3,928 research outputs found

    Adaptive Anomaly Detection via Self-Calibration and Dynamic Updating

    Get PDF
    The deployment and use of Anomaly Detection (AD) sensors often requires the intervention of a human expert to manually calibrate and optimize their performance. Depending on the site and the type of traffic it receives, the operators might have to provide recent and sanitized training data sets, the characteristics of expected traffic (i.e. outlier ratio), and exceptions or even expected future modifications of system's behavior. In this paper, we study the potential performance issues that stem from fully automating the AD sensors' day-to-day maintenance and calibration. Our goal is to remove the dependence on human operator using an unlabeled, and thus potentially dirty, sample of incoming traffic. To that end, we propose to enhance the training phase of AD sensors with a self-calibration phase, leading to the automatic determination of the optimal AD parameters. We show how this novel calibration phase can be employed in conjunction with previously proposed methods for training data sanitization resulting in a fully automated AD maintenance cycle. Our approach is completely agnostic to the underlying AD sensor algorithm. Furthermore, the self-calibration can be applied in an online fashion to ensure that the resulting AD models reflect changes in the system's behavior which would otherwise render the sensor's internal state inconsistent. We verify the validity of our approach through a series of experiments where we compare the manually obtained optimal parameters with the ones computed from the self-calibration phase. Modeling traffic from two different sources, the fully automated calibration shows a 7.08% reduction in detection rate and a 0.06% increase in false positives, in the worst case, when compared to the optimal selection of parameters. Finally, our adaptive models outperform the statically generated ones retaining the gains in performance from the sanitization process over time

    Adaptive Anomaly Detection via Self-Calibration and Dynamic Updating

    Get PDF
    The deployment and use of Anomaly Detection (AD) sensors often requires the intervention of a human expert to manually calibrate and optimize their performance. Depending on the site and the type of traffic it receives, the operators might have to provide recent and sanitized training data sets, the characteristics of expected traffic (i.e. outlier ratio), and exceptions or even expected future modifications of system's behavior. In this paper, we study the potential performance issues that stem from fully automating the AD sensors' day-to-day maintenance and calibration. Our goal is to remove the dependence on human operator using an unlabeled, and thus potentially dirty, sample of incoming traffic. To that end, we propose to enhance the training phase of AD sensors with a self-calibration phase, leading to the automatic determination of the optimal AD parameters. We show how this novel calibration phase can be employed in conjunction with previously proposed methods for training data sanitization resulting in a fully automated AD maintenance cycle. Our approach is completely agnostic to the underlying AD sensor algorithm. Furthermore, the self-calibration can be applied in an online fashion to ensure that the resulting AD models reflect changes in the system's behavior which would otherwise render the sensor's internal state inconsistent. We verify the validity of our approach through a series of experiments where we compare the manually obtained optimal parameters with the ones computed from the self-calibration phase. Modeling traffic from two different sources, the fully automated calibration shows a 7.08% reduction in detection rate and a 0.06% increase in false positives, in the worst case, when compared to the optimal selection of parameters. Finally, our adaptive models outperform the statically generated ones retaining the gains in performance from the sanitization process over time

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Recurring automated model calibration for dynamically adaptive water distribution networks

    Get PDF
    The ability to build and maintain accurate hydraulic models in the water industry is a challenge of increasing importance as the applications of these models are used for short-term operational management, as well as strategic infrastructure investment and repair decisions. However, uncertainties are introduced into hydraulic models as water networks evolve over time, both in terms of physical degradation and changing consumer demand within urban environments. The process of calibrating and validating the hydraulic model can bring back confidence to the end user, but it is traditionally only undertaken on an ad hoc basis as it is a labour intensive and expensive exercise with frequently questionable results. This thesis utilises the ever-increasing quantity and quality of hydraulic data to develop robust and efficient model fitting methods for the purpose of hydraulic model calibration. Furthermore, data from long-term telemetry systems is used, together with advanced control, to study automatic and recurrent model validation for the continuous maintenance of dynamically adaptive networks. Methods for model calibration have been extensively discussed in previously published literature. However, there have been key limitations, which were exacerbated by using theoretical water networks with fictitious data. These case studies often disregard the constraints of an operational model from the water industry, hence an underlying principle of this work is to implement advanced calibration procedures on operational networks and investigate the level of accuracy that can be achieved. Investigations into reducing the ill-posedness of the problem and its scalability are also undertaken. Passive and active data sampling approaches are developed for continuously maintaining and improving the accuracy of the hydraulic model. Passive data sampling approaches use machine learning techniques to sample hydraulic data streams over an extended period, utilising natural variations and changes in control to improve the prediction accuracy of the hydraulic model. Active data sampling approaches involve optimally modifying hydraulic conditions via remotely actuated valves within dynamically adaptive networks for the purpose of improving the prediction accuracy of the hydraulic model. Three large case studies that provide hydraulic data with high temporal and spatial resolution are used as unique test areas for implementing the methods presented in the thesis. Using these methods, water companies can now recurrently validate and maintain their models, and as data and control become more ubiquitous, the process of automatic recurrent model validation will be further enhanced.Open Acces

    Fault Diagnosis and Failure Prognostics of Lithium-ion Battery based on Least Squares Support Vector Machine and Memory Particle Filter Framework

    Get PDF
    123456A novel data driven approach is developed for fault diagnosis and remaining useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven models for capacity fault diagnosis and failure prognosis, which require multidimensional physical characteristics, the proposed algorithm uses only two variables: Energy Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LSSVM is used to generate residual signal based on capacity fade trends of the Li-ion batteries. Second, adaptive threshold model is developed based on several factors including input, output model error, disturbance, and drift parameter. The adaptive threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is proposed as the new method for failure prognostic to determine Remaining Useful Life (RUL). The M-PF is based on the assumption of the availability of real-time observation and historical data, where the historical failure data can be used instead of the physical failure model within the particle filter. The feasibility of the framework is validated using Li-ion battery prognostic data obtained from the National Aeronautic and Space Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The experimental results show the following: (1) fewer data dimensions for the input data are required compared to traditional empirical models; (2) the proposed diagnostic approach provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic approach can predict the RUL of Li-ion batteries with small error, and has high prediction accuracy; and, (4) the proposed prognostic approach shows that historical failure data can be used instead of a physical failure model in the particle filter

    Remote Sensing Data Assimilation in Dynamic Crop Models Using Particle Swarm Optimization

    Get PDF
    A growing world population, increasing prosperity in emerging countries, and shifts in energy and food demands necessitate a continuous increase in global agricultural production. Simultaneously, risks of extreme weather events and a slowing productivity growth in recent years has caused concerns about meeting the demands in the future. Crop monitoring and timely yield predictions are an important tool to mitigate risk and ensure food security. A common approach is to combine the temporal simulation of dynamic crop models with a geospatial component by assimilating remote sensing data. To ensure reliable assimilation, handling of uncertainties in both models and the assimilated input data is crucial. Here, we present a new approach for data assimilation using particle swarm optimization (PSO) in combination with statistical distance metrics that allow for flexible handling of model and input uncertainties. We explored the potential of the newly proposed method in a case study by assimilating canopy cover (CC) information, obtained from Sentinel-2 data, into the AquaCrop-OS model to improve winter wheat yield estimation on the pixel- and field-level and compared the performance with two other methods (simple updating and extended Kalman filter). Our results indicate that the performance of the new method is superior to simple updating and similar or better than the extended Kalman filter updating. Furthermore, it was particularly successful in reducing bias in yield estimation

    Bayesian calibration for multiple source regression model

    Get PDF
    In large variety of practical applications, using information from different sources or different kind of data is a reasonable demand. The problem of studying multiple source data can be represented as a multi-task learning problem, and then the information from one source can help to study the information from the other source by extracting a shared common structure. From the other hand, parameter evaluations obtained from various sources can be confused and conflicting. This paper proposes a Bayesian based approach to calibrate data obtained from different sources and to solve nonlinear regression problem in the presence of heteroscedastisity of the multiple-source model. An efficient algorithm is developed for implementation. Using analytical and simulation studies, it is shown that the proposed Bayesian calibration improves the convergence rate of the algorithm and precision of the model. The theoretical results are supported by a synthetic example, and a real-world problem, namely, modeling unsteady pitching moment coefficient of aircraft, for which a recurrent neural network is constructed
    corecore