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 
Abstract—A passive fault tolerant control scheme is proposed 

for the full reentry trajectory tracking of a hypersonic vehicle in 
the presence of modelling uncertainties, external disturbances, 
and actuator faults. To achieve this goal, the attitude error 
dynamics with relative degree two is formulated first by ignoring 
the nonlinearities induced by the translational motions. Then, a 
multivariable twisting controller is developed as a benchmark to 
ensure the precise tracking task. Theoretical analysis with the 
Lyapunov method proves that the attitude tracking error and its 
first-order derivative can simultaneously converge to the origin 
exponentially. To depend less on the model knowledge and reduce 
the system uncertainties, an incremental twisting fault tolerant 
controller is derived based on the incremental nonlinear dynamic 
inversion control and the predesigned twisting controller. It is 
shown that not only the benefits of both incremental control and 
twisting control are inherited, but also their side effects are 
reduced. Notably, the proposed controller is user friendly in that 
only fixed gains and partial model knowledge are required. 
Numerical simulations in various cases and comparison studies 
are conducted to verify the effectiveness of the proposed method. 
 

Index Terms—Hypersonic vehicle, reentry trajectory tracking, 
fault tolerant control, twisting control, actuator faults.  

I. INTRODUCTION 

AFETY has been playing an important role in the aerospace 
industry and is demanding for the flight control of 

hypersonic vehicles due to its complex structure, civil/military 
mission, and high cost. The main factors that threaten flight 
safety are the actuator faults, unmodelled dynamics, and 
external disturbances [1,2]. To handle this issue, the fault 
tolerant control (FTC) has emerged and witnessed a wide range 
of applications in robots [3], ground vehicles [4], aerial vehicles 
[5], and spacecraft [6].  

Generally, FTC can be classified into two groups: active 
FTC and passive FTC [7]. The active FTC framework estimates 
faults via the fault detection and identification (FDI) method. 
Then, it reconfigures the controller for self-healing utilizing the 
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remaining healthy actuators. For instance, the fault efficiency 
factor was estimated by an adaptive composite observer in [4] 
and combined with the fast terminal sliding mode to obtain an 
active FTC for electric vehicles. In [5], a super twisting 
observer was utilized to estimate the servo’s stuck fault of an 
unmanned aerial vehicle (UAV) and an integral FTC law was 
developed. The active FTC of near-space hypersonic vehicles 
was studied in [8] via a sliding mode observer-based FDI. In [9], 
a neural network adaptive FDI process was combined with the 
nonlinear dynamic inversion (NDI) control to actively 
compensate for the actuator faults of UAV. To deal with the 
undetected/missed small actuator faults, an adaptive FDI that 
only detects but not estimates the fault was integrated within a 
robust UAV control framework [10]. The total effect of the 
actuator fault was estimated in [11] to develop an active FTC 
for spacecraft under input saturation. The key of active FTC is 
to enhance system robustness relying on the FDI technique that 
requires more about the model knowledge. 

The passive FTC scheme preserves/enhances the system 
robustness against faults and uncertainties without using FDI. 
For example, the nonlinear disturbance observer was combined 
with sliding mode control (SMC) in [2] for the hypersonic 
vehicle FTC issue. A prescribed-time FTC law was designed in 
[3] by integrating a barrier Lyapunov function. Based on the 
efficiency of SMC, a passive FTC law for spacecraft was 
developed in [6] using the time-varying SMC. Besides, various 
passive FTC laws were also developed for hypersonic vehicles 
based on the terminal SMC [12,13], barrier-Lyapunov function 
[14], and the singular perturbation-based control [15]. The 
merits of the passive FTC are that it can improve computational 
efficiency compared to the active FTC. 

Although the above success has been achieved in FTC, a key 
problem remains open in this field. Specifically, the FTC will 
become less robust with either poor FDI performance for the 
active FTC or inaccurate uncertainty cancellation for the 
passive FTC. However, if more accurate FDI or uncertainty 
compensation methods are used, the computational complexity 
will increase and much more effort will be required to obtain 
the accurate model knowledge. Notably, the state-of-the-art 
FTC strategies face the following design difficulties: i) The 
strong dependency on the model knowledge; ii) System 
uncertainty increases with less model knowledge; iii) Greater 
minimum control gains are required under larger uncertainty 
magnitude; iv) Severe chattering will occur with larger control 
gains for SMC-based FTC. It is difficult and contradictory to 
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meet the objectives of reduced uncertainty, less model 
dependency, smaller control gains, and less chattering 
phenomenon simultaneously. 

To handle such a dilemma, the incremental nonlinear 
dynamic inversion (INDI) was proposed in [16] and has 
attracted much attention for the FTC design in the aerospace 
community [17,18,19]. Recent flight tests [20,21] have also 
demonstrated the applicability and efficiency of this method. 
The main advantage of INDI is that not only the model 
dependency is reduced, but also the robustness is improved. 
Recently, the combination of INDI and SMC (named 
INDI-SMC [18,19,22]) that inherits the merits and avoids the 
defects of both methods has been studied to further improve the 
robustness of INDI.  Motivated by the above mentioned, this 
paper proposes an incremental twisting FTC law that 
innovatively integrates the INDI and twisting control [23,24] (a 
type of second-order SMC) for the full reentry trajectory 
tracking of hypersonic vehicles. Note that it is more 
challenging and significant to deal with the full trajectory 
tracking issue because of the unknown and long-duration flight 
environment, time-varying aerodynamics, nonlinear dynamics, 
strong couplings, and especially in the presence of uncertainties, 
disturbances, and actuator faults. The main contributions of this 
paper are as follows. 

i) Contributions to the twisting control: A multivariable 
twisting controller is proposed for systems with relative degree 
two. It is shown that the system tracking error and its derivative 
can exponentially converge to the origin simultaneously. 

ii) Contributions to the INDI architecture: The INDI is 
extended with twisting control (named as INDI-TW) to further 
enhance its robustness. Moreover, the INDI-TW has a simple 
structure without requiring the design of sliding surfaces. 

iii) Contributions to the FTC of hypersonic vehicles: The 
INDI-TW is applied to the FTC for hypersonic vehicles with 
partial model knowledge under system uncertainties, external 
disturbances, and actuator faults. Unlike most FTC designs for 
hypersonic vehicles that only consider a fixed feature point or 
the longitudinal dynamics, the proposed technique is feasible in 
tracking a full reentry trajectory with fixed gains. 

The rest of this paper is organized as follows. The problem is 
formulated in Section II. The twisting control based on NDI 
(NDI-TW) and INDI (INDI-TW) is presented in Section III, 
and the performance of the proposed method is verified in 
Section IV. Finally, conclusions are drawn in Section V. 

II. MODEL DESCRIPTION AND PROBLEM FORMULATION 

In this section, the robust tracking problem for an 
aerodynamic surface actuated hypersonic vehicle that behaves 
bank-to-turn (BTT) maneuvers is formulated under external 
disturbances, model uncertainties, and actuator faults. 

A. Nonlinear Model for Hypersonic Vehicles 

The nonlinear six-degree-of-freedom model for hypersonic 
vehicles can be presented as [25-27] 
i) Translational Equations: 
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where h is the flight altitude, V is the vehicle’s earth relative 
velocity,   is the flight path angle,   is the heading angle, and 
  is the bank angle.   and   are the latitude and longitude, 
respectively. , ,e er g  denote the radius, angular speed, and 
gravity constant of the Earth, respectively. L, D, m are the lift 
force, drag force, and mass of the vehicle, respectively. Note 
that the kinematics (1)~(6) is based on the zero sideslip angle 
assumption due to the BTT maneuver requirement. 
ii) Rotational Equations: 
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  is the angle of attack (AOA),   is the sideslip angle. 
, ,r p yM M M  are the roll, pitch, and yaw moments, p, q, r are the 

corresponding roll, pitch, and yaw angular rates, respectively. 
 , , ,ij zI i j x y  denote the moment of inertia.  

B. Aerodynamic Force and Moment Model 

The aerodynamic lift and drag forces are presented as 
 
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where 2=0.5q V  is the dynamic pressure,   is the atmospheric 
density, refS  is the reference area. ,L DC C  are lift and drag 
coefficients related to the Mach number (Ma), AOA, and fin 
deflections ( a  the aileron, e  the elevator, and r  the rudder).  

The roll, pitch, and yaw moments are computed by 
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where refL  is the reference length, , ,r p ym m m  are the roll, pitch, 
and yaw moment coefficients related to the Mach number, 
AOA, sideslip angle, and fin deflections.  

C. Attitude Error Dynamics with Uncertainties, Disturbances, 
and Actuator Faults 

To design a proper attitude controller such that the 
hypersonic vehicle can precisely track the reference trajectory 
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generated by (1)~(6), the attitude dynamics is presented in a 
compact form from (7)~(12) as follows 

1 1

=

=  




 




Tω

ω I ΓIω I M


                   (13) 

where  = , ,
T   ,  = , ,

T
p q rω , , ,

T

r p yM M M  M = , and 
cos tan         1       sin tan

=       sin              0           cos ,

cos cos  sin  sin cos

   
 

    

 
 
 
    

T  

    0   

   ,      0 

      0   

xx xy xz

yx yy yz

zx zy zz

I I I r q

I I I r p

q pI I I

    
          
       

I Γ  

Note that (13) neglects the translational part and the Earth’s  
angular speed in (7)~(9). Such manipulation is reasonable since 
the translational motion is much slower than the rotational 
motion for hypersonic vehicles [24]. In practice, to attain the 
specific control surface deflections, the aerodynamic moment 
vector M is further presented as 

=M PCu                                   (14) 
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where  , , , , ,ijm i r p y j a e r   denote the coefficients related to 
the partial differential terms of im  with respect to a , e , r . 

Considering the reference command as  = , ,
T

c c c c    and 
defining the attitude tracking error as = c e   , the attitude 
error dynamics can be obtained from (13),(14) as 

c

 






   

e e

e A Bu Ω




                 (15) 

where = c  e Tω  , 1 A TI ΓIω , 1B TI PC , Ω Tω   
Remark 1. ,c c   are obtained by optimizing (1)~(6) with 

terminal and process constraints. c  is set to zero due to the 
BTT maneuver. Tracking of these angles is a common 
objective in hypersonic vehicle control problems [13,24-27]. 

Assumption 1. The reference command c  is bounded, twice 
differentiable and smooth, with bounded c

  and c
 . 

To further consider the practical situation, the modelling 
uncertainties, external disturbances, and actuator faults are 
involved in the second equation of (15). Then, (15) becomes  
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where Ω  is the lumped external disturbance vector, and 
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where , A B  are unmodeled dynamics, ,F FA B  are versions of 

,A B  under actuator faults, d  is the external disturbance,  t  
is a function that triggers the fault at Ft t  and is described as 
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Assumption 2. The lumped disturbance Ω  is bounded. 

D. Control Objectives 

i) Stabilize the attitude error dynamics (16) such that 
0 e , i.e., the following aims should be achieved 

, ,c c c         

ii) Design the control law u  using partial model knowledge, 
i.e., the uncertainties , A B , fault information  , ,F F tA B , 
disturbance Ω , and even the nominal system dynamics A , are 
unknown and will not be compensated via the estimation tools. 

III.  INDI-TW CONTROL SCHEME 

To achieve the control objectives presented in Sec. II.D, the 
NDI-TW is first designed and analyzed as a benchmark. Then, 
the INDI-TW is proposed and its stability is proved. The 
comparison between NDI-TW and INDI-TW is analyzed. 

A. NDI-TW Controller Design and Analysis 

For the attitude error dynamics (16) with relative degree two, 
a multivariable twisting controller inspired by [28] can be 
designed based on the NDI control structure as follows 
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where 1 2 3 4, , ,k k k k  are positive gains to be designed, the 
pseudoinverse matrix   1

= T T B B BB  and satisfies 3=BB I . 
Substituting (21) into (16) leads to 
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(22) can be rewritten as 
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where  
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represents the uncertainty residual existing in the error 
dynamics (16) under the NDI-TW controller (21). 

Assumption 3. The residual ndi twε  presented in (24) is 
bounded and satisfies ndi tw  ε  with   a positive scalar . 

Remark 2. Assumption 3 is also a primary hypothesis in 
many robust control methods (e.g. [1,2,6,11,14,24,27], to name 
a few). 

Theorem 1. For the attitude error dynamics (16) (or the 
transformed (23)), the NDI-TW controller (21) can guarantee 
the simultaneous convergence of e  and e  exponentially 
under Assumption 3 if the gains in (21) satisfy   
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for some 1 21, 0, 0m     . 
Proof. It will first be shown that the equilibrium 0  e e  

is a unique point of the closed-loop system (23). Specifically, 
the error dynamics with 0 e  can be described as [28] 
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where 2 1 2 2,k v k v       , [1,1]Tv . It can be seen that 
0 e  unless 0 e  because 1 2>k k   as per (25). Next, to 

prove the exponential stability of (23), a candidate Lyapunov 
function is selected as 
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where 1 2 3 4, , , 0c c c c   are constants.  
Reformulating (27) as 
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Apparently,  ,W  e e  is positive definite (except for the 
origin) if 2

1 3 24c c c . Note that the Lyapunov function is not 
differentiable at   0e . However, the error dynamics with the 
condition  , 0 e  can be checked as follows [28] 

 2 4 2 3k k v v
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e e
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e e v

e

 

where 1 3 1k v k   . It can be seen that   0e  for nonzero e , 
which means the closed-loop system (23) will not stay on 

  0e  for   0e . Then, taking the derivative of (28) along the 
system (23) leads to 
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e e e e ε e ε

   (29) 

To proceed, (29) is rewritten as 

   1 2,W W W     e e                          (30) 

where  

1 2 1 2 4

3 2 1      2

T
T

ndi tw

T
ndi tw

W c k k c

c k k

  


  

 


 
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 
     

 
 

    
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e e ee
e ε
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         (31) 

   2 2

2 3 2 4 3 2 3 3 4 2 12 2 2 TW k c k c c k c k c c       e + e e e (32) 

Note that  , 0W    e e  if 1 0W   and 2 0W  . From (31), it 
can be obtained that 

   1 2 1 2 3 2

1 3 4
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W c k k c k
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Let 4c  be selected as 4 1 3= 2c k c m  with 1m  , then 
   1 2 1 2 3 2 1 12W c k k c k k k m        e e      (33) 

It can be seen from (33) that 1 0W   (except for the origin) if 

 
1 2

2 1 1 1

k k

k k m




 
   

 

which can be met by the selection of (25). 
For the positivity of 2W , 1 2 3, ,c c c  are chosen such that 

2 3

1 3 3 4 2

=2
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c mc

mc k c mk c


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                             (34) 

Therefore, it can be derived that 
2 3

2 32
2

1 3 1 3 44

cc m
m

c c c k k m
 


 

Obviously, 2
1 3 24c c c  for the positivity of (28) will not be 

violated with 4k m . It can be deduced from (32),(34) that 
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where  
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 
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2 1 1
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  
   
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Note that 2 0W   can be ensured if 3 4,k k  are selected such that 
R  is positive definite, which has been implied in (26). From 
(25),(33),(35), it can be deduced that 

 
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                          (36) 

Combining (30) with (36) yields 
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 e e e R

e
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              (37) 

where   1 2 1 3 min= min ,G c c  R . Recall (27) and consider that 
   2 2

min max
T  Q Q Q    , it can be derived that 

     2 2

max 4 2,W c G      e e Q e e       (38) 

where   2 max 4= max ,G c Q . Hence, it can be obtained from 
(37) and (38) that 

   1

2

, ,
G

W W
G    e e e e  

Therefore, the system is globally exponentially stable. In other 
words, the error dynamics e  and e  can simultaneously 
converge to the origin exponentially. This completes the proof.  

Remark 3. Although the NDI-TW controller has the property 
of cancelling perturbations, there exist several conservativeness: 
i) The strong dependency on the model knowledge (both A  
and B  are required in (21)); ii) The residual ndi twε  increases 
when the knowledge of A , B  becomes worse (see (24)); iii) 
The larger the residual’s absolute values, the greater minimum 
values of the control gains 1 2,k k  are required as per (25). 
Therefore, it is challenging and contradictory to reduce the 
model dependency and uncertainty residual simultaneously for 
the NDI-TW controller. This issue will be mitigated by 
designing the INDI-TW controller in the next subsection. 
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B. INDI-TW Controller Design and Analysis 

This section derives an INDI-TW controller that exploits the 
incremental control concept [18] in which the angular 
acceleration measurement and partial model dynamics are used. 
To begin with, the second equation of (16) is rewritten by 
considering ,A B  are functions of the system state (denoted as 
x ) and fault trigger  t  as 

   , , c      e A x B x u Ω                  (39) 

Then, the incremental dynamics for e  is derived via taking 
the first-order Taylor series expansion of (39) around the 
instant t t   (described by the subscript 0, t  is the sampling 
interval) [18] as follows 

   
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0

2

0

, ,
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, ,
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 
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        


        


 




A x B x u

e e x B x u
x

A x B x u
Ω x

 (40) 

where 0e  is the estimated/measured derivative of the error 
dynamics e  in the latest step, 0  x x x  and 0  u u u  
denote the increments of x  and u  from t t   to t . 

0      and 0  Ω Ω Ω  depict the fault trigger changes 
and the variations of the disturbances in t , respectively. 

 2 x  denotes the higher-order remaining function. 
Considering (17),(18),(40), then (16) is rewritten as 

 0 0 , ,c t

 

  




       


  

e e

e e B u Ω λ x
           (41) 

where  0 0 0,B B x , and 
  1 2 3, , t    λ x λ λ λ                            (42) 
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           (43) 

   
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F F
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   3
0

F

F F       
λ

λ A A B B u                      (45) 

Assumption 4 [19]. The partial derivatives of A  and B  with 
respect to x  are bounded for any order. 

Assumption 5 [19]. The term F  in (45) is bounded for 
 ,F Ft t t  . 

For the system (41) with relative degree two, the INDI-TW 
controller is designed as 

+
0 0

eqi

indi tw c twi

 
      
 
 


u

u B e u                   (46) 

where twiu  is the same as twu  defined in (21).  
Remark 4. Note that 0e  can be obtained by angular sensors 

because = +c    e Tω Tω , where Tω Ω  has been included in 
the lumped disturbance (19) whose effects will be analyzed 
later. For some cases that ω  is not available by sensors, the 
sampled outputs can be utilized for its estimation [19]. This is 
not the focus of this work and will not be discussed in detail. 

Remark 5. If 1 2,k k  in twiu  are set to zero, then (46) changes 
from the INDI-TW controller to the INDI controller with 
reduced robustness.  

Remark 6. The unit vectors in twu  and twiu  are modified as 
   ,     e e e e  to avoid chattering in practical 

implementation. Increasing   will reduce the system 
robustness, while reducing   will increase the possibility of 
chattering, and vice versa. 

The whole control command can be presented as 

0indi tw indi tw   u u u  

where 0u  is the actuator deflection measured at the latest step 
t t  . Note that if 0u  cannot be directly measured, it can be 
also estimated online [29].  
Substituting (46) into (41) leads to 

twi indi tw

 

 


  



e e

e u ε
                             (47) 

where  

    0 0= , ,indi tw eqi twi t
      ε B B I u u Ω λ x          (48) 

Then, the following theorem derived from [18] can be obtained. 
Theorem 2. Under the Assumptions 1,2,4, and 5, the system 

residual indi twε  presented in (48) is ultimately bounded if the 
condition 

0 0 1c  I B B  is met for all t. 
Proof. From (47), the value of e  for the previous step can 

be presented as 

0 0 0twi indi tw  e u ε                               (49) 

Substituting 0eqi c     u e  into (48) and combining with 
(49), it can be derived that 

    0 0 0= , ,indi tw indi tw c twi t
         ε I B B ε u Ω λ x  (50) 

where 0twi twi twi  u u u . For a sufficiently small t , it is 
assumed that twiu  is bounded by 1  under continuous 
modification of twiu  in implementation. It can be noted from 
Assumptions 1 and 2 that c   and Ω  are bounded and their 
bounds are denoted as 2 3,  , respectively. For  , , t λ x , it 
can be known that 1λ  and 2λ  are bounded under Assumption 4 
because 0 x  with a sufficiently small t  [19,22]. 
Meanwhile,  3λ  is also bounded under Assumption 5 because 

1   only for  ,F Ft t t   and 0   for any other time. 
Consequently, the boundedness of  , , t λ x  is ensured and 
denoted as 4 . Rewriting (50) recursively as 
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Then, with the condition 
0 0 1c  I B B , it can be deduced 

from [18,19] that  
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
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ε ε

ε

  (51) 

Since 0kc   as k   for 0 1c  , and (0)indi twε  is 
finite in practice, then (51) becomes 

   1 2 3 4+

1indi tw

c

c


   
 


ε  

This completes the proof.  
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Remark 7. The bound of the residual indi twε  is related to t , 
and its boundary can be further reduced with higher sampling 
frequency [18,19,22].  

Remark 8. The condition 
0 0 1c  I B B  requires 0 0

B B  to 
be diagonally dominant, which is commonly used in flight 
control [18]. Note that it is a condition relaxing Assumption 3. 
For some cases where the condition is invalid, Assumption 3 
should be also made for indi twε  to ensure the system stability. 
Particularly, 

0 0 =0I B B  if 
0B  ideally estimates 0B . It gives a 

future research direction in the accurate identification of 0B  
such that indi twε  can quickly decay with faster convergence 
for 0kc  .   

Corollary 1. For the attitude error dynamics (16) (or the 
transformed incremental dynamics (41)) under uncertainties, 
faults, and disturbances (17)-(19), the proposed INDI-TW 
controller (46) can guarantee the simultaneous exponential 
convergence of e  and e  under the bounded indi twε  if the 
control gains 1 2,k k  satisfy 

   
1 2 1

2 1 2

=

2 1 1

k k

k m m

 
  

 
     

               (52) 

and 3 4,k k  satisfy (26). 
The dynamics (41) under the INDI-TW controller (46) is 

presented in (47). Since the condition indi tw  ε  can be 
guaranteed/assumed when 

0 0 1c  I B B  is met or not, the 
proof for Corollary 1 is similar to that for Theorem 1 and is not 
repeated here for space limit. 

 
Fig. 1. Control structure for INDI-TW and NDI-TW 

The NDI-TW and INDI-TW control structure for the 
hypersonic vehicle attitude tracking can be presented in Fig. 1. 
Therein, the INDI-TW or NDI-TW controller is used when the 
two switches are connected to the black solid lines or blue 
dashed lines, respectively. It can be seen that the same twisting 
controller is used, but different equivalent controllers are 
adopted with/without the model knowledge of A .    

Remark 9. The conservativeness in the NDI-TW controller 
has been solved by the INDI-TW controller in the following 
aspects: i) The dependency on the model knowledge is reduced 
( A  is not required but needed in NDI-TW); ii) The uncertainty 
residual is less dependent on the model knowledge; iii) Thanks 
to the relaxed dependency and incremental nature, the 
INDI-TW can reduce the magnitude of indi twε , compared with 

ndi twε  in NDI-TW. This implies that smaller minimum values 
of 1 2,k k  can be attained in INDI-TW than NDI-TW. The 
reduction becomes more significant as the uncertainty residual 
on A  becomes bigger or λ  becomes smaller. 

C. Comparisons Between NDI-TW and INDI-TW 

i) Hypothesis and Model Dependency: As a kind of the 
INDI-SMC controllers [18], INDI-TW relaxes Assumption 3 in 

Theorem 2. The INDI-TW does not require A , which is a key 
to compensate for the real dynamics in A  in NDI-TW. 

ii) Robustness: The robustness of the INDI-TW controller is 
better than the NDI-TW controller because 1) The deviation 
between the dynamics in A  and A  is eliminated in INDI-TW 
because it circumvents the estimation of A ; 2) The side effects 
incurred by uncertain and faulty dynamics are compensated in 
INDI-TW by the latest measurement 0e  and 0u .  

iii) Fault Tolerance: Considering the uncertain and faulty 
dynamics (17),(18), the residuals (24) and (48) are rewritten as 

       =ndi tw F F ndi twt t  
         ε A A A B B B u Ω  (53) 

     
0

= , ,indi tw F indi twt t  
         ε B B B u Ω λ x    (54) 

Then, it can be seen from (42),(44),(45),(53),(54) that ndi twε  
will be affected by F A A  more heavily than indi twε  under the 
faulty case. Moreover, the fault influences on indi twε  can be 
further reduced with smaller t . 

iv) Residual Magnitude: Based on (20),(42)~(45), the upper 
bounds of (53) and (54) can be presented as 
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where =F Ft t t   . As per (43),(44), 1λ  and 1 2λ λ  are 
negligible for a small t . Meanwhile, if 0Ω  and 0ndi tw u , 
there exists a sufficiently small t  such that , Ω Ω  

indi tw ndi tw  u u  [18,19] under continuous modification of 

twu  and twiu  in implementation. Hence, a smaller bound of 

indi twε  can be attained for a small t  than ndi twε  except for 
[ , )F Ft t t  , during which indi twε  and ndi twε  are comparable. 

As for the guidance of choosing t , one can refer to [30]. 
Remark 10. The gains 1 2,k k  for both NDI-TW and 

INDI-TW controllers are related to   and  , respectively. It 
is alternative to use gain adaption methods to update 1 2,k k  
such as the adaptive twisting controller in [24]. However, it is 
not the focus in this work and does not affect the comparative 
analysis for indi twε  and ndi twε . 

To sum up, the INDI-TW-based FTC for hypersonic vehicles 
has the following theoretical and practical significance: i) The 
dependency on part of the model knowledge (dynamics in A) is 
removed for controller design and uncertainty induction; ii) 
Small and fixed gains can be attained for full trajectory tracking 
due to reduced residual magnitude, which improves robustness 
and attenuates chattering; iii) Fault tolerance and tracking 
accuracy can be enhanced with higher sampling frequency. 
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TABLE I 
INITIAL FLIGHT CONDITIONS OF THE HYPERSONIC VEHICLE 

Variables Values Variables Values 

Hight 60 km AOA 5 deg 

Speed 4000 m/s Sideslip Angle 5 deg 

Flight Path Angle 0 deg Bank Angle -13.4 deg 

Longitude 45 deg Pitch Rate 1 deg/s 

Latitude  30 deg Roll Rate 1 deg/s 

Heading Angle 0 deg Yaw Rate 1 deg/s 

IV. NUMERICAL VERIFICATION 

The performance of the NDI-TW and INDI-TW is validated 
for the tracking of a hypersonic vehicle’s reentry trajectory. 
The vehicle model in [26] is adopted. Specifically, the mass, 
reference area, reference length, and the moments of inertia are 
1200 kg, 0.446 m2, 0.98 m, 2=100xxI kg m , 2=5600yyI kg m , 

2=5700zzI kg m , respectively. The aerodynamic coefficients in 
[26] are used for the trajectory design and attitude tracking. The 
initial conditions are shown in Table I. The attitude commands 
are obtained by optimizing the reentry trajectory via the Gauss 
Pseudo-Spectral Method to meet the following constraints:  

   
   

min max

2
min max

30 , 2300 , 1.9 , 55 , , 5 ,15 ,

, 60 ,60 , 120 , 5 , 1300

f f f fh km V m s

q kpa n g KW m

   

 

         

         ，
 

where n  is the total overload,   is the heating flux density, 
the subscript “f” corresponds to final states. The objective is to 
meet the minimum flight time, which is 297.24 s. The control 
gains for NDI-TW are selected by the following steps: 

i) 3 41.1, 2, 2m k k    are selected to meet 31, 0,m k    

4k m , and the condition in (26); 
ii) 1 2= =0.01   are chosen to satisfy 1 20, 0   ; 
iii) 1 0.68k   and 2 0.37k   are calculated from (25) by 

estimating a conservative 0.3  . 
Then, 1 0.8k   and 2 0.7k  can be easily tuned to meet 

acceptable dynamic responses. The control gains for INDI-TW 
are selected the same as NDI-TW for a fair comparison. The 
INDI controller with    1 2 3 4, , , = 0,0, 2.2, 2k k k k  is also verified. 
The nominal A  and/or B  are used for all controllers. The 
sampling frequency is 200 HZ. 0.1   is selected to make a 
balance between chattering issue and system robustness 
according to Remark 6. The actuator dynamics is modeled by a 
second-order transfer function [25] with the natural frequency 
of 20 HZ and the damping ratio of 0.7. Besides, the actuator’s 
position and rate are limited by 20    and 100 s   . 

 
Fig. 2 Attitude responses and tracking errors under the nominal condition 

 
Fig. 3 Control commands under the nominal condition 

A. Verifications Under Nominal Condition 

The first set of simulations is conducted under the nominal 
condition. As can be seen from Fig. 2, all the controllers can 
precisely track the attitude commands during the whole reentry 
phase. Only small errors arise during the AOA transition 
intervals. Both NDI-TW and INDI-TW have almost the same 
performance, while INDI creates slightly larger errors because 
it’s less robust against the strong nonlinearities and couplings in 
real flight dynamics. Fig. 3 shows that smooth and normal 
control commands are generated by all controllers. Moreover, it 
can be observed from Fig. 4 that the vehicle tracks the reference 
trajectory precisely with small deviations. 

 
Fig. 4 Flight trajectory responses under the nominal condition 

B. Verifications Under External Disturbances 

To evaluate the robustness of each controller, the external 
disturbances are chosen as    [1 sin 100 sin 200 ,d t t    d  

       1 sin 100 cos 200 ,1 cos 100 sin 200 ]Tt t t t       . d is the 
magnitude to be tested. It can be seen from Fig. 5 that the 
tracking performance is rarely influenced compared to Fig. 2 
when d  is set to 0.01. However, the NDI-TW and INDI create 
larger tracking errors than INDI-TW when d  increases to 0.1, 
as shown in Fig. 6. Note that the INDI and INDI-TW can still 
ensure stable tracking in this case, while the NDI-TW cannot.  

 
Fig. 5 Attitude tracking errors under external disturbances with 0.01d   

 
Fig. 6 Attitude tracking errors under external disturbances with 0.1d   

 
Fig. 7 NDI-TW with different gains under external disturbances with 0.1d   
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It is worth noting that the tracking errors can be reduced by 
NDI-TW if higher control gains are set. To this end, the attitude 
tracking errors and control commands under NDI-TW with K 
and 2K (K denotes all the control gains) are compared in Fig. 7. 
It can be observed that the tracking errors are reduced by high 
gains, but the chattering arises, which is undesirable in practice. 

C. Verifications Under Disturbances and Actuator Faults 

The external disturbances with 0.1d   and actuator faults 
are simultaneously considered to validate the fault-tolerance 
and robustness of the three controllers. Four actuators are 
considered as  , , ,

T

le ur re lr   u  whose components are left 
elevon, upper rudder, right elevon, and lower rudder, 
respectively. The allocation matrix satisfying  , ,

T

a r e  Cu  is 
[0.25,0.25, 0.25 0.25;0,0.5,0,0.5;0.5,0,0.5,0]T  ,C . The left elevon 

le  suddenly lost its effectiveness by 50% during the reentry 
phase at t=10 s. This fault will cause severe perturbations in the 
roll and pitch moments. Therefore, the tracking of AOA and 
bank angle is disturbed, and thus the sideslip angle will be 
affected in turn due to the strong couplings among them. 

 
Fig. 8 Attitude responses and errors under disturbances and actuator faults 

 
Fig. 9 Trajectory responses and errors under disturbances and actuator faults 

 
Fig. 10 Fin deflections under external disturbances and actuator faults 

From Figs. 8 and 9, it can be noted that the NDI-TW is 
incapable of handling the fault and the states leave away from 
the references with large errors. The other two controllers 
succeed in the tracking mission, and the INDI-TW has better 
performance and smaller errors than INDI. The attitudes 
controlled by INDI and INDI-TW diverge first after the fault 
occurs but are quickly driven back to their stable points. This is 
because the fault case is recovered using the remaining healthy 
actuators, as can be seen in Fig. 10. It can be observed that le  
under INDI and INDI-TW is near zero after fault happens such 
that the vehicle will depend less on the left elevon. At the same 
time, the other three actuators make immediate responses to the 
faulty actuator for recovery. As shown in Fig. 11, the norm of 

the uncertainty residual by NDI-TW is greater than that by 
INDI-TW, which validates the analysis in Sec. III.C. 

 
Fig. 11 The norm of uncertainty residuals by NDI-TW and INDI-TW 

For the sensor-based controller investigated in this paper, the 
control performance under noisy measurements is further 
demonstrated using the INDI-TW controller. Specifically, 
Gaussian measurement noise with zero mean and standard 
deviations of 0.001 rad/s, 0.01 rad/s2, and 0.01 rad is 
considered for the angular rate ( ω ), the latest angular 
acceleration-related ( 0e ) term, and the latest actuator ( 0u ), 
respectively. The simulation setting is the same as that 
described in the beginning of this subsection. In addition, a 
low-pass filter is employed to smooth the noisy measurement. 
The attitude and actuator responses are shown in Figs. 12 and 
13, respectively. It can be seen that the tracking errors are 
acceptable, and the tracking performance as well as the fin 
deflections are not affected much, compared to the results 
under INDI-TW in Figs. 8 and 10. 

 
Fig. 12 Attitude responses and errors considering measurement noise 
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Fig. 13 Fin deflections considering measurement noise 

V. CONCLUSION 

The full reentry trajectory tracking problem for hypersonic 
vehicles is solved considering modelling uncertainties, external 
disturbances, and actuator faults. A multivariable twisting 
controller is proposed to ensure the tracking error and its 
first-order derivative converge to the origin simultaneously and 
exponentially. To depend less on the model knowledge, an 
incremental twisting fault tolerant controller is developed and 
its closed-loop stability is proved with theoretical guarantees on 
the boundedness of uncertainty residuals. Simulations validate 
that both the INDI-TW and INDI can feasibly track the full 
trajectory with fixed control gains even under disturbances, 
uncertainties, and actuator faults, while NDI-TW fails the same 
mission. Comparison studies show that the INDI-TW has better 
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robustness and fault tolerance compared to the NDI-TW and 
INDI. Although the tracking errors can be reduced by NDI-TW 
with high gains, undesirable chattering is introduced. The 
future research will focus on the input saturation and estimation 
of angular acceleration. 
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