,

fractional-order derivatives and integrals of the state are usu-

ally applied for feedback, thus allowing a greater freedom to360

fit the desired behaviour of the controlled plant. Note that

some fractional-order control-based methods have been suc-

cessfully developed and applied [35, 49–51]. For example, two

fractional-order proportional integral derivative (FOPID) meth-

ods were proposed in [49] in order to stabilize the rigid space-365

craft rotational dynamics. Compared with integer feedback

control schemes, one important feature of these two proposed

FOPID controllers is that they all apply the fractional derivative

and integral feedback terms with adjustable fractional orders.

According to the experimental simulations, it was confirmed370

that by tuning the integral orders and fractional derivative, both

the settling time and control effort can be simultaneously re-

duced.

In [50], the authors proposed a fractional-order control

scheme to stabilise a spacecraft attitude system. The central375

idea of this work is to combine the advantage of fractional feed-

back control and ISMC, thereby constructing a fractional-order

integral sliding mode control (FOISMC) algorithm for the con-

sidered problem. By analyzing the reported comparative re-

sults, the main advantage of applying FOISMC over pure ISMC380

was appreciated. Actually, the ISMC scheme may suffer from

5



problems such as integral saturation and a low convergence rate.

The reasons are mainly due to the existence of integral action,

and the control performance can be significantly affected.

Similarly, in [35], the authors suggested a FOISMC385

scheme and eliminated the disturbances by establishing robust

compensation signals. In addition, they designed a parallel con-

trol structure to execute the sliding phases, thus enhancing the

system response velocity. It was shown that this approach had

the potential to be applied in the design of space vehicle guid-390

ance and control systems.

In addition, a FOISMC scheme was developed in [51],

wherein a small satellite attitude control problem was consid-

ered. Theoretical results, along with numerical simulations,

were obtained to demonstrate the effectiveness and advantage395

of using their proposal to achieve an enhanced steady-state per-

formance.

3.1.3. Dynamic Inversion-based Scheme

Nonlinear dynamic inversion (NDI)-based algorithms

have long been recognized as an effective guidance and con-400

trol strategy for various space/aerospace vehicles [52, 53]. This

type of approach usually cancels the system nonlinearity by

transforming the original nonlinear dynamics into an entirely

or partly linear version, thus enabling the use of conventional

linear control techniques. Although some attempts of apply-405

ing NDI methods for flight control were reported in the liter-

ature [52, 53], one critical problem is that exact dynamic in-

version may inherently suffer from lack of robustness. Hence,

researchers have devoted efforts to address this issue and an

enhanced version, named incremental NDI (INDI) control, has410

been successfully proposed [54–57].

The authors of [55] applied an INDI-based method to serve

as the trajectory tracking controller of an aircraft. In their work,

both actuator faults and model uncertainties were considered

and tackled by incrementally applying control inputs. Accord-415

ing to the simulation tests, it was verified that the proposed de-

sign is able to fulfill the tracking mission in the presence of un-

certainties and actuator faults. Moreover, comparative studies

against NDI method further confirmed the advantage of using

INDI.420

In [56], a rigours robustness and stability analysis for INDI

was provided by using the nonlinear system perturbation theory

as well as the Lyapunov method. The main theoretical conclu-

sion was validated by performing a large number of Monte-

Carlo simulation tests on an aircraft command tracking task425

with the consideration of model uncertainties and external dis-

turbances.

In addition, a cascaded INDI scheme was structured in

[57] to serve as a robust hovering controller for the quadcopters.

Based on the reported experimental results, it was demonstrated430

that significant improvements over a conventional PID con-

troller can be achieved in terms of the control accuracy and the

disturbance rejection performance.

3.1.4. Backstepping-based Scheme

Backstepping-based (BS) techniques is also a popular op-435

tion for the design of robust guidance and control algorithms

[15, 58]. This type of method usually contains two steps. In the

first step, a virtual subsystem control signal is designed. Sub-

sequently, this virtual input will be provided to the controller to

compute the control command of the actual subsystem. Typical440

examples of designing or applying backstepping-based guid-

ance and control algorithms for various space/aerospace sys-

tems can be found in a number of published works [15, 59, 60].

For instance, Hu and Meng [15] suggested an adaptive BS con-

trol scheme to address the air-breathing hypersonic vehicle tra-445

jectory tracking problem. In their work, both input saturations

and aerodynamic uncertainties were considered when designing

the controller. To avoid repeated differentiations of the virtual

control variables, an attempt was made to merge the advantage

of dynamic surface control and conventional BS. The effective-450

ness of their proposal was confirmed by performing numerical

simulations.

In 2019, a novel BS-based guidance algorithm was pro-

posed in [59] for the missile-target engagement system. One

important feature of the proposed BS guidance law is that it455

can satisfy the the seeker’s field-of-view limits while simulta-

neously achieving the desired impact time. Numerical simu-

lation results revealed that by applying the proposed BS-based

guidance method, the interception mission can be successfully

fulfilled at the desired impact time.460

3.1.5. Other Robust Control Schemes

In addition to the aforementioned robust algorithms, other

robust control schemes have also been applied in the design of

spacecraft guidance and control systems [49, 61–63]. Exam-

ples include the fault tolerant control-based guidance scheme465

proposed in [64] and the H∞-based guidance algorithm devel-

oped in [61]. Besides, in 2016, Bandyopadhyay et al.[62] de-

veloped an attitude control strategy, together with a nonlinear

tracking controller, for spacecrafts carrying a large object. One

important feature of the proposed design is that both bounded470

tracking errors in the presence of uncertainties and the global

exponential convergence to the reference attitude trajectory can

be ensured. By executing case studies, the possibility of apply-

ing this robust control scheme in future asteroid capture mis-

sions was confirmed.475

Similarly, in [63], a robust ordinary differential equation

(ODE)–partial differential equation (PDE) feedback controller

was constructed for precise attitude trajectory tracking and

slewing in the presence of bounded disturbances. In this work,

the unique equations of motion capable of describing the one-480

degree-of-freedom rotation of spacecrafts equipped with strain-

actuated solar arrays were established. Detailed stability anal-

ysis and proofs were provided to further demonstrate the effec-

tiveness of the proposed design.

Nevertheless, these approaches are mostly oriented toward485

classical robust control theory, and their control performance

and anti-disturbance ability have been verified by a number of

simulation studies and analysis.

3.2. Design and Applications of Stochastic G&C Algorithms

Most of the previously mentioned contributions were de-490

signed based on deterministic systems. However, in practical
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space/aerospace vehicle systems, uncertainties may exist in the

system state equations or input sequences, resulting in stochas-

tic systems [65]. In these cases, it is necessary to introduce

the concept of stochastic process, which stimulates the devel-495

opment of stochastic guidance and control algorithms.

One typical design of stochastic guidance and control al-

gorithms is to combine stochastic theory with optimal control,

thus resulting in stochastic optimal guidance and control algo-

rithms. A number of works have been proposed in the literature500

to design or apply this kind of technique in a variety of space-

flight missions. For instance, in the work of Kota et al.[66], a

stochastic optimal control law was proposed to steer the ma-

noeuvres of a spacecraft considering the probabilistic uncer-

tainties in the system equations. Similarly, Duta et al.[67] ap-505

plied a stochastic optimal guidance and control scheme to per-

form spacecraft manoeuvres. In their work, the propagation of

uncertainty in the spacecraft system equations was fully consid-

ered, and a Monte Carlo simulation framework was established

to contribute to the identification of manoeuvre types and the510

stabilisation of uncertain systems.

Stochastic sliding mode-based guidance and control algo-

rithms are another type of method capable of handling uncertain

space or aerospace vehicle systems. This approach combines

stochastic theory with SMC and has been successfully applied515

in space-related missions. For example, the authors in [68] in-

troduced a stochastic SMC-based controller to steer the motion

of a space manipulator. In their work, the plant was modelled as

a nonlinear stochastic Markovian jump system that considered

uncertain time-varying delays. To effectively deal with the un-520

certain terms, a fuzzy observer was constructed to estimate the

uncertain state, thus guaranteeing stochastic stability. In addi-

tion, a terminal guidance law was derived in [69] by taking ad-

vantage of stochastic NFTSMC theory. In this work, stochastic

noise was considered, and the obtained results showed the ef-525

fectiveness of applying such a hybrid strategy.

Importantly, some research has focused on the develop-

ment of stochastic adaptive or finite-time guidance and control

algorithms [70, 71]. Such approaches combine stochastic the-

ory with adaptive or finite-time control, and their ability to ad-530

dress the uncertainties involved in aerospace vehicle systems

has been verified. One example can be found in the work of

Chen [71], wherein a stochastic adaptive IGC framework capa-

ble of steering hypersonic missiles during exo-atmospheric and

atmospheric flights was established. In contrast to existing re-535

sults, this work investigated stochastic uncertainties in the sys-

tem equations and derived a novel adaptive law to enforce the

stochastic stability of the system.

It is worth noting that most of the aforementioned stochas-

tic guidance and control algorithms were established by explor-540

ing the notion of stability. That is, the convergence of the al-

gorithm was established with respect to an equilibrium point

or a particular trajectory. In recent years, control techniques

using contraction-based incremental stability analysis have re-

ceived considerable attention [72–74]. Incremental stability can545

be understood as a requirement that all system trajectories of

a dynamical system converge to each other. This concept is of

particular importance to observer designs for stochastic systems

[74] as well as synchronization problems such as swarms of

spacecrafts and satellites [72]. A typical example can be found550

in the work presented by Chung et al.[72], wherein a phase

synchronization controller, derived via the contraction analysis,

was proposed for a class of networked systems in the presence

of stochastic uncertainties. Then, this controller was applied to

reconfigure a large swarm of spacecrafts operating in the low555

Earth orbit.

In their follow-up research [74], an optimal feedback

tracking controller was formed for a class of Itô nonlinear

stochastic systems. In this work, the feedback gain, along with

other controller parameters, was optimized by constructing a560

convex optimisation problem where the objective function was

to minimize the upper bound of the steady-state tracking error.

To verify the performance of this design, an uncertain space-

craft attitude tracking control example was executed. Simula-

tion results confirmed the superiority of the proposed design in565

comparison to other alternatives.

3.3. Potential Issues and Challenges of Stability Theory-based

G&C Algorithms

Based on the introduction of the different methods pre-

sented in previous subsections, we can summarise in detail the570

main advantage of each type of approach. As for robust guid-

ance and control algorithms, the main advantage of some typi-

cal techniques is summarised in Table 1.

Although certain advantages can be acquired by applying

these stability theory-based methods on the guidance and con-575

trol of space/aerospace vehicles, some theoretical and practical

issues remain open for further consideration. More precisely,

these issues are summarized below.

• TSMC: The speed of convergence toward the equilibrium

point is usually slow. In addition, singularity problems580

may easily arise when applying TSMC methods.

• NTSMC: When the system is far from the equilibrium

point, the convergence speed of the system state variables

tends to be slow. Additionally, if the unit vector control

law is designed in combination with the global arrival con-585

dition, some problems may be identified, such as chatter-

ing, slow convergence and “stagnation of convergence”.

• NFTSMC: Similar to NTSMC, although the convergence

speed can be enhanced, problems such as chattering and

“convergence stagnation” need to be further considered.590

• HOSMC: In engineering practice, the higher-order deriva-

tive information of the system may not be easily obtained.

In addition, the HOSMC controller needs to be established

using a relatively accurate system model.

• ISMC: Under the condition of a large initial error, this595

method might lead to a large overshoot and a long regula-

tion time, thus degrading the transient performance. This

phenomenon becomes more serious when the control input

is limited.
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Table 1: Main advantages of stability theory-based G&C algorithms

Method Main advantage

TSMC: It can stabilise a system with guaranteed finite-time

convergence.

NTSMC: It can alleviate singularity issues.

NFTSMC: An enhanced convergence speed can be obtained compared with

NTSMC.

HOSMC: Higher-derivative information is fully exploited, thereby

effectively alleviating the chattering problem.

ISMC: It can reduce the steady-state error, alleviate the chattering

problem, and enhance stability.

FOC: It has flexibility in meeting desired performance specifications

and tuning the closed-loop response.

NDI It enables the use of conventional linear control techniques.

INDI Compared to conventional NDI, INDI provides further improvement

regarding system robustness.

BS The use of the recursive design procedure can increase the

flexibility to deal with uncertainties.

H∞: It can guarantee control stability while optimising some

performance indices.

• FOC: The selection of the fractional order is usually key,600

and it must be properly adjusted. A poor selection of this

value can result in the degradation of the system stabil-

ity as well as its robustness. Moreover, little attention

has been paid to the design of the constrained FOC law.

Note that in real-world applications, various practical con-605

straints may exist and require proper treatments.

• NDI: This type of method usually requires an accurate

knowledge of the controlled system in order to acquire

an exact dynamic cancellation. This requirement is dif-

ficult to meet in real-world applications due to numerical610

errors, environmental uncertainties, external disturbances,

and model simplifications.

• BS: According to [75], the control performance of using

BS laws tends to be sensitive with respect to the numeri-

cal errors. Note that commonly, the guidance and control615

algorithm has to be performed numerically by an onboard

processor for a practical implementation. As a result, this

phenomenon is highly undesirable.

Apart from the aforementioned challenges for different

finite-time SMC-based methods, a critical drawback is that in620

practical applications, most of the times the finite time cannot

be specified by a user a priori. Hence, even though methods

based on finite-time SMC theory have started appearing, their

development is still far from mature.

Regarding stochastic guidance and control methods, one625

advantage is that it has the capability of addressing different

types of uncertainties in the system equations. However, some

potential challenges are also obvious:

• If the state variables of a practical guidance and control

system are unobservable or the feedback control has a time630

delay, the system uncertainty is difficult to study.

• The design of stochastic guidance and control method may

need to introduce a number of assumptions, and because

of this, the result tends to be conservative. Although it is

acceptable in theoretical analysis, practical stability may635

easily be lost in real-world applications.

• Although adaptive strategies can be an effective tool to es-

timate uncertain variables and address their negative im-

pacts, different systems need different analyses. If the es-

timation process cannot be performed promptly, which is640

likely to happen in a practical application, the control ac-

curacy may be damaged significantly.

Furthermore, it should be noted that for some

space/aerospace engineering applications such as space-

craft swarms and multi-spacecraft formation flying, unique645

challenges to these problems can be identified by applying

the stability theory-based guidance and control algorithms

[9, 10, 76]. For example, one challenge is to achieve the

desired swarm behaviour governed by both the nonlinear

time-varying attitude dynamics and the orbital dynamics, while650

maintaining an optimal and robust control performance [76].

This problem becomes much more difficult when various

actuator, environmental, and communication uncertainties are

required to be taken into account [72]. In addition, it might be

difficult for a centralized stability theory-based guidance and655

control algorithm to steer a large swarm of vehicles due to the

significant communication and computation requirements [72].

To deal with these open issues, a couple of important

works have been reported in the literature [77–80]. For in-

stance, the authors of [78] applied an inhomogeneous Markov660

chain-based probabilistic swarm guidance algorithm to achieve

the desired swarm behaviour for a large scale of space robotic

systems. Rigours proofs regarding the robustness as well as the

scalability properties of the proposed algorithm were provided.
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Also, numerous simulation results were carried out to shown665

the proposed design has the capability of achieving robust con-

trol performance, thereby evidencing the obtained theoretical

conclusions.

In [79], the authors developed a decentralized algorithm

for multi-spacecraft formation flying. An important advantage670

of the proposed algorithm is that its computational complexity

does not grow as the size of the spacecraft swarm increases. A

number of hardware-in-the-loop experiments were executed to

verify the effectiveness of the proposed algorithm. This further

improves its possibility for future real-world applications.675

3.4. Design and Applications of Data-Driven G&C Algorithms

It is worth noting that all the aforementioned algorithms

are model-based control methods [81]. That is, the guidance

or control law is derived by applying the knowledge and in-

formation of the system equations [82]. However, with the680

development of space and aerospace vehicle systems, the dy-

namic model tends to become increasingly complex, which in-

troduces additional difficulties in the design of guidance and

control methods. Data-driven guidance and control (DDGC)

algorithms are therefore proposed to address the problem with-685

out using the knowledge of the mathematical model of the ve-

hicle. More precisely, data-driven guidance and control algo-

rithms are developed and applied for the following scenarios:

1. It is difficult to model the uncertainty and external distur-

bances acting on the vehicle system, or they have signif-690

icant impacts on the design of the model-based guidance

and control algorithms.

2. It is difficult to describe the motion of the space or

aerospace vehicle with a unified mathematical model.

3. The mathematical model of the vehicle is too complex to695

design a reliable guidance and control system.

Recently, data-driven control methods have been devel-

oped and applied extensively in the design of guidance and con-

trol systems. The basic idea of data-driven control methods is

that we only adjust the input and output signals. That is, an700

approximate input-to-output model is constructed, and this ap-

proximate model is updated by using the collected input and

output datasets. In this way, no information about the system

model is required, and the main problem becomes designing a

controller such that the targeted output signals can be tracked.705

The essence of a data-driven guidance and control algorithm

can be viewed as a closed-loop adaptive process. A simplified

conceptual diagram of this type of approach can be found in

Figure 3.

A number of contributions that have been made to develop710

this type of method are available in the literature. For example,

in [83], the authors addressed the problem of combined space-

craft attitude control with the consideration of noncooperative

targets. In their work, a model-free data-driven control scheme

was proposed to produce the optimal control commands for the715

attitude system. The effectiveness as well as the stability of the

proposed data-driven control were validated by a series of sim-

ulation studies.

Buffer

Data-driven 

Controller
Plant

Buffer

Figure 3: A simplified conceptual diagram of data-driven control

Similarly, a combined spacecraft attitude control problem

was solved in [84], wherein the spacecraft model, along with720

the external disturbances, was assumed to be unknown. To

address this uncertain problem, a prediction-based data-driven

model-free control scheme was developed. Based on a number

of comparative studies, the authors concluded that an enhanced

control performance could be achieved by applying their pro-725

posal rather than the traditional model-free adaptive control

method. In their follow-up work [85], alternatively, the fea-

sibility of combining the data-driven control method with an

external state observer to achieve robust tracking control for

combined spacecraft was investigated.730

For data-driven control approaches, one obvious advan-

tage is that it can complete the controller design task by using

the input and output data of the system instead of accessing the

model information. However, the main issues are as follows:

• Most DDGC methods are established independently. It is735

difficult to find a unified theoretical framework associated

with this type of approach.

• The theoretical analysis of the robustness issue for DDGC

methods is not well established. Moreover, its practical

stability may be greatly affected by data noise and data740

dropout.

4. Review of Optimisation-based G&C Methods

In addition to stability theory-oriented methods, there has

been a growing trend of designing optimisation theory-based

controllers for space/aerospace vehicles in recent years to meet745

the growing demand for better system performance. Relevant

studies have shown that these newly developed optimisation

theory-based strategies can bring a number of benefits from

both the theoretical and application points of view. However,

certain challenges still exist in terms of designing a promis-750

ing optimisation theory-based control approach and making this

type of method available for the onboard decision-making pro-

cess. This stimulates further research on this topic.
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4.1. Design and Applications of Dynamic Programming-based

G&C Methods755

One typical example of optimisation theory-based control

is to utilise dynamic programming- and approximate dynamic

programming-based methods. Dynamic programming (DP) is

a classical feedback form of control capable of finding the op-

timal solution to various control problems based on the Bell-760

man’s principle of optimality [86]. However, traditional DP

faces two issues: 1) it is difficult to adapt the controller once its

structure is determined; and 2) the operation of DP requires a

great deal of computational time, which is usually unaffordable

in real-time applications. Therefore, researchers have investi-765

gated enhanced versions of DP that can be applied as computa-

tional guidance and control algorithms.

The literature has reported some attempts to explore

the feasibility of applying differential dynamic programming

(DDP) in computing the local optimal control actions [87].

DDP can be viewed as a second-order approximation of stan-

dard DP. Specifically, consider a discrete dynamic system in the

form of xk+1 = f (xk, uk), k = 1, ...,N with the cost function J

given by

J({uk}) = ΦN+1(xN+1) +

N∑︁

k=1

Lk(xk, uk) (1)

Here, (xk, uk) denotes the state and control pair at time tk.

ΦN+1(·) and Lk(·, ·) are the terminal and process cost, respec-

tively. In DP, a cost-to-go function is introduced:

Vk(xk, {uk, uk+1, ..., uN}) = ΦN+1(xN+1) +

N∑︁

i=k

Li(xi, ui) (2)

The aim of DP is to find an optimal control sequence

{u∗
k
, u∗

k+1
, ..., u∗

N
} such that Vk is minimized. If we denote the

optimal cost-to-go function as V∗
k
(xk) and substitute Eq.(1) into

it, one can obtain

V∗
k
(xk) = min

uk

[V∗
k+1

(xk+1) + Lk(xk,uk
)] (3)

Then, DDP performs a second-order approximation of Eq.(4)

around the reference ({x̄k}, {ūk}) and nullifies the expanded

V∗
k
(xk) function with respect to δuk. Here δuk = uk − ūk. This

process results in an optimal feedback law:

δu∗
k
= αk + βkδxk (4)

in which αk and βk are functions of V∗
k+1

(xk+1) and its first

and second order derivatives. Their values can be computed

in backward sweep. Subsequently, DDP operates by iteratively770

carrying out reverse actions on the nominal state trajectory to

plan a new control moment. Then, a forward action is carried

out to update or evaluate the new state trajectory.

One important feature associated with DDP is that it can

achieve a quadratic convergence speed. However, it requires775

the computation of a Hessian matrix (e.g., due to second-order

approximation), thus adding additional difficulties to the real-

time implementation. A potential recovery strategy is to apply

the finite difference technique. However, this may lead to con-

vergence issues.780

Another recently introduced method capable of acting as

an optimal controller for a variety of control systems is approx-

imate dynamic programming [88]. This method is also referred

to as adaptive dynamic programming (ADP) or heuristic dy-

namic programming (HDP) in some literature [89, 90]. Un-785

like the traditional DP and DDP methods, the key idea of this

scheme is to approximate the optimal control actions by per-

forming an offline iteration process or online learning update

process. A commonly used structure of ADP is shown in Fig-

ure 4.

Critic module

(Evaluation 

execution function)

Action Module

(Execute control)

Vehicle

dynamics

System 

output

Reward/Punish

Figure 4: A commonly used structure of ADP

790

As shown in Figure 4, the controller module produces con-

trol actions to steer the system states by interacting with the

environment. An evaluation module is embedded to adjust the

control by analysing the performance of the system through an

evaluation function.795

A large number of DP-oriented control methods have been

introduced in the literature. Here, we aim to summarise the

main advantages of some typical approaches that have been re-

ported in recent years. These methods (summarised in Table 2)

have been implemented or have the potential to be implemented800

in space/aerospace vehicle guidance and control problems.

The key features and advantages of the methods in Table 2

are briefly noted below:

• ADP: The ADP method and its variants are mainly es-

tablished according to policy-iteration or value-iteration805

strategies. These methods are generally suitable for linear

or nonlinear problems and continuous or discrete system

variables, respectively.

• IADP: This approach combines the merits of incremental

nonlinear control techniques and linear approximate DP,810

which enhances its ability to handle unknown, nonlinear

systems as well as time-varying references.

• INDP: This approach is a data-driven optimal control al-

gorithm and is established based on the framework of

IADP. This approach is capable of dealing with inaccurate815

and unmodelled systems.
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Table 2: Popular DP-oriented methods reported in recent years

DP-oriented G&C methods

Adaptive dynamic programming (ADP)[91]

Incremental approximate dynamic programming (IADP)[92]

Iterative neural dynamic programming (INDP)[93]

Stochastic differential dynamic programming (SDDP)[94]

Action-dependent heuristic dynamic programming (ADHDP)[95]

Sparse Gauss-Hermite quadrature differential dynamic

programming (SGHQDDP)[96]

• SDDP: The SDDP method is established on the frame-

work of DDP. It modifies the original algorithm structure

by incorporating linear feedback control policies and the

unscented transform method. It has been verified that more820

robust solutions and fewer penalties can be achieved by us-

ing this approach for low-thrust orbital transfer problems.

• ADHDP: Similar to ADP, the ADHDP method is gener-

ally suitable for linear or nonlinear problems. In addi-

tion, benefiting from its interaction process, the learning825

and control performance can be significantly improved.

• SGHQDDP: This is a compound computational guidance

algorithm, which is constructed by combining the merits

of DDP and the Gauss-Hermite quadrature rule. By ap-

plying this approach, enhanced guidance performance and830

reduced computational time are likely to be achieved.

4.2. Design and Applications of Model Predictive Control-

based G&C Methods

Algorithm 1 The online operation of the MPC-based tracking

guidance algorithm

1: At each time point k := 0, 1, ..., do:

2: (1). Compute x(k) for the plant.

3: (2). Construct the following optimal control formulation:

minimise J =
∑︀N

j=1 xT (k + j|k)Qx(k + j|k)

+
∑︀N−1

j=0 uT (k + j|k)Ru(k + j|k)

subject to ∀ j ∈ [1, 2, ...,N]

x(k + j + 1|k) = f (x(k + j|k), u(k + j|k))

x(k|k) = xk

xmin ≤ x(k + j + 1|k) ≤ xmax

umin ≤ u(k + j + 1|k) ≤ umax

h(x(k + j + 1|k), u(k + j + 1|k)) ≤ 0

(5)

where xmin, xmax, umin, and umax represent the lower and upper

bounds of the state and control variables, respectively. xk is the

current state, and h(·, ·) ≤ 0 stands for the mission-dependent path

constraints. N is the prediction horizon.

4: (3). Solve the problem (5) to obtain:

u∗(k) = [u∗(k|k), u∗(k + 1|k), ..., u∗(k + N − 1|k)]. (6)

5: (4). Apply uk = u∗(k|k) to the plant until the next sampling

instant.

6: (5). Assign k = k + 1.

7: (6). Return to (1).

In addition to DP-oriented control algorithms, the design

and applications of model predictive control (MPC)- and reced-835

ing horizon control (RHC)-based guidance and control meth-

ods have also attracted significant attention. A recent review

of the applications of MPC in different aerospace systems can

be found in [97]. The motivation for implementing MPC-

oriented methods is primarily their strong capability of handling840

mission-related constraints. Usually, in an MPC-based ap-

proach, a finite-horizon optimal control problem is constructed

and solved online to produce an optimal control sequence.

Then, a portion of the control actions are taken from the op-

timal control sequence and applied to the plant.845

In [98], an optimal tracking guidance design problem was

studied and addressed. The aim of this work was to design

an MPC algorithm to produce guidance commands in real time

such that an aeroassisted spacecraft can track prespecified tra-

jectories during the atmospheric entry phase. The operation of850

the proposed MPC tracking guidance algorithm is shown in Fig-

ure 5, where the lower dashed part depicts the optimisation pro-

cess.
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Figure 5: The operation of the MPC tracking guidance algorithm

Some key steps of this MPC-based tracking guidance al-

gorithm are summarised in Algorithm 1. It is worth noting that855

the effectiveness and efficiency of an MPC-oriented guidance

and control algorithm may be greatly affected by the optimi-

sation process, which also stimulates the development of fast

optimisation algorithms [99].

New developments regarding MPC technology may follow860

two paths. The first emphasises the robustness or disturbance-
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rejection ability of the algorithms, which in turn leads to

the development of stochastic MPC (SMPC) and robust MPC

(RMPC) [100, 101]. The second path focuses on alleviating the

computational burden of the online optimisation process, thus865

making the algorithm more suitable for practical guidance and

control tasks. This leads to the development and application

of model predictive static programming (MPSP)[102] and its

various enhanced versions [103–105].

Recently, a great number of MPC-oriented guidance and870

control methods have been introduced in the literature. Here,

we aim to summarise the main advantages and features of some

typical approaches reported in recent years. Similar to Table

2, some recently published MPC-oriented methods capable of

dealing with space or aerospace vehicle guidance and control875

problems are summarised in Table 3.

The key features and advantages of the methods intro-

duced in Table 3 are briefly noted below:

• LCMPC: This approach has been applied to generate

guidance commands for the Earth atmospheric re-entry880

problem. A robust guidance performance can be success-

fully obtained by performing the linear covariance update

process of this method.

• MPSP: This approach is similar to traditional MPC except

that a prediction-correction process is added to update the885

control history in a closed form. In addition, the size of

the problem can be reduced to a relatively low level.

• QSMPSP: This method is established on the basis of the

framework of MPSP with smaller optimisation parame-

ters, which significantly increases the computational ef-890

ficiency.

• MPCP: This method is established by employing convex

programming techniques to address online optimisation.

It has been applied to several vehicle guidance problems,

and the results have confirmed that the computational per-895

formance can be effectively enhanced.

• SSMPC: This method is established on the framework of

stochastic MPC (SMPC) [109], modified by adding a com-

putationally friendly offline sampling strategy. It has been

implemented to produce control actions for a spacecraft900

rendezvous and docking mission, and the results on an ex-

perimental test bed have confirmed the effectiveness of the

algorithm.

• TRMPC: The TRMPC is established on the framework

of classic MPC except that it uses tube techniques to han-905

dle the effects of external disturbances, thereby guaran-

teeing the robustness of the control process. One impor-

tant advantage of using a tube over the “min-max” struc-

ture is that the computational burden can be decreased ef-

fectively. This approach has been successfully applied to910

steer spacecraft during rendezvous and proximity opera-

tions.

• LPMPC: This method combines the standard MPC frame-

work with a linear pseudospectral discretisation scheme.

The aim is to reduce the number of optimisation vari-915

ables, thus improving the online computational perfor-

mance. The results have shown that it has the potential

to be applied to a variety of vehicle guidance problems.

4.3. Challenges of Using Optimisation Theory-based G&C

Methods in Space/ Aerospace Applications920

Although certain advantages can be acquired by applying

different control optimisation theory-based guidance and con-

trol methods, their development is still far from mature, and

some theoretical and practical problems remain open for fur-

ther consideration. More precisely, for DP-oriented guidance925

and control methods:

• The control performance of most DP-oriented methods

may be significantly degraded when a practical guidance

and control problem contains multiple mission-related

constraints.930

• DP-oriented methods commonly require dividing prob-

lems into subproblems and storing intermediate results.

This will consume a large amount of memory in onboard

guidance and control applications.

• Due to the nature of DP-oriented methods, their computa-935

tional complexity is usually high, and it is relatively diffi-

cult to apply this type of method in onboard applications.

This issue becomes more serious when a stochastic pro-

cess is involved in the operation of the algorithm.

In terms of MPC-based guidance and control methods,940

several challenges can also be identified. One key concern is the

rapid increase in online computational complexity as the model

nonlinearity, mission objectives, and scale of the system or con-

straints increase. To effectively decrease the computational bur-

den of the online optimisation process, a large amount of effort945

has been made by researchers and engineers [110–112]. For ex-

ample, in [110], the authors aimed to decrease the complexity

of the online optimisation process by applying a sequential con-

vex programming (SCP) approach. Specifically, they provided

a successful application of SCP to an optimal guidance and re-950

configuration problem for swarms of spacecraft. Similarly, a

successful application of the SCP-based optimal guidance and

control algorithm to a multi-UAV optimal reconfiguration prob-

lem was presented in [111]. Experimental results were carried

out to further confirm the effectiveness of the proposed design.955

Building on and leveraging the aforementioned two im-

portant results, in the work of Rebecca et al.[112], the SCP ap-

proach was further modified to reduce the processing time while

simultaneously improving the algorithmic robustness. Then

this approach was applied in real time to produce guidance960

commands and control actions for rigid spacecraft.

It was shown in these works that the convex-relaxation

strategy can effectively overcome the complexity problem

caused by nonconvex constraints and nonlinear dynamics and

can enhance the computational performance. However, the va-965

lidity and fidelity of the obtained solution can be questioned.

Moreover, these convex-relaxation methods may suffer from
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Table 3: Popular MPC-oriented methods reported in recent years

MPC-oriented G&C methods

Linear covariance-based MPC (LCMPC)[106]

Model predictive static programming (MPSP)[102]

Quasi-spectral model predictive static programming (QSMPSP)[104]

Model predictive convex programming (MPCP)[107]

Sampling-based stochastic model predictive control (SSMPC)[101]

Tube-based robust model predictive control (TRMPC)[100]

Linear pseudospectral model predictive control (LPMPC)[108]

poor convergence due to the existence of higher-order lineariza-

tion errors and artificial infeasibility [113, 114].

Apart from the computational complexity issue, the guid-970

ance and control performance obtained using MPC-based ap-

proaches can be greatly affected by the consideration of model

uncertainties, external disturbances and other uncertain effects.

Hence, the robustness concept must be involved in the design

of MPC-based guidance and control algorithms. Numerous975

theoretical results, analyses, and tools aiming to enhance the

robustness of algorithms have been reported in the literature.

For example, some potential solutions may include robust de-

sign based on the constraint tightening [21], min-max structures

[115], stochastic tubes [116], and adaptive laws [117]. How-980

ever, they are still in the early development stage and are less

likely to be implemented in practical applications than estab-

lished methods. In addition, the implementation of additive

tools and strategies may have negative impacts on the feasibil-

ity of the optimisation process, resulting in poor guidance and985

control stability.

Furthermore, it should be noted that the applicability of

MPC-based approaches to guidance and control problems is of

particular importance. However, some existing MPC-oriented

designs can lack realistic setups in terms of the problem for-990

mulation. For instance, when designing the framework of dis-

tributed or hierarchical MPC, researchers commonly assume

that the information between neighbouring subsystems can be

(partly) accessed [118–120]. However, this assumption might

be too strong or unsatisfiable in some space/aerospace engineer-995

ing applications such as spacecraft formation flying and UAV

swarms, due to the existence of communication faults or fail-

ures. As a result, alternative strategies are urgently needed so

that this assumption can be relaxed or removed.

5. Review of AI-based G&C Strategies1000

In addition to the great success achieved by applying sta-

bility theory-based and optimisation theory-based guidance and

control methods, recent research has reported some attempts

to explore possible uses of AI-based techniques in connection

with the optimal guidance and control of space/aerospace vehi-1005

cle systems. The key idea of this type of strategy is to establish

an optimal guidance and control network by taking advantage

of deep learning. Although early works confirmed the feasi-

bility of applying this newly developed strategy, there are still

several theoretical and practical issues that need to be further1010

considered in future research.

5.1. Connection Between AI and Guidance and Control Prob-

lems

Advances in AI technologies and computational resources

allow us to develop machines and methods capable of perform-1015

ing in a more intelligent and efficient way. During the past

decade, significant achievements have been made in terms of

applying AI techniques to address various engineering prob-

lems. Although the application of AI-based techniques in

space/aerospace-related practices such as the design of optimal1020

guidance and control systems is still in its early stage, it is unde-

niable that the interest in applying AI is high, and some connec-

tions between AI and optimal guidance and control problems

have already been made. Specifically, four potential connec-

tions can be identified by reviewing the literature.1025

5.1.1. AI and Vision-based Pose Estimation for Spacecraft/UAV

In recent years, researchers have investigated the possibil-

ity of applying AI and vision-based techniques to act as pose es-

timators for different spacecraft or aerial robots flight missions.

Some representative examples can be found in the existing body1030

of literature [79, 121–125]. Specifically, in [121], the prob-

lem of spacecraft proximity operations including formation fly-

ing and on-orbit servicing was considered. Different on-board

monocular-based approaches were constructed and studied to

simultaneously estimate the pose and shape of uncooperative1035

orbiting objects. To achieve the desired robust estimation, the

filter-based simultaneous localization and mapping (SLAM) al-

gorithms and architectures were further adjusted. Numerical

simulations were provided to evaluate the performance of the

proposed vision-based designs.1040

Similarly, the authors of [122] proposed a novel

monocular-based pose estimation algorithm for uncooperative

spacecrafts. One unique feature of their work is that by evaluat-

ing the performance of existing localization algorithms, a set of

robust keypoints can be generated. Then, this set of keypoints1045

was applied to train a convolutional neural network (CNN) such

that it can produce specialized descriptors robust to illumination

changes. Comparative simulations were executed to appreciate

the merit of this particular design.

Besides, aiming at reducing the processing time required1050

to obtain the estimation uncertainty map, a novel estimation ap-

proach based on a modified FlowNet2 network was proposed
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in [124]. A number of simulation studies were carried out on a

spacecraft pose estimation problem and the obtained results not

only confirmed the effectiveness of the proposed approach but1055

also demonstrated good potentials for practical applications.

5.1.2. Optimal Trajectory Generation

Perhaps the most popular connection between AI and opti-

mal control is to apply AI strategies in the design of optimal ma-

noeuvre trajectories for space vehicles [126, 127]. Unlike tradi-1060

tional trajectory optimisation methods [6, 99, 128, 129], apply-

ing AI-based methods such as evolutionary algorithms and tree

search methods is more likely to locate a global optimal solu-

tion for a mission. Moreover, these methods do not require the

designer to have strong background knowledge with respect to1065

the problem, and they are relatively easy to implement.

One representative example can be found in [130], where

the authors developed a fully automated solution method for the

low-thrust interplanetary trajectory planning problem by tak-

ing advantage of the genetic algorithm and a monotonic basin-1070

hopping strategy. Apart from evolutionary algorithms, the pos-

sibility of using various ML methods in the generation of opti-

mal trajectories has also been explored [25, 131]. An example

can be found in [25], in which the authors used a trained AI

model to approximate the optimal multi-impulse transfer tra-1075

jectories as well as the optimal transfer costs of a multi-target

mission. This application is important for some mission cases

in which fast estimation of optimal trajectories is required or

it is computationally expensive to calculate the mission perfor-

mance index.1080

5.1.3. ML/AI-based Nonlinear Control and Estimation Design

A large number of publications with “neural network con-

trol” and “ML/AI-based control” as keywords can be found in

the literature [132–135]. For example, a drone landing control

problem was considered in [135]. To improve the accuracy of1085

the applied model, a DNN was formed to approximate the high-

order effect. Then, a nonlinear feedback linearization controller

was established by applying the approximated model. Experi-

mental results verified the effectiveness as well as the stability

of this AI-based controller. Note that although this paper is for1090

a drone controller but the proposed technique of using DNN

using spectral normalization is straightforwardly applicable to

spacecraft control.

However, in these aforementioned works, neural networks

are applied as supplemental tools capable of compensating for1095

unmodelled system terms. Subsequently, they are combined

with other modern control schemes to steer the motion of the

system. Recently, researchers have investigated the possibil-

ity of applying AI models to act as online motion controllers

and state estimators for different spaceflight missions or UAV1100

swarms. In this context, one representative example is the work

presented by Tsukamoto and Chung [136]. In this paper, by

addressing a convex optimisation problem, the authors sampled

a sequence of data points of the optimal contraction metric of-

fline. Following that, a deep long short-term memory recurrent1105

neural network was trained to approximate the sampled metrics

and then served as an online motion controller. The proposed

strategy was successfully applied to address the spacecraft op-

timal motion planning problems in real time.

Similarly, an imitation learning-based strategy was pro-1110

posed in [137] for multi-vehicle motion control systems. In

this work, the authors firstly applied a global planner to pro-

duce a number of demonstration trajectories. Subsequently, lo-

cal observations were extracted and learned via deep imitation

learning, thus resulting in a local policy which can be efficiently1115

applied in real time.

In addition, the work of Carlos and Dario [24] is also of

particular importance. In their work, deep neural networks were

constructed to learn the optimal guidance and control laws.

Then, the trained networks were applied as feedback controllers1120

in real time, and the results obtained from a number of pinpoint-

landing case studies confirmed the effectiveness of their pro-

posal. In their follow-up research [138], an initial stability study

of this DNN-based control method was provided. This further

provides credibilities of applying this direct mapping strategy1125

as the main tool to produce the approximated optimal guidance

commands for spacecrafts.

Owing to the potential advantages and applications, in

this paper, we limit our main focus to designing and applying

MI/AI-based technology to achieve online guidance and con-1130

trol.

5.2. Design and Applications of AI-based G&C Methods

Collect the trajectory 

into the dataset 

Construct the trajectory 

optimization model

Solve the constructed 

model to obtain optimal 

state-control trajectories

Discard the 

current solution

Successfully 

converge? 

Optimal 

trajectory 

dataset

Generate the initial 

perturbations

Figure 6: Illustration of trajectory dataset generation

AI-based guidance and control methods combine the mer-

its of well-developed trajectory optimisation methods and deep

learning techniques, thereby forming an integrated framework1135

capable of producing optimal guidance and control commands

in a relatively short time. Loosely speaking, in an AI-based ap-

proach, two steps are involved [24]. The first step is to create a

large dataset containing optimal flight trajectories for a specific

mission profile. It should be noted that there is usually no open1140

dataset for a specific space-related application. Hence, this step

is essential, and simulated results are used as an alternative.

In the second step, (deep) neural networks are constructed

and trained on the pre-generated dataset so that they can be ap-

plied in later stages to directly represent the optimal relation-1145

ship between the state and control actions. To better demon-

strate how a spacecraft-related mission can benefit from the im-

plementation of AI-based guidance and control methods, the

work presented in [139] is recalled. The aim of this work is to

14



design a deep neural network-driven algorithm to produce con-1150

trol actions in real time such that the spacecraft can be steered

to reach specified final conditions during the atmospheric entry

phase.

The generation of the optimal trajectory dataset is shown

in Figure 6, where three main substeps can be extracted: 1)1155

generate the perturbation values for the initial conditions; 2)

construct and solve the trajectory optimisation model; and 3)

collect the optimal state and control results in the dataset. Once

the dataset is generated, deep neural networks are constructed

and trained. Then, the trained neural networks can be applied1160

to produce the control actions in real time, and this forms an

online feedback structure.

Guidance and control methods developed via various AI

models have been reported in the literature. Here, we aim to

summarise the main features and advantages of some typical1165

approaches reported in recent years. These methods are sum-

marised below (see Table 4).

Table 4: Popular methods developed via different AI models in recent years

Different AI models

Artificial neural network (ANN)[140]

Deep neural network (DNN)[24, 139, 141]

Support vector machine (SVM)[142, 143]

Reinforcement learning (RL)[144]

Deep reinforcement learning (DRL)[145]

It is worth mentioning that all the methods shown in Table

4 have been implemented in or have the potential to be applied

to space/aerospace vehicle guidance and control problems. Key1170

features and advantages associated with them are briefly noted

below:

• ANN: Benefiting from its simple structure, an ANN-

driven guidance and control algorithm is relatively easy

to establish and implement.1175

• DNN: Compared to the ANN, the DNN tends to have a

more complex network structure (e.g., more hidden lay-

ers). However, it has been shown that enhanced control

performance is likely to be obtained if a control network

has a deeper structure [24, 139]. Moreover, compared1180

to optimisation theory-based guidance and control meth-

ods such as MPC and DP, the implementation of DNN-

driven control algorithms can save considerable computa-

tion time.

• SVM: The SVM has the capability of dealing with both1185

linear and nonlinear systems. It applies kernel functions

to train the model and is more likely to provide enhanced

prediction accuracy. Applications of SVM models to or-

bital transfer problems have been executed successfully,

and the results have confirmed its effectiveness.1190

• RL: One main advantage of using RL is that the learn-

ing process can be further enhanced by interacting with

the environment. This is usually achieved by designing a

reward function, thereby providing feedback to the sys-

tem. Therefore, an RL-driven model tends to be more1195

adaptive and robust with respect to uncertainties or unex-

pected situations. Applications of RL to autonomous lunar

and martian landing problems have been successfully ex-

ecuted. The results confirmed the possibility of applying

RL to design the guidance system.1200

• DRL: This approach is similar to the standard RL and can

be loosely understood as a combination of a DNN and

RL. The motivation for the use of DRL stems from its en-

hanced ability to explore functional relationships in high-

dimensional state and control spaces.1205

5.3. Potential Issues and Challenges of AI-based G&C Meth-

ods

Although certain advantages can be gained by applying

different AI-based guidance and control methods, their devel-

opment is still far from mature, and some problems remain open1210

for further consideration. More precisely, some issues and chal-

lenges are listed below:

• ANN: Due to its relatively simple network structure,

ANN-based guidance and control methods may suffer

from an inadequate approximation ability. This problem1215

becomes more serious when a spaceflight or an atmo-

spheric flight mission requires the consideration of non-

linear dynamic systems.

• DNN: The performance of a DNN-based method is greatly

affected by its network structural parameters, including the1220

size of the dataset and the number of neurons or hidden

layers. Setting these parameters so that the network can

reach the optimal performance is difficult and may vary

from problem to problem. Moreover, when the designer

does not have enough knowledge of the problem, it is dif-1225

ficult to determine whether the DNN is undertrained or

overtrained. Besides, although reliable simulation results

were obtained to confirm the effectiveness of designing

a DNN-based real-time optimal control architectures for

missions such as planetary landing and orbital transfer, it1230

is undeniable that using this approach in practical missions

may result in catastrophic failures if the initial conditions

are far from nominal.

• SVM: In some orbital transfer test cases, the SVM has

shown poor generalisation performance. Hence, treat-1235

ments should be designed so that the SVM can be well

suited for more mission scenarios.

• RL and DRL: Due to the implementation of the interac-

tion process, the computational burden tends to be signif-

icantly greater than that of the other methods. This raises1240

the threat level of practical applications. That is, the on-

board processor may accept a solution which is not fully

optimized or even an infeasible one. This is highly un-

desirable for practical applications and it may result in a

failure of the mission.1245
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It is apparent that the development of AI-based guidance

and control algorithms is still in its early stage. However, we

believe that this type of method will gain in maturity and gradu-

ally become one of the mainstream methods for various vehicle

guidance and control problems.1250

6. Conclusions and Future Developments

6.1. Concluding Remarks

Significant effort has been devoted to the progress of exo-

atmospheric and atmospheric flight research during the past

decade, which in turn has led to the development of various1255

advanced guidance and control algorithms for space/aerospace

vehicles. In this investigation, we aimed to review and investi-

gate the newly developed methods capable of offering promis-

ing guidance and control performance for various flight mis-

sions. More precisely, the reviewed techniques were classified1260

into three major groups: stability theory-based methods, op-

timisation theory-based methods, and AI-based methods. The

key features of different types of algorithms, along with the cor-

responding issues and challenges, were discussed. Particular

focus was given to recent applications of these approaches to1265

further improve the depth and breadth of the literature review.

Although most methods reviewed in this paper were designed to

fulfil different spaceflight and atmospheric missions, they have

the potential to be applied to other similar engineering tasks,

such as guidance and control problems for autonomous ground1270

vehicles [146, 147], and unmanned surface vehicles [148, 149].

Based on the work presented in Sections 3 to 5, some con-

cluding remarks are summarised below:

• Algorithm implementation simplicity: Stability theory-

based methods tend to be more advantageous than both1275

optimisation theory-based and AI-based methods regard-

ing implementation simplicity. This is mainly due to their

straightforward method of deriving control laws as well as

their ease of operation. However, since it is mainly based

on the stability theory, there might be no optimisation pos-1280

sible in general.

• Algorithm flexibility: Optimisation-based algorithms

may be more advantageous than their counterparts with

respect to flexibility. For example, this type of approach

can easily be combined with other tools, such as neural1285

network identifiers, adaptive methods, and disturbance ob-

servers, to identify uncertain parameters in the system or

reject the influence of disturbances. More importantly,

some problem-dependent requirements and limitations can

be considered in the control process by treating them as1290

additional constraints and incorporating them into the op-

timisation model.

• Algorithm efficiency: Both stability theory-based meth-

ods and AI-based methodologies are likely to outperform

optimisation theory-based methods in terms of efficiency.1295

This is because in an optimisation theory-based approach,

an online re-planning process is usually required, which

significantly enlarges the computational burden in real

time. This issue becomes more serious for some mission

scenarios such as spacecraft swarms and multi-spacecraft1300

formation flying in the presence of environmental and

communication uncertainties.

• Algorithm stability and robustness: In terms of oper-

ational stability and robustness, benefiting from sophisti-

cated theoretical results and various recovery tools, stabil-1305

ity theory-based methods and optimisation theory-based

methods tend to be more advantageous than AI-based al-

gorithms.

6.2. Continuing Research

Although new applications and progress have been re-1310

ported in the literature, the development of guidance and con-

trol algorithms for space/aerospace vehicles is still far from ma-

ture, and future research can be carried out from a wide range

of perspectives:

• The implementation of stability theory-based approaches1315

may introduce additional algorithm-related parameters,

which may have non-negligible impacts on the control per-

formance. In most applications, these parameters are as-

signed mainly depending on an expert’s knowledge. How-

ever, it is desirable to design new optimal parameter-1320

tuning strategies so that the control performance can be

optimised.

• For a stability theory-based approach, it is desirable to ex-

plore more sophisticated constraint handling techniques to

address various practical constraints while simultaneously1325

maintaining the system stability as well as the uncertainty

and disturbance attenuation abilities.

• As analysed in Section 3, both model-based and data-

driven methods have unique advantages and disadvan-

tages. It would also be worthwhile to develop comple-1330

mentary strategies that have the merits of both techniques.

• To extend the applicability of the optimisation theory-

based approach, certain developments should be targeted

by researchers to improve its online computational perfor-

mance. This could be achieved by exploring fast sampling1335

strategies, high-efficiency optimisation algorithms, or sim-

pler optimisation formulations.

• In the design of optimal guidance and control systems,

multiple performance indices must usually be taken into

account. Therefore, strategies that are able to effec-1340

tively balance or compromise different user-specified per-

formance indices are urgently needed.

• In an AI-based control algorithm, the pre-generated

dataset used to train the algorithm might easily become

outdated in practical scenarios. In this case, certain strate-1345

gies capable of adjusting the mapping relationship are

highly desirable.
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• One key problem for AI-based control methods is that they

lack theoretical guarantees of feasibility and closed-loop

stability. Consequently, we believe that the study of the1350

stability of AI-driven control systems will become main-

stream in follow-up research.

• For AI-based guidance and control methods, more sophis-

ticated validation tools and strategies should be designed

in order to provide space scientists and engineers with a1355

clear view of the credibility of an algorithm.

References

[1] K. Nagy, Deep space exploration: The future challenge in engineering,

NASA Technical Report (2019) 1–7doi:JSC-E-DAA-TN67122.

[2] J. Du, X. Lei, J. Sang, A space surveillance satellite for cataloging high-1360

altitude small debris, Acta Astronautica 157 (2019) 268–275. doi:

https://doi.org/10.1016/j.actaastro.2019.01.003.

[3] D. Morante, M. Sanjurjo Rivo, M. Soler, Multi-objective low-thrust in-

terplanetary trajectory optimization based on generalized logarithmic

spirals, Journal of Guidance, Control, and Dynamics 42 (3) (2018) 476–1365

490. doi:10.2514/1.G003702.

[4] A. M. Korzun, G. F. Dubos, C. K. Iwata, B. A. Stahl, J. J. Quicksall,

A concept for the entry, descent, and landing of high-mass payloads at

mars, Acta Astronautica 66 (7) (2010) 1146–1159. doi:https://doi.

org/10.1016/j.actaastro.2009.10.003.1370

[5] S.-I. Nishida, S. Kawamoto, Y. Okawa, F. Terui, S. Kitamura, Space de-

bris removal system using a small satellite, Acta Astronautica 65 (1)

(2009) 95–102. doi:https://doi.org/10.1016/j.actaastro.

2009.01.041.

[6] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Optimal fuel1375

consumption finite-thrust orbital hopping of aeroassisted spacecraft,

Aerospace Science and Technology 75 (2018) 172–182. doi:https:

//doi.org/10.1016/j.ast.2017.12.026.

[7] R. Chai, A. Savvaris, S. Chai, Integrated missile guidance and control

using optimization-based predictive control, Nonlinear Dynamics 96 (2)1380

(2019) 997–1015. doi:10.1007/s11071-019-04835-8.

[8] Q. Li, J. Yuan, B. Zhang, C. Gao, Model predictive control for au-

tonomous rendezvous and docking with a tumbling target, Aerospace

Science and Technology 69 (2017) 700–711. doi:https://doi.org/

10.1016/j.ast.2017.07.022.1385

[9] S. Chung, A. A. Paranjape, P. Dames, S. Shen, V. Kumar, A survey

on aerial swarm robotics, IEEE Transactions on Robotics 34 (4) (2018)

837–855. doi:10.1109/TRO.2018.2857475.

[10] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S.-J. Chung, F. Y.

Hadaegh, Review of formation flying and constellation missions using1390

nanosatellites, Journal of Spacecraft and Rockets 53 (3) (2016) 567–578.

doi:10.2514/1.A33291.

[11] G. Di Mauro, M. Lawn, R. Bevilacqua, Survey on guidance naviga-

tion and control requirements for spacecraft formation-flying missions,

Journal of Guidance, Control, and Dynamics 41 (3) (2017) 581–602.1395

doi:10.2514/1.G002868.

[12] P. Lu, C. W. Brunner, S. J. Stachowiak, G. F. Mendeck, M. A. Tigges, C.

J. Cerimele, Verification of a fully numerical entry guidance algorithm,

Journal of Guidance, Control, and Dynamics 40 (2) (2017) 230–247.

doi:10.2514/1.G000327.1400

[13] Y. Xia, R. Chen, F. Pu, L. Dai, Active disturbance rejection control

for drag tracking in mars entry guidance, Advances in Space Research

53 (5) (2014) 853–861. doi:https://doi.org/10.1016/j.asr.

2013.12.008.

[14] C. Liu, W.-H. Chen, Disturbance rejection flight control for small fixed-1405

wing unmanned aerial vehicles, Journal of Guidance, Control, and Dy-

namics 39 (12) (2016) 2810–2819. doi:10.2514/1.G001958.

[15] Q. Hu, X. Tan, M. R. Akella, Finite-time fault-tolerant spacecraft atti-

tude control with torque saturation, Journal of Guidance, Control, and

Dynamics 40 (10) (2017) 2524–2537. doi:10.2514/1.G002191.1410

[16] J. Ventura, M. Ciarcia, M. Romano, U. Walter, Fast and near-optimal

guidance for docking to uncontrolled spacecraft, Journal of Guidance,

Control, and Dynamics 40 (12) (2016) 3138–3154. doi:10.2514/1.

G001843.

[17] E. Taheri, J. L. Junkins, Generic smoothing for optimal bang-off-bang1415

spacecraft maneuvers, Journal of Guidance, Control, and Dynamics 41

(11) (2018) 2470–2475. doi:10.2514/1.G003604.

[18] D. Li, G. Ma, C. Li, W. He, J. Mei, S. S. Ge, Distributed attitude co-

ordinated control of multiple spacecraft with attitude constraints, IEEE

Transactions on Aerospace and Electronic Systems 54 (5) (2018) 2233–1420

2245. doi:10.1109/TAES.2018.2812438.

[19] Z. Zhao, G. Cruz, D. S. Bernstein, Adaptive spacecraft attitude con-

trol using single-gimbal control moment gyroscopes without singularity

avoidance, Journal of Guidance, Control, and Dynamics 42 (11) (2019)

2342–2355. doi:10.2514/1.G003926.1425

[20] W. Chen, J. Yang, L. Guo, S. Li, Disturbance-observer-based control and

related methods-an overview, IEEE Transactions on Industrial Electron-

ics 63 (2) (2016) 1083–1095. doi:10.1109/TIE.2015.2478397.

[21] H. Li, W. Yan, Y. Shi, Continuous-time model predictive control of

under-actuated spacecraft with bounded control torques, Automatica 751430

(2017) 144–153. doi:https://doi.org/10.1016/j.automatica.

2016.09.024.

[22] F. Bayat, Model predictive sliding control for finite-time three-axis

spacecraft attitude tracking, IEEE Transactions on Industrial Electron-

ics 66 (10) (2019) 7986–7996. doi:10.1109/TIE.2018.2881936.1435

[23] D. Izzo, M. Martens, B. Pan, A survey on artificial intelligence trends in

spacecraft guidance dynamics and control, Astrodynamics 3 (4) (2019)

287–299. doi:10.1007/s42064-018-0053-6.

[24] C. Sánchez-Sánchez, D. Izzo, Real-time optimal control via deep neural

networks: Study on landing problems, Journal of Guidance, Control,1440

and Dynamics 41 (5) (2018) 1122–1135. doi:10.2514/1.G002357.

[25] H. Li, S. Chen, D. Izzo, H. Baoyin, Deep networks as approximators of

optimal low-thrust and multi-impulse cost in multitarget missions, Acta

Astronautica 166 (2020) 469–481. doi:https://doi.org/10.1016/

j.actaastro.2019.09.023.1445

[26] R. Chai, A. Tsourdos, A. Savvaris, Y. Xia, S. Chai, Real-time reen-

try trajectory planning of hypersonic vehicles: A two-step strategy in-

corporating fuzzy multiobjective transcription and deep neural network,

IEEE Transactions on Industrial Electronics 67 (8) (2020) 6904–6915.

doi:10.1109/TIE.2019.2939934.1450

[27] R. Furfaro, A. Scorsoglio, R. Linares, M. Massari, Adaptive general-

ized zem-zev feedback guidance for planetary landing via a deep rein-

forcement learning approach, Acta Astronautica 171 (2020) 156–171.

doi:https://doi.org/10.1016/j.actaastro.2020.02.051.

[28] S. Li, X. Jiang, Review and prospect of guidance and control for mars1455

atmospheric entry, Progress in Aerospace Sciences 69 (2014) 40–57.

doi:https://doi.org/10.1016/j.paerosci.2014.04.001.

[29] M. Z. Shah, R. Samar, A. I. Bhatti, Guidance of air vehicles: A sliding

mode approach, IEEE Transactions on Control Systems Technology 23

(1) (2015) 231–244. doi:10.1109/TCST.2014.2322773.1460

[30] S. R. Kumar, S. Rao, D. Ghose, Sliding-mode guidance and control

for all-aspect interceptors with terminal angle constraints, Journal of

Guidance, Control, and Dynamics 35 (4) (2012) 1230–1246. doi:

10.2514/1.55242.

[31] R. Padhi, C. Chawla, P. G. Das, Partial integrated guidance and control of1465

interceptors for high-speed ballistic targets, Journal of Guidance, Con-

trol, and Dynamics 37 (1) (2014) 149–163. doi:10.2514/1.61416.

[32] R. Padhi, P. R. Rakesh, R. Venkataraman, Formation flying with non-

linear partial integrated guidance and control, IEEE Transactions on

Aerospace and Electronic Systems 50 (4) (2014) 2847–2859. doi:1470

10.1109/TAES.2014.120719.

[33] Q. Wang, M. Ran, C. Dong, Robust partial integrated guidance and

control for missiles via extended state observer, ISA Transactions 65

(2016) 27–36. doi:https://doi.org/10.1016/j.isatra.2016.

08.017.1475

[34] C. Luo, J. Wang, H. Huang, P. Wang, Integrated guidance and control

based air-to-air autonomous attack occupation of ucav, Mathematical

Problems in Engineering 2016 (2016) 6431264. doi:10.1155/2016/

6431264.

[35] H. Song, T. Zhang, Fast robust integrated guidance and control design of1480

interceptors, IEEE Transactions on Control Systems Technology 24 (1)

(2016) 349–356. doi:10.1109/TCST.2015.2431641.

[36] B. Tian, W. Fan, R. Su, Q. Zong, Real-time trajectory and attitude co-

17



ordination control for reusable launch vehicle in reentry phase, IEEE

Transactions on Industrial Electronics 62 (3) (2015) 1639–1650. doi:1485

10.1109/TIE.2014.2341553.

[37] F. Santoso, M. A. Garratt, S. G. Anavatti, State-of-the-art integrated

guidance and control systems in unmanned vehicles: A review, IEEE

Systems Journal (2020) 1–12doi:10.1109/JSYST.2020.3007428.

[38] H. Liu, J. Li, B. Hexi, Sliding mode control for low-thrust earth-orbiting1490

spacecraft formation maneuvering, Aerospace Science and Technology

10 (7) (2006) 636–643. doi:https://doi.org/10.1016/j.ast.

2006.04.008.

[39] R. Sun, J. Wang, D. Zhang, X. Shao, Neural-network-based sliding-

mode adaptive control for spacecraft formation using aerodynamic1495

forces, Journal of Guidance, Control, and Dynamics 41 (3) (2017) 757–

763. doi:10.2514/1.G003063.

[40] J. Dai, A. Gao, Y. Xia, Mars atmospheric entry guidance for reference

trajectory tracking based on robust nonlinear compound controller, Acta

Astronautica 132 (2017) 221–229. doi:https://doi.org/10.1016/1500

j.actaastro.2016.12.013.

[41] S. Eshghi, R. Varatharajoo, Nonsingular terminal sliding mode control

technique for attitude tracking problem of a small satellite with com-

bined energy and attitude control system (ceacs), Aerospace Science and

Technology 76 (2018) 14–26. doi:https://doi.org/10.1016/j.1505

ast.2018.02.006.

[42] J. Qiao, Z. Li, J. Xu, X. Yu, Composite nonsingular terminal sliding

mode attitude controller for spacecraft with actuator dynamics under

matched and mismatched disturbances, IEEE Transactions on Indus-

trial Informatics 16 (2) (2020) 1153–1162. doi:10.1109/TII.2019.1510

2936172.

[43] Y. Miao, I. Hwang, M. Liu, F. Wang, Adaptive fast nonsingular ter-

minal sliding mode control for attitude tracking of flexible spacecraft

with rotating appendage, Aerospace Science and Technology 93 (2019)

105312. doi:https://doi.org/10.1016/j.ast.2019.105312.1515

[44] P. M. Tiwari, S. Janardhanan, M. un Nabi, Attitude control using higher

order sliding mode, Aerospace Science and Technology 54 (2016) 108–

113. doi:https://doi.org/10.1016/j.ast.2016.04.012.

[45] Z. Song, C. Duan, J. Wang, Q. Wu, Chattering-free full-order recur-

sive sliding mode control for finite-time attitude synchronization of rigid1520

spacecraft, Journal of the Franklin Institute 356 (2) (2019) 998–1020.

doi:https://doi.org/10.1016/j.jfranklin.2018.02.013.

[46] H. Gui, G. Vukovich, Adaptive integral sliding mode control for space-

craft attitude tracking with actuator uncertainty, Journal of the Franklin

Institute 352 (12) (2015) 5832–5852. doi:https://doi.org/10.1525

1016/j.jfranklin.2015.10.001.

[47] Y. Guo, B. Huang, S.-m. Song, A.-j. Li, C.-q. Wang, Robust saturated

finite-time attitude control for spacecraft using integral sliding mode,

Journal of Guidance, Control, and Dynamics 42 (2) (2018) 440–446.

doi:10.2514/1.G003520.1530

[48] B. Li, Q. Hu, Y. Yang, O. A. Postolache, Finite-time disturbance ob-

server based integral sliding mode control for attitude stabilisation un-

der actuator failure, IET Control Theory & Applications 13 (1) (2019)

50–58. doi:10.1049/iet-cta.2018.5477.

[49] M. Nazari, E. A. Butcher, A. K. Sanyal, Spacecraft attitude fractional1535

feedback control using rotation matrices and exponential coordinates,

Journal of Guidance, Control, and Dynamics 41 (10) (2018) 2185–2198.

doi:10.2514/1.G002956.

[50] Z. Ma, Z. H. Zhu, G. Sun, Fractional-order sliding mode control for

deployment of tethered spacecraft system, Proceedings of the Institution1540

of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233

(13) (2019) 4721–4734. doi:10.1177/0954410019830030.

[51] Z. Ismail, R. Varatharajoo, Y.-C. Chak, A fractional-order sliding mode

control for nominal and underactuated satellite attitude controls, Ad-

vances in Space Research 66 (2) (2020) 321–334. doi:https://doi.1545

org/10.1016/j.asr.2020.02.022.

[52] J. Kawaguchi, T. Ninomiya, Y. Miyazawa, Stochastic approach to ro-

bust flight control design using hierarchy-structured dynamic inversion,

Journal of Guidance, Control, and Dynamics 34 (5) (2011) 1573–1576.

doi:10.2514/1.53257.1550

[53] H. Moncayo, M. Perhinschi, B. Wilburn, J. Wilburn, O. Karas, UAV

Adaptive Control Laws Using Non-Linear Dynamic Inversion Aug-

mented with an Immunity-based Mechanism, Guidance, Navigation, and

Control and Co-located Conferences, American Institute of Aeronautics

and Astronautics, 2012. doi:doi:10.2514/6.2012-4678.1555

[54] E. Tal, S. Karaman, Accurate tracking of aggressive quadrotor trajec-

tories using incremental nonlinear dynamic inversion and differential

flatness, IEEE Transactions on Control Systems Technology (2020) 1–

16doi:10.1109/TCST.2020.3001117.

[55] P. Lu, E.-J. van Kampen, C. de Visser, Q. Chu, Aircraft fault-tolerant tra-1560

jectory control using incremental nonlinear dynamic inversion, Control

Engineering Practice 57 (2016) 126–141. doi:https://doi.org/

10.1016/j.conengprac.2016.09.010.

[56] X. Wang, E.-J. van Kampen, Q. Chu, P. Lu, Stability analysis for in-

cremental nonlinear dynamic inversion control, Journal of Guidance,1565

Control, and Dynamics 42 (5) (2019) 1116–1129. doi:10.2514/1.

G003791.

[57] E. J. J. Smeur, G. C. H. E. de Croon, Q. Chu, Cascaded incremental non-

linear dynamic inversion for mav disturbance rejection, Control Engi-

neering Practice 73 (2018) 79–90. doi:https://doi.org/10.1016/1570

j.conengprac.2018.01.003.

[58] Y. C. Wang, W. S. Chen, S. X. Zhang, J. W. Zhu, L. J. Cao, Command-

filtered incremental backstepping controller for small unmanned aerial

vehicles, Journal of Guidance, Control, and Dynamics 41 (4) (2018)

954–967. doi:10.2514/1.G003001.1575

[59] H. Kim, H. J. Kim, Backstepping-based impact time control guidance

law for missiles with reduced seeker field-of-view, IEEE Transactions

on Aerospace and Electronic Systems 55 (1) (2019) 82–94. doi:10.

1109/TAES.2018.2848319.

[60] J. Zhang, J. Yan, P. Zhang, Multi-uav formation control based on a novel1580

back-stepping approach, IEEE Transactions on Vehicular Technology 69

(3) (2020) 2437–2448. doi:10.1109/TVT.2020.2964847.

[61] J. Zhu, L. Liu, G. Tang, W. Bao, Three-dimensional robust diving guid-

ance for hypersonic vehicle, Advances in Space Research 57 (2) (2016)

562–575. doi:https://doi.org/10.1016/j.asr.2015.10.037.1585

[62] S. Bandyopadhyay, S.-J. Chung, F. Y. Hadaegh, Nonlinear attitude con-

trol of spacecraft with a large captured object, Journal of Guidance, Con-

trol, and Dynamics 39 (4) (2016) 754–769. doi:10.2514/1.G001341.

[63] Y. K. Nakka, S.-J. Chung, J. T. Allison, J. B. Aldrich, O. S. Alvarez-

Salazar, Nonlinear attitude control of a spacecraft with distributed actu-1590

ation of solar arrays, Journal of Guidance, Control, and Dynamics 42 (3)

(2019) 458–475. doi:10.2514/1.G003478.

[64] G. Li, Y. Wu, P. Xu, Adaptive fault-tolerant cooperative guidance law for

simultaneous arrival, Aerospace Science and Technology 82-83 (2018)

243–251. doi:https://doi.org/10.1016/j.ast.2018.09.014.1595

[65] H. Rezaee, F. Abdollahi, Robust attitude alignment in multispacecraft

systems with stochastic links failure, Automatica 118 (2020) 109033.

doi:https://doi.org/10.1016/j.automatica.2020.109033.

[66] K. Kakihara, N. Ozaki, A. Ishikawa, T. Chikazawa, R. Funase, Tube

Stochastic Optimal Control with Imperfect Information: Application to1600

Navigation and Guidance Analyses, AIAA SciTech Forum, American

Institute of Aeronautics and Astronautics, 2020. doi:doi:10.2514/

6.2020-0961.

[67] A. Dutta, J. Raquepas, Stochastic Optimization Framework for Space-

craft Maneuver Detection, AIAA SciTech Forum, American Insti-1605

tute of Aeronautics and Astronautics, 2020. doi:doi:10.2514/6.

2020-0234.

[68] B. Jiang, H. R. Karimi, S. Yang, C. C. Gao, Y. Kao, Observer-based

adaptive sliding mode control for nonlinear stochastic markov jump sys-

tems via t-s fuzzy modeling: Applications to robot arm model, IEEE1610

Transactions on Industrial Electronics (2020) 1–10doi:10.1109/TIE.

2020.2965501.

[69] D.-x. Zhang, Y.-w. Fang, P.-f. Yang, Y. Xu, Stochastic fast smooth

second-order sliding modes terminal guidance law design, Optik

127 (13) (2016) 5359–5364. doi:https://doi.org/10.1016/j.1615

ijleo.2016.02.077.

[70] P.-f. Yang, Y.-w. Fang, Y.-l. Wu, X.-j. Yong, Finite-time convergent

terminal guidance law design based on stochastic fast smooth second-

order sliding mode, Optik 127 (15) (2016) 6036–6049. doi:https:

//doi.org/10.1016/j.ijleo.2016.04.037.1620

[71] K. Chen, Full state constrained stochastic adaptive integrated guidance

and control for stt missiles with non-affine aerodynamic characteristics,

Information Sciences 529 (2020) 42–58. doi:https://doi.org/10.

1016/j.ins.2020.03.061.

[72] S.-J. Chung, S. Bandyopadhyay, I. Chang, F. Y. Hadaegh, Phase syn-1625

18



chronization control of complex networks of lagrangian systems on

adaptive digraphs, Automatica 49 (5) (2013) 1148–1161. doi:https:

//doi.org/10.1016/j.automatica.2013.01.048.

[73] H. Tsukamoto, S. Chung, Convex optimization-based controller design

for stochastic nonlinear systems using contraction analysis, in: 20191630

IEEE 58th Conference on Decision and Control (CDC), pp. 8196–8203.

doi:10.1109/CDC40024.2019.9028942.

[74] A. P. Dani, S. Chung, S. Hutchinson, Observer design for stochastic non-

linear systems via contraction-based incremental stability, IEEE Trans-

actions on Automatic Control 60 (3) (2015) 700–714. doi:10.1109/1635

TAC.2014.2357671.

[75] F. Pozo, F. Ikhouane, J. Rodellar, Numerical issues in backstepping con-

trol: Sensitivity and parameter tuning, Journal of the Franklin Insti-

tute 345 (8) (2008) 891–905. doi:https://doi.org/10.1016/j.

jfranklin.2008.05.005.1640

[76] F. Y. Hadaegh, S. Chung, H. M. Manohara, On development of 100-

gram-class spacecraft for swarm applications, IEEE Systems Journal 10

(2) (2016) 673–684. doi:10.1109/JSYST.2014.2327972.

[77] D. Morgan, S.-J. Chung, L. Blackmore, B. Acikmese, D. Bayard, F. Y.

Hadaegh, Swarm-keeping strategies for spacecraft under j2 and atmo-1645

spheric drag perturbations, Journal of Guidance, Control, and Dynamics

35 (5) (2012) 1492–1506. doi:10.2514/1.55705.

[78] S. Bandyopadhyay, S. Chung, F. Y. Hadaegh, Probabilistic and dis-

tributed control of a large-scale swarm of autonomous agents, IEEE

Transactions on Robotics 33 (5) (2017) 1103–1123. doi:10.1109/1650

TRO.2017.2705044.

[79] K. Matsuka, A. O. Feldman, E. S. Lupu, S.-J. Chung, F. Y. Hadaegh,

Decentralized formation pose estimation for spacecraft swarms, Ad-

vances in Space Researchdoi:https://doi.org/10.1016/j.asr.

2020.06.016.1655

[80] R. C. Foust, E. S. Lupu, Y. K. Nakka, S.-J. Chung, F. Y. Hadaegh,

Autonomous in-orbit satellite assembly from a modular heterogeneous

swarm, Acta Astronautica 169 (2020) 191–205. doi:https://doi.

org/10.1016/j.actaastro.2020.01.006.

[81] Z.-S. Hou, Z. Wang, From model-based control to data-driven control:1660

Survey, classification and perspective, Information Sciences 235 (2013)

3–35. doi:https://doi.org/10.1016/j.ins.2012.07.014.

[82] Y. Guo, X. Li, H. Zhang, M. Cai, F. He, Data-driven method for im-

pact time control based on proportional navigation guidance, Journal

of Guidance, Control, and Dynamics 43 (5) (2020) 955–966. doi:1665

10.2514/1.G004669.

[83] H. Jiang, B. Zhou, D. Li, G. Duan, Data-driven-based attitude control of

combined spacecraft with noncooperative target, International Journal

of Robust and Nonlinear Control 29 (16) (2019) 5801–5819. doi:10.

1002/rnc.4693.1670

[84] H. Gao, G. Ma, Y. Lv, Y. Guo, Forecasting-based data-driven model-

free adaptive sliding mode attitude control of combined spacecraft,

Aerospace Science and Technology 86 (2019) 364–374. doi:https:

//doi.org/10.1016/j.ast.2019.01.004.

[85] H. Gao, G. Ma, Y. Lyu, Y. Guo, Data-driven model-free adaptive atti-1675

tude control of partially constrained combined spacecraft with external

disturbances and input saturation, Chinese Journal of Aeronautics 32 (5)

(2019) 1281–1293. doi:https://doi.org/10.1016/j.cja.2019.

01.018.

[86] Y. Miyazawa, N. K. Wickramasinghe, A. Harada, Y. Miyamoto, Dy-1680

namic Programming Application to Airliner Four Dimensional Optimal

Flight Trajectory, Guidance, Navigation, and Control and Co-located

Conferences, American Institute of Aeronautics and Astronautics, 2013.

doi:doi:10.2514/6.2013-4969.

[87] W. Sun, Y. Pan, J. Lim, E. A. Theodorou, P. Tsiotras, Min-max differen-1685

tial dynamic programming: Continuous and discrete time formulations,

Journal of Guidance, Control, and Dynamics 41 (12) (2018) 2568–2580.

doi:10.2514/1.G003516.

[88] A. Heydari, Theoretical and numerical analysis of approximate dynamic

programming with approximation errors, Journal of Guidance, Control,1690

and Dynamics 39 (2) (2015) 301–311. doi:10.2514/1.G001154.

[89] R. Zappulla, H. Park, J. Virgili-Llop, M. Romano, Real-time au-

tonomous spacecraft proximity maneuvers and docking using an adap-

tive artificial potential field approach, IEEE Transactions on Control

Systems Technology 27 (6) (2019) 2598–2605. doi:10.1109/TCST.1695

2018.2866963.

[90] H. Li, L. Sun, W. Tan, B. Jia, X. Liu, Switching flight control for

incremental model-based dual heuristic dynamic programming, Jour-

nal of Guidance, Control, and Dynamics 43 (7) (2020) 1352–1358.

doi:10.2514/1.G004519.1700

[91] T. Bian, Z.-P. Jiang, Value iteration and adaptive dynamic programming

for data-driven adaptive optimal control design, Automatica 71 (2016)

348–360. doi:https://doi.org/10.1016/j.automatica.2016.

05.003.

[92] Y. Zhou, E.-J. van Kampen, Q. Chu, Incremental approximate dynamic1705

programming for nonlinear adaptive tracking control with partial ob-

servability, Journal of Guidance, Control, and Dynamics 41 (12) (2018)

2554–2567. doi:10.2514/1.G003472.

[93] C. Mu, D. Wang, H. He, Novel iterative neural dynamic program-

ming for data-based approximate optimal control design, Automatica 811710

(2017) 240–252. doi:https://doi.org/10.1016/j.automatica.

2017.03.022.

[94] N. Ozaki, S. Campagnola, R. Funase, C. H. Yam, Stochastic differential

dynamic programming with unscented transform for low-thrust trajec-

tory design, Journal of Guidance, Control, and Dynamics 41 (2) (2017)1715

377–387. doi:10.2514/1.G002367.

[95] H. Zhang, B. Hu, X. Wang, J. Xu, L. Wang, Q. Sun, Z. Zhao, An action

dependent heuristic dynamic programming approach for algal bloom

prediction with time-varying parameters, IEEE Access 8 (2020) 26235–

26246. doi:10.1109/ACCESS.2020.2971244.1720

[96] S. He, H.-S. Shin, A. Tsourdos, Computational guidance using sparse

gauss-hermite quadrature differential dynamic programming, IFAC-

PapersOnLine 52 (12) (2019) 13–18. doi:https://doi.org/10.

1016/j.ifacol.2019.11.062.

[97] U. Eren, A. Prach, B. B. Kocer, S. V. Rakovic, E. Kayacan, B. Acikmese,1725

Model predictive control in aerospace systems: Current state and op-

portunities, Journal of Guidance, Control, and Dynamics 40 (7) (2017)

1541–1566. doi:10.2514/1.G002507.

[98] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Optimal tracking

guidance for aeroassisted spacecraft reconnaissance mission based on1730

receding horizon control, IEEE Transactions on Aerospace and Elec-

tronic Systems 54 (4) (2018) 1575–1588. doi:10.1109/TAES.2018.

2798219.

[99] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Improved gradient-

based algorithm for solving aeroassisted vehicle trajectory optimization1735

problems, Journal of Guidance, Control, and Dynamics 40 (8) (2017)

2093–2101. doi:10.2514/1.G002183.

[100] M. Mammarella, E. Capello, H. Park, G. Guglieri, M. Romano, Tube-

based robust model predictive control for spacecraft proximity opera-

tions in the presence of persistent disturbance, Aerospace Science and1740

Technology 77 (2018) 585–594. doi:https://doi.org/10.1016/

j.ast.2018.04.009.

[101] M. Mammarella, E. Capello, M. Lorenzen, F. Dabbene, F. Allgower, A

general sampling-based smpc approach to spacecraft proximity opera-

tions, in: 2017 IEEE 56th Annual Conference on Decision and Control1745

(CDC), pp. 4521–4526. doi:10.1109/CDC.2017.8264326.

[102] K. Sachan, R. Padhi, Waypoint constrained multi-phase optimal guid-

ance of spacecraft for soft lunar landing, Unmanned Systems 07 (02)

(2019) 83–104. doi:10.1142/S230138501950002X.

[103] A. Maity, H. B. Oza, R. Padhi, Generalized model predictive static1750

programming and angle-constrained guidance of air-to-ground missiles,

Journal of Guidance, Control, and Dynamics 37 (6) (2014) 1897–1913.

doi:10.2514/1.G000038.

[104] S. Mondal, R. Padhi, Angle-constrained terminal guidance using quasi-

spectral model predictive static programming, Journal of Guidance,1755

Control, and Dynamics 41 (3) (2018) 783–791. doi:10.2514/1.

G002893.

[105] S. Mondal, R. Padhi, State and Input Constrained Missile Guidance us-

ing Spectral Model Predictive Static Programming, AIAA SciTech Fo-

rum, American Institute of Aeronautics and Astronautics, 2018. doi:1760

doi:10.2514/6.2018-1584.

[106] J. Luo, K. Jin, M. Wang, J. Yuan, G. Li, Robust entry guidance using

linear covariance-based model predictive control, International Journal

of Advanced Robotic Systems 14 (1) (2017) 1729881416687503. doi:

10.1177/1729881416687503.1765

[107] H. Hong, A. Maity, F. Holzapfel, S. Tang, Model predictive convex

programming for constrained vehicle guidance, IEEE Transactions on

19



Aerospace and Electronic Systems 55 (5) (2019) 2487–2500. doi:

10.1109/TAES.2018.2890375.

[108] X. He, W. Chen, L. Yang, Suboptimal impact-angle-constrained guid-1770

ance law using linear pseudospectral model predictive spread control,

IEEE Access 8 (2020) 102040–102050. doi:10.1109/ACCESS.2020.

2996752.

[109] A. Mesbah, Stochastic model predictive control: An overview and per-

spectives for future research, IEEE Control Systems Magazine 36 (6)1775

(2016) 30–44. doi:10.1109/MCS.2016.2602087.

[110] D. Morgan, S.-J. Chung, F. Y. Hadaegh, Model predictive control of

swarms of spacecraft using sequential convex programming, Journal of

Guidance, Control, and Dynamics 37 (6) (2014) 1725–1740. doi:10.

2514/1.G000218.1780

[111] D. Morgan, G. P. Subramanian, S.-J. Chung, F. Y. Hadaegh, Swarm as-

signment and trajectory optimization using variable-swarm, distributed

auction assignment and sequential convex programming, The Interna-

tional Journal of Robotics Research 35 (10) (2016) 1261–1285. doi:

10.1177/0278364916632065.1785

[112] R. Foust, S.-J. Chung, F. Y. Hadaegh, Optimal guidance and control with

nonlinear dynamics using sequential convex programming, Journal of

Guidance, Control, and Dynamics 43 (4) (2019) 633–644. doi:10.

2514/1.G004590.

[113] Z. Wang, Optimal trajectories and normal load analysis of hypersonic1790

glide vehicles via convex optimization, Aerospace Science and Technol-

ogy 87 (2019) 357–368. doi:https://doi.org/10.1016/j.ast.

2019.03.002.

[114] Z. Wang, S. T. McDonald, Convex relaxation for optimal rendezvous

of unmanned aerial and ground vehicles, Aerospace Science and Tech-1795

nology 99 (2020) 105756. doi:https://doi.org/10.1016/j.ast.

2020.105756.

[115] A. Guiggiani, I. Kolmanovsky, P. Patrinos, A. Bemporad, Fixed-point

constrained model predictive control of spacecraft attitude, in: 2015

American Control Conference (ACC), 2015, pp. 2317–2322. doi:1800

10.1109/ACC.2015.7171078.

[116] J. Fleming, B. Kouvaritakis, M. Cannon, Robust tube mpc for linear

systems with multiplicative uncertainty, IEEE Transactions on Auto-

matic Control 60 (4) (2015) 1087–1092. doi:10.1109/TAC.2014.

2336358.1805

[117] M. Yayla, A. T. Kutay, Adaptive Model Predictive Control of Uncer-

tain Systems with Input Constraints, AIAA SciTech Forum, Ameri-

can Institute of Aeronautics and Astronautics, 2017. doi:10.2514/

6.2017-1494.

[118] N. R. Esfahani, K. Khorasani, A distributed model predictive control1810

(mpc) fault reconfiguration strategy for formation flying satellites, In-

ternational Journal of Control 89 (5) (2016) 960–983. doi:10.1080/

00207179.2015.1110753.

[119] M. R. Amini, I. Kolmanovsky, J. Sun, Hierarchical mpc for robust

eco-cooling of connected and automated vehicles and its application1815

to electric vehicle battery thermal management, IEEE Transactions on

Control Systems Technology (2020) 1–13doi:10.1109/TCST.2020.

2975464.

[120] R. Kumar, M. J. Wenzel, M. J. Ellis, M. N. ElBsat, K. H. Drees, V. M.

Zavala, Hierarchical mpc schemes for periodic systems using stochastic1820

programming, Automatica 107 (2019) 306–316. doi:https://doi.

org/10.1016/j.automatica.2019.05.054.

[121] V. Capuano, K. Kim, A. Harvard, S.-J. Chung, Monocular-based pose

determination of uncooperative space objects, Acta Astronautica 166

(2020) 493–506. doi:https://doi.org/10.1016/j.actaastro.1825

2019.09.027.

[122] A. Harvard, V. Capuano, E. Y. Shao, S.-J. Chung, Spacecraft Pose Es-

timation from Monocular Images Using Neural Network Based Key-

points and Visibility Maps, AIAA SciTech Forum, American Insti-

tute of Aeronautics and Astronautics, 2020, doi:10.2514/6.2020-1874.1830

doi:doi:10.2514/6.2020-1874.

[123] V. Capuano, A. Harvard, Y. Lin, S.-J. Chung, Dgnss-vision integration

for robust and accurate relative spacecraft navigation, in: Proceedings

of the 32nd International Technical Meeting of the Satellite Division of

The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, 2019,1835

pp. 2923–2939. doi:https://doi.org/10.33012/2019.16961.

[124] S. Lee, V. Capuano, A. Harvard, S.-J. Chung, Fast uncertainty estima-

tion for deep learning based optical flow, in: Proceedings of the 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2020.1840

[125] J. Villa, S. Bandyopadhyay, B. Morrell, B. Hockman, D. Lubey, A. Har-

vard, S.-J. Chung, S. Bhaskaran, I. A. Nesnas, Optical navigation for au-

tonomous approach of unexplored small bodies, in: Proc. 43rd Annual

AAS Guidance, Navigation and Control Conference, 2020, pp. AAS 20–

125.1845

[126] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, A review of opti-

mization techniques in spacecraft flight trajectory design, Progress in

Aerospace Sciences 109 (2019) 100543. doi:https://doi.org/10.

1016/j.paerosci.2019.05.003.

[127] M. Pontani, B. A. Conway, Optimal finite-thrust rendezvous trajectories1850

found via particle swarm algorithm, Journal of Spacecraft and Rockets

50 (6) (2013) 1222–1234. doi:10.2514/1.A32402.

[128] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Trajectory op-

timization of space maneuver vehicle using a hybrid optimal control

solver, IEEE Transactions on Cybernetics 49 (2) (2019) 467–480. doi:1855

10.1109/TCYB.2017.2778195.

[129] Z. Wang, M. J. Grant, Minimum-fuel low-thrust transfers for space-

craft: A convex approach, IEEE Transactions on Aerospace and Elec-

tronic Systems 54 (5) (2018) 2274–2290. doi:10.1109/TAES.2018.

2812558.1860

[130] J. A. Englander, B. A. Conway, Automated solution of the low-thrust in-

terplanetary trajectory problem, Journal of Guidance, Control, and Dy-

namics 40 (1) (2016) 15–27. doi:10.2514/1.G002124.

[131] D. Izzo, C. I. Sprague, D. V. Tailor, Machine Learning and Evolu-

tionary Techniques in Interplanetary Trajectory Design, Springer In-1865

ternational Publishing, Cham, 2019, pp. 191–210. doi:10.1007/

978-3-030-10501-3_8.

[132] X. Cao, P. Shi, Z. Li, M. Liu, Neural-network-based adaptive back-

stepping control with application to spacecraft attitude regulation, IEEE

Transactions on Neural Networks and Learning Systems 29 (9) (2018)1870

4303–4313. doi:10.1109/TNNLS.2017.2756993.

[133] Y. Huang, S. Li, J. Sun, Mars entry fault-tolerant control via neural net-

work and structure adaptive model inversion, Advances in Space Re-

search 63 (1) (2019) 557–571. doi:https://doi.org/10.1016/j.

asr.2018.09.016.1875

[134] N. Zhou, Y. Kawano, M. Cao, Neural network-based adaptive control

for spacecraft under actuator failures and input saturations, IEEE Trans-

actions on Neural Networks and Learning Systems (2019) 1–15doi:

10.1109/TNNLS.2019.2945920.

[135] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-1880

kumar, Y. Yue, S. Chung, Neural lander: Stable drone landing control

using learned dynamics, in: 2019 International Conference on Robotics

and Automation (ICRA), pp. 9784–9790. doi:10.1109/ICRA.2019.

8794351.

[136] H. Tsukamoto, S. Chung, Neural contraction metrics for robust esti-1885

mation and control: A convex optimization approach, IEEE Control

Systems Letters 5 (1) (2021) 211–216. doi:10.1109/LCSYS.2020.

3001646.

[137] B. Rivière, W. Hönig, Y. Yue, S. Chung, Glas: Global-to-local safe

autonomy synthesis for multi-robot motion planning with end-to-end1890

learning, IEEE Robotics and Automation Letters 5 (3) (2020) 4249–

4256. doi:10.1109/LRA.2020.2994035.

[138] D. Izzo, D. Tailor, T. Vasileiou, On the stability analysis of deep neu-

ral network representations of an optimal state-feedback, IEEE Transac-

tions on Aerospace and Electronic Systems (2020) 1–9doi:10.1109/1895

TAES.2020.3010670.

[139] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, C. L. P. Chen, Six-dof

spacecraft optimal trajectory planning and real-time attitude control: A

deep neural network-based approach, IEEE Transactions on Neural Net-

works and Learning Systems (2019) 1–9doi:10.1109/TNNLS.2019.1900

2955400.

[140] H. Peng, X. Bai, Artificial neural network-based machine learning ap-

proach to improve orbit prediction accuracy, Journal of Spacecraft and

Rockets 55 (5) (2018) 1248–1260. doi:10.2514/1.A34171.

[141] L. Cheng, Z. Wang, Y. Song, F. Jiang, Real-time optimal control1905

for irregular asteroid landings using deep neural networks, Acta As-

tronautica 170 (2020) 66–79. doi:https://doi.org/10.1016/j.

actaastro.2019.11.039.

[142] H. Peng, X. Bai, Exploring capability of support vector machine for im-

20



proving satellite orbit prediction accuracy, Journal of Aerospace Infor-1910

mation Systems 15 (6) (2018) 366–381. doi:10.2514/1.I010616.

[143] W. Li, H. Huang, F. Peng, Trajectory classification in circular restricted

three-body problem using support vector machine, Advances in Space

Research 56 (2) (2015) 273–280. doi:https://doi.org/10.1016/

j.asr.2015.04.017.1915

[144] B. Gaudet, R. Linares, R. Furfaro, Adaptive guidance and integrated

navigation with reinforcement meta-learning, Acta Astronautica 169

(2020) 180–190. doi:https://doi.org/10.1016/j.actaastro.

2020.01.007.

[145] B. Gaudet, R. Linares, R. Furfaro, Deep reinforcement learning for1920

six degree-of-freedom planetary powered descent and landing, ArXiv

abs/1810.08719.

[146] S. Liu, Z. Hou, T. Tian, Z. Deng, Z. Li, A novel dual successive

projection-based model-free adaptive control method and application to

an autonomous car, IEEE Transactions on Neural Networks and Learn-1925

ing Systems 30 (11) (2019) 3444–3457. doi:10.1109/TNNLS.2019.

2892327.

[147] J. Choi, K. Huhtala, Constrained global path optimization for articulated

steering vehicles, IEEE Transactions on Vehicular Technology 65 (4)

(2016) 1868–1879. doi:10.1109/TVT.2015.2424933.1930

[148] C. Shen, Y. Shi, B. Buckham, Integrated path planning and tracking

control of an auv: A unified receding horizon optimization approach,

IEEE/ASME Transactions on Mechatronics 22 (3) (2017) 1163–1173.

doi:10.1109/TMECH.2016.2612689.

[149] C. Shen, Y. Shi, B. Buckham, Trajectory tracking control of an au-1935

tonomous underwater vehicle using lyapunov-based model predictive

control, IEEE Transactions on Industrial Electronics 65 (7) (2018) 5796–

5805. doi:10.1109/TIE.2017.2779442.

21


	Introduction
	Background
	Motivation
	Organisation of the Article

	Types of Guidance and Control Systems
	Integrated Guidance and Control System
	Partially Integrated Guidance and Control System

	Review of Stability Theory-based G&C Methods
	Design and Applications of Robust G&C Algorithms
	Finite-Time SMC Theory-based Scheme
	Fractional-Order Control-based Schemes
	Dynamic Inversion-based Scheme
	Backstepping-based Scheme
	Other Robust Control Schemes

	Design and Applications of Stochastic G&C Algorithms
	Potential Issues and Challenges of Stability Theory-based G&C Algorithms
	Design and Applications of Data-Driven G&C Algorithms

	Review of Optimisation-based G&C Methods
	Design and Applications of Dynamic Programming-based G&C Methods
	Design and Applications of Model Predictive Control-based G&C Methods
	Challenges of Using Optimisation Theory-based G&C Methods in Space/ Aerospace Applications

	Review of AI-based G&C Strategies
	Connection Between AI and Guidance and Control Problems
	AI and Vision-based Pose Estimation for Spacecraft/UAV
	Optimal Trajectory Generation
	ML/AI-based Nonlinear Control and Estimation Design

	Design and Applications of AI-based G&C Methods
	Potential Issues and Challenges of AI-based G&C Methods

	Conclusions and Future Developments
	Concluding Remarks
	Continuing Research


