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Abstract 
 

123456A novel data driven approach is developed for fault diagnosis and remaining 

useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector 

Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven 

models for capacity fault diagnosis and failure prognosis, which require multidimensional 

physical characteristics, the proposed algorithm uses only two variables: Energy 

Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve 

the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LS-

SVM is used to generate residual signal based on capacity fade trends of the Li-ion 

batteries. Second, adaptive threshold model is developed based on several factors 

including input, output model error, disturbance, and drift parameter. The adaptive 

threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is 

proposed as the new method for failure prognostic to determine Remaining Useful Life 

(RUL). The M-PF is based on the assumption of the availability of real-time observation 

and historical data, where the historical failure data can be used instead of the physical 

failure model within the particle filter. The feasibility of the framework is validated using 

Li-ion battery prognostic data obtained from the National Aeronautic and Space 

Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The 

experimental results show the following: (1) fewer data dimensions for the input data are 

required compared to traditional empirical models; (2) the proposed diagnostic approach 

provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic 

approach can predict the RUL of Li-ion batteries with small error, and has high 

prediction accuracy; and,  (4) the proposed prognostic approach  shows that historical 

failure data can be used instead of a physical failure model in the particle filter. 
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Chapter 1 

Introduction 

 

1.1 Motivation and Problem Definition  

123456Complex engineering systems, such as aircrafts, industrial processes, power plants 

and lithium-ion batteries are developed to perform specific functions in term of 

reliability, productivity, safety and availability. However, no matter how well a complex 

system is designed, the system will deteriorate. Thus, maintenance is introduced as an 

effective routine to sustain the reliability of the system. Maintenance has traditionally 

employed one of two maintenance philosophies: preventative or corrective maintenance. 

The common characteristic of preventative and corrective maintenance is that neither 

strategy takes the actual condition of the system into consideration before decided-upon 

maintenance activates. Therefore, preventive and corrective maintenance become a major 

expense in different industries; what’s more, they lack the accuracy of failure rate at fixed 

intervals to avoid the catastrophic failures, are labor intensive, and minimize the system’s 

availability. In fact, one third of the cost of maintenance is incurred unnecessarily due to 

bad planning, improper or misused preventive maintenance, and unavailable equipment 

that lead to decreased availability and increased maintenance cost in terms of labor and 

spare parts [183].   

123456The designing of maintenance procedures for improving maintenance policy for 

achieving equipment reliability receives great attention from practitioners. In recent 

years, practitioners and engineers have preferred Condition Based Maintenance (CBM) 

over preventative and corrective maintenance to avoid high cost, increase availability and 

productivity, and improve performance. Condition-based maintenance (CBM) can be 

explained as a maintenance plan based on discrete measurement of the system or 

equipment during its operation. However, CBM is not effective for complex and dynamic 
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systems, which are subject to multiple failure modes. [184].   

123456Early fault diagnosis and failure prognosis increase system awareness during 

health monitoring of complex systems. The technology of diagnostics and prognostics 

aims to detect and isolate impending faults and predict their future progression based on 

current diagnostics and available measurement data. Reliable real-time fault diagnosis 

and ability to estimate Remaining Useful Life (RUL) can ensure the complex system will 

be safer and more reliable, improve its availability, and reduce downtime. This is useful 

when the system is expected to run for long-term.   

1.2 Objective   

123456The main objectives of this thesis are to develop a novel data driven framework 

based on online real-time Condition Based Maintenance and Prognostic Health 

Management (CBM/PHM) for a complex non-linear system within the domains of 

Lithium-ion battery (Li-ion). The framework must account for the following challenges:  

1- Design a fault diagnosis and a failure prognosis for a Lithium-ion battery with small 

multidimensional physical characteristics, and low computational complexity. 

2- Design a fault diagnosis to minimize the false alarm rates, and maximize fault 

detectability conditions. 

3- Design a fault diagnosis which operates in an online fashion that has the ability to 

accumulate knowledge of nonlinear multiple mode processes, with less computational 

effort, and high generalization. 

4- Design a method that allows the particle filter to estimate remaining useful life (RUL) 

in the absence of a physical failure model. 

   These pressing challenges have been formulated based on the problem discussion, 

where the focus is on the Li-ion batteries process of real time CBM/PHM. Most recent 

studies in this field focus either on fault diagnosis or failure prognosis application but not 

on both simultaneously. In this research, both technologies are to be implemented based 

on the need for real time application. 
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1.3 Assumptions 

23456 Problems of fault diagnosis and failure prognosis are diverse. In this research, the 

model is built based on addressing problems subject to following assumptions. 

For fault diagnosis 

1- It is assumed that observation data is collected from the system monitor, and 

monitoring measurement is representative of the state of the system, i.e., 

condition indictor is extracted from the sensor data, e.g, calibration, spectrometric 

data, power, currents, and voltages, or directly observed from the sensor. 

2- It is assumed that sufficient observation data is available for optimizing the 

parameters of Least Square Support Vector Machine (LS-SVM). Also it is 

assumed that the optimization parameters have been established for all major 

systems’ states of operation.  

3- For the application purpose of lithium-ion battery, it is assumed that no partial 

charge and discharge events are happening during these scenarios; therefore a 

charge cycle initiates only after the battery is fully discharged [1].  

For failure prognosis  

1- It is assumed that a bank of nonlinear historical failure data related to the relevant 

system is available.  This historical data explains the past behavior and can be 

used to predict the future. 

2- It is assumed that this framework is applicable to incipient and abrupt failures. 

3- It is assumed that the framework is applicable to different system as stand-alone 

or hybrid with different Fault Detection and Identification (FDI).  

4- It is assumed that under normal operation condition (no-fault), the Memory 

Particle Filter (M-PF) framework is only waiting on an alert from the fault 

detection system. Once the fault is detected, then the M-PF becomes active.  

5- It is assumed that the predefined threshold is available for the end of serviceable 

system life or End of Life (EoF), which is 30 % fade in rated capacity. 
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 1.4 Analysis of Lithium-ion Battery Capacity degradation 

23456Lithium-ion (Li-ion) battery was chosen as an example for a complex system 

because the internal state variables cannot be accessed by sensors or are hard to measure 

under operational conditions. [1, 2, 3, 4, 6, 7, 9]. Li-ion batteries exhibit high energy 

densities, long life time, and environmental friendliness. For these reasons, Lithium-ion 

batteries contribute to the advancement of technology and are widely used in many 

applications: from portable electronics and hybrid electric vehicles, to space and aircraft 

power systems. Failure of a lithium ion battery could lead to irreversible conditions, 

reduced performance, operational impairment, and under extreme conditions cause 

catastrophic failure. In order to maximum output from a Li-ion battery, and  avoid 

catastrophic conditions, it is essential that any fault occurring in the battery be quickly 

detected and accurately diagnosed, and predicting the state of the battery under all 

operation conditions is necessary in order to  prevent fatal failures [5,6,7].  Recently, 

capacity fade diagnosis and Remaining Useful Life (RUL) estimation of lithium-ion 

batteries has seen a growing interest among industry and the academic community as a 

hotspot and challenging problem in the fields of reliability. 

1.4.2 Data Source and Capacity degradation 

23456The proposed fault diagnosis and failure prognosis models are validated using Li-

ion battery degradation data.  The required Li-ion battery data set was obtained from the 

data repository of the National Aeronautic and Space Administration (NASA) Ames 

Prognostic Center of Excellence (PCoE) [1]. NASA‘s dataset includes 38 batteries 

sampled from a battery prognostics test (http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-

data-repository). The test bed allows charging and discharging of batteries until failure. 

Various types of faults which occur in Li-ion batteries can be observed using this test 

bed. 

23456The experiments used to build the dataset and to estimate the state of a battery used 

the following components: second generation Li-ion 1850 sized rechargeable batteries, 
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power supply voltmeter programmable DC electronic loads, and thermocouple sensors. 

The batteries were tested using different operational charge and discharge sequences and 

different impedances at different temperatures [1, 3]. Several battery performance 

parameters were measured (Table 1).  

23456The objective of these experiments was to be able to measure the capacity of the 

battery. Since battery capacity cannot be measured directly, indirect estimates of capacity 

based on the measured performance parameters was used by [1].  The 1850 Li-ion 

batteries were run through 3 different sequence operational charges, discharges and 

impedances at different temperatures 4, 24° 𝐶.  

Table 1: Measured Li-ion Battery Parameters 

Symbols                                               Description                                     Symbols                                            Description                                                                                                                                 

ICi                                            Charge current in the ith cycle                     WCi                                                Charge power in the ith 

cycle 
IDi                                            Discharge current in the ith cycle                 WDi                                                Discharge power in the 

ith cycle 

VCi                                           Charge voltage in the ith cycle                      ηi                                                    Energy efficiency in the 
ith cycle 

VDi                                            Discharge voltage in the ith cycle                Ci                                                   The capacity in the ith 

cycle 

ECi                                            Charge time in the ith cycle                           i                                                    Cycle 

EDi                                            Discharge time in the ith cycle                     wti                                                  Temperature in the ith 

cycle 
T                                                Ambient temperature                                    bti                                                   Working temperature in 

the ith 

W                                                Power of the battery 

 

23456 In the NASA database two experiments were carried out for individual lithium-ion 

cylindrical battery, in which the initial capacity ranges from 100% to 30 % of the rate 

value where below 30% or 1.4 Ampere hour (Ahr)  the battery is considered to End of 

Life (EoL). Group I Batteries (Nos. 6 and 7 Fig.1.a) were tested with a constant current 

(CC) level of 2 A at ambient temperature of 24°𝐶. Group II (Nos. 47 and 48, shown in 

Fig.1.b) were tested with a Constant Current (CC) level of 2 A at ambient temperature of 

4°C. Fig. 1.b shows fade capacity doesn’t always decrease monotonically (incipient 

fault), but interestingly the capacity experiences an abrupt fault during the cycle 

operation. Figure 1.a shows the capacity of batteries increasing quickly during the 90th 
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cycle due to the self-discharge [9]. Further, Group I shows that the capacity of Li-ion 

batteries degrades slowly and there is regional regeneration phenomenon (See Fig.1.a). 

The capacity of the lithium-ion battery is significantly impacted by many factors such as 

current, voltage, and temperature due to the nature of the lithium-ion mechanism.  

1.5. Data Analysis and Dimensionality Reduction 

23456Traditionally, a performance fault diagnosis and failure prognosis of Li-ion battery 

has been characterized using the loss of capacity. There are several possible variables and 

several degradation mechanisms which affect capacity. This makes variable selection an 

important issue in fault detection and diagnostics and failure prognosis of Li-ion battery. 

1.5.1 Overview of Data Analysis Techniques 

23456The capacity will gradually decrease with aging due to temperature, time and cycle 

number as physical and chemical reactions occur during battery operation. Capacity 

fading refers to “the irreversible loss in the usable capacity of the battery.” However, 

failure point is identified as capacity of the battery reaching 80% of the initial capacity; 

after that, the battery will show an exponential decay of capacity, and it will soon fail [8]. 

There are two primary research directions for characterization of loss of capacity: State of 

Charge (SOC) and State of Health (SOH), both of which are hampered by improper 

variable selection and by poor performance in practical environments. 

123456SOC requires extensive testing and data collection to build the relationship map 

between available voltage and available charge to estimate loss of battery capacity.  SOH 

is primarily driven by usage data and uses pattern recognition to track battery aging rates. 

Though SOC and SOH methods based on Li- ion batteries have been studied for a long 

time, they are inaccurate in practical operating conditions.  Moreover, most SOC and 

SOH estimation methods consider only the voltage, current, capacity, and neglect 

ambient temperature and battery temperature, which are important variables that link 

these physical qualities [1, 2, 3, 4,11,7, and 9]. 
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Figure 1:Fade Capacity Degradation of Lithium-Ion Cylindrical Battery at 
Different Temperature of (a) 24°𝐂  and (b) 4°𝐂. 

 

1.5.2 Dimensionality Reduction Selection of Variables 

123456For the proposed model, variables are selected based on an understanding of their 

physical significance for estimation of battery capacity.  Battery data comprises several 

measurable variables, e.g. charge current, charge voltage, discharge current, and battery 

temperature; each of which is a data dimension. This multidimensional space can be 
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greatly simplified by considering the relationship between these quantities.  

123456One of the most important of these is the concept of electrical work, which is a 

function of current and voltage. The concept of electrical work is used in the definition of 

energy efficiency [10]. 

Energy Efficiency 𝐸𝐸 is defined as the percentage of energy used to meet the energy 

service required: 

 

 𝐸𝐸 =
𝑊𝐷

𝑊𝐶
  × 100 % (1) 

where  

𝑊𝐷 is the energy efficiency during discharge that includes discharge current, discharge 

voltage, and discharge time, and  

𝑊𝐶 is the energy efficiency during charging which includes charge current, charge 

voltage, and charge time.   

Working Temperature 𝑊𝑇 is defined as the difference between the battery temperature 

during operation and the battery ambient temperature: 

 

 𝑊𝑇 = ∑ ( 𝑤𝑡𝑖   − 𝑇𝑖=0  ) (2) 

Where 

𝑤𝑡𝑖 is the battery’s temperature that includes charging temperature and discharging 

temperature at 𝑖𝑡ℎ the same cycle, and  

𝑇 is the ambient temperature of the battery. 

EE and WT, as seen in the above definitions, not only preserve all the physical quantities 

(current, time, temperature and voltage) of the battery, but also reduce dimensions of data 

to two variables and consequently reduce computational complexity [10]. 
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Figure 2:Analysis Loss Capacity of Lithium ion Battery at 24°c: (a) The 
Relationship Between Loss Capacity and  Working Temperature at Different 

Rates; and (b) The Relationship Between Loss Capacity and  Energy Efficiency 
at Different Rates 

 

123456The results for the model selection of variable development are presented in the 

form of two plots. The Figure 2.a.b shows the relationship between EE, WT, and capacity 

loss of a battery at 24°𝐶. Figure 2.a shows the relationship between Working 

Temperature (WT) parameter and loss capacity. Under the same temperature, the loss 

capacity of battery will increase with the decrease of WT, so the working temperature of 

the battery must be considered in the judgment of loss capacity. Fig.2.b shows the 

relationship between Energy efficiency (EF) parameter and loss capacity of the battery at 

different rates. Fig.2.b shows the degree of linear correlation between the EF and capacity 

loss.  Capacity of the battery decreases with the decrease in EF, and it is easy to notice 

that the EF shows outliers with time cycle resulting from self-discharge. In this research, 

we exploit these relationships to estimate the current and future fade capacities of the Li-

ion battery 
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123456Fault diagnosis and failure prognosis based on LS-SVM uses EE and WT as input 

variables, and estimates capacity as output, where LS-SVM result will be used to train the 

Memory Particle Filter (M-PF) to estimate the remaining Useful Life (RUL). 

1.6 Thesis Organization  

This thesis is divided into four major chapters (see Figure 3): 

123456Chapter 1 contains the motivation and problem definition, followed by the 

objective of research. The first chapter continues with highlighting the assumptions for 

fault diagnosis and failure prognosis. In particular, the chapter focuses on an analysis of 

Lithium-ion Battery capacity degradation, data analysis, and dimensionality reduction. 

Finally, the chapter concludes with the development of selection variables of energy 

efficiency and working temperature for NASA‘s dataset.  

123456Chapter 2 outlines the scope of this thesis, and provides an introduction to the 

basic components of a real-time Prognostic Health Management (PHM) system. The 

diagnostic and prognostic modules used in the condition monitoring are discussed in 

great detail, and a brief literature review of the state-of-the-art is also provided, 

addressing key issue regarding data processing and sensors strategies that are specifically 

designed to CBM/PHM system. A brief review of Support Vector Machine (SVM) and 

Least Square Support Sector Machine (LS-SVM) is covered.  The chapter concludes with 

all the theoretical needs for presenting the diagnosis and prognostics scheme.   

123456Chapter 3 is an extensive treatment of LS-SVM based on adaptive threshold for 

fault diagnosis technology; the chapter begins with the general description of residual 

evaluation problem, and some of the drawbacks of fixed threshold are highlighted. Then 

we introduce Support Vector Machine (SVM) and briefly review off-line Least Square 

Support Vector Machine (LS-SVM) and Sequential LS-SVM based anomaly detector.  

Theoretical aspects of the adaptive threshold to tackle the problem of the fixed threshold 

are discussed. Finally, the framework is used to analyze the Li-ion battery degradation. 
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The result is analyzed and compared with fixed threshold by using different experiments 

on batteries.   

123456Once an incipient failure is detected, prognostic health management become 

active. Memory-Particle Filter based on LS-SVM for real-time failure prognosis of 

nonlinear systems is presented in Chapter 4. Finally, the chapter concludes with a case 

study for estimating the Remaining Useful Life (RUF) of the Li-ion battery. 

123456A brief review of performance metrics of prognosis scheme is highlighted in 

Chapter.5. The proposed algorithm is evaluated by comparing its performance with two 

popular techniques on the same data set, e.g. Recurrent Neural Networks (RNN), and 

Backpropagation Neural Networks.  

123456The thesis concludes with summary of contribution, and suggested future work in 

Chapter.6. 
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Figure 3: The Structure of the Thesis  
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Chapter 2  

Literature Review 

 

2.1 Prognostic Health Management Architecture & Just In-Time Maintenance  

123456Just in Time (JIT) philosophy refers to a design and implementation inventory 

control policy with focus on elimination of waste. JIT emphasizes the importance of 

assets and availability of labor based on the quantity needed for specific times and 

specific amounts. Prognostic Health Management (PHM) refers to a capability to predict 

the Remaining Useful Life (RUL) by projecting the current health state of the equipment 

into the future based on an estimate of the future usage profiles [121]. RUL and JIT are 

closely linked in many elements.  For example, both try to reduce the inventory and 

control supply based on where and when products are needed. Moreover, PHM and JIT 

aim to eliminate sudden failure, reduce schedule maintenance, and increase quality and 

utilization of plants and equipment. Finally, JIT and PHM aim to fulfill the customer 

needs; increase the availability and safety while reducing the cost and enhancing logistic 

and supply chains, which leads to increased market performance [11, 12].  

123456In modern industry, the demand for accurate, timely, and robust incipient fault 

detection and diagnosis (FDD), and early prediction of the Remaining Useful Life (RUL) 

for a complex system has increased constantly. In order to fulfill these needs, this thesis 

outlines enhancing integration of a new online diagnostic and prognostic framework for 

complex system based on Open System Architecture for Condition-Based Maintenance 

(OSA-CBM). 

2.1.1 OSA-CBM Development 

123456Figure 4 provides an overview of the conceptual design of a seven layered 

prognostic health management architecture [12]. As shown in Figure 4, a system is 

monitored via a set of sensors usually integrated with a data acquisition device.  The raw 
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signal measurement at the sensors moves though the seven layered stages where data is 

filtered, denoised, and after that is processed using condition monitoring and health 

assessment to obtain a health indicator. The health indicator is then passed on to 

diagnostic and prognostic and decision support to provide recommended maintenance 

actions. 

  

 

Figure 4: A top –level model of the OSA-CBM architecture [120] 

123456 

123456The OSA-CBM architecture requires an appropriate set of sensors to monitor 

specific variables such as vibration, or measure specific quantities that relate to fault. The 

raw data collected by the sensor predominantly is not usable in raw form.  Often the 

signals coming from sensors are very noisy: it may be a true signal distorted by other 

factors such as modulation, bias, low amplitude, very harsh environment, or sensor 

installation problems. Sometimes it is not possible to measure symptoms directly, or it 

might depend on another parameter. Moreover, sensors are subject to fault and anomaly 

which can cause corruption of a variety of faults and false alarms, so these problems will 

lead a pervasive lack of trust in the sensors.  After the sensor’s data is validated, the raw 
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data must be prepared by preprocessing data-including filtration, denoising, and feature 

extracting -in order to enhance the data accuracy by removing unwanted noise, amplify 

the signal, and reduce the data volume, [24, 32]. Feature extracting here is the process of 

extracting useful information from raw signal data [18].  

123456Clean sensor data and feature extraction are the most significant steps in OSA-

CBM to identify, select, and extract the appropriate useful symptoms that relate to the 

abnormal operating condition. To enable the benefits of the feature extraction, the sensor 

data must be passed through different methods to obtain fault diagnostics and failure 

prediction [12,13]. From a practical viewpoint, OSA-CBM is a conceptual PHM 

architecture solution for the incorporation of diagnostic and prognostic technology from 

the equipment level to complex engineering system, PHM architecture presented in 

Figure 4 generic in design, but it can be applicable to various systems. Further, OSA-

CBM architecture has the ability to integrate and share information from different 

resources, where the main goal of the of OSA-CBM is to recommend an accurate 

decision related to maintenance activities. 

2.1.2 OSA-CBM Applications 

123456This thesis implements real-time integrated Condition-Based Maintenance and 

Prognostic Health Management (CBM/PHM) architecture. The contribution of this thesis 

is the implementation of a diagnostic and prognostic data-driven approach. The system 

flowchart based on Least Square Support Vector Regression (LSSVR) and Memory-

Particle filter (M-PF) is shown in Fig 5. This contribution is a generic framework, and 

applicable for a variety of complex engineering systems. Here CBM/PHM architecture 

uses LSSVM to extract features and perform self-diagnostics based on pattern 

recognition to predict reliable and accurate RUL. To maximize the effectiveness and 

efficiency of CBM/PHM Architecture, the framework adapts Bayesian estimation theory 

to measure degradation during field operation. The proposed approach involves two 

tasks: 1- Real-time early confident fault diagnosis based on adaptive threshold for 

incipient failure; and, 2- Prediction of the Remaining Useful Life (RUL) based on 
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Memory-Particle Filter (M-PF) of the filing system more accurately and precisely [11, 

26].  

 

 

Figure 5 : OSA-CBM Architecture for Implementation of Fault Diagnosis and 
Failure Prognosis Algorithms [adapted and modified from NASA Ames 

Research Center] 

 

123456The proposed architecture classifies the process based on their operation, i.e. 

online and offline (see Fig. 5). This thesis is primarily concerned with real-time diagnosis 

and prognostic learning algorithms. Therefore, the issues related to off-line processes are 

not discussed in a great detail. The off-line process is primarily concerned with a training 

model’s parameter that involves the extraction of representative features from all the 

sensors, and a retrieval process from historical data, to determine the most important 

feature for system condition.  [27,28]. 

123456The diagnosis strategy here is a challenging task due to the limited availability of 

knowledge about all the types of failure and the severity of the fault model. This makes 
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data-driven approaches applicable because they do not require knowledge of the material 

properties, and behavior of the failure mechanisms [29]. 

2.2 Fault Diagnostics 

 123456The term fault diagnosing and detection involves three activities. First, fault 

detection involves identification of abnormal behavior or imminent faults throughout the 

operation system. Second, the fault isolation involves determining or locating which 

equipment has failed. A lot of research proposed on diagnostic systems focuses on fault 

detection and isolation activities exclusively: that is known as fault detection and 

isolation (FDI). The third activity of fault identification involves estimating and assessing 

the nature and severity of the fault, by either qualitative or quantitative approaches [36, 

35,27]. A good comprehensive review of the fault diagnostics techniques and methods 

which have evolved in the last four decades [33, 37, 38], and extensive summaries of the 

history and in development of research in this area [36,39].  

2.2.1 Fault Diagnosis Methods 

 123456 Fault diagnosis procedures can be classified into several categories. For example 

Farrar et at.[40] suggest classifying them into two types of procedures: on-line and off-

line at discrete intervals, depending  on  completion of the task and performance 

diagnostic. The other popular diagnostic category involves classification into one of two 

types: one based on system model fault identification, also known as model-based 

techniques, and another based on data-driven approaches, called model-free techniques 

[27, 34].  

2.2.2 Model-based approaches 

123456Model-based fault diagnosis includes state-space models, parametric models, and 

parity relations. Model-based fault diagnosis has been studied extensively in the literature 

in the form of survey papers and books [33, 117,118, 119]. Model-based approaches 

utilize a mathematical to model a system in form of a differential equation or equivalent 



 

 18 

transformation, and the system output can be measured numerically, based upon 

comparing a particular measurement of the model output and the actual system. When 

there is a difference, a potential fault is identified and the system declared to be at fault. 

The Model-based fault detection is a preformed fault diagnosis based upon using one of 

two producers: parameter estimation or residual evaluation. The difference between 

parameter estimation and residual evaluation generates a value called residual signal. The 

residual signal goes through a process called residual evaluation, which plays an 

important role in fault diagnosis. The residual signal is extracting the fault symptoms 

form system. From a practical viewpoint, several factors--such as process nonlinearity, 

large-scale system, high data dimensionality, and unavailability of good data--complicate 

the development of accurate, reliable and applicable mathematical models for explaining 

the physics-of-failure mechanisms [33, 40, 35, 34].   

2.2.3 Data-driven approaches 

123456Data-driven approaches to fault diagnosis rely on mapping the data received from 

the measurement space to the fault space; and it compares the pattern data under testing 

with other known free-fault reference since the behavior of the system continues a trend 

similar to ones that are previously known. In this situation, if the test data pattern deviates 

from the free-fault reference, then a potential fault is identified and the system declared to 

be faulty. This process is known a type of pattern recognition technique.  A good 

comprehensive review of the data-driven approaches that have been applied to fault 

diagnostics can be found in [41, 24].  

123456Jardine et al. [41] classified data-driven approaches are applied to fault diagnosis 

in two types: statistical approaches and artificial intelligence (AI) based approaches. 

Data-driven models can be implemented, without the need to understand the underlying 

complex physical mechanisms of a system. Further, data-driven approaches are 

applicable when data are sufficient. It is easy to transform high dimensional data to a 

lower dimension in order to capture the important information. Several data-driven 

approaches have been proposed in the literature, and have been applied to a variety of 
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systems such as vehicles, sensors, aircraft engines, helicopters, and robotics, ranging 

from simple threshold techniques, as well as to more sophisticated algorithms such as 

moving window kernel PCA, artificial neural networks, wavelet analysis, and Fuzzy logic 

[26,32].  

2.2.3.1 Artificial Neural Network 

123456Neural Network (NN)-based approaches have been extensively implemented in 

fault diagnosis [34]. NNs have become more popular in the on-line fault diagnosis field 

because of their ability to approximate any continuous function without requiring any 

hypothesis underlying the model [42]. Unfortunately, NNs are the inherent “black box” 

devices of their operation; even though the neural network can generate solutions for 

many problems, it is impossible to explain and understand the reason behind its result or 

interpret the inner operation inside the algorithms. Further, NNs require relatively large 

volume data sets in the training phase, which can affect the generalization to new data. 

NN models have a tendency to overfitting;  the algorithm doesn’t have  rules to select the 

most suitable design such as the number of hidden layers , nodes and  training 

parameters; and it is slow-learning and time-consuming with non-uniqueness solution due 

to convergence  to local minima especially for large-order systems [43,34,35]. 

2.2.3.2 Support Vector Machine 

123456From a theoretical point of view, Vapnik found  that  robust and accurate learning 

depended on two correlated crucial factors: insufficient volume data samples and 

improper structure strategy to reduce the number of unknown parameters; these factors 

can lead to the classification error problem in the machine-learning approaches such as a 

Neural network. Both problems are very common in fault diagnosis, and failure 

prognostic. Further, most traditional machine learning technique is based on Empirical 

Risk Minimization (ERM) structure strategy to minimize the misclassification. However, 

it has been shown that minimizing ERM can’t effectively reduce the actual risk, 

especially with a small training sample. Robust structure strategy to reduce the number of 

unknown parameters is very important and a big challenge, especially when the 
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measurement cooperates with very high –level noise, and outliers [44, 45, 44].  

 123456Support Vector Machines (SVM) algorithms have been developed in recent years 

as an alternative to ERM, devoid of the various drawbacks of ERM techniques. SVMs are 

developed based on Statistical Learning Theory (SLT). SLT is a supervised learning 

framework for pattern recognition and provides a new technique for solving these 

problems [45]. The Support Vector Machine was first introduced by Vapnik and Lerner 

in 1963, was originally developed for classification [45]. Unlike neural networks, SVM 

associate to physical meaning of the training data and it is possible to explain and 

understand the reason behind its result. SVM technique needs small amount of training 

data sets for any estimation application [49,47]. According to literature in the last few 

years, Support Vector Machines have shown successful performance in many 

applications, such as Face Detection System[54], drug classification [53],web prediction 

[52],time series[51], and petroleum product[47].  

2.2.3.3 Support Vector Machine structure 

123456SVM is a nonlinear classification algorithm. Training sample is projected by 

kernel trick methods 𝐾(𝑥, 𝑥𝑖 ) into the higher-feature space. Thus, the conventional non-

linear sample becomes linear in the high-dimensional space. In fact; the high-dimensional 

space is much larger than the original data space so hyper-plane separation of data is 

realized [55, 35]. The resulting decision function for a training sample 𝑥 is given as 

follow:   

 𝑓(𝑥) = 𝑠𝑔𝑛 (∑ 𝑦𝑖
𝑖∈𝑠𝑣

𝑎𝑖 𝐾(𝑥𝑖,𝑥) + 𝑏) 2.1 

 

Moreover, SVM is adapted ε-insensitive loss function; the ε- insensitive is robust to 

achieve better approximation of empirical classification error based on different noise 

distribution. From a theoretical viewpoint, the noise distribution usually is unknown. 

Vapnik [45] introduces the ε- insensitive loss function as best strategy for estimating 

unknown noise distribution in the engineering environment with a small amount of error. 
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Figure 6: Graphical structure of SVC 

 

123456The basic form of SVM classification carried out as Eq. (2.1). Figure 6 illustrates 

the structure of SVC classification with a single hidden layer process, comprised of 

different number nodes. The input nodes are fed the training sample to the hidden layer 

from bottom to top where 𝑥𝑖, ∈ 𝑅
𝑛  is the input and the output is𝑦 ∈ {1,−1}𝑙. Only single 

hidden layer represents kernel function (𝐾(𝑥𝑖,𝑥)) for making transformations into high 

dimension space. The kernel function 𝐾(𝑥. 𝑦) can be defined as 

Dot products are added to the weights 𝑤𝑖 = 𝑦𝑖𝑎𝑖  which is used as a weights vector to 

determine which input are support vector, and  𝑏  parameter is a constant term 

determining the shift of the hyper-plane but it doesn’t change the decision function. 

Therefore, unlike NNs algorithms, the computational complexity of SVM doesn’t depend 

on the dimensionality of the input space. . Moreover, SVM decision function depends 

only on a small subset of the training data call support vector.  

 𝐾(𝑥. 𝑦) =𝜑(𝑥)𝜑(𝑦) 2.2 
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2.3 Least Square Support Vector Minchin (LS-SVM)  

123456Since Support Vector Machines (SVM) were introduced for classification and 

nonlinear function estimation, various types of SVM have been developed. SVM result is 

characterized by solving a convex optimization, or a more precise solving of a convex 

quadratic programming (QP) in dual space to separate the measurements into two classes 

of object by the optimal separating hyper-plane. The optimal separating is achieved by 

employing Vapink’s epsilon-insensitive loss function. The equality and complexity of 

SVC does not relate with the dimension of the input space. The SVM’s optimal 

separation in high-feature space is based on inequality constraints, and employs kernel 

condition in order to provide nonlinear transformation [45,56,57]. 

123456The major disadvantage of SVM is that it requires long training time and suffers 

from very high computation burden in the training phase because the solution of SVM is 

associated with   constraining quadric programming.  For a large number of training data, 

it requires large amounts of time and memory size, and it needs high computing to solve 

very large constraining Quadratic programming [45,56]. Suykens and Vandrwalle [58] 

evolved Least Square Support Vector Machine from SVM. 

The Least Squares Support Vector Machine (LS-SVM) is a version of the principles of 

SVM for two class problems, LS-SVM reformulation of SVM, which involves adopting 

the ‘Max Margin’ idea; however, the ε-insensitive loss function is replaced by least 

squares loss function  or Sum Squares Error (SSE) as it is used in Neural Network.  Also, 

inequality constraints are converted to equability constraints. In this way, reformulation 

LS-SVM transforms the quadratic programming problem into a simple linear system. 

Eq.(2.3)  shows the characteristic of LS-SVM, where the first term derives from the SVM 

to keep the feature of maximizing the margin. The second term is minimizing the training 

error that is characteristic of Gaussian loss function instead of Vapink’s epsilon-

 𝑅𝐿𝑆𝑆𝑉𝑀 =
1

2
 ‖𝑤‖2 + 𝐶 ̅ ∑ 𝑒𝑖

2𝑁
𝑖=1  

2.3 
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insensitive loss function [59, 56, and 57,60]. In fact, these modifications are needed for 

addressing the high complexity and extensive memory requirements of the required 

quadratic programing that is associated with Vapink’s epsilon-insensitive loss function. 

2.3.1 Advantage and Limitation of LS-SVM 

123456There are a number of distinct advantages of LS-SVM over neural network 

approaches that make LS-SVM more reliable and robust, specifically when data is 

showing irregular or unknown distribution, which makes LS-SVM the preferred approach 

in the area of fault diagnosis and failure prognostics.  

 Solving complex nonlinear problem  

123456LS-SVM is capable of performing non-linear classification problems and 

regression estimation by kernel function (see section 2.2 for an introduction the kernel 

trick). The most common kernel functions in fault detection and failure prognosis field 

are Radial basis function (RBF), Polynomial, and Sigmoid function.  The choice of kernel 

function type is very important since it is employed to measure the similarity of the 

feature and describe the relationship between input and support vectors. Every kernel 

function could produce unique measurements and results. [61, 62].                                                                        

 Capability to classify unseen sample   

123456Training set is projected by kernel function from lower dimensional space into the 

high-feature space to achieve maximum separation between two classes. The nearest data 

points that used to define the hyperplane are called support vectors. When the support 

vectors have been selected, the rest of the feature set is not required, as the support 

vectors can contain all the information-based need to define the classifier[49]. LS-SVM 

determines the separation hyper-plane. Capturing such a short distance from the 

separating hyper-plane to nearest data point of both classes means that LS-SVM’s 

hyperplane has the ability to correctly classify unseen data points better than traditional 

classification or distance based approaches such as decision trees and k-Nearest Neighbor 

(k-NN). [44, 60].   
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 Ability to train small sample   

 123456Unlike most of the classification approaches, LS-SVM has a unique advantage: 

strong generalization with ability to train a small number of samples. Eq. (2.7) describes 

the relationship between the actual risk R (w), and empirical risk 𝑅𝑒𝑚𝑝(𝑤), which is 

defined as measure mean error rate for a finite observation training set 

 

Where Φ is the confident interval, n is the number of training sample, h is a measure of 

the model complexity, called Vapik-Chervonek (VC) dimension. Using a large amount of 

training data leads to a reduction in the error classification or adjusted Φ(ℎ/𝑛) to reduce 

the error and find the optimal hyper-plane classification. However, h has not been 

defined, and there are many algorithms introduced to estimate h. A common approach is 

to implement Structural Risk Minimization (SRM) based SVM [43,47, 46]. 

 Implement as on-line learning  algorithm   

123456The Least Square Support vector machine (LS-SVM) is capable of computing the 

global solution faster than standard SVM because it simplifies the complexity of 

quadratic programing (QP) by reformulating SVM to a simple linear system.  This makes 

LS-SVM a practical method to implement LS-SVM as a real time classifier. A real-time 

online LS-SVM training algorithm has several advantages; for instance, it doesn’t require 

saving all historical data, needs small memory space, and is effective with very large and 

non-stationary data.   

 Free of Local Minima 

123456Unlike most classification algorithms, especially neural networks, LS-SVM 

doesn’t suffer from local minimum. Also LS-SVM can find a global optimum solution 

quickly, with less computational cost compared with conventional SVM [63, 61]. 

 Generalization ability 

123456The generalization of algorithms can examine how to perform a learning ability 

from the given data set, so as to be able to produce useful information from a new sample 

 𝑅(𝑤) ≤  𝑅𝑒𝑚𝑝(𝑤) + Φ(ℎ/𝑛) 2.7 
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as more data becomes available without updating the training algorithm. This capability 

is widely used in computer science and other fields. LS-SVM generalization ability is 

based on parameter of kernel function. This research selects Gauss RBF kernel function 

because it is robust and effective for a wide range of applications. Thus the generalization 

behavior of LS-SVM can be improved by finding the optimal value of parameters of the 

LS-SVM, and bandwidth of the RBF kernel [64]. More discussion about choosing the 

parameters of the LS-SVM will be highlighted in chapter 3.  

 2.3.2 Least square Support Vector Machine and Fault diagnosis  

123456In recent years, LS-SVM has been successfully applied in the fault detection and 

diagnosis field. X. Long [68] proposed an anomaly detection of spacecraft based on LS-

SVM in-orbit after feature extraction based on Principal Component Analysis (PCA). The 

non-standard or hydrid approach based on LS-SVM shows better fault identification and 

detection compared with standard LS-SVM. For example; T.S.Khawaja [69] applied 

online one-class Bayesian LS-SVM based only on the baseline data from health samples 

to the problem of fault diagnosis for monitoring a growing crack fault on a gearplate of 

the UH-60 Blackhawk gearbox aircraft. H.C. Dubey et al. [70] proposed a novel 

approach based on LSSVM classifiers model combined with modular topology for 

transmission of fault type classification. L. Min et al. [71] presented a hybrid framework 

of combining LS-SVM and Mahalanobis distance (MD) based on particle swarm 

optimization (PSO) to discover advances in the incipient faults in analog circuits. G. 

Yang et al. [72] proposed an effective multi-class fault diagnosis of noisy data for roller 

bearings by introducing a probability least square support vector machine. H.B.Zheng et 

al. [73] used both one-against-one and one-against-all multi-class LS-SVM classification 

schemes based on particle swarm optimization to improve the multi-class classification 

accuracy. To provide reliable incipient fault diagnosis performance, C.H.Wei et al. [74] 

developed a novel hybrid classifier for dissolved gas analysis of oil-immersed power 

transformers based on fault classification schemes using PSO-LS-SVM.  Y. Zhang et al. 

[75] adopted the wavelet packet analysis (WPA) with LS-SVM for fault signals, the fault 
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diagnosis ability realized by comparing the high performance of LS-SVM against 

probabilistic neural network (PNN). B.Long at el.[76]developed a reliable incipient fault 

novel diagnosis using multiple LS-SVM classification based on near-optimal feature  

vectors instead  of a signal feature vector that was  selected by Mahalabnobis distance 

based particle swarm optimization in analog circuits.  

1234Table 2: Fault Detection and Diagnosis based on LS-SVM Comparison 

Works 

Work 

 

Criteria 

Online 

Learning 

Training 

small 

sample 

Detect 

incipient 

fault 

Using 

Residual 

Error 

Apply 

Adaptive 

threshold 

Optimize 

parameters 

based 

𝑃𝑆𝑂∗ 
X. Long et 

al.[68] 

      

T.S.Khawaja 

et al.[69] 

      

L.Min et 

al.[71] 

      

G.Yang et 

al. [72] 

      

H.B.Zheng 

et al.[73] 

      

C.H.Wei  et 

al.[74] 

      

Y. Zhang et 

al.[75] 

      

B.Long at 

el[76] 

      

Guo Su 

etal.[15] 

      

Xu Lishuang 

etal.[23] 

      

Proposed 

method 

      

 

\123456Current data- driven approaches design based on LSSVM have focused on fault 

diagnosis, isolation, and failure classification of the interested system. However, they are 
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unable to correctly tackle large magnitude errors when using a fixed threshold in the fault 

diagnosis for complex systems during the operation(see Table 2).  To address this issue, a 

novel online Least Square Support Vector Machine (LS-SVM) is proposed in this 

research for fault diagnosis with an adaptive threshold by two steps. Firstly, residual error 

is obtained by comparing real- time LS-SVM function estimation output and the actual 

output of the system. Secondly, the adaptive threshold model is taken into account based 

on several factors including input, output model error, disturbance, and drift parameter.  

The fault detection and identification is combined with adaptive threshold in order to 

reduce the error fault, avoiding false alarms and improving the diagnostics of complex 

systems. 

2.4 Failure Prognosis 

123456Failure prognosis is key in enabling benefits from condition-based maintenance. 

However, the stable and effective prognostic model is highly reliant upon the accuracy of 

fault diagnosis. The primary motivation of failure prognosis is to model the progression 

of impending failure to estimate the Remaining Useful Life (RUL) or Time-of-Failure 

(ToF) of deteriorating equipment. Failure prognostics as part of maintenance provides 

prior notice and an effective mechanism for maintenance staff to avoid unexpected failure 

by providing sufficient lead-time to supply and replace spare parts before failure [77]. 

2.4.1 The Remaining Useful Life PDF 

123456The time interval between early incipient fault detection and actual system failure 

is referred to as the lead-time interval (LTI).  With sufficient lead-time interval (LTI), the 

system or equipment can operate safely with warning of upcoming failure. This enables 

maintenance stuff to prepare necessary workers and equipment, and improves logistics of 

spare parts, while maintaining a smaller inventory that leads us to implementing the 

principle of just-in-time (JIT) manufacturing.  A prognostic was introduced first as a 

military application for the F-35 Joint-Strike Fighter (JSF), to enable the vision of 

autonomic logistics to satisfy and support military fighter aircraft [78, 77, 35]. 
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123456The main objective of the prognostics is based on estimating Remaining Useful 

Life Probability Density Function (RULPDF), also known as Residual Life (RL), or the 

time left before the equipment fails [79]. Figure 7 illustrates the key concepts of the RUL 

PDF. The stated damage at current time 𝑡0, whose value is between 𝑑0 and 𝑑1 with 95% 

confidence as shown in Figure 8. RUL prediction is made based on trend of observation 

and an estimate of the RUL PDF is generated as a bell-shaped curve (see Fig. 7 and 8). 

 

 

Figure7: Probability Density Functions for RUL [78] 

 

123456The expected time of failure is shown in both Figures 7 and 8 as the middle of the 

distribution. Where the corrective maintenance actions have to be early, equipment is 

removed or replaced before attaining a high probability of the failure. The time chosen 

for maintenance action will avoid equipment failure and maximize the service-life. This 

time refers as Just–In-Time Point (JITP), and is illustrated in Figure 7 in terms of 

probability density functions for RUL. The JITP defines the latest point in time before 

which corrective maintenance actions must be carried out to avoid unexpected failure 

with 95 % probability that the equipment has not yet failed. The expected point of the 

failure is the point where extrapolation damage lines intersect with the failure threshold. 
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The time interval from present to the JITP is labeled as Lead –Time –Interval (LTI),so 

the probability of failure is equal to one minus probability of failure avoidance [78, 80, 

81, 27, 35].  

 

 

Figure 8: Damage Extrapolation and the Probability Density Function [78] 

 

123456From theoretical perspective, the RUL PDF is a conditional PDF, changing 

continuously over time. In practice, when the system has not yet failed, RUL PDF should 

be recalculated at time 𝑡   based on the new information; this involves renormalizing the 

PDF at each time so that its area equals one. As time passes, the variance of true RUL 

PDF becomes smaller and smaller and less uncertain, and PDF narrower and more stable, 

as fault condition progresses toward failure. For this reason, predicted value for failure 

point becomes more accurate and precise as time to failure decreases. This notion is 

illustrated in Figure 9 [80, 27, 81]. A complete comprehensive description of the 
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probabilistic technique for predicating remaining useful life is provided by Engel et al. 

[80] and A. Hess[78].    

2.4.2 Prognostic Techniques 

123456Similar to diagnostics, prognostics can be classified into several categories based 

on varying perspectives. For example, J.Z. Sikorska [81] classified prognostics 

approaches into 4 main groups: 1- Knowledge-based models, 2- Life expectancy models, 

3-Artificial Neural Networks, and 4- Physical models. X.-Sheng Si et al.[83] focused on 

statistical data-driven approaches for RUL estimation , and  classified prognostics 

approaches based on direct health information  (Regression, Wiener processes, Gamma 

processes and Monrovian-based models), and indirect health information (Stochastic 

filtering-based models, Covariate based hazard models, Hidden Markov model (HMM), 

and hidden semi-Markov model (HSMM). 

123456Another classification is proposed by Jaw et al. [84], who classified prognostics 

into real-time and offline by using stored past operation information.  Byington et al.[85] 

categorized prognostics as horizontal or vertical modules, respectively. Prognostic 

horizontal approach is based on failure diagnosis information, and damage-progression 

[40], while vertical is based on prior knowledge of life expectancy. Further, Byington et 

al.[85] proposes the three most common approaches to performing RUL prediction; these 

classifications summarize the range of possible applications to prognostics (see Fig.10), 

as moving from experience-based to model-based approaches, the accuracy performance 

and  implementation cost is increased, whereas the range of capabilities of different 

approaches is decreased. However, the two primary approaches form the three levels of 

algorithms to pursue the prognostic problem: model-based and data-driven [41, 86, 83, 

87].    
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Figure9: Time Variance of the RUL PDF [80] 

 

2.4.2.1 Model-Based Prognostic Approaches 

123456Model-based prognostic approaches are the best methods when deriving an 

accurate mathematical model from first principles. Model-based prognostics can rely on 

extracting a true physical model that governs the system’s failure degradation behavior 

(e.g., Crack growth) [88].  The most important benefit of the model-based approach is the 

ability to incorporate the physical understanding of system degradation. Another 

advantage is the ability to estimate and predict degradation under different loads and 

operating conditions. Model-based approaches can be fused with information obtained 

from data-driven approaches to enhance the prognostic ability and provide valuable 

information. [81]. 

123456The most popular prognostics based on physical models are state-space. State-

spaces such as Kalman filters and other tracking filters can be implemented as a 

prognostic technique. Bayesian estimation provides a framework for dealing with various 

types of uncertainty in the prognostic problem. The current amount of degradation is 

modeled as random variable so the level of uncertainty can be propagated into the future. 
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The typical Bayesian filter is linear state-space model with Gaussian noise. However, 

various Bayesian filter techniques have been extended for modeling non-linear such as 

Extended Kalman Filter, and Particle Filter [81, 87, 70, 82, 86].  

 

 

Figure10: Prognostic Technical Approaches [85] 

 

123456In many practical applications, the process of building an accurate physical model 

is so complex because comprehensive understandings of all failure modes and 

characteristics system behavior under a range of operating conditions are not possible.  

Model-based approaches are built for very specific uses, and they are not easy to adapt to 

a different system [88].  As an alternative roadmap to failure prediction, RUL can employ 

the data-driven approaches which rely only on historical information and real-time 

measurement related to degradation of equipment (e.g, calibration, calorimetric data, 

spectrometric data, power, vibration and acoustic signal, temperature, pressure, oil debris, 

currents, voltages)[92].  

2.4.2.2 Data-Based Prognostic Approaches 

123456The data-driven approaches are based on the assumption that the statistical 

characteristics of data are relatively unchanged unless a malfunction occurs in the system. 
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The failure prediction strategies starts with diagnostic routine and appropriate 

dimensionality reductions of data acquisition, then applying feature extraction to obtain a 

system model parameter from the collected data by using appropriate signal processing. 

These features will be used to map system features into signal dimension degradation or 

health index, which is used to track the degradation behavior. Once the calculation of the 

current amount of degradation and diagnosis of the level of fault are made, next, the 

Remaining Useful Life (RUL) is predicted by using a range of techniques to extrapolate 

the current degradation into the future until it exceeds a predefined threshold [85,93]. The 

data-driven approaches are applicable when the data are sufficient. Moreover, it is not 

system specific and can be applied without prior knowledge or understanding of physical 

failure mechanisms [92].  With respect to model-based prognostics, this research has a 

goal of enhancing the data-driven framework of failure prediction by integrating 

Bayesian filters and data-driven approaches.     

2.4.5 Failure Prognostics based on Data- Driven approaches 

123456There are two types of data-driven approaches conventional time series and 

advance time series.  Conventional time series approaches such as exponential 

smoothing, and autoregressive moving average model, which models two parts, an 

autoregressive (AR) and a moving average (MA)[116] [181,183]. Prognostics in these 

techniques rely on projecting the current level of degradation into the future with the 

assumption that there is some stability in the past patterns. The main advantage of this 

technique is simplicity and ease of implementation, and ARMA can be used for non-

stationary situations. However, the reliance on past patterns can lead to inaccurate 

Prediction of RUL when at least one observation changes the pattern, and is less reliable 

in the long term. Advance time series approaches such as ANNs and SVMs are both 

applied in prognostics in which the current amount of degradation is extrapolated until it 

reaches predefined failure threshold (see [51, 29, 48, 94, 65, 95, 96, 97, 98, 99, 30]).  
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2.4.6 Model-Based and Failure Prognostics  

123456A core limitation of ANNs and SVMs approaches are the absence of ability for 

uncertainty management, lack to provide probabilistic decision function. Therefore, much 

research has been conducted on Bayesian filters in failure prognostics 

[100,101,102,103,104], or hybrid Bayesian filters with data-driven approaches. For 

example, L. Pee[105]  applied  neural network  Ensemble  Multi-Layer Perceptron(EMP) 

and Radial Basis Functions(RBF) as the regression model, and incorporated them with 

Kalman filter; it  provides  a mechanism for ensemble multiple  neural network model 

predictions over time. B. Saha et al. [107] integrated RUL prediction method using a 

hybrid approach: physics-based particle filter was used for system state estimation and 

parameter identification, and a data-driven predictor was used to estimate the future 

measurements. The aim of this framework is to incorporated strengths of   each approach 

for determining the remaining useful life of batteries using both data-driven and model-

based approaches.   The Bayesian estimation approach is implemented as the Relevance 

Vector Machine and Particle filter (RVM-PF). The framework has significant advantages 

over classical techniques like Autoregressive Integrated Moving Average (ARIMA) and 

Extended Kalman Filtering (EKF). L. Yu et al. [108] developed data fusion framework 

for fault-proneness prognostics based on combined Support Vector Machine and Particle 

Filter (SVM-PF) in robot dead reckoning. The main goal is to extract weight fault 

probability parameters in order to select a suitable adaptive threshold for fault prediction. 

The framework is based on both a model-based and a data-driven approach.  L. 

Chengliang et al.[109]developed a real-time novel based on  Least Square Support Vector 

Machine-based Strong Tracking Particle Filter ( LS-SVM-STPF); this method has the 

ability to track and predict abrupt failure type when salutatory stats occur in the system. 

Recursive Strong Tracking Filter (STF) is based on both suboptimal fading extended 

kalman filter (STEKF) and extended kalman filter based practical filter, where STEKF is 

used as a bridge with EKF-based practical filter . STF is used to update and produce 

important density, and improved the PF performance when salutatory state occurred in 

system. C. Xiongzi [110] presented a novel Least Square Support Vector Machine based 

http://pic.sagepub.com/search?author1=Li+Chengliang&sortspec=date&submit=Submit
http://pic.sagepub.com/search?author1=Li+Chengliang&sortspec=date&submit=Submit


 

 35 

Particle filtering (PF-LSSVR) to address the time varying parameters problem for the 

long-term failure prognostic, and to overcome the limitation of both data-driven (LSSVR 

) and model-based Particle Filtering. 

123456It is clear that Particle Filtering has gained popularity due to extremely effective 

ability to address real-time estimation and long-term failure prediction, and to provide 

probabilistic decision function as prognostic output(see Table 3). However, two major 

limitations prevent implementing this technique in the field of prognostics. First, it is 

reliant on accurate physical failure models that quantify the evolution of degradation over 

time. The physical model may not be available to a complex system, or usually is not 

applicable to a different system. The performance of PF tends to deteriorate if an 

inaccurate physical model is applied [111, 112]. Second, the efficiency of Important 

Sampling (IS), Project Sampling (PS), and Markov Chain Monte Carlo (MCMC) 

degenerates in high-dimensions, and they suffer extremely from approximate posterior 

density [113,114,115].  

123456In this research, unlike previous failure prognostics, we develop an extension of 

the Particle Filter (PF) that uses real-time and historical data instead of an underlying 

explicit physical failure model. To address this problem, we describe a data-driven 

algorithm that combines real–time least Square Support Vector Machine based on 

Memory-Particle Filter (M-PF).  Chapter.4 provides an overview of the Memory-Particle 

Filter based on Least Square Support Vector Machine. However, to the best of our 

knowledge, this is the first attempt to implement a Memory-Particle Filter (M-PF) for 

Prognostic Health Management (PHM), and failure prediction. 
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Table 3: Failure prognostic based on Particle Filter (PF) Comparison Works 

Work 

 

Criteria 

Online 

Learning 

Training 

small 

sample 

PF 

requires 

physical 

model 

PF without  

physical 

model 

Reduce 

degenerates 

problem 

Abrupt 

Failure 

E. Zio and 

Giovanni[104] 

      

B. Saha et 

al.[107] 

      

L. Yu et 

al[108] 

      

L. Chengliang 

et al.[109] 

      

C. Xiongzi  et 

al.[110] 

      

Qiang Miao et 

al.[8] 

      

Q.Miao[101] 

 

      

B. Saha and 

K. Goebel[2] 

      

Proposed 

method 
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Chapter 3  

Adaptive Threshold Based on Least Square Support Vector Machine 

for Fault Diagnosis 

 

123456An adaptive threshold scheme based on on-line Least Square Support Vector 

Machine (LS-SVM) is presented in this thesis. General description of residual evaluation 

problem is highlighted in section 3.2. The full mathematical description of the Support 

Vector Machine is presented in section 3.2.  Least Square SVR (LS-SVM) function 

estimation is described in section 3.2.2.  The real time modeling problem is considered in 

section 3.2.3. In section 3.4, we describe an adaptive threshold method. Finally, the real 

time LS-SVM applied to the real world test case of fade capacity of Lithium-ion battery 

is presented in Section 3.5. The chapter concludes with a performance comparison 

between the adaptive threshold and fixed threshold in the section 3.5.1, and LS-SVM‘s 

optimal parameters is presented in section 3.6. 

3.1 Fault Diagnosis 

123456Motivated by the increasing needs for high levels of operational safety, increased 

maintainability, and reliability in the presence of unexpected changes of a complex 

system, this thesis presents a practical approach to combine data-driven fault detection 

with an adaptive threshold for fault diagnosis. Recently, much attention has been devoted 

to diagnosis of both incipient and abrupt faults. Abrupt fault is typically represented as 

step-like deviation in the parameter of a system that occurs instantaneously. It is often an 

indication of imminent breakdown of the system. Incipient fault is modeled as slowly 

developing, and is represented by drift-type change that must be detected early enough in 

order to avoid more serious consequences. In abrupt-type failures, fast and early detection 

is the main objectives of fault diagnosis to avoid catastrophic consequences. On the other 

hand, incipient faults are very important in maintenance activities because deviation 
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occurs slowly and develops over time, yet usually leads not to sudden failures, but to 

future unpredictable changes in the system. Therefore, the development of fast and early 

fault diagnosis schemes for incipient faults plays a crucial role in the reducing cost of 

maintenance activities [122,123].  

123456One of the main difficulties in dealing with incipient faults is their small effect on 

the residuals, which can be hidden due to uncertainty [122]. For this reason, it is 

impossible for a scheme relying on a set of fixed thresholds to obtain all the fault data 

accurately. One potential solution is to consider an adaptive threshold technique.  

3.2 General Description of Residual Evaluation Problem  

123456During the condition monitoring of complex systems, a fault detection and 

identification system must be able to detect whether and where the fault has occurred. 

Residual generation is a procedure for extracting the fault symptoms from a complex 

system, and a threshold is applied to the residual for final decision-making. Generally 

speaking, the fixed threshold technique or the Mean Method (MM) is commonly used for 

determining the final decision of fault diagnosis. MM is usually based on average of 

entire data over a long period of time in order to minimize false alarm rates, and 

maximize the ability fault detection [125]. 

123456The residual will be greater than zero if there are any faults occurring in the 

system; else if the residual is close to zero, the system is considered to be in operation 

condition. Typically, the residual is derived without considering existing noise, modeling 

error, and disturbance; and under different operating conditions, these unexpected 

(uncertainty) influences will lead to non-zero residuals, resulting in false alarms. 

Therefore, a diagnostic system based on a non-zero residual error rule would either 

completely fail to detect and identify a fault, or may detect and identify the fault very 

late. A fixed threshold is therefore used in practical systems. The fixed threshold will 

directly affect the fault decision-making performance: too-high level of threshold leads to 
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decreased sensitivity to fault detection. However, a small level of threshold increases the 

false alarm rate. For this reason, choosing the level of fixed threshold is not an easy task, 

and it is not reliable in practice. Last but not least, the fixed threshold will lead to 

increased maintenance cost, reduced resource availability, and declined productivity 

[126]. 

123456A potential solution is an adaptive threshold based on integrating the key factors 

in threshold model, such as residual error, system input, system output, and random 

disturbance. The problem of the fixed threshold is illustrated in Figure 11, with the 

model-based residual for fault detection. The residual is clearly a deviation from zero in 

the non-fault case; at the same time, the residual exhibits non-stationary features. 

Moreover, it can be noticed that the difference between the fixed threshold and the 

adaptive threshold, where the false alarm occurs at 𝑡𝐹𝐴  and the fixed threshold also fails 

to detect the fault at𝑡𝐴. On the other hand, the adaptive threshold has the ability to avoid 

false alarms and handle the non-stationary quality of the residual to detect the fault at 𝑡𝐹𝐴  

[124,127]. 

 

 

Figure 11: Adaptive Threshold Designs[149] 

 

123456The ability to detect an incipient fault in a complex system in the presence of 
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modeling uncertainties by adaptive threshold is referred to as “robust fault diagnosis.” 

This technique uses nonlinear data-driven approach based on sliding time window to 

monitor the lithium-ion battery whose operation condition changes at some unknown 

time due to a fault, where the estimation residual error of each fault is associated with an 

adaptive threshold. 

3.2 Sequential LS-SVR based Anomaly Detector  

3.2.1 Support Vector Machines (SVM) Principle  

123456SVM is a relatively new computational learning method based on statistical 

learning theory. [49,94]. SVM was developed for classification based on structural risk 

minimization (SRM); unlike most of classical learning methods, such as neural network, 

the minimizing error is designed based Empirical Risk Minimization (ERM). The SVM 

has been applied successfully to condition monitoring and diagnostic problems, and 

shows highly accurate performance [65,49,66,43,128,129,130,76, 79,71,44]. 

123456When SVM is applied to classification, the samples are assumed have two classes, 

namely positive class and negative class. The label associated with each class is  𝑦𝑖 = 1  

for positive class and 𝑦𝑖 = −1  for negative class, respectively. For linear data, it is 

possible to determine the hyper-plane 𝑓(𝑥) = 0 that separates the given data [131,110].   

 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 =∑𝑥𝑖𝑤𝑗 + 𝑏 = 0          

𝑀

𝑗=1

 3.1 

Where 𝒘 is m-dimensional vector, 𝑏 is scalar, and both are used to define the position of 

the hyper-plane. However, the decision function is made using sign 𝑓(𝑥)  to create 

separating hyper-plane that classify input data in either positive class or negative class. A 

distinct separating hyperplane should satisfy the constraints [49]. 

 < 𝑤. 𝑥𝑖 > +𝑏 ≥ +1                  𝑓𝑜𝑟   𝑦𝑖 = +1 3.2 

 < 𝑤. 𝑥𝑖 > +𝑏 ≤ −1                   𝑓𝑜𝑟   𝑦𝑖 = −1 3.3 
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Or it can be presented in this form:   

 𝑦(𝑥) = 𝑠𝑖𝑔𝑛[𝑤𝑇𝑥 + 𝑏] 3.4 

If the inequality in Eq. (3.2) and (3.3) can be separated from all training data, SVM will 

be a linearly separable. The optimal hyper-plane creates the maximum separating 

distance between the boundary and nearest data for each class. Then, boundary is placed 

in the middle of the separation. The distance between the two planes is defined as margin, 

and the data used to define the margin is known as support vector. The optimal margin of 

the two class data and support vector is represented in Figure12 [45,110]. 

 

 

Figure 12: SVM ‘Max-Margin’ Ideas[49] 

 

 

123456 

123456From the geometry, the optimal hyper-plane can be found by solving the 

following constraint optimization. The maximum margin for SVM is obtained as follows:   
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Minimize  
1

2
 ∥ 𝑤 ∥2           3.5 

Subject to 𝑦𝑖 ≤ 𝑤, 𝑥𝑖 ≥ − 𝑏   ≤ 휀 ;   ≤ 𝑤, 𝑥𝑖 ≥ + 𝑏 − 𝑦𝑖 ≤ 휀 3.6 

 The tacit assumption is that Eq. (3.5) cannot approximate all pairs (𝑥𝑖 , 𝑦𝑖). In other 

words, the convex optimization is not feasible, and the assumption (3. 6) does not exist.  

We may allow some errors. Slack variable 𝜉𝑖 is introduced to cope with infeasible 

constraints optimization, and allows an example to be misclassified. Hence, we present 

the formulation stated in Burges, C.J.C [132].  

 

Minimize  
1

2
 ∥ 𝑤 ∥2+ 𝐶 ∑ (𝜉𝑖 +

𝑀
𝑖=1 𝜉𝑖 

∗) 3.7 

Subject to 

𝑦𝑖 ≤ 𝑤, 𝑥𝑖 ≥ − 𝑏  ≤ 휀 + 𝜉𝑖 ; 

≤ 𝑤, 𝑥𝑖 ≥ + 𝑏 − 𝑦𝑖 ≤ 휀 + 𝜉𝑖  
∗ 3.8 

Where 𝜉𝑖is measuring the distance between the margin and the examples 𝑥𝑖 that lying on 

the wrong side of the margin, 𝐶  is error penalty to determine the tradeoff between the 

fitness and training error, and  휀 is insensitive loss function.  ε-Insensitive loss function is 

introduced as the best strategy for estimating loss function under real-life situations. The 

best loss function for estimate depends on the type of distribution of observation noise, 

e.g., Gaussian loss function is better under normal noise, whereas uniform loss function is 

better under uniform noise. However, the noise distribution usually is unknown and far 

from the Non-Gaussian especially in the field of health monitoring. Vapnik developed 

robust loss function by combining quadratic and linear loss functions [ 44,132, 133].  

 In order to solve the optimization problem in Eq. (3.7), the calculation can be solved in 

the dual Lagrangian space by introducing the Kuhn-Tucker condition Eq.(3.7). The 

solution of Eq. (3.7) [131] becomes   

𝐿(𝑤, 𝑏, 𝑎) =
1

2
 ∥ 𝑤 ∥2+ 𝐶∑𝑎𝑖

𝑀

𝑖=1

 𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏)∑𝑎𝑖

𝑀

𝑖

     3.9 

To find the dual form of the problem, we need to minimize Eq. (3.9) by derivative of 𝐿 to 
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𝑎  with respect to primal variables (𝑤, 𝑏, 𝜉). We have the following saddle-point 

equations: 

 
𝜕𝐿

𝜕𝑊
=  0  ,   

𝜕𝐿

𝜕𝑏
=  = 0 3.10 

Which replace into form 

 𝑤 = ∑ 𝑎𝑖
𝑀
𝑖=1 𝑦𝑖𝑥𝑖     and   ∑ 𝑎𝑖

𝑀
𝑖=1  𝑦𝑖   = 0 

3.11 

 

From Eq. (3.11), we find that 𝑤 is contained in the subspace spanned by the 𝑥𝑖. Using 

substitution Eq. (3.11) into Eq. (3.9), we obtain the dual quadratic optimization problem 

Maximize 

 

𝐿(𝑎) = ∑ 𝑎𝑖
𝑀
𝑖 −

1

2
∑ ∑ 𝛼𝑖𝑎𝑗

𝑀
𝑗

𝑀
𝑖 𝑦𝑖 (𝑦𝑗𝑥𝑖𝑥𝑗) 

 

3.12 

Subject to 𝑎𝑖 ≥ 0 , 𝑖 = 1, . . … ,𝑀 , ∑ 𝑎𝑖
𝑀
𝑖=1 𝑦𝑖=  0 3.13 

Thus, by solving the dual optimization problem, one obtains the coefficient 𝑎𝑖 which is 

required to express the w in Eq. (3.7),   if input data cannot be separated by a hyper-plane 

in the input space, the data can be projected in the high dimensional feature spaces, where 

the linear classification is possible. This is achieved through use of nonlinear 

transformation vector 𝝓(𝒙) = (𝝓(𝒙), …… ,𝝓(𝒙)) to map the data from n-dimensional 

input space into high dimensional feature space, and the linear classification function in 

dual space is realized  [131; 43]: 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖

𝑀

𝑗,𝑖=1

𝑦𝑖(𝝓
𝑇(𝒙𝒊). (𝒙)) + 𝒃) ) 3.14 

Transforming into high dimensional feature space creates the challenge of expensive 

computation due to large vector and over fitting.  Kernel function can solve this challenge 
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and perform dot product in one step with less computation effort. From a statistical 

viewpoint, kernels provide a way to manipulate various types of data as they are 

projected into high dimensional feature space by operating dot product in its original 

space. This leads to efficient algorithms with lower computation [131, 43].   

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑎𝑖

𝑀

𝑗,𝑖=1

𝑦𝑖𝑘(𝑥𝑖, 𝒚𝒊) + 𝒃) 3.15 

The most popular kernel functions are [140, 70] 

 

123456All kernel function must satisfy Mercer’s theorem [60, 56] to be used as kernel 

function to compute a dot product in high- dimensional feature space.  More discussion 

for selecting the appropriate parameter of kernel function will be discussed later in this 

chapter. 

 

3.2.2 The off-line Least Square Support Vector Machine Function Estimation (LS-

SVM)  

 123456SVM possesses the excellent properties of global optimization, high 

generalization, ability to train small samples, and ability to be successfully applied in a 

non-linear problem [64, 56]. However, the major drawback of SVM is that it requires 

quadric programming, which is time consuming and requires a large memory space [136, 

137]. LS-SVM is reformulation of SVM, which involves adopting a max margin that 

Radial basis  

function(RBF) 
𝐾(𝑥, 𝑧) = exp (−

|𝑥 − 𝑧|2

2𝜎2
)  3.15.a 

Polynomial 𝐾(𝑥, 𝑧) = (𝑥𝑇𝑧 +𝑐)𝑑        3.15.b 

Sigmoid function 𝐾(𝑥, 𝑧) = tanh(𝑣.< 𝑥. 𝑧 > +𝑐)     3.15.c 
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searches for an optimum hyper-plane for separating the training data into two subsets (see 

Figure 13), and the ε-insensitive loss function is replaced by Sum Squares Error (SSE) as 

it is used in a Neural Network (NN).  Also, inequality constraints are converted to 

equality constraints. Thus, LS-SVM becomes more efficient, very fast, and requires less 

computation time compared with standard SVM [135, 56, 58].  

123456For N sample training data {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑛  with input data 𝑥𝑖=𝑅

𝑛, and corresponding 

output 𝑦 𝑖= R, the LS-SVM model considers non-linear function for function estimation  

 (𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏 3.16 

Where w is the weight vector in primal weight space, b is base term, and 𝜑(𝑥):𝑅𝑛 → 𝑅𝑛ℎ 

is a nonlinear function that maps the input data into a high dimension feature space. This 

makes non-linear inseparable data in primal space to be separable data in higher space, 

where 𝑛ℎ is dimensionality of the feature space, which can be determined by the 

optimization problem with given constraints. The LSSVM model is formulated as [131]. 

 𝐽𝑝𝑤,𝑏,𝑒
𝑀𝑖𝑛 (𝑤, 𝑒) =

1

2
 ∥ 𝑤 ∥2+ 

1

2
 𝛾∑𝑒𝑖

2

𝑁

𝑖=1

 3.17 

 Subject to  

 𝑦𝑘 = 𝑤
𝑇𝜑(𝑥) + 𝑏 + 𝑒𝑖  , 𝑖 = 1,2, ……𝑁  

Where J is the loss function, 𝑒𝑖 ∈ 𝑅  is error variables allowing some tolerance of 

misclassification, b is bias value 𝑏 ∈ 𝑅, and  𝛾 is a regularization parameter (𝛾 > 0) 

determining tradeoff between the model’s complexity and approximation accuracy. 

Smaller value  𝛾 can avoid over fitting, and obtain a smoother solution in the case of 

noise training sample, and a larger value can provide a more complex solution. 

 123456From the discussion above, it is easy to notice the main difference between 

standard SVM and LS-SVR at two points.  First, inequalities are replaced by equality 

constraints. Second, square loss function is taken for error variable as Sum Square Error 
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(SSE). This reformulation greatly simplifies a problem such that LS-SVM solution 

becomes more efficient, and the solution follows directly from solving a set of linear 

equations rather than from a convex program [52]. 

 

 

Figure13: Comparisons of SVM and LS-SVR. The solution of two classes can be 
expressed by data belonging to opposite classes. The purpose of sparse (dash 

line) of SVM is to minimize the number of support vectors. Whereas, the 
solution of LS-SVM is not sparse, as usually all data points become support 

vectors as shown in the Figure[188] 

 

123456The solution of the optimization problem in Eq.(3.17) is established by 

Lagrangian multiplier 𝑎𝑖 ∈ 𝑅 . The Eq.(3.17) is formulated  as   

𝐿(𝑤, 𝑏, 𝑒, 𝑎) =
1

2
∥ 𝑤 ∥2 + 

1

2
 𝛾 ∑ 𝑒𝑖

2𝑁
𝑖=1 − ∑ 𝑎𝑖

𝑁
𝑘=1 {𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖- 𝑦𝑖} 3.18 

Where 𝑎𝑖  value is the Lagrange multiplier. The Karush Tucker conditions for optimality 

are given by  
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{
 
 
 
 
 

 
 
 
 
 𝜕𝐿𝐿𝑆−𝑆𝑉𝑀

𝜕𝑊
=  0 ⟶ 𝑊 =∑𝑎𝑘𝜑(𝑥𝑖)

𝑁

𝐼=1

                                                                                                                    

𝜕𝐿𝐿𝑆−𝑆𝑉𝑀
𝜕𝑏

= 0 →∑𝑎𝑘 = 0

𝑁

𝑖=1

                                                                                                                                 

𝜕𝐿𝐿𝑆−𝑆𝑉𝑀
𝜕𝑒𝑖

= 0   ⟶ 𝑎𝑖 = 𝛾𝑒𝑖 , (𝑖 = 1,… . , 𝑁                                                                                                         

𝜕𝐿𝐿𝑆−𝑆𝑉𝑀
𝜕𝑎𝑖

= 0 → (𝑤,𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖=0                                                                                                

 
3.19

1 

123456These conditions are similar to standard SVM, only different for condition 𝑎𝑖 =

 𝛾𝑒𝑖. For loss sparseness property in LS-SVM see Figure 13, where ε- insensitive loss 

function and slack variables are replaced by error variables 𝑒𝑖 ∋{𝑒1… . 𝑒𝐼} to tackle the 

high complexity and extensive memory requirements of the required quadratic 

programing that associated with ε-insensitive loss function, where the error variables 

indicate the distances from each point to the regression function. 

Eq. (3.19) can be written as the following linear equations set: 

 [

𝐼 0 0 −𝑍𝑇

0 0 0 −1𝑇

0
𝑍

0
1

0 −𝐼
𝐼 0

] [

𝑤
𝑏
𝑒
𝑎

]= [

0
0
0
𝑏

] 3.20 

When incorporating the first three lines of Eq. (3.19) into the fourth line, w and e vanish. 

Equations containing only 𝑎 and 𝑏 are obtained. For simplicity, these equations can be 

expressed in a form of a matrix equation: 

 

 

[
0 𝐼𝑛

𝑇

𝐼𝑛 Ω + 𝛾−1𝐼𝑛
] [
𝑏
𝑎
] = [

0
𝑦
] 3.21 

From [20], and utilizing the Mercer condition 𝛺𝑗𝑖 = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑖) =  𝑘(𝑥, 𝑥𝑖) 𝑓𝑜𝑟 𝑖 =

1, … , 𝑁. , 𝑗 = 1,… . , 𝑁)  we can reduce the complex calculations of inner product in the 
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high-dimensional feature space. The typical choices of kernel function 𝐾( 𝑥𝑖, 𝑥𝑖) in LS-

SVM include linear kernel, polynomial kernel and RBF kernel, as in SVM. However, 

there is more emphasis on RBF kernel. Any kernel function must satisfy Mercer’s 

condition [131; 58]. The solution of Eq. (3.19) can be obtained from (3.21) the solution 𝑎, 

𝑏 are 

 𝑏 =
𝐼𝑛
𝑇 (Ω + 𝛾−1𝐼𝑛)

−1𝛾

𝐼𝑛𝑇(Ω + 𝛾−1𝐼𝑛  )−1𝐼𝑁
 3.22 

 𝑎 =  (Ω + 𝛾−1𝐼𝑛)
−1𝛾 − 𝐼𝑛𝑏 3.23 

By using the first part of equation Eq. (3.19) to replace the w in Eq. (3.16) and using 

property ( 𝛺𝑗𝑖), the desired LS-SVM regression model in dual space for function 

estimation can be written as [56,58, 94, 138, 60,63, 139,140]. 

 𝑓(𝑥) =∑𝑎𝑖𝑘(𝑥, 𝑥𝑖) + 𝑏            

𝑁

𝑖=1

 3.24 

3.2.3 Sequential LS-SVR based Anomaly Detector  

  123456Most existing algorithms for the LS-SVM require offline training with a fixed 

number of samples; i.e., these samples are delivered in a single batch, in which all 

examples are available at once [65, 51, 72, 63].  However, the offline training algorithm 

is not efficient for dealing with non-stationary, large volume data, time varying 

distributions, and tracking the dynamic change such fault in complex system 

[162,163,164]. We propose sequential Moving Window Least Squares Support Vector 

Machine (MWLS-SVM) technique. MWLS-SVM is used to identify the Li-ion battery 

parameters and their changes when measurement data involve a fault event.  The MWLS-

SVM method [48, 165, 162, 66] is a real time algorithm; whenever a new sample comes 

in window, the standard LS-SVM is updated by increasing the sample in training set with 

a new sample, and losing the old one as shown in Figure14, which keeps the number of 
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samples constant. Here, an incremental updating algorithm and a decremental pruning 

algorithm are adopted to increment the training set and discard the oldest sample in order 

to decrease the computational complexity for adaptive tracking technique. In the on-line 

condition monitoring for a complex system, the training set changes with time.  

 

 

Figure 14: Diagram Representation Updating and Pruning for On-Line MWLS-
SVM Learning Scheme Overview[163] 

 

123456Let (𝑋𝑁+1 , 𝑦𝑁+1) be a new  data pair , then incremental algorithms  update the  

training set by adding the new data to  the first  (𝑁 data pair) so  the training set becomes 

{(𝑋𝑁+1 , 𝑦𝑁+1)}𝐾=1
𝑁 . Here, the incremental relation between the current model (𝑋𝑁 , 𝑦𝑁 ) 

data pairs and the optimal condition for next new model is (𝑋𝑁+1 , 𝑦𝑁+1).  

Theorem 1 This theorem is a special case of the Sherman Woodbury Formula [167] in 

linear algebra, which is essential for Incremental learning algorithms. Given 𝑋 is a 

symmetrical matrix that has  (𝑛 + 1) rows and (𝑛 + 1) Columns. 𝑋  is partitioned as 

bordered matrix, and  𝑋 can be written as 

 

 𝑋 = [
𝐴 𝑢
𝑢𝑇 𝑎

] 3.25 
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Where 𝐴 is 𝑥 × 𝑛 matrix, 𝑢 is a 𝑛 × 1 column vector, 𝑎 is a scalar quaintly, then the 

inverse matrix of 𝑋 is  

 𝑋−1 = [
𝐵 𝑞

𝑞𝑇 𝐴
] 3.26 

Where 𝐵= 𝐴−1 + 𝑡𝐴−1𝑢𝑢𝑇𝐴−1, 𝑞 =  −𝑡𝐴𝑇𝑢 and 𝑡 = 1(𝑎 − 𝑢𝑇𝐴−1𝑢). 

The sequential incremental algorithms aim to efficiently update 𝒚𝑁+1  from 𝒚𝑁  whenever 

a new data pair is added. The mathematical proof for calculating the augmented matrix is 

brief [167]. Equation (3.19) becomes [168]: 

 [

0 𝑧𝑇 𝑍𝑛𝑒𝑤
𝑧 Ω + 𝛾−1𝐼 𝑃

𝑍𝑛𝑒𝑤 𝑃𝑇 𝛽

] [
𝑏
�̅�

𝛼𝑛𝑒𝑤

] [
0

1𝑛×1
𝐼
] 3.27 

 

Where 𝑃 is x×n matrix, u is a n×1 column vector,𝑃𝑖=𝑍𝑖𝑍𝑛𝑒𝑤𝐾(𝑦𝑖, 𝑦𝑛𝑒𝑤) and 𝛽 =

𝑧𝑛𝑒𝑤
2 𝐾(𝑦𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤) + 𝛾

−1. It is clear that the square matrix on the left side now becomes 

a (𝑛 + 2) × (𝑛 + 2) matrix, as there is a new Lagrange multiplier 𝛼𝑛𝑒𝑤 for the new 

training vector 𝑦𝑛𝑒𝑤. This square matrix can be partitioned into a bordered matrix. The 

bordered matrix reduces the amount of calculation, leads to fast computation, and permits 

an effective inversion of a triangular matrix [168].    

Bordered matrix of Eq.(3.27) becomes as follows : 

 [

0 𝑧𝑇 𝑍𝑛𝑒𝑤
𝑧 Ω + 𝛾−1𝐼 𝑃

𝑍𝑛𝑒𝑤 𝑃𝑇 𝛽

]=  [
𝐴𝑜𝑙𝑑 𝑠

𝑠𝑇 𝛽
] 3.28 

Where 𝑠𝑇 =[𝑍𝑛𝑒𝑤   𝑃
𝑇 ] 

By applying Eq.(3.26), the inverse matrix of the new square matrix 𝐴𝑛𝑒𝑤  can be 

illustrated  in terms of the inverse of the old square matrix and column vector 𝑠, as 
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follows: 

 𝐴𝑛𝑒𝑤
−1 = [

𝐵 𝑞

𝑞𝑇 𝑡
] 3.29 

Where 

 𝐵 = 𝐴𝑜𝑙𝑑
−1 + 𝑡𝐴𝑜𝑙𝑑

−1 𝑠𝑠𝑇𝐴𝑜𝑙𝑑
−1  3.30 

 𝑞 =  −𝑡𝐴𝑜𝑙𝑑
−1 𝑠 3.31 

 𝑡 =
1

𝛽 − 𝑠𝑇𝐴𝑜𝑙𝑑
−1 𝑠

 3.32 

Form the result above, the new matrix 𝐴𝑛𝑒𝑤 can be obtained without any matrix 

inversion. The new optimum values of 𝑏, �̅� and 𝑎𝑛𝑒𝑤 can now be calculated as[168]: 

 [
𝑏
�̅�

𝛼𝑛𝑒𝑤

] = 𝐴𝑛𝑒𝑤
−1 [

0
1𝑛×1
𝐼
] = [

𝐵 𝑞

𝑞𝑇 𝑡
] [

0
1𝑛×1
𝐼
] 3.33 

3.4 Residual Evolution based on Adaptive Threshold 

123456This section describes an automated dynamic threshold scheme for real-time 

residual evolution based on data-driven approaches.  An adaptive threshold is calculated 

based on main factors that influence residual error. The residual generation is compared 

to this dynamic threshold to address incipient fault for detection problem in the presence 

of modeling error and various unknown (unmeasured) disturbance. In previous research, 

model-based approaches are utilized to generate the residual error under the unavoidable 

modeling uncertainty [117, 141, 142, and 143,144]. However, the residual evaluation is 

basically a classification problem where the following methods can be used for the task: 

fuzzy logic, expert system, and pattern recognition [124, 145].  



 

 52 

123456The adaptive threshold has the goal of enhancing the model-based framework of 

residual evaluation proposed in S. X. Ding and P. M. Frank (20002) [146], by including a 

data-driven approach for parameter estimation.  The extension provides real time 

monitoring that is helpful for setting adequate corrective maintenance, and we use the 

LS-SVM as adaptive threshold for the identification of a slow developing incipient fault 

type.       

123456The first step in the process is to define the system state space. For a system with 

measurable input vector u(t) ∈ 𝑅𝑚,  and measurable output vector y(t) ∈ 𝑅𝑝, the linear 

state space model without fault, and both noise and disturbance, is 

 𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 3.34   

 
𝑦(𝑡) =    𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

 

Where, 𝑋𝑁 ∈ 𝑅
𝑁 is the unmeasurable state variable,𝑡 is the time index, and state space 

matrix A,B,C, and D determine the state space model.  

The second step in the process is to define state space with modeling uncertainty. A 

general framework for unavoidable modeling uncertainty is provided by a dynamic 

system, and it  can be described as. 

 𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑣(𝑡) + 𝐿𝑓𝑎(𝑡) 3.35 

 
𝑦(𝑡) =    𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑀𝑓𝑠 (𝑡)   

The next step in the process is to generate the residual error.  For the purpose the residual 

generator design based on analytical redundancy for fault detection has the following 

form: 

 
�̂� (𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑢(𝑡) + Υ[𝑦(𝑡) − �̂� (𝑡)] 

�̂� (𝑡) =    𝐶�̂�(𝑡) + 𝐷𝑢(𝑡) 
3.36 
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Where, 𝑦(𝑡) − �̂� (𝑡)is the residual vector; �̂� ∈ 𝑅𝑛  is the state estimate vector;  and 

�̂�(𝑡) ∈ 𝑅𝑛 is the output estimation vector [123].  Error can be defined as 𝑒(𝑡) =

𝑦 ̂(𝑡)– 𝑦(𝑡).  

By implementing Laplace transforms for (3.35 &3.36) the result is   

 

휀(𝑡) = 𝐶[𝑠𝐼𝑠 –A-HC]−1𝑒(𝑡0) + 𝐶[𝑠𝐼𝑠 – A-HC]−1𝐸𝑑(𝑠) + 𝐶[𝑠𝐼𝑠 –A-

HC]−1G𝑓𝑎(s) −𝐶 [𝑠𝐼𝑠 – A-HC]−1ΥQ𝑓𝑎(s) + Q𝑓𝑎(s) 
3.37 

Finally, Eq. (3.37) can be used to define the threshold. Where adaptive threshold is 

designed based on the factors affecting the residual error and system state in Eq.(3.37) 

which include system input, parameter variation ,modeling error, and  disturbance[169].  

Fault cause leads to  a mismatch between the behavior of the system and the free-fault 

model. Abrupt or incipient faults occur at some unknown time; the time-profile of the 

fault is given by 

‖휀(𝑡)‖ = ‖𝑦 ̂(𝑡) − 𝑦(𝑡)‖ = {
≤    𝜆  𝑖𝑓 𝑛𝑜 𝑓𝑎𝑢𝑙𝑡 𝑜𝑐𝑐𝑢𝑟𝑠          
>  𝜆 𝑖𝑓 𝑓𝑎𝑢𝑙𝑡 ℎ𝑎𝑠 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑       

 3.38 

Where 𝜆 denotes the level of threshold, and the 휀(𝑡)  denote the unknown fault evolution 

behavior. The incipient fault refers to small values of slowly developing symptoms [169]. 

In this research, the estimation error 𝑦 ̂(𝑡) is based on on-line nonlinear LS-SVM 

approximation models with adjustable parameters. From Eq.(3.37), the adaptive threshold 

considers the important vector related to the fault: let ε(s) be the threshold, 𝛾(s) be system 

input, and 𝑑 represent the disturbance, ∆(s) represent the vector composed of drifting 

parameter, 𝐿𝑠(𝑠) be the transfer function of the actual system , 𝐿𝑚(𝑠) be the transfer 

function of the model, [𝛾(𝑑)](𝑠) system input subject to disturbance. Therefore, the 

threshold can be calculated to be  

 ε(s)= [ [𝐿𝑠 (𝑑, ∆(s))](s)- 𝐿𝑚(𝑠)]× [[𝛾(𝑑)](𝑠)] 3.39 
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The equation (3, 39) can be re-formulated as 

 ε(s)= 𝛿 [d,∆(s), [𝛾(𝑑)](𝑠) Y(s)] 3.40 

Where, 𝛿 is the mapping function of threshold, which takes a variety of influencing 

factors in frequency-domain. Uncertainties due to usage, life cycle, environment, 

installation, disturbance and parameter drifting are difficult to measure in practice; they 

are usually ignored when calculating the threshold, and the adaptive threshold model is 

then defined as 

 ε(𝛿)= 𝛿 [R(s),Y(s)] 3.41 

Where R(s) is system input, Y(s)  is the model output under disturbance, and 𝛿  is the 

mapping function of the threshold.  If we know the system input, model output and the 

residual error, then LS-SVR can be used to calculate the adaptive threshold. [169]. 

123456The result is interpreted based on the dynamic limits concepts of residual signal 

when the residual signal bounds the adaptive threshold in fault condition; otherwise, it is 

normal condition [124, 149].   .    

3.5 Case Study: Capacity fault Diagnosis of Lithium-ion Battery  

123456For the case study, we consider the problem discussed in section 1.3, where the 

objective of the case study is to detect and identify the capacity loss (fade) in the lithium-

ion battery (see Figure 15) in on-line learning. Developing a model-based diagnosis 

technique for Li-ion battery requires a non-linear physical model. The physical model is 

derived from electrochemical analysis in order to capture the capacity fade under 

different operating conditions. As opposed to that, capacity loss in this research can be 

detected by substantial variation of Working Temperature (WT) and Energy Efficiency 

(EE) parameters based on data-driven approaches. For successful fault diagnosis, the 

online learning is necessary to capture the non-stationary and small fault at an early stage 

of the operation.  
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123456  

Figure 15: Lithium ion Cylindrical Battery[NASA Research Center]. 

 

123456Unlike most data-driven approaches, LS-SVM is easy to implement as on online 

learning algorithm. Further, LS-SVM can be used to monitor the Li-ion battery behavior 

entirely through observation data due to its simpler formulation, and capture an abnormal 

condition without high computational demand. Here, the fault diagnosis is based on 

residual error that represents a deviation from operation condition. Threshold is applied 

to the residual error for final fault diagnosis decision. A Fixed threshold method is 

commonly used to decide whether and where a fault has occurred, for instance, if the 

residual is greater than the threshold, the system is considered to be in fault condition. 

Otherwise, the system is considered to be in an operational condition.  However, residual 

is derived without considering existing noise, modeling error, and disturbance. These 

unexpected influences will lead to non-zero residuals, resulting in false alarms. This 

means, if the level of fixed threshold is too large, it minimizes faults detection. On the 

other hand, if the level of the fixed threshold is too small, it maximizes false alarms. To 

tackle this problem, the fixed threshold has to cope with problem of the effects of noisy 

measurement, modeling error, and different operation condition in order to avoid false 
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alarms, and incorrect fault diagnosis [141,144].  

123456It has been shown [141,144,123] the advantage of adaptive threshold that is 

adapted to fault process. The adaptive threshold improves the monitoring performance 

with increased detection sensitivity and fewer false alarms, and tackles the drawback of 

the big error when using fixed threshold if fault diagnosis [19]. 

 

 

Figure 16: Capacity Loss (Fade) Feature for Batteries No. 5, 6, and 7.  

123456The decision on the occurrence of faults in lithium-ion battery is based on 

residuals values, where the residual is larger or smaller than the level of adaptive 

threshold; the larger defines a fault state, and smaller defines an operational condition. 

Technically, Schneider and P.M. Frank [124] have shown that the effects of molding 

errors and random disturbance depend on the operating conditions of the process 

123456Figure 16 shows the schematic fault behavior of the capacity loss for the three 

different batteries at the end of the experiments. It can be observed that one type of fault, 

the monotonically incipient fault, occurred for the three batteries. Incipient faults occur in 

the batteries at initial stages of operation. Therefore, if the maintenance correction is not 
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applied early, the fault will propagate into end of life or degradation reach 1.4 Ahr.   The 

curves in Figure 16 illustrate that the faults in the three batteries start at the initial stage of 

operation, and evolve slowly over a number of cycles.  For the purpose of verifying the 

effectiveness of the adaptive threshold based on online LS-SVM for fault diagnosis, the 

performance of fault diagnosis in lithium-ion battery dataset will be compared with the 

classical fixed threshold based on off line LS-SVM.   

  5.1.1 Fixed threshold based on offline LS-SVM  

The residuals are generated in the measurement space based on off-line LS-SVM, and the 

fixed thresholds are used to decide whether the faults have occurred or not.  Figure 17 

shows the result of fault detection for Battery Nos. 5, 6, and 7, respectively. The 

experiment is run for a total of 180 cycles from initial operation (first 20 cycles) to End 

of Life (EoL) which is 30 % fade in rated capacity.  The total experiment is divided into 

seven equal time periods that occur consecutively. The fixed threshold (pink sold line) is 

chosen at 0.02 Ahr as mean of the residual deviation over a long period for fault alarm. 

The last 70 cycles (110-180) represent the end of life of three the lithium-ion batteries.  

For the fixed threshold test, the process data are divided into two situations, one situation 

containing the process capacity from 0 to 20 cycles, and other situation containing the 

capacity process from 20 cycles to the end of life. A first situation is illustrated in Figure 

17 where the residuals for Batteries No. 5, 6, and 7 (red, blue, and black sold line) are 

almost zero in the first 20 cycles, which indicates a healthy operation condition. 

However, it is shown in Figure 16 that the degradation for the three batteries occurs 

immediately after the Li-ion batteries have been operated. The reason behind this 

phenomenon is that the trivial slow incipient faults do not appear quickly on the residual 

and cannot be detected by the fixed threshold.  All the test results are based on Battery 

No. 5, 6, and 7 fault detection rates, and false alarm rates are shown in Figure 17 and 

Table 3. The second situation of capacity test in Figure 17, which starts at 20 cycles and 

continues until the end of life, will be reviewed for each battery.  
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Table 4: Offline- LS-SVM Residual based fixed Threshold for Fault detection 
Rate based on Lithium-Ion batteries No. 5, 6, and 7 

Battery Number Fault detection rates False alarm rate 

Battery No.5 20% 80% 

Battery No.6 50% 40% 

Battery No.7 8% 72% 

 

 

123456 The first experiment presents fault detection for battery No.5.  As seen in Figure 

17 (A), the residual signal is non-zero most of time after cycle 20; however, residual 

usually doesn’t exceed the fixed threshold during the fault condition (the time between 

the residual deviations from zero start at 20 cycles, and end of life at 180 cycles). 

Residual signal is bounded by fixed threshold at the 48th, 90th, 120th, and 150th cycles 

respectively, as fault condition, Notice from Table 3 that fault detection has lower rates 

and greater false alarm. Moreover, Figure 17(A) shows the responses of the fixed 

threshold to the effects of unknown inputs including modeling error, and random 

disturbance during operation of the battery.  The fixed threshold result is poor at 

detecting fault, and it is not able to cope with the change in residual behavior due to 

modeling error and random disturbance. Hence, this technique doesn’t eliminate false 

alarm when the capacity behaves in non-stationary way. An example is presented in 

Figure 17(A): the residual is not bounded by fixed threshold in fault case at cycles 60, 80, 

and 140. In addition, the effect of incipient faults becomes visible only after the large 

magnitude of fault is increased above the fixed threshold.  This can cause some 

hazardous conditions in the system.  

The second experiment includes Battery No.6. As shown in Figure 17(B) the 

residual signal is bounded by fixed threshold after cycle 20, and approximately at cycles 

21, 30, 4, 49, 61, 105, 121, 139, and 150. Also, it can be seen from Table 3 that the false 

alarm rates of experiment based on Battery No.6 using the fixed threshold are obviously 
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lower than experiments based on Battery Nos.5 and 7.  In fact, the capacity of Battery 

No. 6 degrades slowly until reaching the end of life. Furthermore, residual error of 

Batteries Nos. 5 and 6 increases rapidly and goes to maximum at 48th and 90th cycles 

resulting from self-charging during the rest period. Through the comparison of fault 

detection result was based on Battery No.6 and actual capacity performance of the 

battery, we can see that the fixed threshold has not coped with problem of effect of 

unknown inputs and is not adapted to different operation conditions of the batteries. As 

an example, the residual error is not bounded by the fixed threshold when fault has 

occurred at cycles 60, 80, 101, 115, 120, 140, and 16. Also this example highlights that 

the fixed threshold is not adaptable to different operation conditions at 48th and 90th 

cycles due to self-charging conditions of the battery. 

123456The third experiment focuses on the Battery No.7.  As shown in Figure 17(C), the 

residual signal is non-zero after cycles 20. However, the residual signal remains below its 

corresponding fixed threshold, and the residual is bounded by its threshold only at cycles 

30, 50, and 150. Comparing the result with actual performance of battery No.7 illustrates 

that the fixed threshold scheme is not only misdetection the fault most of time, but also 

producing a false alarm rate see Table 3. Also the result show that the fixed threshold is 

not capable of detecting non-stationary faults in the Lithium-Ion battery. It has been 

found that fixed threshold has to be decreased for small fade capacity in order to prevent 

false alarm for the three batteries. 
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Figure 17: Residual Error based on LS-SVM for Capacity Degradation of 
Lithium-Ion Battery Nos. 7, 5, and 6. 

 

12345 
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123456To sum up, the residual evaluation based on the fixed threshold not only fails to 

detect the incipient fault accurately, but is also unable to learn the characteristics of the 

faults. Further, the fixed threshold is incapable of handling the influences of modeling 

uncertainty, tracks non-stationary fault processes, and tends to diminish the effect of 

small incipient faults on the residual [122]. 

123456The potential solution is to consider a robust tracking technique based on the 

online moving windows (MW) with an adaptive threshold to track the lithium-ion battery 

parameters and their change due to capacity fade. 

5.1.2 Adaptive threshold based on online LS-SVM  

123456The residual error is generated in the measurement space based on moving 

windows Least Square Support Vector Machine (MWLS-SVM for short).  MWLS-SVM 

method does not only incorporate new data, but it is also efficient for tracking non-

stationary change of lithium-ion battery parameters with less computational effort. 

Moreover, the existing noise, modeling error, and different operation conditions are 

tackled by adaptive threshold to prevent a false alarm, and manage an unexpected 

uncertainty.  The adaptive threshold has the ability to identify the battery’s abnormal 

condition. 

123456The suitability of the MWLS-SVM scheme based on adaptive thresholds 

technique is illustrated through its application to the condition monitoring of three 

nonlinear cases of lithium-ion batteries, and its performance is compared with a fixed 

threshold method simultaneously. 

123456Figures18-20 presents the fault diagnosis results for Battery Nos. 5, 6, and 7, 

respectively. It can be observed that the online adaptive threshold (black sold line) 

reflects the change of residual error (red dashed line), and characteristics of influences of 

modeling error, and different operation conditions of the lithium-ion battery. Generally 

speaking, each fault in the lithium-ion battery will have a unique curve threshold to 
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identify fault and normal states.  Further, Figure18 -20 compare the fault detection 

capabilities of the adaptive threshold approach resulting from the fixed threshold (pink 

sold line).      

 

 

Figure 18: Online LS-SVM Residual Signal (red dashed) based Adaptive 
Threshold (black solid line) for Capacity Degradation of Lithium-Ion No. 5, 

Test 1. 

 

123456 It is observed from Figure18-20 that the adaptive threshold detects fault very 

quickly: the trivial incipient fault is detected at initial cycles (0-2 cycles) for all three 

cases. Whereas these faults are not detected based on the fixed threshold for battery 

number 5, and battery number 7. However, the level of the fixed threshold is too small. 

As mentioned before, the three batteries (see Figure16) experience incipient faults only 

and the severity of faults increases over the number of cycles.  The three plots prove that 

the MW-LSSVM method is not only reflecting the change of the capacity fault, but also it 

is detecting the fault correctly at each time window. For example, Figure 18 shows the 

residual error for battery No.5. The result shows the adaptive threshold and fixed 
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threshold based on MWLS-SVM perform differently. The adaptive threshold is much 

more significant, in terms of fault detection accuracy and reduction of false alarms, than 

the fixed threshold.  

 

 

Figure 19: Online LS-SVM Residual Signal (red dashed) based Adaptive 
Threshold (black solid line) for Capacity Degradation of Lithium-Ion No. 6, 

Test 2. 

 

123456To further explore the effectiveness of the MWLS-SVM based on adaptive 

threshold, we consider Battery No.7. The capacity fade always decreases monotonically, 

and it doesn’t experience a fast incipient degradation until end of life; it can be seen from 

Figure 20 that the proposed scheme is able to track the incipient fault error within 0.01 

levels, and it prevents false alarms. On the other hand, the fixed threshold fails to reflect 

the change of residual error, and produces many false alarms during the operation. 

Moreover, Battery No.6 experienced a fast incipient fault as shown in Figure19. The 

fixed threshold produces false alarms, while the online proposal fault technique based on 

adaptive threshold produces no false alarms, and identifies the fault quickly. Also the 
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curve of the adaptive threshold reflects the change of residual compared to the fixed 

threshold. 

 

Figure 20: Online LS-SVM Residual Signal (red dashed) based Adaptive 
Threshold (black solid line) for Capacity Degradation of Lithium-Ion No. 7, 

Test 3. 

 

123456It is observed from Figure18 -20 that the residual fault associated with the 

batteries No.5, 6, and 7 always remained above its fixed threshold after some time, while 

these residuals don’t exceed their fixed thresholds in the case of the off line LS-SVM (see 

Fig.17). The reason behind that is the offline LS-SVM generally failed with ambiguous 

information, e.g. tracking a different operation. The online LS-SVM, however, is capable 

of tracking the variations of the battery parameters and it reflects the time-variance of the 

system parameters. 

123456The proposed test shows the MWLS-SVM based on adaptive threshold not only 

detects the fault quickly, but also reflects the change of the residual. LS-SVM can be 

implemented easily without the need to understand the underlying physical mechanisms 
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of the system; it has low computation cost, and it has the ability to train small samples. 

The results from the Lithium-ion battery dataset prove the effectiveness of the proposed 

method for fault diagnosis compared with offline fixed threshold. 

3.6 Parameter Turning Using Particle Swarm Optimization (PSO)  

123456LS-SVM is gaining popularity among industry and the academic community. In 

fact, LS-SVM has many attractive features:  it computes the global solution, models non-

linear problem, is highly generalized, and its performance is not dependent on 

dimensionality of the input space.. In spite of the promising results, LS-SVM has a 

drawback that limits the use of LS-SVM on many application and academic fields: there 

are free parameters (the regularization parameters( 𝛾), and bandwidth of RBF 

Kernel(𝜎2)). Where the quality of LS-SVM depends on a proper setting of value of the 

free parameters to ensure a good generalization performance [150, 151, 152]. For this 

reason, parameters need to be defined by the user. Many LS-SVM studies are performed 

by an expert who has a good understanding of SVM application [56,58,63]. The biggest 

challenge encountered in setting up the LS-SVM model is how to choose appropriate 

parameter values in order to obtain a good generalization of classification.  The model 

selection of seeking an optimal parameter value is very difficult to select by trial and 

error. There are various optimization techniques; including genetic algorithms (GA), 

simulated annealing algorithms (SA), immune algorithms (IA), and particle swarm 

optimization (PSO) have been applied to tackle the model selection problem 

[155,158,159,151,160]. As suggested in [154], an optimized SVM by Particle Swarm 

Optimization (PSO) has many merits such as simple concept, higher accuracy, and faster 

convergence rate than other techniques including Genetic Algorithms (GA), Simulated 

Annealing (SA), and 10- field cross validation. Moreover, it has been successfully 

applied in many fields [156,157].  

123456Particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) is a probabilistic 

heuristic evolutionary algorithm which was originally developed to solve non-linear 
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optimization problems. PSO is derived from simulation of social behaviors, such as birds 

flocking or fish schooling in finding foods. PSO performs searches based on a population 

(called a “swarm”) of individuals (called “particles”), and each particle has a current 

position vector and a velocity vector. At each iteration, all the particles move in the 

multidimensional space in order to find the global optima [153, 155, 145]. 

123456In order to validate the performance of the PSO-LSSVM, PSO is used Mean 

Absolute Percentage Error (MAPE) to assess the quality of a solution. The performance 

metrics are shown by the following equation:  

 MAPE(i)=
1

𝐿
∑ |

100 𝑒(𝑖)

𝑟(𝑖)
|𝐿

𝑖=1  3.42 

Where e (i) Error defines deviation from desired output, L is the number of training data, 

r(i) is the length of the turning data. Eq. (3.42) serves as the estimation error index for 

identifying suitable parameters. MAPE is relatively easy to calculate, and the results are 

easily interpreted.   

123456The optimization process base on PSO is characterized in the Figure. 21 for 

Battery No.5.  The curve of fitness with 50 iterations is used to reach the convergence 

with an optimal parameter value of λ=5000, and 𝜎2= 0.01 and the minimum MAPE error 

= 0.0083. It is observed from Figure 21 that PSO converges after a little iteration (3 or 4). 

Figures 21 show that regularization of parameters has greater growth in the early 

iterations of the evolution. 
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Figure 21: Regularization Parameters, Kernel Bandwidth Parameters 
Optimization for Battery No. 5 using PSO. The Fitness Function Validation 

based on MAPE Convergence in about 2 to 3 Iterations with an Optimal  
𝝀 = 𝟓𝟎𝟎𝟎  , and 𝝈𝟐 = 𝟎. 𝟎𝟏. 

 

123456Table 2 shows the result of running the PSOLS-SVM algorithms in terms of 

statistical results and reports the solution found for regularization parameters λ, 

bandwidth parameter σ of RBF kernel, time consumption, and fitness function value of 3 

independent batteries data set. 
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Table 5: The Accuracy and Computational Time of PSO LS-SVM Performance 
Results for the Battery No. 5, 6, and 7 dataset. 

Optimization Analysis 

Model 

Parameters Performances 

𝜸 𝝈𝟐 Time MAPE 

Battery #5 PSO 5000 0.0100 42.268107 0.83 

Battery#6 PSO 5000 0.0100 55.473687 3.95 

Battery#7 PSO 5000 0.0100 41.641562 7.02 

 

 

123456Several observations can be made based on the result in Table 2. We can notice 

that all solution provided for battery No 5, 6, and 7 based on PSO LS-SVR algorithms 

present higher accuracy, e.g., Minimum Mean Absolute Percentage Error (MAPE), and 

better performance after 50 iterations. From the Table2, it can be inferred that PSO has 

fast convergence rate with small training error. Therefore, PSO LS-SVRM is most 

suitable for the fault diagnosis and failure prognosis for Lithium ion Battery.  
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Chapter 4  

Memory Particle Filter Based Least Square Support Vector Machine 

Frame Work for Failure Prognostic 

12345 

123456We combine Memory-Particle Filter and LS-SVM, addressing the “supervised 

learning” scenario, in which the physical failure model is not available. This extension of 

Particle Filter (PF) framework provides a way of handling the absence of stochastic 

physical failure model. At the same time, LS-SVM can approximate the posterior density 

effectively in cases of a small or large training sample. 6This chapter organization is as 

follows. The extension of the particle filter in literature is provided in section 4.2.1 

Review of the Sequential Monte Carlo Methods “Standard particle filter” approach is 

presented in section 4.2.2. The introduction of Memory-Particle Filter is provided in 

section 4.3. The methodology of the prognostic scheme of the proposed Memory particle 

filter for real time long –term prognostic is presented in section 4.4. Finally, the case 

study is presented where growing capacity fade on Li-ion batteries is predicted using the 

proposed algorithm in sections 4.5 and 4.6.  

4.1 Introduction 

123456Prognostics is the key motivation in developing next generation maintenance 

because it indicates in advance whether the system can attain its expected life. Prognostic 

is an emerging technique in both the research and the industrial communities, and is 

based on information collected via a sensor for estimating the Reminding Useful life 

(RUL). Prognostic has been applied to the field of maintenance in order to change the 

system logistic from state mentoring to state management. Accurate RUL allows 

optimized maintenance scheduling, and eliminates unnecessary maintenance. Moreover, 

accurate failure prognosis improves the logistics of spare parts to “Just in time,” reduces 

life cost, and increases the system safety and reliability. [85, 82, 93, 170, 171, 24].  As 
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implemented in this thesis, Memory-Particle Filter based on LSSVM framework has the 

following distinct advantages:    

1-The framework eliminates the need for a physical failure model, which leads the 

particle filter to be more obtainable in the failure prognosis field. 

2-The framework is robust when encountering a small training sample. Standard Particle 

Filter (PF) needs large sample set to properly approximate posterior density of the state 

evolution. 

3-The framework is an on-line learning algorithm, which can be updated when a new 

data sample is received, thus avoiding batch training.  

4- The framework increases the speed of the prognostic algorithms. The LS-SVM can 

help PFs identify and approximate the important sample more accurately and increase the 

computation of the weight of posterior. 

5- The framework can improve the robustness of likelihood function estimation; in 

practice the likelihood function is influenced by the noisy observation. LS-SVM is very 

effective in the presence of noise, and does not suffer from local minima. As result, LS-

SVM improves the accuracy of posterior approximation. 

4.2 Related Work 

4.2.1 Extension of Particle Filter  

123456 So far, a number of refinements to particle filters have been introduced in other 

domains, based on large training sample of past data in absence of physical dynamic 

model.  For example, Mikami et al.[ 172,173] formulated a novel  memory-based particle 

filter for tackling complex phenomena. The target application is face pose estimation, 

abrupt change, and recovery from tracking failure caused by occlusions; this method can 

handle nonlinear, time-variant and non-Markov dynamics. Panagaden and Taluder [174] 

proposed data centric approach as an extension of the particle filter to track the eye 

location of tropical cyclones by using historical data when accurate state prediction 

cannot specify; an explicit status update is not required in this technique since the prior 

distribution is prediction using historical trends. H. Chen, and H. A. Rahka [175] used the 
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same formulation to develop a particle filter  for travel time prediction by using real time 

and historical data. Moreover, K. Otsuka, et al.[176] extends the memory-based approach 

for predicting weather image pattern problems without the underlying dynamic models. 

The prediction is accomplished based on a similar sequence in historical dataset, and it 

retrieved based on the dissimilarity measure between current data and historical data in 

the future space.     

123456While in the previous applications [172,173,176,175] the memory-based particle 

filter is expected to make only short-term predictions, the proposed failure prognostic is 

based on long-term prediction for Reminding Useful Life (RUL). The main goal of the 

proposed framework is to prevent a potential failure, and improves the maintenance 

schedules by knowing how much time is left. Particle filter framework is developed for 

Lithium-ion battery prognostics that rely on an available historical data only instead of an 

accurate stochastic physical failure model. 

4.2.2 The Sequential Important sampling (SIS) algorithm or PF-based Prognosis 

 123456When considering the problem of state tracking in the failure prognosis, the 

propagation of the physical failure model and the complex system update using 

observation data is given by 

 𝑥𝑘= 𝑓𝑘(𝑥𝑘−1) + 𝑤𝑘 4.1 

 𝑧𝑘= ℎ𝑘(𝑥𝑘) + 𝑣𝑘 4.2 

Where  

𝑓𝑘 :  𝑅𝑛𝑥 × 𝑅𝑛𝜔 → 𝑅𝑛𝑥  is the state transition function, and a possibly nonlinear vector 

function. 

 𝑤𝑘 ,𝑘 ∈ 𝑁  is independent identical distribution (i.i.d) states noise vector of known 

distribution, is a possibly non-Gaussian noise. 

ℎ𝑘 :  𝑅𝑛𝑥 × 𝑅𝑛𝑣 → 𝑅𝑛𝑧   is the measurement function, and a possibly nonlinear vector 

function.  
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𝑣𝑘 ,𝑘 ∈ 𝑁    is independent identical distribution (i.i.d) measurement noise vector of 

known distribution, is a possibly non-Gaussian noise. 

 123456Bayesian learning represents a general probabilistic solution to the problem of 

dynamic state estimation  𝑥𝑘 , given the measurement data related to equipment 

degradation up to current time 𝑘. This probabilistic approach is used to estimate the 

posterior probability density function (pdf)  𝑝(𝑥𝑘 |𝑧0:𝑘) of the unobservable (target) state 

variable 𝑥𝑘 ,which is inferred based on a sequence of the noise measurements 𝑧1:𝑘 

= {𝑧1, …… . 𝑧𝑘}. The initial distribution of the system state 𝑝(𝑥0) is assumed to be 

known, and probability transition density is represented by  

𝑝(𝑥𝑘 |𝑧𝑘−1) [177,178,103,101,8]. The Chapman-Kolmogorov equation is used to infer 

the prior probability distribution of the system state  𝑥𝑘 at time 𝑘  (marginal filtering 

density); it is also called prediction step. The prior density of state at time k can be 

estimated by transition probability distribution  𝑝(𝑥𝑘 |𝑥𝑘−1) , which is given by time 

update process of equation (4.1)  

𝑝(𝑥𝑘 |𝑧1:𝑘−1) = ∫𝑝(𝑥𝑘 |𝑥𝑘−1, 𝑧1:𝑘−1) 𝑝|𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1 

=   ∫ 𝑝(𝑥𝑘 |𝑥𝑘−1) 𝑝|𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1 

4.3 

At time 𝐾, a new measurement  𝑧𝑘 is used for updating the prior distribution (update 

stage) via Bayes theorem, so the posterior distribution 𝑝(𝑥𝑘 |𝑧1:𝑘) of current state 

𝑥𝑘  is obtained as [179].     

 𝑝(𝑥𝑘 |𝑧1:𝑘) = 
𝑝(𝑧𝑘 |𝑥𝑘)𝑝(𝑥𝑘 |𝑧1:𝑘−1)  

𝑝(𝑧𝑘 |𝑧1:𝑘−1) 
 4.4 

Where 𝑝(𝑧𝑘 |𝑥𝑘) is a likelihood function defined by measurement update process of 

equation (4.2). Normalizing the constant is determined by  

 𝑝(𝑧𝑘 |𝑧1:𝑘−1) = ∫ 𝑝(𝑥𝑘 |𝑧1:𝑘−1) 𝑝(𝑧𝑘 |𝑥𝑘 )𝑑𝑥𝑘 4.5 
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123456In the sequential Bayesian filtering framework, the recurrent relation of (4.3) and 

(4.4) give the exact Bayesian solution [177,112]. However, the analytical solution of 

𝑝(𝑥𝑘 |𝑧1:𝑘) is difficult to calculate directly, since it requires the evaluation of a complex 

high-dimensional integral. [178,170,225,]. 

123456One way to overcome this challenge is to resort to Sequential Important Sampling 

(SIS) algorithm or Particle Filter (PF) method. PF is the pioneering contribution of 

Gordon (1993) over the past two decades [111] for implementing the recursive Bayesian 

filtering via Monte Carlo simulation.  The SIS is called also bootstrap filtering, the 

condensation algorithm, interaction particle approximations, and survival of the fittest 

[177,180]. The goal of PF is to estimate the posterior density function by a set of random 

samples (Particles) for 𝑥0:𝑘
𝑖   𝑖 = 1,2…… . , 𝑘,  is a set of support points, and their 

associated with weights 𝑤 𝑘
𝑖   𝑖 = 1,2…… . , 𝑘, where 𝑘  is the number of particles. Let 

{𝑥0:𝑘
𝑖  , 𝑤𝑘

𝑖 }𝑁
𝑖  represent a collection of random measurements that characterizes the 

posterior probability 𝑝(𝑥𝑘 |𝑧1:𝑘). The weight is normalized such that ∑ 𝑤𝑘
𝑖

𝑖  =1. Then, the 

joint posterior density at time 𝑘 is approximate as [180,112]  

 𝑝(𝑥𝑘 |𝑧1:𝑘) ≈ ∑ 𝑤𝑘
𝑖𝑁

𝑖=1 𝛿( 𝑥𝑘 − 𝑥𝑘
𝑖 )   ,     ∑ 𝑤𝑘

𝑖
𝑖  = 1 4.6 

The weight 𝑤𝑘
𝑖  can be recursively updated using the principle importance sampling with 

important density [225,235]. Let 𝑥𝑘
𝑖  ∼ 𝜋(𝑥), 𝑖 = 1…… . 𝑘  samples are easy to draw 

from a proposal 𝜋(. ) called an importance density, then a weight approximate to the 

density 𝑝(𝑥) is  given by: 

 𝑝(𝑥𝑘 ) ≈∑𝑤𝑘
𝑖

𝑁

𝑖=1

𝛿( 𝑥 − 𝑥𝑖) 4.7 

Where   𝑤𝑖  ∝
𝑝(𝑥𝑖)

𝜋(𝑥𝑖)
 

Where   wi is the normalized weight of the  i thparticle. Of course 𝜋(𝑥) is not 

achievable since we won‘t know the true distribution p(x)[111]. If the samples 𝑥𝑡
𝑖 were 
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drawn from an importance density 𝜋(𝑥𝑘 
𝑖 |𝑧𝑘), the weight are given by [100]. 

𝑤𝑘
𝑖  ∝

𝑝(𝑥𝑘
𝑖 |𝑧𝑘)

𝜋(𝑥𝑘 
𝑖 |𝑧𝑘)

       

The measurement 𝑧𝑘 at time instant  𝑝(𝑥1:𝑘𝑧1:𝑘) is approximated with a new set of 

samples. Given the set of weights at instant 𝑤𝑘−1
1:𝑁 , the weights at instant 𝑘 may be 

computed recursively using the weight update equation derived from the principle of 

importance sampling as[103]:   

 𝑤𝑘−1
𝑖  ∝

𝑝(𝑧𝑘|𝑥𝑘 
𝑖 )𝑝(𝑥𝑘 

𝑖 |𝑥𝑘−1 
𝑖 )

𝜋(𝑥𝑘 
𝑖 |𝑥𝑘−1 

𝑖 , 𝑧𝑘)
 4.8 

Where 𝜋(𝑥𝑘 
𝑖 |𝑥𝑘−1 

𝑖 , 𝑧𝑘) is important density, which is choosing to generate the particle. 

When the important density is choosing to be the same as the prior pdf  𝑝(𝑥𝑘 
𝑖 |𝑥𝑘−1 

𝑖 ), then 

the weight update in equation (4.8) becomes as [111,177]. 

𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 . 𝑝(𝑧𝑘|𝑥𝑘 
𝑖 ) 

When the new measurement is collected, weights are updated considering the importance 

of corresponding particles. According to the calculation of likelihood  𝑝(𝑧𝑘|𝑥𝑘 
𝑖 ) , the 

smaller error between a prediction and observation data results in large weight. See 

Table.6 for a quick review of the Particle Filter process. The weight can be updated using 

equation (4.9).  

 𝑤𝑘
𝑖 = 

𝑝(𝑧𝑘|𝑥𝑘 
𝑖 )

∑ 𝑝(𝑧𝑘|𝑥𝑘 
𝑗
)𝑁

𝑗=1

 4.9 

123456 One common problem during weight updating with SIS particle filter is 

degeneracy phenomenon [233,231]: after number iterations, the variance of important 

distribution weight increases over time and becomes progressively skewed, which results 

in all but one particle having negligible weight whose contribution is not significant to 
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the target. Therefore, the approximation of posterior 𝑝(𝑥𝑘 |𝑧1:𝑘) becomes very poor 

[112,177]. Although it is impossible to avoid the degeneracy issue [231], literature 

introduces a resampling technique that can reduce the effects of the degeneracy 

phenomenon [112].   The basic idea of resampling is to increase the number of particles 

or increase the efficiency of selecting prior density. Resampling replicates important 

weight and eliminates sample with low weight in every single step to obtain equal 

weight.   

123456PF has been applied to realize prediction for the next p steps in the absence of 

future observation.   Assuming the current set of particles and weights are a good 

approximation of the system state at time 𝑡𝑘, then the prediction of p-step ahead at time 

𝑡𝑘+1can be approximated by using the law of total probability, by  

 �̂� (�̂�𝑘+𝑝|�̂�𝑘:𝑘+𝑝−1) ≈ ∑ 𝑤𝑘+𝑝−1
𝑖𝑁

𝑖=1 �̂�(�̂�𝑘+𝑝
𝑖 |�̂�𝑘+𝑝−1

𝑖 ) 4.10 

The particles �̂�𝑘+𝑝
𝑖  are propagated in time using the physical model, while the current 

particle weights are propagated in time without any change [103].  

 

Table 5: Sampling Important Resampling Particle Filter Algorithm  

{𝑥𝑘
𝑖 , 𝑤𝑘

𝑖 }𝑖=1
𝑁 = SIR [{𝑥𝑘

𝑖 , 𝑤𝑘
𝑖 , 𝑍𝑘] 

Initialize particles: generate sample from set {𝑥0
𝑖 }𝑖=1
𝑁 form the initial distribution. 

 Prediction steps: Draw predicted sample 𝑥𝑘
𝑖  ~ 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖 ), 𝑖 = 1,… . , 𝑁 

Update stage: After measurement 𝑍𝑘 is obtained, the weight for each simple   �̌�𝑘
𝑖 =

𝑥𝑘−1
𝑖 𝑝(𝑥𝑘|𝑥𝑘−1

𝑖 ), and normalize 𝑤𝑘
𝑖 =

�̌�𝑘
𝑖

∑ �̌�𝑘
𝑖𝑁

𝑖=1

, 𝑖 = 1,… . , 𝑁. 

Resampling: initialize the Cumulative density function: 𝑐1 = 0 

For 𝑖 = 2:𝑁 

Construct CDF: 𝑐1 =  𝑐𝑖 + 𝑤𝑘
𝑖  

End For  
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Start of the CDF:𝑖 = 1 

Draw a starting point : 𝑢1~ 𝑈[0 + 𝑁
−1] 

For 𝑗 = 1:𝑁 

CDF: 𝑢1 +  𝑈 + 𝑁
−1(𝑗 − 1) 

While 𝑢𝑗 > 𝑐𝑖 

𝑖 = 𝑖 + 1 

End while  

Assign sample 𝑥𝑘
𝑗
 = 𝑥𝑘

𝑖  

 

4.3 Memory Particle Filter based on Least Square Support Vector Machine (M-PF 

SLSVM) Failure Prognosis Framework   

123456In our research the traditional particle filter cannot be directly used for failure 

prognosis, since the physical failure model is not available or it is impossible to derive an 

accurate state model. However, historical failure data of degradation of a system under 

consideration may be available, and it can be used to solve this challenge. The main goal 

of M-PF is to use the prior distribution of the degradation state in the future time by 

weight most similar in reference sequence to the recent length of degradation 

[172,172,176].  The similarity between real-time degradation and reference degradation 

patterns can be determined based on degree of closeness of their paths. 

123456This thesis presents a framework called Memory Particle Filter based on Least 

Square Support Vector Machine (M-PF SLSVM) with the aim of estimating RUL for the 

degrading lithium-ion battery. A real-time LS-SVM and a bank of historical failure data 

is used in the failure prognosis scheme, where N is the number of nonlinear incipient or 

abrupt failures described as trends of degradation.  The historical data of the failure for 

the equipment under consideration are used here to provide a pool of information that 

represents an entire state sequence including trends of degradation sequence and 

replacements of physical failure model [174,173, 175]. 
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123456The M-PF framework is analogous to human behavior for forecasting some 

events by recalling past patterns that are similar to the present pattern, and helping to 

make the decision [76,172,173]. This research covers incipient faults (slowly developing) 

and abrupt failures because incipient faults are very important in maintenance activities 

[122] and abrupt failures are often an indication of imminent breakdown of the system. 

123456The proposed M-PF LSSVM framework consists of the post-failure bank and real 

time LS-SVM; the LS-SVM here is the instantaneous fault detection of incipient or 

abrupt fault. Under healthy operation conditions, only the LS-SVM fault detection is 

active to monitor the process for any fault. Once the fault is identified and detected, then 

M-PF scheme will be activated.   

4.4 Methodology 

123456The architecture of proposed M-PF LSSVM failure prognosis consists four stages: 

bank of historical failure tracks, online real-time fault detection based on LS-SVM, 

retrieval Process, and failure prediction. The flowchart shown in Figure 22 explains the 

framework of M-PF LSSVM. At first, the fault will be diagnosed at time  𝑡𝑘 and the 

length of failure prediction steps is P.     

Remark 1: It is assumed that the bank of N historical nonlinear incipient and abrupt 

failures scenarios are available (hereafter called reference degradation), representative of 

state of evolution of the faults process during a different historical failure time. The 

reference degradation is listed all the failure, i.e.  From the start of the fault point until the 

degradation reaches predefined failure threshold.  This is subject to assumptions (1, 2, 

and 3 in the chapter I) which enable the data to use in the following steps.  

Remark 2: Collect condition monitoring data: LSSVM learning algorithms are used 

based on sliding time windows size 𝐿  in order to continuously to monitor the system.  

Each time windows of observation data are treated as an independent time series. Under 

normal operating conditions (without faults), the proposed M-PFLSSVM failure 

prognosis is the only monitoring mechanism for the system. After fault detection and 
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identification, the M-PF LSSVM begins sampling historical bank data. 

123456When a fault is detected, the states-transition and measurement updates defined in 

equation 4.1 and 4.2 are used to propose particle filter, and both of them are nonlinear in 

our application. Here 𝑧1:𝑘 denotes the real-time degradation from the past until the current 

time 𝑘 𝑧1:𝑘 ={𝑧𝑡−𝐿+1, 𝑧𝑡−𝐿+2, ……𝑧} . In the memory bank, matching reference 

degradation is denoted as 𝑦1:𝑘 ={𝑦𝑇−𝐿+1, 𝑦𝑇−𝐿+2, ……𝑦} . Note that the length of prior 

degradation is not equal due to the different life service of the system, where L denotes 

the length of the data sequence.  𝑑(𝑥, 𝑦) Represents the distance between two degradation 

patterns x, y.  The distance is defined as distance between real-time degradation and 

reference degradation that is calculated by Eq. (4.11). The result is represented as the 

degree of dissimilarity between these two degradation trajectories. 

 𝑑(𝑥, 𝑦) = 𝑧𝑘 − 𝑦𝑘
(𝑖)

 4.11 

Where 𝑦𝑘
(𝑖)

 subset holds retrieval candidate degradation similar to real time degradation 

that represents the degradation process until time k in the historical data, 𝑧𝑘 represents the 

real time degradation until time 𝑘 in measurement. Thus, dissimilarity between real time 

degradation and each of the candidate’s reference degradations can be used to choose the 

best matching trajectory [174,176].   

123456The degradation reference at time k is defined as state variable𝑥𝑘, where each 

particle corresponds to one of the complete state tracks in the reference database. The 

state variable 𝑥𝑘   is approximated by a set of particles {𝑥𝑘
𝑖 }𝑖=1
𝑁  and each 𝑥𝑘

𝑖  corresponds to 

reference historical degradation time sequence [Φ𝑟𝑒𝑓(𝜐𝑘
(𝑖)
𝑗𝑘
(𝑖)
− 𝐿 + 1)],[Φ𝑟𝑒𝑓 (𝜐𝑘

(𝑖)
𝑗𝑘
(𝑖)
−

𝐿 + 2)],… , [Φ𝑟𝑒𝑓(𝜐𝑘
(𝑖)
𝑗𝑘
(𝑖)
− 𝐿 + 1)],  represented by the tail 𝑦𝑘

(𝑖)
(𝜐𝑘
(𝑖)
, 𝑗𝑘
(𝑖)

)  where 𝜐𝑘
(𝑖)

 

denotes the index of the historical degradation (in our case it will be the temperature 24 

° 𝐶),  and  𝑗𝑘
(𝑖)

  is the index time associated with 𝜐𝑘
(𝑖)

. So each 𝑥𝑘
𝑖  is associated with 

degradation reference pattern 𝑦𝑘
(𝑖)

,  which is used to match with real-time degradation 
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sequence and calculate the weight of each particle  𝑥𝑘 based on dissimilarity between real 

time and the historical degradation [175,174].   

123456When the incipient or abrupt fault is detected by online LSSVM; the output of 

LSSVM is used as real time degradation from the past to the current time. The update of 

measurement degradation data form 𝑧𝑘−1 to 𝑧𝑘 is conducted by shifting the data, moving 

windows one step ahead. In this way, the particle or the reference degradation patterns 

update from 𝑥𝑘−1 to 𝑥𝑘 by shifting data sequence, one step ahead along the data reference 

of historical incipient failure scenarios. For each particle, the corresponding degradation 

pattern  𝑦𝑘
(𝑖)

 can be derived according to the relationship with 𝑥𝑘
(𝑖)

 represented by 

 𝑦𝑘 = ℎ𝑘( 𝑥𝑘). The associated weight 𝑤𝑘
(𝑖)

 is calculated as the likelihood (𝑧𝑘|𝑥𝑘
(𝑖)

 ), 

which is computed by comparing dissimilarity between real time and reference 

degradation  𝑝(𝑧𝑘 − 𝑦𝑘
(𝑖)).  In our research, we assume the likelihood function to be a 

normal distribution 𝑁(0,1). Therefore, the distribution of reference degradation on the 

next time interval 𝑘 + 1 can be derived according to the relationship represented 

as {𝑦𝑘+1
(𝑖) , 𝑤𝑘

(𝑖)}𝑖=1
𝑁  , and the associated weight 𝑤𝑘

(𝑖) can be calculated as the 

likelihood 𝑝(𝑧𝑘⃓𝑥𝑡
𝑖). For multi-step ahead with prediction horizon 𝑘 + 𝑝, the propagation 

along reference degradation time sequence on dataset can be iteratively conducted, but 

the same weight updated by the current measurement is maintained for each particle. So 

the estimating the Remaining Useful life (RUL) is predicted as  {𝑦𝑘+𝑝
(𝑖) , 𝑤𝑘

(𝑖)}𝑖=1
𝑁 [111]. 

Figure 22 and Table 4 show schematics of computation of the proposed framework of 

Memory-Particle Filter based Least Square Support Vector Machine in general case.  The 

procedure for this is as follows: 
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Figure 22: The Flow Chart of the Memory Particle Filter based Data-Driven Approach. 
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 Step 1: Initialization 

123456After the incipient or abrupt fault type is detected during the real-time operation 

condition, the M-PF prognostic framework becomes active. Each particle 𝑥0
(𝑖)

 represents 

complete historical failure scenarios in the database. The process is initialized by 

randomly selecting particle from failure in historical database index  𝜐0
(𝑖)

 temperature 

24°𝐶 (for Lithium-ion battery case study) and the corresponding 𝑗0
(𝑖)

 time in the historical 

data set. The real –time degradation sequence of system and reference degradation in the 

database are  Φ𝑟𝑒𝑓 (𝜐𝑘
(𝑖)
𝑗𝑘
(𝑖)

), and Φ𝑅𝑒𝑎𝑙(𝜐𝑘
(𝑖)
𝑗𝑘
(𝑖)
).  

 

Step 2: Production Process   

123456Unlike Sequential Important Sampling (SIS), where each particle is updated by a 

sampling from the prior distribution estimation [177,178,177], in the proposed 

framework, each particle corresponds to one of the complete failure scenarios in the 

reference database, and each particle is propagated along historical failure reference by 

extending the time index 𝑗𝑡
(𝑖)

 one step ahead. At every time step L, it is followed by 

recognizing the valid particle. The valid particle provides a sufficient time interval buffer 

considering the prediction horizontal p. whereas the invalid particles reference cannot 

provide sufficient prediction horizontal 𝑝, or distance between particle and real time 

degradation measurement is too far [172]. The valid particle with ability to predict P-step 

horizon is noted as Ψ𝑘for  for 𝑘𝑡ℎ time interval [174]. Overview and explanation for the 

steps of M-PF LS-SVM algorithms is presented in Table.4.  

Step 3: Measurement Updating Process  

123456Compared to the conventional SIS particle filter, the most recent measurements 

are used to update the weight. The new updating weight is used to resample the particles 

[177,178]. In the proposed algorithm, the measurement update process is used to 

calculate the weights of all valid particles inΨ𝑘 . For each valid particle𝑥𝑖, the weight is 

calculated by the likelihood function with input of corresponding degradation pattern  
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𝑦𝑘
(𝑖)

 and real time degradation 𝑧𝑘. Likelihood function relies on 𝐸𝑞. (4.11) on the 

computing the distance between real-time degradation and reference degradation 

[175,174].  Afterward, all particles are sorted in descending order corresponding to their 

weight, and particles are divided into two categories. The first category includes the top 

N particles, representing the sequence that is more similar to real time degradation or 

particle with more weight; the second category or the result (𝑁 − 𝑁𝑡ℎ) includes the 

invalid particle with negligible weight, or particles Which cannot provide sufficient 

prediction horizon[174,172].  

Step 4: Resampling Process 

 123456The SIS particle filters have inherent limitation in the degeneracy phenomenon or 

less diversity caused by sampling from discrete proposal distribution.  Resampling is 

required in the SIS algorithms to tackle this limitation [178,181,177]. However, the 

presented algorithm will suffer from the degeneracy problem, too. In general, this issue 

can be overcome by increasing the number of particles, or by efficiently selecting 

important samples such as Sampling importance Resampling (SIR). SIR is employed to 

eliminate a sample with small weight and multiple samples with high weight [178]. 

Traditional threshold-based resampling algorithms include stratified, residual, branching 

correcting, and systematic resampling. They result in nondeterministic threshold, are time 

consuming, and increase complexity [182]. We propose deterministic resampling to 

reduce complexity and save computation for real- time. We refer to partial resampling 

instead of the traditional resampling technique (PR)[182]. 

123456In the resampling process, the rest (𝑁 − 𝑁𝑡ℎ) particles in the second category with 

negligible weight will be re-selected from reference historical degradation database.  

During the resampling process, only the historical data that have degradation pattern 

similar to real time degradation are selected to increase the efficiency of the failure 

propagation. Consequently, the historical degradation pattern with small dissimilarity to 

real time degradation has a large chance of being selected in resampling process 
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[175,182].  

Step 5: Predicting RUL Scheme 

123456To generate long-term prediction of the system state, the set of particles and 

weight { 𝒳𝑘
𝑖  ,𝓌𝑘

𝑖}𝑖=1
𝑁   which define the current posterior degradation states estimation are 

used as initial condition. Each particle is individually propagated into the future by 

recursively applying state transition model Eq.(4.1), until the value of each particle is 

bounded by the predefined failure threshold. Standard PF propagation models have been 

discussed in [103,100]. The memory method is used for short-term forecasting because 

the short-term prediction tends to be similar to the state in the recent past. To tackle the 

challenge of long-term prediction, we will use many historical failure trajectories. 

Moreover, the partial resampling process will be used to evaluate and select the best 

matching of historical failure sequence to real-time degradation [175,172]. The Long-

term forecasting of the RUL is conducted by iteratively shifting the time index along the 

corresponding reference degradation; at the same time, each particle maintains the same 

weight until no new measurement is obtained. Consequently, aggregating the result from 

all particles can estimate the Remaining Useful Life (RUL) distribution. The expected 

average point of the failure is the point where extrapolation particles are intersected with 

the failure threshold, or the end of its serviceable life. Therefore, the RUL prediction is 

calculated as weight average of failure time for each particle [175,182].  

Table 4: Real –Time Reliability Prediction for Complex System Based on Memory-

Particle and LS-SVM.  

[{𝑥𝑘
(𝑖)}𝑘=1

𝑁 = 𝑀𝑃𝐹[{𝑥𝑘=1
(𝑖) }𝑖=1

𝑁  , 𝑧𝑘, Φ] 

Where 𝑧𝑘 is real-ime Φ  Set of  degradation related to the equipment monitor that is used 

as reference. 

Initialize the particle  𝑥𝑘:{ 𝑥0
𝑖 |𝑥0

(𝑖)
=Φ𝑟𝑒𝑓(𝜐0

(𝑖)
, 𝑗0
(𝑖)
, 𝑖 ∈ [1: 𝑁]} 

𝐹𝑜𝑟 𝑖 = 1:𝑁      

 𝜐0
(𝑖)
= 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡 𝑏𝑎𝑠𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚[1,2, … , 𝜐] 
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 𝑗0
(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑡𝑖𝑚𝑒 𝑖𝑛𝑑𝑒𝑥 𝑏𝑎𝑠𝑒𝑑 𝜐0

(𝑖), 𝑖 ∈ [1: 𝑁] 

Step 1: Time update  

Identify valid particle with respect to prediction horizon p  

δ𝑘 = {𝑖|𝑗0
(𝑖) ≤ Ψ

𝜐𝑘
(𝑖) − 𝑝, 𝑖 ∈ [1:𝑁]  

Propagate the particle by shifting time windows𝑥𝑘
(𝑖)~  𝑝(𝑥𝑘

(𝑖)|𝑥𝑘−1
(𝑖)

) 

𝜐𝑘
(𝑖)
= 𝜐𝑘−1

(𝑖)
, 𝑗𝑘−1
(𝑖) + 1, 𝑖 ∈ [1:𝑁] 

Step 2: Measurement update  

𝑊𝑘
(𝑖)
∝ 𝑝(𝑧𝑘|𝑥𝑘

(𝑖)) = 𝑝𝑒𝑘(𝑧𝑘 − 𝑦𝑘
(𝑖)), 𝑖 ∈ δ𝑘 

Select 𝑁𝑡ℎ number of particles with least weight values  

For 𝑗 = 1:𝑁𝑡ℎ 

𝑥𝑘
(𝑗)
= 𝑥𝑘

(𝑖), 𝑤𝑘
(𝑗)

=𝑤𝑘
(𝑖), 𝑤ℎ𝑒𝑛 𝑖 = arg𝑚𝑎𝑥𝑖∈δ𝑘𝑊𝑘

(𝑖)
, δ𝑘= δ𝑘 − {𝑖} 

End for 

Step 3: Resampling 

For 𝑗 = 𝑁𝑡ℎ + 1:𝑁 

Calculate the probability of selecting each historical selection𝛾𝑘
𝑛   

𝛾𝑘
𝑛 = 𝑝𝑒𝑘(𝑧𝑘 −Φ𝑅𝑒𝑎𝑙(𝑛, 𝜓𝑘

𝑛), when 𝜓𝑘
𝑛 = arg𝑚𝑎𝑥𝐹∈[𝐿,Ψ𝑛,p] (𝑧𝑘 −Φ𝑅𝑒𝑎𝑙(𝑛, 𝐹), 𝑛 ∈ [1: 𝜐] 

𝜐𝑘
(𝑗)
= 𝑟𝑎𝑛𝑑𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑓𝑟𝑜𝑚 [ 1,2, … 𝜐] acceding to the probability [𝛾𝑘

1, 𝛾𝑘
2, …. 

𝛾𝑘
𝜐] 

𝑥𝑘
(𝑖)

=Φ𝑟𝑒𝑓(𝜐𝑘
(𝑗)
, 𝜓𝑘

𝜐𝑘
(𝑗)

), 𝑤𝑘
(𝑗)

=𝛾𝑡
𝜐𝑘
(𝑗)

 

Step 4: Prediction 

 Draw  𝑥𝑘+𝑝
(𝑖) ~ 𝑝(𝑥𝑘+𝑝

(𝑖) |𝑥𝑘
(𝑖)), 𝑖 ∈ [1: 𝑁] 

 𝑥𝑘+𝑝 =∑𝑊𝑘
(𝑖)
,

𝑁

𝑖=1

𝑥𝑘+𝑝
(𝑖)

∑ 𝑊𝑘
(𝑖)𝑁

=1

⁄  
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4.5 Case Study: Remaining Useful life Estimation of Incipient Capacity Failure for 

Lithium-ion battery  

123456Battery data set from NASA public data repository with a growing capacity fade 

is chosen as real-world test case (see section 3.5). The objective of the model is to predict 

the capacity fade of a lithium-ion battery during operation. As was previously mentioned, 

M-PF prognostic is based on an incipient failure scenario only to ensure the lithium-ion 

battery continues its function safely throughout its life operation.  

123456The Li-ion Battery is an electrochemical system. Therefore, the battery will have 

different characteristics under different operation conditions; also the battery doesn’t 

undergo a complete charge process or a complete discharge process in actual operation, 

and the capacity of the battery tends to deteriorate after a certain time [10]. Technically, 

the degradation of the lithium-ion battery is impacted by many factors such as current, 

voltage, and temperature due to electrochemical structure and the nature of the lithium-

ion mechanism. Unlike traditional empirical data-driven approaches for prediction RUL 

capacity fades, the framework in this research uses Energy Efficiency (EE) and Working 

Temperature (WT). These physical quantities are first formulated to reduce dimensions of 

input space and reduce computational complexity.  Also EE and WT are used to extract 

incipient fault growth patterns from the experiment data of Lithium-ion battery.  

123456Developing a Memory-Particle Filter (M-PF) based prognostic for Li-ion battery 

doesn’t require the physical failure model from electrochemical analysis real-time, multi-

step failure prediction under different operation conditions. The presented method uses 

real-time and historical data to replace the physical failure model.  

123456By analyzing the different groups of Li-ion batteries dataset, we have found that 

only the first groups have significant degradation features because this group is examined 

under normal conditions [1]. Figure.23 shows degradation trends of capacity fade for the 

first group that includes battery Nos. 5, 6, and 7. Also we can notice the capacity fade 
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features evolve over a number of cycles, and capacity fade decreases monotonically. For 

completeness of the information and physical description of the Lithium-ion battery can 

be found [2, 3, 6, 8, 11, 14,18].  

 

 

Figure 23: Capacity Degradation at Ambient Temperature 24 for Battery No. 5, 
6, and 7. The Feature Correlates (monotonically) decreasing with Number of 

Cycles. 

123456 

123456Figure 23 indicates that the degradation of the different battery increases rapidly 

during the 22th and 90th cycles, resulting from self-charging during the rest period. This 

effect is related to the increase in the available capacity of the battery; the explanation for 

this effect is related to the electrochemical structure and nature of the lithium-ion. During 

use of Li-ion batteries, some chemical reactions begin and these chemical products 

appear near the two electrodes; this retards the internal chemical reactions; therefore, the 

battery needs a short rest period to melt these chemical products [10]. The capacity will 
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gradually decrease with age, heavy usage, and elevated self-charge and temperature. For 

safety reasons, the experiment was stopped when capacity was below End-of-Life (EoF) 

threshold; it is accepted that a 30 % of the rated capacity is EoF threshold or 1.4 A.h. It 

can be observed in Figure 23 that the degradation on battery No. 5 is similar to the one in 

battery No.6. To illustrate the feasibility and efficiency of M-PF for failure prognosis, the 

batteries No. 5, 6 and 7 are selected to evaluate our proposed method, and No. 6 will be 

used for comparison with another time series technique.  

123456In this research, the prognostic is fulfilled at two different starting points 

respectively (i.e., cycle 55 and cycle 75 after the fault identification), which are selected 

to validate the prediction results. The implementation of the M-PF based on LS-SVM 

begins with determining the number of particles from historical data; the number of 

particles is chosen based on the degradation features of batteries and similar test 

condition with the temperature 24. Therefore, we select the Batteries No.05, No.06, 

No.07, No.18, No.54, No.46, No.47, and No.48 as 8 particles to be propagated to failure 

time.  

123456The End of Life (EoL) of the battery No. 05 is about 124 cycles; the EoL of the 

battery No. 6 is 112 cycles, and EoL of the battery No.7 is 166 cycles as found in [1]. The 

results of the method are presented in Figures 23-25 in the form of three plots for battery 

Nos. 5, 6, and 7, respectively.  

123456Fig.24 shows the testing result when M-PF and LS-SVM are combined using the 

proposed fusion prognostic framework. The framework shows prediction at 55 cycles 

(blue star). The prediction error is 4 cycles before the true failure time, and the estimation 

error is 3.23. Also Fig.24 shows the prediction result at 75 (red asterisk) with known 

capacity data. The prediction error is 2cycle and estimation error is 1.62. The reason for a 

higher prediction is that the capacity degradation for battery No. 5 is very similar to the 

No.6. Therefore, the estimation RUL is better not only in prediction accuracy but also in 

estimation of small errors.  
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Figure 24: The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 5 

with M-PF Based on LS-SVM model, Exparment 1. 

 

 

 

Figure 25: The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 6 
with M-PF Based on LS-SVM model, Exparment 2. 

12345 
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123456Figure 25 shows the remaining useful life estimation result (the battery No.6) at 

55 and 75 cycles starting points, respectfully. The prediction results are much closer to 

the real Time of Failure(ToF)value than the output of the experiment based on battery 

No. 5, and 7. The prediction errors are 0.45 and 0   away from the true failure because the 

accuracy of the M-PF depends on the presence of similar failure track in the database. In 

fact, capacity degradation for battery No.6 is very similar to battery No. 5, and 7. As 

result, the accuracy of RUL estimation leverages close to real value and the estimate 

errors are significantly small (see Table 6).  

 

 

Figure 26: . The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 7 
with M-PF Based on LS-SVM model, Exparment 3. 

 

123456Finally, battery No. 7 is considered, and the estimation results are shown in 

Figure. 26. One can observe From Figure. 26 and Table 6 that the estimation accuracy 

with proposal methods compares unfavorably with experiment based on Battery No. 5, 
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and 6. For example, the prediction error is increased by 3.62 from the true failure at 55 

cycles, and the prediction error is increased 2.4 from true value cycles at 75 cycles. The 

reason for this bad result is that capacity degradation for Battery No.7 shows a different 

degradation feature compared with Battery No. 6, No.5, and other particles available in 

the dataset. 

Table 6: Summary of the Prediction Comparison for Battery No.5, No.6,and 
No.7 

45Battery No. 

RUL Comparison  

True RUL 
Predicted 

RUL 

Error 

(cycle) 

Estimation 

error (%) 

Battery #5 
At cycle 55 124 120 4 3.23 

At cycle 75 124 122 2 1.62 

Battery#6 
At cycle 55 112 111.55 <1 0.45 

At cycle 75 112 112     0 0 

Battery#7 
At cycle 55 166 160 6 3.62 

At cycle 75 166 162 4 2.4 

6123456 

6123456In conclusion, a data-driven prognostic framework based on Memory-Particle 

Filter inference framework and LS-SVM is presented. This framework is able to use real 

time observation and historical data without an accurate physical failure model to predict 

the RUL for a complex system. The proposal scheme is tested on growth of fade capacity 

of lithium-ion battery as a real-world test case. It is shown that the test scheme works 

well and is able to predict RUL. Validation of failure prognosis is an important issue and 

center stage in Condition Based Maintenance (CBM).  In Chapter 5, the performance of 

the proposal prognostic scheme is compared with Recurrent Neural Networks (RNN), 

and Backpropagation (BB) Neural Network based prognosis approach. 
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4.6 Case Study: Remaining Useful life Estimation of Abrupt Capacity Failure for 

Lithium-ion battery 

123456We have described an algorithm for predicting Remaining Useful Life (RUL) 

based on incipient fault. Incipient fault is represented as deviation that occurs slowly and 

develops over time. The importance of the incipient fault prognosis can be found in the 

reduction of the total cost of maintenance, which is realized by avoiding equipment 

failure and maximizing the service-life. In general situations, the particle filter can 

estimate RUL based on incipient fault as well, but the outcome of the PF will be 

erroneous if there is abrupt failure because it has a very short and fast life time. Abrupt 

failure is usually modeled as a step-like deviation in the parameter, and it is often an 

indication of imminent breakdown of the system, as shown in Figure 27. Therefore, fast 

and early predictions are the main objectives of the abrupt failures prognosis to avoid 

catastrophic consequences.   

 

Figure 27: Abrupt Failure of Lithium-Ion Cylindrical Battery for Batteries 47 
and 48 at Temperature  4°C. 
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5123456 The physical failure model cannot produces short-term prediction of RUL 

because of its limited resolution in term of observation and computation; also, traditional 

data driven approaches are severely limited by the complexity of the dynamic failure 

precipitation [1]. However, the M-PF relies on the assumption that the more similar 

current state sequence and historical state sequence degradation are, the more future 

degradation will continue to be similar. When there is a smaller minimum distance 

between real time and historical state, larger weight is given to particles. Therefore, the 

M-PF not only can predict the gradual monotonic fault, but also can predict the abrupt 

failure effectively. 

 

Figure 28: Flow chart of Memory-Particle filter of abrupt failure prognosis   

 

123456 The capacity degradation in Figure 27 shows a feature of capacity fade time: 

capacity is mostly consumed during periods of accumulative damage (after the capacity 
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reaches end of life), while the period of initial fades propagation is relatively short.  

Therefore, accurate failure prognosis is based on a fast fault tracking of the battery 

condition, and accurately measures the speed of a parameter’s deviation from normal 

operation.  Once the fault is detected, the fault diagnosis is used to isolate the abrupt 

fault. Each isolation estimator corresponds to one possible type of incipient or abrupt 

failure (there are only two different types of fault in the datasets in our case).  Figure 28 

shows the flow of our failure prognosis based on M-PF for failure prognsis. 

 

Figure 29: The RUL Prediction Result at 5 and 8 Cycles for the Battery No. 47 
with M-PF Based on LS-SVM model,Test 1. 

 

123456 In this research, Memory-Particle filter (M-PF) is proposed to predict the abrupt 

failure if it is difficult to derive a physical model from the first principal; the proposed 

algorithm selects particles from a historical database bank and propagates particles using 

the historical data sequence.  In the M-PF, we develop a Partial Resampling (PR) strategy 

to update particles and to replace invalid or low weight particles in order to provide a 
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sequence similar to real time degradation.  RUL process for abrupt failure consists of five 

steps: initialization, time update, measurement update, partial resampling, and RUL 

prediction. The details for each step are described in section 4.4.  However, the RUL for 

abrupt failure has two aspects: one is that predicting system state in the near-term future 

tends to be similar to the system state in the recent past. The other is that not only 

historical data should be similar, but also its trend in pattern change should be close 

[176]. 

 

Figure 30: The RUL Prediction Result at 5 and 8 Cycles for the Battery No. 48 
with M-PF Based on LS-SVM model, Test 2. 

 

123456 The case study considered is the same as section 1.5 concerning failure data in 

the capacity fade for Lithium-ion battery.  Since the capacity of Batteries Nos. 47 and 48 

(see Figure 27) decreases suddenly, and their lifetimes are short (abrupt failure), the data 

for both batteries are used for training the Memory-Particle Filter based on Least Square 
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Support Vector Machine. The prognostic is fulfilled at two different starting points 

respectively (i.e., cycle 5 and cycle 8 after the fault identification), and were arbitrarily 

selected to validate the prediction results. The implementation of the M-PF begins with 

determining the number of particles from historical data; the number of particles is 

chosen based on the degradation features of batteries. Based on this criterion, we selected 

the Batteries No.44, No.45, No.46, No.47 No.48, No.49, No.50, No.51, No.52, and No.53 

as 10 particles to be propagated to failure time. The results are shown in Figure 29 and 30 

and Table 7. 

Table 7: Summary of the Prediction Comparison for Battery No47, and No.48 
for Abrupt Failure 

Battery No. 

RUL Comparison  

True RUL 
Predicted 

RUL 

Error 

(cycle) 

Estimatio

n error 

(%) 

Battery 

#47 

At cycle 5 19 17 2 10.6 

At cycle 8 19 18 1 5.3 

Battery#48 
At cycle 5 16 4 4 25 

At cycle 8 16 16 0 0 

 

 

123456 Figure 29 shows the M-PFLSSVM predictions based on Battery No.47 at 5 

cycles (blue star), and at 8 cycles (red asterisk). The prediction error is 2 cycles away 

from the true failure. Also the figure shows the prediction result at 8 cycles. The 

prediction error is 1 cycle away from the true failure. Although the RUL estimates are not 

too far off the real value, the RUL is not significant because the capacity of battery 

degrades sharply and has a short life time. Therefore, quick action is needed to avoid 

unexpected consequences.  The M-PF LSSVM based Battery No.48 performs less 

accurately in tracking the battery capacity than No. 47 at cycles 5, but The M-PF LSSVM 
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gives better result at cycles 8 as shown in Figure 30 and Table 7. Finally, the experiment 

results shows that Memory-Particle Filter based on Least Square Support Vector Machine 

can effectively predict not only incipient fault with multiple-step RUL, but also abrupt 

failure based on current states to determine the end of life for Lithium-ion battery. 
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Chapter 5  

Performance Metrics and Prognostic 

 

 

123456While diagnosis evaluation has gained extensive research over the last century; 

there is no standard definition of acceptable standard evaluation for failure prognosis.  In 

fact, many prognostic research projects have designed algorithms rather than evaluating 

their performance. Since the goal of this research is to reduce of the occurrence of 

unscheduled maintenance, it is necessary to justify accepting and deploying the proposed 

predictor. This research relies on A Saxena et al., [185,186] to evaluate the proposal 

result; these references present a set of metrics to assess the different prognostics 

algorithms, where modification may be needed to make them more appropriate when 

they are used for long-term failure prediction. Four types of errors are presented in 

section 5.1: Absolute Error (AE), Mean Squared Error (MSE) Mean Absolute Percentage 

Error (MAPE), and Standard Deviation (SD).  To measure the effectiveness of the 

presented method, the framework is validated and compared with Backpropagation 

Neural Network (BNN), and Recurrent Neural Network (RNN) on the Lithium-ion 

battery data set in section 5.2. The effect of number of particles is discussed in section 

5.3. Summary of research contribution is highlighted in section 5.4. Finally, future 

research and the conclusion are outlined in chapter 6 and 6.1 respectively. 

5.1 Basic Prognostic Metrics  

5.1.1 Accuracy of the Model 

 

123456 In order to measure the effectiveness of the proposed method, three accuracy 

performance measures are employed for failure prognostics: Absolute Error (AE),Mean 

Squared Error (MSE), and Mean Absolute Percentage Error (MAPE).  

1234   Absolute Error (AE) is defined as the basic measure of how close predicted failure 
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times are to actual failure time. AE Is limited by the fact that existing variability and 

outliers don’t reflect in the performance.   

 𝐴𝐸 = ⃓�̂� − 𝑦⃓ 5.1 

�̂� is the of predict failure time, and 𝑦 actual failure. 

 An alternative to Absolute Error is Mean Squared Error (MSE). MSE is the average 

square difference between the predicted failure time and actual Time to Failure (ToF) Eq. 

(5.2).    

 𝑀𝑆𝐸 =
1

𝑛 
∑(�̂�

𝑛

𝑖=1

− 𝑦)2 5.2 

Finally, Mean Absolute Percentage Error (MAPE) is the average absolute percentage 

error between the failure predicted and actual ToF, MAPE takes into account the 

difference between the errors observed close to End of Life (EoL), and errors are found 

far from EoL (Eq. 5.3) 

 
𝑀𝐴𝑃𝐸 =

1

𝑛 
∑⃓

�̂� − 𝑦
𝑦
𝑦𝑡⁄
⃓

𝑛

𝑖=1

 

 

5.3 

 

𝑦𝑡 is the total number of predict failure time. 

5.1.2 Precision Based Metrics 

123456 An alternative to the previous metrics that determine the exact deviation of the 

prediction from the actual failure, precision metrics focus on measuring the uncertainty 

associated with prediction and measure the narrowness of the interval in which the 

prediction lies.  

Standard deviation is a measure that is used to quantify the amount of variability between 

the actual EoL and the predicted value Eq. (4.15). 
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𝑆 = √

∑ (⃓�̂� − 𝑦⃓𝑚)2𝑛
𝑖=1

𝑛 − 1
 

5.4 

 Where m is the sample mean of error, and 𝑛 number of values (the population) 

5.2 Performance Comparison 

123456 The proposal Memory-Particle Filter based on LS-SVM prognosis scheme is 

compared with various popular non-linear data-driven approaches such as 

Backpropagation Neural Network (BNN) and Recurrent Neural Network (RNN).  

Artificial Neural Networks (NNs) have been extensively implemented in prognostic 

problems. The common advantage of applying ANNs is that they do not require prior 

knowledge to capture complex phenomena, and they are able to identify and model non-

linearity problems, [176,187,179].  

 5.2.1 Backpropagation Neural Network (BP) 

123456 BP is the most popular algorithm to train neural networks. A typical BP always 

has an input layer, an output layer, and at least one hidden layer. Strictly speaking, there 

is no limit on the number of hidden layers. However, one or two Layers are sufficient to 

handle most problems. BP is a method for gradient descent algorithms to minimize the 

mean square error between the output of a multilayer neural network with respect to its 

weight and actual output. Sigmoid function is commonly used as a continuous 

differentiable nonlinear function (Eq.5.5).  

 

If  the BP gives a wrong answer, then the weights are corrected so that the error is 

lessened, so future responses of the BP are more likely to be correct [106]. last mothed 

for comparison is Recurrent Neural network (RNN). 

      𝑓(𝑡) = (1 + 𝑒−𝑡)−1 5.5 
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5.2.2 Recurrent Neural Network (RNN) 

 

123456 RNN has been widely used in previous studies for real-time failure prognosis. 

There are several methods for structure training of RNN. We propose RNN for estimation 

of the Remaining Useful Life (RUL). Here, the structure of RNN includes each hidden 

unit connected to all input units, and output unit is connected to each hidden unit. RNN 

structure is similar to feedforward algorithms, except that each layer has a recurrent 

connection that allows the RNN to have a dynamic response to time series. its dynamic 

characteristics rely on gradient-descent method which computes a real time to complex 

nonlinear system[106,30]. 

 

123456 The end of life predictors are trained based on Energy Efficiency (EE), and Work 

Temperature (WT). Battery No. 6 is selected to evaluate our proposed method of 

estimating Reminding Useful Life (RUL), where the true of End of Life (EoL) of No.6 is 

112 cycles. Further, the Framework M-PF LSSVM performs system failure prognosis via 

8 particles that are employed for P-steps prediction (see section 4.5). Each algorithm is 

used to predict the RUL at 55 and 75 which require approximately 57 to 40 cycles to 

learn the degradation trend; algorithms extrapolate the RUL until the end-of-life is 

reached, i.e. capacity fade prediction reaches predefined failure threshold which is 30 % 

fade in rated capacity, or 1.4 ampere hour.  

 

123456 The result shown in Figures 31-33 are obtained when Backpropagation (BP),M-

PF LSSVM , and Recurrent Neural Networks (RNN) are triggered at 55 and 75 cycles. 

Figure 31 shows the testing result when Memory-Particle Filter and LSSVM are fused at 

55 and 75 cycles. It can be seen from the Figure 31 and Table 8 that the proposed 

framework provides a more accurate prediction for the End of Life(EoL) than both BP 

and RNN (see figure 32 and 33). 
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Figure 31: The Remaining Useful Life (RUL )Prediction Result at 55 and 75 
Cycles for the Battery No. 7 with M-PF Based on LS-SVM model. 

 

123456 The Memory-Particle Filter based on Least Square Support Vector machine (M-

PF LSSVM) decreases RUL error from  0.6 to  0 cycles, which is smaller than the error 

associated with the BP predictor (3 to  2 cycles early) and the RNN predictor ( 12 to 1 

cycles early from real value).  RUL estimation at cycles 55 provides the worst 

performance for the three methods, and the RNN produces significant deviation in the 

prediction accuracy as 12 cycles early from true value, because there is significant self-

charge regeneration at 22, and 50 cycles. In fact, the iterative RUL prediction is based on 

the precise one-step forecasting. Technically, the error of one-step RUL forecasting will 

accumulate with the iterative process and the error accumulation will lead to a sharp 

accuracy decline in the final prediction results [21]. Therefore, a dynamic training model 

such as Bayesian filter is required to tackle this problem. However, this issue is less valid 
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as the prediction horizon increases with an increase in training data. Forecasting for BP 

and RNN restarts at 75 cycles. It can be observed from Figures 32-33 that RUL can 

achieve better predictions at 75 cycles (2, and 1 early cycles) then prediction at 55 cycles.  

 

 

 

Figure 32: The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 6 
with Backpropagation Neural Network model (BP). 

 

 

2123456 In order to evaluate the prediction at 55 and 75 cycles of classical BP, RNN and 

M-PLLSSVM predictors, the result is evaluated based on four metrics. The Absolute 

Error (AE), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and 

standard deviation (SD) are produced by using the three methods summarized in Table 8. 
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As demonstrated in the table, the least forecasting error is produced by the proposed M-

PLLSSVM methods. Such result demonstrates that mean squared error value deceases 

from 0.000380 to 0.000270 (28.95% decrease), standard deviation decreases from 

0.017883 to 0.016471 (7.9 % decrease), when prediction increases from 55 to 75 cycles.  

The AR, MAPE, SD, and MSE associated with three methods demonstrate that RNN 

produces higher errors at 55 cycles compared to both M-PLLSSVM and BP methods. 

However, when the prediction horizon increases from 55 to 75, the results shows that 

RNN captures the change of degradation and MSE decreases from 0.002181 to 0.000752 

(65.6 %) as other metrics. 

 

 

Figure 33: The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 6 
with Recurrent Neural network model (RNN) 

2123456 PB produces slightly higher prediction errors then RNN at cycles 75; for 

instance, MSE is 0.000819 at cycle 75, which is 8.2 % higher error than RNN when the 
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prediction horizon increases from 55 to 75 cycles. Finally, to investigate the maximum 

deviation between prediction and true End of Life (EoF), the Absolute Percentage Error 

(MAPE) and Mean Squared Error (MSE. Further, to evaluate the uncertainty of 

prediction and measure the narrowness of the forecasting, Standard deviation(S) is used 

by three algorithms. The results in Table 8 clearly demonstrate that M-PLLSSVM still 

produces the best performance. The M-PLLSSVM not only provides good accuracy to 

the RUL, but can predict the failure time distribution more precisely.   

 

Table 8: Performance Evaluation for All Three Test Algorithms for Predictions 
Made Within Prediction Horizon at 55 and 75 Cycles. 

Battery No.6 

At 

cycl

e 

 RUL Error criteria 

MAPE 
MSE S 

 
Real 

Cycles 

Predictiv

e 

Err

or 

Backpropa

gation (BP) 

55 3.106341 
0.001567 0.032326 

 112 
109 0.022

988 

75 1.862969 
0.000819 0.025783 

 112 
110 0.007

645 

Recurrent 

Neural 

network 

55 3.800592 
0.002181 0.051006 

 112 
100 0.063

527 

75 1.764026 
0.000752 0.025454 

 112 
111 0.003

525 

M-PF 

LSSVM 

55 1.248762 
0.000380 0.017883 

 112 
11.4 0.000

011 

75 1.173662 
0.000270 0.016471 

 112 
112 0.000

000 
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5.3 Effect of number particles (Sensitivity Analysis) 

123456 Technically, the accuracy of a particle filter depends on the number of the 

particles that are used to propagate the tracking states. The number of particles represents 

a tradeoff between computational cost and performance of failure prognosis[178]. In this 

research, historical failure data for a complex system are used to provide particles that 

represent an entire state sequence. The basic idea is  that similar data sequences usually 

have similar trends [176,173]. Figures.34, 35, and 36 compare the RUL prediction error 

based on battery No.5 with different numbers of particles. Figure.34 shows the Memory-

Particle Filter based on Least Square Support Vector machine (M-PF LSSVM) prediction 

at 55cycles (blue star) and at 75 cycles (red asterisk) with 23 particles. In this case, we 

repeat some particles that closely track to battery No.5 from the database. From Fig. 34 

and Table 9, the estimation of RUL improves in both accuracy and precision with the 

inclusion of more particles. As more failure data become available, the particles begin to 

converge to this failure track in the database that is similar to real-time.   

123456 We examine the M-PF LSSVM using 3 and 15 particles; note that while the  3 

particles used  in the Figure 35 are similar to current degradation in Battery No. 5 

(incipient failure ),  the 15 particles used in the Figure 36 are different (abrupt failure). 

From Figures. 35 and 36 and Table 9, one can see that the estimation accuracy with M-PF 

LSSVM is improved, as more of the similar particles to current failure track become 

available.  For example, in Figure 36 the RUL prediction is not as good as the M-PF 

LSSVM approach based on 23 and 3 particles. The prediction error is 17 cycles at 55 and 

15 cycles at 75, and the estimation of RUL is too far off from the actual failure.  As 

shown in Figures above, the RUL improves in both accuracy and precision with the 

inclusion of particles most similar to observed faults. 
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Figure 34: The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 5 
with M-PF Based on LS-SVM model with (23 particles),Test 1.  3456  

 

 

Figure 35: The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 5 
with M-PF Based on LS-SVM model with (3 particles),Test 2. 345
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Figure 36: The RUL Prediction Result at 55 and 75 Cycles for the Battery No. 5 
with M-PF Based on LS-SVM model with (15 particles),Test 3. 

 

Table 9: Summary of the Prediction RUL Comparison based on Different  
Number of Particles. 

Battery No. 

RUL Comparison  

True RUL 
Predicted 

RUL 

Error 

(cycle) 

Estimation 

error (%) 

Battery #5 

with N=23 

At cycle 55 124 123.3 0.7 0.57 

At cycle 75 124 123 1 0.80 

Battery#5 

with N=15 

At cycle 55 124 107 17 13.8 

At cycle 75 124 109 15 12.09 

Battery#5 

with N=3 

At cycle 55 124 119 5 4.03 

At cycle 75 124 119 4 3.23 
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Chapter 6  

Conclusions and Recommendations 

 

123456This thesis has produced a number of contributions to the Prognostic Health 

Management (PHM) field. 

 

6.1 Summary of finding and Research Contribution 

6.1.1 Methodologies to reduce multidimensional physical characteristics of lithium-

ion batteries 

 

 These methodologies include a step by step procedure to provide an estimation of 

battery capacity based on Energy Efficiency (EE) and battery Working 

Temperature (WT). These methodologies reduce multidimensional physical 

quantities that include current, voltage, usage duration, battery temperature, and 

ambient temperature. 

 Energy Efficiency (EE) and battery Working Temperature (WT) don’t only 

preserve all the physical quantities (current, time, temperature and voltage) of the 

battery, but also reduce dimensions of data to two variables, and consequently 

reduce computational complexity. 

6.1.2 An efficient data-driven for fault diagnosis  

 

 An efficient incipient fault framework based on online Least Square Support 

Vector Machine (LS-SVM) is presented. The efficiency of incipient fault 

detection schemes is based on adaptive threshold, because the threshold can be 

updated by meaning of incremental and decremental algorithms whenever a new 

sample becomes available. Moreover, the adaptive threshold is robust for tracking 

slow small faults and prevents  false alarms, and manages an unexpected 

uncertainty due to modeling error, and different operating conditions. The 
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adaptive threshold technique is proposed to overcome the drawback of fixed 

threshold, and decide whether and where a fault has occurred.  

 The functionality of the algorithms has been illustrated through the Li-ion battery 

data set that is obtained from NASA public data repository. The result confirms 

that the proposed algorithms have demonstrated better accuracy compared to 

existing fault diagnosis algorithms/techniques with fixed threshold.     

 

 6.1.3 A Novel data-driven Real-time Prognostic scheme for estimation Remaining 

Useful Life (RUL) using particle filtering with a non-existing physical failure model 

 

 Memory Particle Filter (M-PF) based on Least Square Support Vector Machine 

(LS-SVM) for failure prognosis is presented. This algorithm is proposed to 

predict incipient failure for lithium-ion batteries system with the goal of 

supporting maintenance engineer’s decision making. In our framework, the 

particle filter is applicable when the physical failure model is not available or 

cannot be specified; M-PF is based on real-time and historical data, where the 

historical database replaces the physical failure model. 

 The framework is entirely data-driven. First, LS-SVM is used to approximate the 

posterior density, and avoid loss diversity among the samples.  Partial Resampling 

(PR) technique replaced the traditional resampling technique in the standard 

Particle Filter.  PR is used to address the degeneracy challenge by eliminating 

particle with small weight and multiple samples with high weight. PR 

deterministic resampling reduces complexity and enables real-time computation. 

The experiment results demonstrate that M-PF LSSVM framework can increase 

the efficiency for failure prognosis and can maintain higher prediction accuracy. 

At the same time, the proposed approach provides the fast computation time and 

real time to ensure that the method can be used in real-time applications. 
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6.2 Recommendations for Further research 

The data-driven framework has been successfully tested and partially validated by 

applying it to the case of diagnostic and prognostic technique in the Lithium-ion 

battery. However, there is still room for improvement in many directions: 

1- A novel data-model fusion based on Memory Particle Filter and standard 

Particle Filter may develop to improve the accuracy of the system state 

forecasting. This framework strategically integrates the strengths of the data-

driven Memory particle Filter (M-PF) method and model based standard 

Particle Filter in failure prognostics for complex systems. Moreover, this 

framework can overcome the limitations of both data-driven M-PF Filter 

method and model based PF such as quality of history data, and updating 

parameter during the failure prediction. As a result, the prognostic model will 

become more precise, and transparent.  

2- Since the failure prognosis projects the current amount of degradation in the 

future using a prediction model in the absence of the future measurement, the 

Remaining Useful Life (RUL) estimation is associated with large-grain 

propagated uncertainty. M-PF is built based on Bayesian theory, which 

provides a way to model current amount of degradation as random variable, so 

the level of uncertainty can be properly managed and utilized through the 

framework. To improve the accuracy and precision of the failure prognosis 

based on M-PF. In future work, we will consider the uncertainty 

representation ability of the proposed failure prediction, and other important 

attributes, such as confident intervals, can be computed to provide 

probabilistic decision function.  
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