
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

July 2017

Belief-Space Planning for Resourceful Manipulation and Mobility Belief-Space Planning for Resourceful Manipulation and Mobility

Dirk Ruiken

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons, Electro-Mechanical Systems Commons, and

the Robotics Commons

Recommended Citation Recommended Citation
Ruiken, Dirk, "Belief-Space Planning for Resourceful Manipulation and Mobility" (2017). Doctoral
Dissertations. 971.
https://scholarworks.umass.edu/dissertations_2/971

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/298?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/971?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

BELIEF-SPACE PLANNING FOR RESOURCEFUL
MANIPULATION AND MOBILITY

A Dissertation Presented

by

DIRK RUIKEN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2017

College of Information and Computer Sciences

© Copyright by Dirk Ruiken 2017

All Rights Reserved

BELIEF-SPACE PLANNING FOR RESOURCEFUL
MANIPULATION AND MOBILITY

A Dissertation Presented

by

DIRK RUIKEN

Approved as to style and content by:

Roderic A. Grupen, Chair

Shlomo Zilberstein, Member

Erik G. Learned-Miller, Member

Frank C. Sup IV, Member

James Allan, Chair
College of Information and Computer Sciences

DEDICATION

To my family.

ACKNOWLEDGMENTS

Looking back onto my time as a Ph.D. student, I feel very fortunate as I really

enjoyed it here. When I first came to UMass as an exchange student, I had the

opportunity to work with Rod Grupen on the uBot project—version 4 back then. I

enjoyed working with him and on uBot(s) so much that I came back to pursue my

Ph.D. I want to thank Rod for continuing to be a great advisor. Through all these

years he has supported and guided me in my research, and I have never lost the joy

of it. Thank you, Rod, for these great years.

I also would like to thank the members of my committee, Shlomo Zilberstein, Erik

Learned-Miller, and Frank Sup, for their insight and support. Frank’s support for the

development of the latest uBot was invaluable.

An important part of my time as a graduate student was the great work environ-

ment with the lab members in the Laboratory for Perceptual Robotics (LPR) and

the Autonomous Mobile Robotics Laboratory (AMRL). LPR: Tiffany Liu, Li Ku,

Jay Ming Wong, Mitchell Hebert, Takeshi Takahashi, Scott Jordan, Mike Lanighan,

Uday Savaria, Kushal Sahare, Eric Wilkinson, Scott Kuindersma, Shiraj Sen, Grant

Sherrick, Steve Hart, Ed Hannigan, Patrick Deegan, Bryan Thibodeau, Dan Xie, Yun

Lin, Chao Ou, Hee-Tae Jung, Tom Billings, Dubi Katz, and Emily Horrell. AMRL:

Joydeep Biswas, Samer Nashed, Jarrett Holtz, Spencer Lane, Sadegh Rabiee, David

Balaban, Edward Schneeweiss, and Kyle Vedder.

Many thanks have to go to Leeanne Leclerc for always looking out for us and

making sure that we stay on track to graduate. Both Priscilla Scott and Laurie

Downey have made my life much easier and provided fantastic administrative support

v

despite my best efforts to order a shear endless number of robot parts. Likewise, the

international programs office at UMass provided great support, but also many friends.

I have participated in and helped organize their orientation and welcome weeks for

several years, and they have been always delighting.

A special thanks has to go to the original uBot-4/5 team that was a part of the

reason I came to UMass and made my first years special: Patrick Deegan, Bryan

Thibodeau, Ed Hannigan, and Scott Kuindersma. Working with Ed and Scott was

especially fantastic—I could never wish for better coworkers and team mates.

During all my time in Amherst, I have been very fortunate in the friends and house-

mates I have made. They have enriched my life and generally kept me happy and sane.

I am sure that I missed someone, but I would like to thank George Konidaris, Bruno

Ribero, Ed Hannigan, Scott Kuindersma, Philip Thomas, Shiraj Sen, Mitchell Hebert,

Marc Cartright, Ilene Cartright, Orion Cartright, Sebastian Cartright, Sam Hus-

ton, Thomas Rossi, Bobby Simidchieva, Jan Panteli, Laura Sevilla, Katerina Mara-

zopoulou, Bruno Castro da Silva, Yoonheui Kim, Armita Kaboli, Henry Feild, Jackie

Feild, Sarah Osentoski, Megan Olsen, Tim Wood, Stefan Christof, Francesca Colan-

tuoni, Maria Turrero, Michael Prokle, Alex Valencik, Jamie Klingensmith, Nisha

Kini, Kevin Winner, Pinar Ozisik, Luis Pineda, Amanda Gentzel, Kaleigh Clary,

Janet Guo, Su Lin Blodgett, Zeki Yalniz, Siddheshwari Advani, Garrett Bernstein,

Stefan Christov, Huong Phan, Sophal Khun, Justin Svegliato, Myungha Jang, John

Vilk, Elaine Kenseth, Lucy Fyffe, Lisa-Beth Waterworth, Kenzie Millar, Izzy Robins,

Katerina Byanova, Anna Womack, Anna Heiler, Armando Leal, Marien Villafaña,

Three Flower, and Gulag. You made graduate school truly enjoyable!

I would like to particularly acknowledge Tiffany Liu, Kyle Wray, and Samer

Nashed. They have all been good friends, colleagues, and house mates. They were

especially helpful during the final stages of this dissertation, always provided insight-

vi

ful feedback, and helped me tremendously in formulating my thoughts and research

ideas.

Finally, I am very grateful to my family who was very understanding when I de-

cided to pursue a Ph.D. on another continent. They have been nothing but supportive

over all these years. I also have to thank my friends Bente Hampel, Leo Braun and Si-

mone Braun-Herren, Patrik Lengerer, Julia Hochmuth, and Alejandra Villafaña who

have made sure to remain a constant factor in my life no matter how far we are apart

geographically. Thank you all!

vii

ABSTRACT

BELIEF-SPACE PLANNING FOR RESOURCEFUL
MANIPULATION AND MOBILITY

MAY 2017

DIRK RUIKEN

Diploma (M.Sc.), TECHNISCHE UNIVERSITÄT DARMSTADT

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic A. Grupen

Robots are increasingly expected to work in partially observable and unstructured

environments. They need to select actions that exploit perceptual and motor resource-

fulness to manage uncertainty based on the demands of the task and environment.

The research in this dissertation makes two primary contributions. First, it develops

a new concept in resourceful robot platforms called the UMass uBot and introduces

the sixth and seventh in the uBot series. uBot-6 introduces multiple postural config-

urations that enable different modes of mobility and manipulation to meet the needs

of a wide variety of tasks and environmental constraints. uBot-7 extends this with

the use of series elastic actuators (SEAs) to improve manipulation capabilities and

support safer operation around humans.

The resourcefulness of these robots is complemented with a belief-space planning

framework that enables task-driven action selection in the context of the partially

viii

observable environment. The framework uses a compact but expressive state rep-

resentation based on object models. We extend an existing affordance-based object

model, called an aspect transition graph (ATG), with geometric information. This

enables object-centric modeling of features and actions, making the model much more

expressive without increasing the complexity. A novel task representation enables the

belief-space planner to perform general object-centric tasks ranging from recognition

to manipulation of objects. The approach supports the efficient handling of multi-

object scenes.

The combination of the physical platform and the planning framework are evalu-

ated in two novel, challenging, partially observable planning domains. The ARcube

domain provides a large population of objects that are highly ambiguous. Objects can

only be differentiated using multi-modal sensor information and manual interactions.

In the dexterous mobility domain, a robot can employ multiple mobility modes to

complete navigation tasks under a variety of possible environment constraints. The

performance of the proposed approach is evaluated using experiments in simulation

and on a real robot.

ix

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT .viii

LIST OF TABLES . xv

LIST OF FIGURES . xvi

CHAPTER

1. INTRODUCTION . 1

1.1 Research Challenges . 2
1.2 Contributions . 3

2. BACKGROUND AND RELATED LITERATURE 8

2.1 “Dexterity” . 8
2.2 Design for Resourceful Robots . 10
2.3 Planning . 12

2.3.1 Motion Planning . 12
2.3.2 Task and Motion Planning . 15

2.4 Belief-Space Planning . 17

2.4.1 Forward Model . 18
2.4.2 Active Perception . 18
2.4.3 Task Switching . 19
2.4.4 Partially Observable Markov Decision Processes 20

2.5 Discussion . 21

x

3. A PLATFORM FOR STUDYING “DEXTERITY” 23

3.1 uBot Mobile Manipulators . 23

3.1.1 uBot-6 . 25

3.1.1.1 Head . 26
3.1.1.2 Arms and Torso . 27
3.1.1.3 Computation Architecture . 27

3.1.2 uBot-7 . 27

3.1.2.1 Head . 28
3.1.2.2 Arms and Torso . 29
3.1.2.3 Drive System . 31
3.1.2.4 Computation Architecture . 32

3.2 Postural Configurations and Transitions . 34

3.2.1 Prone . 35
3.2.2 4-Point Stance . 35
3.2.3 3-Point Stance . 35
3.2.4 2-Point Stance . 37
3.2.5 Postural Transitions . 38

3.3 Mobility Capabilities . 39

3.3.1 Balancing Mobility . 40
3.3.2 Prone-Scooting . 40

3.3.2.1 Body Height . 40
3.3.2.2 Steering Angle . 42
3.3.2.3 Drive Velocity . 43

3.3.3 Knuckle-Walking . 44
3.3.4 Costs . 44

3.3.4.1 Balancing mobility . 45
3.3.4.2 Prone-scooting . 46
3.3.4.3 Postural transitions . 47

3.4 Manipulation Capabilities . 47
3.5 Summary . 49

4. BELIEF-SPACE PLANNING . 50

4.1 Problem Definition . 52

xi

4.2 Knowledge Representation . 53

4.2.1 Aspect Transition Graph (ATG) . 54
4.2.2 Model-Based Aspect Detection . 57
4.2.3 Impact on Belief-Space Planning . 59

4.2.3.1 State Representation . 59
4.2.3.2 Action Space . 61
4.2.3.3 Observation Space . 62
4.2.3.4 Representation Conclusion . 62

4.3 Active Belief Planner (ABP) . 63

4.3.1 Bayesian Update . 64
4.3.2 Hierarchical Planning . 65
4.3.3 Task Representation . 66

4.3.3.1 Information-Based Measures . 67
4.3.3.2 Examples of Task Types . 68

4.3.4 Myopic Belief-Space Planning . 72
4.3.5 Costs: Number of Actions, Time, Energy . 75

4.4 Point-based Value Iteration (PBVI) . 75

4.4.1 Value Iteration . 76
4.4.2 Belief Point Set Expansion . 77
4.4.3 Usage with ATGs . 78

4.5 Summary . 79

5. MOBILE MANIPULATION EXPERIMENTS . 80

5.1 ARcube Domain . 80
5.2 Experimental Setup . 82

5.2.1 Information Gathering Actions . 82
5.2.2 ARcube ATG Models . 83

5.3 Experiments . 86

5.3.1 Simulation Experiments – Single Object . 86
5.3.2 Robot Experiments – Single Object . 87

5.3.2.1 Identification Accuracy . 88

5.3.3 Robot Experiments – Multi-Object Scene . 88

xii

5.3.4 Simulation Experiment with PBVI – Orient Task 90

5.4 Demonstrations . 92

5.4.1 Task Type: Recognition . 93
5.4.2 Task Type: Find . 93
5.4.3 Sequencing Find and Orient Tasks for Structure Copying 95

5.5 Discussion . 100

6. DEXTEROUS MOBILITY EXPERIMENTS . 102

6.1 Dexterous Mobility Domain . 103
6.2 Exploratory Experiments with Classical Planners 106

6.2.1 Scenarios . 106
6.2.2 Maps . 108
6.2.3 Classical A* . 108

6.2.3.1 Action Space . 109
6.2.3.2 Heuristic . 111
6.2.3.3 Results . 111

6.2.4 Hierarchical A* . 114

6.2.4.1 Subgoals . 115
6.2.4.2 Subgoal Map . 117
6.2.4.3 Results . 118

6.2.5 Discussion . 118

6.3 Partially Observable Dexterous Mobility Domain 120
6.4 Representation for Belief-Space Planning . 121

6.4.1 Environment Model . 123
6.4.2 Task Representation . 125

6.5 Experiments . 126

6.5.1 Results . 126

6.6 Discussion . 127

7. FUTURE WORK . 129

7.1 Articulated Hands for Improved Manipulation Capabilities 129
7.2 uBot-7 Integration – Improved Performance . 130

xiii

7.3 Autonomous ATG Model Learning . 130
7.4 ATG Models for More Object Types . 130
7.5 Extension of ATG Models with Tactile Properties and Force/Torque

Guided Assemblies . 131
7.6 Orientation Distributions for Improved Interaction and Matching 131
7.7 Extension to Multi-Task Planning . 132
7.8 Fully Recursive Application of the Belief-Space Planner 132

8. SUMMARY AND CONCLUSION . 134

8.1 Summary . 134
8.2 Conclusion . 135

BIBLIOGRAPHY . 138

xiv

LIST OF TABLES

Table Page

3.1 Basic specifications of the uBot-5, uBot-6, and uBot-7 robots. 24

3.2 Joint characteristics for uBot-6 and uBot-7. 30

3.3 Time and energy required to execute transitions between postural
configurations for uBot-6. 47

5.1 Comparison of random action selection vs. action selection by the
ABP (α = 0.1) for different model set sizes in simulation. 87

5.2 Single object scene experiment using uBot-6 (α = 0.1) 88

5.3 Identification accuracy computed over all experiments 90

6.1 Action costs with respect to time for driving and transitioning
between postural configurations. 110

6.2 Performance of A* over the three scenarios . 112

6.3 Performance of hierarchical A* with sparse subgoals (HA*) over the
three scenarios . 118

xv

LIST OF FIGURES

Figure Page

3.1 Two whole body mobile manipulators with 13 degrees of freedom side
by side: uBot-5 retrofit with a uBot-6 head (left) and uBot-6
(right). 25

3.2 The uBot-6 head: One motor drives two coupled degrees of freedom
resulting in a combined rotation and forward-backward
translation. This mechanism permits full view of the bimanual
workspace in all body postures. Panning of the head can only be
accomplished through torso rotation while standing upright. 26

3.3 Examples of different requirements for camera direction: upright
balancing (left), unobstructed view of the manual workspace in
front of the robot (middle), four-point contact postural
configuration for prone scooting (right). 26

3.4 The uBot-7 mobile manipulator: a dynamically stable robot with 14
active degrees of freedom and 10 series-elastic joints. It weighs
27 kg and is 95 cm tall. 28

3.5 The uBot-7 head with three active degrees of freedom: tilt, pan, tilt.
The first tilt joint supports compensation of the body angle of the
dynamic balancer and enables pan-tilt motion in all postural
configurations. 29

3.6 Components of the SEA for shoulder abduction. 30

3.7 Custom embedded controller boards for motor control and sensor
processing for a single motor (left) and two motors (right). 33

3.8 Computer and communication architecture of uBot-7. 34

3.9 Prone postural configuration: Lying prone provides maximal stability
and leaves the arms free for manipulation. 35

3.10 4-point stance using hands (left) or elbow wheels (right). 36

xvi

3.11 Examples of two statically stable postural configurations of uBot-7:
4-point contact with elbow and base wheels at low body height
(left) and high body height (right) support alternative forms of
mobility with reduced manipulation capabilities. 36

3.12 A 3-point postural configuration of uBot-6. 37

3.13 2-point stance of uBot-6 allowing for energy efficient balancing
mobility with differential steering. 38

3.14 Postural transition graph for uBot-6 and uBot-7. Postural options
include: 2-point contact during dynamic balancing, 3 and 4-point
contact during knuckle-walking and prone-scooting, and prone
resting. 38

3.15 uBot-6 in several postural configurations for different forms of
mobility: balancing (left), prone-scooting (center),
knuckle-walking (right). 39

3.16 Prone-scooting mobility. 41

3.17 Maximal turning for two different robot body heights while prone
scooting. 44

3.18 Dependency of available minimal turn radius from the body height
for uBot-6. 45

3.19 Sequencing of 3-point and 4-point postural configurations for
knuckle-walking mobility for uBot-5. 45

3.20 Comparison of power consumption [W] of the wheel motors of uBot-6
over drive speed [m/s] in balancing mobility (solid line) and
prone-scooting (dashed line). 46

3.21 Manual workspace of uBot-7: Single arm workspace, bimanual
workspace, and bimanual workspace on the ground. 48

4.1 An example of actions on transition edges connecting several aspect
nodes in an ATG. 55

4.2 An example of uncertain action outcomes in an ATG model: the start
node (left) has several outgoing edges for a FLIP action. Each
edge represents a possible outcome leading to a different aspect
node. Probabilities for each transition are stored on the edges. 55

xvii

4.3 Dynamic Bayes Net (DBN) to model objects and environments. 56

4.4 Left: a pair of features in the object model with locations and
covariances in object frame. Right: resulting Hough voting
scheme for a pair of observations matched to these features.
Weighted Hough votes are cast on the green circle. 58

4.5 The fully connected graph of inter-feature distances used to define an
aspect geometry. 58

4.6 The recursive filter for condensing belief in the probabilistic object
model. The belief-space planner uses the DBN (Fig. 4.3) to
predict how actions a cause changes in aspect nodes x (and by
inference, changes in the distribution over objects o) in order to
reduce uncertainty in the model space. 64

4.7 A simplified DBN for three objects is shown here. Task partitions for
examples of each task type are shown below. For the recognition
task, all aspect nodes for each object are grouped into one subset
of the partition, resulting in three subsets in the partition (colored
blue, green, and purple). 69

4.8 Value function representation with full α-vectors for each belief point
(left) and just the value for each belief point (right) [103]. 76

5.1 Aspects with two features (left) and three features (right) for an
ARcube object. 81

5.2 Differently weighted variants of ARcube objects: evenly distributed
weight (left), eccentrically distributed weight at a face (middle)
and an edge (right). 81

5.3 The uBot-6 performing an information gathering Flip action on a
target ARcube with uniform mass distribution. The action causes
a 90◦ rotation of the ARcube. 84

5.4 Single object identification task with uBot-6 using object model set
with |M| = 30. Plots compare the performance of the greedy
ABP (blue) versus random action selection (red). Here, ‘e.w.
Boxes’ = eccentrically weighted boxes and
‘u.w. Boxes’ = uniformly weighted boxes. It can be seen that
uniformly weighted boxes are much harder to recognize as their
transition dynamics are less distinct than those for eccentrically
weighted boxes. 89

xviii

5.5 Segmentation of a multi-object scene into three hypotheses. The ABP
maintains a separate belief distribution for each hypothesis. 90

5.6 Planning time for a single iteration of PBVI over the number of belief
points. 91

5.7 Example task to recognize an unknown object: a condensed rollout of
the belief over object models oi is shown. 94

5.8 Example task to find an object matching a specific ATG model (o24)
provided as the task specification: a rollout of belief over subsets c
is on the left. To visualize how subsets c are composed, the belief
over objects o is shown on the right. Target subset c1 contains all
aspect nodes of object o24 (blue); those of all other objects are in
c0 (green). 95

5.9 Example task to find an object with matching features: a rollout of
belief over subsets c is on the left. To visualize how subsets c are
composed, the belief over objects o is shown on the right. Target
subset c1 contains all aspect nodes of objects that contain the
necessary features and can be oriented to expose them (blue);
those of all other objects are in c0 (green). 96

5.10 Side-by-side comparison of the assembly template (left) and the
empty staging area where the assembly should be reproduced by
the robot (right). The robot observes the assembly template to
get the task specification. 97

5.11 Four ARcubes are placed in the search scene. The robot uses a model
set of 14 ARcubes. It establishes hypotheses for each of the four
ARcubes and plans over them according to the task partitions
defined. 11 object models afford the ‘0-4’ aspect and 11 afford the
‘5-3’ aspect. 98

5.12 These plots show the evolution of belief over the goal subset of the
task partition for the objects that were copied (left : first object
(‘0-4’); right : second object (‘5-3’)). 99

5.13 Side-by-side comparison of the assembly template (left) and the
assembly reproduced by the robot (right). 99

6.1 An example of uBot-6 changing postural configurations in order to
get past an obstacle. 104

xix

6.2 Three scenarios for path planning with multiple postural
configurations; the robot has to move from A to B. 107

6.3 Obstacle maps for prone-scooting mobility (a) and balancing mobility
(b) for scenario 3 (Section 6.2.1). 109

6.4 Motion primitives for prone-scooting (left) and balancing (right)
mobility. Balancing mobility supports turning in place as well as
tight turning radii. 110

6.5 Solutions for scenarios 1 – 3: the paths found are shown in blue.
Cells shaded orange were expanded in search. 113

6.6 Roll-out of the solution for scenario 3 shown in Figure 6.5(c). 114

6.7 Examples for locations (cyan) that suggest utility for postural
transitions (left) and high information gain through visibility
around a corner (right). Black-yellow shaded regions indicate
areas in which no balancing mobility is available. Green shaded
area indicates unexplored area. 116

6.8 Locations for subgoal placement (purple) in scenarios 3: near the
boundary of regions with different sets of available postural
configurations, based on theoretically high information gain at
corners and based on proximity to area without a subgoal. 117

6.9 Solution of the hierachical A* variant for scenario 3. 119

6.10 Example of the extension of a map with variable, partially observable
elements such as doors. 121

6.11 Example of the ATGs representing the map for different states of a
variable element in the map: door 1 open (b) and door 1
closed (c) . 124

xx

CHAPTER 1

INTRODUCTION

Increasingly, new applications for robots are being considered that remove them

from the tightly controlled manufacturing setting and place them in unstructured,

human environments. The unstructured environments generate a wide variety of

constraints that cannot be anticipated ahead of time, and the number of tasks is

constantly increasing and can vary a lot based on the situation.

Mobile manipulators are capable, theoretically, of dealing with such a variety of

tasks and constraints in unstructured environments. These systems are often designed

with excess degrees of freedom and with redundant sensors leading to the potential

for sensory and motor flexibility. However, applications of these new machines require

more than the potential for flexibility. So robots not only have to be resourceful and

have many capabilities, but also need to be able to reason about the best approach

to each problem based on the task constraints and the current environment.

In 1921, Wolfgang Köhler had chimpanzees solve a number of tasks with increasing

difficulty [69]. For example, a banana would hang on a rope just out of jumping reach.

The chimpanzee would try a couple of jumps, realize that it is too high, and quickly

survey what other things could be used to help him. He would drag a box underneath

the banana, thus increasing his jumping height. In subsequent experiments, the

banana would be fixed even higher such that one box is not sufficient. The chimpanzee

would realize after a few tries that the previous solution was not sufficient any more

and get a second box. After several trials, the boxes are stacked, and the banana

can be reached by jumping from the top of the stack. This example demonstrates

1

the ability to realize when a previously successful strategy is no longer sufficient,

to improve strategies, and to reason about which objects in the environment could

be combined with own capabilities to find a potential strategy to solve a problem at

hand. This combination of skills and adaptation is missing in state-of-the-art robotics

and is critical to the successful application of robots in unstructured domains.

In order for a robot to succeed in situations that are not necessarily anticipated

beforehand and for dealing with constraints imposed by different tasks, it needs to

have a wide variety of skills at its disposal and needs to know how to use them.

1.1 Research Challenges

We identify three major challenges for success of robots in unstructured environ-

ments:

1. The robot should have the sensory and motor resourcefulness to be

able to perform tasks with different functionally equivalent actions

or sequences of actions. A robot is usually only tasked with things within

its capabilities. However, slight variations of the task or the environment may

render a single solution ineffective. In order to succeed in such situations a

robot needs to have a wide variety of skills at its disposal and needs to know

how to use them. Traditionally, these skills are either acquired autonomously

in a constrained setting or pre-programmed.

2. The robot should be able to select actions based on the task and the

environment to exploit perceptual and motor resourcefulness. This

requires a good estimation of the state of the robot and of the environment

around it. Unfortunately, the world is usually partially observable, and obser-

vations are uncertain, and thus the state often cannot be determined completely.

Additionally, the robot needs to be able to predict the effects of its actions. Like

2

observations, action outcomes usually are uncertain. The robot has to factor

the uncertainty in the state of the world and in action outcomes into his action

selection.

3. The robot should be able to interact with objects or the environment

based off of known models. Models of objects or the environment can help

with the estimation of the state of the world around the robot as the robot

can recognize known objects and locations. If the models can suggest possible

interaction possibilities based on the skills of the robot, action selection can be

much improved. Like skills, the object and environment models can either be

learned autonomously, pre-programmed, or transferred from another robot.

1.2 Contributions

This dissertation approaches the challenges introduced above in a holistic way by

covering all aspects from the robot hardware all the way to software. An interesting

robot platform was available in the uBot-5 mobile manipulator [80, 31], but the

robot was at its performance limits for many tasks. Therefore, we improved upon its

design to remove these limitations and introduced additional capabilities, resulting

in uBot-6. It has successfully served as an experimental platform for many years.

uBot-7 improves again on this design to create an even more capable platform with

more focus on improved manipulation capabilities.

We developed experimental domains for the capabilities of uBot-6. Our control

software and planning algorithms were inspired by these domains but were developed

to be applicable independently of the robot platform or the experimental domain. The

main challenges for planning in these domains were the need for a suitable abstraction

to avoid planning at the lowest level and the need to handle partial observability and

uncertainty. The need for suitable abstraction is highlighted in the experiments in the

mobility domain and has influenced the design of our object models and knowledge

3

representation. Belief-space planning is used to handle the partial observability and

uncertainty. As belief-space methods all suffer from poor complexity, the choice of

knowledge representation is very important. We use affordance-based object models

to provide a good level of abstraction for both of these issues, and we extend them

to become more expressive while keeping the complexity low.

The integration of all the required components results in a very capable system

with a resourceful robot platform, object models grounded in the robot’s capabilities,

and a planning framework that can exploit this resourcefulness based on tasks and

the environment. The main contributions of this dissertation can be summarized as:

1. A unique concept for a robot platform aimed to provide highly ver-

satile capabilities. Based on the concept of having ‘many solutions for many

problems,’ the uBot series is a mechanical commitment to solving problems

in unstructured environments. It combines many advantageous properties into

a single robot platform while remaining easy to use and low-cost. We devel-

oped and built two new versions of the series, each with great improvement in

capabilities:

uBot-6 removes the informal barrier between mobility and manipulation. Usu-

ally in robotics, degrees of freedom (DOFs) of wheels are associated exclusively

for mobility and DOFs of arms are associated exclusively for manipulation.

uBot-6 increases its versatility through action alternatives that use all DOFs

for either area. The robot introduces unique access to various postural config-

urations and the associated forms of mobility.

uBot-7 extends these capabilities with series elastic actuators (SEAs) to make

the robot more robust and safer around humans. It is the first dynamically

balancing wheeled robot with SEAs.

4

For uBot-6, the control framework has been completed, including embedded

control, the interface for the ROS middleware, and many controllers. The ca-

pabilities of the robots have been modeled empirically, and the robot is used

for all of our experiments and demonstrations. The construction of uBot-7 has

been completed, but development of all control software is not yet finished.

2. A compact but expressive state representation for belief-space plan-

ning based on object models. We introduce a powerful extension to existing

affordance-based object models. The aspect transition graph (ATG) model has

been used successfully for belief-space planning [124, 123, 76, 75].

We extend the ATG model with geometric information to enable several im-

provements such as easy object pose estimation, more expressive and robust

interaction capabilities, robustness to occlusion, and better observation mod-

els. As an ATG model is based on perceivable features of an object as well as

the interaction possibilities known to the robot, the ATG model can provide

abstractions that represent the states of an object that matter to the robot.

This abstraction is used to form the state space for belief-space planning. This

keeps the state space compact without losing expressiveness. All interaction

capabilities are also expressed in an object-centric manner, making them more

robust and independent from variance in the robot pose relative to the object.

The ATG models provide the state space, transition model, cost estimates, and

observation model for belief-space planning. In addition to objects, we also use

ATGs to model environments.

3. A method to specify generic single-object tasks in belief-space. We

introduce a method to express different tasks by defining a task partition over

the state space and specifying an information-based metric. We use an object-

centric state representation, and thus tasks are specified in the context of single

5

objects. We show how this mechanism supports different task types commonly

encountered in robotics.

4. A planning framework that incorporates the ATG object models and

task specifier to handle single-object tasks in belief-space. We present

a belief-space planning framework capable of efficient action selection on a real

robotic system under partial observability. The framework also handles uncer-

tainty in action outcomes and in observations. State space, transition models,

observation models, and empirical cost models are provided by the ATG mod-

els. Thus, planning is not slowed down by the need for additional simulation to

acquire this information. During planning, the ATG models restrict the search

space by efficiently providing only relevant actions to consider. A hierarchi-

cal approach supports efficient planning for scenes with multiple objects. We

find that finite horizon planning can successfully complete tasks, even for small

horizons.

5. New planning domains for mobile manipulation on real robots. We

introduced two new planning domains for belief-space planning that can be used

on real robots. These domains are used to evaluate our planning framework in

simulation and on the uBot-6 robot.

The ARcube domain is specifically designed to stress planners by provid-

ing an extremely high degree of ambiguity between objects in multiple sensor

modalities. Sparseness and partial observability of visual features result in a

high number of objects that can be visually indistinguishable from a single view

point. Additionally, objects can be eccentrically weighted, making some objects

only differentiable through their transition dynamics for manipulation actions.

Mobility actions can provide new view points around the objects, and manual

actions can be used to reorient the objects themselves. It is very easy to cre-

6

ate physical copies of the ARcube objects, and they can be adapted to match

different size requirements of other robots.

The dexterous mobility domain provides a pure mobility domain for robots

with multiple forms of mobility. This domain is especially interesting since

switching between mobility forms often incurs high costs, which can deter plan-

ners from considering these options. A variation of the domain also contains

partially observable elements such as doors or blocked passages.

This thesis is organized as follows. In Chapter 2 we introduce background nec-

essary to understand the remainder of this dissertation and discuss relevant existing

research. The platform design for the uBot series is presented in Chapter 3 with

focus on uBot-6 and uBot-7 that have been developed for this work. It provides

an overview of the platforms and their capabilities. In Chapter 4 we introduce our

object and environment models, the developed belief-space planners, and a new task

representation for belief-space planners. We present a mobile manipulation domain

in Chapter 5 that is designed to stress planners through high ambiguity and the need

for incorporation of multi-modal information. A variety of experiments is used to

evaluate the performance of the belief-space planner. Demonstrations showcase the

benefits of the presented task representation and how the they can be used to solve

more complex tasks in combination with a higher level decision making. Chapter 6 fo-

cuses on dexterous mobility. We define two variants of the dexterous mobility domain

with and without partial observability. Exploratory experiments highlight challenges

to planners arising from increasingly diverse action costs of resourceful robots. Exper-

iments in the partially observable variant use our belief-space planners. Finally, we

provide a discussion of possible future research directions in Chapter 7 and conclude

with a summary of the main contributions of this thesis.

7

CHAPTER 2

BACKGROUND AND RELATED LITERATURE

This chapter provides an introduction to dexterity and its relation to robots and

their ability to select actions that exploit perceptual and motor resourcefulness. Sec-

tion 2.2 discusses related work in mechanism design of mobile manipulators including

the background of the uBot series. Section 2.3 describes related work for planning

in the context of the dexterous mobility of uBot-6 and uBot-7. Finally, the chapter

concludes with a brief overview of belief-space planning and a summary of existing

work in that field in Section 2.4.

2.1 “Dexterity”

In daily life, humans (and other animals) encounter many different challenges

that they overcome with ease without much thinking. These problems can be known

instances that they solved many times before or completely new variations.

An easy to imagine example is the task of opening a door. Effortlessly, we open a

large variety of doors every day. They vary in geometry, in the way they open, and

how they are unlocked. We adjust to these variations by choosing the more suitable

hand, by adapting our grip, or by using more elaborate strategies. In addition to the

variations in the door geometry and mechanism, the task can also be constrained by

other circumstances, e.g. if we are carrying things in one or both hands. Without

much thinking, we use the other hand if our preferred hand is occupied. We might

also transfer the carried object to the other hand to free the more suitable hand. If

both hands are occupied (e.g. carrying a grocery bag), we might try to open the door

8

with our elbow or, if that seems unlikely to succeed, decide to put the bag down,

open the door, and pick the bag up again.

The set of flexible motor skills and rational decision making regarding the use of

these skills are collectively called dexterity. In the dictionary, one can find definitions

such as “the ability to use your hands skillfully,” “the ability to easily move in a

way that is graceful,” and “clever skill: the ability to think and act quickly and

cleverly” [55]. Together, these definitions apply dexterity generally to body and mind.

Nonetheless, in common use, dexterity is mainly just associated with fine motor skills

with hands.

Similarly, in robotics, dexterity is also mostly used in a very narrow meaning:

dexterity is generally used only for manipulation tasks and for the structure and

control of hands [95]. While Sturges defines dexterity generally as “skill in use with

hands” [138], Li et al. and Bicchi refer to the ability to change grasps on objects and

change the position and orientation of an object in the reach of the hand [89, 14].

Okamura et al. make dexterous manipulation object-centric but still dependent on

hands, and knowledge of object geometry is even a requirement for dexterous manip-

ulation [101]. Ma and Dollar still treat dexterity only with respect to manipulation

and hands but point out that “it’s not unreasonable to apply these general definitions

to locomotion” [95].

In order to come back to a more general definition that can be applied in robotics,

we can look at the definition Nikolai Bernstein coined in the 1940s. In his seminal

work “On Dexterity and Its Development,” dexterity is described as “the ability to

solve a motor problem correctly, quickly, rationally, and resourcefully” [13]. This

definition expands dexterity to any motor problems instead of just manual skills, and

the term dexterity can be applied equally to mobility as to manipulation. Dexterity

in the mobility domain has been explored by Kuindersma et al. and Ruiken et al.

and is referred to as dexterous mobility [80, 116].

9

Bernstein also notes that the agent must have sufficient fitness and coordination

to exhibit dexterity—trying to exhibit dexterity without these features “is like trying

to write with a broken pencil” [13]. While resourcefulness in animals arises naturally

from evolution, in robotics it needs to be considered specifically by the designer. New

robotic platforms must be engineered to have the “sufficient fitness and coordination”

necessary for dexterous behavior.

We conclude that dexterity must be the product of the entire design—it does not

simply emerge from the mechanism or from control alone. A mechanism design has

to provide the physical resourcefulness, but a matching action selection needs to be

able to exploit the versatility of the robot. In general, the combination of skills and

rational decision making about their use is missing in state-of-the-art robotics and is

critical to the successful application of robots in unstructured domains.

2.2 Design for Resourceful Robots

Mobile manipulators are increasingly expected to work in human environments [107,

97, 52, 135, 32]. Research in this area is often conducted with statically stable wheeled

robots, such as PR2 and ARMAR-III, that have upper bodies that are equipped with

arms and grippers to interact with the environment [16, 4]. These robots can access

most human environments that are wheelchair accessible, but they rely on heavy

bases with large footprints to ensure static stability even when reaching for objects

far away from the body and when maneuvering at moderate to high speeds.

Dynamically stable robots constantly balance to maintain stability, but produce a

much smaller footprint and support easier movement in cluttered environments and

crowds. Legged humanoids, such as Asimo and ARMAR-4, fall into this category

even though they can be statically stable at times [121, 5].

To avoid the complexity of legs on the mechanism in design and control, robots

such as the uBot series, Ballbot, and Golem Krang balance on two wheels or a ball

10

to maintain dynamic stability [33, 80, 115, 86, 136]. The use of wheels is also much

more energetically efficient than the use of legs. Additionally, dynamic stability can

improve performance in tasks like pushing and lifting as the body mass can be used

more effectively [33, 70, 79]. This, however, comes at the cost of having to prevent or

control possible falls.

The uBot series has been developed as a unique design point combining many

advantageous properties into a single robot platform: the uBots have been designed

to be large and strong enough to manipulate objects in the real world, yet be small

and lightweight enough to be operated easily without complex safety harnesses. At

toddler size, the arms can reach table-tops as well as the ground. The small size also

makes the robot less intimidating and keeps cost low. Dynamic balancing on two

wheels is used to combine great energy efficiency and a small footprint with reduced

mechanical and control complexity. Balancing also provides low input impedance lon-

gitudinally, making it a good design consideration for safety. Stiff platform impedance

laterally supports high manual precision. Its design avoids highly expensive compo-

nents, such as harmonic drive gears, in order to keep the robot low cost (for a robot

with comparable capabilities) while achieving good performance for manipulation and

locomotion. The series has been used successfully in many applications ranging from

object recognition/manipulation [118], autonomous assembly [117, 139], emergency

response [58], to physical rehabilitation [56, 57].

In robotics, mobility is typically just a means to extend the workspace of the

manipulator. This usually limits the use of wheel motors to mobility tasks and arm

motors to manipulation tasks. We removed this separation between mobility and

manipulation resources for the design of the uBot platforms, and the new capabilities

result in added physical resourcefulnes, e.g. increased pushing capacity and alternate

forms of mobility [140, 80]. This concept is not unique to the uBot series, but it

is very uncommon. For example, iCub uses its arm for manipulation and crawling

11

[34], and NASA Athlete can use its legs for manipulation tasks [147]. The uBot-6

presented in this work (Section 3.1.1) breaks this separation down even further with

added postural configurations [115]. Each configuration supports different properties

to both manipulation and mobility. Transitioning to a statically stable configuration

can greatly increase manual precision and enable successful completion of otherwise

impossible tasks. Likewise, different postural configurations also support different

forms of mobility that can help overcome obstacles in the environment [116].

The most recent version of the uBot series, uBot-7, is presented in Section 3.1.2.

Its design is aimed to improve manual and perceptual versatility by adding series

elastic actuators (SEAs) and an improved head [114].

2.3 Planning

Planning on a robotic system can happen on many different levels. This section

will cover planning algorithms that are relevant to planning suitable for the various

forms of mobility of uBot-6 and uBot-7 (see Chapter 3). First, we provide an overview

of related work on path and motion planning suitable to find a path or trajectory

for navigation of a mobile robot, then we cover existing work in integrated task and

motion planning.

2.3.1 Motion Planning

A navigation task of a mobile robot requires searching for a path in the envi-

ronment using a set of actions with associated costs. Possibly the most well-known

search algorithm is A* [47], which finds an optimal path by combining actual and

heuristic cost. While A* is very efficient, the size of the search space as well as time

limitations often make it infeasible to find a solution. To address this problem, many

anytime variations such as ARA* have been developed [92]. They are able to quickly

find a suboptimal solution and then use the remaining time to refine it. Another

12

limitation of A* in real world settings is its inability to efficiently adjust to changes

in dynamic environments. Efficient incremental variants of A* such as D* [134] and

D* lite [68] are able to repair existing solutions for a fraction of the cost of a complete

replan. Both anytime and repair capabilities have been combined in algorithms like

AD* [91]. A* type searches have been combined with a state lattice to handle path

planning for non-holonomic navigation in state-of-the-art systems [105].

Hierarchical A* (HPA*) uses the basic idea of A* and combines it with a hierar-

chical search [17]. The search space is divided regularly into larger areas. Transition

points along the boundary of neighboring areas are identified, and inside each area

A* is used to find shortest paths between all transition points of the area. Using an

abstract connectivity graph from these shortest paths, a global path can be found

on the higher level. By limiting A* to local searches, the needed resources are re-

duced, but optimality guarantees are lost. Additionally, the division of the search

into regular areas is not applicable to all search space.

The performance of A* type searches is highly dependent on the quality of heuris-

tics. Sometimes it can be difficult to find a heuristic that captures the properties

of the system well enough to efficiently guide the search [48]. A major problem is

heuristic depression regions in the search space where the heuristic values do not

correlate well with actual cost-to-goal. This results in an exhaustive exploration of

less expensive actions before necessary higher cost actions are considered. A possible

solution is the usage of distance-to-go as part of the search heuristic instead of or

together with the cost-to-go [119, 148, 149]. The number of steps to the goal replaces

the estimated cost to the goal. This is equivalent to unit costs for all actions. A

decision has to be made ahead of time what trade-off between speed and quality is

desired.

Recently, the use of sampling-based algorithms, such as Rapidly-exploring Ran-

dom Trees (RRT) [87, 88] and RRT Connect [78], have become more popular for path

13

planning in navigation [20] as well as motion planning in configuration space [77].

These algorithms tend to find a solution very quickly, but give no guarantee for op-

timality. They struggle for problems in which a solution path has to pass through a

very constrained region. While they are probabilistically optimal, finding a solution

in such cases would take too much time. Variants such as Multipartite RRT [155]

provide support for dynamic environments.

Path planning using Harmonic Functions (HF) [26, 27] offers navigation similar to

using potential functions [65] without local minima. The resulting paths are smooth

and HFs handle changes in the environment well. The major limitation for HF was

that gradients would get too shallow for large map sizes for long paths with bottle-

necks. These limitations were removed recently by expressing HFs in log-space [154].

Nonetheless, it is not straight-forward how to use HF for planning non-holonomic

paths.

Probabilistic roadmaps (PRM) can be built by sampling configurations and con-

necting them with “reachable” neighbors using a simple but fast local planner [64, 63].

Edges are introduced if a path exists and labeled with the corresponding cost. Usu-

ally PRMs are constructed in a preprocessing step, but query and construction steps

can be interleaved as construction is incremental.

For most of these methods, it is not straightforward how to use them for plan-

ning non-holonomic paths. This makes the heuristic search with an A* type method

in combination with a state lattice the most promising approach for planning paths

for the prone-scooting mobility form of uBot-6 and will be discussed further in Sec-

tion 6.2.3.

14

2.3.2 Task and Motion Planning

In this section we discuss some related works that combine task planning and

motion planning into unified frameworks as they can be relevant to the approach

used for hierarchical abstraction for dexterous mobility in Chapter 6.

DARRT [9] is a planning algorithm that uses rapidly exploring random trees

(RRT) [87, 88] to find plans for manipulating objects. The search is performed in the

combined configuration space of the robot and object. The result is a configuration

space trajectory for the whole task. Sampling based algorithms are generally suitable

for motion planning in configuration space, but have special requirements to deal

with non-prehensile manipulation, as for example an object cannot move by itself,

and the trajectory is tied to the arm trajectory during a pushing action. To overcome

this problem, DARRT uses projection functions to guide samples towards interesting

configurations based on manipulation primitives and on object trajectory.

The faster version, DARRTHConnect [10, 11], uses the bidirectional variant DAR-

RTConnect [10] in a hierarchical manner. A relaxed path for the object is calculated,

and subgoals are extracted from this path. DARRTConnect is used to solve each

subtask. The separation into subtasks results in faster planning times as only part of

the plan has to be redone if DARRTConnect gets stuck and needs to be restarted.

DARRT quickly finds solutions to interesting manipulation problems that might

include non-prehensile interactions and tool use. But the use of these planners is

limited as the result of the planning process is an open-loop trajectory in configuration

space with the associated problem: generally, long open-loop plans have increasing

failure rates with increasing lengths as positioning errors accumulate. Open-loop

movements are also not tolerant to faults as the robot is oblivious to when parts of

the trajectory did not fulfill its intended purpose (e.g. a hand closed next to an object,

but the robot continues as if the object was grasped successfully). Additionally,

15

these methods require full knowledge of the environment, which is unrealistic in most

situations.

Kaelbling and Lozano-Pérez presented the hierarchical planning in the now frame-

work (HPN), which is a combined framework for task and motion planning which

plans “in the now” [60, 61]. The goal and intermediate planning states are repre-

sented symbolically. An abstract plan is found for the given conditions recursively.

Preconditions are dropped for abstract actions to simplify planning. An abstract ac-

tion can be resolved into new “sub”-conditions and the recursion is repeated. Once

a primitive action is reached during planning, it is executed. Only the earliest condi-

tions and subtasks are expanded resulting in only the part of the plan being refined

that needs to be executed first. As a result, the planner can deal with large hori-

zon problems. The planner itself is a goal regression planner which starts from the

goal and searches towards the start. Instead of enumerating all precursors, geometric

“suggesters” are used to provide some sample poses and locations. Search on the

highest level is done by A* with the number of unsatisfied conditions as the heuristic.

This approach aggressively sacrifices optimality in favor of efficiency. The success

of this approach rises and falls with the quality of the geometric “suggesters.” While

this work still uses full knowledge about the environment, the planning “in the now”

approach seems very appropriate as future and unknown situations are likely to be

unknown or different in partial observability. Like the DARRTH framework, the

final outcome of this framework are open-loop trajectories as result of each primitive

action. As they are calculated only once the execution reaches that part of the plan,

it suffers less from accumulated errors.

RCHPN is an extension to HPN that reorders and combines subtasks to reduce

execution cost [46, 45]. It is still not using cost estimates for abstract actions, but

orderings that would include subtasks, that need to be undone later, can be avoided.

16

Wolfe et al. [151] provided a framework for integrated task and motion planning

based on Hierarchical Task Networks (HTNs) [99]. Dornhege et al. proposed the

usage of semantic attachments, which enables a low level planner to change fluents

in the description language, such as PDDL, used by a high-level planner at runtime

[38].

Stilman et al. present a planning framework for the problem of Navigation Among

Movable Obstacles (NAMO) [135]. A robot needs to find a path through an environ-

ment with fixed and movable obstacles. The robot needs to use its manipulators to

move the obstacles out of the way to create a path to the goal. The task is split into

several smaller path planning problems and manipulation tasks. Then the algorithm

finds which combination of subproblems needs to be solved to find a solution to the

complete problem at minimal execution cost. The result are open-loop mobility and

manipulation trajectories, but could also be returned as a list of more abstract sub-

goals. A probabilistic extension can solve more difficult problems, but suffers from

possibly large number of unnecessary manipulation actions [144]. This work has also

been extended to manipulation planning [137].

With respect to dexterous mobility, all these approaches use some level of ab-

straction and could be used to find solutions similar to those from the approach used

in Section 6.2.4, but their success is likely mostly dependent on the quality of the

generated subgoals.

2.4 Belief-Space Planning

Robots usually encounter a lot of uncertainty in observations and action outcomes.

Observations can be uncertain because of factors like sensor noise and occlusion.

Variances in the robot’s controllers and state estimation can cause non-deterministic

action outcomes. Additionally, the state of the robot and the environment is usually

only partially observable. In structured environments, the impact of these issues

17

can often be controlled such that they do not have to be handled explicitly. In

unstructured environments, a robot usually needs to be able to operate despite these

issues. A typical method to handle partial observability and uncertainty is to perform

planning in belief space. In order to make decisions under uncertainty in the state,

the robot maintains a belief in the form of a probability distribution of the true

state. The robot can take actions and observations to update this belief. There are

many different approaches for belief-space planning that sometimes share methods

and also problems. We will discuss some of these approaches that are relevant to this

dissertation.

2.4.1 Forward Model

A necessary component of a belief-space planner is a means of propagating belief

distributions through candidate actions using a forward model. For example, Hog-

man et al. use the action-effect relation to categorize and classify objects [51]. Loeb

and Fishel discuss how Bayesian Exploration can be used to construct queries to as-

sociative memory structures of previous sensorimotor experiences [93]. Browatzki et

al. use a similar action selection metric and transition probabilities on a view sphere

with a set of actions that execute in-hand rotations [19]. Wörgötter et al. propose

the affordance-based object-action-complexes (OACs) to model the transition model

of objects for different actions [153]. Sen introduces similar affordance-based object

models called aspect transition graphs (ATGs) that combine bag-of-features feature

matching with a graph to model action effects [125, 122]. We extend the ATGs by

adding geometric information and cost estimates to improve state representation and

forward modeling capabilities in Chapter 4.

2.4.2 Active Perception

Belief-space planning is intuitively well suited for use in the field of active percep-

tion as actions need to be chosen to reduce uncertainty. There is substantial evidence

18

that human visual learning is facilitated by coupling perception and action [42]. The

active vision community advocates exploiting actions that change sensor geometries in

order to actively improve confidence in perceptual feedback and information gain [7].

Aloimonos et al. introduce the first general framework for active vision in order to

improve the quality of tracking results [2]. More recently, Denzler et al. demonstrate

how altering sensor geometry can be used effectively to deal with limited field-of-view

and occlusions in the scene [35]. Sen et al. model the interaction capabilities of a

robot with an object in affordance-based object models [126, 125]. They show how

distributions over populations of object models can be used for greedy action selec-

tion to reduce entropy over object models [122, 124]. Sen and Grupen showed that

by pruning models with insufficient support, it can scale to large numbers of models

(up to 10, 000) [123].

This thesis uses a generalization of seminal contributions from the active vision

community [7, 2] that can be applied to multi-modal perceptual information and to

general-purpose problem solving. We present an active belief planning framework

that builds on the work of Sen in Chapter 4.

2.4.3 Task Switching

Often the robotics community works on when to switch between tasks [146, 21]

rather than how to solve different active perception tasks using a single planner.

Grabner et al. proposed a single framework to solve both object identification and

object categorization in object recognition problems [44]. Lai et al. proposed a scal-

able tree-based approach to solve category recognition, instance recognition, and pose

estimation [84]. These methods, however, are not active recognition algorithms, and

therefore, they do not interact with the environment to reduce the uncertainty. As

discussed in Chapter 4, we combine active perception with a mechanism to seamlessly

switch between tasks [117].

19

2.4.4 Partially Observable Markov Decision Processes

A popular formalism for reasoning in a system with uncertain action outcomes

is the Markov decision process (MDP) framework [12]. If the state of the system

is not fully known and only partially observable, then the system can be formalized

as a partially observable Markov decision process (POMDP) [131, 22, 59]. There

exist many different algorithms to solve POMDPs, however, their usage is limited

as POMDPs quickly become computationally intractable with a growing number of

states, observations, and actions.

POMDPs have been used successfully for tasks such as robot navigation [113] and

robot interaction [30]. The size of the state space required can still be prohibitive,

however. To scale these approaches, Castanon uses a hierarchical POMDP to rec-

ognize many objects in a scene [24], and Sridharan et al. introduce a hierarchical

POMDP to plan visual operators to recognize multiple objects in the scene [133].

Often planning with a small finite horizon can already provide good solutions to

POMDPs. Eidenberger and Scharinger formulate an approximate solution for a

POMDP with a horizon 1 value function. They demonstrated that this approach

generates next viewpoint actions that successfully recognize multiple objects in a

cluttered scene [40]. Hsiao et al. utilize a decision theoretic solution to a POMDP to

determine the relative pose of a known object [53]. They show that rolling out belief

states by just two plies can lead to a drastic decrease in the number of actions, but

that multi-ply planning quickly becomes computationally prohibitive. Araya et al.

note that the reward structure of POMDPs can be prohibitive when the distribution

of belief itself is critical for the task [3]. For our belief-space planner, we combine

finite horizon planning and handle multi-object scenes in a hierarchical manner to

support efficient action selection in Sections 4.3.4 and 4.3.2.

Optimal solutions to POMDPs are provided by offline solvers that compute an

optimal policy but are generally intractable for real robot problems. Online planners

20

for POMDPs address this problem by planning up to a finite horizon and then choos-

ing the best action at that plan depth [112, 130]. Point-based algorithms offer much

increased performance and make it possible to solve much larger POMDP problems

[103, 104, 132]. These algorithms generate a set of belief points to approximate the

full belief space. This set is much smaller and enables a more efficient computation

of an approximate solution only for these belief points. The quality of the solution is

dependent on how well the sampled set of belief points approximates the belief space.

HSVI1 [128], HSVI2 [129], and SARSOP [83] utilize heuristics to direct the sampling

process towards the reachable areas of the belief space in order to improve the approx-

imation with fewer belief points. In order to evaluate the performance of this class

of solvers for our planning domains, we combine point-based value iteration (PBVI)

with the ATG models as an online solver for POMDPs as shown in Section 4.4 [103].

2.5 Discussion

Operating successfully in unstructured environments is difficult for state-of-the-

art robots. The platforms often have specific capabilities and strategies for given

tasks. If this strategy cannot be used, often no alternatives are available. With the

uBot series, we provide a very resourceful robot and further extend its capabilities

with functional equivalent action alternatives for locomotion as shown in Chapter 3.

The robot needs to choose between alternative actions or action sequences that can

complete a task. Many different belief-space planning approaches might be suitable.

We are interested in a single approach that can handle a large variety of tasks instead

of many special purpose solutions. Information-theoretic planners perform well even

with finite horizon planning to small depths, and they are well suited for when the

distribution of belief itself is critical for the task while POMDP solvers struggle here.

On the other hand, for tasks that have specific states as goals, the small search depth

could be prohibitive. POMDP solvers might be more suited here, though they have

21

tractability issues with respect to the planning time. We combine a version of each

with our ATG object models to evaluate their performance (Chapter 4). We choose

PBVI as a representative for the POMDP solvers. In the future, a heuristic based

alternative could be very successful in our domains.

22

CHAPTER 3

A PLATFORM FOR STUDYING “DEXTERITY”

In the seminal work “On Dexterity and Its Development” by Nikolai Bernstein,

dexterity is described as “the ability to solve a motor problem correctly, quickly,

rationally, and resourcefully” [13]. This definition makes it clear that dexterity must

be the product of the entire design—it does not simply emerge from the mechanism or

from control alone. Often the dexterity of a robotic platform is judged by its degrees

of freedom or by the capability of manipulating items in its hand. These are very

limiting views on what actually determines the dexterity of a robot. A robot can

have a high number of degrees of freedom (DOF) and still be completely incompetent

if it does not know how to use those DOFs to solve a given task. A robot can also

be very dexterous in solving a single task under many different constraints, but be

helpless in many other tasks.

Our focus is on the “resourcefulness” specification. In this case, “dexterity” im-

plies that when a prototype solution cannot be applied due to run-time constraints,

a robot can modify its strategy quickly to deal with the unexpected circumstances.

Our approach is to design mechanical systems with different types of solutions with

varying performance characteristics that can be exploited by matching control and

planning approaches when required.

3.1 uBot Mobile Manipulators

Based on the concept of having ‘many solutions for many problems,’ the uBot se-

ries is a mechanical commitment to solving problems in unstructured environments.

23

It has been developed as a unique design point combining many advantageous proper-

ties into a single robot platform: the uBots have been designed to be large and strong

enough to manipulate objects in the real world, yet be small and lightweight enough

to be operated easily without complex safety harnesses. At toddler size, the arms can

reach table-tops as well as the ground. The small size also makes the robot less in-

timidating and keeps cost low. Dynamic balancing on two wheels is used to combine

great energy efficiency and a small footprint with reduced mechanical and control

complexity. Balancing also provides low input impedance longitudinally, making it

a good design consideration for safety. Stiff platform impedance laterally supports

high manual precision. Its design avoids highly expensive components, such as har-

monic drive gears, in order to keep the robot low cost (for a robot with comparable

capabilities) while achieving good performance for manipulation and locomotion.

As part of this work, two new versions of the uBot series have been developed based

on experience with previous versions: uBot-6 and uBot-7 [115, 114]. An overview

of their basic specifications compared to their predecessor uBot-5 can be found in

Table 3.1.

Table 3.1. Basic specifications of the uBot-5, uBot-6, and uBot-7 robots.

uBot-5 uBot-6 uBot-7

Body height (to top of head) 77 cm 88 cm 95 cm
Body width 59 cm 62 cm 65 cm
Body depth 20 cm 23 cm 25 cm
Body mass 18.9 kg 24.8 kg 27.0 kg
Arm length (shoulder to hand) 57 cm 70 cm 74 cm
Base wheel diameter 20.5 cm 23 cm 23 cm
Elbow wheel diameter — 7 cm 7 cm

In their primary form of locomotion, the robots are dynamic balancers on two

wheels. The wheels provide non-holonomic drive capabilities with differential steer-

ing. They are capable of transitioning to and between other postural configurations.

The postural configurations and corresponding mobility forms are available to both

24

robots and are detailed in Sections 3.2 and 3.3. Each postural configuration enables

additional ways to interact with the environment and solve tasks. At the same time

they also pose additional requirements to the robot design.

3.1.1 uBot-6

uBot-6 is a toddler-sized mobile manipulator that balances dynamically on two

wheels. Experiences from the design and operation of uBot-4 [33, 140] and uBot-5 [31,

80] have been incorporated into the design of uBot-6.

Figure 3.1. Two whole body mobile manipulators with 13 degrees of freedom side
by side: uBot-5 retrofit with a uBot-6 head (left) and uBot-6 (right).

The robot has 13 DOFs: two wheels, a rotatable trunk with two 4-DOF arms, and

a 2-DOF head. Added in uBot-6, the elbows are equipped with small, unactuated

wheels that enable additional forms of mobility (see Section 3.3). The basic physical

dimensions of the uBot-6 robot are summarized in Table 3.1. uBot-5 and uBot-6

are shown side by side in Figure 3.1. Compared to uBot-5, weaknesses in joint

transmissions have been eliminated and the strength of all joints has been increased

least threefold. Additionally, the hands have been equipped with force/torque sensors

25

3.1.1.1 Head

A new 2-DOF head (Fig. 3.2) has been designed to complement the postural

versatility of the robot: two coupled joints driven by one motor result in a com-

bined rotational and translational movement that permits full view of the bimanual

workspace in all postural configurations. Examples of the requirements due for the

head are shown in Figure 3.3. An RGB-D camera (Asus Xtion Pro Live [6]) provides

color and depth information from the manual workspace.

Figure 3.2. The uBot-6 head: One motor drives two coupled degrees of freedom
resulting in a combined rotation and forward-backward translation. This mechanism
permits full view of the bimanual workspace in all body postures. Panning of the
head can only be accomplished through torso rotation while standing upright.

Figure 3.3. Examples of different requirements for camera direction: upright balanc-
ing (left), unobstructed view of the manual workspace in front of the robot (middle),
four-point contact postural configuration for prone scooting (right).

26

3.1.1.2 Arms and Torso

The arms, torso, and wheels of uBot-6 are driven by brushed DC motors. Com-

pared to uBot-5, the strength of all joints has been increased at least threefold, and

several weaknesses in joint transmissions have been eliminated.

Spherical end effectors are connected to the arms through ATI Mini45 force/torque

sensors to provide better manipulation capabilities. They have been chosen such that

the measurement resolution is maximized while being robust enough to withstand the

impact of a potential fall.

3.1.1.3 Computation Architecture

High performance low-level motor control at 2 kHz is provided by a custom field

programmable gate array (FPGA) board. An on-board quad-core computer runs

Linux and ROS [109] Indigo to implement mobility and manipulation controls as

well as vision processing and behavioral programs. Wireless connectivity allows addi-

tional computation to be performed on external computers as well as communication

between several robots.

3.1.2 uBot-7

With advances in mobile manipulation, interest is increasing in robots working

side by side with humans. Safety is the main concern in such scenarios. Accidental

impacts with humans should have minimal potential of injuring them and need to

be detected by the robot. The most popular method to implement this functionality

in robots is the use of impedance control [50]. This can either be done on robots

with series elastic actuators (SEAs) [108] with passive compliance at the expense

of precision, for example Baxter and COMAN [110, 143], or on robots with high

performance torque sensing capabilities, for example DLR’s Justin [102, 150].

uBot-7 (Fig. 3.4) has been developed to incorporate SEAs into a versatile platform

such as predecessor uBot-6 [114, 28, 29]. The toddler-sized mobile manipulator now

27

has 14 DOFs. The robot weighs about 27 kg and is 95 cm tall. Like uBot-6, it has

two 4-DOF arms and a rotatable trunk. The head has been improved and has three

independent, active degrees of freedom. Extended details can be found in focused

publications on: the mechanical design of robot with sensor and motor selection [28],

the modular SEA modules [29], and the complete design concept of uBot-7 including

the head design, embedded electronics, and compute architecture [114].

Figure 3.4. The uBot-7 mobile manipulator: a dynamically stable robot with 14
active degrees of freedom and 10 series-elastic joints. It weighs 27 kg and is 95 cm
tall.

3.1.2.1 Head

The new improved head mechanism extends the benefits provided by uBot-6’s

head. The head of uBot-6 uses two coupled joints driven by a single actuator to enable

compensation of different body angles due to dynamic balancing as well as different

postural configurations (Figure 3.3), but panning of the camera can only be achieved

by rotating the torso and is only available while balancing upright. Additionally, it

28

enables translating the RGB-D camera forward to provide an unobstructed view of

the space in front of the robot.

The head for uBot-7 keeps these capabilities, but enables head panning and tilting

independently of the torso rotation joint. It uses three active degrees of freedom: a

tilt joint at the base followed by a pan and a tilt joint on top (Figure 3.5). The

lower tilt joint matches the capabilities introduced in uBot-6. The pan-tilt unit on

top adds the much needed capability to point the RGB-D camera (Asus Xtion Pro

Live [6]) independently of the postural configuration and body angle. All head joints

are based on Dynamixel MX-28 servos with integrated sensors. Joint characteristics

can be found in Table 3.2.

Figure 3.5. The uBot-7 head with three active degrees of freedom: tilt, pan, tilt.
The first tilt joint supports compensation of the body angle of the dynamic balancer
and enables pan-tilt motion in all postural configurations. Axes of rotation for each
joint are shown in white.

3.1.2.2 Arms and Torso

In uBot-7, each arm and torso joint is driven by an SEA. The addition of SEAs

to all arms and torso joints extends the passive, anisotropic impedance character of

its base into an active impedance character in the upper body. The SEAs support

impedance control for safer operation near humans and also provide force/torque

29

Table 3.2. Joint characteristics for uBot-6 and uBot-7.

Cont. torque Max. speed Range of Motion
[Nm] [deg/s] [deg]

uBot-6 uBot-7 uBot-6 uBot-7 uBot-7

Head Upper Tilt – 0.6 – 400 [-90, 90]
Pan – 0.6 – 400 [-200, 200]
Lower Tilt 0.6 0.6 850 400 [-90, 90]

Torso 2.6 12.0 570 234 [-165, 165]
Shoulder Roll 15.0 45.0 100 114 [-360, 360]

Pitch 6.4 21.0 237 162 [-30, 180]
Yaw 6.4 12.0 237 234 [-80, 260]

Elbow 6.4 12.0 237 234 [-60, 100]

Wheel 2.4 4.2 900 1900 continuous

sensing for better manipulation capabilities. To our knowledge this makes it the first

wheeled dynamic balancer with SEAs.

In order to incorporate SEAs in several different joints, we developed a modular

package that can be customized to the various requirements of different joints [29, 28].

We combine flat brushless DC (BLDC) motors, planetary gearheads, and flat torsional

spring designs in order to create a module that is lightweight, low-volume, easy to

reconfigure, and high performing. The spring design has a linear torque-displacement

relationship. It was developed in collaboration with partners at the Johnson Space

Center and is similar to the spring design used in NASA’s Robonaut 2 [36, 54].

Figure 3.6. Components of the SEA for shoulder abduction.

30

Absolute position sensors measure the position of the joint output at high resolu-

tion. Joint torque is determined by measuring the deflection of the torsional spring

directly with a Hall effect sensor.

All components of the SEA module (except the springs) are commercially available

and affordable enough to match the low-cost principle of the uBot series. The spring

design is based on two-dimensional cutting operations and can be machined easily.

The experience with uBot-5 and uBot-6 was used to select appropriate joint

torques, velocities, and ranges of motion (Table 3.2). As the uBot can balance on a

differentially steered, two-wheeled base and may fall, the resulting loads on the arms

may exceed normal design loads. The passive properties of SEAs combined with

reactive control can protect gearheads from damage. We chose a maximum spring

deflection of ±4◦ as a trade-off between passive compliance and torque sensing res-

olution. The spring constants for each joint were chosen based on maximum joint

torque and the maximum spring deflection. This results in sensing resolutions be-

tween 0.011 Nm (elbow) and 0.044 Nm (shoulder). The spring constant of the used

springs is linear with respect to the thickness of the spring. Thus, the spring constants

can easily be changed by installing thicker or thinner springs.

3.1.2.3 Drive System

The main drawback of the uBot-6 drive system has been the presence of backlash

in the gearheads of the drive motors. As balancing requires frequent direction changes

just at the equilibrium point, this backlash can be very noticeable. With every direc-

tion change, the gear first moves through the backlash region before providing torque

in the other direction. As a result, wheel chattering can occur when standing still

and only small wheel corrections are required. This issue has been addressed in a

new drive train design for uBot-7. Powerful 90 W flat BLDC motors provide much

higher torque to the drive wheels and thus only a very small additional gear reduc-

31

tion is needed. We use timing belts to provide a backlash-free 7.5:1 gear reduction

to the wheels. The change roughly doubles available continuous torque, maximum

torque, and maximum velocity while removing backlash issues at the same time. A

specifically designed embedded control board handles control of both wheel motors as

well as measurements from inertial measurement units (IMUs) to ensure all resources

required for balancing are in one place for improved reliability. The control computer

calculates shifts in the center of mass of the robot based on all joint angles and passes

them as parameters to the balancer running on the embedded hardware.

3.1.2.4 Computation Architecture

uBot-6 employs a centralized motor control strategy and controls all joints from

a single field programmable gate array (FPGA). On uBot-7, motor controllers are

distributed over the whole robot and placed close to the respective joints. Sensors

and motors are interfaced locally, and only a communication bus and power need

to be routed. As a result only a small number of cables run through the arms,

simplifying routing. The freed space in the torso can house additional on-board

computing hardware.

Custom embedded controller boards for motor control and sensor processing are

distributed throughout the body in proximity to the respective arm, toro, and wheel

joints. The controller boards are built around Maxon ESCON 50/5 motor control

modules. A PIC32MX 80 MHz microcontroller interfaces the motor control modules,

sensors, and the communication bus. It currently supports position, velocity, torque,

and impedance control at 1 kHz control rate and allows full access to extend the

programming.

Two different custom board versions are employed in the robot: for a single motor

(Fig. 3.7 (left)) and for two motors (Fig. 3.7 (right)). All arm joints as well as the

32

torso rotation are each equipped with a single embedded controller board per joint.

The wheel motors share a control board.

Figure 3.7. Custom embedded controller boards for motor control and sensor pro-
cessing for a single motor (left) and two motors (right). They support motor encoders,
several absolute position sensors for measuring joint output positions, torque sensing,
and inertial measurement units (IMUs).

The robot is equipped with two on-board computers. An embedded pico-ITX com-

puter with a quad-core 6th generation 2.6 GHz Intel Core-i7 processor is housed in the

base of the robot. It handles communication with the distributed motor controller

and sensor boards and any Cartesian control. Additionally, it can perform high-level

planning and control. A Jetson TX1 board adds capabilities for GPU accelerated pro-

cessing for applications like vision, planning, and deep learning [100, 154]. Additional

space is available to add more computer hardware to the robot in the future.

An overview of the computer and communication architecture used on uBot-7 is

shown in Figure 3.8. The on-board computers communicate over Gigabit Ethernet.

A mini-router provides reliable WiFi connectivity for all on-board computers with

the ability to secure all off-board communication through a virtual private network

(VPN).

The distributed motor controllers for wheels, arms, and torso are connected to the

control computer through a RS-485 communication bus running at 10 Mbps which is

33

fast enough to support real-time control. The head motors are connected through

another RS-485 bus running at 2 Mbps.

A software interface exists for the robot operating system (ROS) that supports

interfacing to all joints and sensors of the robot for easy application development [109].

The interface is compatible with previous uBot versions and existing applications will

transfer to the new robot with minimal changes.

Jetson TX1
Vision / GPU

Control
Computer

Intel Core-i7
Quad Core

(Base)

Mini
Router

Head Motor

Motor Control /
Sensor Board

Motor Control /
Sensor Board

Motor

SEA Joint Sensors

Motor

Joint Sensors

Motor

Joint Sensors

IMU (Base)

IMU (Torso)

RS-485

RS-485

RGB-D Camera

Wheels

Torso, Arms

USB

Gigabit
Ethernet

F/T Interface
Board

F/T Sensor

Unused
Computer

Slot

Figure 3.8. Computer and communication architecture of uBot-7.

3.2 Postural Configurations and Transitions

uBot-6 and uBot-7 are designed for whole body dexterous mobility and manipula-

tion. They can assume several postural configurations (see Fig. 3.14). Each postural

configuration has different characteristics that enable or constrain manipulation and

mobility capabilities.

34

3.2.1 Prone

In this configuration the robot lies on the anterior surface of its body. The trunk

rotation is disabled and both arms are free with a limited overall reachable workspace,

a significant portion of which is in the ground plane. The robot footprint is relatively

large in this configuration and the body height is minimized.

(a) uBot-6 (b) uBot-7

Figure 3.9. Prone postural configuration: Lying prone provides maximal stability
and leaves the arms free for manipulation.

3.2.2 4-Point Stance

In this stance, the base wheels as well as both arms are in contact with the ground.

The arm-ground contact is established with hands and/or elbow wheels (Fig. 3.10

and 3.11). In case of ground contact with the elbow wheels, the hands can still be

moved in the nullspace and used for manipulation actions. For uBot-6, this posture

allows the body height to vary between 24 cm and 88 cm.

3.2.3 3-Point Stance

This stance is a quasi-statically stable tripod with both base wheels and one arm

in contact with the ground (Fig. 3.12). The arm-ground contact is established either

with a hand or an elbow wheel. There are an infinite number of ways to achieve

this configuration by varying the choice of left or right arm, hand or elbow ground

35

(a) (b)

Figure 3.10. 4-point stance using hands (left) or elbow wheels (right).

Figure 3.11. Examples of two statically stable postural configurations of uBot-7:
4-point contact with elbow and base wheels at low body height (left) and high body
height (right) support alternative forms of mobility with reduced manipulation capa-
bilities.

contact, body height, and location of the ground contact. The choice of body height

and ground contact location are constrained by the stability requirement of keeping

the zero moment point (ZMP) inside the triangle formed by the three ground contacts

[145, 80].

The second arm is free for manipulation actions and only constrained by the

stability requirement. Therefore, only movements that do not shift the ZMP out of

the support triangle are allowed. As in the case of the 4-point stance, the body height

for uBot-6 can be varied between 24 cm and 88 cm.

36

Figure 3.12. A 3-point postural configuration of uBot-6.

This postural configuration is used in 5.4.3 to acquire better visual observations.

Once a hand touches the ground, the robot is statically stable and locations associated

with visual features become more precise.

3.2.4 2-Point Stance

The robot stands upright by balancing on its two base wheels (see Fig. 3.13 and

3.4). A Linear Quadratic Regulator (LQR) runs on the on-board FPGA and controls

the balancing at 1 kHz. In this postural configuration, the robot has a minimal

ground footprint. The dynamic stability of this posture results in low longitudinal

input impedance. This contributes to safety in the presence of humans.

In this posture, the arms of the robot are free to perform manipulation tasks.

Trunk rotation and the symmetric workspace of the arms contribute to a large bi-

manual workspace. This includes a large area on the ground plane while providing

accessibility to counter tops and low shelves. The robots use a forward compensator

to anticipate the effect of their own upper body posture on the center of mass in order

to improve the end point precision. A damping term suppresses dynamic effects of

rapid arm movements.

37

Figure 3.13. 2-point stance of uBot-6 allowing for energy efficient balancing mobility
with differential steering.

3.2.5 Postural Transitions

The robot can reliably transition between the different postural configurations by

following a path through the postural transition graph as depicted in Figure 3.14.

Additional transitions such as the transition from a 4-point-hand stance to a 4-point-

elbow stance without passing through prone configuration can easily be imagined.

Implementation details for these controllers are presented by Kuindersma et al. [80].

2

Figure 3.14. Postural transition graph for uBot-6 and uBot-7. Postural options
include: 2-point contact during dynamic balancing, 3 and 4-point contact during
knuckle-walking and prone-scooting, and prone resting.

38

A transition can only be executed if the desired postural configuration is compat-

ible with the current location and if sufficient space for the transition is available.

Time and energy costs for common postural transitions are shown in Section 3.3.4.

3.3 Mobility Capabilities

uBot-6 and uBot-7 have multiple forms of mobility at their disposal. Each mobility

option offers unique possibilities to move in various environments. In this section,

we highlight and characterize three of these forms of mobility: balancing mobility,

prone-scooting, and knuckle-walking. Other possible forms of mobility such as elbow-

walking are left for future work. Each form of mobility uses one or more postural

configurations for support.

Figure 3.15. uBot-6 in several postural configurations for different forms of mobility:
balancing (left), prone-scooting (center), knuckle-walking (right).

Each form of mobility and postural transition is available to the robot as a skill

in the form of a close-loop controller. Time and energy-based cost models for these

skills based on empirical data are presented in Section 3.3.4. For the experiments in

Chapter 6, only balancing and prone-scooting are used for simplicity. Performance

specifications are only provided for uBot-6 as the corresponding applications have not

been ported to uBot-7 yet.

39

3.3.1 Balancing Mobility

Balancing mobility combines dynamic balancing in 2-point stance with differen-

tial steering (Fig. 3.13). The wheels are controlled by an LQR that maintains the

robot’s balance while performing translational and rotational movements. The steer-

ing geometry allows uBot to rotate in place. This combined with the small 2-point

footprint enables navigation in tight spaces. The maximum drive speed and turn rate

of uBot-6 in this form of mobility is limited to 1.2 m/s and 4.1 rad/s respectively.

Additional torque is reserved for compensatory balancing movements.

3.3.2 Prone-Scooting

In this form of mobility, the robot is configured in a 4-point-elbow postural stance

in which the base wheels and the two small wheels attached to the elbows are in

contact with the ground (Fig. 3.10(b)). In this mode, the robot drives like a car.

However, the steering is more complicated since the front wheels are attached to the

elbows and all four arm joints impact the driving behavior. Three shoulder joints with

angles θ1, θ2, and θ3 determine both the location and orientation of the elbow wheel

for each arm. Figure 3.16 shows the robot while in prone-scooting configuration.

Drive inputs include the desired body height, drive velocity, and steering angle.

3.3.2.1 Body Height

In this form of mobility the body height H of the robot is determined by the

height of the shoulders h as well as the pose of the forearms. The height of the

shoulder is primarily determined by the first shoulder joint angle θ1. We neglect the

minimal influence of θ2 and θ3 in order to simplify control. Given a desired body

height, the necessary shoulder height is calculated by subtracting a safety distance of

12 cm: h = H − 0.12 m. The required shoulder joint angle θ1 is given by

θ1 = acos(
h− r1

b
) + acos(

h− r2

a
), (3.1)

40

‘virtual’ wheel

Figure 3.16. Prone-scooting mobility. Top: the desired steering angle φdes is used to
orient a ‘virtual’ wheel located midway between the shoulders. The intersection of the
axes of the base wheels and the ‘virtual’ wheel determines the center of rotation R.
Control of shoulder joint angles θ2 and θ3 allows this turn radius to be matched
with both front wheels to avoid slip; bottom: shoulder angle θ1 and elbow angle θ4

determine shoulder height h and body height H.

41

where a is the upper arm length, b is the distance from the base wheel axis to the

shoulder, and r1 and r2 are the wheel radii of the base and elbow wheels respectively.

The elbow joint angle θ4 only influences the body height if the forearm protrudes

higher than the body. In this mode, the body height for uBot-6 can be varied between

24 cm (in which the robot is almost completely prone) and 46 cm.

3.3.2.2 Steering Angle

Scooting requires Ackermann steering where all wheel axes must intersect at a

common center of rotation (Fig. 3.17). However, unlike cars, the arm joints influence

the location and orientation of the wheel axes of the front wheels. The wheel axes

are not guaranteed to be parallel to the ground plane any more. Therefore, instead

of the wheel axes we use their projection onto the ground plane throughout the rest

of this section.

In order to convert the steering angle input into a turn radius, we define a ‘virtual’

wheel midway between both shoulders following Cholet et al. [25]. The steering angle

input specifies its orientation φdes (see Fig. 3.16 top). The intersection between wheel

axes of the ‘virtual’ wheel and the base wheels defines the desired center of rotation R.

To ensure that the wheels do not slip, the free shoulder angles θ2 and θ3 are

controlled such that the wheel axes of the front wheels intersect the desired center of

rotation. Depending on both the body height and the current arm configuration, the

shoulder joints have varying and coupled influence on the location and orientation of

the front wheels.A Jacobian-based controller minimizes the orientation error of the

front wheels.

Given the steering angles φi, where i = 1 denotes the left arm and i = 2 denotes the

right arm, the steering error εi = φdes−φi is computed. The orientation constraint of

the front wheels is expressed as a quadratic potential function ε2i . The error Jacobian

Ji that describes the sensitivity of the orientation error with respect to the control

42

variables θ2 and θ3 is given by

Ji =

[
∂ε2i
∂θ2

∂ε2i
∂θ3

]
. (3.2)

These Jacobians are calculated numerically and allow us to compute updates for

reference inputs of the shoulder joints with

 ∆θ2

∆θ3

 = −J#
i ε

2
i , (3.3)

where J#
i is the pseudoinverse of Ji [98]. The resulting closed-loop controller syn-

chronizes both arms such that the desired turn radius is achieved while ensuring that

the wheels do not slip.

The minimal turn radius is dependent on the chosen body height. When the robot

is at its lowest body height, a turn radius of 1.2 m can be achieved. In this config-

uration, the steering depends mostly on the second shoulder joint (which is limited

to avoid collision with the upper trunk). At its highest body height, a turn radius of

0.68 m can be achieved. The third shoulder joint is at its joint limit preventing tighter

turning. Figure 3.17 shows the intersection of the wheel axes and minimal turning

radius according to Ackermann steering for a low (left) and high (right) body height.

The minimal turn radii achievable for varying body heights is shown in Figure 3.18.

3.3.2.3 Drive Velocity

The desired drive velocity is used to calculate reference velocities for each base

wheel. Depending on the desired turn radius of the robot, the base wheels travel

on different radii and thus are commanded different velocities in order to prevent

slipping. The maximum drive speed for uBot-6 is 1.8 m/s.

43

Figure 3.17. Maximal turning for two different robot body heights while prone
scooting. The dotted lines depict the wheel axes intersecting at the center of rotation.
When the body is almost flat on the ground (left) the turn radius is strongly restricted
by the joint limits of the arms. With a raised body, two joints in each arm are used
for steering allowing a significantly smaller turn radius (right).

3.3.3 Knuckle-Walking

Knuckle-walking is an upper-limb walking gait that uses the hands as ground

contacts. It is based on a sequencing of 3-point and 4-point postural configurations

(Figure 3.19). Kuindersma et al. presented a preliminary implementation of this

controller for uBot-5 [80]. In this work a walking gait was learned efficiently in

simulation from primitive controllers.

The knuckle-walking gait provides uBot the ability to traverse otherwise hazardous

terrain. This ability comes at the cost of higher energy consumption and slower

movement speed compared to locomotion while balancing. The full demonstration of

knuckle-walking on the uBot-6 and uBot-7 remains as future work.

3.3.4 Costs

For each skill of uBot-6 the costs with respect to time and energy have been

modeled empirically. Knuckle-walking mobility is left for future work as experiments

were limited to balancing and prone-scooting mobility.

44

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Minimum Turn Radius for Given Body Height

Body Height [m]

T
u

rn
 R

a
d

iu
s

 [
m

]

Figure 3.18. Dependency of available minimal turn radius from the body height for
uBot-6. With increasing body height, smaller turn radii can be achieved as different
joint combinations are used for steering.

Figure 3.19. Sequencing of 3-point and 4-point postural configurations for knuckle-
walking mobility for uBot-5.

3.3.4.1 Balancing mobility

Dynamic balancing is very energy efficient as only small compensation movements

have to be performed. While standing in place, the wheels require about 2.6 W to

balance. Figure 3.20 shows the variation in power consumption of the wheel motors

with drive speed. For the experiments in this chapter, the drive speed for balancing

mobility is fixed to a conservative 0.5 m/s for simplicity. The robot turns in place at

0.6 rad/s.

45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

Base Power Consumption for Balancing Mobility and Prone Scooting

Drive Velocity [m/s]

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

W
]

Figure 3.20. Comparison of power consumption [W] of the wheel motors of uBot-6
over drive speed [m/s] in balancing mobility (solid line) and prone-scooting (dashed
line). Pure balancing while standing consumes 2.6 W. It should be noted that while
prone-scooting the power consumption is dominated by the arms with additional
16− 80 W depending on the body height.

3.3.4.2 Prone-scooting

The energy cost for prone-scooting depends on two factors: the power consump-

tion of the arms to keep the body up and the power consumption of the wheels to

drive the robot. The power consumption of the wheel motors is similar to that of bal-

ancing mobility and ranges from 0 W to 24 W depending on the velocity. The power

consumption of the arms to hold up the body ranges from 80 W (almost prone) to

16 W (tallest).

For the experiments in this chapter, the drive speed for prone-scooting mobility

is fixed to 0.625 m/s for simplicity. It is slightly higher than balancing mobility as no

torque reserves are needed to balance.

46

3.3.4.3 Postural transitions

Time and energy costs for transitions between postural configurations can be found

in Table 3.3. A sequence of several transitions can be necessary in order to switch

between forms of mobility.

Table 3.3. Time and energy required to execute transitions between postural con-
figurations for uBot-6.

Mean energy Mean execution
used (J) time (s)

2-point to 4-point (hand) 188.43 ±5.11 5.26 ±0.07
4-point (hand) to 2-point 260.07 ±7.96 6.03 ±0.03
4-point (hand) to Prone 631.57 ±84.52 9.59 ±0.09
Prone to 4-point (hand) 981.42 ±71.05 10.04 ±0.11
4-point (elbow) to Prone 118.10 ±51.35 2.25 ±0.97
Prone to 4-point (elbow) 165.11 ±12.77 4.20 ±0.10

3.4 Manipulation Capabilities

The robots have two 4-DOF arms and a rotatable trunk. The two arms provide

a large bimanual workspace that is symmetric in front and back of the robot and

includes much of the ground plane (Fig. 3.21). The joint for trunk rotation extends

the bimanual workspace all around the robot.

The arms contribute significantly to the center of mass (COM) of the robot. As

the robot is a dynamic balancer, a shift in the COM requires an updated setpoint for

the balancer to prevent drift of the robot. The COM is continuously calculated from

the joint angles and the set point for the balancing algorithm is updated accordingly.

The impact of the arm inertia during fast arm movements is handled by a damping

term. As a result, the robot will lean its body to compensate for the shift in the

COM due to arm movement and will remain stable, but this can result in a shorter

reach of the robot’s arms.

47

Figure 3.21. Manual workspace of uBot-7: Single arm workspace, bimanual
workspace, and bimanual workspace on the ground.

Instead of articulated hands, both uBot-6 and uBot-7 have spherical end effectors

with a grippy rubber surface that supports slip-free grasping. The design of suitable

hands that support both manipulation and the specific needs for postural transi-

tions is planned future work. Force/torque sensors in the end effectors of uBot-6

enable closed-loop grasp control and detection of failed grasps. uBot-7 adds addi-

tional force/torque sensing capabilities through the SEAs in every arm and torso

joint.

Wheel motors are typically only assigned to mobility tasks, and arms are used

for manipulation. The uBots ignore this boundary. For example, they use the arms

to improve mobility by transitioning to alternative postural configurations, and they

can use their strong wheel motors to improve performance in tasks such as pushing

by exploiting its own body weight [140].

In the past, the uBot series has been used to manipulate indoor environments

with switches, buttons, and levers [71]. In this work, several manual skills are used

to interact with objects in mobile manipulation experiments (Section 5.2.1).

48

3.5 Summary

uBot-6 and uBot-7 have been developed as a unique design point combining many

advantageous properties into a single robot platform. They are very versatile mo-

bile manipulators that provide the physical capabilities to support several different

methods of solving tasks in mobility and manipulation.

uBot-6 introduces several alternative forms of mobility to a humanoid robot.

These mobility options are used for the dexterous mobility domain in Chapter 6.

Its manual capabilities to interact with the world are used in Chapter 5 to manipu-

late objects.

uBot-7 is the newest member of the uBot series of mobile manipulators. To our

knowledge, uBot-7 is the first wheeled dynamic balancer with series elastic actuators

(SEAs). The SEAs will provide increased performance for manipulation tasks, safety

mechanisms for the robot in case of falls, and the ability to detect accidental collisions

to work around humans more safely. Added degrees of freedom in the head support

much better perceptual performance that is independent of postural configurations.

All experiments in this work are based on uBot-6 as the integration of uBot-7 has

not been completed yet. Once the integration of uBot-7 is completed and current

software has been ported, its overall improved design should increase performance of

currently possible applications and add versatility in solving tasks in manipulation

and mobility.

49

CHAPTER 4

BELIEF-SPACE PLANNING

To autonomously perform tasks in the world, a robot usually has to perceive its

environment to estimate the state of itself and of the world around it, plan a sequence

of actions to reach the task goal, and then try to execute this sequence of actions.

This process is constantly repeated during execution to update the state estimate

and possibly replan. All of these steps are difficult in real world scenarios due to

partial observability, uncertainty of observations and actions, and state transition

uncertainty itself. Due to partial observability, a robot is usually not able to observe

all relevant features in the environment at once. It can only obtain incomplete ‘views’

of the world and has to put the information together to get the full picture. As

a result, state estimation of both the robot and the world is often imprecise and

very ambiguous. The robot does not know for certain from which state to start

planning. Additionally, uncertainty in observations can result in false positives or false

negatives when detecting features in the environment. This could be due to occlusion,

unreliable sensors, or just sensor noise. Even if the existence of environmental features

is detected correctly, the location and orientation is still subject to variance. When

planning or executing actions, the outcome is usually non-deterministic. This can

include multiple possible action outcomes, but also just variance in the precision of

the outcome as well as the required time to perform the action.

Belief-space planners handle these issues by using a belief distribution over the

robot and world state to guide the planning process. Probability distributions support

handling uncertainty in observations and action outcomes. These adjustments usually

50

come at the cost of very slow runtime. As a result, only small problems can be solved

in a reasonable time to still be useful on a real robotic system. This makes the

tractability of an online belief-space planner very dependent on the structure and

representation of the problem domain.

The main contributions in this chapter are:

� A compact but expressive state representation for belief-space plan-

ning based on object models. Existing affordance-based object models,

the aspect transition graphs (ATGs), are extended with geometric information.

This enables object-centric modeling of features and actions, making the model

much more expressive without increasing the complexity. The models provide

the state space, transition model, cost estimates, and observation model for

belief-space planning.

� A method to specify generic single-object tasks in belief-space. We

introduce a method to express different tasks by defining a task partition over

the state space and specifying an information-based metric. We use an object-

centric state representation, and thus tasks are specified in the context of single

objects. We show how this mechanism supports different task types commonly

encountered in robotics.

� A planning framework that incorporates the ATG object models and

task specifier to handle generic tasks in belief-space. We present a

belief-space planning framework capable of efficient action selection on a real

robotic system under partial observability. The framework also handles uncer-

tainty in action outcomes and in observations. The ATG models provide all

information for belief updates and efficiently guide the search of the planner.

A hierarchical approach supports efficient planning for scenes with multiple

objects.

51

In the following section, we define the problem formally. Section 4.2 introduces

our object and environment models and discusses their impact on belief-space plan-

ning. We present our belief-space planning framework that uses the object models in

Sections 4.3. Finally, we explore the use of a POMDP solver in combination with the

object models in Section 4.4.

4.1 Problem Definition

In general, we want the robot to complete a given task in an environment that is

only partially observable and has uncertainty in action outcomes and observations.

In most cases many different solutions are available to complete the task successfully.

The quality of the solutions can be evaluated with respect to various criteria. Typical

metrics in robotics are the number of actions taken, the amount of time required,

and the amount of energy expended to reach the goal. In this work we will consider

the first two metrics though metrics can be exchanged easily if actions are modeled

accordingly.

A popular method to formulate the general problem of selecting best actions in a

partially observable environment with uncertain action outcomes and observations is

as a partially observable Markov decision process (POMDP). A POMDP is specified

by the tuple

〈S,A, T,R, Z,Φ, γ〉 ,

where S is the set of state, A is the set of possible actions, T : S × A × S → [0, 1]

is the set of conditional transition probabilities between states, R : S × A → R is

the reward function, Z is the set of possible observations, Φ : A × S × Z → [0, 1]

is the observation function, and γ ∈ [0, 1] is the discount factor. As the state S in

the POMDP is only partially observable, we use the concept of a belief state, b, to

represent the probability distribution over states. All possible beliefs or belief points

b form the set B. An optimal solution to the problem expressed by such a POMDP

52

is then given by the policy π : B → A which maximizes the reward for a possibly

infinite horizon. The optimal action at a timestep maximizes the expected discounted

future reward E [
∑∞

t=0 γ
trt].

In a POMDP, the reward function R encodes the desired metric, such as mini-

mum total execution time, used to evaluate the quality of the solution. In this work

we employ belief-space planning methods to solve problems that can be defined as

POMDPs, but do not utilize the reward function to encode the evaluation metric.

Chapters 5 and 6 cover experiments in mobile manipulation and dexterous mobil-

ity domains respectively, and each uses a different problem description.

In the following sections we will discuss what impact the choices of representation

for states, actions, and observations have on solving the problem.

4.2 Knowledge Representation

The capabilities and performance of a planning and reasoning system for robotic

systems rely on the representation of the world, the robot, and its own capabilities. A

poorly chosen representation can result in high complexity during planning or a lack of

expressiveness. High complexity will make even approximate planning intractable for

online use on a robot. Lack of expressiveness results in limited capabilities to interact

with the environment or to define tasks accurately. For example, the popular grid

world domain is simple enough for possibly tractable planning, but it offers almost

no usefulness for real robot control [120].

Aspect Transition Graphs (ATGs) have previously been used as object models for

belief-space planning. We introduce a powerful extension to the model that provides

a more compact representation and at the same time offers higher expressiveness with

respect to the capabilities of the robot. The improved model can be used for modeling

objects and environments alike.

53

4.2.1 Aspect Transition Graph (ATG)

Our framework uses a specialized model for objects and environments called an

Aspect Transition Graph (ATG) [122]. These models are centered around the long-

known concept of aspects [67] and graph-based models of the interaction capabilities

with objects [106]. In general, only a subset of the features attributed to an object can

be detected from any given sensor geometry [67]. These subsets of features define the

aspects of the object. In previous work, aspects were used as nodes in a multi-graph

where edges represent actions that cause probabilistic transitions between the aspect

(Fig. 4.1 and 4.2) [122, 123, 75, 76, 74]. To retain small sizes of action spaces, the

actions were either robot-centric or based on visual servoing.

For this work, the ATG model has been improved with several extensions. First,

we make a strong distinction between aspects and aspect nodes : aspect nodes are

the nodes in the multi-graph of the ATG, and each aspect node is associated with

an aspect defining the set of features that can be perceived together. An aspect,

however, can be associated with several different aspect nodes. While these aspect

nodes are perceptually identical, their connectivity within the multi-graph is different.

For example, if an object has identical front and back sides, there is an aspect node

for each front and back of the object where both aspect nodes expect to see the same

aspect. Yet turning the object 90◦ will possibly reveal different observations from

the right or the left side. This separation of aspects from aspect nodes has a strong

beneficial impact on the complexity of the observation space (see Section 4.2.3.3).

Secondly, we extend the ATG model with geometric information. Features of as-

pects and actions are specified and parametrized with respect to an object frame [118].

This improves differentiation of aspects since geometric constellations of features are

much richer than matching based on bags-of-features. Additionally, the geometric

information in the models can be used to predict sensor geometries for new obser-

vations and supports better pose estimation. Actions are much more expressive and

54

robust without increasing the complexity. The impact on the state and action spaces

is discussed in Sections 4.2.3.1 and 4.2.3.2 respectively. Actions are implemented as

controllers with parameters, and these parameters along with estimates of the cost of

the action are stored in the ATG. ATG models can be hand-built or autonomously

learned by the robot [75, 76, 74, 152]. The models used in this work are hybrids,

wherein nodes and edges associated with visual actions were learned, and those for

manual actions were hand-built.

Figure 4.1. An example of actions on transition edges connecting several aspect
nodes in an ATG.

Figure 4.2. An example of uncertain action outcomes in an ATG model: the start
node (left) has several outgoing edges for a FLIP action. Each edge represents a
possible outcome leading to a different aspect node. Probabilities for each transition
are stored on the edges.

55

A Dynamic Bayes Net (DBN) is used as a recursive, hierarchical inference engine in

which objects o generate aspect nodes x that then generate observations (aspects) z

that can be viewed from a single sensor viewpoint (Fig. 4.3). The DBN fuses the

history of observations z and actions a into a maximum likelihood distribution over

aspect nodes. The belief bel(x) over the aspect nodes of all known ATG models is

used as state in a belief-space MDP. The ATG provides forward models p(xt+1|xt, at)

and information for observation models p(zt|xt) that are used for the belief update.

Figure 4.3. Dynamic Bayes Net (DBN) used to model objects and environments.
Objects o generate N aspect nodes x that generate M observations z. Actions a are
modeled with respect to their influence on aspect nodes x.

As aspect nodes are based on perceivable features of the object as well

as the interaction possibilities known to the robot, the aspect nodes of

an ATG represent the states of an object that matter to the robot. Using

aspect nodes as an abstract state x greatly reduces the state space of the problem

(see Section 4.2). The ATG also contains all relevant (known) actions to interact

with the object. Therefore, out of all possible action parameterizations, only useful

ones provided by the ATG need to be considered. Additionally, the ATG provides

forward and observation models for belief update and planning.

As ATGs model objects or the environment with respect to the capabilities of

a specific robot, they might be tied to this robot. It is feasible to transfer models

56

completely or partially between robots if they have similar capabilities and will have

to be the focus of future work.

4.2.2 Model-Based Aspect Detection

We use perceived features to match model aspects. The features must be of

the same type (e.g. “visual edge” or “tactile surface normal”), and the geometry

must match. There are many ways to match geometric templates. If it is possible

to solve the feature correspondence problem easily, then a number of least squares

techniques could be used. Alternatively, voting algorithms like RANSAC [41] or

Hough transforms [8] can be applied. This work uses the latter.

The aspects detected in the features f t are computed by matching model aspects

(feature types and geometry) to the current perceived features. We would like to

estimate the distribution of support for model aspects p(zt|f t) as well as the pose at

time t of all of the objects that could have generated these observations.

The proposed system extends the generalized Hough transform [8]. Given a ran-

dom variable representing the distance between features fi and fj, δij = (µ ∈ R, σ ∈ R),

the area of intersection between the model distance distribution and the observed dis-

tance distribution provides a matching score that is used to cast votes for the location

of the object frame (Fig. 4.4). The tally over all feature pairs is stored in an accumu-

lator array in R3 and produces a dominant peak. Using this representation for the

aspect geometry, the fully connected graph with all model distance distributions δij

(Fig. 4.5) are stored in the aspect model.

Algorithm 1 summarizes the Generalized Hough Transform for classifying model

aspects in the scene. In Lines (2) and (3), all pairs of features detected in the scene are

considered to define possible geometric (sub)structures. In Line (4), samples of the

distance between features fi and fj are used to approximate a Gaussian inter-feature

distance distribution. In the loop defined by Lines (5)–(8), this quantity is compared

57

Figure 4.4. Left: a pair of features in the object model with locations and covariances
in object frame. Right: resulting Hough voting scheme for a pair of observations
matched to these features. Weighted Hough votes are cast on the green circle.

x y

z

f0

f1

f2

f3
f4

ij

object
frame

Figure 4.5. The fully connected graph of inter-feature distances used to define an
aspect geometry. Each feature is described by its type, mean ∈ R3 (dot) and the
model covariance ∈ R3×3.

58

to all of the inter-feature distance distributions stored in the aspect models for these

features using the Gaussian correlation. The calculated aspects are then used as

observations z. The Hough voting mechanism for matching observations to models

utilizes the geometric information and supports tolerance to occlusion of features.

Algorithm 1 Aspect-Based Generalized Hough Transform

1: initialize aspect models & Cartesian accumulator array
2: for all 0 ≤ i < NumFeatures do
3: for all i+ 1 ≤ j < NumFeatures do
4: (µij, σij)=Sample Scene 3D Distance(i, j)
5: for all 0 ≤ k <NumAspects do
6: if 〈fi, fj〉 ∈ xk then
7: score ← scoreij(µij, σij, xk.δij)
8: Cast Hough Votes(i, j, k, score)

4.2.3 Impact on Belief-Space Planning

The choice of representation can have a large impact on the complexity and expres-

siveness of a planning method. In this context, we discuss the chosen state, action,

and observation representation which is based on ATGs.

4.2.3.1 State Representation

When considering general capabilities of a robot to interact with an object, a

large number of actions with continuous multi-dimensional parameters have to be

considered. Even typical approaches such as discretization still result in a far too

large state space and too many actions to consider for efficient planning.

Let us consider a state representation for manipulation of an unidentified object.

The state of the object consists of the type of the object—one of |O| known modeled

objects. Additionally, an estimate of the pose q of the object in SE(3) is required

to perform actions. The resulting state space is enormous as it is based on the cross

product of possible object types with all possible poses. Even for a moderate number

59

of known object models and a reasonably well discretized parameter space for poses,

this will result in a very large state space and be prohibitive for planners.

In our framework we use an ATG to model the capabilities of the robot to interact

with each known modeled object. The state space is based on an abstracted state

of the robot with respect to the object which is represented by aspect node x. The

set of all aspect nodes from every known object are denoted as X. The size |X|

can be approximated as the number of known object models |O| multiplied by the

average number of aspect nodes per object. The pose q of the object is still required

to perform actions. The resulting state space is based on the cross product of possible

abstract states x and possible poses q: S = X ×Q. In general belief-space planning

frameworks, the belief could be spread over a large number of states of X×Q. In our

framework, based on the structure of the ATGs and the definition of aspect nodes x,

a unique pose q can be calculated for each aspect node x from observations. The

marginal belief bel(xi) in just an aspect node xi is the sum of the belief in that aspect

node with all specific poses qj:

bel(xi) =
∑
j

bel(xi, qj) (4.1)

with 0 < i < |X| and 0 < j < |Q|. As a single pose qk can be calculated for aspect

node xi, all belief bel(xi) is concentrated in that combination of aspect node and pose

resulting in

bel(xi) = bel(xi, qk). (4.2)

For all other poses qj with j 6= k the belief is zero and despite not being handled

explicitly, is dealt with correctly and completely. As a result, for each aspect node x

there is exactly one pose q that needs to be considered and the effective size of the

state space is reduced to |X|. All other states of the original state space are still

available but have zero probability and do not negatively impact the planner.

60

4.2.3.2 Action Space

A robot knows all actions in set A with each action a defined by a type and param-

eters: A = types× parameters. The action parameters can be very high-dimensional

to support complex actions available to robots acting in human environments. For ex-

ample, a simple controller for bimanual grasps could take 3D positions for two hands.

Similar to the state space, any discretization still keeping the expressiveness of the

actions intact will result in a large number of parametrizations for each action type

and thus in a very large size of |A|. Some approaches deal with this complexity by

using robot-centric descriptions of the actions (e.g. a bimanual grasp is always just

happening in a hard-coded position in front of the robot), but this method lacks ex-

pressiveness for anything but highly controlled environments. Alternatively, the state

description can include that the robot is in the correct pose for such a robot-centric

action to work. This would result in a much larger state space.

For belief-space planners, transitions T (s, a, s′) need to be known and are typically

enumerated. Each time a belief update is performed, all applicable actions need to

be considered. This is especially costly when rolling out belief for several steps into

the future as the number of actions determines a branching factor in the search tree.

In our framework, for each abstract state the corresponding ATG stores all avail-

able actions together with parametrizations in object frame. At runtime, for a state

s1 = (x, q) the available actions can be retrieved from the ATG. To apply process

updates, a transition model has to be available for all state action pairs. The ATGs

provide an easy mechanism to match an action from a state s1 to the corresponding

action for any other state s2 based on the pose information of s1 and s2. Despite an

action space of theoretically infinite size, only few actions have to be stored. This

comes at the cost of having to determine corresponding actions at runtime as pose

information is not known a priori. The structure and representation support calcula-

61

tion of all needed information at runtime for only the few actions which are relevant.

This drastically reduces the branching factor in a search tree for planning.

4.2.3.3 Observation Space

In order to perform planning steps to simulate the outcome of actions, all possi-

ble resulting observations have to be considered. The number of possible expected

observations determines another branching factor in the search tree when rolling out

belief over several actions and observations and is one of the limiting factors for belief-

space planners. As with state and action space, the observation space is very large

with several simultaneously observed features with feature types, 2D or 3D location,

possibly orientation, and other continuous variables for other parameters.

We use aspects zi of an aspect node xi as observations. Instead of using geometric

constellations of features with continuous variables directly as observations, we use

a matching mechanism to generate support for perceptual aspects. This limits the

number of possible observations to a finite number and enables proper normalization

of p(zi|s) for each state s.

The ATG model provides an efficient way of predicting possible future observa-

tions. As a result, only applicable observations can be acquired from the ATG, and

only a limited number have to be considered during planning. For each state s the

corresponding ATG provides the expected observation z and the probabilities p(z|s)

can be precomputed for all states s and stored in the model. As described above, for

each aspect node x there is one state s. Therefore, the number of observations |Z| to

be considered is equal to the number of aspect nodes: |Z| = |S| = |X|.

4.2.3.4 Representation Conclusion

While the state of a robot is usually denoted as s, we use the benefits from our

representation in order to simplify our state, action, and observation spaces. Based

on this structure, we can refrain from explicitly enumerating some information. We

62

showed above that the probability of s = (x, q) is equal to the marginal probability

p(x) over aspect node x. The pose information q is implicitly contained as well but

does not have any impact on the equations. Therefore, instead of s we use x as the

variable for our abstract state. This changes the observation model to

p(z|s, a) = p(z|x, q, a) = p(z|x, a). (4.3)

Additionally, for the applications considered in this work, all robot sensors are con-

stantly running. As a result, the observation probability only depends on the state,

and we can use

p(z|x, a) = p(z|x). (4.4)

For the transition model we use

T (s, a, s′) = T (x, a, x′), (4.5)

where a lot of the details are implicitly contained as they are updated at runtime.

These choices in representation provide a small effective size of the state, action,

and observation spaces without restricting the expressiveness of the framework. The

following sections describes how our choices in representation can be used in a belief-

space planner.

4.3 Active Belief Planner (ABP)

Our planning framework, called the active belief planner (ABP), uses belief dis-

tributions over aspect nodes x to represent the robot’s current belief. Each aspect

node x is an abstract state of the robot to an object. Bayesian updates are used to

incorporate taken actions and new observations into the current belief (Section 4.3.1).

The same update mechanism is also used during planning to propagate belief distri-

butions over sequences of multiple actions and observations. We use a hierarchical

63

planning structure to overcome complexity of environments with multiple objects

(Section 4.3.2). A separate belief distribution is maintained for each potential object

in the environment.

In Section 4.3.3, we introduce a new mechanism to describe tasks in this frame-

work. We provide examples for four task types commonly encountered in robotics

(Section 4.3.3.2). Information-based measures can be applied directly to the belief

distribution to estimate uncertainty or proximity to a goal (Section 4.3.3.1). We show

how such measures are used with the new task representation. Section 4.3.4 presents

the algorithm that combines all these methods into our myopic belief-space planner,

the ABP.

Figure 4.6. The recursive filter for condensing belief in the probabilistic object
model. The belief-space planner uses the DBN (Fig. 4.3) to predict how actions a
cause changes in aspect nodes x (and by inference, changes in the distribution over
objects o) in order to reduce uncertainty in the model space.

4.3.1 Bayesian Update

Our belief-space planning framework tracks and updates belief over the state

space. We use aspect nodes x as abstract state (see Section 4.2) of the robot with

respect to an object or environment. Belief over aspect nodes bel(xt) is updated at

64

each time step t based on the executed action at and the new observation zt+1 using

Bayes filtering [142].

The set of known ATGs provides forward models with transition probabilities

p(xt+1|xt, at) for all states and actions. In the process update, the belief for every xt

is updated by

bel(xt+1) =
∑
xt∈X

p(xt+1|xt, at)bel(xt), (4.6)

where bel denotes that the posterior is due solely to action at. In the observation

update, the belief for every xt is updated to incorporate information from new obser-

vations zt+1 with

bel(xt+1) = η p(zt+1|x) bel(xt+1), (4.7)

where η is a normalizer. The ATG provides all necessary information to establish

observations z from perceived features and calculate p(z|x) for any aspect node x.

4.3.2 Hierarchical Planning

In general, tasks can involve multiple objects. Planning over all objects at once can

become computationally expensive due to the combinatorial nature of the decision

space [24]. Therefore, we cluster features into spatial hypotheses hk based on the

compatibility of their spatial distributions with known object models. The planner

can then probabilistically reason over one object hypothesis at a time. The number of

hypotheses is expected to be roughly the number of objects in the scene though this

is dependent on the quality of the used segmentation mechanism and the complexity

of the environment. The complexity of the planning algorithm only increases linearly

with the number of independent hypotheses K.

In our framework, we use a Hough transform based mechanism to check com-

patibility of perceived features with known aspects. This matching uses the geo-

metric constellations of perceived and modeled features. Additionally, the history of

65

perceived features can also be matched against the features of the complete object

model.

For spatial hypothesis hk, the belief distribution is denoted as bel(xkt) and ob-

servations as zkt . Equations 4.6 and 4.7 are extended with hypothesis information

to

bel(xkt+1) =
∑
xkt

p(xkt+1|xkt , at)bel(xkt) (4.8)

and

bel(xkt+1) = η p(zkt+1|xkt+1) bel(xkt+1). (4.9)

4.3.3 Task Representation

In earlier work, we used the entropy of posterior belief distributions over objects

to select optimal actions for object recognition [118]. We generalize our planning

framework to any task that can be expressed as a partition over the set of states

(aspect nodes) using a task interpreter [117].

The ABP can plan over any level of the hierarchical DBN (objects, aspect nodes,

or features). Assuming a “complete” ATG for all objects in the model space, any task

that can be expressed using actions comprising the edges in the ATG can be specified

by defining a partition C over aspect nodes of the ATG. This partition aggregates

belief on the aspect nodes into targeted subsets for the task. Most tasks result in a

partition with two subsets: all aspect nodes that do and that do not satisfy the task

specifications. For other tasks, the aspect nodes may be split into n different subsets

to, for example, recognize an object within a model space of n objects.

The belief over the partition C can be calculated by summing the belief over

aspect nodes contained in each subset c:

bel(c) =
∑
x∈c

bel(x).

66

We use notation c(x) to denote the specific subset of C an aspect node x belongs

to. This mapping from an aspect node x to the corresponding subset c is done in

constant time and allows the whole belief aggregation over the subsets of C to be

calculated in linear time. This method to express tasks dynamically aggregates belief

over subsets of the state space. The underlying belief distributions over the state space

are untouched. This supports seamless switching between several tasks without loss

of information at little additional cost.

Several tasks can be specified at the same time, each with their own task partition.

The planner could evaluate the quality of actions with respect to multiple tasks

simultaneously almost without additional cost. Priorities can be assigned to different

tasks by weighting their contribution to action utility.

In the next section, we introduce how information-based measures are used to eval-

uate the belief distributions. Example task types with their respective task partitions

are presented in Section 4.3.3.2.

4.3.3.1 Information-Based Measures

Standard information-based metrics can be applied in a belief-space planner to

choose the next best action. The planner can perform Bayesian updates to estimate

the effect actions and expected future observations can have on the belief distribution.

The information-based metric can be used to determine the gained information from

a belief distribution to its expected successor. The choice of the metric changes the

behavior of the robot. For example, minimizing the entropy,

H(ct) = −
∑
ct

bel(ct) log (bel(ct)), (4.10)

causes the belief-space planner to pick actions that efficiently condense belief into

the subset c that best represents the history of observations. If the model space

contains the correct object, this corresponds to a recognition task. Alternatively,

67

a target distribution T (c) can be specified over all c. In this case, minimizing the

Kullback-Leibler (KL) divergence [82] between T (c) and the current belief bel(ct),

DKL(T (c)||bel(ct)) =
∑
ct

T (c) log

(
T (c)

bel(ct)

)
, (4.11)

results in actions that steer the robot toward the target state(s) while automatically

balancing information gathering actions and actions towards the task goal. Tasks

defined this way are most general and can include recognition at the object and

aspect node levels.

In the following sections, the utility of actions is evaluated based on the expected

change in the chosen information-based metric. For the remainder of this work, this

expected change is generally referred to as ‘information gain’ IG irrespectible of which

information-based metric is used specifically. We use M(ct, T (c)) as place holder for

the information-based metric (e.g. entropy or KL divergence) employed to evaluate

the belief distribution over the task partition C.

4.3.3.2 Examples of Task Types

The proposed approach can represent a large number of tasks and task types. In

this section, we define four basic task types commonly found in robotics problems.

These are only samples of possible tasks that can be represented in this framework;

tasks are only limited by the expressiveness of the known ATG model. Each type

can be differentiated by the way the task partition defines the task for the planner.

A graphical example of task partitions for the four task types is shown in Figure 4.7.

Demonstrations of these tasks are shown in Sections 5.4.1 and 5.4.2.

4.3.3.2.1 Recognition Task In a recognition task, the robot is presented with

one or more object(s) of unknown identity. The robot has ATG models for n different

objects and has to identify the probability that the data supports each of the known

68

5 4 212
4 43 2 3

1 35

30 0

4654
5 1

Figure 4.7. A simplified DBN for three objects is shown here. Task partitions for
examples of each task type are shown below. For the recognition task, all aspect
nodes for each object are grouped into one subset of the partition, resulting in three
subsets in the partition (colored blue, green, and purple). For the localization task,
the task partition contains single-element subsets, where the element is one aspect
node from one of the three objects, resulting in (i + j + k + 3) subsets (uncolored
for readability). For the find task, we show an example of finding an object with a
‘3’ feature on top. The task partition for this contains two subsets: one has all the
aspect nodes of two objects where at least one aspect node has the ‘3’ feature on
top (colored blue) and the second has all the remaining aspect nodes (colored green).
Finally, for the orient task, we show an example for orienting an object such that the
‘3’ feature is on top. This task partition also contains two subsets. One has all the
aspect nodes where the ‘3’ feature is on top (colored blue) and all remaining aspect
nodes belong to the second (colored green).

69

ATG models. The robot can use any action present in all of the ATGs to investigate

and manipulate the object(s). The goal is to condense belief into a single subset of

the task partition defined by objects in the model space. In other words, if all objects

in the scene should be identified, the belief for each hypothesis hk must condense on

one object identity. This task type can be expressed mathematically as

∀hk [max
j
bel(ckj (x)) > β], (4.12)

where β is some threshold for the belief. The task partition C over all aspect nodes

from all ATGs splits the aspect nodes of each ATG model into a separate subset,

resulting in a partition with n different subsets cj:

cj = {xi|p(oj|xi) = 1} for 0 ≤ j < n.

The row in Figure 4.7 labeled ‘Object Recognition’ illustrates this partition.

4.3.3.2.2 Localization Task A localization task establishes the pose with re-

spect to features of one or more object(s) encoded in aspect nodes. The robot is

presented with a single sensor view of an object with either known or unknown iden-

tity. For each hypothesis, the robot has access to |X| aspect nodes for all n ATG

models and has to identify which known aspect node xi, 0 ≤ i < |X|, corresponds to

the constellation of features detected in this single view. Again, the robot can use any

action available in the ATG models to investigate and manipulate the object(s). This

task type has the same mathematical formulation as recognition (Eq. 4.12) with a

different task partition. The task partition C for localization divides each aspect node

for all ATG models into separate subsets, resulting in a partition with |X| different

subsets cj:

cj = {xj} for 0 ≤ j < |X|.

70

Once belief is condensed on an aspect node, the robot knows which object it is sensing

and where it is relative to that object. An example of a resulting partition can be

found in the row labeled “Localization” of Figure 4.7.

4.3.3.2.3 Find Task Often the specific identity of object(s) or aspect node(s) is

not important. Instead, the utility of an object for a task can be based on a subset of

its properties such as visual appearance, haptic responses, or interaction possibilities.

Thus, a robot can be asked to find a suitable object—one that contains at least one

aspect node that satisfies the task specifications.

We define the find task as follows: the robot is presented with one or more ob-

ject(s) of either known or unknown identity and has access to n known ATG models.

The robot interacts with the object(s) until it is certain that at least one object

satisfies the task specifications. This can be expressed mathematically as

∃hk [bel(ck1) > β]. (4.13)

The task partition C splits all aspect nodes into two subsets—suitable (c1) and not

suitable (c0):

c1 = {xi|∃xj∃ok [p(ok|xi) = 1∧ (4.14)

p(ok|xj) = 1∧

y(xj) = 1]},

c0 = X \ c1 (4.15)

with

y(x) =


1 aspect node x satisfies task

0 otherwise.

(4.16)

71

Both reduction of entropy or KL divergence over bel(c(x)) work as metrics to

guide the planner. Given one unknown object, the planner determines the suitability

of the object for this task. If presented with more unknown objects, it will investigate

the most promising object(s) first in order to find a suitable one. An example of a

resulting partition can be found in the row labeled “Find” of Figure 4.7.

4.3.3.2.4 Orient Task The orient task is a find task with the added specification

of the configuration that the object should have with respect to the robot. It uses

the same mathematical formulation as in Equation 4.13. The same function y(x)

from the previous task (Eq. 4.16) is also used, but only matching aspect nodes x are

considered as task success (as opposed to all aspect nodes of objects with at least one

matching aspect node as in Equation 4.14):

c1 = {xi|y(xi) = 1}, (4.17)

c0 = X \ c1. (4.18)

By selecting actions that condense belief in c1 using KL divergence as the metric, the

robot can manipulate objects into a desired configuration to satisfy task requirements

without having to know the precise identity of the object. An example of a resulting

partition can be found in the row labeled “Orient” of Figure 4.7.

4.3.4 Myopic Belief-Space Planning

An overview of the model-based ABP is shown in Figure 4.6. The planner main-

tains a belief distribution over aspect nodes bel(x) for each spatial hypothesis hk. It

uses a forward model to expand a search tree through several candidate actions and

score future belief states using information theoretic measures (Section 4.3.3.1).

In principle, the search tree can be expanded to any depth, however, without an

auxiliary policy structure, the size of the tree and the planning time are prohibitive.

72

We propose that expanding the search tree to a low depth, often even depth 1,

provides useful guidance for many tasks. The time required to expand all belief

nodes is dependent on the distribution of belief and quickly decreases when the belief

condenses on fewer aspect nodes. The search depth of the algorithm is variable

and is automatically increased as belief condenses and forward planning becomes

less expensive. For simplicity, the resulting algorithm is shown for a 1-ply search in

Algorithm 2.

Algorithm 2 Active Belief Planner (shown for 1-ply)

1: α = Future observation update threshold
2: τhk,at = 0 for all hk, at
3: IG = {}
4: for all hk do
5: for all at available in ATG do
6: bel(ckt+1) = 0 for all ckt
7: for all xkt+1 do

8: bel(xkt+1) =
∑

xkt
p(xkt+1|xkt , at)bel(xkt)

9: for all xkt+1 do

10: if bel(xkt+1) > αmaxxkt+1
(bel(xkt+1)) then

11: zkt+1 ← ATG(xkt+1)
12: for all xkt+1 do

13: bel(xkt+1) = η p(zkt+1|xkt+1) bel(xkt+1)
14: bel(ckt+1(x)) += bel(xkt+1)
15: m = M(ckt+1, T (c))
16: else
17: m = M(ckt , T (c))
18: τhk,at = τhk,at + bel(xkt+1)m
19: IGhk(ckt , at) = M(ckt , T (c))− τhk,at
20: IG = IG ∪ IGhk(ckt , at)
21: while arg maxhk,at IG is not feasible do
22: h∗k, a

∗
t = arg maxhk,at IG

23: IG = IG \ IGh∗k
(ckt , a

∗
t)

24: return arg maxhk,at IG

For each object hypothesis hk and available action at, the algorithm performs a

control update to calculate the expected belief bel(xkt+1) after taking action at (Line 8).

Transition probabilities for the process update p(xt+1|xt, at) are stored in the edges

of the ATG. We use threshold αmaxxkt+1
(bel(xkt+1)) (relative to the highest current

73

belief) to exclude beliefs that come from expected aspect nodes with low probability

(Line 10). The α term is a single value from range (0, 1] set by the user at the

beginning (Line 1). For all experiments, we used α = 0.1. The aspect geometry

inside the ATG provides an expected observation zt+1 for each expected future aspect

node xt+1 (Line 11). After performing an observation update following Equation 4.9

(Line 13), the belief over the corresponding subset of the task partition ckt+1(x) is

updated (Line 14). The expected information gain IG is calculated for each object

hypothesis and action combination (Lines 15–19) with M(ckt , T (c)) denoting the place

holder for the information-based metric employed (e.g. entropy or KL divergence).

The action with the highest expected information gain is chosen. The motion planner

of the robot examines the feasibility of the selected action, and if the action is not

feasible, the planner selects the next best action.

The complexity of the planning algorithm for a greedy 1-ply plan is O(|A||X|2)

where A is the set of eligible actions and X is the set of aspect nodes. The most

expensive step in the planner is the measurement update of all aspect nodes xt+1

with each expected observation zt+1 inside the prediction calculation. But since zt+1

is only dependent on the models, all values for p(zt+1|xt+1) can be precomputed to

greatly reduce computation cost. The complexity is linear in the number of spatial

hypotheses hk.

Additionally, the influence of expected observations zkt+1 on the expected infor-

mation gain for an action at is minimal if they are generated from expected aspect

nodes xkt+1 with low probability. Excluding such xkt+1 from the prediction calculation

can reduce computational load while having negligible impact on the prediction re-

sult. We use threshold αmaxxkt+1
(bel(xkt+1)) (relative to the highest current belief) to

exclude such belief from the prediction calculation. As a result, the complexity of the

problem is reduced to O(|A||X||X ′t+1|) where |X ′t+1| is the number of aspect nodes

that have belief above threshold.

74

Typically, belief is initially distributed over a large number of aspect nodes, and

even greedy search can take a long time after the very first observation. We observed

that, even for a model set of highly similar objects, the number of aspect nodes

decreases very quickly with every action.

4.3.5 Costs: Number of Actions, Time, Energy

A task is specified through a task partition (Sec. 4.3.3) and an information-based

metric (Sec. 4.3.3.1). The metric guides the action selection towards more useful

or informative actions. If the information gain is used directly for action selection,

then the robot tries to minimize the number of required actions to complete the task.

Alternatively, the information gain can be weighted by the required time or energy of

actions in order to minimize required time or expended energy for task completion.

For the experiments and demonstrations in this work, we minimize the number of

required actions or the time required to complete the task. An estimate for the cost

of actions is stored in the ATG models for all actions (Section 4.2.1).

4.4 Point-based Value Iteration (PBVI)

There are many established solvers for POMDPs, but limited scalability is a known

problem. Here, we are using point-based value iteration (PBVI) as an representative

for point-based online solvers for POMDPs [103]. It generates a finite set of belief

points B = {b0, b1, . . . , bq} and calculates an approximate solution for these belief

points only. The belief points are preferably sampled such that planning is concen-

trated on the most probable beliefs. The algorithm can alternate between belief point

expansion and value iteration to achieve anytime properties. Value iteration finishes

quickly when the number of belief points is low at the beginning. With increasing

size of B, the value iteration will get slower, but the calculated policy will improve.

75

The algorithm initializes a separate α-vector for each selected belief point and

repeatedly updates them via value backup. After n iterations the α-vectors Vn =

{α0, α1, . . . , αq} provide the current best solution. Each α-vector represent a |S|-

dimensional hyper-plane and provides the value function over a bounded region of

belief: Vn(b) = maxα∈Vn
∑

s∈S α(s)b(s). Each α-vector is associated with an action.

For a given belief b, the value function can be evaluated, and the α-vector resulting in

the highest value indicates the action with the highest expected reward. This action

is the optimal action for the current belief assuming optimal behavior for all following

actions.

As PBVI maintains a full α-vectors for each belief point, the piece-wise linearity

and convexity of the value function is preserved and defines a value function over the

entire belief simplex (Fig. 4.8).

Figure 4.8. Value function representation with full α-vectors for each belief point
(left) and just the value for each belief point (right) [103].

4.4.1 Value Iteration

The point-based value backup Vn = H̃V ′n−1 is done with backup operator H̃. We

calculate intermediate sets Γa,∗ and Γa,z for all actions (∀a ∈ A) and all observations

(∀z ∈ Z):

76

Γa,∗ ← αa,∗ = R(s, a), (4.19)

Γa,z ← αa,zi = γ
∑
s′∈S

T (s, a, s′)Φ(z, s′, a)α′i(s
′), ∀αi ∈ V ′. (4.20)

Transition function T (s, a, s′) and observation function Φ(z, s′, a) are provided by the

ATG object model. Next, we can construct for all belief points (∀b ∈ B) and all

actions (∀a ∈ A):

Γab = Γa,∗ +
∑
z∈Z

arg max
α∈Γa,z

(α · b). (4.21)

Then the α-vectors for each belief point is updated with the Γab for the best action:

V ← arg max
Γa
b ,∀a∈A

(Γab · b), ∀b ∈ B. (4.22)

The complexity of the point-based backup operations is only O(|S||A||V ′||Z||B|)

in contrast to the full backup operation with O(|S|2|A||V ′||Z|). The size of V remains

constant and is at most |B|. Based on our belief representation and object models, the

size of Z is at most |S| with a unique observation per abstract state. The complexity

is O(|S|2|A||B|2). In practice, states and respective observations with zero belief can

be skipped and incur no cost and |S| is rather small.

4.4.2 Belief Point Set Expansion

PBVI performs best when the belief point set is uniformly dense in the set of

reachable beliefs. Therefore, we generate the set of belief points by repeatedly sim-

ulating a single step forward trajectory to reach other close by beliefs starting from

the current belief.

After initializing B with just the current belief, for each b ∈ B, we stochastically

simulate single steps for each action a ∈ A to produce new beliefs {ba0 , ba1 , . . . }. For

each new belief bai , we throw it away if it already exists in B. Then we add the bai

77

to B that is the furthest away (L1 distance) from all other beliefs in B. Typically,

at each expansion step, the algorithm chooses the single furthest successor for each

current belief point b ∈ B, thus at most doubling the size of B.

4.4.3 Usage with ATGs

We use PBVI in conjunction with ATGs. State representation and Bayesian up-

date are used as detailed in Section 4.3.1. The ATGs for known objects provide all

the required information for the transition model and the observation model, but

unlike typical POMDP descriptions, actions are not uniquely indexed. As states are

abstracted with implicit pose information only known at runtime (Section 4.2.3.1)

and actions that are parametrized with respect to object frames, action correspon-

dence between states has to be resolved at runtime (see Section 4.2.3.2). The ATG

provides transition models for all actions for all states, but matching an action a for

state s1 to the corresponding action for state s2 requires pose information which is

only available at runtime.

Task specifications such as the task partition introduced in Section 4.3.3 cannot

be used directly, but can inform the values of the reward function R : S×A→ R. In

addition to the states and actions from the ATGs, we introduce an ‘at goal’ action

to declare that the task is completed and a heaven and a hell state. If the ‘at goal’

action is executed in a state that is part of the goal subset of the task partition, then

this results in a transition to the heaven state, otherwise to hell. All actions executed

in these two states self-loop and incur zero cost in case of heaven and the maximum

cost in case of hell. Additionally, the α-vectors can be initialized appropriately for all

known goal states from the task partition. This reduces the required search horizon

to find a good solution.For tasks that only aim at reducing uncertainty, such as

recognition, localization, and find tasks, the reward function depends on the actual

belief distribution bel(s) instead of just a goal state-action pair. As value iteration

78

propagates the reward of states, this method is not suitable for these cases by itself.

Araya et al. have extended POMDPs with belief-dependent rewards [3], but this is

left for future work.

Previously, scenes with multiple object have been handled by POMDPs in a hi-

erarchical manner [24, 133]. The use of hierarchical handling of multiple objects

(Section 4.3.2) has not been tried with PBVI in this work as PBVI is most useful for

orient tasks when a specific state needs to be reached. Usually this happens once a

specific object in the scene has already been chosen. The information-based metrics

for other task types often depend on the actual belief distribution, but the actual dis-

tribution is not considered/available in the value iteration step of PBVI as it backs

up the reward from successor states independently of the full belief distribution. Ad-

ditionally, the complexity of PBVI is very prohibitive unless the belief has already

been condensed to a small number of states.

4.5 Summary

We presented a new version of the aspect transition graph (ATG) extended with

geometric information. ATGs are as object and environment models and form the

basis of the knowledge representation for belief-space planning in our framework. We

use aspect nodes as abstract state and discussed the resulting beneficial properties

on state, action, and observation space. Complexity is reduced while a good expres-

siveness is maintained. We presented our belief-space planning framework: the active

belief planner (ATG). It uses the representation based on ATGs together with a new

method to represent tasks for belief-space planners. Objects in scenes are handled

hierarchically resulting in near linear complexity in the number of objects. We also

presented how an online POMDP solver, point-based value iteration (PBVI) can be

used with the ATG-based representation.

79

CHAPTER 5

MOBILE MANIPULATION EXPERIMENTS

In order to demonstrate the capabilities of the belief-space planning framework,

we use the uBot-6 robot to perform various experiments. The experiments are all

centered around the new ARcube domain for mobile manipulation. The domain

has been designed to be extremely challenging for planners and requires integration

of multi-modal information.

5.1 ARcube Domain

We introduce the new ARcube domain that is based on a model set specifically

designed to stress planners. Objects in this set are ARcubes , which are rigid cubes

with a single ARtag centered on each of the six faces (Fig. 5.1). These boxes can be

easily replicated and their size can be adjusted to meet the requirements of different

robot platforms. The ARtags can be easily identified and localized and are used as

a proxy for more general purpose visual processing [62]. Though ARtags provide id

and the full pose of tags, we only use their id and position. By discarding orientation

information of tags, several features need to be perceived to establish the pose of

an ARcube object. Additionally, the visual ambiguity between ARcubes is much

increased as the orientation of tags cannot be used to differentiate them.

The permutation of unique tags applied to objects provides a simple means of

controlling the complexity of recognition experiments. The number of visually dif-

ferentiable ARcubes in the model set given n unique ARtags is |M| =
(
n
6

)
· 5 · 3!,

which makes it easy to create very large model set sizes. This large number of pos-

80

sible visually similar cubes and the natural sparseness of visual features leads to a

large degree of ambiguity. Additionally, each visually unique cube can have up to

six eccentrically weighted counterparts, which are visually identical and can only be

differentiated through the transition dynamics of manual actions (Fig. 5.2).

Figure 5.1. Aspects with two features (left) and three features (right) for an ARcube
object.

Figure 5.2. Differently weighted variants of ARcube objects: evenly distributed
weight (left), eccentrically distributed weight at a face (middle) and an edge (right).

More realistic objects are often easier to differentiate from even a single view.

By using ARcube objects, we can generate a domain that is difficult for the planner

instead of the perception. The partially observable nature of the ARcubes together

with the high ambiguity require long sequences of actions to recognize objects or

manipulate them. Experimental recognition tasks constructed this way are very chal-

81

lenging, requiring multiple sensor geometries to fully disambiguate objects within a

set of test objects. Furthermore, the efficiency of a sensing strategy varies based on

the composition of the model set.

5.2 Experimental Setup

We are using the uBot-6 mobile manipulator (Section 3.1.1) to perform various

tasks involving one or multiple ARcube objects. The toddler-sized robot can manip-

ulate ARcubes with both arms and use the mobile base to reposition itself around it.

The robot only uses balancing mobility for these experiments.

The robot has four different actions modeled to interact with ARcubes: Flip,

Lift, Push, and Orbit. These actions are described in the next section. Details on

the ATG models for the ARcubes are shown in Section 5.2.2.

5.2.1 Information Gathering Actions

The following parametrized skills are implemented as information gathering ac-

tions to interact with ARcube objects:

1. Orbit – A locomotive action in which the robot drives and reorients itself

toward the target object, thus, changing the viewpoint. The robot circles around

the object location by an angle −180◦ ≤ θ < 180◦ (with respect to the world

ẑ-axis).

2. Push – The robot uses its arm to push along the normal of a chosen face of

an ARcube. If necessary, the robot will first reposition itself by driving to a

location in front of the face. Pushing causes different outcomes depending on the

mass distribution—the ARcube will either move approximately straight ahead

causing no visual change or pivot approximately 45◦ about the world ẑ-axis,

revealing a three-feature visual aspect. The robot receives a suitable drive goal

as well as a start location and push direction as parameters.

82

3. Lift – The robot uses both arms to grasp the object above the geometric center.

If necessary, the robot will first reposition itself by driving to a location in front

of the face. This will ensure the grasp goals are within reach. The robot will

then raise the object and place it back down. For a uniformly weighted object,

this sequence of actions causes no reorientation or visual change. Given an

object with eccentric mass, the action outcome depends on the location of the

center of mass. For example, if the center of mass is at the top-most face of the

cube, the action results in the object flipping 180◦ around the axis between the

hands such that the eccentric mass is now at the bottom. Action parameters

are a suitable drive goal and two grasp locations for the left and right hands.

4. Flip – Like Lift, the robot grasps the box with both hands, raises it, and

puts it back down. Again, this action can be preceeded by a drive action to

position the robot better. In contrast to Lift, the grasp goals are closer to the

body of the robot near the front face of the box. For an ARcube with uniform

mass distribution, this most likely results in a box rotation around the grasp

locations, moving the front face to the top. This reveals the previously bottom

face of the object in the front. An example illustrating the different outcomes

of a Flip action can be seen in Figure 4.2. For eccentrically loaded objects,

the action outcomes depend on the location of the center of mass. If the center

of mass is not on a side face, the most likely outcome will be a rotation such

that the center of mass moves to the base of the object. Action parameters are

a suitable drive goal and two grasp locations for the left and right hands. An

example of uBot-6 executing a Flip action can be seen in Figure 5.3.

5.2.2 ARcube ATG Models

The robot has access to an ATG model for each known ARcube, though the set

of ATG models considered varies in each experiment. There are 20 different visual

83

t1 t2

t3 t4

t5 t6

t7 t8

Figure 5.3. The uBot-6 performing an information gathering Flip action on a
target ARcube with uniform mass distribution. The action causes a 90◦ rotation of
the ARcube.

84

aspects that can be found on an ARcube with six non-repeating ARtag features:

twelve aspects with two tags, eight aspects with three tags. Aspects with single

features are ignored as uninformative. Based on the actions modeled for ARcubes,

the orientation of the aspect with respect to the robot is important for action outcomes

and thus result in additional aspect nodes. For example, an aspect with two visible

tag features can be seen in Figure 5.1 (left). The geometric constellation of the 4 and

5 tags is the same whether 4 is on top and 5 in front or vice versa, but flipping the box

results in different transitions for both cases. As a result, each two feature aspect is

associated with two different aspect nodes, and every three feature aspect (Figure 5.1

(right)) is associated with three different aspect nodes. In total, each ATG model

currently has 48 aspect nodes. When viewing an ARcube square-on, we can refer to

the locations of the tags for the current aspect node with ‘top’, ‘front’, ‘right’, ‘back’,

‘left’, and ‘bottom’. These locations are used for task definitions in the experiments

below.

The ATGs for the ARcube objects model action outcomes for four action types:

Flip, Lift, Push, and Orbit. These actions are specific to the uBot-6 mobile

manipulator, though it is possible that they could transfer to other robot platforms—

especially if their capabilities are similar, such as uBot-5 or uBot-7.

ATG models for ARcubes with eccentric weight distributions differ only in the

transition probabilities between aspect nodes as they are designed to be identical

apart from their transition dynamics. For example, when flipping, the eccentric weight

might result in an almost certain transition to the aspect node with the weight at the

bottom.

The actions generate edges in the ATG connecting reachable aspect nodes. For

each starting aspect node, Flip and Lift result in four, Push in three, and Orbit

in eight different outcome aspect nodes. The transition models for Flip, Lift, and

Push are hand-built, while the distributions for Orbit have been learned [152].

85

Distributions for action parameters are stored along with the transition edges in the

ATG and can be sampled when an action is chosen.

5.3 Experiments

We performed experiments in simulation and on a real robotic platform to compare

random action selection against action selection under a greedy 1-ply planner in

solving an object identification task: the robot is presented with an unknown object

and has to identify which model the object corresponds to. It should do so while

minimizing the number of used actions.

The simulator is based on the information in the ATG models. This means that

the behavior of the simulated environment is guaranteed to match the models. In

practice, object models would never be perfect, but only approximations. By using

both simulation and real robot experiments, we can also verify if our ATGs sufficiently

model the objects. If the models differ too much from the behavior of the real

objects, we would see belief condense on an incorrect model/state. Additionally,

the simulation is used to demonstrate the scalability of action selection under the

greedy planner with increasing model size. To validate the simulation, trends present

in these results are compared to those obtained from the real system.

5.3.1 Simulation Experiments – Single Object

The simulator is initialized with a single ATG model and an aspect node. All

action outcomes are sampled from the state transitions specified in this ATG. Obser-

vations are based on the features expected to be produced by the current (simulated)

aspect node.

For each run, a randomly chosen object is selected and simulated for 30 ac-

tions. The goal is to identify the object’s identity within the model space. We

compare the greedy ABP to random action selection by running both of these ap-

86

Table 5.1. Comparison of random action selection vs. action selection by the ABP
(α = 0.1) for different model set sizes in simulation.

|M| Method Obj. Bel. Entropy Actions Time (s)

30
Random 0.89± 0.24 0.29± 0.49 14.2 531.3

ABP 1.00± 0.00 0.00± 0.00 4.5 173.8

60
Random 0.94± 0.16 0.17± 0.22 20.2 756.5

ABP 1.00± 0.00 0.00± 0.00 5.1 205.4

120
Random 0.93± 0.16 0.25± 0.48 18.8 686.1

ABP 1.00± 0.00 0.00± 0.00 5.9 264.4

proaches on 30 different simulated objects for each of the three model sets consisting

of |M| = 30, 60, and 120. Table 5.1 illustrates the results.

The ABP is used in both cases to incorporate the actions and observations into the

belief. Random action selection uses the current belief to find all the actions (type and

parametrization) that are possible from the current belief and select one at random.

Greedy action selection performs a 1-ply search to determine the action that reduces

entropy H(ot) the most. The entropy H(ot) listed in the table is the entropy of the

population of objects at the end of the trial. The planner takes significantly fewer

actions and requires less time overall in comparison to random action selection.

The average time shown describes the time necessary for the object posterior to exceed

0.95 or for the maximum number of actions taken (30). It is important to note that

action time dominates; the planning time per action for the greedy ABP was around

1.5 s in the worst case and on average less than 0.5 s. Both approaches theoretically

converge to the correct identification as t → ∞, however, these results show only

30 actions or less.

5.3.2 Robot Experiments – Single Object

For the object identification experiments, we present uBot-6 with an unknown

object from its model set. Random and greedy action selections are used the same

way as they were for the simulation experiments. We performed 10 trials each of the

greedy ABP and the random action selection approaches. The results are summarized

87

in Table 5.2. Statistically significant trends indicate that the greedy ABP outperforms

random action selection by condensing belief faster (both in time and number of

actions taken) towards the correct model. These trends agree with the simulation

results for the same task. In Figure 5.4, the slight drops in the correct object belief

are a result of action failures; the unlikely outcomes in transitions contribute to

increasing belief in other object models that encode such outcomes. The greedy

approach has little trouble converging to the correct object, which is similar to the

results seen in simulation, but random has more trouble converging to the correct

model. Discrepancies between the simulation and robot results can be attributed to

Table 5.2. Single object scene experiment using uBot-6 (α = 0.1)

|M| Method Obj. Bel Entropy Actions Time (s)

30
Random 0.48± 0.42 0.98± 0.72 8.7 1149.1

ABP 0.98± 0.04 0.14± 0.21 4.1 680.6

differences in the hand-built transition probabilities and estimated action costs from

the actual ones on a real robot.

5.3.2.1 Identification Accuracy

Although entropy in most cases is driven to nearly 0.0, the most important met-

ric for any identification task is accuracy. Table 5.3 shows the accuracy results for

the simulated and real robot experiments. The greedy ABP achieved 100% in all

tasks, but random action selection misclassified objects in 4 out of 10 trials in the

|M| = 30 runs on uBot-6 and 3 out of 30 trials in simulation as well as one in each

of |M| = 60, 120. We consider a run to have successful classification if the posterior

of the correct model has the greatest belief out of all models at the end of the run.

5.3.3 Robot Experiments – Multi-Object Scene

Instead of exposing the robot to just a single unknown object, we present a scene

with three unknown objects (Figure 5.5). The robot is tasked to identify all three

88

Figure 5.4. Single object identification task with uBot-6 using object model set
with |M| = 30. Plots compare the performance of the greedy ABP (blue) versus
random action selection (red). Here, ‘e.w. Boxes’ = eccentrically weighted boxes and
‘u.w. Boxes’ = uniformly weighted boxes. It can be seen that uniformly weighted
boxes are much harder to recognize as their transition dynamics are less distinct than
those for eccentrically weighted boxes.

objects with as few actions as possible. It can perform actions on any object in any

order. The scene is handled hierarchically in the ABP by evaluating a separate belief

for each physical object, evaluating action utility separately, and then choosing the

best one (see Section 4.3.2). This keeps the complexity of the planner linear with the

number of objects in the scene but denies taking advantage of cumulative benefit one

action could have on the belief of several objects. For example, orbiting an object

might reveal new features of several objects at the same time. While the planner does

not benefit from these interactions, the belief update uses these benefits.

89

Table 5.3. Identification accuracy computed over all experiments

|M| ABP Random

Simulation
30 100.00% 90.00%
60 100.00% 96.67%
120 100.00% 96.67%

uBot-6 30 100.00% 60.00%

The accuracy of the single object experiments is matched here. The ABP can

correctly classify all objects. The beneficial effects of sometimes gaining information

on multiple objects at the same time shows in the number of required actions.

Random action selection performs much worse. This is to be expected as the

chance of selecting the needed informative action for one object is much lower, because

there are three times as many actions to compete with.

Figure 5.5. Segmentation of a multi-object scene into three hypotheses. The ABP
maintains a separate belief distribution for each hypothesis.

5.3.4 Simulation Experiment with PBVI – Orient Task

POMDP solvers do not scale well with increasing problem sizes and usually are

intractable for real world robotics problems. Sen used a point-based POMDP solver,

heuristic search value iteration (HSVI), to perform Orient tasks on boxes though

90

he did not report the required planning times [122]. These experiments used ATG

models without geometric information and robot-centric actions. In order to evaluate

the performance of such POMDP solvers in combination with our ATG models, we

use PBVI to perform several Orient tasks on ARcubes.

The planner can be configured with the desired number of belief points and a

search horizon. We ran our experiments with a variety of parameter configurations to

explore what reasonable parameters are for our problem. We started with a model set

consisting of a single ARcube. The corresponding ATG has 48 aspect nodes, resulting

in |X| = |Z| = 48,x and on average 15 actions have to be considered.

Figure 5.6. Planning time for a single iteration of PBVI over the number of belief
points.

For 10 or more belief points, and a horizon of 7, the solver would usually determine

good actions that lead directly to the desired task goal. Since the belief points are

sampled, sometimes they do not approximate the belief space well, and the chosen

action is not one that necessarily leads to the goal. This happens less often the

closer the current state is to the task goal and the higher the number of sampled

belief points. Nonetheless, the robot still succeeds at the task though at the cost of

additional actions since it would recover in one of the following actions. The planning

time for an iteration of PBVI is plotted over the size of belief points in Figure 5.6.

91

The planning time increases linearly with the horizon. PBVI needed around 55 s to

plan the next action with 10 belief points and a horizon of 7. Given that this planning

time is for a model space of only one object, the planning time will quickly dominate

the execution time and become intractable for larger model sets.

5.4 Demonstrations

In order to demonstrate the capabilities of specifying task types for the belief-

space planning framework, we use the uBot-6 mobile manipulator (Section 3.1.1) to

solve variants of two of the task types described in Section 4.3.3.2: recognition and

find. Assigning different partitions to a task can change the distribution over which

the ABP plans, and thus, reconfigure the planner for different tasks. We define task

specifications for examples of a recognize task and two different find tasks and run

the planner using their respective task partitions in simulation. This demonstrates

the ability of the planner to reduce uncertainty only enough to satisfy the task re-

quirements and be otherwise insensitive. Section 5.4.3 shows how the aforementioned

task types can be sequenced for the robot to solve a copying task.

For all these demonstrations we use ATG models for 30 ARcube objects. This

model set contains 16 visually unique cubes. Some of these cubes have up to six

eccentrically weighted counterparts. For each case, we provide rollouts of the belief

over the subsets ci of partition C. Figures include the belief over objects oi to illustrate

how the subsets of C are composed. Each oi is colored based on the subset of C to

which it belongs.

The 30 ATG models result in a state space of |X| = 1440 aspect nodes. At

each timestep, an average of |A| = 15 actions (action types × parametrizations)

are available. In an artificial data set, aspects on different objects might be identi-

cal as they are generated the same way, but on real objects these models would be

learned, and with sensor noise, two aspects are very unlikely to be identical. There-

92

fore, we assume the number of possible observations equals the number of aspect

nodes |Z| = |X| = 1440. Planning time for a greedy action selection takes less than

one second.

5.4.1 Task Type: Recognition – “Identify an object”

For the recognition task, we present the robot with an unknown object. Initially,

the belief is uniformly distributed over all known object types (or their respective

aspect nodes). After the initial observation, the robot repeatedly uses the ABP to

select next best actions to execute until the object has been identified. In Figure 5.7,

the belief over the object identity can be seen for several time steps until the object

is correctly identified as o24. The aspect nodes of each object form a separate subset

ci, and therefore the belief over c is equal to the belief over the corresponding objects

oi. It took five actions for the belief to condense completely on one object.

5.4.2 Task Type: Find – “Find a suitable object”

We demonstrate two examples of the find task to showcase two common scenarios.

The first task is to find an object matching ATG model o24. The robot is presented

with an unknown object and needs to determine if this object is indeed object o24.

The rollout of the beliefs over subsets c and the object identity o can be seen in

Figure 5.8. The color indicates the subset c to which the aspect nodes of each object

belongs. Here, the aspect nodes of o24 belong to c1 (blue), while all other aspect

nodes belong to c0 (green).

The robot is presented with the same object as for the recognition example in

Figure 5.7. The planner chooses a different sequence of actions since it can focus on

o24 without having to worry about telling it apart from all the other object models,

resulting in fewer actions to reach task completion. It only needs three actions to be

certain that the object indeed matches model o24.

93

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00

0.05

0.10

0.15

0.20

0.25

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

Recognition of an unknown object

Figure 5.7. Example task to recognize an unknown object: a condensed rollout of
the belief over object models oi is shown. The belief over c is equal to the belief over
the corresponding objects oi. Therefore, we refrain from coloring oi based on their
membership in c for readability.

94

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0

0.2

0.4

0.6

0.8

1.0

Find object #24

Figure 5.8. Example task to find an object matching a specific ATG model (o24)
provided as the task specification: a rollout of belief over subsets c is on the left.
To visualize how subsets c are composed, the belief over objects o is shown on the
right. Target subset c1 contains all aspect nodes of object o24 (blue); those of all other
objects are in c0 (green).

The second task is to find an object that could be oriented such that a set of

features is in the correct relative position to the robot. In this example, ARtag ‘1’

should face the robot, ‘4’ should be on top, and ‘2’ should be on the bottom of the

cube facing the floor. The identity of the object is not important and neither is the

configuration the object is actually in. To complete the task the robot just needs

to be sure that this is an object that it could manipulate to satisfy the specified

constraints. The subsets c defining the task can be seen in Figure 5.9 together with

rollouts of the beliefs over c and o. The task succeeds without the belief condensing

over the identity of the object at hand; the robot can focus on what matters for the

task.

5.4.3 Sequencing Find and Orient Tasks for Structure Copying

In this setup, uBot-6 is presented an assembly consisting of two ARcubes. The

robot is tasked to observe the target objects and reproduce the structure in a staging

95

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Find suitable object with properties from task speci�cation
(3 visual features with geometric relationship)

Figure 5.9. Example task to find an object with matching features: a rollout of
belief over subsets c is on the left. To visualize how subsets c are composed, the
belief over objects o is shown on the right. Target subset c1 contains all aspect nodes
of objects that contain the necessary features and can be oriented to expose them
(blue); those of all other objects are in c0 (green).

area (Figure 5.10). Both the original assembly and staging area for the copied struc-

ture are known to the robot and contain visual markers on the wall as pose guidance

fiducials. For simplicity, the task specification is only based on observations from a

single vantage point (one aspect). In general, the task can be more complicated and

contain constraints that are not observable from a single vantage point. The robot

would have to rely solely on its belief to ensure task success. For example, the robot

could take observations from different vantage points and interact with the objects in

the target assembly to gather more information in order to replicate it more precisely.

For this experiment, the robot needs determine the task specification from the

target assembly. It can then check the staging area to determine what parts are

missing to complete the task. It needs to find suitable objects in the search scene

(Figure 5.11). Once a suitable object has been found, the robot needs to orient it

to the task specification and pick-and-place it in the designated staging area. We

use a hand-built finite state machine to sequence task types from Section 4.3.3.2 for

96

Figure 5.10. Side-by-side comparison of the assembly template (left) and the empty
staging area where the assembly should be reproduced by the robot (right). The
robot observes the assembly template to get the task specification.

our ABP to complete the structure copy task. The ATG model set used for this

demonstration contains 14 object models.

The robot randomly chooses the first object to obtain for pick-and-place. For

the situation presented in Figure 5.10, the robot chooses to pick-and-place the right-

most object first. To do this, the finite state machine runs a find task to locate a

suitable ARcube, from the search scene of four ARcubes (Fig. 5.11), that affords an

aspect with ARtag ‘0’ in front and ARtag ‘4’ on top (‘0-4’ aspect). Based on the

observation of the assembly template, the robot assigns the partition C following

Equations 4.14–4.16: y(xi) = 1 if xi is a ‘0-4’ aspect. Once the robot is certain that it

has found an ARcube with those feature specifications (which takes a single action),

it executes an orient task to manipulate the cube from the find task such that ARtag

‘4’ is on top and ARtag ‘0’ is in front (six actions). The robot assigns the partition C

for this orient task using Equations 4.16–4.18, where y(xj) = 1 if xj is a ‘0-4’ aspect.

After the robot accomplishes the orient task, it uses a pick-and-place controller to

grasp, transport, and drop off the cube at the designated location in the staging area.

After placing the first object, the robot goes through the same sequence of tasks

for the second object. For the situation presented in Figure 5.10, the robot executes

97

Figure 5.11. Four ARcubes are placed in the search scene. The robot uses a
model set of 14 ARcubes. It establishes hypotheses for each of the four ARcubes and
plans over them according to the task partitions defined. 11 object models afford the
‘0-4’ aspect and 11 afford the ‘5-3’ aspect.

a find task for an ARcube that affords a ‘5-3’ aspect (one action), an orient task

to reveal the ‘5-3’ aspect (two actions), and a pick-and-place to drop off the cube in

the staging area. Figure 5.12 shows the belief over time in the subsets that contain

the ‘0-4’ aspect (left) and ‘5-3’ aspect (right). For this demonstration, the execution

time heavily dominated the planning time, which was less than 1 s for each action

on average. Following the sequence of tasks as presented, the robot was able to

successfully reproduce the target assembly as shown in Figure 5.13.

98

Figure 5.12. These plots show the evolution of belief over the goal subset of the
task partition for the objects that were copied (left : first object (‘0-4’); right : second
object (‘5-3’)). The top and bottom plots show the task beliefs for each hypothesis
in the scene for the find and orient tasks, respectively. For the first object, the robot
did not register one of the objects in the scene, so it only establishes three hypotheses.
The belief for the orient task exceeds the threshold after action #7. For the second
object, since the robot has already interrogated the scene, it starts with a higher
belief prior for the remaining hypotheses. The belief for the orient task exceeds the
threshold after action #3.

Figure 5.13. Side-by-side comparison of the assembly template (left) and the as-
sembly reproduced by the robot (right). The robot observes the assembly template
and copies it in the staging area using objects that it determines to be appropriate
from the search scene (Figure 5.11).

99

5.5 Discussion

Arguably, humans almost never solve tasks optimally. So when evaluating the

performance of a robot in a partially observable domain, optimality usually does not

matter and is unreasonable to expect. It is much more important that the robot

can solve the task robustly despite variance in the environmental constraints and can

recover if something goes wrong. Nevertheless, the robot should not stand idle for

too long while planning for the next action, and the execution time for actions should

usually dominate the planning time.

The presented ABP performed well for all of the tasks we tested in this domain. It

completed all tasks successfully and recovered even after a number of highly unlikely

action outcomes, such as a box being rotated in the opposite direction due to poorly

placed grasp locations. Search depths between 1 and 3 usually provided good enough

guidance. For a model set size of 120 objects the search time for a greedy action

selection is 0.5 s on average and 1.5 s in the worst case. With adaptive search depths

of up to 3, planning times would consistently stay below 5 s. In real world scenarios, it

is quite unlikely that belief remains spread over all 120 competing object types as even

a single observation can usually condense the belief onto a handful of object types.

The ARcube domain was specifically designed such that the ambiguity can remain

over many objects even after several interactions and observations. Search times for

scenes with multiple objects scaled linearly as expected. The ABP outperformed

random action selection in the number of actions, the total planning and execution

time, and the accuracy.

The PBVI algorithm was only tested on Orient tasks and could successfully

and reliably complete them. The algorithm, without an extension, is not suitable

for information-based metrics for many other task types as rewards often depend on

the actual belief distribution. The complexity of PBVI is very prohibitive unless the

belief has already been condensed to a small number of states. This is usually the

100

case when an Orient needs to be executed. It might be possible to improve the

performance of PBVI by optimizing the code. Also heuristicly guided point-based

solvers, such as HSVI2 [129] or SARSOP [83], might make results more consistent by

avoiding poorly sampled belief points.

The ability to specify different task types for the belief-space planner is very

powerful. In the demonstration, we sequenced different task types in a hand-built

finite state machine (FSM), but it is possible to use other mechanism, such as symbolic

planners, to sequence tasks. This delegates the handling of uncertainty to the belief-

space planner at the lower level. Takahashi et al. have already demonstrated how

this framework can be used to ground symbols for a symbolic planner in belief [139].

101

CHAPTER 6

DEXTEROUS MOBILITY EXPERIMENTS

uBot-6 and uBot-7 have much extended mobility capabilities compared to typical

mobile manipulators. In their primary form of locomotion they dynamically bal-

ance on two wheels. Various available postural configurations afford different forms

of locomotion such as four-wheeled prone-scooting and knuckle-walking with hands

and wheels (Section 3.3). The different postural configurations are reached through

postural transitions (Section 3.2.5). These alternatives for locomotion provide great

resourcefulness to the robot platforms which enables them to overcome a greater va-

riety of obstacles in mobility tasks. Figure 6.1 shows an example of uBot-6 changing

postural configurations in order to get past an obstacle. The added versatility also

increases the complexity for planning or reasoning systems. Overall, mobility with

several forms of locomotion is refered to as ‘dexterous mobility’ [80, 115, 116].

In the following sections we first define the dexterous mobility domain. Then we

present exploratory experiments that highlight problems for classical path planners

when dealing with increasingly diverse action costs that are associated with more

resourceful robots. We also show how planning at an abstract level can mitigate

these problems. Section 6.3 presents an updated domain for dexterous mobility with

partially observable elements. In Section 6.4 we explain how the ATG models can be

used to represent environments and can be used as basis for our belief-space planners.

Experimental results are presented in Section 6.5.

102

6.1 Dexterous Mobility Domain

We define the ‘dexterous mobility domain’ as a navigation domain for robots with

diverse action capabilities, such as uBot-6 or uBot-7:

Let W be a description of the known part of the world in the form of one or more

occupancy grids. Let Pc be the set of distinct postural configurations of a robot each

allowing a different form of mobility. In order to exploit the redundancy in mobility,

the robot can re-posture (usually an expensive action) amongst different postural

configurations. These transitions as well as motion primitives for each mobility type

form the set of actions A.1 The navigation task is given by start and goal configura-

tions of the robot in Cartesian space together with a postural configuration denoted

by ns and ng, respectively. Thus, the given domain knowledge, robot capabilities,

and task specification are defined by the tuple

〈W,Pc, A, ns, ng〉 . (6.1)

A valid solution to such a navigation task is a sequence of actions that lead

the robot from starting configuration ns to the goal configuration ng. Several valid

solutions may exist. The quality of these solutions can be based on different criteria

such as execution time or energy consumed. For the purpose of this work, the quality

of a solution is based on the total amount of time required to complete the task.

Though we assume full observability of the (world) map in this case, once such a

technique is deployed on a real robot, state estimation will contain noise, action

outcomes will be imperfect, and environments will be dynamic. Therefore, planning

is assumed to be tightly interleaved with execution as it might be necessary to produce

1The term ‘motion primitive’ can be somewhat misleading as it has different meanings in the
robotics and planning communities. Seen from a robotics perspective, the use of this term implies
the fact that the respective motions are the result of complex controllers and motion policies instead
of open-loop primitives. In this work, we will use the term in accordance to its use in the planning
community as it abstracts the complex behavior as a simple action choice for a planner.

103

Figure 6.1. An example of uBot-6 changing postural configurations in order to
get past an obstacle. It transitions to a 4-point contact configuration, uses its el-
bow wheels and drive wheels to scoot underneath the table, and transitions back to
upright-balancing postural configuration.

104

updated plans during execution. Thus, the total amount of time required to complete

the task includes planning time and execution time of the solution.

105

6.2 Exploratory Experiments with Classical Planners

There are many planners that are suitable for path planning in standard naviga-

tion domains. We perform exploratory experiments to determine how well classical

planners for navigation tasks extend to the dexterous mobility domain. Specifically,

we are using the uBot-6 mobile manipulator (Section 3.1.1) with a subset of its forms

of locomotion. We consider non-holonomic movement with differential steering while

balancing upright on two wheels and with Ackermann steering while prone-scooting

on four wheels.

The ability to change postural configurations increases flexibility and resourceful-

ness, but also introduces a significant penalty for changing configurations as tran-

sitions require a relatively long time. Heuristic planners will still find optimal solu-

tions, but unless guided by very sophisticated heuristic functions, will avoid expensive

actions such as configuration transitions until inexpensive options are explored ex-

haustively. A*-like approaches using metrics such as power consumption or time

are commonly used in state-of-the-art path planning for wheeled robots [90]. Other

planning approaches for dexterous robots have been attempted. Notably, motion

primitives have been used with probabilistic road-maps [48, 49].

In Section 6.2.3, a heuristic-based planner from the A* family is used to showcase

the challenges facing planners that exploit dexterity in a mobility domain. We present

a hierarchical variant of A* in Section 6.2.4 and show its impact on planning for

dexterous mobility and how it can mitigate problems.

6.2.1 Scenarios

We use three similar example environments of varying difficulty to showcase the

utility of dexterity in mobility and also highlight the challenges that arise for planners

from it:

106

Imagine a search and rescue setting. In three scenarios the robot has to move from

location A in one room through an angled hallway to location B in another room. In

the first scenario (Figure 6.2(a)), the hallway is unobstructed and the robot can stay

in balancing postural configuration all the way. In the second scenario (Figure 6.2(b)),

both entrance and exit of the hallway are obstructed by an obstacle that prevents

the robot from passing through in an upright postural configuration. After changing

its postural configuration, the hallway can be traversed by prone-scooting. The third

scenario (Figure 6.2(c)) is identical to the second scenario, but the hallway is more

narrow. Due to relatively large minimum turn radii while prone-scooting, the corner

can only be taken while balancing. Thus the robot has to scoot to enter and exit

the hallway but needs to be balancing to take the obstructed corner. For these

experiments, the planner has to optimize the time required to execute the planned

path.

(a) (b) (c)

Figure 6.2. Three scenarios for path planning with multiple postural configurations;
the robot has to move from A to B. Scenarios 1 – 3 are shown in (a) – (c) respec-
tively. In (b) and (c) the hallway separating A and B is obstructed with low-hanging
obstacles (black-yellow shaded areas) preventing balancing mobility. Additionally,
in scenario 3, rubble narrows the passage through the hallway, making the section
impassable while prone-scooting due to limited turn radii in this mobility form.

The uBot-6 mobile manipulator (see Chapter 3) serves as the experimental plat-

form, but generally any robot capable of several forms of mobility could be used.

107

Examples of such robots are the iCub which can walk and crawl [94, 34], the Vecna

Bear which can switch between balancing and statically stable tracked mobility [111],

and the NASA Athlete which has several legs that can be reassigned from mobility

to manipulation tasks [147].

6.2.2 Maps

In the dexterous mobility domain the terrain can prohibit the use of specific

postural configurations in areas of the map. This could be a low hanging ceiling

preventing upright balancing mobility or uneven ground prohibiting anything but

knuckle-walking to pass the area.

These properties can be embedded in the input map by annotating each location

with the postural configurations that are feasible. For our experiments, these anno-

tations were created manually, but in general they can be easily determined from the

robot’s sensor readings. Sensor readings of the environment indicate if an area affords

a specific postural configuration and its mobility form. For example, terrain that af-

fords balancing mobility requires a relatively flat ground and must not be obstructed

below the height of the robot.

From an annotated input map we can create occupancy maps for each postural

configuration. An example of the obstacle maps for each postural configuration for

scenario 3 is shown in Figure 6.3.

For each scenario, obstacle maps are provided for balancing and prone-scooting

postural configurations. Both maps can be considered as being dilated such that we

can treat the robot as a point.

6.2.3 Classical A*

A standard A* search is used as a representative of classic heuristic search. We

refrain from using any of its newer and more advanced variants, such as ARA*,

108

(a) (b)

Figure 6.3. Obstacle maps for prone-scooting mobility (a) and balancing mobility
(b) for scenario 3 (Section 6.2.1).

D*, D* lite, or AD* [92, 134, 68, 91], as we are dealing with fully known static

environments in these experiments.

A state lattice [105] is used as a discretized representation of the state space. The

state space is based on a discretization of the robot configuration. The x, y location is

discretized into 4x4 cm grid cells. At each location, the heading θ is discretized into 36

different angles and two postural configurations pc are available. The connections in

the state lattice are generated from feasible actions (see below), and therefore a found

path will also be feasible making this representation well suited for path planning.

The A* algorithm is used on this state space to find a path to the goal. The action

space and the used heuristic are described in the following sections.

6.2.3.1 Action Space

The action space of each lattice state consists of all locomotion and transition

actions that are feasible given the current robot pose and configuration. For each

postural configuration, a set of actions with different drive distances and turn radii

is available (see Figure 6.4).

The minimum turn radius Rmin varies for the different postural configurations.

Upright balancing is the most versatile configuration and allows turning in place

109

BalancingProne Scooting

Figure 6.4. Motion primitives for prone-scooting (left) and balancing (right) mobil-
ity. Balancing mobility supports turning in place as well as tight turning radii.

through differential steering (Rmin = 0 m). Prone-scooting has restrictions on the

minimum turn radius with Rmin = 1.2 m for low body height.

Each action results in a trajectory from the current robot pose to another lattice

state. An action is added to the action space of a state if no point along the trajec-

tory is in collision with the environment. Depending on the postural configuration,

collision checks are performed in different collision maps corresponding to the respec-

tive body height and robot footprint. Drive actions are each for a distance of 0.3 m

forward and 0.1 m backwards. Rotations in place are by ±0.3 rad. Drive velocities

for the experiments are fixed to conservative velocities for each mobility form. Addi-

tionally, all transitions to other postural configurations are included if the transition

actions can be executed without collision. Costs with respect to execution time for

drive and transition actions are shown in Table 6.1.

Table 6.1. Action costs with respect to time for driving and transitioning between
postural configurations.

Action Cost (Time)

Drive (0.3 m): Prone-scooting 0.48 s
Drive (0.3 m): Balancing 0.60 s
Rotate in place (0.3 rad): Balancing 0.50 s
Transition: Balancing to low prone 19.00 s
Transition: Low prone to balancing 18.30 s

110

6.2.3.2 Heuristic

A proven heuristic is extended to explore the problems arising from the dramatic

cost differences of actions. The heuristic is based on pre-computed values stored in

a heuristic look-up table [66], which allows quick retrieval of heuristic values during

search. As the entire state space—despite being discretized—is very large, it is not

practical to pre-compute and store heuristic values for all states. Instead, similar

to the work of Likhachev and Ferguson [90], heuristic values are pre-computed for

a simplified state space based on just position and postural configuration (x, y, pc).

This relaxation corresponds to the state space of a holonomic robot. Contrary to

the used non-holonomic robot, this relaxed model allows movement in any direction

independent of heading. Using Dijkstra’s search [37] starting from the goal, all states

are labeled with the minimum cost they can be reached with. Movement in 2D uses

Euclidean straight-line distance weighted with movement costs in the corresponding

postural configuration. Transition costs are the same as those used in the actual

search.

6.2.3.3 Results

The solutions for the three scenarios found by the A* algorithm can be seen

in Figure 6.5. The blue line indicates the path found and the orange shaded cells

illustrate the state space that has been explored during search. A roll-out of the plan

found by A* for scenario 3 can be seen in Figure 6.6. Table 6.2 shows the search time

and the number of expanded states in each scenario. As expected, scenarios 1 and 2

posed no problem to the A* search as the costs are reflected very well by the heuristic.

But in scenario 3, we see a large negative effect when the heuristic is not accurate

enough. In this case turning the corner is not possible while prone-scooting due to

non-holonomic constraints. As the used heuristic is a holonomic approximation, it

considers the area passable and is not accurate enough in this case. As a result all

111

less expensive actions are exhaustively tried before the necessary transitions between

postural configurations are considered. It can be seen that both rooms at the bottom

have been exhaustively searched. This negative impact increases when the difference

in action costs increases or when more cheap alternatives are available. Here, the

negative impact of that exhaustive search of less expensive actions was bound by the

size of the rooms and would be much worse if more alternatives were available due to

larger rooms.

Table 6.2. Performance of A* over the three scenarios

Scenario Search time Expanded states

1 0.21 s 7,327
2 0.51 s 22,850
3 192.73 s 4,798,315

The demonstrated problems arise from heuristic depression regions in the search

space where the heuristic values do not correlate well with actual cost-to-goal. The

effects are worse with increasing diversity in action costs as a higher number of less

expensive actions will be tried exhaustively before necessary higher cost actions are

considered. An adequate heuristic can guide the planner to prevent this. But with

increasing resourcefulness of robots, the diversity in action costs is likely increasing,

and it is also more difficult to create adequate heuristics with increasing complexity.

Dexterous mobility on the uBot-6 introduces only a small number of transitions

with diverse action costs, but it already results in very poor planning performance.

This problem will become only more prominent with increased complexity of the

planning domains arising from more capable robot platforms.

The difficulty of finding suitable heuristics in similar domains has also been noted

by Hauser et al. [48]. Wilt et al. noted the issues stemming from diverse action costs

and proposed the usage of distance-to-go as part of the search heuristic instead of or

together with the cost-to-go to find solutions in the presence of diverse action costs

quickly [119, 148, 149]. In this approach the number of steps to the goal replaces

112

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 6.5. Solutions for scenarios 1 – 3: the paths found are shown in blue. Cells
shaded orange were expanded in search.

113

Figure 6.6. Roll-out of the solution for scenario 3 shown in Figure 6.5(c).

the estimated cost to the goal. This is equivalent to unit costs for all actions. As a

result, a decision has to be made ahead of time about what trade-off between search

speed and solution quality is desired. As an alternative, Aine et al. proposed the use

of multiple heuristics, each with its own queue for the best states to expand next,

to handle heuristic depression regions [1]. This approach indeed enables overcoming

situations in which a single heuristic has one depression region, but still fails if there

are multiple successive depression regions for the same heuristic. In the following

section, we propose a hierarchical approach to mitigate these problems.

6.2.4 Hierarchical A*

As a second search algorithm, a hierarchical planner, denoted as HA*, that em-

ploys A* on both an abstract level and low-levels is used. The global planner finds an

abstract path in a sparse set of subgoals derived from features detected in the environ-

ment which indicate utility for the robot. Paths between neighboring subgoals remain

in the same postural configurations. Without the diverse action costs from postural

transitions, path planning for these paths does not exhibit the problems encountered

114

in the previous section. Thus, local path planning can be handled efficiently with the

classical A* method (Section 6.2.3).

In contrast to existing A*-based hierarchical planners like HPA* [17], the ab-

stract version of the search space is not just a grid with reduced resolution, but is

instead dependent on features in the environment which are linked both to explo-

ration and constraints on postural configurations. Subgoal generation is detailed in

Section 6.2.4.1.

Once subgoals are generated, A* is run on the resulting subgoal goal graph. When-

ever a connection between two subgoals is considered, the classical A* planner (Sec-

tion 6.2.3) is used as a low-level planner to establish the availability of the action and

to calculate the cost. The low-level plans do not contain any postural transitions and

thus avoid the problems of diverse action costs. Additionally, the low-level plans have

a guaranteed short search time if a path exists and are aborted otherwise.

The sequence of subgoals provides an abstract path to the goal. Unlike the original

plan for A*, no optimality guarantees can be given due to the abstraction. But once

the required postural transitions are determined, we can skip all other subgoals and

use A* to find the optimal path to connect start and end points of postural transitions

directly. The existence of the abstract path guarantees the existence of a direct path

and also provides an upper bound to the cost. As a result, this plan refinement step

is guaranteed to be fast.

6.2.4.1 Subgoals

Our goal is to select subgoals such that the low-level planning for paths between

subgoals can ignore postural transitions. Therefore, we determine locations in which

transitions between postural configurations are typically useful. For example, a robot

can scoot underneath a table. Either side of the table would be a good location to

switch between balancing and prone-scooting (Figure 6.7 – left). In general, locations

115

near the boundary of regions with different sets of available postural configurations

can be used. Additionally, locations that promise high information gain, for example

through visibility around a corner, are of high utility (Figure 6.7 – right). Subgoals

can be selected such that the robot’s sensor can determine at runtime if the path

to the neighboring subgoals is free. Though high information gain or visibility is

only useful for partially observable environments, it still offers a good indicator for

subgoals in our scenarios.

Figure 6.7. Examples for locations (cyan) that suggest utility for postural transitions
(left) and high information gain through visibility around a corner (right). Black-
yellow shaded regions indicate areas in which no balancing mobility is available. Green
shaded area indicates unexplored area.

For the experiments here, we manually selected locations near the boundary of

regions with different sets of available postural configurations and based on theo-

retically high information gain, such as corners or areas without any other subgoals

(Figure 6.8). Subgoals are sampled around these locations. These subgoals are lo-

cated such that a robot can determine visually if the path to a neighboring subgoal

is unobstructed.

Both the terrain classification with regards to the usability for postural configura-

tions as well as the detection of subgoals based off of possible information gain could

be done automatically based on learned models. Various environmental features, such

as volumetric edges with discontinuities in depth as well as the frontier of explored

116

Figure 6.8. Locations for subgoal placement (purple) in scenarios 3: near the bound-
ary of regions with different sets of available postural configurations, based on theo-
retically high information gain at corners and based on proximity to area without a
subgoal.

space can be easily detected. While vertical edges (corners) and the frontier of un-

explored territory promise discovery of new features through changed viewpoints in

2D (information gain), horizontal edges indicate places in which the transition into a

different postural configuration can both reveal new features and potentially indicate

changed terrain constraints.

6.2.4.2 Subgoal Map

From each subgoal only subgoals within the visible range are considered as suc-

cessors. The reachability and cost of movement between these neighboring subgoals

are determined by a local planner. We use the described A* with state lattice (Sec-

tion 6.2.3) as the local planner. As subgoals are selected such that a robot can visually

determine if a path is free, paths between subgoals can be found very quickly even

with a simple heuristic based on straight-line distance. As these paths are expected

to be very short the low-level search is bound to a maximum search cost dependent

on the straight-line heuristic. This prevents long searches when no path is available.

117

For local searches between subgoals, no postural transitions are allowed, and thus the

search is not slowed by action cost differences. At each subgoal, pure postural transi-

tions are considered. The resulting graph based on connections between neighboring

subgoals can be considered a topological map.

6.2.4.3 Results

For each scenario, obstacle maps are provided for balancing and prone-scooting

postural configurations. The maps were used to manually generate subgoals. HA*

was used to solve scenarios 1 – 3. Table 6.3 shows the search time and the number

of expanded states for HA* in each scenario. Figure 6.9 shows the solutions found

by HA* for scenario 3. The search time for scenarios 1 and 2 increased slightly, but

remained in a tolerable range. By reducing the state space through the use of subgoals

informed from environmental features, the hierarchical planner yields a substantial

improvement in the search time in scenario 3 from 192.73 s down to 13.01 s though

the found paths are not optimal any more.

Table 6.3. Performance of hierarchical A* with sparse subgoals (HA*) over the three
scenarios

Scenario Search time Expanded states

1 1.82 s 28
2 6.54 s 73
3 13.01 s 144

6.2.5 Discussion

We presented several exploratory experiments in simulation that are focused on

the effects of dexterity in mobility. Two algorithms were used to solve tasks in the

dexterous mobility domain. Navigation tasks have to be completed while overcom-

ing environmental constraints by choosing appropriately from functionally equivalent

actions and action sequences that vary in costs and availability.

118

Figure 6.9. Solution of the hierachical A* variant for scenario 3. The sampled
subgoals are shown in cyan. The abstract path found is shown as a sequence of
subgoals in yellow. The refined solution is shown in blue.

A state-of-the-art A*-based planner was used and revealed challenges in the pres-

ence of diverse action costs. The demonstrated problems arise from heuristic depres-

sion regions in the search space where the heuristic values do not correlate well with

actual cost-to-goal. The effects are worse with increasing diversity in action costs as

a higher number of less expensive actions will be tried exhaustively before necessary

higher cost actions are considered. An adequate heuristic can guide the planner to

prevent this. With increasing resourcefulness of robots, the diversity in action costs

is likely increasing, and it is more difficult to create adequate heuristics.

We proposed HA* as second algorithm that uses A* hierarchically on subsections

of the task. This algorithm was impacted less by the diverse action costs. For these

experiments, potential subgoals were manually created, but generating them from the

environment using models and sensor is feasible. The quality of subgoals is important

for the performance of this algorithm, and we propose to generate them based on the

utility of parts of the environment with respect to the robot’s skills.

119

In the next section we extend the dexterous mobility domain with partial observ-

ability. Then we show how the ATG models (Section 4.2.1) can be used to model an

environment on an abstraction level relevant to the robot. This method uses the idea

of planning on an abstracted level from HA* (Section 6.2.4) to overcome issues arising

from diverse action costs. Additionally, this environment model can handle partially

observable elements of the environment and uncertainty in actions and observations.

6.3 Partially Observable Dexterous Mobility Domain

In this section, we extend the dexterous mobility domain from Section 6.1 with

partially observable elements. This will enable us to model tasks and environments

in which a robot has to handle various sources of uncertainty.

Like for the dexterous mobility domain, a map of the world is given, but the pose

of the robot in the environment is uncertain as a result of noise in odometry and the

uncertainty of actions and observations. This is very similar to a typical navigation

domain with partial observability [127, 73].

In the case of dexterous mobility, a robot is usually reluctant to switch forms

of mobility as transitions are often very costly. A robot will keep using its current

mobility form unless there is a clear benefit in switching. So if a robot encounters an

obstacle that it cannot overcome with the current mobility form, it can either switch

to a different mobility form or find a way around it. Despite the uncertainty in the

robot’s pose, this decision can be handled as described in the previous section.

In order to make this domain a bit more interesting, we introduce variable el-

ements, such as doors, to the environment that control the connectivity between

regions. Their location is known, but their state is only partially observable. For ex-

ample, a closed door or a blocked hallway could prevent access to the next room. Now

it might be worth to take an information gathering action first to see if a potentially

better path around the obstacle is accessible before taking expensive contingency ac-

120

tions. The state of these connections can be easily established visually or haptically

for most navigation tasks. An example can be seen in Figure 6.10.

Figure 6.10. Example of the extension of a map with variable, partially observable
elements such as doors. The robot has two options to reach the goal: 1) by performing
a certain but costly postural transition and scooting underneath an obstacle (blue) or
2) by trying to use the cheaper drive around the corner through the hopefully open
door. It might be worth just driving to the corner to determine the state of the door.

We adapt the definition of the dexterous mobility domain (Section 6.1) with mini-

mal changes. We extend the world decription W with probabilities representing priors

on the availability of the respective connection. They can be provided as annotations

on the occupancy map(s) or as annotations on the edges of a topological map.

6.4 Representation for Belief-Space Planning

In order to use a belief-space planner to solve tasks in this domain, we need to

define suitable state, action, and observation spaces. As discussed in Section 4.2, the

choice of representation is usually a trade-off between expressiveness and complexity.

Typical navigation domains with partial observability are often based on uncer-

tainty in the pose of the robot in the environment as a result of noise in odometry

and uncertainty of actions as well as visual ambiguity of places (several rooms might

look similar) [127, 73]. We find that this uncertainty is handled well through control

and state estimation techniques. Action outcomes for locomotion might be uncertain

121

on the lowest level as single motion primitives are executed slightly imperfectly and

odometry is noisy, but once put together in closed-loop controllers and sequences of

actions, these uncertainties are detected by state estimation and corrections are in-

tegrated in actions at the next time step. The challenges in the state estimation can

be handled quite well with approaches such as simultaneous localization and map-

ping (SLAM) [39, 141]. Therefore, neither partial observability in the precise pose

of the robot nor the uncertainty in action outcomes are important enough to justify

increasing the complexity for planners.

In the context of dexterous mobility, we are more interested in taking appropriate

higher-level decisions on which mobility form to use rather than determining the

precise path to the goal. The most important information for such a decision is which

mobility forms are available and are they afforded by the environment. This can be

represented well with topological maps of regions of the environment.

Often topological maps of the environment are used for path planning instead of

using the precise pose of the robot as state for the planner [18, 81, 72, 127]. Togological

nodes represent regions of robot state space, with pose and postural configuration,

that can be grouped as they provide the same information of the environment and

afford the same actions. Edges represent actions that bring the robot from one node

to another. The connections between topological nodes are short and can be handled

with ease by path planning and execution. Instead of uncertainty over the precise pose

of the robot, we can maintain a belief over the location of the robot in a topological

map [23].

This aligns well with the results from Section 6.2 where we presented how planning

on an abstracted level, such as a topological map, can mitigate problems diverse

action costs. The ATG models defined in Section 4.2.1 can support all the needed

functionality to completely represent this domain for our belief-space planners.

122

6.4.1 Environment Model

The ATG models presented in Section 4.2.1 are based on a multi-graph connecting

abstracted states of the robot with respect to an object through actions. In a nav-

igation task, the state of the robot is with respect to the environment instead of an

object. An ATG for an environment can be considered similar to a topological map.

Aspect nodes represent abstract states of the robot with respect to the environment,

e.g. ‘in room 1’, and edges represent actions that support moving from state to state.

In comparison to aspect nodes for objects, usually a much less detailed repre-

sentation is required to generate a meaningful map of interaction capabilities. The

aspect nodes are still based on aspects of perceivable, salient features. Aspect nodes

can be created directly from a topological map or from occupancy grids with ap-

propriate annotations, much like we created subgoals in Section 6.2.4.1. We assume

that for every variable connection the associated aspect nodes support observation of

the connection availability. These aspect nodes will provide a good coverage of the

environment. By including the postural configuration as part of the set of perceivable

features, postural configurations are seamlessly integrated in the state estimation of

our belief-space planners. As a result, for each place we create a separate aspect

node for each postural configuration. They are connected by edges representing the

postural transitions.

Unlike the approach used for HA* (Section 6.2.4), the edges in the ATG already

contain cost estimates for the associated actions. This removes the need to determine

a cost estimate through a low-level planner. Actions on the edges of the ATG, such

as mobility and postural transition actions, are usually reliable unless catastrophic

failures are considered. Therefore, we consider transitions to be deterministic for

these experiments, though this is not a technical limitation.

A distribution over aspect nodes bel(x) represents the belief state of the robot.

In the ATG described so far, a belief distribution that is not condensed on a single

123

aspect node can only occur when the history of actions and observations supports

multiple possible states of the robot, for example by similar looking rooms.

(a)

(b) (c)

Figure 6.11. Example of the ATGs representing the map for different states of a
variable element in the map: door 1 open (b) and door 1 closed (c). Node numbers
in the ATGs correspond to the places in (a). Green nodes represent a prone scooting
postural configuration, white nodes a balancing configuration. The red edge from 1 to
4 shows the unavailable passage while balancing. If the state of the door is unknown,
then current belief is evenly distributed on node ‘balancing 1’ in both ATGs. All four
aspect nodes for place 4 are valid goal states.

To represent the belief over variable, partially observable elements in the environ-

ment, we generate separate ATGs for each variation of the environment. For example,

for the environment shown in Figure 6.11(a), we have an ATG for an environment

with door 1 open (Figure 6.11(b)) and an almost identical copy with door 1 closed

(Figure 6.11(c)). The ATGs differ in the perceivable features for the open or closed

124

door and missing edges that represent driving through the open door in both mobility

modes. If the robot cannot influence these variable elements, then no transitions exist

between the aspect nodes of these ATGs. In the future, they could be easily extended

to include edges for opening and closing doors. Now, if the robot is certain about its

own location, all belief will be condensed on a single aspect node of each ATG since

the state of variable elements remains uncertain. Every time the previously unknown

state of a variable element is observed, the number of ATGs with non-zero belief will

be halved.

6.4.2 Task Representation

A navigation task in this representation can be expressed as an orient task (see

Section 4.3.3.2.4). When dealing with objects, the robot can either reposition itself

with respect to the object, or manipulate the object with respect to itself to complete

the task. In the case of the environment, the robot can reposition itself with respect

to the environment or possibly alter variable elements in it. For a simple navigation

task our task partition consists of two subsets:

c1 = {xi|y(xi) = 1}, (6.2)

c0 = X \ c1, (6.3)

where y(x) = 1 iff the aspect node x represents the desired goal location and the

desired postural configuration. If we do not care about the variable elements of the

environment, then this would select one or more aspect nodes for each ATG.

This representation enables a planner to search for a task solution on a level of

abstraction. This abstraction avoids the problems stemming from diverse action costs

and heuristic depression regions. The ATGs model cost estimates for all actions, so

low-level planning only has to be used when executing an action, thus improving plan-

ning time. The representation supports maintaining a belief distribution to handle

125

ambiguous areas in an environment and also handles variable, partially observable

elements. Though the number of ATGs grows quickly with the number of variable

elements, observations also quickly reduce the number of ATGs with non-zero belief.

6.5 Experiments

We are evaluating our ATG in combination with HA*, PBVI, and the belief-space

planner on a small dexterous mobility task with partially observable elements in the

environment. Due to the high diversity in the action costs of postural transitions

and mobility actions for uBot-6, it is relatively difficult to create situations in which

overcoming an obstacle with postural transitions and an alternative detour are close

in cost. The robot can easily drive 20 m in the same time it can transition into another

postural configuration and back. Therefore, creating realistic scenarios for the real

robot requires a large space and related control infrastructure. Instead, we chose to

evaluate the planners in simulation.

We provide topological maps as input to the planning framework. The map is

then turned into several ATG models. Each permutation of the states of the variable

elements in the environment is modeled in one ATG. We use scenario 3 from Fig-

ure 6.2(c) and add a door with unknown state to connect the rooms on the right. The

topological map contains 13 subgoals. Edges are labeled according to traversability

in each postural configuration. This map results in two ATGs, one for the open and

one for the closed door, with 26 aspect nodes each and about 70 edges.

6.5.1 Results

We tested the hierarchical A* (HA*) algorithm in conjunction with the ATG

models. Instead of low-level A* planning interleaved with the high-level A* plan, the

connectivity and edge costs are retrieved directly out of the ATG models. The low-

level A* path only needs to be calculated when the corresponding transition (ATG

126

edge) is being executed. The robot only worries about the details once it needs to.

This is very similar to the concept of the hierarchical planning in the now (HPN)

framework [60]. Paths for all of our maps were found in less than 10 ms.

The belief-space planner and PBVI do not try to find a full path to the goal

but only selects the best action for the current belief state. For each state during

simulation, our active belief planner successfully selected the correct actions to reach

the goal in less than 1 s. Despite a high search depth being required, the belief is

highly condensed and the effective branching factor in the belief rollout is very low.

PBVI selected the correct action only sometimes and even then required much

longer time (20 s and up). The inconsistency can be attributed to the sampling of

belief points. As the path is along a long chain of aspect nodes, a poorly sampled

set of belief points can result in a poor propagation of the reward from the goal.

It is possible that a heuristically guided version of point-based value iteration, such

as HSVI2 [129], could be faster and more consistent here. Even for this small map,

PBVI shows poor performance and is likely not tractable for larger maps.

6.6 Discussion

With uBot-6 we introduced several postural configurations and associated mo-

bility modes. While obstacles in the environment can prevent passage for a single

mobility form, the robot might be able to switch to another postural configuration

and overcome the obstacle with the associated mobility mode. We introduced a path

planning domain for robots with such versatile mobility. In our experiment, we could

highlight the problems that arise for classical planning methods when planning in this

domain. The transitions between postural configurations introduce high diversity in

action costs and can lead to heuristic depression regions if the heuristic does not ap-

proximate the capabilities of the robot close enough. In heuristic depression regions,

planners are reluctant to consider expensive actions until less expensive actions and

127

sequences of actions are exhaustively explored. This can often lead to intolerable

planning times.

We contend that robots have very reliable basic capabilities, and this can be used

to approach planning hierarchically. The problem can be divided into parts that are

individually very easy to handle for the robot. The planning can then happen on this

abstracted level without the need to deal with the details that are handled robustly

through established control and low-level planning.

We have shown how a hierarchical version of A* can handle the problems in our

experiments. This planner used A* on two levels such that a full low-level plan was

found at the end of planning. In conjunction with our ATG models, a hierarchical

A* planner can rely on modeled cost and connectivity throughout the map to quickly

find a path and only perform a low-level A* path plan when a path segment is about

to be traversed. This concept is very similar to the hierarchical planning in the now

(HPN) framework [60].

The ABP can be used as well for planning in this dexterous mobility domain with

partially observable elements though it needs to be evaluated further on larger maps

as larger required search depths could become prohibitive. Additional information-

based metric could be used in combination with heuristics to address this potential

problem. PBVI was very slow on our small sample problem, and the action selection

was not consistently successful at leading to the goal. This can be attributed to

sampling issues similar to the results in Chapter 5.

128

CHAPTER 7

FUTURE WORK

The robot platforms, models, and the planning framework introduced in this the-

sis can be extended in several important directions. Some possible extensions have

already been discussed in each individual chapter, and we highlight additional future

research directions:

7.1 Articulated Hands for Improved Manipulation Capabil-

ities

The current spherical end effectors are sufficient to interact with buttons, switches,

and levers [71], and in our experiments, uBot-6 uses bimanual grasps and single-

handed pushes to manipulate objects. The spherical end effectors also proved very

useful for postural transitions without having to worry about protecting fragile fingers.

But the uBot platform has limited capabilities with respect to one-handed grasping

and grasping of smaller objects without articulated hands. Articulated hands could

greatly improve the capabilities to manually interact with objects and the environ-

ment and would especially support one-handed grasping. Several hand concepts have

been investigated that integrate fingers in mechanisms suitable for the unique re-

quirements from postural configurations and transitions. This includes retractable

fingers and flexible, underactuated fingers similar to the Yale OpenHand [96]. The

final design and integration remain future work.

129

7.2 uBot-7 Integration – Improved Performance

All of the experiments in this work have been conducted on the uBot-6 platform.

Once fully integrated, the uBot-7 should be able to run the same control framework

and perform the same tasks. It should have improved capabilities to sense forces and

torques while manipulating objects. This will be useful for peg-in-hole style assem-

blies. The improved head should give it more options to acquire visual observations

in all supported forms of mobility without the need to use the base.

7.3 Autonomous ATG Model Learning

ATG object models are currently partially learned and hand-built. It will be

very interesting to learn the complete object model autonomously. This includes

mechanisms to transfer modeled knowledge between objects with similar properties

or between different robots. In the case of the ARcube domain, the properties and

interaction capabilities could be learned autonomously on a single ARcube object.

When encountering a new ARcube object, the modeling process could be primed

with the known similar model. The features would have to be relearned, but the

interaction capabilities with action parameters and transition probabilities should be

similar. Likewise, for a new robot, model learning could be bootstrapped from already

known ATG models of another robot. Modeled feature locations and surface normals

could remain the same, but interaction capabilities would depend on the abilities of

the new robot and might need to be relearned.

7.4 ATG Models for More Object Types

So far ATGs have been used to model ARcube objects and environments. While

the ARcube objects provide a perfect domain to stress planning frameworks, it will be

interesting to see how well more general objects can be modeled. A first step would

be to model ARcubes without using the ARtag features, but instead relying on basic

130

2D features and on volumetric features such as edges, corners, and planar faces. This

would enable a comparison of the new models with respect to the idealized ARcube

version.

7.5 Extension of ATG Models with Tactile Properties and

Force/Torque Guided Assemblies

The ATG models currently support state representation and belief condensation

based on visual features and on the transition dynamics of actions. Tactile properties

and surface normals are promising properties to extend the ATG models. The in-

tegration of these properties could greatly improve the versatility of the belief-space

planner, making it less reliant on specific sensor modalities. Modeling tactile proper-

ties and surface normals can enable prediction of contact points or support surfaces

for object-object assemblies. Likewise, modeled force/torque responses can be used

to perform peg-in-hole style object-object assemblies.

7.6 Orientation Distributions for Improved Interaction and

Matching

Currently, our framework determines the similarity of observed features with as-

pects solely based on the geometric constellation of features. We used logical con-

straints to remove support for infeasible aspect nodes. This mechanism could be much

improved and generalized by modeling an orientation distribution for the object frame

for each aspect node. A suitable method would be the Bingham distribution, which

is used to represent uncertainty directly on the unit quaternion hypersphere [15, 43].

Quaternions avoid the degeneracies of other 3D orientation representations, while the

Bingham distribution supports modeling of large variance rotational distributions.

The modeled orientation distributions would eliminate support for incorrect aspect

nodes that are partially supported by the observations, but infeasible given the ori-

131

entation of their constellation. This would greatly improve state estimation as well

as pose estimation. At the same time, transition actions and probabilities such as

‘Orbit’ could be informed by the current pose estimate. For example, if the robot

is in the center or at the border of the state space region associated with an aspect

node, the current pose estimate together with the orientation distribution of a target

aspect node can inform the robot if a 10◦ orbit is sufficient over a 45◦ orbit.

7.7 Extension to Multi-Task Planning

In the presented framework, the belief-space planner selects actions based on a

specified single-object task. This can easily be extended to handle several tasks

at the same time. For each task i we provide a partition Ci and a corresponding

target distribution Ti. As the definition of a task partition does not alter the belief

representation or the distribution of belief, the resulting information-based metric

Mi(ci,t, Ti) can be evaluated at almost no additional cost. Given weights wi, the

planner can evaluate the quality of actions from the linear combination of the different

tasks:

M =
∑
i

wiMi(ci,t, Ti). (7.1)

Action selection would try to find the action that provides the highest utility for all

tasks together. Additionally, it is possible to perform logic operations, such as AND

or OR, to combine several tasks.

7.8 Fully Recursive Application of the Belief-Space Planner

We have shown how tasks for the ABP can be sequenced to perform tasks involving

multiple objects. For this demonstration, the individual steps were sequenced in a

hand-built finite-state machine. Instead, the higher level plan could be generated by a

symbolic planner or by a recursive application of the belief-space planner. Takahashi

132

et al. have already demonstrated how this framework can be used to ground symbols

for a symbolic planner in belief [139]. Additionally, preliminary work has been done to

use a second belief-space planner to take higher level decisions [85]. A fully recursive

application of the same planning framework remains the goal for future work.

133

CHAPTER 8

SUMMARY AND CONCLUSION

8.1 Summary

The main goal of this thesis is to improve the state-of-the-art for robots performing

tasks in unstructured environments. In order to perform well in such environments, a

robot needs to be resourceful in its sensory and motor capabilities and also be capable

of efficient action selection to exploit this resourcefulness based on task and environ-

ment constraints. In this thesis, we addressed this problem from three directions:

First, we presented a new design concept in resourceful robot platforms, called the

UMass uBot design concept, and introduced the sixth and seventh in the uBot series.

The concept combines many advantageous properties into a single robot platform

while remaining easy to use and low-cost. uBot-6 introduces unique access to various

postural configurations and the associated forms of mobility. uBot-7 adds series elastic

actuators (SEAs) to make the robot more robust and safer around humans.

Secondly, we introduced a powerful extension to an existing affordance-based ob-

ject model. We used aspect transition graphs (ATGs) to model both objects and

environments with respect to the capabilities of the robot. By extending the ATGs

with geometric information, we enabled improvements such as easy object pose esti-

mation, robustness to occlusion, better observation models, and more robust actions.

As an ATG model is based on perceivable features of an object as well as the interac-

tion possibilities known to the robot, the ATG model can provide abstractions that

represent the states of an object that matter to the robot. The use of this abstraction

keeps the state space compact without losing expressiveness.

134

Finally, we presented a belief-space planning framework, called the active belief

planner (ABP), that is capable of efficient action selection on a real robotic system

under partial observability. The framework uses ATG models to acquire a compact

but expressive state space, transition models, observation models, and cost estimates.

Additionally, the ATG guides the planner by providing the actions that are known

to cause useful interactions with an object. A novel method specifies different single-

object tasks for the belief-space planner. It defines a task partition over the state

space and combines it with an information-based metric. The expressible granularity

of tasks depends on the detail of the ATG models and thus on the capabilities of

the robot. We show how this mechanism supports different task types commonly

encountered in robotics.

In order to evaluate the performance of the proposed framework, we introduced

two challenging, partially observable planning domains for real robots. The ARcube

domain provides a very challenging benchmarking system that is able to stress plan-

ners with high degrees of ambiguity in multiple sensor modalities and requires manual

interactions with objects. The dexterous mobility domain defines navigation tasks for

robots with the ability to use several forms of mobility. These domains are used to

evaluate our planning framework in simulation and on the uBot-6 robot.

8.2 Conclusion

Arguably, humans almost never solve tasks optimally. So when evaluating the

performance of a robot in a partially observable domain, optimality is usually not

important and is unreasonable to expect. It is much more important that the robot

can solve the task robustly despite variance in the environmental constraints and can

recover if something goes wrong. Nevertheless, the robot should not stand idle for

too long while planning for the next action, and the execution time for actions should

usually dominate the planning time.

135

The presented ABP performed well for all tested tasks in both domains and could

reliably solve all tasks. Even in recognition tasks in the highly ambiguous ARcube

domain, the robot succeeded consistently and recovered even after a number of highly

unlikely action outcomes. Myopic planning to a horizon between 1 and 3 usually

provided good enough guidance to find good solutions to the tasks and required only

very short planning times.

Generally, belief-space planning can handle partial observability and uncertainty

in action outcomes and observations. In practice, there are still very few robot systems

in which belief-space planning is used to deal with more than just limited special

purpose tasks. This is mainly because of poor scalability with respect to state, action,

and observation spaces. Additionally, planners often rely on expensive simulation at

runtime to estimate transition and observation models. We have demonstrated that

the methods introduced in this thesis enable a real robot to robustly solve various

task types in challenging domains, and that they can do so quickly. This framework

has the potential to be generalized to a wider variety of tasks and domains but much

still remains to be done.

We observe that a key ingredient for the good performance is the choice of knowl-

edge representation. Our framework uses the ATG model which can represent objects

and environments alike and combines several strong advantages. As an ATG model

is based on perceivable features of an object as well as the interaction possibilities

known to the robot, the ATG model can provide abstractions that represent the states

of an object that matter to the robot. For an ideally built or learned ATG model, the

resulting abstract state space is as compact as possible without losing expressiveness.

This is important as the complexity of planners heavily depends on the sizes of the

state and observation spaces. The impact of the choice of this state space is also

visible in the proposed task representation. The task representation works well with

136

the ATG-based state representation as this ensures that tasks are again specified on

a level that is relevant to the robot and thus enabling very expressive task definitions.

In addition to the good trade-off between compactness and expressiveness, the

ATG model provides transition and observation models and thus eliminates the need

to use a simulator to acquire these models at runtime and enables more efficient

planning. The ATG model also suggests useful known interactions that a planner

should consider. As the number of actions defines a branch factor in the planner,

keeping this number to a relevant minimum is very important.

As such, the choice of representation determines much of the performance of the

planner and therefore the robot. It is not clear yet what value the proposed ATG

models will ultimately have, but I hope that our insights will help other researchers

make progress towards more tractable and capable planning.

137

BIBLIOGRAPHY

[1] Aine, Sandip, Swaminathan, Siddharth, Narayanan, Venkatraman, Hwang, Vic-
tor, and Likhachev, Maxim. Multi-heuristic A*. The International Journal of
Robotics Research 35, 1-3 (2016), 224–243.

[2] Aloimonos, Y., Weiss, I., and Bandyopadhyay, A. Active vision. Int. Journal
of Computer Vision 1, 4 (1988), 333–356.

[3] Araya, Mauricio, Buffet, Olivier, Thomas, Vincent, and Charpillet, Françcois.
A POMDP extension with belief-dependent rewards. In Proc. of Advances in
Neural Information Processing Systems (NIPS) (2010).

[4] Asfour, T, Regenstein, K, Azad, P, Schröder, J, and Dillmann, R. ARMAR-III:
A humanoid platform for perception-action integration. In Proc., International
Workshop on Human-Centered Robotic Systems (HCRS), Munich (2006), Cite-
seer, pp. 51–56.

[5] Asfour, Tamim, Schill, Julian, Peters, Heiner, Klas, Cornelius, Bücker, Jens,
Sander, Christian, Schulz, Stefan, Kargov, Artem, Werner, Tino, and Barten-
bach, Volker. ARMAR-4: A 63 DOF torque controlled humanoid robot. In 2013
13th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
(2013), IEEE, pp. 390–396.

[6] ASUS. ASUS Xtion PRO LIVE, 2017.

[7] Bajcsy, R. Active perception. IEEE Trans. on Robotics and Automation 76, 8
(August 1988), 996–1005.

[8] Ballard, D. Generalizing the Hough transform to detect arbitrary shapes. Pat-
tern Recognition 13, 2 (1981), 111–122.

[9] Barry, Jennifer, Hsiao, Kaijen, Kaelbling, Leslie Pack, and Lozano-Pérez,
Tomás. Manipulation with multiple action types. In Experimental Robotics
(2013), Springer, pp. 531–545.

[10] Barry, Jennifer, Kaelbling, Leslie Pack, and Lozano-Perez, Tomas. A hierarchi-
cal approach to manipulation with diverse actions. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on (2013), IEEE, pp. 1799–1806.

[11] Barry, Jennifer Lynn. Manipulation with diverse actions. PhD thesis, Mas-
sachusetts Institute of Technology, 2013.

138

[12] Bellman, Richard. A markovian decision process. Tech. rep., DTIC Document,
1957.

[13] Bernstein, Nicolai Aleksandrovitch. On dexterity and its development. In Dex-
terity and its development, Mark L Latash and Michael Turvey, Eds. Lawrence
Erlbaum Associates, Mahwah, NJ, 1996, pp. 1–237.

[14] Bicchi, Antonio. Hands for dexterous manipulation and robust grasping: A
difficult road toward simplicity. Robotics and Automation, IEEE Transactions
on 16, 6 (2000), 652–662.

[15] Bingham, Christopher. An antipodally symmetric distribution on the sphere.
The Annals of Statistics (1974), 1201–1225.

[16] Bohren, Jonathan, Rusu, Radu Bogdan, Jones, E Gil, Marder-Eppstein, Eitan,
Pantofaru, Caroline, Wise, Melonee, Mösenlechner, Lorenz, Meeussen, Wim,
and Holzer, Stefan. Towards autonomous robotic butlers: Lessons learned with
the PR2. In 2011 IEEE International Conference on Robotics and Automation
(ICRA), (2011), IEEE, pp. 5568–5575.

[17] Botea, Adi, Müller, Martin, and Schaeffer, Jonathan. Near optimal hierarchical
path-finding. Journal of game development 1, 1 (2004), 7–28.

[18] Brooks, Rodney. Visual map making for a mobile robot. In Robotics and Au-
tomation. Proceedings. 1985 IEEE International Conference on (1985), vol. 2,
IEEE, pp. 824–829.

[19] Browatzki, Björn, Tikhanoff, Vadim, Metta, Giorgio, Bülthoff, Heinrich H, and
Wallraven, Christian. Active object recognition on a humanoid robot. In Proc.
of IEEE Int. Conf. on Robotics and Automation (ICRA) (2012).

[20] Bruce, James, and Veloso, Manuela. Real-time randomized path planning for
robot navigation. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002. (2002), vol. 3, IEEE, pp. 2383–2388.

[21] Capi, Genci. Robot task switching in complex environments. In Proc. of
IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM) (2007).

[22] Cassandra, Anthony R. Optimal policies for partially observable markov deci-
sion processes. Tech. rep., Report CS-94-14, Brown Univ, 1994.

[23] Cassandra, Anthony R, Kaelbling, Leslie Pack, and Kurien, James A. Acting
under uncertainty: Discrete bayesian models for mobile-robot navigation. In In-
telligent Robots and Systems’ 96, IROS 96, Proceedings of the 1996 IEEE/RSJ
International Conference on (1996), vol. 2, IEEE, pp. 963–972.

[24] Castanon, David A. Approximate dynamic programming for sensor manage-
ment. In Proc. of IEEE Conf. on Decision and Control (CDC) (1997).

139

[25] Choset, Howie, Lynch, Kevin M, Hutchinson, Seth, Kantor, G, Burgard, Wol-
fram, Kavraki, Lydia E, and Thrun, Sebastian. Principles of robot motion:
theory, algorithms, and implementation. Bradford Books, 2005.

[26] Connolly, Christopher I, Burns, JB, and Weiss, R. Path planning using
Laplace’s equation. In Robotics and Automation, 1990. Proceedings., 1990 IEEE
International Conference on (1990), IEEE, pp. 2102–2106.

[27] Connolly, Christopher I, and Grupen, Roderic A. The applications of harmonic
functions to robotics. Journal of Robotic Systems 10, 7 (1993), 931–946.

[28] Cummings, Jonathan. uBot-7: The design of a compliant dexterous mobile
manipulator. Master’s thesis, University of Massachusetts Amherst, 2014.

[29] Cummings, Jonathan P, Ruiken, Dirk, Wilkinson, Eric L, Lanighan, Michael W,
Grupen, Roderic A, and Sup, Frank C. A compact, modular series elastic
actuator. Journal of Mechanisms and Robotics 8, 4 (2016), 041016.

[30] Darrell, Trevor, and Pentland, Alex. Active gesture recognition using partially
observable Markov decision processes. In Pattern Recognition, 1996., Proceed-
ings of the 13th International Conference on (1996), vol. 3, IEEE, pp. 984–988.

[31] Deegan, Patrick. Whole-Body Strategies for Mobility and Manipulation. PhD
thesis, University of Massachusetts Amherst, 2010.

[32] Deegan, Patrick, Grupen, Roderic, Hanson, Allen, Horrell, Emily, Ou, Shichao,
Riseman, Edward, Sen, Shiraj, Thibodeau, Bryan, Williams, Adam, and Xie,
Dan. Mobile manipulators for assisted living in residential settings. Autonomous
Robots 24, 2 (2008), 179–192.

[33] Deegan, Patrick, Thibodeau, Bryan J, and Grupen, Roderic. Designing a self-
stabilizing robot for dynamic mobile manipulation. Tech. rep., DTIC Document,
2006.

[34] Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., and Ijspeert, A. A
modular bio-inspired architecture for movement generation for the infant-like
robot icub. In 2nd IEEE RAS EMBS International Conference on Biomedical
Robotics and Biomechatronics, 2008. BioRob 2008. (2008), pp. 795–800.

[35] Denzler, J., Zobel, M., and Niemann, H. Information theoretic focal length
selection for real-time active 3D object tracking. In Proc. of the Int. Conf. on
Computer Vision (2003), IEEE, pp. 400–407.

[36] Diftler, Myron A, Mehling, JS, Abdallah, Muhammad E, Radford, Nicolaus A,
Bridgwater, Lyndon B, Sanders, Adam M, Askew, Roger Scott, Linn, D Marty,
Yamokoski, John D, Permenter, FA, et al. Robonaut 2-the first humanoid robot
in space. In 2011 IEEE International Conference on Robotics and Automation
(ICRA) (2011), IEEE, pp. 2178–2183.

140

[37] Dijkstra, Edsger W. A note on two problems in connexion with graphs. Nu-
merische mathematik 1, 1 (1959), 269–271.

[38] Dornhege, Christian, Eyerich, Patrick, Keller, Thomas, Trüg, Sebastian,
Brenner, Michael, and Nebel, Bernhard. Semantic attachments for domain-
independent planning systems. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS) (September 2009),
AAAI Press, pp. 114–121.

[39] Durrant-Whyte, Hugh, Rye, David, and Nebot, Eduardo. Localization of au-
tonomous guided vehicles. In Robotics Research. Springer, 1996, pp. 613–625.

[40] Eidenberger, Robert, and Scharinger, Josef. Active perception and scene mod-
eling by planning with probabilistic 6D object poses. In Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS) (2010).

[41] Fischler, Martin A., and Bolles, Robert C. Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (June 1981), 381–395.

[42] Gibson, E.J., and Spelke, E.S. The Development of Perception, 4 ed. Wiley,
1983.

[43] Glover, Jared, Bradski, Gary, and Rusu, Radu Bogdan. Monte carlo pose
estimation with quaternion kernels and the bingham distribution. In Robotics:
science and systems (2012), vol. 7, p. 97.

[44] Grabner, Michael, Grabner, Helmut, and Bischof, Horst. Fast visual object
identification and categorization. In Proc. of NIPS Workshop in Interclass
Transfer (2005).

[45] Hadfield-Menell, Dylan. Execution cost optimization for hierarchical planning
in the now. PhD thesis, Massachusetts Institute of Technology, 2013.

[46] Hadfield-Menell, Dylan, Kaelbling, Leslie Pack, and Lozano-Pérez, Tomás. Op-
timization in the now: Dynamic peephole optimization for hierarchical planning.
In Robotics and Automation (ICRA), 2013 IEEE International Conference on
(2013), IEEE, pp. 4560–4567.

[47] Hart, Peter E, Nilsson, Nils J, and Raphael, Bertram. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[48] Hauser, Kris, Bretl, Timothy, Harada, Kensuke, and Latombe, Jean-Claude.
Using motion primitives in probabilistic sample-based planning for humanoid
robots. In Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 507–522.

141

[49] Hauser, Kris, and Latombe, Jean-Claude. Multi-modal motion planning in non-
expansive spaces. The International Journal of Robotics Research 29, 7 (2010),
897–915.

[50] Hogan, N. Impedance control - An approach to manipulation. I - Theory. II -
Implementation. III - Applications. ASME Transactions Journal of Dynamic
Systems and Measurement Control B 107 (Mar. 1985), 1–24.

[51] Hogman, V., Bjorkman, M., Maki, A., and Kragic, D. A sensorimotor learning
framework for object categorization. Trans. on Autonomous Mental Develop-
ment (2015).

[52] Hornung, A., Phillips, M., Jones, E.G., Bennewitz, M., Likhachev, M., and
Chitta, S. Navigation in three-dimensional cluttered environments for mobile
manipulation. In IEEE International Conference on Robotics and Automation
(ICRA), 2012 (2012), pp. 423–429.

[53] Hsiao, Kaijen, Kaelbling, Leslie Pack, and Lozano-Pérez, Tomás. Task-driven
tactile exploration. In Proc. of Robotics: Science and Systems (RSS) (2010),
Robotics: Science and Systems Conference.

[54] Ihrke, Chris A, Mehling, Joshua S, Parsons, Adam H, Griffith, Bryan Kristian,
Radford, Nicolaus A, Permenter, Frank Noble, Davis, Donald R, Ambrose,
Robert O, Junkin, Lucien Q, et al. Rotary series elastic actuator, Oct. 23
2012. US Patent 8,291,788.

[55] Inc., Merriam-Webster. Merriam-Webster’s collegiate dictionary. Merriam-
Webster, 2004.

[56] Jung, Hee-Tae, Baird, Jennifer, Choe, Yu-Kyong, and Grupen, Roderic A. Up-
per extremity physical therapy for stroke patients using a general purpose robot.
In RO-MAN, 2011 IEEE (2011), IEEE, pp. 270–275.

[57] Jung, Hee-Tae, Takahashi, Takeshi, Choe, Yu-Kyong, Baird, Jennifer, Foster,
Tammie, and Grupen, Roderic A. Towards extended virtual presence of the
therapist in stroke rehabilitation. In 2013 IEEE International Conference on
Rehabilitation Robotics (ICORR) (2013), IEEE, pp. 1–6.

[58] Jung, Hee-Tae, Takahashi, Takeshi, and Grupen, Rod. Human-robot emergency
response-experimental platform and preliminary dataset. Tech. rep., DTIC
Document, 2014.

[59] Kaelbling, Leslie Pack, Littman, Michael L, and Cassandra, Anthony R. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence
101, 1 (1998), 99–134.

[60] Kaelbling, Leslie Pack, and Lozano-Pérez, Tomás. Hierarchical task and mo-
tion planning in the now. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on (2011), IEEE, pp. 1470–1477.

142

[61] Kaelbling, Leslie Pack, and Lozano-Pérez, Tomás. Pre-image backchaining in
belief space for mobile manipulation. In International Symposium on Robotics
Research (ISRR) (2011).

[62] Kato, H., and Billinghurst, M. Marker tracking and HMD calibration for a
video-based augmented reality conferencing system. In Proc. of IEEE/ACM
Int. Workshop on Augmented Reality (IWAR) (1999).

[63] Kavraki, Lydia E, and Latombe, Jean-Claude. Probabilistic roadmaps for robot
path planning. Pratical motion planning in robotics: current aproaches and
future challenges (1998), 33–53.

[64] Kavraki, Lydia E, Svestka, Petr, Latombe, J-C, and Overmars, Mark H. Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation 12, 4 (1996), 566–580.

[65] Khatib, Oussama. Real-time obstacle avoidance for manipulators and mobile
robots. The international journal of robotics research 5, 1 (1986), 90–98.

[66] Knepper, Ross A, and Kelly, Alonzo. High performance state lattice planning
using heuristic look-up tables. In IROS (2006), pp. 3375–3380.

[67] Koenderink, Jan J, and Doorn, AJ van. The internal representation of solid
shape with respect to vision. Biological cybernetics 32, 4 (1979), 211–216.

[68] Koenig, Sven, and Likhachev, Maxim. D* lite. Proceedings of the national
conference on artificial intelligence (2002), 476–483.

[69] Köhler, Wolfgang. Intelligenzprüfungen an Menschenaffen. J. Springer, 1921.

[70] Kolhe, Pushkar, Dantam, Neil, and Stilman, Mike. Dynamic pushing strate-
gies for dynamically stable mobile manipulators. In 2010 IEEE International
Conference on Robotics and Automation (ICRA), (2010), IEEE, pp. 3745–3750.

[71] Konidaris, George, Kuindersma, Scott R., Grupen, Roderic A., and Barto,
Andrew G. Robot learning from demonstration by constructing skill trees. The
International Journal of Robotics Research 31, 3 (2012), 360–375.

[72] Kortenkamp, David, and Weymouth, Terry. Topological mapping for mobile
robots using a combination of sonar and vision sensing. In AAAI (1994), vol. 94,
pp. 979–984.

[73] Kosaka, Akio, and Kak, Avinash C. Fast vision-guided mobile robot navigation
using model-based reasoning and prediction of uncertainties. CVGIP: Image
understanding 56, 3 (1992), 271–329.

[74] Ku, L., Learned-Miller, E., and Grupen, R. Modeling objects as aspect tran-
sition graphs to support manipulation. In Proc. of Int. Symp. on Robotics
Research (ISRR) (2015).

143

[75] Ku, L., Sen, S., Learned-Miller, E., and Grupen, R. Action-based models
for belief-space planning. In RSS Workshop on Information-Based Grasp and
Manipulation Planning (2014).

[76] Ku, L., Sen, S., Learned-Miller, E., and Grupen, R. Aspect Transition Graph:
An affordance-based model. In ECCV Workshop on Affordances: Visual Per-
ception of Affordances and Functional Visual Primitives for Scene Analysis
(2014).

[77] Kuffner, James, Nishiwaki, Koichi, Kagami, Satoshi, Inaba, Masayuki, and
Inoue, Hirochika. Motion planning for humanoid robots. In Robotics Research.
Springer, 2005, pp. 365–374.

[78] Kuffner, James J, and LaValle, Steven M. RRT-connect: An efficient approach
to single-query path planning. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on (2000), vol. 2, IEEE, pp. 995–
1001.

[79] Kuindersma, Scott R, Grupen, Roderic A, and Barto, Andrew G. Variable
risk control via stochastic optimization. The International Journal of Robotics
Research 32, 7 (2013), 806–825.

[80] Kuindersma, S.R., Hannigan, E., Ruiken, D., and Grupen, R.A. Dexterous
mobility with the ubot-5 mobile manipulator. In International Conference on
Advanced Robotics, 2009. ICAR 2009. (2009), pp. 1–7.

[81] Kuipers, Benjamin, and Byun, Yung-Tai. A robust, qualitative method for
robot spatial learning. In AAAI (1988), vol. 88, pp. 774–779.

[82] Kullback, S., and Leibler, R. A. On information and sufficiency. Ann. Math.
Statist. 22, 1 (03 1951), 79–86.

[83] Kurniawati, Hanna, Hsu, David, and Lee, Wee Sun. SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief spaces.
In Robotics: Science and systems (2008), vol. 2008, Zurich, Switzerland.

[84] Lai, Kevin, Bo, Liefeng, Ren, Xiaofeng, and Fox, Dieter. A scalable tree-based
approach for joint object and pose recognition. In Proc. of AAAI Conf. on
Artificial Intelligence (2011).

[85] Lanighan, Michael W., Takahashi, Takeshi, and Grupen, Roderic A. Plan-
ning manual tasks in a hierarchical belief space. In (in submission) Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2017).

[86] Lauwers, TB, Kantor, George A, and Hollis, RL. A dynamically stable single-
wheeled mobile robot with inverse mouse-ball drive. In Proceedings 2006
IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
(2006), IEEE, pp. 2884–2889.

144

[87] Lavalle, Steven M. Rapidly-exploring random trees: A new tool for path plan-
ning. Tech. rep., Computer Science Dept., Iowa State University, 1998.

[88] LaValle, Steven M, and Kuffner Jr, James J. Rapidly-exploring random trees:
Progress and prospects. Proceedings Workshop on the Algorithmic Foundations
of Robotics (2000).

[89] Li, Zexiang, Canny, JF, and Sastry, Shankar S. On motion planning for dex-
terous manipulation. I. the problem formulation. In Robotics and Automa-
tion, 1989. Proceedings., 1989 IEEE International Conference on (1989), IEEE,
pp. 775–780.

[90] Likhachev, Maxim, and Ferguson, Dave. Planning long dynamically feasible
maneuvers for autonomous vehicles. The International Journal of Robotics Re-
search 28, 8 (2009), 933–945.

[91] Likhachev, Maxim, Ferguson, Dave, Gordon, Geoff, Stentz, Anthony, and
Thrun, Sebastian. Anytime dynamic A*: An anytime, replanning algo-
rithm. Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS) (2005), 262–271.

[92] Likhachev, Maxim, Gordon, Geoff, and Thrun, Sebastian. ARA*: Anytime
A* with provable bounds on sub-optimality. Advances in Neural Information
Processing Systems (NIPS) 16 (2003).

[93] Loeb, Gerald E, and Fishel, Jeremy A. Bayesian action & perception: repre-
senting the world in the brain. Frontiers in neuroscience 8 (2013), 341–341.

[94] Lu, Zhenli, Lallee, S., Tikhanoff, V., and Dominey, P.F. Bent leg walking gait
design for humanoid robotic child-iCub based on key state switching control. In
Robotics and Applications (ISRA), 2012 IEEE Symposium on (2012), pp. 992–
998.

[95] Ma, Raymond R, and Dollar, Aaron M. On dexterity and dexterous manipu-
lation. In 15th International Conference on Advanced Robotics (ICAR), 2011
(2011), IEEE, pp. 1–7.

[96] Ma, Raymond R, Odhner, Lael U, and Dollar, Aaron M. A modular, open-
source 3D printed underactuated hand. In 2013 IEEE International Conference
on Robotics and Automation (ICRA) (2013), IEEE, pp. 2737–2743.

[97] Marder-Eppstein, Eitan, Berger, Eric, Foote, Tully, Gerkey, Brian, and Kono-
lige, Kurt. The office marathon: Robust navigation in an indoor office environ-
ment. In IEEE International Conference on Robotics and Automation (ICRA),
2010 (2010), IEEE, pp. 300–307.

[98] Nakamura, Y. Advanced Robotics: Redundancy and Optimization. Addison-
Wesley, 1991.

145

[99] Nau, Dana S, Au, Tsz-Chiu, Ilghami, Okhtay, Kuter, Ugur, Murdock,
J William, Wu, Dan, and Yaman, Fusun. Shop2: An HTN planning system. J.
Artif. Intell. Res.(JAIR) 20 (2003), 379–404.

[100] Nvidia. Nvidia Jetson TX1 the embedded platform for autonomous everything,
2017.

[101] Okamura, Allison M, Smaby, Niels, and Cutkosky, Mark R. An overview of dex-
terous manipulation. In Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on (2000), vol. 1, IEEE, pp. 255–262.

[102] Ott, Ch, Eiberger, Oliver, Friedl, Werner, Bauml, B, Hillenbrand, Ulrich, Borst,
Ch, Albu-Schaffer, Alin, Brunner, Bernhard, Hirschmuller, H, Kielhofer, S, et al.
A humanoid two-arm system for dexterous manipulation. In 2006 6th IEEE-
RAS International Conference on Humanoid Robots (2006), IEEE, pp. 276–283.

[103] Pineau, Joelle, Gordon, Geoff, Thrun, Sebastian, et al. Point-based value iter-
ation: An anytime algorithm for POMDPs.

[104] Pineau, Joelle, Gordon, Geoffrey, and Thrun, Sebastian. Anytime point-based
approximations for large pomdps. Journal of Artificial Intelligence Research 27
(2006), 335–380.

[105] Pivtoraiko, Mihail, and Kelly, Alonzo. Generating near minimal spanning con-
trol sets for constrained motion planning in discrete state spaces. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005.(IROS 2005).
2005 (2005), IEEE, pp. 3231–3237.

[106] Platt Jr, Robert J. Learning and generalizing control-based grasping and ma-
nipulation skills. PhD thesis, Citeseer, 2006.

[107] Pratkanis, Anthony, Leeper, Adam Eric, and Salisbury, Kenneth. Replacing the
office intern: An autonomous coffee run with a mobile manipulator. In IEEE
International Conference on Robotics and Automation, 2013. Proceedings. 2013
(2013).

[108] Pratt, Gill A, and Williamson, Matthew M. Series elastic actuators. In Pro-
ceedings. 1995 IEEE/RSJ International Conference on Intelligent Robots and
Systems 95.’Human Robot Interaction and Cooperative Robots’ (1995), vol. 1,
IEEE, pp. 399–406.

[109] Quigley, Morgan, Conley, Ken, Gerkey, Brian, Faust, Josh, Foote, Tully, Leibs,
Jeremy, Wheeler, Rob, and Ng, Andrew Y. ROS: an open-source robot operat-
ing system. In ICRA workshop on open source software (2009), vol. 3.

[110] Robotics, Rethink. Baxter Collaborative Robots for Industrial Automation,
2017.

[111] Robotics, Vecna. The BEAR battlefield extraction-assist robot, 2010.

146

[112] Ross, Stéphane, Pineau, Joelle, Paquet, Sébastien, and Chaib-Draa, Brahim.
Online planning algorithms for pomdps. Journal of Artificial Intelligence Re-
search 32 (2008), 663–704.

[113] Roy, Nicholas, Burgard, Wolfram, Fox, Dieter, and Thrun, Sebastian. Coastal
navigation-mobile robot navigation with uncertainty in dynamic environments.
In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Con-
ference on (1999), vol. 1, IEEE, pp. 35–40.

[114] Ruiken, Dirk, Cummings, Jonathan P., Savaria, Uday R., IV, Frank Sup, and
Grupen, Roderic A. uBot-7: A dynamically balancing mobile manipulator with
series elastic actuators. In (in submission) Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS) (2017).

[115] Ruiken, Dirk, Lanighan, Michael W, and Grupen, Roderic A. Postural modes
and control for dexterous mobile manipulation: the UMass uBot concept. In
13th IEEE-RAS International Conference on Humanoid Robots (Humanoids),
2013 (2013), IEEE, pp. 721–726.

[116] Ruiken, Dirk, Lanighan, Michael W, and Grupen, Roderic A. Path planning
for dexterous mobility. In Proceedings of the Twenty-Fourth International Con-
ference on Automated Planning and Scheduling (ICAPS 2014) (2014).

[117] Ruiken, Dirk, Liu, Tiffany Q., Takahashi, Takeshi, and Grupen, Roderic. Re-
configurable tasks in belief-space planning. In 16th IEEE-RAS International
Conference on Humanoid Robots (Humanoids) (2016), IEEE, pp. 1257–1263.

[118] Ruiken, Dirk, Wong, Jay Ming, Liu, Tiffany Q., Hebert, Mitchell, Takahashi,
Takeshi, Lanighan, Michael W., and Grupen, Roderic A. Affordance-based ac-
tive belief: Recognition using visual and manual actions. In Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS) (2016), pp. 5312–5317.

[119] Ruml, Wheeler, and Do, Minh Binh. Best-first utility-guided search. In IJCAI
(2007), pp. 2378–2384.

[120] Russell, Stuart, Norvig, Peter, and Intelligence, Artificial. A modern approach.
Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995), 27.

[121] Sakagami, Yoshiaki, Watanabe, Ryujin, Aoyama, Chiaki, Matsunaga, Shinichi,
Higaki, Nobuo, and Fujimura, Kikuo. The intelligent ASIMO: System overview
and integration. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2002. (2002), vol. 3, IEEE, pp. 2478–2483.

[122] Sen, Shiraj. Bridging the Gap between Autonomous Skill Learning and Task
Specific Planning. PhD thesis, University of Massachusetts Amherst, September
2012.

147

[123] Sen, Shiraj, and Grupen, Rod. Integrating task level planning with stochastic
control. Tech. Rep. UM-CS-2014-005, University of Massachusetts Amherst,
2014.

[124] Sen, Shiraj, and Grupen, Roderic A. Manipulation planning using model-based
belief dynamics. In 13th IEEE-RAS International Conference on Humanoid
Robots (Humanoids) (2013).

[125] Sen, Shiraj, Sherrick, Grant, Ruiken, Dirk, and Grupen, Rod. Choosing infor-
mative actions for manipulation tasks. In 11th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids) (October 2011), IEEE, pp. 721–726.

[126] Sen, Shiraj, Sherrick, Grant, Ruiken, Dirk, and Grupen, Roderic A. Hierarchical
skills and skill-based representation. In Workshop on Lifelong Learning from
Sensorimotor Experience, AAAI-11 (August 2011).

[127] Simmons, Reid, and Koenig, Sven. Probabilistic robot navigation in partially
observable environments. In IJCAI (1995), vol. 95, pp. 1080–1087.

[128] Smith, Trey, and Simmons, Reid. Heuristic search value iteration for POMDPs.
In Proceedings of the 20th conference on Uncertainty in artificial intelligence
(2004), AUAI Press, pp. 520–527.

[129] Smith, Trey, and Simmons, Reid. Point-based POMDP algorithms: Improved
analysis and implementation. arXiv preprint arXiv:1207.1412 (2012).

[130] Somani, Adhiraj, Ye, Nan, Hsu, David, and Lee, Wee Sun. DESPOT: Online
POMDP planning with regularization. In Proc. of Advances in Neural Infor-
mation Processing Systems (NIPS) (2013).

[131] Sondik, Edward Jay. The optimal control of partially observable Markov pro-
cesses. PhD thesis, Stanford University, 1971.

[132] Spaan, Matthijs TJ, and Vlassis, Nikos. Perseus: Randomized point-based
value iteration for pomdps. Journal of artificial intelligence research 24 (2005),
195–220.

[133] Sridharan, Mohan, Wyatt, Jeremy, and Dearden, Richard. Planning to see: A
hierarchical approach to planning visual actions on a robot using POMDPs.
Artificial Intelligence 174, 11 (2010), 704–725.

[134] Stentz, Anthony, and Mellon, Is Carnegle. Optimal and efficient path planning
for unknown and dynamic environments. International Journal of Robotics and
Automation 10 (1993), 89–100.

[135] Stilman, Mike, and Kuffner, James. Navigation among movable obstacles: Real-
time reasoning in complex environments. International Journal on Humanoid
Robotics 2, 4 (December 2005), 479–504.

148

[136] Stilman, Mike, Olson, Jon, and Gloss, William. Golem Krang: Dynamically
stable humanoid robot for mobile manipulation. In 2010 IEEE International
Conference on Robotics and Automation (ICRA) (May 2010), IEEE, pp. 3304–
3309.

[137] Stilman, Mike, Schamburek, J-U, Kuffner, James, and Asfour, Tamim. Manip-
ulation planning among movable obstacles. In Robotics and Automation, 2007
IEEE International Conference on (2007), IEEE, pp. 3327–3332.

[138] Sturges, RH. A quantification of machine dexterity applied to an assembly task.
The International Journal of Robotics Research 9, 3 (1990), 49–62.

[139] Takahashi, Takeshi, Lanighan, Michael W., and Grupen, Roderic A. Hybrid
task planning grounded in belief: Constructing physical copies of simple struc-
tures. In International Conference on Automated Planning and Scheduling
(ICAPS) (2017).

[140] Thibodeau, Bryan J, Deegan, Patrick, and Grupen, Roderic. Static analysis
of contact forces with a mobile manipulator. In Proceedings 2006 IEEE Inter-
national Conference on Robotics and Automation, 2006. ICRA 2006. (2006),
IEEE, pp. 4007–4012.

[141] Thrun, Sebastian, Burgard, Wolfram, and Fox, Dieter. A probabilistic approach
to concurrent mapping and localization for mobile robots. Autonomous Robots
5, 3-4 (1998), 253–271.

[142] Thrun, Sebastian, Burgard, Wolfram, and Fox, Dieter. Probabilistic robotics.
MIT press, 2005.

[143] Tsagarakis, Nikos G, Morfey, Stephen, Cerda, Gustavo Medrano, Zhibin, Li,
and Caldwell, Darwin G. Compliant humanoid COMAN: Optimal joint stiffness
tuning for modal frequency control. In 2013 IEEE International Conference on
Robotics and Automation (ICRA) (2013), IEEE, pp. 673–678.

[144] Van Den Berg, Jur, Stilman, Mike, Kuffner, James, Lin, Ming, and Manocha,
Dinesh. Path planning among movable obstacles: a probabilistically complete
approach. In Algorithmic Foundation of Robotics VIII. Springer, 2009, pp. 599–
614.

[145] Vukobratović, Miomir, and Stepanenko, J. On the stability of anthropomorphic
systems. Mathematical Biosciences 15, 1 (1972), 1–37.

[146] Wawerla, Jens, and Vaughan, Richard T. Robot task switching under diminish-
ing returns. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS) (2009).

[147] Wilcox, Brian H., Litwin, Todd, Biesiadecki, Jeff, Matthews, Jaret, Heverly,
Matt, Morrison, Jack, Townsend, Julie, Ahmad, Norman, Sirota, Allen, and

149

Cooper, Brian. Athlete: A cargo handling and manipulation robot for the
moon. Journal of Field Robotics 24, 5 (2007), 421–434.

[148] Wilt, Christopher Makoto, and Ruml, Wheeler. Cost-based heuristic search
is sensitive to the ratio of operator costs. In Fourth Annual Symposium on
Combinatorial Search (2011).

[149] Wilt, Christopher Makoto, and Ruml, Wheeler. Speedy versus greedy search.
In Seventh Annual Symposium on Combinatorial Search (2014).

[150] Wimbock, Thomas, Ott, Christian, and Hirzinger, Gerd. Impedance behav-
iors for two-handed manipulation: Design and experiments. In 2007 IEEE
International Conference on Robotics and Automation (ICRA) (2007), IEEE,
pp. 4182–4189.

[151] Wolfe, Jason, Marthi, Bhaskara, and Russell, Stuart J. Combined task and mo-
tion planning for mobile manipulation. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS 2010) (2010), pp. 254–
258.

[152] Wong, J. M., and Grupen, R. Intrinsically motivated multimodal structure
learning. In Proc. of Int. Conf. on Developmental Learning and Epigenetic
Robotics (ICDL-EPIROB) (2016).

[153] Wörgötter, Florentin, Agostini, Alejandro, Krüger, Norbert, Shylo, Natalya,
and Porr, Bernd. Cognitive agents – a procedural perspective relying on the
predictability of object-action-complexes (OACs). Robotics and Autonomous
Systems 57, 4 (2009), 420–432.

[154] Wray, Kyle Hollins, Ruiken, Dirk, Grupen, Roderic A, and Zilberstein, Shlomo.
Log-space harmonic function path planning. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2016), IEEE, pp. 1511–
1516.

[155] Zucker, Matthew, Kuffner, James, and Branicky, Michael. Multipartite RRTs
for rapid replanning in dynamic environments. In Robotics and Automation,
2007 IEEE International Conference on (2007), IEEE, pp. 1603–1609.

150

	Belief-Space Planning for Resourceful Manipulation and Mobility
	Recommended Citation

	tmp.1499097230.pdf.7rXxN

