
Partially Observable Monte Carlo Planning with State

Variable Constraints for Mobile Robot Navigation

Alberto Castellini∗, Enrico Marchesini, Alessandro Farinelli

Department of Computer Science, University of Verona, Verona, Italy,
alberto.castellini@univr.it, enrico.marchesini@univr.it, alessandro.farinellin@univr.it

∗corresponding author
Final version available at

https://www.sciencedirect.com/science/article/pii/S095219762100230X

Abstract

Autonomous mobile robots employed in industrial applications often operate

in complex and uncertain environments. In this paper we propose an approach

based on an extension of Partially Observable Monte Carlo Planning (POMCP)

for robot velocity regulation in industrial-like environments characterized by un-

certain motion difficulties. The velocity selected by POMCP is used by a standard

engine controller which deals with path planning. This two-layer approach allows

POMCP to exploit prior knowledge on the relationships between task similarities

to improve performance in terms of time spent to traverse a path with obstacles.

We also propose three measures to support human-understanding of the strategy

used by POMCP to improve the performance. The overall architecture is tested

on a Turtlebot3 in two environments, a rectangular path and a realistic production

line in a research lab. Tests performed on a C++ simulator confirm the capability

of the proposed approach to profitably use prior knowledge, achieving a perfor-

mance improvement from 0.7% to 3.1% depending on the complexity of the path.

Experiments on a Unity simulator show that the proposed two-layer approach

outperforms also single-layer approaches based only on the engine controller (i.e.,

without the POMCP layer). In this case the performance improvement is up to

37% comparing to a state-of-the-art deep reinforcement learning engine controller,

and up to 51% comparing to the standard ROS engine controller. Finally, experi-

ments in a real-world testing arena confirm the possibility to run the approach on

real robots.

Keywords: Planning under uncertainty, POMDP, POMCP, Mobile robot
planning, Industry 4.0, Explainable planning

Preprint submitted to Engineering Applications of Artificial Intelligence August 17, 2021

1. Introduction1

Planning under uncertainty is a key task for long-term robot auton-2

omy. Despite recent advances of intelligent robotic systems in several con-3

texts, such as, industrial robots, service robots, patrolling, search and res-4

cue (Farinelli et al., 2017; Parker et al., 2016; Bevacqua et al., 2015; Orlan-5

dini et al., 2013; Basilico et al., 2012), the results of recent robot challenges6

(Krotkov et al., 2017; Correll et al., 2018) show that improvements are still7

needed to achieve a reliable management of uncertainty in unstructured en-8

vironments. The risk introduced by uncertainty in these contexts can, in9

fact, make traditional planning methods impractical (Lanighan and Grupen,10

2019). Novel approaches are needed to overcome these issues enabling robots11

to make effective decisions while managing risk (Wang et al., 2018; Laroche12

et al., 2019; Simao and Spaan, 2019).13

In several application domains robots are required to execute series of14

tasks having similar properties. A typical example in Industry 4.0 concerns15

mobile robots involved in warehouse pick-and-place operations (Caccavale16

and Finzi, 2019). They traverse aisles possibly populated by people, other17

robots and obstacles with the goal of moving objects from one place of the18

warehouse to another. Tasks are represented by movements across aisles19

and a task property of interest is the traffic level in each aisle, that char-20

acterizes the difficulty of the aisle and of the entire path traversed by the21

robot, which affects the movement capability of the robot. Interestingly,22

some aisles have similar physical properties that make their difficulties also23

similar to each other. Another example is represented by flying drones in-24

volved in autonomous package delivery (Grippa et al., 2019). Their goal is to25

deliver as many packages as possible in the shortest possible time and using a26

fixed amount of energy due to battery limitations (Chen et al., 2019). Tasks27

in this context are movements through flight sections and a task property is28

the energy requirement of each flight section, which could depend on wind29

direction, presence of buildings and other features. Also in this case, simi-30

larities between pairs of flight sections can be identified, which characterize31

the similarities between the energy demand of these flight sections. Simi-32

lar applications concern exploration and surveillance using unmanned aerial33

vehicles (UAV), where control strategies based on model predictive control34

(Altan and Hacolu, 2020), metaheuristic optimization (Altan and Hacolu,35

2

2020) and other approaches (e.g., neural networks) have been integrated in36

the flight control for path planning. We instead focus on the integration of a37

probabilistic planner based on Markov decision processes. Another domain38

concerns aquatic drones involved in water monitoring, that traverse path seg-39

ments with properties depending on water flow and waves (Castellini et al.,40

2020a).41

The similarity structure of tasks involved in robot planning can provide42

useful information for improving planning performance. However, in the43

majority of cases this structure is only partially known in advance. In the44

warehouse pick-and-place application domain, for instance, it is typical to45

know in advance that two aisles have similar degree of difficulty (due to their46

position in the warehouse and physical properties) but this information could47

be available only for a subset of aisles or it could be uncertain, namely, only a48

probability that two aisles have the same degree of difficulty could be known.49

In this paper we investigate the impact of prior knowledge about task sim-50

ilarity structure on planning performance of real mobile robotic platforms.51

We focus, in particular, on a problem concerning velocity regulation of a52

mobile robot following a pre-specified path in an environment with uncer-53

tain obstacle densities. The robot has to reach the end of the path in the54

shortest possible time and to avoid collisions with obstacles in the path to55

guarantee safety. This problem is used to show that the proposed approach56

can be applied to real robotic platforms. Similar problems were proposed in57

the literature to test planning methods in mobile robots (Yang et al., 2014).58

Real-world applications of this case study concern, for instance, safety man-59

agement in Industry 4.0.60

In our case study the path that has to be traveled is divided into seg-61

ments and subsegments, and every segment is characterized by a difficulty62

that depends on the density of obstacles in the segment. A time penalty is63

imposed to the robot each time it collides. The real difficulty of segments64

is unknown to the robot in advance, and the robot has to reach the end65

of the path as quickly as possible, hence it should move slowly in difficult66

segments to avoid collisions, and fast in simple segments to minimize the67

traveling time. Since it is known in advance that some pairs of segments68

can (probabilistically) have the same difficulty (e.g., because they have simi-69

lar properties), the information about (unknown) segment difficulties can be70

collected as the robot moves and then propagated to subsequent segments71

to improve planning performance. The problem has therefore a sequential72

structure, in which difficulties of previously traveled segments are used to73

3

infer the difficulty of subsequent segments known to have similar difficulty.74

We use Partially Observable Markov Decision Processes (POMDP) (Rus-75

sell and Norvig, 2003; Kaelbling et al., 1998) to formalize the problem. This76

framework allows to model dynamical processes in uncertain environments77

and to synthesize optimal policies in this context. To overcome scalability is-78

sues (Papadimitriou and Tsitsiklis, 1987), we use Partially Observable Monte79

Carlo Planning (POMCP) (Silver and Veness, 2010) as a solver. It is an ap-80

proximate online algorithm (Ross et al., 2008) able to synthesize the planning81

policy step-by-step and without representing the overall state space. Then,82

we consider the POMCP extension proposed in (Castellini et al., 2019) to83

introduce and exploit prior knowledge about relationships between segment84

difficulties. In particular, we represent these relationships by probabilistic85

state-variable constraints using Markov Random Fields (MRFs). This prior86

knowledge yields a performance improvement in terms of expected return87

that we show to be related to the improvement of two external measures,88

namely, the distance between the real state and the belief, and the mu-89

tual information between segment difficulty and action taken in the segment.90

These two measures are defined and analyzed across the paper together with91

other informative measures that support the interpretability of the approach92

and the related results (Anjomshoae et al., 2019; Langley et al., 2017; Zhang93

et al., 2017). The novel contribution we propose in this work is the integra-94

tion of the POMCP-based planner presented in (Castellini et al., 2019) into95

a real robotic task. This is not trivial and requires a specific formalization96

of the problem. We provide a two-layer control architecture in which the97

upper layer uses an extension of Partially Observable Monte Carlo Planning98

(POMCP) for regulating the velocity of a mobile robot, and the lower layer99

uses a standard engine controller for dealing with path planning. The inte-100

gration of the two layers, with POMCP set on top of the engine controller and101

used to control high-level aspects of robot motion, is also not trivial. The102

proposed architecture allows to i) devise a probabilistically optimal strat-103

egy based on POMDPs for regulating the robot velocity, ii) integrate prior104

knowledge about the environment, iii) improve the efficiency of standard en-105

gine controllers for path planning, e.g., we present results using a Deep RL106

controller in the lower level of the architecture but a standard ROS controller107

can also be used. The interaction between the two controllers is explained in108

the following and the overall software/hardware architecture described. The109

results on simulated and a real Turtlebot are fully documented and compar-110

isons with state-of-the-art control approaches are performed.111

4

The proposed methodology is evaluated in four ways. First, we compute112

a statistical analysis of performance considering a large number of instances113

of our problem having different configurations of segment difficulties. This114

analysis is performed on two environments, namely, a rectangular path and115

a path that reproduces a real industrial environment. Experiments are per-116

formed using the standard C++ simulator provided by the POMCP soft-117

ware1. Such simulator does not consider the physical properties of the en-118

vironment (e.g., frictions, etc.). Transition and observation models of the119

POMDP are learned from tests performed on Unity (Juliani et al., 2018), a120

simulation tool increasingly used in recent robotics works (Marchesini and121

Farinelli, 2020a; Yoon et al., 2018), since it represents a viable and faster122

alternative to other simulation tools such as Gazebo2. The native simula-123

tion time speed-up introduced by Unity (up to ×100 times) enables quick124

data collection. Our experiments show that the planning approach based on125

prior knowledge (Castellini et al., 2019) outperforms the standard POMCP126

approach (Silver and Veness, 2010). The improvement is small (i.e., 0.7%) in127

the simple rectangular path and larger (i.e., 3.1%) in the more complex ICE128

path. Second, we perform tests on Unity simulators of the rectangular and in-129

dustrial environments using a TurtleBot3 3 as an agent. In these experiments130

the simulator considers the physical properties of the environment. We use a131

state-of-the-art engine controller (Marchesini and Farinelli, 2020b) for path132

planning and collision avoidance in single subsegments, a localization algo-133

rithm for improving robot localization, inter-process communication between134

planner and robot, and other tools explained in the next sections. These tests135

show that our approach has good performance in physics-grounded simula-136

tions (OpenAI et al., 2018) of real-world environments. Third, we actually137

deploy our method in a real-world testing arena reproducing the rectangular138

path environment and using a real TurtleBot3 as an agent. As expected, tests139

(displayed in an attached video) are faithful reproductions of the evaluations140

performed on Unity simulators. They therefore confirm the results obtained141

in simulations and the possibility to apply the two-layer planning approach142

to real-world robotic platforms. As a fourth experimental test, we provide a143

comparative analysis of performance between the proposed methodology (us-144

1http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html
2http://gazebosim.org/
3https://www.turtlebot.com/

5

ing POMCP for velocity regulation and a deep reinforcement learning - DRL145

- engine controller for path planning) and state-of-the-art engine controllers146

(without the POMCP layer). This analysis confirms that the proposed ap-147

proach achieves a performance improvement up to 37% comparing to the148

DRL engine controller. The performance improvement reaches even 51% if149

the standard ROS4 engine controller is used. In summary, analyzing advan-150

tages and disadvantages of the proposed approach we observe that it has151

an increased complexity than standard controllers, because it introduces a152

new POMCP-based layer for velocity regulation, but it also achieves higher153

planning performance exploiting prior knowledge about task relationships.154

The main contributions of this paper to the state-of-the-art can be then155

summarized in the following four points:156

• we formalize a problem of mobile robot velocity regulation in industrial-157

like environments, considering uncertain motion difficulties (e.g., due158

to clutterness or presence of moving obstacles) and prior knowledge159

about similarities in segment difficulties;160

• we propose a two-layer approach in which an extended version of POMCP161

regulates the robot velocity considering prior knowledge about segment162

similarities, and a standard engine controller performs path planning163

and operates the robot considering the velocity selected by POMCP;164

• we deploy the methodology on a real Turtlebot and on a Unity sim-165

ulator of the Turtlebot, showing that it outperforms state-of-the-art166

controllers when prior knowledge about segment similarity is consid-167

ered by POMCP;168

• we introduce three measures that support the explainability of results169

achieved by the extended POMCP, providing insight about the rela-170

tionship between prior knowledge and performance improvement.171

The rest of the paper is organized as follows. Section 2 presents related172

work. In Section 3 we define our problem and in Section 4 formalize it as a173

POMDP. Section 5 describes the three versions of POMCP used to synthesize174

the policy and Section 6 defines three useful measures for explaining perfor-175

mance differences among policies. In Section 7 we provide full details on the176

4https://www.ros.org/

6

experimental setup of simulated and real-world tests, and describe the main177

elements of the proposed architecture. Then, in Section 8 the three evaluation178

methods are described and results are analyzed providing in-depth interpre-179

tation of the internal mechanisms that allow the performance improvement.180

Finally, Section 9 draws conclusions and indicates future directions.181

2. Related work182

Planning under uncertainty dates back to the seventies (Feldman and183

Sproull, 1977; Russell and Norvig, 2003) when aspects of mathematical deci-184

sion theory started to be incorporated into the predominant symbolic problem-185

solving techniques. The interest in this topic subsequently grew (Ratering186

and Gini, 1995; Kaelbling et al., 1998; Boutilier et al., 1999; Zhang et al.,187

2015; Godoy et al., 2016), since planning under uncertainty is a critical task188

for autonomous and intelligent agents based on currently available data-189

driven technologies. The most recent developments mainly concern the use of190

point-based value iteration (Spaan and Spaan, 2004; Spaan and Vlassis, 2005;191

Wang et al., 2019), Monte Carlo Tree Search (MCTS) based solvers (Coulom,192

2006; Kocsis and Szepesvári, 2006; Browne et al., 2012; Beretta et al., 2019)193

and Deep Reinforcement Learning (DRL) methods (Silver et al., 2016, 2017;194

Sutton and Barto, 2018; Leonetti et al., 2016). The first two approaches aim195

to deal with very large state spaces and the third to learn the policy only196

from observations and without using a model of the environment dynamics.197

Prior knowledge, in different forms, is used in the literature to improve198

robot navigation (Luperto et al., 2019). However, we have found only a few199

approximate (Hauskrecht, 2000) and online (Ross et al., 2008) planning ap-200

proaches based on POMCP, such as (Amato and Oliehoek, 2015; Lee et al.,201

2018), in which prior knowledge about the domain is used to improve plan-202

ning performance and scale to large problem instances. The main differences203

between those approaches and our work are threefold. First, we use a differ-204

ent method to introduce prior knowledge (Castellini et al., 2019). Namely,205

in our method constraints on the state space are used to refine the belief206

space and increase performance (in terms of shorter execution time), while207

in (Amato and Oliehoek, 2015) the multiagent structure of a problem is used208

to decompose the value function into a set of overlapping factors that en-209

able scalability and performance improvements in POMCP. In (Lee et al.,210

2018) cost-constraints are used to solve problems with multiple objectives.211

Our method to define prior knowledge is also different to that of factored212

7

POMDPs (Boutilier and Poole, 1996), since we constrain states instead of213

the transition model, hence the prior knowledge is expressed in a different214

way. Second, we focus on an original problem related to obstacle avoidance215

in industrial-like environments. Our problem has a strong sequential na-216

ture in the way in which the robot explores the environment and transfers217

the acquired knowledge to future exploration (see problem formalization in218

Sections 3 and 4). In particular, our goal is only velocity regulation, a high-219

level planning problem, and we delegate the low-level navigation (i.e., path220

planning) to a state-of-the-art controller (Marchesini and Farinelli, 2020b)221

realized with a DRL approach (i.e., Rainbow (Hessel et al., 2018)) using222

standard setup for navigation problems (Marchesini et al., 2021; Tai et al.,223

2017). This controller is independent to the POMCP planner used for ve-224

locity regulation and it was selected for its simplicity to directly control and225

modify the linear speed of the Turtlebot. The literature on obstacle avoid-226

ance for general robotic applications is very wide (Steccanella et al., 2020;227

Kumar and Kumar, 2018; Correll et al., 2018) but, to the best of our knowl-228

edge, it does not contain techniques as that proposed in this work. Third,229

one of our main goals is to actually deploy the proposed approach on a real230

robotic platform, therefore we provide in-depth technical details about how231

the planner is integrated with the engine controller, the localization module232

and all other modules to make the approach work in practice. A preliminary233

work towards the integration of the methodology introduced in (Castellini234

et al., 2019) into robotic platforms is (Castellini et al., 2020b) where the235

POMCP extension based on MRF prior knowledge is applied to a real-world236

implementation of the rocksample problem. Here we significantly extend237

that preliminary work providing an improved methodology and a thorough238

experimental setting with several tests performed also on an industrial-like239

environment.240

Robotics literature provides extensions of motion planning techniques for241

velocity regulation (Huang, 2009; Zhong et al., 2014; Gopalakrishnan et al.,242

2017), but these methods have completely different assumptions than our243

method. In particular, these approaches use the position and velocity of244

the robot in the 2D environment as an input, and aim to plan the overall245

movement of the robot (e.g., direction, velocity and acceleration) considering246

also positions and velocities of moving obstacles in the 2D environment. To247

solve this problem they use potential field methods (Koren and Borenstein,248

1991), velocity obstacles (Fiorini and Shiller, 1998) and other standard mo-249

tion planning methods. We instead assume a hierarchical organization of250

8

the problem where the (low-level) motion planning is solved by a standard251

controller and the (high-level) velocity regulation is solved by POMCP. The252

baseline controllers for motion planning to which we compare are the DRL253

controller presented in (Marchesini and Farinelli, 2020b) and the standard254

ROS navigation stack5. Velocity regulation is, however, only an example of255

possible high-level decisions that can be taken by our approach. Other exam-256

ples include, for instance, alerting operators, blocking the robot movement,257

and other high-level decisions that can affect motion planning. We also notice258

that the hierarchical organization of the controller can be applied to other259

problems to which POMCP has been recently applied, such as, active visual260

search (Wang et al., 2020; Wandzel et al., 2019; Lauri and Ritala, 2016).261

Explainable planning (XAIP) (Miller, 2019; Fox et al., 2017; Langley262

et al., 2017) is a branch of eXplainable Artificial Intelligence (XAI) (Gun-263

ning and Aha, 2019) which is related to our work. Three main challenges of264

XAI are the development of methods for learning more explainable models,265

the designation of effective explanation interfaces, and the understanding266

of psychologic requirements for effective explanations (Gunning and Aha,267

2019). The aim of XAIP is to create artificial intelligence systems whose268

models and decisions can be understood and trusted by end users. XAIP269

has a strong impact on safety-critical applications, such as industrial robotic270

ones (Anjomshoae et al., 2019; Sridharan and Meadows, 2019; Zhang et al.,271

2017), wherein people accountable to authorize the execution of a plan need272

complete understanding of the plan itself. First approaches of XAIP (Smith,273

2012) focus on human-aware planning and model reconciliation and on data274

visualization (Chakraborti et al., 2018). The two measures defined in Sec-275

tion 6 and their analysis performed in Section 8 are the first steps towards276

the interpretability of decisions taken by POMCP-based planners.277

3. Problem definition278

Assume to have a pre-defined path in an industrial environment which279

must be traversed by a mobile robot. The path (a possible instance is dis-280

played in Figure 1) is made of segments si, i = 1, . . . ,m, which are then split281

into subsegments sij. Each segment (and related subsegments) is character-282

ized by a difficulty fi ∈ F , related to the average density of obstacles, the type283

5http://wiki.ros.org/navigation

9

of terrain (e.g., stairs, slopes, etc.) or luminosity (which makes perception284

more difficult). The robot has to reach the end of the path in the shortest285

possible time, regulating the speed in each subsegment to avoid obstacles,286

since the probability of collision depends on speed and segment difficulty, and287

each collision generates a time penalty. The robot cannot directly observe288

segment difficulties, which are hidden state variables, but it can only infer289

their values in two ways, namely, by observing the occupancy of the segment290

(detected by lasers on top of the robot), and sensing the angular velocity291

kept in the segment. The generality of the concept of difficulty lends itself292

to different contexts in which a mapping exists between some properties of293

the environment and the difficulty the agent experiences when it executes its294

tasks. Our method can work also if this mapping is only coarsely defined.295

In this work we test our planning approach on two specific paths depicted296

in Figure 3. The first path has a rectangular shape with short sides of297

three meters and long sides of five meters. An external and an internal wall298

delimit the area accessible by the robot and some obstacles are arranged299

along the way. The second path is developed in a real environment for300

industrial research, namely, the Industrial Computer Engineering (ICE) lab6
301

of the Verona University (Italy), which is a laboratory for Industry 4.0 with302

a modern production line, extended with equipment for augmented reality303

and digital production. Technical details about the two paths are reported304

in Section 7. These paths are only two possible instances of several possible305

environments that can be dealt with by our approach. Also the problem306

formulation can be extended to more complex scenarios considering larger307

sets of actions and observations, or more realistic tasks but here we aim to308

show the applicability of the proposed approach to real robotic platforms.309

4. POMDP representation of the problem310

A Partially Observable Markov Decision Process (POMDP) (Kaelbling311

et al., 1998) is defined as a tuple (S,A,O, T, Z,R, γ), where S is a finite set312

of partially observable states, A is a finite set of actions, Z is a finite set of313

observations, T : S ×A→ Π(S) is the state-transition model (where Π(S) is314

the power set of S), O: S×A→ Π(Z) is the observation model, R: S×A→ R315

is the reward function and γ ∈ [0, 1) is a discount factor. The goal of an316

6http://www.di.univr.it/?ent=progetto&id=4935&lang=en

10

http://www.di.univr.it/?ent=progetto&id=4935&lang=en

Figure 1: Problem definition: path travelled by the agent. Nodes are subsegment starting
points.

agent operating a POMDP, is to maximize its expected total discounted317

reward (also called discounted return) E[
∑∞

t=0 γ
tR(qt, at)], by choosing the318

best action at in each state qt at time t; γ is used to reduce the weight of319

distant rewards and ensure the (infinite) sum’s convergence. As mentioned320

above, the partial observability of the state is dealt with by considering at321

each time-step a probability distribution over states, called belief. The belief322

space is here represented by symbol B. POMDP solvers are algorithms that323

compute, in an exact or approximate way, a policy for POMDPs, namely a324

function π: B → A that provides an optimal action for each belief.325

The problem described in the previous section can be formalized as a326

POMDP. The state contains i) the true configuration of segment difficulties327

(f1, . . . , fm), which is hidden, ii) the position p = (i, j) of the robot in the328

path, where i is the index of the segment and j the index of the subsegment329

(notice that, saying that the agent is in position (i, j) we mean that it is at the330

beginning of subsegment si,j), iii) t is the time elapsed from the beginning of331

the path. Actions correspond to the speed the robot keeps in a subsegment,332

which may have three possible values, namely low (L), medium (M) or high333

(H).334

Observations are related to subsegment occupancy and integral of robot335

angular velocity. The occupancy oc of a subsegment is computed from a336

laser rotating on top of the robot. Laser values in front of the robot (with337

a 30◦ angle) are averaged and thresholded obtaining a binary value where338

0 means that the laser detects no obstacles in the next subsegment, and 1339

that it detects some obstacle. The occupancy model provides the probability340

of occupancy given segment difficulties, namely p(oc | f). The integral of341

11

robot angular velocity av is computed from the output signals (i.e., direction342

angle) of the low-level engine controller. In particular, the controller has 5343

outputs meaning to go straight or to turn right/left with angular velocity344

of 45◦ or 90◦ deg/sec. In each subsegment the controller provides several345

low-level actions to the robot. We count the actions corresponding to turn346

right/left and threshold this count obtaining a binary signal av which is 0 if347

the robot performs few curves in the subsegment and 1 if it performs several348

curves. This method to gather information about segment difficulty based on349

angular velocity works because the low-level engine controller that drives the350

robot inside subsegments is completely independent from the POMCP-based351

planner that regulates the speed. The angular velocity model provides the352

probability of angular velocity given segment difficulties, namely p(av | f).353

Notice that the discretization of occupancy and angular velocity used in our354

tests is coarse-grained because this degree of precision is enough for our tests355

but more precise discretizations can be used.356

The final observation is a coding of both variables oc and av computed357

as o = av + 2 · oc. Namely o = 0 if av = 0 and oc = 0, o = 1 if av = 1 and358

oc = 0, o = 2 if av = 0 and oc = 1, and o = 3 if av = 1 and oc = 1. The359

observation model provides the probability of observations given segment360

difficulties, namely p(o | f). The parameters of the occupancy and angular361

velocity models for the rectangular and the ICE paths are displayed, respec-362

tively, in Tables 1.a,b (rectangular path) and Tables 2.a,b (ICE path). The363

methodology used to derive such parameters from real-world environments364

is described in Section 7.4.365

The state transition model deals with the update of robot position and366

current time at each step. Position update is performed in a deterministic367

way since at each step the robot is assumed to reach the beginning of the next368

subsegment in the path. The current time is instead updated depending on369

both the action performed by the agent and (possibly) the collision penalty.370

The time spent to traverse a subsegment depends on the action performed371

by the robot, which is discretized as t = ` (where ` is the subsegment length)372

if action is H (namely the robot spends ` time units if the action is high373

speed), t = 2` if action is M , and t = 3` if action is L. The time penalty374

due to collision has been set to 40 time units in the rectangular path and375

20 time units in the ICE path. The collision probability is governed by the376

collision model p(c | f, a). Collision models of rectangular and ICE paths are377

displayed, respectively, in Table 1.c and Table 2.c., where c = 0 means no378

collision and c = 1 that a collision occurs. Notice, that the probability of not379

12

making a collision is one minus the probability of making a collision, since380

the collision value is binary. The reward function here used is R = −(t1+t2),381

where t1 is the time depending on agent’s action and t2 is the penalty due to382

collisions. Finally the discount factor we used is γ = 1 because the paths have383

limited length and this allowed us to consider it the same way the time spent384

to move in different sections of the path. However, the proposed approach is385

general to problems with infinite horizon, that can be tackled using γ < 1.386

Table 1: Probabilistic model for the rectangular path. (a) Occupancy model p(oc | f). (b)
Angular velocity model p(av | f). (c) Collision model p(c | f, a).

f p(oc = 1 | f)
L 0.600
M 0.690
H 0.940

(a)

f p(av = 1 | f)
L 0.170
M 0.240
H 0.530

(b)

f a p(c = 1 | f, a)
L L 0.000
L M 0.033
L H 0.033
M L 0.000
M M 0.033
M H 0.067
H L 0.000
H M 0.067
H H 0.100

(c)

5. POMCP-based planners387

Three planning strategies are used in our tests. The original implemen-388

tation of POMCP, named STD in the following, is used as a baseline. An389

extended version of POMCP allowing the definition of state-variable con-390

straints by Markov Random Fields (Castellini et al., 2019), named MRF in391

the following, is used to introduce prior knowledge about segment difficulty392

relationships. For example, in an instance of our problem we could know that393

the probability that segment s0 and segment s1 have same difficulty is 0.9.394

Planner MRF can use this information to improve the policy it generates395

and, consequently, the planning performance. Finally, we consider an oracle396

planner, named ORC in the following, in which perfect knowledge of seg-397

ment difficulties is used. This planner performs the POMCP strategy using398

13

Table 2: Probabilistic model for the ICE path. (a) Occupancy model p(oc | f). (b)
Angular velocity model p(av | f). (c) Collision model p(c | f, a).

f p(oc = 1 | f)
L 0.65
M 0.83
H 0.93

(a)

f p(av = 1 | f)
L 0.083
M 0.3
H 0.3

(b)

f a p(c = 1 | f, a)
L L 0.0
L M 0.0
L H 0.0
M L 0.0
M M 0.056
M H 0.14
H L 0.028
H M 0.11
H H 0.25

(c)

only a unique particle corresponding to the true state (i.e., configuration of399

segment difficulties) hence it has exact and complete prior knowledge. In the400

following the standard POMCP algorithm (Silver and Veness, 2010) and its401

extension based on MRF (Castellini et al., 2019) are briefly described.402

5.1. Standard POMCP403

Partially Observable Monte Carlo Planning (POMCP) (Silver and Veness,404

2010) is an online Monte-Carlo based algorithm for solving POMDPs. It uses405

Monte-Carlo Tree Search (MCTS) for selecting optimal actions at each time-406

step. The main elements of POMCP are a particle filter, which represents407

the belief state, and the Upper Confidence Bound for Trees (UCT) (Kocsis408

and Szepesvári, 2006) search strategy, that allows to select actions from the409

Monte Carlo tree. The particle filter contains, at each time-step, a sampling410

of the agent’s belief at that step (the belief evolves over time). In particular,411

it contains k particles, each representing a specific state. At the beginning412

the particle filter is usually initialized following a uniform random distribu-413

tion over states, if no prior knowledge is available about the initial state.414

Then, at each time-step the Monte Carlo tree is generated performing nSim415

simulations from the current belief. In other words, for nSim times a parti-416

cle is randomly chosen from the particle filter and the related state is used417

as initial state to perform a simulation. Each simulation is a sequence of418

14

action-observation pairs that collect, altogether, a final return, where each419

action and observation brings to a new node in the tree. Rewards are then420

propagated upwards in the tree obtaining, for each action of the root node,421

an expected (approximated) value of the cumulative reward that this action422

can bring. The UCT strategy is then used to select actions considering both423

their expected cumulative reward and the necessity to explore new actions424

from time to time. The belief is finally updated, after performing the selected425

action a and getting a related observation o, by considering only the parti-426

cles (i.e., states) in the new node. New particles can be generated through a427

particle reinvigoration procedure based on local transformation of available428

states, if the particle filter gets empty. A big advantage of POMCP is that429

it does not require a complete matrix-based definition of transition model,430

observation model and reward, but it only needs a black-box simulator of the431

environment.432

5.2. Extended POMCP433

The methodology we use to introduce prior knowledge in POMCP (Castellini434

et al., 2019) allows to define probabilistic relationships of equality between435

pairs of state-variables by means of Markov Random Fields (MRF). State436

variables in our application domain are segment difficulties and a relation-437

ship says that two segments have a certain relative compatibility to have the438

same difficulty. The MRF approach then allows to factorize the joint prob-439

ability function of state-variable configurations and this probability is used440

to constrain the state space. In our application domain the state space is441

the space of all possible segment difficulty configurations and the constraints442

introduced by the MRF allow to (probabilistically) reduce the chance to443

explore states that have small probability to be the true state. The inte-444

gration of MRF-based prior knowledge into POMCP is mainly performed445

in the particle filter initialization and in the reinvigoration phase (Castellini446

et al., 2019), where the constraints are used to optimize the management447

of the particle filter representing the agent belief. In this work the MRF is448

manually generated using expert knowledge about the application domain.449

450

5.3. Complexity analysis451

The complexity of the extended POMCP is the same as that of the stan-452

dard POMCP (described in Section 5.1). Being Monte-Carlo methods, they453

have a sample complexity determined only by the underlying difficulty of454

15

the POMDP, rather than the size of the state space or observation space455

(Silver and Veness, 2010). This sample complexity, namely the complexity456

to perform a Monte-Carlo simulation in the known POMDP environment, is457

multiplied by the number of simulations, which is a constant parameter called458

nSim in this paper. At the beginning of each subsegment of the path our459

approach performs nSim simulations (in the POMCP context) to select the460

velocity, and it runs the standard engine controller to perform path planning461

in the next subsegment. The increase in complexity introduced by our ap-462

proach compared to using a standard engine controller is therefore a constant,463

namely the time to perform nSim simulations, for each subsegment. Since464

POMCP is an anytime algorithm, the time allotted for its execution can be465

also defined in advance to satisfy the requirements of specific applications.466

6. Measures for policy explanation467

To quantify the influence of prior knowledge on policy performance we468

introduce three measures, namely, the belief-state distance, the mutual in-469

formation between difficulty and action and the expected time to traverse the470

segment (Castellini et al., 2020c). They strongly contribute to explain the471

mechanisms that affect the performance improvement and to improve the472

interpretability of results, as shown in Section 8. Moreover they represent473

a fundamental tool for explaining and improving planner performance since474

they allow to precisely identify undesired behaviours of the planner.475

6.1. Belief-state distance476

We define the belief-state distance at a certain instant as the weighted
averaged Manhattan distance between the configuration of segment difficul-
ties in the true (hidden) state and the configurations of segment difficulties
in the belief at that instant. Mathematically, if we define the configuration
of segment difficulties in the true state as f = (f1, . . . , fm), where m is the
number of segments, and we define the set of k possible configurations of
segment difficulties in the belief as {(f i

1, . . . , f
i
m), i ∈ 1, . . . , k}, where the

probability of each difficulty configuration (f i
1, . . . , f

i
m) in the belief is piB

(computed step-by-step by POMCP), then the belief-state distance is

dSB =
k∑

i=1

(
piB ·

m∑
j=1

|fj − f i
j |
)
. (1)

16

since the belief is updated at each time-step, this measure can be computed477

at each time-step as well. It allows to quantify the discrepancy between478

what the agent believes about the real state of the environment and the real479

state itself, hence the addition of prior knowledge about segment difficulty480

relationships is expected to decrease this distance.481

6.2. Mutual information (MI) between segment difficulty and action482

In our problem the agent is expected to take actions that minimize both483

the time to reach the end of the path and the risk of collision. The quality484

of actions strongly depends on the degree of knowledge the agent has about485

the true configuration of segment difficulties. In fact, analyzing the collision486

model in Table 2.c, for instance, we observe that high speed (i.e., a = H)487

should be selected in segments with low difficulty (i.e., f = L) because the488

collision probability is always 0.0 in those segments, hence high speed should489

be preferred to reach earlier the end of the path. On the other hand, in490

segments with high difficulty (i.e., f = H) the collision probability is low491

(i.e., 0.028) if low speed (i.e., a = L) is kept, while the probability grows to492

0.11 and 0.25, respectively, it if medium or high speed (i.e., a = M or a = L)493

is kept. For this reason low speed should be preferred in these cases.494

To check if the POMCP policy effectively generates actions related to
segment difficulties we compute the mutual information between all actions
taken in a run and the corresponding segment difficulties. In other words,
given a run we consider the sequence of actions A = (ai,j), where i is the
index of a segment and j is the index of a subsegment, and the sequence of
related subsegment difficulties F = (fi,j). The mutual information (Bishop,
2006) between the two sequences, treated as random variables, is

I(A,F) =
∑
a∈A

∑
f∈F

p(A,F)(a, f)log
(p(A,F)(a, f)

pA(a)pF(f)

)
, (2)

where p(A,F)(a, f) is the joint probability mass function of A and F , and pA495

and pF are the marginal probability mass functions of A and F , respectively.496

Average MI values are computed on sets of runs. We notice that selecting ac-497

tions with high difficulty-action MI is not trivial since the true configuration498

of segment difficulties is hidden. In Section 8 we experimentally analyze the499

trend of this measure depending on the prior knowledge provided in different500

planners.501

17

6.3. Expected time to traverse a subsegment502

The expected time to traverse a subsegment of unitary length and having
difficulty f ∈ F by performing action a ∈ A is

E[t]f,a = ta + p(c | f, a) · w(c), (3)

where ta is the time due to the action (i.e., L, M or H) without considering any503

collision (see time t1 in Section 4), p(c | f, a) is the collision probability given504

action a and difficulty f , and w(c) is the collision penalty, which depends on505

the collision value.506

This measure is very useful to analyze and compare planner performance507

on different configurations of segment difficulties (see Section 8.1). In par-508

ticular, in those experiments we want to compare the average reward (i.e.,509

the opposite of time spent to traverse the path) of two planners where the510

average of each planner is computed on a set of runs having different diffi-511

culty configurations. The problem in this case is that the expected time to512

traverse the overall path is affected by strong randomness. One source of513

this randomness is the chance to get a collision penalty in each subsegment.514

Namely, two runs performed on the same configuration of difficulties, using515

the same actions, could get very different reward if a different number of516

collisions occurs, because the penalty of a single collision is much larger than517

the time needed to traverse a segment without collisions. The only way to518

get a statistically significant average performance in this case is to run a huge519

large number of tests, which is computationally infeasible.520

The expected time to traverse a subsegment E[t]f,a removes the random-521

ness due to collisions because, for each subsegment, it considers the average522

time (over infinite tests) to traverse it, which is the sum of the time due523

to the selected action (without considering collisions) plus the fraction of524

penalty related to performing the action a in segment with difficulty f (i.e.,525

p(c | f, a) · w(c)). Notice that the randomness is removed by using the526

knowledge about the true segment difficulty, which is instead unknown by527

the planner.528

7. Experimental setup529

We describe here the experimental setup for our work. We first provide an530

overview of the complete architecture and then describe in detail all modules.531

18

7.1. Overall architecture532

Our experimental setup mainly involves the elements shown in Figure 2.533

The POMCP planner, explained in Section 5, is a C++ module that com-534

putes step-by-step the speed the robot must keep in each subsegment. This535

speed, which depends on the estimated difficulty configuration, is communi-536

cated to a low level engine controller, namely, the low-level engine controller537

that deals with path planning and obstacle avoidance in each subsegment. In538

particular, it allows the robot to reach the other side of the subsegment while539

keeping the linear velocity defined by the POMCP planner. The communica-540

tion between planner and engine controller is managed by a communication541

layer described in Section 7.2.542

Figure 2: System overview: POMCP planner communicates actions to the Turtlebot
in a simulated (Unity) or real (testing arena) environment. The environment returns
observations and rewards to the planner which updates (online) its belief and policy.

The approach is then tested on two kinds of simulator and in a real-world543

testing arena. The first simulator is a C++ module (see Section 7.5.1) which544

does not consider physical properties of the environment, the second simu-545

lator is designed with Unity (see Section 7.5.2) which relies on the Havok546

19

physics engine7 to realize realistic simulations and allows to use low-level547

engine controllers. The real-world testing arena (see Section 7.6) is a real548

environment wherein a Turtlebot3 was used as an agent to test the planning549

approach. As shown in the bottom of Figure 2, experiments are performed550

on two paths, described respectively in Section 7.3.1 and 7.3.2, namely, a551

rectangular path and a path defined in the ICE industrial research labora-552

tory. Finally, we highlight that the transition and observation models of the553

POMDPs are trained on the Unity simulator following an approach described554

in Section 7.4.555

7.2. Communication layer556

The communication between the POMCP planner and the engine con-557

troller was implemented by inter-process communication via Unix named558

pipes. This is a common feature for both the Unity simulations and the559

experiments on the testing arena. Furthermore, Unity natively supports the560

communication between the low-level controller model (i.e., the engine con-561

troller) and the Unity environments. Communication among the controller562

and the robot is instead managed by a ROS node in the real scenario (i.e.,563

the testing arena).564

7.3. Paths565

The two paths on which we developed our architecture are described in566

the following.567

7.3.1. Synthetic rectangular path568

The first path is a rectangle with short sides of 3 meters and long sides569

of 5 meters. We assume the robot performs two laps of the path, hence the570

total number of segments in this path is 8, the total number of subsegments571

is 32 and the total length is 32 meters. Figure 3.a shows the map of the path572

with also measures of passage widths and an example of obstacle disposal.573

Subsegments are all 1 meter long. Obstacles are objects with width of 2 cen-574

timeters and a length of 50 centimeters, that are randomly placed along the575

robot path. Their density depends on segment difficulty. This path was first576

implemented in Unity and then in a real world environment, considering the577

obstacle configuration and difficulties presented in Section 8.2.1.578

7https://www.havok.com/products/havok-physics/

20

7.3.2. Industrial computer engineering (ICE) lab579

The second path is located in the industrial computer engineering lab-580

oratory of the Verona University. As shown in Figure 3.b, the entire room581

is 4.55 meters large and 18.45 meters long. On the left hand wall there is582

a vertical warehouse from which raw materials can be taken and finished583

products stocked. Then a production line spreads over the whole room, from584

left to right, with a conveyor belt that transports items across the processing585

stations. The currently available stations are (from left to right) a milling586

machine, a 3D printer, an assembly/disassembly station, and a quality con-587

trol station. The path contains 8 segments, the total number of subsegments588

is 36 and the total length 36.3 meters. The robot performs one lap starting589

and ending at the top-left corner. Subsegment lengths range from 0.6m to590

1.4m. In Figure 3.b a possible arrangement of obstacles is shown.591

Figure 3: Unity environments. (a) Rectangular path. (b) ICE path. Red circles represent
segment extremes, green circles represent subsegment extremes, small red lines represent
obstacles, the black circle represents the Turtlebot, red lines are laser scans.

7.4. POMDP model generation592

A data collection phase is initially performed on both the Unity environ-593

ments, to compute the POMDP models described in Section 4. In particular,594

for each environment and action (i.e., velocity) we perform a complete run595

of the path keeping the action fixed in all subsegments. The low speed (i.e.,596

a = L) corresponds to 0.07 m/s, medium speed (i.e., a = M) to 0.14 m/s597

and high speed (i.e., a = H) to 0.21 m/s. For each subsegment we collect:598

a binary value for marking collisions occurrence, five values with counts of599

actions (i.e., go straight, turn left/right with angular velocity of 45◦ or 90◦600

deg/sec) taken by the engine controller along the subsegment, and five values601

for the frontal laser scans of the robot normalized in range (0, 1), where 1602

21

corresponds to the presence of obstacles at a distance of 3.5 m and 0 cor-603

responds to the presence of obstacles at a distance of 0 m. Values are then604

grouped by segment difficulty and action and probabilities are computed to605

make the POMCP collision and observation models. For instance, the colli-606

sion probability for each difficulty-action pair is computed from the binary607

value accounting for collisions. Similar procedures are applied for occupancy608

and angular velocity models, using, respectively, the counts of laser scan and609

those of the controller actions.610

We notice that POMCP assumes a full knowledge of the environment611

parameters. Since we have estimated these parameters from simulations612

an error in these parameters could bring a performance decrease as in all613

model-based planning methods. However, our tests showed that in prac-614

tice also approximated model parameters can yield performance improve-615

ment. Bayesian reinforcement learning approaches, such as Bayesian Adap-616

tive POMCP (Katt et al., 2017) have been recently introduced but their617

complexity is currently too high to be applied to real robotic planning tasks,618

hence we will consider them in future work.619

7.5. Simulators620

The two simulators used to test our approach are described in the follow-621

ing.622

7.5.1. C++ simulations623

The C++ simulator was developed by following the guidelines provided624

by the standard POMCP package8. Interfaces were implemented together625

with transition and observation models, and other specific features of the626

paths, such as number of segments, number of subsegments, subsegment627

lengths, and so on. The POMCP code was also extended to save to file,628

step-by-step, details of the simulation progress used to compute statistics629

and to plot charts shown in the result section.630

7.5.2. Unity simulations631

Our simulated Unity environment, displayed in Figure 3, is realized using632

primitive 3D objects of the Unity engine (e.g., cubes and cylinders) for walls633

and the occupancy of the processing stations of the ICE environment. For our634

8http://www0.cs.ucl.ac.uk/staff/d.silver/web/Applications.html

22

robotic agent we use the manufacturer model of the Turtlebot3, simulating635

the laser sensor using Raycasts and the motors using Hinge joints. In detail,636

the former is used to create rays that detect collisions and the latter connects637

the 3D model of the wheels with the main robot components, simulating the638

rotation of the Turtlebot3 motors (previous work (Marchesini and Farinelli,639

2020a) demonstrates that this is a realistic simulation of the behavior of the640

robot). The position, required by our controller, is returned by Unity as641

polar coordinates with respect to the modeled environment. Finally, default642

physics parameters are considered to simulate gravity and frictions.643

7.6. Testing arena644

We reproduced the rectangular path in Figure 3.a, considering the same645

setup presented in Section 7.3.1, to provide an explanatory evaluation of our646

POMCP planners (i.e., ORC, STD, MRF) in a real scenario. Specifically,647

the robot travels the path (a rectangle 3 × 5 m) two times, hence the path648

has 8 segments, 32 subsegments and its length is of 32 m. Figure 7 shows an649

overview of our scenario, where obstacles are wood panels 50× 25× 1.5 cm,650

subsegments are represented with green marks and segments with red marks.651

The obstacle configuration and difficulties are the same presented in Section652

8.2.1. The attached video provides full details about experiments performed653

in this real environment.654

8. Results655

We perform four kinds of test to evaluate our approach. First, we compare656

the average performance of the three planners on several difficulty configura-657

tions (Section 8.1). This test is performed on the C++ simulator described in658

Section 7.5.1 which enables massive testing since it does not consider any in-659

teraction with the physical (real or simulated) environment. Then, in Section660

8.2 we select a specific configuration of difficulties and show how the three661

planners perform on the Unity simulator described in Section 7.5.2. The aim662

of this test is to show that our planner can be used to control the robot663

in a physical (although simulated) environment. Moreover, this experiment664

shows how the three planners make decisions, in a specific run, according665

to their knowledge of the environment, and how this knowledge influences666

the decisions. In Section 8.3, we provide results achieved in a real testing667

arena where a Turtlebot is used as an agent. This experiment shows that our668

architecture (i.e., planner, robot, communication layer, localization module,669

23

etc.) is able to work also in real world environments, with results very similar670

to those achieved in Unity simulations. Finally, in Section 8.4 we perform a671

comparative analysis of the proposed method against state-of-the-art engine672

controllers, showing that our method outperforms these controllers in terms673

of time spent by the robot to traverse the path. The time needed to per-674

form a single run increases from the C++ simulator, to the Unity simulator,675

and from the Unity simulator to the real environment, therefore we perform676

statistical analyses of performance (that need several runs) using the C++677

simulator, then we introduce the physical environment by Unity and make678

tests on a subset of runs, and finally display technical details of functioning679

in the real-world for a small number of (time consuming) tests.680

8.1. Statistical analysis of planner performance681

In this experiment we run each planner (i.e., ORC, STD and MRF) on 100682

different configurations of segment difficulty. For each run n ∈ {1, . . . , 100}683

we collect five parameters, namely, the discounted return rn ∈ R of the run,684

the number of collisions cn ∈ N of the run, the average action ān ∈ R+ of685

the run (where the average is computed over the actions taken in the run),686

the final belief-real state distance dnSB ∈ R+ of the run, and the normalized687

MI between difficulty and action I(A,F)n ∈ R+ in the run. Moreover, for688

each segment si of run n, we collect the discounted return rni ∈ R in the689

segment, the average action āni ∈ R+ in the segment, the average belief-real690

state distance dniSB ∈ R+ in the segment, and the expected time E[t]ni ∈ R+
691

to traverse the segment (see definition in Section 6.3). These parameters692

are then averaged over runs and compared between different planners to693

generalize on their performance.694

Figure 4 summarizes the results of the overall analysis performed on both695

the rectangular path (sub-figures a, b, and c, analyzed in detail in Subsection696

8.1.1) and the ICE path (sub-figures d, e, and f, analyzed in detail in Subsec-697

tion 8.1.2). To have a fair comparison on how the different planners exploit698

the knowledge on the environment we compare their performance by fixing699

a difficulty configuration and a series of observations and running the three700

planners with this input. We repeat this process for 100 times. In this way701

we remove two sources of randomness, namely that coming from difficulty702

configuration and that coming from observations, and keep only two sources703

of randomness that cannot be removed, namely, that coming from policy704

generation (which is intrinsically related to the POMCP strategy) and that705

24

related to collision events (which depends on the actions selected by each706

planner).707

Figure 4: Average performance and properties of runs executed on the rectangular path
(left) and the ICE path (right).

Furthermore, we provide run-based performance differences between i)708

ORC and STD, ii) MRF and STD. These differences are computed on a run709

basis and subsequently averaged. For instance, the difference of discounted710

return rn in run n is computed as ∆rn = rn−rn. This value is then averaged711

over runs to obtain the average difference of discounted return ∆rn. The712

same approach is used to compute the average difference of average action713

∆ān, the average difference of final belief-state distance ∆dnSB, the difference714

of normalized MI between difficulty and action I(A,F)n, and the average715

difference of expected time to traverse the path ∆E[t]n. The last measure is716

particularly stable because it removes also the randomness due to collisions,717

since it considers, for each subsegment, only the fraction of time penalty due718

to the collision probability instead of real collision events. All measures de-719

25

scribed above are computed for both the entire path and single segments. In720

the second case we add subscript i to identify segment si obtaining, respec-721

tively, symbols ∆rni, ∆āni, ∆dniSB, and ∆E[t]ni. These measures are analyzed722

in the following to compare planner performance. In both cases we used a723

number of simulations per step nSim = 1015.724

8.1.1. Discussion of results on rectangular path725

Average performance of the three planners over 100 runs in the rectan-726

gular path are displayed in Figure 4.a. ORC has the best average return727

r̄n (i.e., −88.51), followed by MRF (i.e., −102.18) and then by STD (i.e.,728

−103.14). These differences are generated by different decision strategies729

that are affected by the level of prior knowledge provided to the planners,730

which has direct effect on i) the average distance between real state and731

belief ∆dnSB, whose values at the end of the path are 0.0 for ORC, 2.53 for732

MRF and 3.85 for STD; ii) the MI between (hidden) segment difficulty and733

action I(A,F)n (i.e., 0.55 for ORC, 0.12 for MRF and 0.07 for STD), which734

is higher for planners able to understand earlier the difficulty of the segment735

and to act accordingly. Finally, the average expected time to traverse the736

path E[t]n confirms the ranking of planners (respectively ORC, MRF, and737

STD) with a larger difference between ORC and MRF, and a smaller one738

between MRF and STD. Figure 4.b shows, on the left, the density of dis-739

counted return rn for the three planners. The multi-modality of these curves740

are related to runs without and with collisions. As expected, these densities741

have large variance due to the strong randomness of the process generating742

the stochastic variable rn.743

The methodology exploiting run-based performance differences, described744

above, allows to remove some sources of randomness and point out the real745

statistically significant differences between the performance of the three plan-746

ners in terms of average difference of expected time to traverse the path747

∆E[t]n, which is our main result. The density plot on the right of Figure 4.b748

shows two charts, namely, the distribution of differences between expected749

time to traverse the path for ORC and STD (in red), and that between MRF750

and STD (in green). The two charts show that both ORC and MRF out-751

perform STD, and their performance improvement is statistically significant.752

Focusing on the difference between ORC and STD (red line), the mean is753

-6.69, meaning that ORC needs on average 6.69 time units less than STD754

to reach the end of the path (average time to traverse the path is 97.34 for755

STD - see Figure 4.a - hence the improvement is of about 6.8%). Performing756

26

a t-test for the null hypothesis that the expected value (mean) of this distri-757

bution a is equal to zero we obtain a p-value p = 4.7 · 10−38, which proves758

the statistical significance of the result (since it is less than 0.05). A similar759

result is achieved by comparing MRF and STD. Their mean difference is760

lower (i.e., -0.71, meaning that MRF needs on average 0.71 time units less761

than STD to reach the end of the path, with an improvement of 0.7%) but762

still statistically significant, with a p-value p = 0.033.763

Further details about differences in planner behaviors on specific path764

segments are displayed in Figure 4.c. From top to the bottom, we show the765

average difference of discounted return ∆rni in each segment si (the segment766

index is in the x-axis in all the charts), the average difference of expected767

time ∆E[t]ni to traverse the segment, the average difference of average ac-768

tion ∆āni in each segment, and the average difference of average belief-state769

distance ∆dniSB in each segment. The bar plots on the left show differences770

between ORC and STD, while those on the right display differences between771

MRF and STD. Interestingly, the average difference of expected time ∆E[t]ni772

shows in which segments ORC and MRF outperform STD. In particular, the773

improvement of MRF with respect to STD in the expected time to traverse774

a segment increases in the second lap of the rectangle (see higher negative775

bars mainly in segments 6 and 8), which coincides with a smaller difference776

in average belief-state distance of MRF than STD (see negative ∆dniSB). In777

other words, MRF and STD have almost the same behavior in the first seg-778

ment, then MRF’s belief gets closer to the real state than STD’s belief (due779

to the use of prior knowledge to infer future segment difficulties) allowing780

MRF to outperform STD.781

8.1.2. Discussion of results on ICE path782

Tests performed on the ICE path, displayed in Figures 4.d, 4.e and 4.f,783

show even better performance. Focusing on discounted reward rn (first row784

of the table in Figure 4.d and density function in Figure 4.e) we see that785

ORC has the best average performance (i.e., -88.17), followed by MRF (i.e.,786

-103.23) and then by STD (i.e., -106.68). The average difference of expected787

time to traverse the path ∆E[t]n, shown on the right of Figure 4.e, are re-788

spectively -10.60 between ORC and STD, and -3.16 between MRF and STD.789

This means that ORC takes on average 10.60 time units (i.e., 10.2%) less790

than STD to traverse the path, and MRF takes on average 3.16 time unit791

(i.e., 3.1%) less than STD to traverse the path. In both cases the t-test for792

the null hypothesis that the expected value (mean) of this distribution is793

27

equal to zero is very close to zero (namely p = 5.5 · 10−44 for ORC-STD and794

p = 1.8 ·10−13 for MRF-STD), which proves the statistical significance of the795

performance difference. This difference can also increase for more complex796

and repeated paths.797

The analysis of performance over single segments, displayed in Figure798

4.f, enables to draw similar conclusions to those drawn for the rectangular799

path. A large part of performance improvement (in terms of both discounted800

reward and expected time to traverse the path) come from segments in the801

second part of the path, where MRF has already collected information about802

its difficulty from previous segments (see the negative difference of distance803

between real state and belief ∆dniSB which shows that MRF has a more precise804

belief than STD in the second part of the path).805

8.2. Performance on Unity simulations806

Tests on Unity aim at evaluating the performance of our approach on807

a simulated environment considering the physical properties of the environ-808

ment, which are not considered by the C++ simulator analyzed in the pre-809

vious subsection. The experimental setup for these tests is explained in810

Section 7.5.2.811

8.2.1. Discussion of results on the rectangular path812

We analyze here a single run performed on a Unity simulation of the813

rectangular path with difficulty configuration (H,L,M,L,H, L,M,L). The814

path is displayed in Figure 5.a, where segments with low difficulty (L) are815

colored in green, segments with medium difficulty (M) are colored in blue,816

and segments with high difficulty (H) are colored in red. The agent travels817

the rectangle twice and segment difficulties are fixed in the two laps.818

The ORC planner, in Figure 5.b, performs an optimal strategy (in terms819

of expected reward), since it selects action L in subsegments with high or820

medium difficulty and action H in subsegments with low difficulty (green821

subsegments in Figure 5.b represent action L and red subsegments represent822

action H). The time to traverse the path (i.e., the opposite of the discounted823

return) is 56 time units, and no collision occurs. Under the rectangular path824

we display a heatmap of robot’s belief per subsegment. Columns represent825

subsegments, rows represent difficulties, and the color of a general cell i, j826

represents the probability (from the current belief) that subsegment j has827

difficulty i. For instance, the robot’s belief in all subsegments of the first828

segment has high probability (i.e., 1.0) for high difficulty (see the red cells829

28

Figure 5: Performance comparison between the three planners on a specific configuration
of difficulties in the rectangular path.

in the first three columns of the heatmap) and low probability (i.e., 0.0) for830

low and medium difficulty.831

Comparing the plan generated by MRF (see Figure 5.c) with that gen-832

erated by STD (see Figure 5.d) we observe that in the first lap they both833

select always action L (apart from a single action H chosen by STD at the834

end of the second segment). This is because their confidence to be in a835

segment with low difficulty is not high enough to choose action H (see the836

related heatmaps of belief probabilities), even in segments 2 and 4, where837

the difficulty is actually low. As expected, things change in the second lap,838

where MRF takes advantage of the knowledge about segment difficulties ac-839

quired in the first lap and it transfers this knowledge to subsequent segments840

connected by relationships of similarity between difficulties. For instance,841

the MRF edges (with probability 0.9) that generate a connected component842

containing segments 2, 4 (first lap), and 6, 8 (second lap) clearly improve843

the belief of the agent in segments 6 and 8. This is proved by the higher844

probabilities of low difficulty in segments 6 and 8 of the MRF heatmap (in845

the bottom of Figure 5.c) with respect to those of the same segments in the846

STD heatmap (in the bottom of Figure 5.d). Consequently, the MRF plan847

has action H in three subsegments of segment 6 and five subsegments of848

segment 8 (see red lines in the path of Figure 5.d), which improve the perfor-849

mance from the 73 time units required by STD to the 64 time units required850

by MRF. In both cases no collision occurs. In summary, the analysis shows851

that the MRF planner is able to propagate the knowledge about the hidden852

state acquired in initial segments to subsequent segments, with a consequent853

improvement of performance.854

29

Figure 6: Performance comparison between the three planners on a specific configuration
of difficulties in the ICE path.

8.2.2. Discussion of results on the ICE path855

The test performed in the ICE path considers the difficulty configuration856

(M,L,H,M,H,L,M,L) (see Figure 6.a). The analyzed plans generated by857

ORC, MRF and STD take, respectively, 45, 48 and 51 time units, confirming858

the planner ranking observed in previous tests on the rectangular path.859

The ORC planner selects almost always optimal actions (in terms of ex-860

pected reward), namely, L in segments with high difficulty, and H in seg-861

ments with low difficulty, and L or M in segments with medium difficulty862

30

(we separately checked the optimality of this relationship between difficulty863

and action). More interestingly, the comparison between MRF and STD864

confirms that MRF is able to get in advance higher confidence on the true865

configuration of difficulties with respect to STD and to use this knowledge to866

choose better actions. This capability is mainly shown in the second part of867

the path (from the fourth segment). For instance, in segment 6, MRF selects868

the optimal action (i.e., H) in four subsegments out of five while STD selects869

it in only two subsegments. The analysis of the related heatmaps shows that870

the reason of this difference is that MRF has a high confidence on the (true)871

low difficulty of segment 6 from the beginning of the segment itself (see red872

cells in difficulty L for segment 6 in the MRF heatmap) while STD reaches873

this confidence level only in the last two subsegments of segment 6 (see red874

cells in difficulty L for segment 6 in the STD heatmap). Accordingly, STD875

selects the optimal action only in the last two subsegments, while MRF se-876

lects them from the beginning. MRF has gathered this knowledge about the877

difficulty of segment 6 from segment 2, which has the same difficulty and it878

is connected to segment 6 by an edge in the MRF. A similar behaviour is879

observed in the (long) segment 8, where again MRF performs the optimal880

action (i.e., H) in all eleven subsegments while STD performs it only in the881

last seven subsegments.882

8.3. Performance on the real world environment: testing arena883

The explanatory run of our three planners in the real environment (testing884

arena) proves that the movements of the real robot have close correspondence885

to movements of the agent in the Unity simulation environment of the rect-886

angular path. Figure 7 shows the starting point of a test performed in the887

arena. The video of the entire experiment is attached. It shows the Turtlebot888

moving in the real environment in three cases, namely, using the ORC, the889

MRF and the STD planner, respectively, with difficulty configuration shown890

in Figure 6.a. The video displays the evolution of the agent’s belief, the se-891

quence of actions selected by the planners and the time required to complete892

the path. Crucially, we were able to obtain similar results to those obtained in893

the Unity simulation, showing that a porting of our POMCP-based planners894

from the Unity simulation to the real robot is possible.895

896

31

Figure 7: Overview of the testing arena.

8.4. Comparative analysis897

To further investigate the proposed approach and highlight its benefits,898

we compare its performance with that of some state-of-the-art controllers899

for mobile robots. Our goal is to show that by introducing the POMCP-900

based planner with MRF on top of the engine controller we actually get a901

performance improvement over using only the engine controller. We perform902

this test using two state-of-the-art controllers as a baseline, namely, the DRL903

engine controller presented in (Marchesini and Farinelli, 2020b) and the ROS904

navigation stack9. For a fair comparison, we separately tuned the parameters905

for the navigation stack (e.g., for localization and sensing of the environment)906

in both the rectangular and ICE path. In detail, to balance the trade-off907

between performance and navigation, the difficulty of each segment was set908

to medium, and the default settings for the navigation stack provided good909

performance in both environments.910

Table 3 shows the results of the comparative analysis. Tests were per-911

formed on the experimental setting described in Section 8.2, using Unity912

9http://wiki.ros.org/navigation

32

simulators of the rectangular path (left column) and the ICE path (right913

column). We call our planner POMCP[MRF]+DRL as it uses the POMCP914

and the MRF to regulate velocity and the DRL controller for path planning.915

On the rectangular path, our planner requires 64 time units to complete the916

path, while the DRL engine controller alone requires 70 time units (about917

9% more), showing that the velocity regulation performed by POMCP with918

MRF is important to improve navigation performance. On the other hand,919

the standard ROS controller manages to complete the path in 63 time units,920

one less than our approach. This difference is negligible, hence we consider921

the two controllers as having almost the same performance in this environ-922

ment. The motivation for this result is that the environment is quite simple923

and there is no room to improve performance beyond that of ROS controller.924

On the ICE path instead POMCP[MRF]+DRL requires 48 time units to925

complete the path, the DRL engine controller alone requires 65.9 time units926

(about 37% more) and the ROS controller requires 72.3 time units (about927

51% more). In this case our approach strongly outperforms both the DRL928

controller and the ROS controller. The reason for this good result is clearly929

related to the introduction of POMCP for velocity regulation, since also930

the standard planner POMCP[STD]+DRL outperforms both the DRL con-931

troller and the ROS controller with 51 time units required to complete the932

path. However, the introduction of prior knowledge about segment diffi-933

culty relationships via the MRF yields a further performance improvement934

of 6%, showing the importance of the MRF in the proposed approach. In935

a longer and more articulated environment, as the ICE path, our approach936

shows all its capability to outperform standard controllers. We finally no-937

tice that the performance improvement, in terms of time units, between938

POMCP[STD]+DRL and POMCP[MRF]+DRL in Table 3 is higher than939

the performance improvement, in terms of expected time to traverse the path940

E[t]n, shown in Figure 4 for C++ simulations. This is because the expected941

time to traverse the path E[t]n considers also the expected time due to possi-942

ble collisions (see Equation 3) while in the specific experiments considered in943

Table 3 no collision took place. Since the time related to collisions is much944

larger than that for traversing path segments the total times in Table 4 are945

smaller and the percentage of improvement increases. Furthermore, consid-946

ering a single test the results of Table 3 also do not consider the variability947

over all possible configurations of segment difficulties.948

949

33

Time units

Controller Rectangle ICE

POMCP[MRF]+DRL 64 48
POMCP[STD]+DRL 73 (+14%) 51 (+6%)

DRL (Hessel et al., 2018) 70 (+9%) 65.9 (+37%)
ROS10 63 (-2%) 72.3 (+51%)

Table 3: Performance comparison between the controller based on POMCP+DRL (pro-
posed in this paper), the controller based only on DRL, and a standard ROS controller.

8.5. Final remarks950

The experiments presented in this paper show that the extension of951

POMCP presented in (Castellini et al., 2019) can be applied to real robotic952

platforms. We used the extended POMCP for regulating mobile robot veloc-953

ity in an industrial-like environment characterized by uncertain motion diffi-954

culties. The velocity selected by the planner was communicated to an engine955

controller which performs path planning. This two-layer control architecture956

was tested in four experimental settings always showing good performance.957

In particular, extensive tests performed on the C++ simulator shown that958

the extension of POMCP, which integrates prior knowledge on the environ-959

ment, outperforms the standard POMCP from 0.7% to 3.1% depending on960

the complexity of the path. Experiments performed on a more realistic Unity961

simulator shown that also considering physical details of the environment962

and the (Turtlebot) agent the overall architecture properly works. Then,963

experiments in a real testing arena further confirmed the applicability of964

the approach to real robotic platforms. The last test concerned performance965

comparison between our (two-layer) approach and state-of-the-art (one-layer)966

approaches using only the engine controller for both velocity regulation and967

path planning. This test highlighted the contribution of the POMCP-based968

regulation of the velocity. The performance improvement was up to 37%969

against a DRL engine controller and up to 51% against a standard ROS970

engine controller.971

All tests show that the performance improvement of the extended POMCP972

over the standard POMCP is due to the ability of the extended POMCP to973

propagate the knowledge about segment difficulty acquired in the first part974

of the path to subsequent segments via the MRF. This mechanism allows the975

robot to have better confidence in the estimation of the difficulties for the976

segments in the second half of the path. This allows to achieve a significant977

34

performance improvement, specifically in that part. The proposed measures978

show that the belief of the robot in the second half of the path is closer to979

the ground truth (in terms of belief-state distance) for the extended POMCP980

than for the standard POMCP. The improvement in the estimation of the981

ground truth is the cause of the planning performance improvement. We982

observed an increase of this effect in longer and more articulated paths be-983

cause they give our approach more chance to exploit the similarity structure984

among segments. This happens even more if the robot repeats the same path985

several times.986

9. Conclusion and future work987

We presented an approach based on POMCP for improving the time per-988

formance of a mobile robot navigating in a path when prior knowledge is989

available about the similarity of path segments. Our results demonstrate the990

possibility to apply this planning approach to a real-world industrial-like en-991

vironment characterized by uncertain motion difficulties. Moreover, we show992

that an extended version of POMCP considering prior knowledge about the993

environment is able to outperform the standard POMCP by improving the994

belief about the true state of the environment. This effect is obtained by995

propagating the knowledge on the environment acquired in the initial parts996

of the navigation to parts of the environment explored subsequently. Fur-997

thermore, we have shown that the addition of the POMCP-based layer for998

velocity regulation yields a consistent performance improvement compared999

to state-of-the-art engine controllers, such as DRL and ROS standard con-1000

trollers. The approach can be applied to several domains in which series of1001

tasks having similar properties are executed sequentially and some knowl-1002

edge about task similarity is available. Performance measures introduced in1003

the paper allow also to show that the belief improvement is transformed by1004

the planner to improved action selection.1005

This work takes a first important step towards the use of advanced plan-1006

ning methods for mobile robots in industrial applications. This paves the1007

way towards several interesting research directions. Specifically, our future1008

work in this area includes three main topics: i) the development of methods1009

for learning the MRF online, which is useful when the knowledge about task1010

similarities is not available a-priori but it can be learnt; ii) the development1011

of safe transfer learning methods for POMCP to allow imperfect transition1012

and observation models trained on simulators (such as the Unity simulator1013

35

we used in our experiments) to be used in real environments; iii) the devel-1014

opment of new methods for improving the explainability of POMCP-based1015

policies to allow their use in environments with safety requirements (and re-1016

lated human responsibilities). Some example applications regarding the last1017

point can be found in Industry 4.0 where the recent request for a stronger1018

human-robot interaction needs reliable and comprehensible policies to guar-1019

antee the safety. Some first results on this line have been recently published1020

(Mazzi et al., accepted, 2021, 2020) and current work is focused on applying1021

those results also to real robotic platform to further extend the work here1022

presented.1023

10. Acknowledgements1024

The research is partially funded by project ”Dipartimenti di Eccellenza1025

2018-2022”, Italian Ministry of Education, Universities and Research, and the1026

European Union’s Horizon 2020 research and innovation programme under1027

grant agreement No 689341.1028

11. References1029

Altan, A., Hacolu, R., 2020. Model predictive control of three-axis gimbal1030

system mounted on uav for real-time target tracking under external dis-1031

turbances. Mechanical Systems and Signal Processing 138, 106548.1032

Amato, C., Oliehoek, F. A., 2015. Scalable Planning and Learning for Multia-1033

gent POMDPs. In: Proceedings of the 29th AAAI Conference on Artificial1034

Intelligence. AAAI Press, pp. 1995–2002.1035

Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K., 2019. Explain-1036

able agents and robots: Results from a systematic literature review. In:1037

Proceedings of the 18th International Conference on Autonomous Agents1038

and MultiAgent Systems. AAMAS ’19. International Foundation for Au-1039

tonomous Agents and Multiagent Systems, Richland, SC, pp. 1078–1088.1040

Basilico, N., Gatti, N., Amigoni, F., Jun. 2012. Patrolling security games:1041

Definition and algorithms for solving large instances with single patroller1042

and single intruder. Artificial Intelligence 184–185, 78–123.1043

36

Beretta, C., Brizzolari, C., Tateo, D., Riva, A., Amigoni, F., 2019. A1044

sampling-based algorithm for planning smooth nonholonomic paths. In:1045

2019 European Conference on Mobile Robots (ECMR). pp. 1–7.1046

Bevacqua, G., Cacace, J., Finzi, A., Lippiello, V., 2015. Mixed-initiative1047

planning and execution for multiple drones in search and rescue missions.1048

In: Proceedings of the 25th International Conference on Automated Plan-1049

ning and Scheduling. ICAPS’15. AAAI Press, pp. 315–323.1050

Bishop, C. M., 2006. Pattern Recognition and Machine Learning. Springer-1051

Verlag New York.1052

Boutilier, C., Dean, T., Hanks, S., 1999. Decision-theoretic Planning: Struc-1053

tural Assumptions and Computational Leverage. JAIR 11 (1), 1–94.1054

Boutilier, C., Poole, D., 1996. Computing optimal policies for partially ob-1055

servable decision processes using compact representations. In: Proceedings1056

of the Thirteenth National Conference on Artificial Intelligence - Volume1057

2. AAAI’96. AAAI Press, pp. 1168–1175.1058

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen,1059

P., Tavener, S., Perez, D., Samothrakis, S., Colton, S., 2012. A Survey of1060

Monte Carlo Tree Search Methods. IEEE Trans. Comp. Intell. AI Games1061

4 (1), 1–43.1062

Caccavale, R., Finzi, A., 7 2019. Learning attentional regulations for struc-1063

tured tasks execution in robotic cognitive control. Autonomous Robots1064

43 (8), 2229–2243.1065

Castellini, A., Bicego, M., Masillo, F., Zuccotto, M., Farinelli, A., 2020a.1066

Time series segmentation for state-model generation of autonomous1067

aquatic drones: A systematic framework. Engineering Applications of Ar-1068

tificial Intelligence 90, 103499.1069

Castellini, A., Chalkiadakis, G., Farinelli, A., 2019. Influence of State-1070

Variable Constraints on Partially Observable Monte Carlo Planning. In:1071

Proc. 28th International Joint Conference on Artificial Intelligence (IJCAI1072

2019). pp. 5540–5546.1073

37

Castellini, A., Marchesini, E., Farinelli, A., 2020b. Online Monte Carlo plan-1074

ning for autonomous robots: Exploiting prior knowledge on task similari-1075

ties. In: Proceedings of the 6th Italian Workshop on Artificial Intelligence1076

and Robotics, AIRO@AI*IA 2019, CEUR Workshop Proceedings AI*IA1077

Series 2594. Springer-Verlag, pp. 25–32.1078

Castellini, A., Marchesini, E., Mazzi, G., Farinelli, A., 2020c. Explaining1079

the Influence of Prior Knowledge on POMCP Policies. In: Bassiliades, N.,1080

Chalkiadakis, G., de Jonge, D. (Eds.), Multi-Agent Systems and Agree-1081

ment Technologies - 17th European Conference (EUMAS 2020). Vol. 125201082

of Lecture Notes in Computer Science. Springer, pp. 261–276.1083

Chakraborti, T., Fadnis, K. P., Talamadupula, K., Dholakia, M., Srivastava,1084

B., Kephart, J. O., Bellamy, R. K. E., 2018. Visualizations for an Ex-1085

plainable Planning Agent. In: Proceedings of the 27th International Joint1086

Conference on Artificial Intelligence, IJCAI-18. pp. 5820–5822.1087

Chen, A., Harwell, J., Gini, M., 2019. Maximizing energy battery efficiency1088

in swarm robotics. CoRR abs/1906.01957, 1–13.1089

Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K.,1090

Okada, K., Rodriguez, A., Romano, J. M., Wurman, P. R., 2018. Analysis1091

and observations from the first amazon picking challenge. IEEE Trans.1092

Automation Science and Engineering 15 (1), 172–188.1093

Coulom, R., 2006. Efficient Selectivity and Backup Operators in Monte-Carlo1094

Tree Search. In: Proceedings of the 5th International Conference on Com-1095

puters and Games. CG06. Springer-Verlag, Berlin, Heidelberg, p. 7283.1096

Farinelli, A., Iocchi, L., Nardi, D., 2017. Distributed on-line dynamic task1097

assignment for multi-robot patrolling. Autonomous Robots 41 (6), 1321–1098

1345.1099

Feldman, J. A., Sproull, R. F., 1977. Decision theory and artificial intelligence1100

II: The hungry monkey. Cognitive Science 1 (2), 158 – 192.1101

Fiorini, P., Shiller, Z., 1998. Motion planning in dynamic environments using1102

velocity obstacles. The International Journal of Robotics Research 17 (7),1103

760–772.1104

38

Fox, M., Long, D., Magazzeni, D., 2017. Explainable Planning. CoRR1105

abs/1709.10256, 1–7.1106

Godoy, J., Karamouzas, I., Guy, S. J., Gini, M., 2016. Moving in a crowd:1107

Safe and efficient navigation among heterogeneous agents. In: Proceed-1108

ings of the25th International Joint Conference on Artificial Intelligence.1109

IJCAI’16. AAAI Press, pp. 294–300.1110

Gopalakrishnan, B., Singh, A. K., Kaushik, M., Krishna, K. M., Manocha,1111

D., 2017. Prvo: Probabilistic reciprocal velocity obstacle for multi robot1112

navigation under uncertainty. In: 2017 IEEE/RSJ International Confer-1113

ence on Intelligent Robots and Systems (IROS). pp. 1089–1096.1114

Grippa, P., Behrens, D., Wall, F., Bettstetter, C., 2019. Drone delivery sys-1115

tems: job assignment and dimensioning. Autonomous Robots 43, 261–274.1116

Gunning, D., Aha, D., 2019. DARPAs Explainable Artificial Intelligence1117

(XAI) Program. AI Magazine 40 (2), 44–58.1118

Hauskrecht, M., 2000. Value-Function Approximations for Partially Observ-1119

able Markov Decision Processes. JAIR 13, 33–94.1120

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,1121

W., Horgan, D., Piot, B., Azar, M., Silver, D., 2018. Rainbow: Combining1122

improvements in deep reinforcement learning. In: Proceedings of the 32nd1123

AAAI Conference on Artificial Intelligence.1124

Huang, L., 2009. Velocity planning for a mobile robot to track a moving1125

target - a potential field approach. Robotics Autonomous Systems 57 (1),1126

5563.1127

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange,1128

D., 2018. Unity: A General Platform for Intelligent Agents. CoRR.1129

Kaelbling, L., Littman, M., Cassandra, A., 1998. Planning and Acting in1130

Partially Observable Stochastic Domains. Artificial Intelligence 101 (1-2),1131

99–134.1132

Katt, S., Oliehoek, F. A., Amato, C., 2017. Learning in POMDPs with monte1133

carlo tree search. In: Proc. ICML 2017. Vol. 70. PMLR, pp. 1819–1827.1134

39

https://arxiv.org/abs/1809.02627

Kocsis, L., Szepesvári, C., 2006. Bandit Based Monte-Carlo Planning. In:1135

Proc. of European Conference on Machine Learning, ECML’06. Springer-1136

Verlag, Berlin, Heidelberg, pp. 282–293.1137

Koren, Y., Borenstein, J., 1991. Potential field methods and their inherent1138

limitations for mobile robot navigation. In: Proceedings. 1991 IEEE Inter-1139

national Conference on Robotics and Automation. pp. 1398–1404 vol.2.1140

Krotkov, E., Hackett, D., Jackel, L., Perschbacher, M., Pippine, J., Strauss,1141

J., Pratt, G., Orlowski, C., 2017. The DARPA robotics challenge finals:1142

Results and perspectives. Journal of Field Robotics 34 (2), 229–240.1143

Kumar, N. V., Kumar, C. S., 2018. Development of collision free path1144

planning algorithm for warehouse mobile robot. Procedia Computer Sci-1145

ence - International Conference on Robotics and Smart Manufacturing1146

(RoSMa2018) 133, 456 – 463.1147

Langley, P., Meadows, B., Sridharan, M., Choi, D., 2017. Explainable agency1148

for intelligent autonomous systems. In: Proceedings of the 31st AAAI1149

Conference on Artificial Intelligence. AAAI17. AAAI Press, pp. 4762–4763.1150

Lanighan, M. W., Grupen, R. A., 2019. Long-term autonomous mobile ma-1151

nipulation under uncertainty. In: Proceedings of the 18th International1152

Conference on Autonomous Agents and MultiAgent Systems. AAMAS ’19.1153

International Foundation for Autonomous Agents and Multiagent Systems,1154

Richland, SC, pp. 2084–2086.1155

Laroche, R., Trichelair, P., Combes, R. T. D., 2019. Safe policy improvement1156

with baseline bootstrapping. In: Proceedings of the 36th International1157

Conference on Machine Learning. Vol. 97. PMLR, USA, pp. 3652–3661.1158

Lauri, M., Ritala, R., 2016. Planning for robotic exploration based on forward1159

simulation. Robotics and Autonomous Systems 83, 15–31.1160

Lee, J., Kim, G.-H., Poupart, P., Kim, K.-E., 2018. Monte-Carlo Tree Search1161

for Constrained POMDPs. In: 32nd Conference on Neural Information1162

Processing Systems, NeurIPS 2018. pp. 1–17.1163

Leonetti, M., Iocchi, L., Stone, P., 2016. A synthesis of automated planning1164

and reinforcement learning for efficient, robust decision-making. Artificial1165

Intelligence 241, 103–130.1166

40

Luperto, M., Fusi, D., Borghese, N. A., Amigoni, F., 2019. Exploiting inac-1167

curate a priori knowledge in robot exploration. In: Proceedings of the 18th1168

International Conference on Autonomous Agents and MultiAgent Systems.1169

AAMAS 19. IFAAMAS, pp. 2102–2104.1170

Marchesini, E., Corsi, D., Farinelli, A., 2021. Genetic soft updates for policy1171

evolution in deep reinforcement learning. In: ICLR.1172

Marchesini, E., Farinelli, A., 2020a. Discrete deep reinforcement learning for1173

mapless navigation. In: 2020 IEEE International Conference on Robotics1174

and Automation, ICRA ’20.1175

Marchesini, E., Farinelli, A., 2020b. Genetic deep reinforcement learning for1176

mapless navigation. In: Proceedings of the 19th International Conference1177

on Autonomous Agents and Multiagent Systems, AAMAS ’20.1178

Mazzi, G., Castellini, A., Farinelli, A., 2020. Policy interpretation for par-1179

tially observable monte-carlo planning: a rule-based approach. In: Pro-1180

ceedings of the 7th Italian Workshop on Artificial Intelligence and Robotics1181

(AIRO 2020@AI*IA2020). Vol. 2806 of CEUR Workshop Proceedings.1182

CEUR-WS.org, pp. 44–48.1183

Mazzi, G., Castellini, A., Farinelli, A., 2021. Identification of Unexpected1184

Decisions in Partially Observable Monte Carlo Planning: A Rule-Based1185

Approach. In: Proc. of the 20th International Conference on Autonomous1186

Agents and Multiagent Systems (AAMAS 2021). pp. 889–897.1187

Mazzi, G., Castellini, A., Farinelli, A., accepted. Rule-based Shielding for1188

Partially Observable Monte-Carlo Planning. In: Proc. of the 31th Interna-1189

tional Conference on Automated Planning and Scheduling (ICAPS 2021).1190

Miller, T., 2019. Explanation in artificial intelligence: Insights from the social1191

sciences. Artificial Intelligence 267, 1 – 38.1192

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., Mc-1193

Grew, B., Pachocki, J. W., Pachocki, J., Petron, A., Plappert, M., Powell,1194

G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L.,1195

Zaremba, W., 2018. Learning dexterous in-hand manipulation. CoRR.1196

41

Orlandini, A., Suriano, M., Cesta, A., Finzi, A., 2013. Controller synthesis1197

for safety critical planning. In: 25th IEEE International Conference on1198

Tools with Artificial Intelligence. pp. 306–313.1199

Papadimitriou, C., Tsitsiklis, J., 1987. The Complexity of Markov Decision1200

Processes. Math. Oper. Res. 12 (3), 441–450.1201

Parker, J., Nunes, E., Godoy, J., Gini, M., 2016. Exploiting spatial locality1202

and heterogeneity of agents for search and rescue teamwork. J. Field Robot.1203

33 (7), 877–900.1204

Ratering, S., Gini, M., 1995. Robot navigation in a known environment with1205

unknown moving obstacles. Autonomous Robots 1 (2), 149–165.1206

Ross, S., Pineau, J., Paquet, S., Chaib-draa, B., 2008. Online Planning Al-1207

gorithms for POMDPs. JAIR 32, 663–704.1208

Russell, S., Norvig, P., 2003. Artificial Intelligence: A Modern Approach,1209

2nd Edition. Pearson Education.1210

Silver, D., Huang, A., et. al., C. J. M., 2016. Mastering the Game of Go with1211

Deep Neural Networks and Tree Search. Nature 529 (7587), 484–489.1212

Silver, D., Schrittwieser, J., et. al., K. S., 2017. Mastering the game of go1213

without human knowledge. Nature 550, 354–359.1214

Silver, D., Veness, J., 2010. Monte-Carlo Planning in Large POMDPs. In:1215

22nd Conference on Neural Information Processing Systems, NIPS ’10. pp.1216

2164–2172.1217

Simao, T. D., Spaan, M. T. J., 2019. Safe Policy Improvement with Base-1218

line Bootstrapping in Factored Environments. In: Proceedings of the 33rd1219

AAAI Conference on Artificial Intelligence, AAAI’19. AAAI Press, pp.1220

4967–4974.1221

Smith, D. E., 2012. Planning as an Iterative Process. In: Proc. 26th AAAI1222

Conference on Artificial Intelligence. AAAI’12. AAAI Press, pp. 2180–1223

2185.1224

Spaan, M. T. J., Spaan, N., 2004. A point-based pomdp algorithm for robot1225

planning. In: Proc. IEEE International Conference on Robotics and Au-1226

tomation, 2004, ICRA ’04. Vol. 3. pp. 2399–2404.1227

42

Spaan, M. T. J., Vlassis, N., Aug. 2005. Perseus: Randomized point-based1228

value iteration for pomdps. J. Artif. Int. Res. 24 (1), 195–220.1229

Sridharan, M., Meadows, B., 2019. Towards a theory of explanations for1230

humanrobot collaboration. Kunstl Intell 33, 331–342.1231

Steccanella, L., Bloisi, D., Castellini, A., Farinelli, A., 2020. Waterline and1232

obstacle detection in images from low-cost autonomous boats for environ-1233

mental monitoring. Robotics and Autonomous Systems 124, 103346.1234

Sutton, R., Barto, A., 2018. Reinforcement Learning, An introduction, 2nd1235

Edition. MIT Press, Cambridge, MA, USA.1236

Tai, L., Paolo, G., Liu, M., 2017. Virtual-to-real deep reinforcement learning:1237

Continuous control of mobile robots for mapless navigation. In: IEEE/RSJ1238

International Conference on Intelligent Robots and Systems, IROS ’17. pp.1239

31–36.1240

Wandzel, A., Oh, Y., Fishman, M., Kumar, N., Wong, L. L., Tellex, S., 2019.1241

Multi-object search using object-oriented pomdps. In: 2019 International1242

Conference on Robotics and Automation (ICRA). pp. 7194–7200.1243

Wang, Y., Chaudhuri, S., Kavraki, L. E., 2018. Bounded policy synthesis1244

for POMDPs with safe-reachability objectives. In: Proceedings of the 17th1245

International Conference on Autonomous Agents and MultiAgent Systems.1246

AAMAS ’18. IFAAMAS, pp. 238–246.1247

Wang, Y., Chaudhuri, S., Kavraki, L. E., 2019. Point-based policy synthesis1248

for pomdps with boolean and quantitative objectives. IEEE Robotics and1249

Automation Letters 4 (2), 1860–1867.1250

Wang, Y., Giuliari, F., Berra, R., Castellini, A., Bue, A. D., Farinelli, A.,1251

Cristani, M., Setti, F., 2020. POMP: pomcp-based online motion planning1252

for active visual search in indoor environments. In: 31st British Machine1253

Vision Conference 2020, BMVC 2020, Virtual Event, UK, September 7-10,1254

2020. BMVA Press.1255

Yang, F., Khandelwal, P., Leonetti, M., Stone, P., 2014. Planning in answer1256

set programming while learning action costs for mobile robots. In: AAAI1257

2014 Spring Symposia. AAAI, pp. 71–78.1258

43

Yoon, H., Chen, H., Long, K., Zhang, H., Gahlawat, A., Lee, D., Hov-1259

akimyan, N., 2018. Learning to communicate: A machine learning frame-1260

work for heterogeneous multi-agent robotic systems.1261

Zhang, S., Sridharan, M., Wyatt, J. L., 2015. Mixed logical inference and1262

probabilistic planning for robots in unreliable worlds. IEEE Transactions1263

on Robotics 31 (3), 699–713.1264

Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H. H.,1265

Kambhampati, S., 2017. Plan explicability and predictability for robot1266

task planning. In: IEEE International Conference on Robotics and Au-1267

tomation, ICRA ’17. pp. 1313–1320.1268

Zhong, X., Zhong, X., Peng, X., 2014. Velocity-change-space-based dynamic1269

motion planning for mobile robots navigation. Neurocomputing 143, 1531270

– 163.1271

44

	Introduction
	Related work
	Problem definition
	POMDP representation of the problem
	POMCP-based planners
	Standard POMCP
	Extended POMCP
	Complexity analysis

	Measures for policy explanation
	Belief-state distance
	Mutual information (MI) between segment difficulty and action
	Expected time to traverse a subsegment

	Experimental setup
	Overall architecture
	Communication layer
	Paths
	Synthetic rectangular path
	Industrial computer engineering (ICE) lab

	POMDP model generation
	Simulators
	C++ simulations
	Unity simulations

	Testing arena

	Results
	Statistical analysis of planner performance
	blackDiscussion of results on rectangular path
	blackDiscussion of results on ICE path

	Performance on Unity simulations
	blackDiscussion of results on the rectangular path
	blackDiscussion of results on the ICE path

	Performance on the real world environment: testing arena
	Comparative analysis
	Final remarks

	blackConclusion and future work
	Acknowledgements
	References

