217 research outputs found

    Maschinelle Lernverfahren für nieder- und hochdimensionale Probleme

    Get PDF
    In this habilitation thesis, problems in two different domains (record linkage and high-dimensional data) are addressed by using machine learning approaches. The assumption is that they lead to insights and solutions to which it would be difficult or even impossible to arrive with deterministic and classical statistical methods

    Law Smells - Defining and Detecting Problematic Patterns in Legal Drafting

    Get PDF

    Data linkage for querying heterogeneous databases

    Get PDF

    Embedding Techniques to Solve Large-scale Entity Resolution

    Get PDF
    Entity resolution (ER) identifies and links records that belong to the same real-world entities, where an entity refer to any real-world object. It is a primary task in data integration. Accurate and efficient ER substantially impacts various commercial, security, and scientific applications. Often, there are no unique identifiers for entities in datasets/databases that would make the ER task easy. Therefore record matching depends on entity identifying attributes and approximate matching techniques. The issues of efficiently handling large-scale data remain an open research problem with the increasing volumes and velocities in modern data collections. Fast, scalable, real-time and approximate entity matching techniques that provide high-quality results are highly demanding. This thesis proposes solutions to address the challenges of lack of test datasets and the demand for fast indexing algorithms in large-scale ER. The shortage of large-scale, real-world datasets with ground truth is a primary concern in developing and testing new ER algorithms. Usually, for many datasets, there is no information on the ground truth or ‘gold standard’ data that specifies if two records correspond to the same entity or not. Moreover, obtaining test data for ER algorithms that use personal identifying keys (e.g., names, addresses) is difficult due to privacy and confidentiality issues. Towards this challenge, we proposed a numerical simulation model that produces realistic large-scale data to test new methods when suitable public datasets are unavailable. One of the important findings of this work is the approximation of vectors that represent entity identification keys and their relationships, e.g., dissimilarities and errors. Indexing techniques reduce the search space and execution time in the ER process. Based on the ideas of the approximate vectors of entity identification keys, we proposed a fast indexing technique (Em-K indexing) suitable for real-time, approximate entity matching in large-scale ER. Our Em-K indexing method provides a quick and accurate block of candidate matches for a querying record by searching an existing reference database. All our solutions are metric-based. We transform metric or non-metric spaces to a lowerdimensional Euclidean space, known as configuration space, using multidimensional scaling (MDS). This thesis discusses how to modify MDS algorithms to solve various ER problems efficiently. We proposed highly efficient and scalable approximation methods that extend the MDS algorithm for large-scale datasets. We empirically demonstrate the improvements of our proposed approaches on several datasets with various parameter settings. The outcomes show that our methods can generate large-scale testing data, perform fast real-time and approximate entity matching, and effectively scale up the mapping capacity of MDS.Thesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 202

    Getting More out of Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics.

    Get PDF
    This software article describes the GATE family of open source text analysis tools and processes. GATE is one of the most widely used systems of its type with yearly download rates of tens of thousands and many active users in both academic and industrial contexts. In this paper we report three examples of GATE-based systems operating in the life sciences and in medicine. First, in genome-wide association studies which have contributed to discovery of a head and neck cancer mutation association. Second, medical records analysis which has significantly increased the statistical power of treatment/ outcome models in the UK’s largest psychiatric patient cohort. Third, richer constructs in drug-related searching. We also explore the ways in which the GATE family supports the various stages of the lifecycle present in our examples. We conclude that the deployment of text mining for document abstraction or rich search and navigation is best thought of as a process, and that with the right computational tools and data collection strategies this process can be made defined and repeatable. The GATE research programme is now 20 years old and has grown from its roots as a specialist development tool for text processing to become a rather comprehensive ecosystem, bringing together software developers, language engineers and research staff from diverse fields. GATE now has a strong claim to cover a uniquely wide range of the lifecycle of text analysis systems. It forms a focal point for the integration and reuse of advances that have been made by many people (the majority outside of the authors’ own group) who work in text processing for biomedicine and other areas. GATE is available online ,1. under GNU open source licences and runs on all major operating systems. Support is available from an active user and developer community and also on a commercial basis

    Learning of classification models from group-based feedback

    Get PDF
    Learning of classification models in practice often relies on a nontrivial amount of human annotation effort. The most widely adopted human labeling process assigns class labels to individual data instances. However, such a process is very rigid and may end up being very time-consuming and costly to conduct in practice. Finding more effective ways to reduce human annotation effort has become critical for building machine learning systems that require human feedback. In this thesis, we propose and investigate a new machine learning approach - Group-Based Active Learning - to learn classification models from limited human feedback. A group is defined by a set of instances represented by conjunctive patterns that are value ranges over the input features. Such conjunctive patterns define hypercubic regions of the input data space. A human annotator assesses the group solely based on its region-based description by providing an estimate of the class proportion for the subpopulation covered by the region. The advantage of this labeling process is that it allows a human to label many instances at the same time, which can, in turn, improve the labeling efficiency. In general, there are infinitely many regions one can define over a real-valued input space. To identify and label groups/regions important for classification learning, we propose and develop a Hierarchical Active Learning framework that actively builds and labels a hierarchy of input regions. Briefly, our framework starts by identifying general regions covering substantial portions of the input data space. After that, it progressively splits the regions into smaller and smaller sub-regions and also acquires class proportion labels for the new regions. The proportion labels for these regions are used to gradually improve and refine a classification model induced by the regions. We develop three versions of the idea. The first two versions aim to build a single hierarchy of regions. One builds it statically using hierarchical clustering, while the other one builds it dynamically, similarly to the decision tree learning process. The third approach builds multiple hierarchies simultaneously, and it offers additional flexibility for identifying more informative and simpler regions. We have conducted comprehensive empirical studies to evaluate our framework. The results show that the methods based on the region-based active learning can learn very good classifiers from a very few and simple region queries, and hence are promising for reducing human annotation effort needed for building a variety of classification models

    Investigating the attainment of optimum data quality for EHR Big Data: proposing a new methodological approach

    Get PDF
    The value derivable from the use of data is continuously increasing since some years. Both commercial and non-commercial organisations have realised the immense benefits that might be derived if all data at their disposal could be analysed and form the basis of decision taking. The technological tools required to produce, capture, store, transmit and analyse huge amounts of data form the background to the development of the phenomenon of Big Data. With Big Data, the aim is to be able to generate value from huge amounts of data, often in non-structured format and produced extremely frequently. However, the potential value derivable depends on general level of governance of data, more precisely on the quality of the data. The field of data quality is well researched for traditional data uses but is still in its infancy for the Big Data context. This dissertation focused on investigating effective methods to enhance data quality for Big Data. The principal deliverable of this research is in the form of a methodological approach which can be used to optimize the level of data quality in the Big Data context. Since data quality is contextual, (that is a non-generalizable field), this research study focuses on applying the methodological approach in one use case, in terms of the Electronic Health Records (EHR). The first main contribution to knowledge of this study systematically investigates which data quality dimensions (DQDs) are most important for EHR Big Data. The two most important dimensions ascertained by the research methods applied in this study are accuracy and completeness. These are two well-known dimensions, and this study confirms that they are also very important for EHR Big Data. The second important contribution to knowledge is an investigation into whether Artificial Intelligence with a special focus upon machine learning could be used in improving the detection of dirty data, focusing on the two data quality dimensions of accuracy and completeness. Regression and clustering algorithms proved to be more adequate for accuracy and completeness related issues respectively, based on the experiments carried out. However, the limits of implementing and using machine learning algorithms for detecting data quality issues for Big Data were also revealed and discussed in this research study. It can safely be deduced from the knowledge derived from this part of the research study that use of machine learning for enhancing data quality issues detection is a promising area but not yet a panacea which automates this entire process. The third important contribution is a proposed guideline to undertake data repairs most efficiently for Big Data; this involved surveying and comparing existing data cleansing algorithms against a prototype developed for data reparation. Weaknesses of existing algorithms are highlighted and are considered as areas of practice which efficient data reparation algorithms must focus upon. Those three important contributions form the nucleus for a new data quality methodological approach which could be used to optimize Big Data quality, as applied in the context of EHR. Some of the activities and techniques discussed through the proposed methodological approach can be transposed to other industries and use cases to a large extent. The proposed data quality methodological approach can be used by practitioners of Big Data Quality who follow a data-driven strategy. As opposed to existing Big Data quality frameworks, the proposed data quality methodological approach has the advantage of being more precise and specific. It gives clear and proven methods to undertake the main identified stages of a Big Data quality lifecycle and therefore can be applied by practitioners in the area. This research study provides some promising results and deliverables. It also paves the way for further research in the area. Technical and technological changes in Big Data is rapidly evolving and future research should be focusing on new representations of Big Data, the real-time streaming aspect, and replicating same research methods used in this current research study but on new technologies to validate current results

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    • …
    corecore