164 research outputs found

    Closed-loop Bayesian Semantic Data Fusion for Collaborative Human-Autonomy Target Search

    Full text link
    In search applications, autonomous unmanned vehicles must be able to efficiently reacquire and localize mobile targets that can remain out of view for long periods of time in large spaces. As such, all available information sources must be actively leveraged -- including imprecise but readily available semantic observations provided by humans. To achieve this, this work develops and validates a novel collaborative human-machine sensing solution for dynamic target search. Our approach uses continuous partially observable Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit imperfect detection data from onboard sensors, as well as semantic natural language observations that can be specifically requested from human sensors. The key innovation is a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with semantic observations in continuous dynamic state spaces. The approach is demonstrated and validated with a real human-robot team engaged in dynamic indoor target search and capture scenarios on a custom testbed.Comment: Final version accepted and submitted to 2018 FUSION Conference (Cambridge, UK, July 2018

    Mixed Logical Inference and Probabilistic Planning for Robots in Unreliable Worlds

    Get PDF
    Abstract—Deployment of robots in practical domains poses key knowledge representation and reasoning challenges. Robots need to represent and reason with incomplete domain knowl-edge, acquiring and using sensor inputs based on need and availability. This paper presents an architecture that exploits the complementary strengths of declarative programming and probabilistic graphical models as a step towards addressing these challenges. Answer Set Prolog (ASP), a declarative language, is used to represent, and perform inference with, incomplete domain knowledge, including default information that holds in all but a few exceptional situations. A hierarchy of partially observable Markov decision processes (POMDPs) probabilistically models the uncertainty in sensor input processing and navigation. Non-monotonic logical inference in ASP is used to generate a multi-nomial prior for probabilistic state estimation with the hierarchy of POMDPs. It is also used with historical data to construct a Beta (meta) density model of priors for metareasoning and early termination of trials when appropriate. Robots equipped with this architecture automatically tailor sensor input processing and navigation to tasks at hand, revising existing knowledge using information extracted from sensor inputs. The architecture is empirically evaluated in simulation and on a mobile robot visually localizing objects in indoor domains. I

    REBA: A Refinement-Based Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture for robots that combines the complementary strengths of probabilistic graphical models and declarative programming to represent and reason with logic-based and probabilistic descriptions of uncertainty and domain knowledge. An action language is extended to support non-boolean fluents and non-deterministic causal laws. This action language is used to describe tightly-coupled transition diagrams at two levels of granularity, with a fine-resolution transition diagram defined as a refinement of a coarse-resolution transition diagram of the domain. The coarse-resolution system description, and a history that includes (prioritized) defaults, are translated into an Answer Set Prolog (ASP) program. For any given goal, inference in the ASP program provides a plan of abstract actions. To implement each such abstract action, the robot automatically zooms to the part of the fine-resolution transition diagram relevant to this action. A probabilistic representation of the uncertainty in sensing and actuation is then included in this zoomed fine-resolution system description, and used to construct a partially observable Markov decision process (POMDP). The policy obtained by solving the POMDP is invoked repeatedly to implement the abstract action as a sequence of concrete actions, with the corresponding observations being recorded in the coarse-resolution history and used for subsequent reasoning. The architecture is evaluated in simulation and on a mobile robot moving objects in an indoor domain, to show that it supports reasoning with violation of defaults, noisy observations and unreliable actions, in complex domains.Comment: 72 pages, 14 figure

    Partially Observable Monte Carlo Planning with state variable constraints for mobile robot navigation

    Get PDF
    Autonomous mobile robots employed in industrial applications often operate in complex and uncertain environments. In this paper we propose an approach based on an extension of Partially Observable Monte Carlo Planning (POMCP) for robot velocity regulation in industrial-like environments characterized by uncertain motion difficulties. The velocity selected by POMCP is used by a standard engine controller which deals with path planning. This two-layer approach allows POMCP to exploit prior knowledge on the relationships between task similarities to improve performance in terms of time spent to traverse a path with obstacles. We also propose three measures to support human-understanding of the strategy used by POMCP to improve the performance. The overall architecture is tested on a Turtlebot3 in two environments, a rectangular path and a realistic production line in a research lab. Tests performed on a C++ simulator confirm the capability of the proposed approach to profitably use prior knowledge, achieving a performance improvement from 0.7% to 3.1% depending on the complexity of the path. Experiments on a Unity simulator show that the proposed two-layer approach outperforms also single-layer approaches based only on the engine controller (i.e., without the POMCP layer). In this case the performance improvement is up to 37% comparing to a state-of-the-art deep reinforcement learning engine controller, and up to 51% comparing to the standard ROS engine controller. Finally, experiments in a real-world testing arena confirm the possibility to run the approach on real robots

    Mapping, planning and exploration with Pose SLAM

    Get PDF
    This thesis reports research on mapping, path planning, and autonomous exploration. These are classical problems in robotics, typically studied independently, and here we link such problems by framing them within a common SLAM approach, adopting Pose SLAM as the basic state estimation machinery. The main contribution of this thesis is an approach that allows a mobile robot to plan a path using the map it builds with Pose SLAM and to select the appropriate actions to autonomously construct this map. Pose SLAM is the variant of SLAM where only the robot trajectory is estimated and where landmarks are only used to produce relative constraints between robot poses. In Pose SLAM, observations come in the form of relative-motion measurements between robot poses. With regards to extending the original Pose SLAM formulation, this thesis studies the computation of such measurements when they are obtained with stereo cameras and develops the appropriate noise propagation models for such case. Furthermore, the initial formulation of Pose SLAM assumes poses in SE(2) and in this thesis we extend this formulation to SE(3), parameterizing rotations either with Euler angles and quaternions. We also introduce a loop closure test that exploits the information from the filter using an independent measure of information content between poses. In the application domain, we present a technique to process the 3D volumetric maps obtained with this SLAM methodology, but with laser range scanning as the sensor modality, to derive traversability maps. Aside from these extensions to Pose SLAM, the core contribution of the thesis is an approach for path planning that exploits the modeled uncertainties in Pose SLAM to search for the path in the pose graph with the lowest accumulated robot pose uncertainty, i.e., the path that allows the robot to navigate to a given goal with the least probability of becoming lost. An added advantage of the proposed path planning approach is that since Pose SLAM is agnostic with respect to the sensor modalities used, it can be used in different environments and with different robots, and since the original pose graph may come from a previous mapping session, the paths stored in the map already satisfy constraints not easy modeled in the robot controller, such as the existence of restricted regions, or the right of way along paths. The proposed path planning methodology has been extensively tested both in simulation and with a real outdoor robot. Our path planning approach is adequate for scenarios where a robot is initially guided during map construction, but autonomous during execution. For other scenarios in which more autonomy is required, the robot should be able to explore the environment without any supervision. The second core contribution of this thesis is an autonomous exploration method that complements the aforementioned path planning strategy. The method selects the appropriate actions to drive the robot so as to maximize coverage and at the same time minimize localization and map uncertainties. An occupancy grid is maintained for the sole purpose of guaranteeing coverage. A significant advantage of the method is that since the grid is only computed to hypothesize entropy reduction of candidate map posteriors, it can be computed at a very coarse resolution since it is not used to maintain neither the robot localization estimate, nor the structure of the environment. Our technique evaluates two types of actions: exploratory actions and place revisiting actions. Action decisions are made based on entropy reduction estimates. By maintaining a Pose SLAM estimate at run time, the technique allows to replan trajectories online should significant change in the Pose SLAM estimate be detected. The proposed exploration strategy was tested in a common publicly available dataset comparing favorably against frontier based exploratio

    Active Perception by Interaction with Other Agents in a Predictive Coding Framework: Application to Internet of Things Environment

    Get PDF
    Predicting the state of an agent\u27s partially-observable environment is a problem of interest in many domains. Typically in the real world, the environment consists of multiple agents, not necessarily working towards a common goal. Though the goal and sensory observation for each agent is unique, one agent might have acquired some knowledge that may benefit the other. In essence, the knowledge base regarding the environment is distributed among the agents. An agent can sample this distributed knowledge base by communicating with other agents. Since an agent is not storing the entire knowledge base, its model can be small and its inference can be efficient and fault-tolerant. However, the agent needs to learn -- when, with whom and what -- to communicate (in general interact) under different situations.This dissertation presents an agent model that actively and selectively communicates with other agents to predict the state of its environment efficiently. Communication is a challenge when the internal models of other agents is unknown and unobservable. The proposed agent learns communication policies as mappings from its belief state to when, with whom and what to communicate. The policies are learned using predictive coding in an online manner, without any reinforcement. The proposed agent model is evaluated on widely-studied applications, such as human activity recognition from multimodal, multisource and heterogeneous sensor data, and transferring knowledge across sensor networks. In the applications, either each sensor or each sensor network is assumed to be monitored by an agent. The recognition accuracy on benchmark datasets is comparable to the state-of-the-art, even though our model has significantly fewer parameters and infers the state in a localized manner. The learned policy reduces number of communications. The agent is tolerant to communication failures and can recognize the reliability of each agent from its communication messages. To the best of our knowledge, this is the first work on learning communication policies by an agent for predicting the state of its environment
    • …
    corecore