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Abstract. The deployment and use of Anomaly Detection (AD) sensors often
requires the intervention of a human expert to manually calibrate and optimize
their performance. Depending on the site and the type of traffic it receives, the
operators might have to provide recent and sanitized training data sets, the char-
acteristics of expected traffic (i.e. outlier ratio), and exceptions or even expected
future modifications of system’s behavior. In this paper, westudy the potential
performance issues that stem from fully automating the AD sensors’ day-to-day
maintenance and calibration. Our goal is to remove the dependence on human op-
erator using an unlabeled, and thus potentially dirty, sample of incoming traffic.
To that end, we propose to enhance the training phase of AD sensors with a
self-calibration phase, leading to the automatic determination of the optimal AD
parameters. We show how this novel calibration phase can be employed in con-
junction with previously proposed methods for training data sanitization resulting
in a fully automated AD maintenance cycle. Our approach is completely agnostic
to the underlying AD sensor algorithm. Furthermore, the self-calibration can be
applied in an online fashion to ensure that the resulting AD models reflect changes
in the system’s behavior which would otherwise render the sensor’s internal state
inconsistent. We verify the validity of our approach through a series of exper-
iments where we compare the manually obtained optimal parameters with the
ones computed from the self-calibration phase. Modeling traffic from two differ-
ent sources, the fully automated calibration shows a7.08% reduction in detection
rate and a0.06% increase in false positives, in the worst case, when compared to
the optimal selection of parameters. Finally, our adaptivemodels outperform the
statically generated ones retaining the gains in performance from the sanitization
process over time.
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1 Introduction

In recent years, network anomalies such as flash crowds, denial-of-service attacks, port
scans and the spreading of worms and botnets pose a significant threat for large-scale
networks. The capability to automatically identify and diagnose anomalous behavior
both in the network and on the host is a crucial component of most of the defense and
failure recovery systems currently deployed in enterprises and organizations. Indeed,
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Anomaly Detection (AD) sensors are becoming increasingly popular: host-based [24]
and network-based [16, 17, 21, 25, 30] intrusion detection systems rely heavily on AD
components to maintain their high detection rates and minimize the false positives even
when other, non-AD sensors are involved in the detection process.

A major hurdle in the deployment, operation, and maintenance of AD systems is
the calibration of these sensors to the protected site characteristics and their ability to
“adapt” to changes in the behavior of the protected system. Our aim is to automatically
determine the values of the critical system parameters thatare needed for both training
and long-term operation using only the intrinsic properties of existing behavioral data
from the protected host. To that end, we first address the training stage and calibration
of the AD sensor. We use an unlabeled, and potentially dirty sample of the training
set to construct micro datasets. On one hand, these datasetshave to be large enough
to generate models that capture a local view of normal behavior. On the other hand,
the resulting micro-models have to be small enough to fully contain and minimize the
duration of attacks and other abnormalities which will appear in a minority of the micro
datasets. To satisfy this trade-off, we generate datasets that contain just enough data
so that the arrival rate of new traffic patterns is stable. Themicro-models that result
from each data set are then engaged in a voting scheme in orderto remove the attacks
and abnormalities from the data. The voting process is automatically adapted to the
characteristics of the traffic in order to provide separation between normal and abnormal
data.

The second objective is to maintain the performance level ofthe AD sensors over a
medium or long time horizon, as the behavior of the protectedsite undergoes changes or
evolution. This is not an easy task [21] because of the inherent difficulty in identifying
the rate of change over time for a particular site. However, we can “learn” this rate by
continuously building new micro-models that reflect the current behavior of the system:
every time a new model is added to the voting process, an old model is removed in an
attempt to adapt the normality model to the observed changes. Without this adaptation
process, legitimate changes in the systems are flagged as anomalous by the AD sensor
leading to an inflation of alerts. In contrast, our frameworkwas shown to successfully
adapt to modifications in the behavior of the protected system. Finally, our approach
is agnostic to the underlying AD sensor, making for a generalframework that has the
potential to improve the general applicability of AD in the real world.

1.1 Contributions

Our target is to create a fully automated protection mechanism that provides a high
detection rate, while maintaining a low false positive rate, and also adapts to changes
in the system’s behavior. In [4, 5], we have explored the basic problem and proposed
the sanitization techniques for multiple sites using empirically determined parameters.
We also presented a distributed architecture for coping with long-lasting attacks and
a shadow sensor architecture for consuming false positives(FP) with an automated
process rather than human attention.

Here, we apply those insights to the problem of providing a run-time framework
for achieving the goals stated above. This is a significant advance over our prior work
which, while not requiring a manually cleaned data set for training, relied on empirically



determined parameters and human-in-the-loop calibrationmethods. Along these lines,
our current work provides the following contributions:

– Identifying the intrinsic characteristics of the trainingdata, such as the arrival rate
of new content and the level of outliers (i.e.self-calibration)

– Cleansing a data set of attacks and abnormalities by automatically selecting an
adaptive threshold for the voting method presented previously based on the char-
acteristics of the observed traffic resulting in a sanitizedtraining data set (i.e.auto-
matic self-sanitization)

– Maintaining the performance we gained by applying the sanitization methods be-
yond the initial training phase and extending them throughout the lifetime of the
sensor by continuously updating the self-calibrated and self-sanitized model (i.e.
self-update)

2 Ensemble Classifier using Time-based Partitions

In [4, 5], we focused on methods for sanitizating the training data sets for AD sensors.
This resulted in better AD sensor performance (i.e. higher detection rate while keeping
the false positives low). Here, we attempt to fully automate the construction of those
models by calibrating the sanitization parameters using the intrinsic properties of the
training data. We briefly describe the sanitization technique and the empirical param-
eters that it requires in order to operate optimally. Indeed, to cleanse the training data
for any AD sensor, we harnessed the idea of an “ensemble classifier”, defined by [6]
as “a set of classifiers whose individual decisions are combined in some way (typically
by weighted or unweighted voting) to classify new examples.” One option for gener-
ating such an classifier ensemble is to peruse the available training data by splitting
them into smaller data sets used to train instances of the AD sensor. The inherent as-
sumption is thatattacks and abnormalities are a minority compared to the entire set
of training data. This is certainly true for training sets that span a long period of time.
Therefore, we proposed the use oftime-delimited slicesof the training data. Indeed,
consider a large training data setT partitioned into a number of smaller disjoint subsets
(micro-datasets):

T = {md1, md2, . . . , mdN}, (1)

wheremdi is the micro-dataset starting at time(i − 1) ∗ g and,g is the granularity for
each micro-dataset.

We can now apply a given anomaly detection algorithm. We define the model func-
tion AD to be:

M = AD(T ), (2)

whereAD can be any chosen anomaly detection algorithm,T is the training data set,
andM denotes the model produced byAD for the given training set. This formulation
enables us to maintain the stated principle of being agnostic to the inner workings of
the AD sensor - we treat it as a black box whose first task is to output a normality model
for a data set provided as input.



We use each of the “epochs”mdi to compute amicro-modelMi = AD(mdi) and
generate the classifier ensemble. We posit that each distinct attack will be concentrated
in (or around) a certain time period, affecting only a small fraction of the micro-models:
Mj computed for time periodtj may be poisoned, having modeled the attack vector
as normal data, but modelMk computed for time periodtk, k 6= j is likely to be
unaffected by the same attack. We use this ensemble classifier for identifying attacks
and abnormalities in the data. Our expectation is that the ensemble will be a more
efficient tool that the sum of its parts, with the effects of attacks and other abnormalities
contained in individual micro-models rather than contaminating the entire data set.

A key parameter of the aforementioned sanitization method is the automatic selec-
tion of the optimal time granularity for different trainingdata sets. Intuitively, choring
a smaller value of the time granularityg always confines the effect of an individual
attack to a smaller neighborhood of micro-models. However,excessively small values
can lead to under-trained models that also fail to capture the normalaspects of system
behavior. One method that ensures that the micro-models arewell-trained is based on
the rate at which new content appears in the training data [30]. This has the advantage
of relying exclusively on intrinsic properties of the training data set. By applying this
analysis, we can then identify for eachmdi the time granularity that ensures a well-
trained micro-model and thus attaining a balance between the two desiderata presented
above.

We consider the training data set as a sequence of high-ordern-grams (therefore a
stream of values from a high-dimensional alphabet). When processing this data, for any
time windowtwi, we can estimate the likelihoodLi of the system seeing new n-grams,
and therefore new content, in the immediate future based on the characteristics of the
traffic seen so far:

Li =
ri

Ni

, (3)

whereri is the number ofnew uniquen-grams in the time windowtwi andNi is the
total number ofuniquen-grams seen betweentw0 andtwi.

Assuming that the data processed by the system is not random,the value ofLi

decreases much faster than the time necessary to exhaust thespace of possible n-grams.
We are interested in determining the stabilization point for which the number of new
grams appears at a low rate, thus looking for the the knee of the curve. In order to detect
the stabilization point, we use the linear least squares method over a sliding window of
points (in our experiments we use 10 points) to fit a line,L′

i(t) = a + b ∗ t. When the
regression coefficientb approaches zero (0), we consider that the input has stabilized as
long as the standard deviation of the likelihood is not significant. In our experiments,
we discovered that we can relax the above assumptions to an absolute value lower than
0.01 for the regression coefficientb while the standard deviation of the likelihood is
less than0.1. The time interval betweentw0 and twi is then set as the desired time
granularity for computing the micro-models as described above.

Our experimental corpus, used throughout the experiments in this paper, consists
of 500 hours of real network traffic from each of two hosts,www1and lists. www1 is
a gateway to the homepages of students in the Computer Science Department running
several dozen different scripts, whilelists hosts the Computer Science Mailing Lists.
The two servers exhibit different content, diversity and volume of data. We partitioned
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Fig. 1.Time granularity detection(|tw| = 600s): a) first 10 micro-models (after each model,L is
reset); b) zoom on the first model

the data into three separate sets: two used for training and one used for testing. The
first 300 hours of traffic in each set was used to build micro-models. Figure 1 shows the
granularity detection method used to characterize both data sets. Figure 1 (a) presents
the time granularity for the first ten micro-models.L is reset immediately after a stabi-
lization point is found, and we begin to generate a new model.At a first glance, both
sites display similar behavior, with the level of new content stabilizing within the first
few hours of input traffic. However, they do not exhibit the same trend in the likelihood
distribution,Lwww1 presenting more fluctuations. Figure 1 (b) presents a zoom onthe
first micro-model time granularity detection. The solid lines show the evolution of the
Li likelihood metric over time(we use n-grams of size n=5). Thedotted lines show the
linear least squares approximation for the stabilization value oftwi, which is used to
compute the time granularitygi.

Figure 2 illustrates the automatically generated time granularities over the first300
hours of traffic for bothwww1and lists. The average value forwww1 is g = 8562s

(≈ 2 hours and 22 minutes), while the standard deviation is1300s (≈ 21 minutes). For
lists the average time granularity isg = 8452s (≈ 2 hours and 20 minutes), while the
standard deviation is819.8s (≈. 13 minutes). In the next section, we will present an
extensive comparison between the performance of the sanitized models that use the au-
tomated parameters versus the ones built using the empirically determined parameters.

3 Adaptive Training using Self-Sanitization

Once the micro-models are built, they can be used, together with the chosen AD sensor,
as a classifier ensemble: a given network packet, which is to be classified as either
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Fig. 2. Automatically determined time granularity

normal or anomalous, can be tested, using the AD sensor, against each of the micro-
models. One possibility would be to apply this testing scheme to the same data set that
was used to build the micro-models (we call this processintrospection). Another option
is to apply the micro-model testing to a second set of the initially available traffic, of
smaller size. The ultimate goal is to effectively sanitize the training data set and thus
obtain the clean training data set needed for anomaly detection.

Once again, we treat the AD sensor at a general level, this time considering a generic
TEST function. For a packetPj part of the tested data set, each individual test against
a micro-model results in a label marking the tested packet either asnormalor abnormal:

Lj,i = TEST (Pj, Mi) (4)

where the label,Lj,i, has a value of 0 if the modelMi deems the packetPj normal, or
1 if Mi deems it abnormal. However, these labels are not yet generalized; they remain
specialized to the micro-model used in each test. In order togeneralize the labels, we
process each labeled data set through a voting scheme, whichassigns a final score to
each packet:

SCORE(Pj) =
1

W

N∑

i=1

wi · Lj,i (5)

wherewi is the weight assigned to modelMi andW =
∑N

i=1
wi. We have investi-

gated two possible strategies:simple voting, where all models are weighted identically,
andweighted voting, which assigns to each micro-modelMi a weightwi equal to the
number of packets used to train it. In our previous work we observed that the weighted



version performs slightly better, so throughout this paperwe will use the weighted vot-
ing scheme.

The set of micro-models is now ready to be used as an overall packet classifier.
Recall our assumption that only a minority of the micro-models will be affected by
any given attack or anomaly. Based on the overall score assigned by the set of micro-
models, we split the training data into two disjoint sets:Tsan, containing the packets
deemed as normal, andTabn, containing the abnormalities/attacks:

Tsan =
⋃

{Pj | SCORE(Pj) ≤ V } (6)

Tabn =
⋃

{Pj | SCORE(Pj) > V }, (7)

where V is avoting thresholdused to differentiate between the two sets. Next we will
present our method for automatically computing the value ofV that effectively provides
this separation, based on the characteristics of the traffic. Once the disjoint data sets are
constructed, we can apply the modeling function of the AD sensor and obtain compact
representations of both normal and abnormal traffic:

Msan = AD(Tsan) (8)

Mabn = AD(Tabn) (9)

3.1 Voting Threshold Detection

Our goal is to automatically determine the voting threshold, V . In order to establish an
effective value for it, we must first analyze the impact of thevoting threshold on the
number of packets that are deemed normal. The extreme valueshave an obvious effect:
a threshold ofV = 0 (very restrictive) means that a packet must be approved by all
micro-models in order to be deemed normal. In contrast, a threshold ofV = 1 (very
relaxed) means that a packet is deemed as normal as long as it is accepted by at least one
micro-model. In general, for a given valueVi we defineP (Vi) as the number of packets
deemed as normal by the classifier (SCORE(Pj) < Vi). The behavior of this function
for intermediate values ofVi is highly dependent on the particular characteristics of the
available data. For a particular data set, we can plot the functionP (V ) by sampling the
values ofV at a given resolution; the result is equivalent to thecumulative distribution of
the classification scores over the entire data set. This analysis can provide insights into
three important aspects of our problem: the intrinsic characteristics of the data (number
and relevance of outliers), the ability of the AD sensor to model the differences in the
data, and the relevance of the chosen time granularity.

To illustrate this concept, we will use as an example thewww1 data set and the
Anagram [30] sensor. Figure 3 shows the result of this analysis for time granularity
ranging from 1 to 100 hours. We notice that, as the time granularity increases, the plot
“flattens” towards its upper limit: the classifier loses the ability to discriminate as the
micro-models are fewer in number and also more similar between themselves. We also
notice that forV very close to 1, all the plots converge to similar values; this is an
indicator of the presence of a number of packets that are highly different from the rest
of the data in the set.
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Fig. 3. Impact of the voting threshold over the number of packets deemed as normal for different
time granularities

Intuitively, the optimal voting thresholdV is the one that provides the best separa-
tion between the normal data class and the abnormal class. The packets that were voted
normal forV = 0 are not of interest in the separation problem because they are con-
sidered normal by the full majority of the micro-models and the choice ofV does not
influence them. So the separation problem applies to the restdata for whichV > 0;
thus, we normalizeP (V ) as follows:

p(Vi) =
P (Vi) − P (0)

P (1) − P (0)
(10)

The separation problem can be now considered as the task of finding the smallest
threshold (minimizeV ) that captures as much as possible of the data (maximizep(V )).
Therefore, if the functionp(V )−V exhibits a strong global maximum, these two classes
can be separated effectively at the value that provides thismaximum.

We have applied this method to both data sets considered in this paper, using Ana-
gram. The profiles of bothp(V ) (solid lines) andp(V ) − V (dotted lines) are shown
in Figure 4. In each case, we have marked the value ofV that maximizesp(V ) − V .
In both graphs, the maximum ofp(V ) − V corresponds to a “breaking point” in the
profile ofp(V ) (in general, any changes in the behavior ofp(V ) are identified by local
maxima or minima ofp(V )− V ). The value of the global maximum can be interpreted
as a confidence level in the ability of the micro-model classifier to identify outliers, with
larger values indicating a high discriminative power between the normal data and the
abnormalities/attacks. A low value (and therefore a profileof p(V ) following thex = y

line) shows that the two classes are not distinct. This can beindicative of a poorly cho-



sen time granularity, an AD sensor that is not sensitive to variations in the data set, or
both. We consider this to be a valuable feature for a system that aims towards fully
autonomous self-calibration: failure cases should be identified and reported to the user
rather than silently accepted.
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Fig. 4. Determining the best voting threshold for: (a)www1; (b) lists.

Once the value of the voting thresholdV has been determined, the calibration pro-
cess is complete. We note that all the calibration parameters have been set autonomously
based exclusively on observable characteristics of the training data. The process can
therefore be seen as a method for characterizing the combination of AD sensor - train-
ing data set, and evaluating its discriminative ability.

3.2 Analysis of Self-Sanitization Parameters

To evaluate the quality of the models built using the automatically determined saniti-
zation parameters, we compare their performance against the performance of the san-
itized models built using empirically determined parameters. There is a fundamental
difference between the two types of models: for the first one the sanitization process
is completely hands-free, not requiring any human intervention, while for the latter,
exhaustive human intervention is required to evaluate the quality of the models for dif-
ferent parameter values and then to decide on the appropriate parameter values.

There are two parameters of interest in the sanitization process: the set of values
for the time granularity and the voting threshold. We will therefore compare the models
built using empirically determined parameters against themodels built using:

– a fixed time granularity and automatically determined voting threshold;
– automatically determined time granularities and fixed voting threshold;



– both time granularity and voting threshold determined automatically.

Figures 5 and 6 present the false positive and detection rates for models built using
different sanitization parameters. The traffic contains instances of phpBB forum attacks
(mirela, cbac, nikon, criman) for both hosts that are analyzed.1 Each line shows the re-
sults obtained as the voting threshold was sampled between 0and 1, with the granularity
value either fixed at a given value (usually 1, 3 or 6 hours) or computed automatically
using the method described earlier.
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Fig. 5. Model performance comparison forwww1: automated vs.empirical

We note that the time granularity values empirically found to exhibit high perfor-
mance were 1-, 3- and 6-hour forwww1, respectively 3-hour forlists. For each of these
values, we analyzed the performance of the models built withan automatically deter-
mined voting threshold. For each line representing a given granularity value, the trian-
gular markers represent the results obtained with the automatically determined voting
threshold. We observe that the voting threshold is placed inthe safety zone for which
the 100% detection rate is maintained for bothwww1andlists, while exhibiting a low
false positive rate (< 0.17%).

In the case of automated time granularity (the actual valuesare presented in fig-
ure 2), we initially explored the performance of the models determined for different
values of the voting threshold, ranging from 0 to 1, with a step of 0.1. In figure 5, for
the same fixed threshold, the detection rate is 94.94% or 92.92% compared to the 3-
hour granularity (empirical optimal - 100%), while maintaining a low false positive rate

1 Throughout the paper, we refer to detection and false alert rates as rates determined for a
specific class of attacks that we observed in these data sets.We note that discovering ground
truth for any realistic data set is currently infeasible.
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(< 0.17%). In figure 6, the results are almost identical to the empirically determined
optimal (3-hour granularity).

Table 1.Empirically vs. automatically determined parameters

Parameters www1 lists
FP(%) TP(%) FP(%) TP(%)

N/A(no sanitization) 0.07 0 0.04 0
empirical 0.10 100 0.10 100
fully automated 0.16 92.92 0.10 100

When we use both the set of time granularities and the voting threshold determined
automatically, the system is fully autonomous. In figures 5 and 6, this is indicated by
replacing the triangular marker with a star-shaped one. Table 1 also summarizes the val-
ues of false positive (FP) and true positive (TP) for the fully automated sanitized model,
the empirical optimal sanitized model and the non-sanitized model. With automated pa-
rameters, forlists we achieve the same values as in the case of empirically determined
parameters, while forwww1the values differ, but we observe that in the absence of the
sanitization process the detection rate would be0. The most important aspect is that the
fully-automated sanitization still significantly improves the quality of the AD models
while setting its parameters based only on the intrinsic characteristics of the data and
without any user intervention.



4 Self-Updating Anomaly Detection Models

We presented a method that generates automatically self-sanitized AD models. How-
ever, the way users interact with systems can evolve over time [9], as can the systems
themselves. As a result, the AD models that once representedthe normal behavior of
a system can become obsolete over time. Therefor, the modelsneed to adapt to this
phenomenon, usually referred to asconcept drift. As shown in [18], online learning can
accommodate changes in the behavior of computer users. Here, we also propose to use
an online learning approach to cope with the concept drift, in the absence of ground
truth.

Our approach is to continuously create micro-models and sanitized models that in-
corporate the changes in the data. An aging mechanism can be applied in order to limit
the size of the ensemble of classifiers and also to ensure thatthe most current data is
modeled. When a new micro-model,µMN+1 is created, the oldest one,µM1, is no
longer used in the voting process (see figure 7). The age of a model is given by the time
of its creation.

µMN+ 1µM1 µM2 µMNµM3 µM4 µMN-1
… … … .

µMN+ 1

Fig. 7. Incremental learning aging the oldest micro-model

Every time a new micro-model is generated, a new sanitized model is created as
well. In the previous section, we used the micro-models in a voting scheme on a second
data set, which was processed into a sanitized and an abnormal model. For the online
sanitization we will use what we callintrospection: the micro-models are engaged in
a voting scheme against their own micro-datasets2. This alternative gives us the ability
to apply the self-sanitization processes in an online fashion, without having to also
maintain a second dataset strictly for model creation. Whena new sanitized model is
built, it is immediately used for testing the incoming traffic until a new sanitized model
is built.

Concept drift appears at different time scales and our micro-models span a particular
period of time. Thus, we are limited in observing drift that appears at scales that are
larger than the time window covered by the micro-datasets. Any changes that appear
inside this time window are susceptible to being rejected bythe voting process rather
than being accepted as legitimate evolution of the system. In our online sanitization
experiments we use 25 classifiers in the voting process (covering ≈ 75 hours of real
time traffic) such that we can adapt to drifts that span more than 75 hours of traffic.

We cannot distinguish between a legitimate change and a long-lasting attack that
slowly pollutes the majority of the micro-models. A well-crafted attack can potentially

2 We recall that we define a micro-dataset as the training dataset used for building a micro-
model.



introduce malicious changes at the same or even smaller rateof legitimate behavioral
drift. As such, it can not be distinguished using strictly introspective methods that ex-
amine the characteristics of traffic. However, the attackerhas to be aware, guess, or
brute-force the drift parameters to be successful with suchan attack. In previous work
[4], we presented a different type of information that can beused to break this dilemma:
alert data from a network of collaborative sites. Another potential solution that we in-
tend to explore as future work, is to employ as feedback information the error responses
returned by the system under protection (e.g. the HTTP reply as an error page). We plan
to explore the conjecture that we can indeed ferret out attacks of certain classes by ob-
serving the error responses returned from different sub-systems or software modules.

4.1 Self-Update Model Evaluation

To illustrate the self-update modeling, we first apply the online sanitization process for
the first 500 hours of traffic using Anagram as the base sensor.Figures 2 and 8 present
the fully automated sanitization parameters: the time granularity for each micro-model
used in the creation of the new sanitized models, respectively the voting threshold for
each newly created sanitized model.
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Fig. 8. Automatically determined voting threshold forwww1andlists

If we didn’t employ a model update mechanism, a sanitized model would be built
only once. Thus, we call the first sanitized model astatic sanitized model. Because
in the online sanitization process, the models change continuously we consider them
dynamic sanitized models. To analyze how the online sanitization performs, in figure 9
we compare the static sanitized model alert rate against thedynamic sanitized models
alert rate forwww1.

Figure 9 (a) presents the total number of alerts for each micro-dataset tested with
both the static and dynamic models. We first notice that, for afew micro-dates the alert
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Fig. 9. Alert rate forwww1: (a) both binary and ascii packets; (b) ascii packets.

rate reaches levels up to 30% for both model types. After analyzing the alert data, we
determined that the high alert rate was generated not by abrupt changes in the system’s
behavior, but rather by packets containing binary media files with high entropy. This
type of data would be considered anomalous by AD sensors suchas Anagram. Thus
the recommendation is to divert all the media traffic to specialized detectors which can
detect malicious content inside binary media files. Figure 9(b) presents the alert rate
after ignoring the binary packets. We can observe that thereis no significant difference
between the alert rate exhibited by the static and dynamic sanitized models. Thus we
can conclude that there are no fundamental changes over the 500 hour period.

In terms of performance, table 2 presents both the false positive rate (including the
binary packets) and the detection rate forwww1andlists. Abrupt changes in the voting
threshold (as shown in figure 8) determine the creation of more restrictive models, thus
the increase in the detection rate and/or the false positiverate. Forwww1the signal-to-
noise ratio (i.e. TP/FP) is improved from 155.21 to 158.66, while forlists it decreases
from 769.23 to 384.61.

Table 2.Static model vs. dynamic models alert rate

Model www1 lists
FP(%) TP(%) FP(%) TP(%)

static model 0.61 94.68 0.13 100
dynamic models 0.62 98.37 0.26 100

We also investigated concept drift appearing at larger scale such as weeks and
months, as opposed to days. For this, we tested our method fortraffic from the same
site, collected at months difference. Figure 10 presents the alert rate for both static and
dynamic models, with and without the binary packets. Vertical lines mark the boundary
between new and old traffic. We can observe that when changes happen in the system,
the alert rate increases for both static and dynamic models.After the dynamic models



start updating to the new data, there is a drop in the alert rate, back to levels below 1%.
For the static model, the alert rate stays at about 7%, demonstrating the usefulness of a
self-updating sanitization process.

Figure 11 presents the raw number of alerts that our system returns on an hourly
basis. We note that spikes in the number of alerts can render manual processing diffi-
cult, especially when there are changes in the system under protection and the models
gradually adapt to the new behavior. However, manual processing of alerts is not the
intended usage model for our framework; our ultimate goal isto build a completely
hands-free system that can further identify the true attacks from the false positives. In
previous work [4] we have proposed using a shadow sensor architecture such as the
ones presented in [1,22] to automatically consume and validate the false positives. Our
study of computational performance presented in [4] shows that, with this architecture,
the false positives can be consumed automatically and neither damage the system under
protection nor flood an operational center with alarms.

(a) (b)

Fig. 10. Concept drift detection forwww1- alert rate for (a) both binary and ascii packets; (b)
ascii packets. Vertical lines mark the boundary between newand old traffic

4.2 Computational Performance Evaluation

To investigate the feasibility of our online technique we have to analyze the computa-
tional overhead that it implies. Ignoring the initial effort of building the first batch of
micro-models and the sanitized model, we are interested in the overhead introduced by
the model update process. Table 3 presents a breakdown of thecomputational stages of
this process.

The overhead has a linear dependency on the number and the size of the micro-
models. Forwww1, we used 25 micro-models per sanitization process and the size of
a micro-model was on average 483 KB (trained on 10.98 MB of HTTP requests). The
experiments were conducted on a PC with a 3GHz Intel(R) Xeon(R) CPU with 4 cores
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Fig. 11. Number of ASCII alerts per hour forwww1. The vertical line marks the boundary be-
tween new and old traffic

Table 3.Computational performance for the online automated sanitization forwww1

Task Time to process

build and save a new micro-model 7.34 s
test its micro-dataset against the older micro-models 1 m 12s
test the old micro-datasets against the new micro-model 1 m 58 s
rebuild and save the sanitized model 3 m 03 s

and 16G of RAM, running Linux. This level of performance is sufficient for monitoring
and updating models on the two hosts that we tested in this paper, as it exceeds the
arrival rate of HTTP requests. In the case of hosts displaying higher traffic bandwidth,
we can also exploit the intrinsic parallel nature of the computations in order to speed
up the online update process: multiple datasets can be tested against multiple models in
parallel, as the test for each dataset-model pair is an independent operation. In future
work, we will implement a parallel version of this algorithmto test these assumptions.

5 Related work

We have previously explored the feasibility of sanitizing training datasets using empir-
ically determined parameters [4,5]. This paper presents methods that make the process
automatic, by generating the sanitization parameters based only on the intrinsic charac-
teristics of the data and by also coping with concept drift. The sanitization process can



be viewed as an ensemble method [6] with the restriction thatour work is an unsuper-
vised learning technique. We generate AD models from slicesof the training data, thus
manipulating the training examples presented to the learning method. Bagging predic-
tors [2] also use a learning algorithm with a training set that consists of a sample of
m training examples drawn randomly for the initial data set. ADABoost [11] gener-
ates multiple hypothesis and maintains a set of weights overthe training example. Each
iteration invokes the learning algorithm to minimize the weighted error and returns a
hypothesis, which is used in a final weighted vote.

MetaCost [7] is an algorithm that implements cost-sensitive classification. Instead
of modifying an error minimization classification procedure, it views the classifier as a
black box, the same as we do, and wraps the procedure around itin order to reduce the
loss. MetaCost estimates the class probabilities and relabels the training examples such
that the expected cost of predicting new labels is minimized. Finally it builds a new
model based on the relabeled data. JAM [27] focuses on developing and evaluating a
range of learning strategies for fraud detection. That workpresents methods for “meta-
learning” by computing sets of “base classifiers” over various partitions or sampling of
the training data. The combining algorithms proposed are called “class-combiner” or
“stacking” and they are built based on work presented in [3] and [31]. For more de-
tails on meta-learning techniques we can also refer the reader to a more comprehensive
survey [23].

The perceived utility of anomaly detection is based on the assumption that mali-
cious inputs rarely occur during the normal operation of thesystem. Because a system
can evolve over time, it is also likely that newnon-maliciousinputs will be seen [10].
Perhaps more troubling, Fogla and Lee [8] have shown how to evade anomaly classifiers
by constructing polymorphic exploits that blend with normal traffic (a sophisticated
form of mimicry attack [28]), and Songet al. [26] have improved on this technique and
shown that content–based approaches may not work against all polymorphic threats,
since many approaches often fix on specific byte patterns [19].

The problem of determining anomaly detection parameters have been studied be-
fore. Anagram [30] determines the model stability automatically based on the rate at
which new content appears in the training data. pH [24] proposes heuristics for deter-
mining an effective training time, minimizing the human intervention as well. Payl [29]
has a calibration phase for which a sample of test data is measured against the centroids
and an initial threshold setting is chosen. The thresholds are updated throughout a sub-
sequent round of testing. In [17], the authors propose a web-based anomaly detection
mechanism, which uses a number of different models to characterize the parameters
used in the invocation of the server-side programs. For these models, dynamic thresh-
olds are generated in the training phase, by evaluating the maximum score values given
on a validation dataset. PCA-based techniques for detecting anomalous traffic in IP net-
works became popular in the past years. [21] talks about the difficulty of tuning the
parameters for these techniques and discusses pollution ofthe normal subspace.

The concept of updating an AD sensor in order to mirror valid changes in the pro-
tected system’s behavior is discussed in [18]. Most publications which propose updat-
ing the model after significant changes to the environment, data stream, or application
use supervised learning techniques, such as [12]. Methods of this type maintain an adap-



tive time window on the training data [14], select representative training examples [13],
or weigh the training examples [15]. The key idea is to automatically adjust the win-
dow size, the example selection, and the example weighting,respectively, so that the
estimated generalization error is minimized. Consequently, these methods assume the
existence of labeled data which is not the case for the applications that we interested
in analyzing. It seems that anomaly detectors would benefit from an additional source
of information that can confirm or reject the initial classification, and Pietraszek [20]
suggests using human–supervised machine learning for suchtuning.

6 Conclusions and Future Work

Anomaly detection sensors have become an integral part of the network and host-
based defenses both for large-scale network and individualusers. Currently, AD sen-
sors require human operators to perform initial calibration of the training parameters to
achieve optimal detection performance and minimize the false positives. In addition, as
the protected system evolves over time, the sensor’s internal state becomes more and
more inconsistent with the protected site. This discrepancies between the initial normal-
ity model and the current system behavior eventually renders the AD sensor unusable.

To amend this, we propose a fully automated framework that allows the AD sensor
to adapt to the characteristics of the protected host duringthe training phase. Further-
more, we provide an online method to maintain the state of thesensor, bounding the
deviations due to content or behavioral modifications that are consistent over a period
of time. Without this adaptation process and the generationof new normality models
which we call “dynamic”, legitimate changes in the systems are flagged as anomalous
by the AD sensor leading to an inflation of alerts. Our experimental results show that,
compared to the manually obtained optimal parameters, the fully automated calibration
has either identical, or slightly reduced (by7.08%) detection rate and a0.06% increase
in false positives. Furthermore, over a very large time window, our dynamic model gen-
eration maintains a low alert rate (1%) as opposed to a7% for a system without updates.

We believe that our system can help alleviate some of the challenges faced as
anomaly detection is increasingly relied upon as a first-class defense mechanism. AD
sensors can help counter the threat of zero-day and polymorphic attacks; however, the
reliance on user input is a potential roadblock to their application outside of the lab and
into commercial off-the-shelf software. In this paper we have taken a number of steps
towards AD sensors that enable true hands-free deployment and operation.

In the future, we intend to establish this feature of our framework by using more
sensors, that either model data in a different way (e.g.Payl [29], libanomaly [17], Spec-
trogram [25]) or target different applications (e.g.pH [24]). Despite the best efforts of
the research community, no AD sensor has been proposed to date that can detect all
attack types while maintaining a low alert rate. A possible option, which we intend to
further explore in the future, is to combine the strengths ofmultiple sensors under a
general and unified framework, following the directions traced out in this study.

Finally, the methods presented harness the information contained in the traffic (or
behavior in general) of the protected host. Large-scale implementations of AD systems
can further benefit by exchanging data, such as micro-modelsor sanitized and abnormal



models, across different sites. Therefore, the temporal dimension of our online sanitiza-
tion process can be complemented by a spatial one. We are currently in the process of
establishing an information exchange framework that can facilitate these experiments;
we plan to report these result in a future study.
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