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Learning of classification models in practice often relies on a nontrivial amount of human

annotation effort. The most widely adopted human labeling process assigns class labels to

individual data instances. However, such a process is very rigid and may end up being very

time-consuming and costly to conduct in practice. Finding more effective ways to reduce

human annotation effort has become critical for building machine learning systems that

require human feedback.

In this thesis, we propose and investigate a new machine learning approach - Group-

Based Active Learning - to learn classification models from limited human feedback. A

group is defined by a set of instances represented by conjunctive patterns that are value

ranges over the input features. Such conjunctive patterns define hypercubic regions of the

input data space. A human annotator assesses the group solely based on its region-based

description by providing an estimate of the class proportion for the subpopulation covered

by the region. The advantage of this labeling process is that it allows a human to label many

instances at the same time, which can, in turn, improve the labeling efficiency.

In general, there are infinitely many regions one can define over a real-valued input

space. To identify and label groups/regions important for classification learning, we propose

and develop a Hierarchical Active Learning framework that actively builds and labels

a hierarchy of input regions. Briefly, our framework starts by identifying general regions

covering substantial portions of the input data space. After that, it progressively splits the

regions into smaller and smaller sub-regions and also acquires class proportion labels for the

new regions. The proportion labels for these regions are used to gradually improve and refine

a classification model induced by the regions. We develop three versions of the idea. The

first two versions aim to build a single hierarchy of regions. One builds it statically using

hierarchical clustering, while the other one builds it dynamically, similarly to the decision

tree learning process. The third approach builds multiple hierarchies simultaneously, and it
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offers additional flexibility for identifying more informative and simpler regions. We have

conducted comprehensive empirical studies to evaluate our framework. The results show

that the methods based on the region-based active learning can learn very good classifiers

from a very few and simple region queries, and hence are promising for reducing human

annotation effort needed for building a variety of classification models.

Keywords: Active Learning, Learning from Label Proportions, Weakly Supervised Learn-

ing, Decision Tree Learning.
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1.0 Introduction

1.1 Motivation

With the rapid growth of computational power and electronic storage, large real-world

datasets have been generated in various areas of science [Mjolsness and DeCoste, 2001],

business [Bose and Mahapatra, 2001], technology [Jordan and Mitchell, 2015], and medicine

[Hauskrecht et al., 2013, Hauskrecht et al., 2016]. Data analysis and machine learning meth-

ods have become crucial in understanding such datasets, as well as, for building data-driven

models that can be applied to solve various problems in respective areas.

Supervised learning refers to the problem of learning a function (model) f : X → Y

mapping inputs (X ) to outputs (Y) from data. This model is most often learned from many

data instances that consist of (input, output) pairs where the outputs represent desired out-

comes for the inputs. To assure that the trained model f generalizes well to unseen data, the

volume of the training data needs to be large enough [Friedman et al., 2001, Settles, 2012],

especially when the input space X is high-dimensional and/or the underlying relationship

between X and Y is complex.

Sometimes the input and output data are readily available. For example, email users

mark “spam” flags on unwanted email messages; online-shopping users give the five-star rat-

ings to products they have purchased. Supervised learning algorithms can use these flags or

ratings to better filter junk emails or to improve the shopping experience. However, for many

other sophisticated supervised learning tasks the output data must be defined by a human

through a separate annotation process [Settles, 2012, Kovashka et al., 2016]. Unfortunately,

this process may often incur a significant cost associated with the review or assessment of

data [Nguyen et al., 2014, Valizadegan et al., 2013]. As a result, the annotation cost can

dramatically limit the number of instances one may feasibly label, hurting the quality of

the trained models. Because of this issue, a key challenge is to find effective ways to reduce

the annotation effort while guaranteeing that models built from the limited feedback are

accurate enough to be applied in practice.
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1.2 Data Annotation Solutions

One widely applied solution to reduce annotation effort is active learning [Settles, 2012].

A typical active learning process begins with a few labeled data instances; then it repeat-

edly (1) learns the model from already labeled data and (2) queries new unlabeled data

instances to further improve the model. So the beauty of active learning is that it can ac-

tively decide what data instances should be labeled next. Active learning has been success-

fully applied in domains as diverse as computer vision [Kovashka et al., 2011], bio-medical

data mining [Nguyen et al., 2014, Valizadegan et al., 2013], and natural language process-

ing [Hwa, 2004, Druck et al., 2009]. Theoretical work [Balcan et al., 2009, Dasgupta, 2011]

has demonstrated its efficacy.

Despite enormous progress of active learning research, the majority of current methods

focus on instance-based querying strategies [Cohn et al., 1996, Settles, 2012]. That is, they

query labels on individual data instances and then learn models from them. Unfortunately,

this may limit their applicability when targeting real-world classification tasks. There are

two reasons for this:

1. First, for more complex input space the number of instances one may feasibly label may

still be insufficient to properly cover the entire data space and represent the underlying

data distribution. As a consequence, models induced from them may carry a lot of un-

certainty and bias [Cohn et al., 1996], and hence, they may be inadequate to be deployed

in practice.

2. On top of the first reason, active learning often relies on biased models to select the

data instances to be labeled next. Unfortunately, such selected data can deviate from

the underlying data distribution. This is often referred to as sampling bias problem

[Dasgupta and Hsu, 2008]. Insufficient management of the sampling bias may fail the

active learning process. But clearly, it is not trivial to identify representative data in-

stances that can well reflect the true data distribution.

Besides active learning, another promising research direction that aims to save human

annotation effort is the utilization of alternative forms of efficient human feedback. This
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Proportion Feedback: “25% of 

patients in this region may suffer 

from a heart disease.”

“What is the chance that patients who are:

suffer from a heart disease?”

Gender=Female

40<Age<50
Chest Pain 

Type=3

130 mg/dL<Fasting Glucose<150 mg/dL

Figure 1.1: An example of a region-based query for the heart disease problem (originally

introduced by [Rashidi and Cook, 2011]). A few patient instances on the left are originally

recorded using 24 features. But after they are grouped, the whole group can be described

by a conjunctive pattern defined using only four relevant features. The conjunctive patterns

define a hyper-cubic region in the original feature space; an annotator (a physician) takes

the region description and gives it a class proportion label. Note that individual cases are

not seen or labeled individually.

direction is complementary to active learning research. The motivation is that in some ap-

plications the conventional instance labeling process may not be the only and the most

efficient way to obtain human feedback. Sometimes instance labels can be difficult to

query [Qian et al., 2013] or even infeasible to obtain [Quadrianto et al., 2009]. In general,

human knowledge and feedback about the classification domain may take on different forms

that deviate from standard instance-based (or case-based) class-label annotation. Some of

these approaches may be converted (with more or less computational effort) to workable

instance-based classification models. A trivial example is expert-defined (“if-then”) rules

[Zadeh, 1992, Ishibuchi et al., 1995] that specify classes of interest in the input space. They

can be directly converted to classification models. Other examples of human feedback useful

for building classification models include:

1. Learning from Soft-Label Feedback. The work by [Nguyen et al., 2011a],
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[Nguyen et al., 2011b, Nguyen et al., 2014, Xue and Hauskrecht, 2017b], and

[Xue and Hauskrecht, 2017a, Xue and Hauskrecht, 2018, Xue and Hauskrecht, 2019] has

explored ways of enrichment of standard instance labeling with additional auxiliary infor-

mation. The idea is to obtain, in addition to the class label, also soft-label information

that reflects annotator’s uncertainty about this class label. One way to express the

soft-label feedback is to use probabilistic score reflecting the annotator’s estimate of the

probability of the target class, such as, “The probability of the patient suffering from a

heart disease is 0.75 ”. The soft-label information, when properly used, has been shown

to improve the labeling efficiency and cut down the number of instances one has to

annotate [Nguyen et al., 2011a, Nguyen et al., 2014].

2. Learning from Relative Feedback. Learning to rank and learning distance met-

rics are important components of many web applications such as product recommen-

dation and document browsing. Typically, relative feedback among examples is ob-

tained from online users at a low cost. For instance, [Joachims, 2002, Xing et al., 2003,

Qian et al., 2013, Kovashka et al., 2012] learn ranking functions from pairwise relative

feedback, i.e. “Object A is more (adjective) than B”. We note that this approach

can be also used to build classification models. Briefly, the pairwise relative feedback

can help one to order instances with respect to the class-membership and use these to

learn a ranking function that can be used to define a classification model. For exam-

ple, a question “Is patient A more likely to have a target disease than patient B”when

applied to pairs of patients could be used to build a classification model for disease

diagnosis. Another form of relative feedback uses triplets. An example of such a feed-

back is “Object A is closer to C than B is to C ”. [Schultz and Joachims, 2004] and

[Heim et al., 2014, Heim and Hauskrecht, 2015] use the relative triple feedback to learn

either distance metrics and kernels (object similarities). In some cases providing rela-

tive feedback can be mentally less fatiguing to humans compared to providing instance

labels. However, the main drawback of relative feedback is the number of queries one

needs to assess before learning the ordering function. Because of that, labeling based

on soft labels (see above) is typically more query efficient for learning ordering functions

and classification models from n instances.
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3. Learning with Feature Feedback. Feature feedback is another useful form of human

knowledge that can lead to improved model learning. The motivation is that, every

so often, humans can easily provide feature information aside from their usual anno-

tation of instances. Such feature feedback can be incorporated into model learning to

further improve the model learning. Early work on feature labeling [Hema et al., 2006,

Druck et al., 2009] empirically has shown active feature labeling is more effective than

active instance labeling. Recently, [Poulis and Dasgupta, 2017, Dasgupta et al., 2018]

have theoretically demonstrated the learning efficiency with feature feedback.

4. Multiple Instance Learning. In multiple instance learning (MIL), instances are

grouped into bags, and it is bags, rather than instances, that are labeled for train-

ing [Amores, 2013]. MIL relies on asymmetric label feedback. That is, a bag is labeled

positive if there exists a positive instance in it; otherwise, it is labeled negative. This kind

of feedback is extremely helpful in image labeling where an image (a bag) consists of a set

of objects or segments (instances).Then a positive label means there is one or more objects

of interest present in the image [Settles et al., 2008, Salmani and Sridharan, 2014]. With

such a type of feedback, classifiers, either bag-based or instance-based, can be learned by

using multiple instance learning algorithms, such as, multiple instance logistic regression

or multiple instance support vector machines [Amores, 2013].

5. Learning from Label Proportions. Recently there is novel work [Du and Ling, 2010,

Rashidi and Cook, 2011] (as well as the work in this thesis) that asks human annotators

to provide class proportion feedback on groups. The group concept is similar to the

bag concept in MIL but groups use proportion labels. One proportion label represents

a human estimate of the proportion of the instances in the group that belong to one

of the classes, or equivalently, the probability with which an instance with that class

label is drawn from the group. For example, “70% instances in this group are posi-

tive”. The essential benefit of such a feedback is that it allows annotators to label a

group of instances together at the same time. Such labeled groups can be used to re-

cover the instance-level classification rules.[Quadrianto et al., 2009, Yu et al., 2013] have

developed class proportion learning algorithms to tackle this problem.
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1.3 Thesis Work

In general, the work in this thesis aims to alleviate the annotation cost problem by

exploring efficient human feedback that is easy for humans to perform but also informative

for models to learn from. Along this line, we study group-based feedback from humans.

Below is an overview of the key notions that are used throughout this thesis:

1. Instance. As in the conventional setting, a data instance is a data element that belongs

to a given input data space. The input space is composed of numeric, ordinal, or cate-

gorical features. Each instance is specified by a set of feature values and also comes with

a class label that belongs to a target class space.

2. Group. A group refers to a compact set/bag of data instances.

3. Group Description. To describe groups to human annotators, we use conjunctive

patterns that are defined by value ranges of the input features. For example, in Figure

1.1, a group of patient cases may be described as: “(Gender=Female) ∧ (40<Age<50)

∧ (Chest Pain Type=3) ∧ (130<Fasting Glucose<150 mg/dL) etc”.

4. Region. Conjunctive patterns correspond to a hypercubic region that is a sub-space of

the input space. In general, a region defines a subpopulation of data instances.

5. Group Labeling. Groups (or regions) can be assigned a label. In our case it is a

proportion label. When assessing a group, human annotators only need to review its

region-based description and then provide a proportion label. The proportion label

summarizes the proportion of positive class instances in the subpopulation represented

by the region. Figure 1.1 shows an example of region annotation for a clinical domain.

A physician may assess that “25% of patients in a subpopulation defined by a region may

suffer from a heart disease”.

6. Learning from Label Proportions. Our ultimate goal is to learn an instance-based

classification model from a set of labeled groups. Learning from Label Proportions (LLP)

offers a variety of learning algorithms to achieve this goal. For example, in Section § 4.3 we

will utilize a simple algorithm that is based on instance sampling. But this algorithm only

works for a set of disjoint groups. Algorithms that can learn classifiers from overlapping
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groups have been developed by [Quadrianto et al., 2009, Yu et al., 2013]. They can be

integrated into our framework as well.

The work in this thesis is closely related to MIL (multiple instance learning) and LLP

(learning from label proportions). However, the main difference is that both MIL and LLP

assume bags or groups are known apriori. Our work studies learning problems with general

datasets where groups or regions are not explicitly defined. This poses a key question: How

do we generate groups for labeling and learning? In general, there are exponentially many

groups that can be constructed from a set of instances; more predominantly, there can be

infinitely many regions that can be defined over a real-valued input space. Therefore, in

order to identify only a small number of regions that are important for model learning, we

need to develop an active learning strategy matching the problem and group label feedback.

To this end, we propose and investigate a new machine learning approach - Group-Based

Active Learning.

Compared to conventional active learning methods, our group-based active learning ap-

proach has two major distinctions. On one hand, groups can cover a more portion of the

input space and thus better represent the data distribution. Hence, learning from a few

large and general groups can effectively mitigate the sampling bias issue mentioned before.

On the other hand, groups, especially large groups, often come with impure proportion la-

bels that are uninformative for model learning. As shall be seen in Chapter § 3, learning

with sufficiently many pure-enough groups is the key to recover the underlying instance-

level classification rules. Therefore, the corresponding group-construction strategy needs to

progressively identify smaller and purer groups among those impure groups.

Following these thoughts, we develop a Hierarchical Active Learning framework.

The goal is to build a concise region hierarchy that can rapidly refine the leaf regions pure.

Briefly, the framework starts from a few general and large groups to label and uses them

to learn a classification model. After that, it repeatedly splits impure groups into smaller

ones, solicits their labels from annotators, and then retrains the model. To maximize the

label information gain of each split, we follow Maximum Information Gain, or equivalently,

Maximum Class Entropy Reduction, the principle that is employed by the decision tree

learning algorithms. However, due to the lack of instance labels, we develop two splitting
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heuristics. The first one is a supervised heuristic. It uses the classification model we aim

to learn to estimate the information gain of the splits. However, its limitation is that if

the model is poor, especially during the initial active learning cycles the estimates it makes

can be inaccurate and unreliable. Thus, we also consider an unsupervised heuristic to help

estimate the gain. The unsupervised heuristic uses clustering techniques to divide a group

of instances into a few clusters (child groups). If the class distribution is reasonably aligned

with the structure of data, separating clusters can lead to a good separation of classes. With

these two heuristics available, a key problem is how to combine them for estimating the true

gain. This problem that will be explored in this thesis.

We have implemented three versions of our hierarchical active learning framework. The

first two build a single hierarchy of groups/regions:

• HALG: Hierarchical Active Learning with Group proportion feedback

[Luo and Hauskrecht, 2018a, Luo and Hauskrecht, 2017a]

(To be presented in Chapter § 4)

• HALR: Hierarchical Active Learning with proportion feedback on Regions

[Luo and Hauskrecht, 2018b, Luo and Hauskrecht, 2019, Luo and Hauskrecht, 2017b]

(To be presented in Chapter § 5)

These two implementations differ in the way of building the region hierarchy. HALG builds

a hierarchy of regions in a static way. It pre-compiles a hierarchy of clusters that defines a set

of unlabeled groups. After that it keeps selecting in a top-down manner the “purest” group

from this set for labeling. The purity of groups is estimated by a classification model. HALR,

in contrast, builds a hierarchy dynamically. It works similarly to the decision tree learning

process that directly splits the entire input space. Each of the HALR’s splits is co-decided

by the two heuristics and their weights to decide the splits are dynamically adapted. A more

detailed comparison between HALG and HALR will be provided at the end of Chapter § 5.

When building a single hierarchy, we observe that the unsupervised heuristic usually

dominates the hierarchy building process. In the worst case, the hierarchy could end up

being completely class-irrelevant, i.e. having no pure regions. To mitigate such an issue, we

propose a more robust approach HALOR that grows multiple HALR hierarchies in parallel
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and permits regions overlapping with one another.

• HALOR: Hierarchical Active Learning with Overlapping Regions

[Luo and Hauskrecht, 2020]

(To be presented in Chapter § 6)

HALOR provides additional flexibility of exploring more class-relevant regions among dif-

ferent hierarchies. The intuition behind HALOR is that if some hierarchies fail to find pure

regions, HALOR is capable of growing different hierarchies that can potentially find more

informative regions. Apart from this advantage, HALOR also reduces the complexity of

region queries (i.e. the number of features used in region description) and thus simplifies the

annotation process.

1.4 Contributions

The work in this thesis is centered around two hypotheses. The first hypothesis compares

learning from group-based feedback versus learning from the conventional instance-based

feedback under active learning setting:

H1: Active learning of binary classification models from group-based feedback can be more

query-efficient than learning from instance-based feedback.

To measure the query efficiency we use two metrics: (1) the number of queries that are

needed to build a model and (2) query complexity. Methods that consume fewer and/or

simpler queries are considered more query-efficient.

The second hypothesis compares our method to the existing group-based active learning

work [Du and Ling, 2010, Rashidi and Cook, 2011]. The main difference is that they con-

struct groups arbitrarily from individual instances while we construct groups hierarchically.

H2: Our hierarchical approach can discover more informative and simpler groups than

existing methods that identify groups based upon instances, and therefore our solution is more

query-efficient.

The above two hypotheses are the main goals of this thesis to study and evaluate. We have
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conducted comprehensive experiments to evaluate our solutions, as well as, multiple baseline

methods. The results demonstrate the following findings:

1. When the labeling budget is severely restricted, one can learn better models from a few

groups than learning from the same number of instances.

2. When the labeling budget is fairly sufficient, group-based active learning methods achieve

earlier model convergence than instance-based ones.

3. Region-based queries are less complex since they only use a small subset of features in

their descriptions.

4. Our hierarchical approaches can find informative and simpler groups rapidly, thereby

shown to be more query-efficient than other alternative methods.

Lastly, we would like to note that parts of the work in this thesis have been published as

multiple conference papers: [Luo and Hauskrecht, 2017a] in NIPS Workshop 2017,

[Luo and Hauskrecht, 2017b] in FLAIRS 2017, [Luo and Hauskrecht, 2018a] in IJCAI 2018,

[Luo and Hauskrecht, 2018b] in ECML 2018, [Luo and Hauskrecht, 2019] in SDM 2019, and

[Luo and Hauskrecht, 2020] in CIKM 2020.

1.5 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter § 2 overviews the background of this thesis. We will start with the introduction

of supervised learning and classification tasks, and then review two lines of work aimed

at reducing the human annotation effort: active learning and learning from alternative

feedback.

• Chapter § 3 presents a couple of learning from label proportions algorithms, as well as,

their key conditions that ensure their learning success (i.e. recovery of instance-based

classification rules from a set of labeled bags). These results lay the foundation of the

work in this thesis and drive the development of our hierarchical active learning (HAL)

framework.

10



• Chapter § 4 presents the first implementation of our HAL framework that works with

hierarchical clustering and groups (HALG).

• Chapter § 5 presents the second implementation of our HAL framework that dynamically

builds a hierarchy of regions (HALR).

• Chapter § 6 presents the third implementation of our HAL framework that grows multiple

hierarchies of regions and permits learning from more varied regions that can overlap with

one another (HALOR).

• Chapter § 7 summarizes the contributions of the thesis, limitations of the current group

active learning framework and its implementations, and presents open problems and

future work directions.
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2.0 Background

2.1 Supervised Learning

Learning of classification models is one type of supervised learning. In general, the

goal of supervised learning is to learn a function (model) f : X → Y from an input space

X ⊂ Rm to a target space Y ⊂ R. This function is most often learned from training data that

consist of (input, output) pairs: {(x1, y1), ..., (xn, yn)}. Each instance xi is independently and

identically (i.i.d.) sampled from the input space X , and its output (or label) yi ∈ Y represents

the desired outcome of xi. For regression problems outputs are real numbers; for classification

problem outputs are class labels. In this thesis, we study binary classification problems where

we use Y = {0, 1} as the class labels. Binary classification problems have been widely studied

both empirically [Friedman et al., 2001] and theoretically [Vapnik, 1998].

Learning of a well-performing classification model usually requires large volumes of train-

ing data [Bishop, 2006]. It is especially the case when the input space X is high-dimensional

and/or the underlying relationship between X and Y is complex [Settles, 2012]. Sometimes

the training input-output data pairs come at no or little cost. For example, historical obser-

vations of stock data or customer ratings of online products. But for many other tasks the

data do not include class labels and they must be defined and provided by a human anno-

tator [Nguyen et al., 2014, Valizadegan et al., 2013]. Unfortunately, obtaining such labeled

data can be very difficult, time-consuming, or expensive. Here are a few examples:

• Medical data mining: In the medical domain, if a physician wants to accurately

diagnose a patient (e.g. for a possible heart condition) he/she must review the patient

record that consists of complex collections of results, symptoms, and findings (such as age,

BMI, glucose levels, HbA1c blood test, blood pressure, heart rate etc). The review and the

assessment of these records with respect to a specific condition may become extremely

time-consuming as it often requires physicians to peruse through a large quantity of

data [Nguyen et al., 2014, Hauskrecht et al., 2016].

• Document classification: Learning to classify documents (e.g., articles or web pages)
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requires user annotation on each of the document files like “relevant” or “not rele-

vant”. Annotating hundreds or thousands of documents can be tedious and even re-

dundant [Druck et al., 2009, Roy and McCallum, 2001].

• Image filtering: Image labeling, object tagging, etc. in computer vision research also

requires a substantial amount of human annotation [Settles et al., 2008]. With a large

quantity of data that need labeling, one often has to resort to crowd-sourcing resources

of which the services are expensive [Kovashka et al., 2016].

If one has a very limited labeling budget, how could they spend the budget cost-effectively?

Therefore, a key challenge would be finding a way to build high-quality classification models

from limited human feedback. Broadly speaking, there are two different solutions to solve

this problem: one is active learning that aims to reduce the number of labeled data; the

other one is learning from alternative feedback that focuses on obtaining (from human) other

than class-label information that can be effectively used build a classification model. The

following two sections present them accordingly.

2.2 Active Learning

The first machine learning solution is active learning. It aims to reduce the number

of labeled data by strategically choosing a small subset of the data that are important

for labeling and learning. Active learning collects labeled data iteratively and builds models

incrementally. In each iteration, an active learning strategy would choose only the important

or necessary data to be labeled. This avoids labeling redundant examples or examples that

contribute little to model improvement. Therefore, active learning works differently from

traditional passive supervised learning where the training data are randomly generated.

The efficacy of active learning has been demonstrated by empirical [Kovashka et al., 2011,

Nguyen et al., 2014, Valizadegan et al., 2013, Hwa, 2004, Druck et al., 2009] and theoretical

studies [Cohn et al., 1996, Balcan et al., 2009, Dasgupta, 2011].
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Algorithm 1 Pool-Based Active Learning Framework

1: Collect a pool U of i.i.d. sampled data x that are all unlabeled (U is large enough)

2: Also collect an i.i.d. sample of labeled data L = {{(x1, y1), ..., (xl, yl)}} (|L| � |U|)

3: repeat

4: Learn the base model M based on L

5: Strategically pick one (or a batch of) instance x∗ ∈ U according to some utility function

UM(x) that is associated with M’s performance on x

6: Have x∗ labeled as (x∗, y∗) and add it to L

7: until certain stopping criterion is met

2.2.1 Pool-Based Active Learning

According to Settles’ survey of active learning [Settles, 2012], there are many types of

active learning, and pool-based active learning is the most widely applied one in practice.

The basic assumption is that data may be abundant but their labels are scarce or expensive

to obtain. For example, texts or images are widely available but their labels are not and

thus need additional human annotation. The general pool-based active learning framework

is summarized in Algorithm 1.

2.2.2 Query Strategies

The most interesting part of active learning affecting its performance is strategy UM(x)

in line 5 in Algorithm 1. Numerous effective heuristics have been developed for this purpose.

Some of the classic ones are summarized below:

• Uncertainty Sampling [Lewis and Catlett, 1994]: Uncertainty sampling queries the

instances about which the base model M is least certain how to label. This approach

is often straightforward for probabilistic learning models. For example, when using a

probabilistic model for binary classification, uncertainty sampling simply queries the

instance whose posterior probability of being positive is nearest 0.5.

• Query-by-Committee [Seung et al., 1992]: This strategy maintains a committee C =
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{M(1), ...,M(c)} of models that are all trained on the same labeled data set L but repre-

sent competing hypotheses of the true model. Each committee member is then allowed to

vote on the labeling of some query candidates. The most informative query is considered

to be the instance about which they most disagree.

• Maximum Model Change [Roy and McCallum, 2001, Settles et al., 2008] and

[Freytag et al., 2014]: This thread of work uses a decision-theoretic approach, selecting

the instance that would impart the greatest change to the current model if its label were

known. The intuition is that if some instances (when labeled) can update the model a

lot in each iteration, then they would (in expectation) help the model converge quickly

to an asymptotically optimal model.

2.2.3 Cluster-Driven Active Learning Strategies

Sometimes basic active learning strategies may not always work. They may even slow

down or misguide the learning process. The primary drawback of the basic active learning

methods is that unlabeled data instances are considered independently. As a result, an

outlier example that is not representative of other unlabeled data may be selected which in

turn cannot help to improve the accuracy of the model.

In order to mitigate this issue, researchers have considered combining unsupervised data

analysis and basic querying strategies. Unsupervised data analysis helps to reveal the struc-

ture of input data. Such a structure may be also closely related to class distributions in the in-

put space. This assumption is used for example in semi-supervised learning [Zhu et al., 2003]

where labeled examples are combined with unsupervised information to learn improved

classification models. Examples of relevant work include [Settles and Craven, 2008] who

proposed a density-weighted method that queries the instances that are not only uncer-

tain but also representative of the other data; [Dasgupta and Hsu, 2008, Urner et al., 2013,

Nguyen and Smeulders, 2004] leverage clustering heuristics to drive the instance selection

procedure.
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2.2.4 Limitations

Despite its positive impact, one must realize that active learning may not always work.

Here we stress two limitations of active learning. First, for a more complex input space,

the number of instances one may feasibly label can still be insufficient to represent the

underlying data distribution. If this is the case, a model induced from a limited amount

of training data is likely to contain a lot of bias and uncertainty [Cohn et al., 1996]. The

second limitation, on top of the first problem, is that active learning often relies on biased

models to select new data instances in the successive iterations. Unfortunately, instances

sampled by a biased model can significantly deviate from the underlying data distribution.

This is often referred to as sampling bias problem [Dasgupta and Hsu, 2008]. Below is the

quick intuition of sampling bias problem by Dasgupta:

“A typical active learning heuristic might start by querying a few randomly-chosen points

to get a very rough idea of the decision boundary. It might then query points that are in-

creasingly closer to its current estimate of the boundary, with the hope of rapidly honing in.

However, as training proceeds and points are queried based on increasingly confident assess-

ments of their informativeness, the training set can quickly diverge from the underlying data

distribution. If this sampling bias is not properly managed, the learning process may fail to

output a consistent model.”

Insufficient management of the sampling bias issue may fail the active learning process.

2.3 Learning From Alternative Feedback

Aside from active learning, the second solution focuses on exploring new types of human

feedback that is easy to collect and also informative to model learning. The motivation is that

sometimes exact instance labels may be hard for humans to provide. Here is one example. For

the “Galaxy Zoo” example shown in [Qian et al., 2013], it is extremely hard for non-expert

annotators to tell which galaxy (a label) each star (an instance) belongs to. Worse, instance

labels can even be infeasible to obtain [Kück and de Freitas, 2005, Quadrianto et al., 2009].
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Consider situations where privacy is an issue, such as people’s voting results, students’

grading, patients’ medical records, etc., getting each individual’s information is impossible.

In light of these issues, various types of alternative human feedback have been proposed and

studied. In the rest of this chapter, we would survey three types of novel human feedback that

are most relevant to the work in this thesis. They are (1) soft-label feedback that is auxiliary

label information provided additionally to the basic instance labeling, (2) multiple instance

learning (MIL), and (3) learning from label proportions (LLP). Besides, each of them can

also work with a matching active learning strategy. They are, respectively, active learning

from soft-label feedback, multiple instance active learning (MIAL), and active learning from

label proportions (ALLP).

2.3.1 Learning From Soft-Label Feedback

[Nguyen et al., 2011a, Nguyen et al., 2011b, Nguyen et al., 2014],

[Xue and Hauskrecht, 2017b, Xue and Hauskrecht, 2017a, Xue and Hauskrecht, 2018] and

[Xue and Hauskrecht, 2019] have explored ways of enrichment of standard instance labeling

with additional auxiliary information. That is, besides asking for instance labels they also

allow the annotators to provide soft-labels reflecting the annotator’s belief the class label is

indeed true. This additional information provides not only robustness to the acquired labels

but also more flexibility for humans to express their belief in the label, thereby helping learn

more accurate models. Hence, the soft-label feedback expands on exact or hard instance-label

feedback.

There are different ways to express the soft-label feedback. One way is to use probabilistic

labels [Nguyen et al., 2011a, Nguyen et al., 2011b, Nguyen et al., 2014]. For example, when

obtaining feedback from a physician on whether a patient suffers from a particular disease

or not, the binary true/false feedback can be refined by inquiring about the physician’s

belief about the chance of the disease’s presence. Say, “The probability that this patient

will have heart disease is 70%”. Another way, for example, [Xue and Hauskrecht, 2017a,

Xue and Hauskrecht, 2018, Xue and Hauskrecht, 2019] proposes to use Likert-scale cate-

gories [Likert, 1932] as the auxiliary information. Briefly, Likert defined a set of ordinal
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categories humans can use to provide information about the strength of agreement (or be-

lief) in the respective class labels. With such Likert-scale labels, humans do not have to

provide an exact probabilistic label or a confidence score. For the above disease example

again, a physician can express that if he/she agrees, weakly agrees, is neutral, weakly dis-

agrees, or disagrees that the disease will be present on that patient.

As for model learning, they develop algorithms that are based on ordinal regression and

ranking. Specifically, they aim to learn a ranking function g(x) = wTx from training data

{(x1, y1, u1), ..., (xn, yn, un)}. Here xi and yi are standard (input, output) pairs, but ui is an

additional soft label indicating the confidence that the data instance xi falls into the class

yi. Both yi and ui are assigned by human annotators. The reason for learning a ranking

function is because there exists an ordinal relationship among these training triplets. In

other words, if two data instances xi and xj are assigned ordinal labels where ui > uj,

they expect that the same order should be preserved as well by the ranking function, i.e.

g(xi) > g(xj). Therefore, they build such an ordinal relationship as a set of constraints and

add them to a standard optimization procedure. For example, a popular choice is ranking-

SVM [Joachims, 2002]. Its key idea is to find the best separating hyper-plane among training

data while also satisfying the ordinal constraints. Concretely:

minimize:

wTw

2
+B

n∑
i=1

ηi + C
n∑
i=1

n∑
j 6=i

ξj,i

subject to:

yi(w
Txi + w0) ≥ 1− ηi ∀i

wTxi ≥ wTxj + 1− ξj,i ∀(ui > uj)

ηi, ξj,i ≥ 0 ∀i, j

In the objective function above, the first term is a regularizer of w; the second term (single

sum) defines the hinge loss on binary labels; the third term (double sum) defines the loss

function between each ordered pair suggested by the soft labels. Once the minimizer ŵ is

learned, the ranking function g(x) = ŵTx will be determined. And finally, a classification
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function y = f(x) can be further built upon g(x) by determining a threshold on the ranking

line.

2.3.1.1 Active Learning With Auxiliary Label Information To further save human

annotation effort, [Xue and Hauskrecht, 2017a, Xue and Hauskrecht, 2018] and

[Xue and Hauskrecht, 2019] propose to actively query the labels (both the class labels and

the auxiliary) for the training triplets {(x1, y1, u1), ..., (xn, yn, un)}. For example, in the

work of [Xue and Hauskrecht, 2017a] they use expected model change (EMC) as the active

learning strategy. EWC works similarly to the maximum model change introduced earlier,

and it measures to what extent each unlabeled instance would change the model if it were

labeled. As the true label is unknown before it is queried, they approximate it with a label

distribution that is inferred by the classification model they aim to learn.

With more details, suppose one has already learned a classification model fL from current

labeled data L. Also assume that there are m possible Likert-scale ordinal categories for

x. Based on current model f = fL, the probability that x is assigned a Likert-scale label

u = 1, 2, ..,m is inferred as pf (u|x). With this label distribution, one can estimate the

expected model change as follows. For each u, label an instance x as (x, y, u)1, add the

triplet to L, and learn an add-one model fL∪(x,y,u). The model change of fL∪(x,y,u) compared

to fL is computed as δ(x, u). m Likert-scale labels give rise to m model changes δ(x, u),

u = 1, ...,m. Then, the expected model change ∆f (x) of x based on current model f is

calculated as:

∆f (x) =
m∑
u=1

pf (u|x)δ(x, u)

Finally, the instance x∗ that leads to the maximum expected model change will be selected

for labeling. Please note that this ∆f (x) is one instantiation of the general utility function

UM(x) in line 5 in Algorithm 1 within the framework of pool-based active learning (Section

§ 2.2.1).

1They work with binary classification models, so y = 0 or 1 does not matter here.
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2.3.2 Multiple Instance Learning

In multiple instance learning (MIL) [Amores, 2013], instances are naturally grouped

into bags (or sets, groups, regions), and it is bags, rather than instances, that are labeled

for training. For example, in context-based image retrieval, an image (bag) is a set of

smaller segments or objects (instances); in document classification, a document (bag) is

a set of paragraphs or sentences (instances). To label bags, humans provide asymmetric

feedback. That is, a bag is labeled positive if there exists at least one positive instance

in it; otherwise, the bag is labeled negative. It is rational to use asymmetric labeling be-

cause the positive label may have a semantic meaning that if some instance of interest is

present in the bag or not. Some example queries are: “Is there a cat in that image?”,

or “Is there any offensive sentence written in this document?”. The MIL setting was first

formalized by [Dietterich et al., 1997] in the context of drug activity prediction and has

since been applied to a variety of tasks, such as text classification [Andrews et al., 2003,

Ray and Craven, 2005] and content-based image retrieval [Maron and Lozano-Pérez, 1998,

Andrews et al., 2003, Rahmani and Goldman, 2006].

As for model learning, either instance-based or bag-based classifiers can be trained. In

this review, we focus on learning an instance-based classifier y = f(x) ∈ {0, 1} from a set

of training bags. Since now labels are only provided to bags, the learning algorithms must

construct a bag-level classifier F (B) from the instance-level classifier f by some operator. A

general operator is aggregation [Amores, 2013], given by the following formula:

F (B) =
f(x1) ◦ f(x2) ◦ ... ◦ f(xb)

Z

where a bag B = {x1, ...,xb} contains b instances; ◦ denotes an aggregation operator, specific

to an MIL algorithm; Z is a normalization factor. One popular choice of ◦ is to use max

operation:

F (B) = max
xi∈B

f(xi)

It makes sense because of the asymmetric labeling - that every positive bag contains at least

one positive instance while all negative bags contain none. This max operation was first

developed by [Dietterich et al., 1997] and then followed by many popular MIL algorithms,

such as MI-SVM [Andrews et al., 2003], MI-Logistic Regression [Settles et al., 2008].

20



2.3.2.1 Multiple Instance Active Learning On top of MIL, multiple instance ac-

tive learning (MIAL) has been proposed and studied in combination with active learn-

ing [Settles, 2012, Salmani and Sridharan, 2014]. MIAL follows the basic settings of MIL,

and its novelty lies at that bag labels are actively collected (occasionally, instance labels

may be queried if necessary). In Settles et al’s work, they build the active learning strategy

upon uncertainty sampling [Lewis and Catlett, 1994]. To demonstrate this, it is convenient

to present their model first - an MI-Logistic Regression (MILR) model.

Suppose there are a number of bags {B1, ..., Bn} and each bag Bi consists of ni instances

Bi = {xi1, ...,xini
}. An instance-level Logistic Regression is formulated as:

oij = P (yij = 1|xij;w) =
1

1 + exp{−(wTxij + b)}

where w is a vector of parameters. In order to aggregate these instance-level class probabil-

ities into a bag-level class probability, MILR uses softmax :

oi = P (yi = 1|Bi;w) = softmaxα(oi1, ..., oini
) =

∑
j oij exp{αoij}∑
j exp{αoij}

where α is a hyperparameter that determines to what extent the softmax approximates a

max function. With such a model, MILR is able to predict the class probability of either

bags or instances. So the uncertainty score of a bag or an instance can be further given by

an entropy measurement. They use Gini-Index:

Uw(Bi) = 2oi(1− oi), Uw(xij) = 2oij(1− oij)

With the Uw(.) function, they can actively select the most uncertain bags or instances

for labeling. This Uw(.) function is also one instantiation of the general utility function

UM(x) in line 5 in Algorithm 1 within the framework of pool-based active learning (Section

§ 2.2.1). In terms of applications, they apply MIAL to context-based image retrieval and

text classification and they show that MIAL could quickly find the objects of interest after

consuming very few queries.
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2.3.3 Learning From Label Proportions

Similar to multiple instance learning, learning from label proportions (LLP) also assumes

that groups (or bags) of instances are available apriori and the label information is provided

to groups. However, one essential difference is that LLP assumes using proportion labels

that can provide richer class information. In general, a proportion label looks like: “This

group is a% positive (or negative)”, where a ∈ [0, 100].

The use of proportion labels in LLP is well-motivated in many real-world learning prob-

lems. For example, consider activities such as elections, online purchasing, and students’

grading where privacy is an issue, collecting individual’s label information is impossible.

However, collecting some summarized statistics, such as the mean or median among a

group of people appears more feasible and thus easier to obtain [Quadrianto et al., 2009,

Yu et al., 2013, Patrini et al., 2014, Rueping, 2010]. The proportion feedback used in LLP

reflects the proportion of the instances in a group that belong to one of the classes. For

example, in terms of the voting results of a county, the proportion label could be “65%

residents in Allegheny county vote for the Democratic Party”. One could also think of the

proportion feedback as one type of soft-label feedback that is provided to groups.

The goal of LLP is to learn instance-based classification models from a set of labeled

groups. For example, given the voting results of some counties, one may learn a classifier

that can predict the voting preference of any individual resident. More formally, an LLP

learning problem can be formulated as follows:

• The training data are a set of labeled groups {(G1, µ1), ..., (Gn, µn)}, where Gi is a bag or

group that contains ni instances: Gi = {x1, ...,xni
}. µi reflects the class proportions of

the instances in group Gi. For example, in binary classification setting, each µi ∈ [0, 1] is

a scalar that represents the proportion of the instances that belong to either the positive

or negative class. In a multi-class classification problem, µi would be a vector of class

proportions.

• LLP algorithms output an instance-based classification model that is capable of making

inference on any data instance x. The classifier can be a deterministic function f : X →

Y or a probabilistic model P (y|x;θ).
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• There are four categories of LLP algorithms that have been developed:

1. The first category of algorithms models LLP problems within a statistical learning

framework. They use the given proportion labels to approximate the sufficient statis-

tics of a likelihood function [Quadrianto et al., 2009, Patrini et al., 2014]. Consider

learning a conditional exponential models:

p(y|x;θ) = exp{〈φ(x, y),θ〉 − g(θ|x)}

where φ(x, y) : X × Y → H is a feature map to new space H, and g is the nor-

malization factor (or log-partition function). If one had collected an instance-based

training sample (X, Y ) = {(x1, y1), ..., (xn, yn)}, the log-likelihood function would

be:

log p(Y |X;θ) =
n∑
i=1

{〈φ(xi, yi),θ〉 − g(θ|xi)} = n〈µXY ,θ〉 −
n∑
i=1

g(θ|xi)

where µXY = 1
n

∑n
i=1 φ(xi, yi) is the sufficient statistics. However, because instance

training pairs are not observed, the sufficient statistics cannot be computed ex-

actly. So the strategy is to use labeled groups {(G1, µ1), ..., (Gn, µn)} to estimate

the sufficient statistics µXY as µ̂XY and then replace µXY with µ̂XY in the original

log-likelihood function. Finally, standard optimization procedure can be applied to

learn the model. More details will be presented in Chapter § 3.

2. The second category of algorithms attempts to learn a model that can generate

instance labels of which the class proportions are close to the given label propor-

tions [Rueping, 2010, Yu et al., 2013, Kotzias et al., 2015]. Consider learning a Sup-

port Vector Machine: g(x) = wTx+ w0. [Rueping, 2010] uses the following scaling

function which is a special case of Platt [Platt et al., 1999] scaling to represent the

probability of classifying x as y = 1:

p = σ(g(x)) =
1

1 + exp{−g(x)}

Then for any labeled group (Gi, µi), they try to fit the given label µi:

∀i :
1

|Gi|

ni∑
i=1

σ(g(x)) ≈ µi
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Therefore, the final optimization procedure is given by:

minimize:

wTw

2
+ C

n∑
i=1

(ξi + ξ∗i )

subject to:

1

|Gi|

ni∑
i=1

σ(g(x)) ≥ µi − ξi, ∀i

1

|Gi|

ni∑
i=1

σ(g(x)) ≤ µi + ξ∗i , ∀i

ξi, ξ
∗
i ≥ 0, ∀i

Again, in Chapter § 3 we will provide more details.

3. The third category of algorithms is based on instance sampling. The key idea is to

sample sufficiently many labeled instances from the labeled groups, and then feed the

sampled instances to an instance-based learning algorithm. The primary advantage

of this approach is that the learning is not restricted to a specific model family.

However, a major limitation is that it cannot handle groups that can overlap with

one another. We will detail this algorithm in Section § 4.3.

4. The last category of algorithms is based on instance weighting ([Du and Ling, 2010]

and [Luo and Hauskrecht, 2017b]). The idea is to create a sample of training data

with weights. The weight of each data instance reflects the proportion label of

the group to which the instance belongs. For example, in a binary classification

problem, each instance xij in a group (Gi, µi) is extended and duplicated into two

triplets: (xij, yij = 1, wij = µi) and (xij, yij = 0, wij = 1 − µi), where the third

element w is the weight of that triplet for training. With such a training sample,

any model learning algorithm that permits data-weighting could apply. Weighted

Logistic Regression and weighted SVM are representative examples.
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2.3.4 Active Learning From Label Proportions

We hitherto have surveyed several lines of work that are associated with learning from

group-based feedback. They are multiple instance learning (MIL), multiple instance active

learning (MIAL), and learning from label proportions (LLP). We note that all of the work

above does not tackle the problem that how groups are formed or labeled. This limits their

applicability to many other learning tasks where no explicit groups are available. To bridge

this gap, researchers propose to actively construct groups from instances for labeling and

learning ([Du and Ling, 2010, Rashidi and Cook, 2011] and the work in this thesis). We

name this direction of work active learning from label proportions or ALLP in short.

2.3.4.1 Motivation To describe groups to human annotators, ALLP uses conjunctive

patterns that are value ranges over the input features. The use of conjunctive patterns is

driven by the fact that sometimes labeling a group of examples on a higher abstract level

appears easier, more friendly, and more effective than labeling individual instances. For

example, in the medical domain, when a physician diagnoses a patient for a possible heart

condition he/she must review the patient record that consists of complex collections of re-

sults, symptoms, and findings. The review and the assessment of these records concerning

a specific condition may become extremely time-consuming, as it often requires physicians

to peruse a large quantity of data. Below we borrow the heart-disease example introduced

in [Rashidi and Cook, 2011] that compares instance-based feedback versus group-based feed-

back:

An instance query example: “Assess whether the patient that is (sex=female) ∧

(age=39) ∧ (chest pain type=3) ∧ (fasting blood sugar=150 mg/dL) ... (20 more features)

suffers from a heart disease?”. The answer to this query is binary, reflecting a physician’s

diagnosis of this patient.

As we can see, each data record has numerous features and some of them are valued

with high precision numbers that can be very intricate for human annotators to assess. By

comparison, a group query that summarizes the relevant conditions of a subpopulation of

patients reads more concise and informative.
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Algorithm 2 Existing Group-Based Active Learning Frameworks: AGQ+ and RIQY

1: Collect a pool U of i.i.d. sampled data x that are all unlabeled

2: Also collect a small set of labeled data L = {{(x1, y1), ..., (xl, yl)}}

3: repeat

4: Learn the base classification model based M from L

5: Uncertainty sampling : pick the most uncertain instance x∗ ∈ U based on UM(x)

6: Embody a small neighbor (group) of instances G∗ that are centered on x∗

7: Induce the most relevant conjunctive patterns that can best represent the group G∗

8: Have a human annotator to assign a proportion label µ∗ to G∗

9: For each instance x in G∗, either give it a certain class label based on µ∗ (RIQY) or

directly use µ∗ as a soft label of x (AGQ+)

10: Add all such labeled instances in G∗ to L

11: until certain stopping criterion is met

A group query example: “What is the proportion of patients who are (sex=female)

∧ (40<age<50) ∧ (chest pain type=3) and (fasting blood sugar within [130,150] mg/dL) ...

(not necessarily using all the features) suffer from a heart disease?”. The answer to this

query is an empirical assessment of the proportion, say, “about 70% patients within this

population have heart disease”.

2.3.4.2 Early Work The idea of ALLP was first proposed by [Du and Ling, 2010] and

[Rashidi and Cook, 2011]. They construct groups from the instances that are suggested

to query by a conventional active learning strategy. In particular, they form each group

as a compact set of instances that are centered around the most uncertain instance x∗.

They developed two similar methods AGQ+ and RIQY, respectively, as summarized in

Algorithm 2. Specifically, there are three steps: (1) embody a small group of nearest instances

around x∗ from a large pool of unlabeled data; (2) induce the most relevant region that best

represents the group; (3) solicit from human annotators a class proportion label for that

region. As for model learning, AGQ+ assigns probabilistic labels to instances and then

adopts a weighted instance learning algorithm. RIQY instead propagates the major class
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Table 2.1: Summary of Related Work.

Instance-Based Feedback & Learning Group-Based Feedback & Learning

Passively Standard supervised learning § 2.1 MIL (§ 2.3.2) and LLP(§ 2.3.3)

Actively Instance-based active learning § 2.2 MIAL (§ 2.3.2) and ALLP(§ 2.3.4)

label of a group to all the instances inside. As all the instance have deterministic labels,

they can be fed to any instance-based learning algorithm.

2.4 Thesis Contributions

We would like to summarize the related work presented in this chapter and then place

our work among them. We first introduced supervised learning where the training data

are randomly (passively) generated. Then we compared it to active learning where the

training data are strategically collected and models are trained incrementally. After that, we

presented various types of alternative human feedback that are useful for label-efficient model

learning. They were learning from soft-label feedback, multiple instance learning (MIL), and

learning from label proportions (LLP). We also showed how each form of feedback could be

actively acquired so as to further reduce human annotation effort. All of the work above can

be categorized in Table 2.1:

The work in this thesis contributes to the research of ALLP. The main features of ALLP

are:

1. The goal of ALLP is to learn instance-based classification models from group-based

feedback.

2. ALLP deals with the problem of how to identify groups among instances that are im-

portant to model learning.

3. Groups constructed by ALLP are described to human annotators by using conjunctive

patterns that correspond to data regions.
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Existing work in ALLP is limited and there are only two methods, AGQ+ and RIQY,

that have been developed. Their group-construction strategy is to form a group of instances

that are the nearest neighbor of the most uncertain instance. However, we argue that their

methods seem to be ad-hoc and may not be able to find meaningful groups. We think that

meaningful groups should be (1) understandable to human annotators and (2) informative

to model learning. Regarding (1), how do they control the size of the formed groups? And

for (2), how do they ensure the returned group labels are pure enough? Unfortunately,

a fact is that since the most uncertain instance often lies around the underlying decision

boundary the instances around it probably belong to different classes. As a result, a group

formed from such a set of instances is likely to have an impure proportion label. Therefore,

we believe there should be a more principled and systematic way of identifying meaningful

groups. This motivates our hierarchical solutions. In the following chapters, we will present

three implementations of our hierarchical active learning idea: HALG (Chapter § 4), HALR

(Chapter § 5), and HALOR (Chapter § 6).
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3.0 Learning From Label Proportions

In this chapter, we present the learning from label proportions (LLP) algorithms since

they lay the foundation of our framework. LLP manages to learn instance-based models

solely based on labeled bags (in our case, groups and regions) of examples. Meanwhile, there

are certain conditions that are needed to ensure the learning success. Those conditions will

be the key factors that drive our active group-construction strategy.

3.1 Problem Setting

LLP applies to learning of multi-class classification models, but in this thesis we only

consider its application to binary classification tasks. A binary classifier can be defined as one

of the following cases: a probabilistic discriminant function p(y|x;θ); a general discriminant

function f(x;w) : X → R; or a directly defined mapping f(x;w) : X → Y . Each x

represents one instance from the input space X ⊂ Rm and y ∈ Y = {0, 1} denotes the

instance’s label. The training data are N labeled bags {(Bi, πi)}Ni=1. Each bag Bi = {xij}ni
j=1

contains ni instances and has a label proportion πi ∈ [0, 1]. Let us assume all πi represents

the proportion of the positive class, aka label 1. So we denote by πiy := πi when y = 1 and

πiy := 1− πi when y = 0.

As mentioned before, there are mainly four categories of algorithms and here we present

the first two: a statistical learning framework and a general learning framework. The for-

mer uses proportion labels to approximate the sufficient statistics in a log-likelihood func-

tion [Quadrianto et al., 2009, Patrini et al., 2014]; the latter learns a classifier that generates

matching instance labels of which the class proportions are close to the given proportions

[Kück and de Freitas, 2005, Rueping, 2010, Yu et al., 2013, Yu et al., 2014]. For each of the

frameworks, we will also discuss the assumptions that ensure its learning success. Basically,

the key lies at (1) how the instances are distributed within the training bags, and (2) how

the bags are distributed. In general, arbitrarily distributed instances or bags may not be
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able to recover the underlying classification rules.

3.2 A Statistical Learning Framework

The basic idea of the statistical approach [Quadrianto et al., 2009, Patrini et al., 2014]

is to estimate what is called a mean map operator that is sufficient to learn a classifier.

We follow the work of [Quadrianto et al., 2009] to explain the idea. Assume the learning of

a conditional exponential model:

p(y|x;θ) = exp(〈φ(x, y),θ〉 − g(θ|x)) (3.1)

where φ(x, y) is a feature mapping to a Reproducing Kernel Hilbert Space and g(θ|x) is the

log-partition function. If we could observe a set of independently and identically distributed

training instances (X, Y ) = {(xj, yj)}nj=1 that are sampled from a distribution p(x, y) on

X × Y , then the conditional log-likelihood function is:

log p(Y |X,θ) =
n∑
j=1

{〈φ(xj, yj),θ〉 − g(θ|xj)} = n〈µXY , θ〉 −
n∑
j=1

g(θ|xj) (3.2)

where µXY = 1
n

∑n
i=j φ(xj, yj) is the empirical mean in the feature space. Notice that

µXY is the sufficient statistics to the objective function and thus it makes LLP learning

possible without knowing the labels of individual instances. In order to avoid over-fitting one

commonly maximizes the log-likelihood penalized by a prior p(θ). Finally, the optimization

problem becomes:

θ∗ = arg min
θ

[
n∑
j=1

g(θ|xj)− n〈µXY , θ〉+ λ‖θ‖2

]
(3.3)

However, µXY is unknown because we cannot observe the instance labels. But notice a

fact that under mild conditions the empirical mean µXY is statistically well behaved and

it converges to the population mean µxy
.
= E(x,y)∼p(x,y)φ(x, y) at rate O(n−

1
2 ). Hence, the

solution is to estimate the population mean µxy first and use it as a proxy for µXY , and only

then solve Equation (3.3) with the estimated µ̂XY .
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3.2.1 Estimation Of The Mean Operator

µxy can be decomposed into a sum of conditional expectations:

µxy =
∑
y∈Y

p(y)µclassx [y, y] (3.4)

where:

• p(y) is the prior distribution of y ∈ Y . It is assumed known in that it can be seen as the

class proportion of a special bag that contains the whole instance population.

• µclassx [y, y] = Ex∼p(x|y)φ(x, y) is the conditional expectation. Quantity µclassx [y, y′] :=

Ex∼p(x|y)φ(x, y′) denotes the expectation of φ(x, y′) conditioning on p(x|y).

In order to compute µclassx [y, y], a bag-based quantity µsetx [i, y′] is introduced which is the

conditional expectation based on bag i:

µsetx [i, y′] := Ex∼p(x|i)φ(x, y′) (3.5)

Note the distribution p(x|i) can be decomposed as:

p(x|i) =
∑
y∈Y

p(x, y|i) =
∑
y∈Y

[p(x|y, i)p(y|i)] (3.6)

where p(y|i) := πiy is observed. In order to proceed, a crucial assumption has to be made on

p(x|y, i) - a conditional independence that p(x|y, i) = p(x|y). In other words, they assume

that the conditional distribution of x is independent of the bag index i, as long as the label

y is known. After all, we want the distributions within each class to be independent of

which bag they can be found in. If this were not the case it would be impossible to infer

about the distribution on the test set from the (biased) distributions over the bags. Such

an assumption bridges the gap between the instance-based classifier to be learned and the

bag-level labels that are given.

Then, Equation (3.5) can be further derived as:

µsetx [i, y′]
(3.6)
=
∑
y

πiyµ
class
x [y, y′] (3.7)
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It means that µsetx [i, y′] is a linear combination of µclassx [y, y′]. So we rewrite Equation (3.7)

into a linear equation system:

µsetx = πµclassx (3.8)

where µsetx , π and µclassx are in matrix form. Then µclassx is solved as:

µclassx = (π>π)−1π>µsetx (3.9)

Lastly, µsetx [i, y′] is estimated by its empirical value µsetX [i, y′], since that µsetX [i, y′] also con-

verges to µsetx [i, y′] at rate O(n
− 1

2
i ):

µsetX [i, y′] :=
1

ni

∑
x∈Bi

φ(x, y′) (3.10)

Then, Equation (3.9) is rewritten as:

µ̂classx = (π>π)−1π>µsetX (3.11)

Finally,

µ̂XY =
∑
y∈Y

p(y)µ̂classx [y, y] (3.12)

and we can plug it into the Equation (3.3) to perform the optimization procedure.
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3.2.2 Assumptions Of The Statistical Learning Framework

Overall, the statistical learning algorithm works as follows: it uses the empirical means

(µsetX [i, y′]) on the bags {Bi} to approximate the expectations with respect to the bag dis-

tribution (µsetx [i, y′]); then it uses the latter to compute the expectations with respect to a

given label (µclassx [y, y′]); finally, it uses the means conditional on the label distribution to

obtain µxy that is a good proxy for µXY , i.e.

µsetX [i, y′] −→ µsetx [i, y′] −→ µclassx [y, y′] −→ µxy −→ µXY (3.13)

The middle two steps in the sequence follow from linear algebra. But more importantly, the

first and last steps in the chain require uniform convergence results. The last convergence is

relatively easy to satisfy because it does not involve bags:

µXY :=
1

n

n∑
j=1

φ(xj, yj) −→ µxy := E(x,y)∼p(x,y)φ(x, y) (3.14)

This convergence holds if (1) the instances are i.i.d. sampled from p(x, y) and (2) the feature

map φ is a Reproducing Kernel Hilbert Space [Bartlett and Mendelson, 2002].

The first convergence in the chain is really the key:

µsetX [i, y′] :=
1

ni

∑
x∈Bi

φ(x, y) −→ µsetx [i, y′] := Ex∼p(x|i)φ(x, y′) (3.15)

In order to make it happen, they have assumed the conditional independence on bags that

was discussed earlier:

p(x|i) =
∑
y∈Y

[p(x|y, i)p(y|i)] =
∑
y∈Y

[p(x|y)p(y|i)] (3.16)

The assumption p(x|y, i) = p(x|y) states that “within each bag, the distribution of the

instances conditioned on class should be identical to the unbagged instance distribution con-

ditioned on class”. In other words, the conditional distribution of instances is independent

of the bags as long as the class is known. Therefore, if bags and the inside instances are not

formed in this way, they are not able to learn an instance-level model.
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3.3 A General Learning Framework

The statistical LLP solution comes with many useful properties. Unfortunately, it is

not easy to apply in practice because of the restrictions placed on the family of models it

supports and somewhat rigid requirements on bag formation. In this section, we present

another more general and flexible framework that learns various families of classification

models.

3.3.1 The Framework

The idea of the approach is simple: Find the best classifier that generates instance labels

of which the class proportions are in agreement with the true proportions assigned to the

training bags. Let us assume an instance-based classifier y = f(x;w) : X → Y = {0, 1}. For

each bag Bi with a proportion class label πi, the error of the classifier f on the the bag is:

εp(Bi, πi;w) =

∣∣∣∣∣∣∣∣
∑ni

j=1 f(xj;w)

ni
− πi

∣∣∣∣∣∣∣∣
p

(3.17)

where εp is based on norm p. Similarly, for probabilistic model we have:

εp(Bi, πi;θ) =

∣∣∣∣∣∣∣∣
∑ni

j=1 p(y|xj;θ)

ni
− πi

∣∣∣∣∣∣∣∣
p

(3.18)

Hence, the total loss function over all bags L = {(Bi, πi)}Ni=1 is:

L(L;w) =
N∑
i=1

εp(Bi, πi;w) (3.19)

If we consider the sizes of the bags, as well as regularization term R(w), finally the loss

function becomes:

L(L;w) =
N∑
i=1

ni
n

[εp(Bi, πi;w)] +R(w) (3.20)

Let us look at a specific example given by [Rueping, 2010] for learning a linear Support

Vector Machine: f(x;w) = sign(g(x;w)) where g(x;w) = wTx+w0. With a scaling factor

defined below, the probability of classifying x as y = 1 is:

p = σ(g(x;w)) =
1

1 + exp{−g(x;w)}
(3.21)
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Then for any labeled bag (Bi, πi), they try to fit the model consistent to the given label πi:

∀i :
1

ni

ni∑
j=1

σ(g(xj;w)) ≈ µi (3.22)

Therefore, the final optimization procedure is given by:

minimize: (3.23)

wTw

2
+ C

n∑
i=1

(ξi + ξ∗i ) (3.24)

subject to: (3.25)

1

ni

ni∑
j=1

σ(g(xj;w)) ≥ µi − ξi, ∀i (3.26)

1

ni

ni∑
j=1

σ(g(xj;w)) ≤ µi + ξ∗i , ∀i (3.27)

ξi, ξ
∗
i ≥ 0, ∀i (3.28)

Multiple research papers have developed and promoted the general LLP framework

[Kück and de Freitas, 2005, Rueping, 2010, Yu et al., 2013]. They place no assumptions on

the data and bags. Furthermore, the work of [Rueping, 2010, Yu et al., 2013] demonstrated

empirically on a number of data sets that the general framework often learns better models

compared to the statistical LLP approach by [Quadrianto et al., 2009].

3.3.2 Assumptions Of The General Learning Framework

Despite very few restrictions made to the framework, an apparent but challenging ques-

tion would be, does this framework always work? Can it learn models from any set of ar-

bitrarily formed bags? Unfortunately, the answer is negative. The work of [Yu et al., 2014]

gives a few theoretical insights regarding this issue. We review their main findings in the

following texts.

The goal of LLP learning is to learn a classifier that has a low generalization error when

it is applied to the classification of any instance from the input domain. [Yu et al., 2014] first

gives an error analysis of bag-level generalization error. Then, an analysis of instance-level
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generalization error can be built upon it. The former tells when a model can achieve a low

generalization error for predicting bag proportions; then given such a model, the latter tells

the conditions that guarantee a low generalization error of that model for predicting instance

labels.

3.3.2.1 Generalization Error For Predicting Bag Proportions Suppose there are

N training bags {(Bi, πi)}Ni=1 that are generated i.i.d. from a probability distribution D over

bags. For simplicity, assume each bag has the same number r of instances. Let H denote a

hypothesis class for classifying instances where each h ∈ H is a mapping h : X → Y . The

learning task is to find the h∗ ∈ H that best fits the training bag proportions:

h∗ = arg min
h∈H

N∑
i=1

ε(Bi, πi;h) (3.29)

where

ε(Bi, πi;h) =

∣∣∣∣
∑r

j=1 h(xj)

r
− πi

∣∣∣∣ (3.30)

To bound the generalization error [Yu et al., 2014] build upon the results from Empirical Risk

Minimization (ERM) framework. Let errS(h) = 1
N

∑N
i=1 ε(Bi, πi;h) denote the empirical bag

proportion error and errD(h) = EB∼D [ε(B, π;h)] the generalization error. One can prove

the following theorem sample complexity bound for N :

Theorem 1. for any 0 < δ, ε < 1 and h ∈ H, with probability at least 1 − δ, errD(h) ≤

errS(h) + ε if:

N ≥ 64

ε2
(2VC(H) log(12r/ε) + log(4/δ)) (3.31)

in which VC(H) is the VC dimension of the instance label hypothesis class H, N the number

of training bags, and r the bag size.

The above theorem shows that the generalization error of bag proportions can be bounded

by the empirical proportion error if there are sufficiently many bags in training.
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3.3.2.2 An Error Bound Of Instance Label Prediction The second step is to bound

the generalization error for predicting instance labels by the generalization error of predicting

bag proportions. Key to this bridging is the concept purity of bags. Intuitively, if a clas-

sifier h can predict bag proportions very well, then it should also predict well the instance

labels that come from pure bags. For example, bags with proportions 0 or 1 are the easiest

cases. Formally, suppose one has learned a classifier h that can predict bag proportions well:

PB∼D(ε(B, π;h) ≤ ε) ≥ 1− δ. Define the purity of bags: for 0 < η < 1, a bag is (1− η) pure

if at least a fraction (1− η) of all instances have the same label. Then the following theorem

states:

Theorem 2. Let h be a hypothesis satisfying PB∼D(ε(B, π;h) ≤ ε) ≥ 1 − δ for some 0 <

ε, δ < 1. Assume the probability that a bag is (1 − η) pure is at least 1 − ρ for some

0 < η, ρ < 1. Then with probability at least (1 − η − ρ), h classifies correctly at least a

fraction (1− 2δ − ε) of instances in that bag.

Therefore, the purity of bags is the key factor in predicting the instance labels. Further-

more:

Lemma 3. There exists a distribution D over all bags of size r and a learner h such that

PB∼D(ε((B, π);h) = 0) = 1, and each bag is (1 − η)-pure but h mis-classifies a fraction 2η

instances of each bag.

The above lemma shows an extreme case when LLP fails. That is, there exist bags with

label proportion 50% (they are the least pure), and a hypothesis h which can achieve zero

bag proportion prediction error, yet with 100% instance label error. In other words, it is

impossible to learn or recover the instance labels from such bags.

3.4 Chapter Summary

We have presented two different frameworks for LLP learning. The first one is a statistical

learning approach and it uses proportion labels to approximate the sufficient statistics of a

likelihood function that does not require instance labels. To guarantee the learning success,
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there are two conditions. First, there should be sufficiently many bags and instances (within

each bag) that are i.i.d. sampled for training. This condition is required by the law of uniform

convergence. And the second condition is the conditional independence p(x|y, i) = p(x|y)

where i is the index of a training bag. This restricts the way the bags should be formed.

The second framework is a general one that applies to the learning of various types of

classification models. However, to ensure the learning success, its analysis states: in order to

learn a good instance-based model from bags, one needs to train the model with sufficiently

many pure regions. This conclusion is the key that drives our active group-construction

strategy. That is, we should identify pure groups out of a given set of instances as quickly

as possible.
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4.0 Hierarchical Active Learning From Group Proportion Feedback: HALG

4.1 Introduction

HALG [Luo and Hauskrecht, 2018a] (Hierarchical Active Learning with Group propor-

tion feedback) is our first attempt to implement the hierarchical active learning idea. Speak-

ing at a high level, this implementation relies on a pre-compiled hierarchical clustering that

guides us in identifying groups. Figure 4.1 illustrates an example of hierarchical clustering.

At the beginning of this framework, a hierarchical clustering is done on a large pool of un-

labeled instances and outputs a hierarchy of clusters (unlabeled groups). Then proceeding

from the top levels to the lower ones, we actively select the most influential groups to be la-

beled. The influence is measured by how much the groups will update the base classification

model once they get labeled. This active selection strategy borrows the merit of maximum

model change criterion [Roy and McCallum, 2001, Freytag et al., 2014] as we introduced in

Section § 2.2.2.

4.1.1 Framework Overview

HALG is designed to learn a binary classification model P (y|x;θ) from group proportion

feedback. It forms a hierarchical tree of unlabeled groups first and then iteratively queries the

proportion label of groups in a top-down manner, behaving like a breadth-first search. So we

are maintaining a fringe of labeled groups for learning. In each iteration, we actively choose

a group in the fringe to split, query its child groups, and then update the fringe. Every time

the fringe is refined, the base classification model P (y|x;θ) will be re-trained as well. The

framework overview is summarized as in Algorithm 3. The following three sections will detail

the implementation of HALG. The next section would introduce the basic group concepts;

the second section will present our group learning algorithm that learns an instance-based

classifier from labeled groups; the third section will explain our active learning strategy for

selecting groups for labeling.
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Figure 4.1: Hierarchical clustering used in HALG. It shows the top 3 levels of the cluster

hierarchy (U is a large pool of unlabeled instances and also represents the root cluster). In

general, hierarchical clustering is one clustering algorithm that groups similar objects into

clusters. The endpoint is a set of clusters where each cluster is distinct from each other

cluster, and the objects within each cluster are broadly similar to each other. One essential

distinction of hierarchical clustering is that it outputs a hierarchy of clusters, and one can

choose different granularity of clustering by pruning the hierarchy at different levels.

4.2 Group-Related Concepts

• Group. We start with collecting a pool of abundant unlabeled data instances U =

{x1,x2, ...,xn} where each xi is a vector that is randomly sampled from an input space

X ⊂ Rm. Then, we use the term group to denote a set of instances G ⊂ U . Although a

group G could be any subset of U , we prefer G to be a set of similar instances such that

it could be compactly represented to humans.

• The Initial Tree of Clusters. After collecting U , we then perform standard hierar-

chical clustering (using the ward linkage [Ward Jr, 1963]) on U to output a tree T of

clusters. However, it is possible (and sometimes likely) that some of the clusters could

be arbitrarily shaped which makes it hard for humans to assess. Therefore, we need to

modify the tree to only preserve clusters that can be compactly represented to humans.

How do we define the compactness? RIQY [Rashidi and Cook, 2011] has provided a so-
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Algorithm 3 The HALG Framework

Input: An unlabeled data pool U ; A labeling budget

Output: A binary classification model P (y|x; θ̂)

1: T ← Perform hierarchical clustering on U

2: TG ← Adjust T to form a new tree of groups

3: Query (TG)′s root;

4: Fringe F (1) ← {(TG)′s root};

5: Active learning time t← 1;

6: repeat

7: Learn P (y|x; θ̂
(t)

) from current F (t)

8: Split a group G∗ in F (t) based on P (y|x; θ̂
(t)

)

9: Query the labels of G∗’s children from labelers

10: F (t+∆t) ← {F (t) −G∗} ∪ {G∗’s children}

11: t← t+ ∆t (∆t = # of G∗’s children)

12: until the labeling budget runs out

13: return P (y|x; θ̂
(t)

)

lution that is to use conjunctive patterns to represent groups, and we adopt this solution

in our work as well.

• Group Description. Conjunctive patterns are a set of values ranges over the input

space features that are joint by and operation (∧). As we have seen earlier, for example,

a group of patient instances may be described as: “(sex=female) ∧ (40<age<50) ∧ (chest

pain type=3) ∧ (fasting blood sugar within [130,150] mg/dL) ... (not necessarily using all

the features)”. This representation matches precisely the hypercube definition of regions

of a typical decision tree learning algorithm. Hence, we employ a C4.5 [Quinlan, 2014]

classifier to automatically learn a compact description of the cluster of instances that

are found through hierarchical clustering. With more details, if we want to learn the

description of a cluster G, we mark all the instances in G as 1 and the rest of data

instances (U −G) as 0. Then a C4.5 classifier will output a set of hypercubes C(G) that

could potentially describe G. The match (or fit) of each hypercube c ∈ C(G) to G can
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be assessed in terms of (1) precision which measures the proportion of data in c that

are actually coming from G, and (2) recall which measures the proportion of data in G

that c can capture. As both metrics are important, we adopt F1score = 2×precision×recall
precision+recall

to be the final quality metric to select the hypercube that best fits the description of

cluster G. That is, the description of G is the best-fit hypercube:

arg max
c∈C(G)

F1score(c) (4.1)

• The Final Tree of Groups. When C4.5 algorithm is used to learn the hypercubes that

represent the clusters in the original hierarchical tree T , there may be some clusters that

are not matched well by hypercube-shaped regions. In such cases, their best-matched

hypercubes may come with intolerably low F1scores. To mitigate this issue, we modify

the original tree structure T to form a new tree TG such that only well-fitted hypercube-

like groups are preserved in TG. More formally, we say that a cluster is hypercube-like if it

can be approximated by hypercube with a minimum precision(≥ 0.5) and recall(≥ 0.5).

Our goal is to preserve and approximate only hypercube-like regions in the original tree.

We implement this idea by starting from the root of the tree T and by checking in a

top-down fashion if the descendant clusters are hypercube-like. If a descendant cluster

is not hypercube-like we exclude it from the tree by directly reconnecting its parent with

its children clusters. As a result, the original binary tree T may become a multi-nary

tree TG in which the clusters are all hypercube-like. We call TG a tree of groups and use

it for the subsequent active learning process.

• Group Proportion Feedback. The human assessment of each group in TG is made

via a proportion label that is an estimate of the proportion of instances in the group

that belong to one of the classes. For example, people could say that “90% of instances

in a certain group are positive”; or alternatively, we can interpret the proportion label

as an instance-level likelihood. For instance, “Instances in such group are 90% likely to

be positive”. To assess the label of each group, annotators will only need to review the

description of the best hypercube-like region that matches it, and thus they do not have

to explore individual data instances in the group.
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• The Fringe of Groups. After we form the group hierarchy TG, a top-down active

learning process begins. In each active learning cycle, we maintain a fringe F of labeled

groups that is a complete partition of all the unlabeled data U . Initially, we make one

query to obtain the label of (TG)’s root that can be interpreted as the prior probability

of classes, and put the labeled root into F (t) at t = 1. Here t is the active learning

time-step, basically counting the number of group queries made so far. As t increases,

finer and finer groups and their proportion labels will replace their parents in F (t).

In the following sections, we explain how to learn a model from labeled groups in F (t)

and how the model will assist us in choosing the group that should be split next.

4.3 Learning From Group Proportion Feedback

Our goal is to learn from F (t) a classification model P (y|x;θ) that is an instance-level

discriminative classifier. We call it a base model. Suppose there are N labeled groups in

the fringe: F (t) = {(Gi, µi)}Ni=1, where Gi denotes a group and µi its proportion label. Each

group Gi = {xij}ni
j=1 contains ni instances and its label µi ∈ [0, 1] is assumed to represent

the positive class proportion in a binary classification setting. Our learning algorithm does

this by (1) sampling sufficiently many labeled instances from the labeled groups, and (2)

feeding them to any instance-level classification learning procedure.

4.3.1 A Sampling Procedure Of Instance Labels

We create a bootstrap sample S(t) = {(xk, yk)}Kk=1 of K labeled instances from F (t).

Each xk is uniformly sampled with replacement from the unlabeled data pool U , and yk

is sampled from an independent Bernoulli process with parameter equal to µi which is the

proportion label of group Gi that xk resides in.
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4.3.2 A Learning Algorithm: Maximum Likelihood Estimation

With the sample S(t), we can estimate the model parameter vector as θ̂
(t)

through max-

imum likelihood estimation (MLE). Although θ̂
(t)

may vary because of the randomness in

S(t), from the theoretic standpoint, when moderate assumptions are satisfied (those re-

quired by Uniform Convergence and Uniform Central Limit Theorem [Neter et al., 1996,

Van der Vaart, 2000]), the MLE solution θ̂
(t)

asymptotically follows a normal distribution

{xk}(t):

θ̂
(t) D→ N (θ(t),Σ(t)) (4.2)

Here θ(t) = E[θ̂
(t)

] is the converged parameter when K → ∞, and the variance Σ(t) is the

inverse of Fisher information matrix IK(θ(t)) combined with the actual finite sample size K.

So the randomness of θ̂
(t)

is bounded by this asymptotic normal distribution and the larger

K is, the smaller the variance would be.

In practice, however, θ(t) and Σ(t) are unknown. Yet, usually Σ(t) is approximated by

the the MLE estimator as Σ̂
(t)

(for example, when calculating the confidence interval of

θ̂
(t)

). Furthermore, when K is large, the difference between θ̂
(t)

and θ(t) is sufficiently small

(or equivalently, the confidence interval of θ̂
(t)

is very tight). So as another approximation,

we replace θ(t) by θ̂
(t)

in the normal distribution. That is, it is appropriate to assume the

following asymptotic distribution holds when K is sufficiently large:

θ̂
(t) D→ N (θ̂

(t)
, Σ̂

(t)
) (4.3)

In our experiments, each label is sampled from 5 to 10 times depending on data sets and

this gives us K ∼ 104 magnitude which is large enough to provide a very small Σ̂
(t)

.

4.4 Active Refinement Of Groups

In this section, we explain our active learning strategy that refines the fringe F (t) at time

t to generate F (t+∆t), where ∆t is the number of new queries made. The gist of our approach
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is to split the most influential group G∗ ∈ F (t) w.r.t. updating the base model, query the

labels of its child groups, and then replace G∗ with its child groups in the fringe.

Intuitively, we want to split a large and/or impure group such that the label uncertainty

of large groups can be reduced. Moreover, we would also like the current model θ(t) to have

a big update after the split such that it converges quickly to θ(∞). Therefore, we adopt

maximum model change criterion as our active learning strategy. The key idea is to split

the group such that the model distribution N (θ̂
(t)
, Σ̂

(t)
) can be updated most from time t

to (t + ∆t). To achieve this goal, we need to guess what would happen after we split each

group. More specifically, we need to (1) infer the most probable labels of each Gi’s child

groups and (2) estimate how much the model distribution will change if we replace Gi with

its child groups (with inferred labels) in the fringe for learning.

4.4.1 Group Label Inference

One reasonable way to infer the label of a child group is to use the empirical mean

statistics of all the instances inferred by the base model. Formally, let us suppose each group

Gi in the current fringe F (t) has Ci child groups and each child group Gic = {x(ic)j}nic
j=1 has

nic many instances for c ∈ [1, Ci]. The label of each child group µ̂ic can be inferred as:

µ̂ic =
1

nic

∑
j∈[1,nic]

P (y(ic)j = 1|x(ic)j; θ̂
(t)

) (4.4)

Then we can create a new fringe F
(t)
[i] = {F (t)−(Gi, µi)}∪{(Gic, µ̂ic)}Ci

c=1, feed it to our param-

eter optimization algorithm, and obtain a new model distribution denoted by N (θ̂
(t)

[i] , Σ̂
(t)

[i] ).

So this N (θ̂
(t)

[i] , Σ̂
(t)

[i] ) represents what the new model distribution would look like if we were

to split the group Gi. Before we compare N (θ̂
(t)

[i] , Σ̂
(t)

[i] ) to N (θ̂
(t)
, Σ̂

(t)
), one important note

is that we should fix {xk} in the sample S(t) for re-learning, as the two asymptotic normal

distributions are comparable only if they are learned conditioned on the same {xk}. So when

learning N (θ̂
(t)

[i] , Σ̂
(t)

[i] ), only the labels in group Gi are re-sampled.
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4.4.2 Model Change Measurement

In terms of estimating the model change, we use KL-divergence to measure the distribu-

tion change from the current model distribution N (θ̂
(t)
, Σ̂

(t)
) to N (θ̂

(t)

[i] , Σ̂
(t)

[i] ) for each group

Gi. Finally, we select the group G∗ with the maximum change to split:

G∗ = arg max
Gi∈F (t)

DKL(N (θ̂
(t)

[i] , Σ̂
(t)

[i] ) || N (θ̂
(t)
, Σ̂

(t)
)) (4.5)

After the split, G∗’s children {G∗c} are sent for querying and a new fringe is updated as:

F (t+∆t) = {F (t) − (G∗, µ∗)} ∪ {(G∗c, µ∗c)}C∗c=1 (4.6)

A minor caveat when calculating the model change is that when the number of groups in

F (t), i.e. N , is large, it may be time-consuming to solve the N optimization procedures

sequentially. However, we note that as the these N procedures are independent, parallel

processing can be appropriately deployed to reduce the total runtime. In the next chapter,

we will provide the runtime comparison between HALG and HALR.

4.5 Experiments

We conduct an empirical study to evaluate our proposed approach HALG on 9 general

binary classification data sets collected from UCI machine learning repository

[Asuncion and Newman, 2007]. The main purpose of this study is to research how efficiently

(in terms of the number of queries) our HALG framework can learn classification models in

cost-sensitive tasks. Besides, we will also care about how complex the group queries would

be, in terms of how many features are used in their conjunctive patterns.
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Table 4.1: 9 UCI data sets.

Dataset # of Data # of Features Major Class % Feature Type

Seismic 2584 18 93% Num, Ord, Cat

Ozone 1847 72 93% Numeric

Pima 768 8 65% Num, Categorical

Spam 4601 57 60% Numeric, Ordinal

Music 1059 68 53% Numeric

Wine 4898 11 67% Numeric

Wineub 1895 11 95% Numeric

Gamma 5000 10 65% Numeric

SUSY 5000 18 55% Numeric

4.5.1 Data Sets

The 9 data sets come from a variety of real life applications:

• Seismic: Predict if seismic bumps are in hazardous state

• Ozone: Detect ozone level on some days

• Pima: Diagnose diabetes disease among Indian women

• Spam: Classify spam commercial emails

• Music: Find the geographical origin of music

• Wine: Predict wine quality

• Gamma: Detect γ particles in Cherenkov telescope

• SUSY: Distinguish a signal or background process

Table 4.1 summarizes the basic statistics of the data sets. Some have been widely used in

the previous active learning work: Wine [Nguyen et al., 2014, Xue and Hauskrecht, 2017a]

and Pima [Rashidi and Cook, 2011]; some are high-dimensional: Ozone, Spam, Music; some

carry highly unbalanced class distribution: Seismic, Ozone, Wine unbalance (simulated

from Wine).

47



4.5.2 Baselines

We compare our HALG to three baselines:

1. DWUS: Density-Weighted Uncertainty Sampling which combines uncertainty sampling

and the structure in data [Settles, 2012] to decide queries;

2. RIQY: the state-of-the-art active learning with group proportion feedback

[Rashidi and Cook, 2011];

3. HS: Hierarchical Sampling [Dasgupta and Hsu, 2008]

4.5.3 Experimental Settings

4.5.3.1 Data Split To run the experiments, we split each data set into three disjoint

subsets: the initial labeled data set (about 1%-2% of all available data), a test data set

(about 25% of data) and a training data set U (the rest of the data) that is used for training

and active learning. Please note only DWUS and RIQY require the initial labeled data to

start training.

4.5.3.2 Group Proportion Label Feedback To mimic the human labeling process,

we use empirical labeled instances to simulate group proportion feedback, as if it were given

by humans. That is, to obtain the proportion label for a group G, we count the empirical

instances and their labels in G to estimate the class proportions. We note that the same

method was applied to test RIQY in its original paper.

4.5.3.3 Evaluation Metrics We adopt Area Under the Receiver Operating Character-

istic curve (AUC) to evaluate the quality of the learned classification model (in our case

Logistic regression) on the test data. Our graphs plot the AUC scores sequentially as the

number of queries gradually increases to 200. All results are averaged over 20 runs in different

random splits. When generating the results we also assumed the different types of queries

are equivalent in terms of their costs, although in reality different query types may carry

different costs. For example, a group query may be easier for objects like medical records

and patient data, but not for images. However, we note that in reality different query types
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Figure 4.2: Performances of different methods on 9 UCI data sets.

may carry different costs. In some cases, say when presenting and labeling images, instance

queries are much easier to assess. On the other hand, a group query may be easier for objects

like medical records and patient data.

4.5.4 Experiment Results

The main results are shown in Figure 4.2. Overall, our HALG approach (in red line)

is able to outperform other methods on the majority of the data sets and is close to the

best method on the remaining sets. It comes with two advantages. First, initially when the

labeling budget is severely limited, learning with labeled groups is superior to learning with
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Table 4.2: The averaged feature reduction rate (FRR) of group queries.

Dataset FRR Dataset FRR

Wine 42% Spam 60%

Ozone 89% Music 88%

Gamma 34% SUSY 61%

Seismic 61% Pima 40%

the same number of labeled instances, simply because generic group queries can provide richer

class information than specific instance queries. Second, the initial steep slopes and early

convergence in our learning curves lend great credence to our active learning strategy that

it is capable of selecting the most influential group to split; consequently, it can accelerate

the convergence rate of the method.

Although here we only show the performance of HALG after a finite number of queries,

asymptotically it is able to converge to whatever an instance-based method would converge.

It is due to the fact that at the very bottom level of the hierarchical tree, the groups are all

singleton groups and their labels degenerate to instance labels. Hence, when the number of

queries goes to infinite, groups will shrink to instances, and thus learning from those labeled

groups would be equivalent to learning from labeled instances.

4.5.4.1 Unbalanced Classes For data sets Seismic, Ozone and Wine unbalance with

unbalanced class distribution, our method performs even better as it could capture properly

the minority class information via proportion labels. In contrast, the instance-based methods

may find these proportions very slowly. Also note that hierarchical sampling (HS) completely

failed because it always determines the labels of unlabeled instances by the majority vote

if they belong to pure enough (but not entirely pure) clusters, and hence it may miss to

capture the minority class information.
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4.5.4.2 Complexity Of Group Queries Our last experiment aims to analyze the ben-

efit our group queries in terms of the query complexity. We assess this complexity by using

feature reduction rate which is defined as:

1− the number of features used to describe G

the total number of features
(4.7)

This definition clearly reflects the savings due to the description of the group G relative to the

complexity of the full feature space. The results in Table 4.2 suggest that on average, it only

takes about one third to one half of features to distinguish one group from the other groups.

This can considerably simplify the interaction with human annotators especially when data

objects are high-dimensional and when the active learning queries need to present only the

features relevant for the group and its query.

4.6 Chapter Summary

In this chapter, we presented HALG, a hierarchical framework that actively learns

instance-based classification models from group proportion feedback. In particular, we have

addressed three problems that are related to groups:

1. Q: How do we identify groups for labeling and learning?

A: We leverage hierarchical clustering to guide us finding potential groups. Following

a pre-compiled hierarchy of unlabeled groups in a top-down fashion, we use maximum

model change strategy to actively choose groups for labeling and learning.

2. Q: How do we present groups to human annotators for assessment?

A: Describe groups by conjunctive patterns that are value ranges over the input space

features.

3. Q: How do we learn instance-based models from group proportion feedback?

A: Sample sufficiently many labeled instances from labeled groups and feed them to

maximum likelihood estimation algorithm.
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In terms of application, our framework is best suited to learning scenarios when instance

labeling is hard but assessing a group of instances is more feasible and easier. According to

our experiment results, when models are fed with the same number of group queries or in-

stance queries, actively learning classification models from group proportion feedback is able

to train more accurate models than from traditional instance feedback. Hence, the results

are promising in supporting our first hypothesis H1 (Section § 1.4). Besides, our method

also outperforms RIQY which is the state-of-the-arts active learning framework based on

group proportion feedback. The results lend credence to the fact that our hierarchical way

of forming groups can identify meaning groups more quickly. Therefore, the results also

provide positive evidence to our second hypothesis H2 (Section § 1.4).
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5.0 Hierarchical Active Learning From Region Proportion Feedback: HALR

5.1 Introduction

In the previous chapter, we presented HALG, the first implementation of our hierarchical

active learning framework. We have seen that HALG is able to identify good groups based on

hierarchical clustering. However, we also notice that it is hierarchical clustering itself, which

gives us a pre-compiled and a fixed hierarchy of groups, that limits its potential of finding

even more meaningful groups. The reason is that the group hierarchy may be completely

irrelevant to the underlying class distribution since it is formed unsupervisedly (clustering).

The consequence would be that many of those groups formed by hierarchical clustering can

still have very impure proportion labels (i.e. close to 0.5). Hence, fixed group hierarchy may

not help at all improve the learning efficiency.

Once we have accepted that groups can be described by conjunctive patterns that corre-

spond regions in the input data space, we can directly and dynamically split the input space

into smaller sub-regions for querying and learning. In this way, we are able to explore more

diverse regions that can be more relevant to the class distribution among instances; that

is, identify purer regions in fewer iterations, and hence accelerate the whole active learning

process.

To implement this new intuition, we develop a region-based active learning framework

called HALR [Luo and Hauskrecht, 2018b, Luo and Hauskrecht, 2019] (Hierarchical Active

Learning with proportion feedback on Regions) that learns classification models from region

proportion feedback. Briefly, our framework can actively build a hierarchical tree of regions

with the aim to refine the leaf regions to be as pure as possible after very few splits and

queries made. More specifically, our HALR starts from an unbounded region that covers

the entire input feature space X and this region initializes as the root of the tree. Then

we grow this tree incrementally by splitting the most uncertain leaf region into two sub-

regions. Whenever the new regions are generated, their proportion labels are either directly

assigned by a human annotator or inferred by the proportion constraint. The general picture
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Figure 5.1: An example of building a hierarchical tree of regions which is conceptually

equivalent to a decision tree. The left shows a snapshot of the tree structure after t = 3

splits, generated from the root region on the top level. Each rectangle represents a region and

the percentage number means its proportion label (for positive class). Each link is a value

constraint on some dimension ai and is inherited to all the descendant regions. To query the

proportion label of a new region (say the right one on the lowest level), we describe it by

using conjunctive patterns shown on the bottom right, and a human annotator will assign a

label to it according to its description. The label of the complementary region (the one on

the left) will be inferred according to the constraint between its parent’s and sibling’s labels.

is illustrated in Figure 5.1. In the end, our algorithm outputs a hierarchical tree of labeled

regions that can be either (1) directly used as a decision tree classifier, or alternatively, (2)

be used to learn many other classification models by learning from label proportion (LLP)

algorithm (Chapter § 3) or by the sampling-based learning algorithm proposed in HALG

(Section § 4.3).

The crucial part of our algorithm is to develop a strategy that splits the leaf regions

without knowing any labeled instances. To meet this challenge, we propose two instance-

based splitting heuristics that use approximated instance labels for splitting regions. The first

one is a supervised heuristic that relies on the base classification model we aim to learn. The

second one is an unsupervised heuristic that uses k-means clustering. Which heuristic should
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be chosen to split a specific region is a key question. We have implemented two different

procedures to solve this problem. In [Luo and Hauskrecht, 2018b], we design a competition

procedure which dynamically tests the two heuristics and chooses the better one (Section

§ 5.4); later in [Luo and Hauskrecht, 2019], we develop a more efficient procedure which is

based on Multi-Arm Bandits (MAB) algorithms (Section § 5.5). We will detail and compare

them in the following sections.

5.1.1 Framework Overview

Overall, the HALR framework is summarized in Algorithm 4. The goal of HALR is still

to learn a binary classification model P (y|x;θ) from region proportion feedback. Compared

to HALG, there are two improvements in HALR. First, the hierarchy of regions is formed dy-

namically. It is explicitly controlled by a supervised heuristic and an unsupervised heuristic.

The second is on active learning strategy. In HALG, we adopted maximum model change

which selects groups that could potentially improve the base model most. As we noted in

the last paragraph in Section § 4.3, this strategy is computationally expensive. In HALR,

we design a simple yet effective procedure for active region selection and split. This is done

in two steps: (1) choose the most uncertain region (Section § 5.2), and (2) actively split

it into two sub-regions. As mentioned, there are two different procedures to determine the

split dimension and value. One is a a competition procedure (Section § 5.4) and the other

is a more advanced one based on a MAB algorithm (Section § 5.5).

5.2 Uncertainty Of Regions

A region, which is defined by conjunctive patterns, represents a hypercubic sub-space in

the input space X . It may also contain a set of empirically instances that belong to U . A

region is assessed by human annotators who return a class proportion label to it.

Given the definition of regions we now want to define a score that would help us decide

which region should be split next in each active learning cycle. One sensible way is to use
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Algorithm 4 The HALR Framework

Input: An unlabeled data pool U ; A labeling budget

Output: A binary classification model P (y|x; θ̂)

1: T ← Build a 1-node tree whose root region is the entire feature space of U ;

2: Query the proportion label of T ’s root;

3: Leaf nodes L(1) ← {T ’s root};

4: Active learning time t← 1;

5: repeat

6: Train the base model P (y|x; θ̂
(t)

) with current leaf nodes L(t);

7: Choose a most uncertain region R∗ in L(t) to be split;

8: Divide R∗ into two sub-regions (it is co-decided by probabilistic clustering

and probabilistic classification (based on P (y|x; θ̂
(t)

));

9: Query or infer the proportion labels of the sub-regions derived from R∗;

10: L(t+1) ← {L(t) −R∗} ∪ {R′∗s sub-regions};

11: t← t+ 1

12: until the labeling budget runs out

13: return P (y|x; θ̂
(t)

)

the uncertainty (or impurity) of regions. This idea has been successfully used in decision

tree learning process. Here, the impurity is measured in terms of the entropy (C4.5) or the

Gini-Index (CART) scores. With the help of the impurity measure one can build a decision

tree recursively where in each step one leaf region is split along one of the input dimensions.

By comparing all possible splits for all eligible leaf regions, the best region and the best

split that leads to the maximum reduction in uncertainty, or the maximum information

gain, can be identified. Unfortunately, this process applied in the decision tree learning to

assess uncertainty and gain requires instance labels, and hence it cannot be replicated in our

framework where instance labels are unknown.

Another issue to consider in the development of the region splitting criteria is that the

information gain ignores the region size. Here the region size is defined as the empirical

number of instances contained in a region. Intuitively, the largest benefit from the split
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should be realized when not only the impure regions but also large regions are split. In light

of this, we propose a new uncertainty score that takes into account both the size and the

proportion label in deciding which region should be split next.

Suppose that at time t there are N (t) leaf regions L(t) = {(Ri, µi)}N
(t)

i=1 where each region

Ri = {xij}ni
j=1 has ni instances and has been assigned a label µi ∈ [0, 1] representing the

positive class proportion, our goal is to choose the most uncertain region R∗ to split. The

uncertainty of each region Ri is defined as the expected number of wrong labels (denoted by

wi) if we randomly guess the class labels of all instances in Ri based on its proportion label

µi. In particular, the procedure to calculate uncertainty is explained as follows:

1. For each instance in Ri, sample its label as an independent Bernoulli process with the

parameter = µi. This creates ni sampled labels;

2. Calculate the distribution of wi, i.e. the number of mismatches between the sampled

labels and the true labels. Although the true labels are unknown, each true label can be

assumed to follow an independent Bernoulli distribution with the parameter = µi. There-

fore, the probability of mismatch for each instance also follows in independent Bernoulli

distribution with parameter = P (mismatch) = P [false positive] +P [false negative] =

2µi(1− µi). Then apparently wi follows a Binomial distribution Bin(ni, 2µi(1− µi));

3. And use the expectation E(wi) = 2µi(1− µi)ni as the uncertainty of Ri.

This uncertainty defined above clearly shows that larger ni or more uncertain µi (closer to

0.5) leads to more uncertainty of region Ri. Please note here 2µi(1 − µi) matches exactly

the definition of Gini-Index, so throughout our work we will choose Gini-Index as the gain

measurement for later use. Finally, we select R∗ = arg maxRi∈L(t) E(wi) to be the most

uncertain region to split at current active learning cycle t.

5.3 Two Heuristics For Splitting Regions

Now given the region R∗, we need to determine what input dimension to split and what

value should be used to define the split. Since there are no labeled instances in our framework,
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we develop two heuristics to drive the split.

5.3.1 Supervised Heuristic

Our first heuristic is supervised and it relies on the base classification model. In var-

ious active learning algorithms, the base model plays an important role in determining

which data should be queried next. An example is the classic Uncertainty Sampling ap-

proach [Settles, 2012]. The base model reflects the current belief of the class distribution

on instances and thus its guidance on the region splitting cannot be ignored. Formally, at

learning time t, the base model is learned as P (y|x; θ̂
(t)

) so each instance x∗j will have a

Supervised probabilistic label pSj reflecting the likelihood of belonging to one of the two

classes. Here pSj = P (y = 1|x∗j; θ̂
(t)

). Given these instance-level labels, a standard decision

tree splitting procedure based on information gain can be now directly applied to split R∗.

Here we use Gini-Index and say this procedure gives us the empirically optimal split of R∗

from value vS on dimension aS based on the set of probabilistic unsupervised labels {pSj }.

5.3.2 Unsupervised Heuristic

The second heuristic is unsupervised. It is based on probabilistic clustering. Clustering

is a simple yet often effective guidance. The assumption behind it is that similar data

instances tend to carry similar class labels and it has been used frequently in semi-supervised

learning [Zhu et al., 2003]. In other words, dissimilar data are likely to fall into different

classes and thus the region splits should be driven by the underlying structure of data.

To implement this idea, we perform a 2-means probabilistic clustering on the instances

{x∗j}n∗j=1 in R∗, assuming there is mix of two cluster centers in {x∗j} and the probabilities

of cluster membership are given by Expectation and Maximization (EM) algorithm. Hence,

each instance x∗j will have an Unsupervised probabilistic label pUj indicating the chance of

belonging to one of the two clusters. Similarly, given these instance-level labels Gini-Index-

based gain can again be applied to split R∗ and say it gives the best split from value vU on

dimension aU .

Table 5.1 summarizes the pros and cons of the two heuristics. Initially when the super-
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Table 5.1: Comparison of the two heuristics.

Supervised Heuristic Unsupervised Heuristic

Pros
Gives instance-level estimates which di-

rectly reflect the class distribution

Relies on the semi-supervised as-

sumption which is often effective

Cons
But initially these estimates are poor

simply because the supervision is little

But this assumption may not hold

all the time

vision is scarce, the base model trained can be very likely to make biased decisions. This

problem was formally stated as sampling bias by Dasgupta et. al. [Dasgupta and Hsu, 2008]

and they leverage hierarchical clustering to assist the base model. In our framework, we

use clustering also as an unsupervised heuristic to alleviate the bias issue. However, the

unsupervised heuristic may not always work well in the long run. Therefore, the best option

appears to be the combination of the two heuristics.

5.4 Combination Of The Two Heuristics: A Competition Procedure

To combine the two heuristics, we first introduce a competition procedure as shown in

Algorithm 5. The key idea is to perform a test split on each of the proposed splits separately

and compare their actual gains. Larger gain is better and so the final split will take whatever

the corresponding heuristic suggests. We also maintain a list H that records the winning

history of the heuristics in the past splits and this H will be used to test whether the

supervised heuristic is doing significant better than the unsupervised one in the long run. If

the test result is significant, it marks that our base model is good enough to make splitting

decisions alone; from then on, every region split will only be determined by the supervised

heuristic. That is, the following procedure will not be called any more once we believe the

supervised heuristic is performing significantly better and the final split will directly take

the supervised proposal.
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Algorithm 5 The competition procedure of choosing a heuristic

Input: Unsupervised split (aU , vU); Supervised split (aS, vS); Winning history H

Output: The final split (aF , vF ); updated history H; Binomial test result of supervised

heuristic

1: Binomial test result r ← Not significant

2: if aU = aS and vU = vS then

3: aF ← aS; vF ← vS;

4: else

5: Do a test split on (aU , vU) and get its gain GU ;

6: Do a test split on (aS, vS) and get its gain GS;

7: if GU > GS then

8: Append “Unsupervised heuristic wins” to H;

9: aF ← aU ; vF ← vU ;

10: else

11: Append “Supervised heuristic wins” to H;

12: aF ← aS; vF ← vS;

13: Test result r ← Binomial test (Algorithm 7) on H;

14: end if

15: end if

16: return (aF , vF ), H and r

5.4.1 Test Split

The test split and the calculation of the gain procedure called in line 5 or 6 is identical

to the evaluation of a standard decision tree splitting. Algorithm 6 shows how to calculate

the gain GS of the test split on R∗ proposed by the supervised heuristic. The gain of GU

can be calculated similarly.

60



Algorithm 6 Evaluation of One Region Split

Input: A labeled region (R∗, µ∗); A splitting heuristic a ∈ {aU , aS}

Output: the information gain Ga after splitting R∗

1: Split R∗ from value v on dimension d suggested by heuristic a into two sub-regions RL

and RR;

2: Route each instance in R∗ to RL or RR by testing the feature value of the instance on

dimension d either < v or ≥ v;

3: Query the proportion label of either sub-region. Say RL is annotated by human with a

label µL;

4: Infer the label µR of RR. This does not require a human assessment. Because of the

proportion label constraint: nLµL + nRµR = n∗µ∗ with nL + nR = n∗, where nL, nR

and n∗ are the number of instances contained in RL, RR and R∗, µR is calculated as:

(n∗µ∗ − nLµL)/nR;

5: Apply Gini-Index to calculate the information gain:

Ga = I(µ∗)−
nL

n∗
I(µL)− nR

n∗
I(µR)

where I(µ) = 2µ(1− µ).

6: return Ga

5.4.2 Binomial Test

Algorithm 7 provides the detail of the Binomial test that decides whether the supervised

heuristic is doing significantly better than the unsupervised one. The null hypothesis H0

means the supervised heuristic is doing equally well or worse than the unsupervised heuristic

in the latest W trials. In other words, the winning chance of the supervised heuristic pS

is ≤ 0.5. Under H0, the number of supervised wins B∗ follows a Binomial distribution

Bin(W, 0.5) and we do a right-tailed test of B∗ to carry out the p-value. We reject H0 if the

p-value is less than a given confidence level α and choose the alternative.

To make the test more conservative, multiple such tests with different window sizes can

be done simultaneously. To ensure the same family wise error rate α, Bonferroni correction
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Algorithm 7 Binomial test of the supervised heuristic

Input: Winning history of heuristics H; Window size W ; Significance level α

Output: Significant or Not significant

1: if length(H) < W then

2: return Not significant

3: end if

4: H0: winning chance of supervised heuristic pS ≤ 0.5 in the last W trials in H;

5: HA: pS > 0.5

6: Test statistic B∗ ← number of supervised wins in the last W outcomes;

7: p value← do binomial test on B∗;

8: return Significant if p value < α else Not significant

can be applied. In our implementation, we combine a short term window WS = 5 and a long

term window WL = 10 with the same family wise α = 0.05. The purpose of conducting two

tests together is to ensure that the supervised heuristic indeed has a stable performance.

5.5 Combination Of The Two Heuristics: An MAB-Based Procedure

5.5.1 Interpretation of HALR As An MAB Problem

In the previous section, we have seen the completion procedure that dynamically tests

the two splitting heuristics and then chooses the better one to perform the final split. In

other words, before the Binomial test gives Significant outcome each split would consume

two queries. This immediately leads a question: can we improve the splitting efficiency such

that every split only takes just one query? In this section, we give a positive answer by

proposing a more advanced splitting procedure.

We notice that our “dynamic heuristic choosing” puzzle can be formulated as a Multi-

Arm Bandit (MAB) problem. MAB is a rich and multi-disciplinary area studied extensively

in Statistics, Economics, Operations Research, and Computer Science [Slivkins, 2018]. It is

62



used to model a plethora of dynamic optimization problems under uncertainty. The basic

setting is simple: there is a fixed and finite set of actions, aka K arms and each arm can be

pulled (chosen) with a unit cost but gives the puller a reward which is independently and

randomly generated from a unknown reward distribution. Each arm may have a different

reward distribution and the only way we know about the distribution is only through the

sample rewards we have pulled. Given a fixed number of times T that one can pull, the goal

is to find a good policy (i.e. at each time t = 1, 2, ..., T decides which arm to pull) such that

the total sum of rewards can be maximized. In this dynamic learning setting, there exists a

tension between the acquisition cost of new information (exploration) and the generation of

instantaneous rewards based on the existing information (exploitation). A simple algorithm

called uniform exploration is to pull each arm several times and then always choose the

arm with the maximum averaged rewards to pull for the rest times. This approach has a

major flaw that the exploration schedule does not depend on the history of the observed

rewards. It is usually better to adapt exploration to the observed rewards. Hence, a lot of

good algorithms belonging to adaptive solution set have been developed [Slivkins, 2018].

Thus, if the framework HALR is reformulated as a MAB problem, it is not hard to see:

(1) the total number of active learning cycles is equal to T and each cycle t corresponds

to each time index; (2) there are K = 2 arms that are the two region splitting heuristics

unsupervised heuristic and supervised heuristic; (3) the reward of choosing each heuristic is

the information gain brought by that heuristic; (4) at each cycle t, we should develop a good

procedure (policy) that chooses one heuristic to split the most uncertain region. In HALR,

the policy is one type of uniform exploration. In this section, we implement a near-optimal

adaptive policy proposed by [Besbes et al., 2014] and we name this advanced method as

A*HALR.

5.5.2 An Adaptive Heuristic-Choosing Policy

To solve the heuristic-choosing problem, we propose an adaptive policy based on Multi-

Arm Bandits (MAB). First let us reformulate our hierarchical active learning framework

(Algorithm 4) as a MAB problem:
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1. The total number of active learning cycles T is equal to the total number of pulls in

MAB;

2. There are only two heuristics {aU , aS} (aka K = 2 arms) to choose from, where aU or aS

denotes the unsupervised heuristic or supervised heuristic.

3. In each cycle t = 1, 2, ..., T , a policy π(t) : [T ]→ {aU , aS} decides which heuristic to use;

4. The reward Xπ
t , calculated by Algorithm 6, is the information gain after splitting R∗

guided by heuristic a = π(t). We assume Xπ
t is a random variable drawn from a un-

known distribution Pφ(t) , where φ(t) is the mean reward at time t. This φ(t) can vary

for different heuristics, so it is further denoted by φ
(t)
a , where a ∈ {aU , aS}. Another

important fact is that the superscript t reflects that the mean rewards for both heuristics

can change over time. So it is categorized as MAB with non-stationary or stochastic

rewards [Besbes et al., 2014]. In this sense, φ
(t)
a is also a random variable.

5. In the paper of [Besbes et al., 2014], φ
(t)
a is assumed to be bounded by a variation budget

B = {Vt : t = 1, 2, ..., T} which is a non-decreasing sequence of positive real numbers

such that V1 = 0, KVt ≤ t for all t. Then the possible values of the mean reward

sequence for both heuristics, denoted by φ = ((φ
(1)
U , ..., φ

(T )
U )T, φ

(1)
S , ..., φ

(T )
S )T)T, fall into

the corresponding temporal uncertainty set V :

V = {φ ∈ [0, 1]K×T :
T−1∑
t=1

sup
a
|φ(t+1)
a − φ(t)

a | ≤ VT}

Remarks: the reasoning of using B and V is to describe the magnitude that how φ
(t)
a

changes over time. VT bounds the maximum sum of those changes over T . So VT should

in general be designed as a function of T . We will study and compare φ
(t)
a for both our

heuristics later.

6. The quality of each policy π is measured by regret compared to a dynamic oracle as

the worst-case difference between the expected performance of choosing at each cycle

t the heuristic which has the highest expected reward φ
(t)
∗ at t (the dynamic oracle

performance) and the expected performance under policy π. That is:

Rπ(V , T ) = sup
φ∈V
{

T∑
t=1

φ(t)
∗ − Eπ[

T∑
t=1

φ(t)
π ]}
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Figure 5.2: The variation of mean rewards over time.

7. Finally, given the prior knowledge of B and V , our goal is to find a good policy π that

minimizes its regret Rπ(V , T ). In our problem, it means that we should construct a

hierarchical tree of regions where the leaf regions can be refined as pure as possible after

very few splits and queries made. That is, the maximum information gain is realized.

5.5.2.1 Mean Rewards Of The Two Heuristics As we have seen, to implement an

adaptive policy requires the design of a variation budget B and a temporal uncertainty set

V . So a question is: how do the mean rewards φ
(t)
a of the both heuristics change over time?

Recall in Section 5.3, we have the prior knowledge that at very beginning (when t is very

small), unsupervised heuristic is very likely to perform better (φ
(t)
U > φ

(t)
S ); however, when

more regions are labeled (as t increases), supervised heuristic will catch up and may probably

exceed unsupervised heuristic (φ
(t)
U < φ

(t)
S ). So their changing trends can be roughly plotted

in Figure 5.2. Several remarks:

1. The mean reward of unsupervised heuristic φ
(t)
U should be stable over time as it does not

really vary regardless of how many labels are given.

2. The mean reward of supervised heuristic φ
(t)
S will increase when more labels are revealed

but its changing trend (slope) may decrease as the base classifier starts to converge.

Previous work [Luo and Hauskrecht, 2018b] has shown similar curves of the performance

increase of the base models.
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Algorithm 8 A Near-Optimal Policy π

Input: γ ∈ [0, 1]; A batch size ∆T .

1: for all batch of cycles with size = ∆T do

2: Set w
(t)
U = w

(t)
S = 1 for both heuristics;

3: for all cycle indexed at t in current batch do

4: p
(t)
U = (1− γ)

w
(t)
U

w
(t)
U +w

(t)
S

+ γ/K;

5: p
(t)
S = 1− p(t)

U ;

6: Choose a heuristic a randomly according to the distribution {p(t)
U , p

(t)
U };

7: Split R∗ suggested by a;

8: Receive a reward X
(t)
a according to Algorithm 6;

9: Boost w
(t+1)
a ← w

(t)
a exp{γX

(t)
a

p
(t)
a K
};

10: Keep w
(t+1)
a′ = w

(t)
a′ for a′ 6= a;

11: end for

12: end for

3. Both curves drop in the end as the leaf regions become purer and purer (so with less

gain). Of course, the tails are of less interest.

4. So how to choose the variation budget function VT mainly depends on the mean reward

curve of supervised heuristic. According to the plot, the shape of φ
(t)
S can be bounded by

a log function. Well, to be more conservative, we choose a looser bound of a square-root

function: VT = O(T 1/2).

5.5.2.2 A Near-Optimal Adaptive Policy We implement a near-optimal policy of

choosing heuristics suggested by [Besbes et al., 2014] with VT = O(T 1/2) assumed. The key

to dealing with MAB with non-stationary rewards is to break the whole T cycles into batches

of size = ∆T and then explore/exploit heuristics independently in each batch. Each heuristic

is chosen with a mixed probability of Boltzmann distribution and uniform distribution, bal-

anced by a constant γ. Within each batch, initially each heuristic is chosen with equal chance

and then the probability of the chosen one will be boosted by the reward obtained. Algo-

rithm 8 details this policy. Its near-optimality is proved by Theorem 2 in [Besbes et al., 2014]
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when the batch size ∆T = d(K logK)1/3(T/VT )2/3 and with γ = min{1, ( K logK
(e−1)∆T

)1/2}. In

our experiments, we set these two hyper-parameters accordingly.

5.6 Experiments

In this section, we test to what extent that our new framework HALR, A*HALR are able

to improve upon HALG. We thereby use the same data sets and follow the same experiment

settings that were used in HALG (Section § 4.5). We also include RIQY which was the

second best method behind HALG.

5.6.1 Main Results

The main results are shown in Figure 5.3. Our graphs plot the AUC scores after each

t < T = 200 region queries are posed which is large enough for all methods to converge. And

to best visualize each plot, we omit the remaining tails of curves after most methods have

converged. Overall, our new implementations HALR and A*HALR are able to outperform

other methods on majority of the datasets and are close to HALG on the remaining sets

(Pima and Music).

Compared to HALG, among 9 data sets, HALR wins on 7 data sets, and loses on 2

sets (Pima and Music). So in general, HALR shows a better performance than HALG. This

is primarily attributed to HALR’s new region-construction strategy rather than HALG’s

learning with groups. The active learning that HALR uses is capable of finding the most

uncertain region and splitting it by explicitly using supervised heuristic and unsupervised

heuristic. Consequently, it can further accelerate the model convergence rate.

Moreover, the advanced version A*HALR demonstrates an even better performance,

A*HALR is able to outperform HALR on 7 datasets and ties on Music and Messidor.

It is expected since A*HALR uses an adaptive Bandit algorithm which often works more

efficiently than a uniform exploration approach that was used to HALR. Compared to HALG,

sometimes we lose (on datasets Pima and Music). One reason could be that for particular
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Figure 5.3: Performances of different methods on 9 UCI data sets.

datasets if clustering is highly associated with classification, then HALG (where clustering

dominates) may be able to learn more efficiently. But in general, these results lend great

credence to A*HALR’s adaptive region division algorithm which in principle benefits from

the near-optimal heuristic-choosing policy developed to solve Multi-Arm Bandit problems

with non-stationary rewards.

5.6.2 Runtime Results

Besides, we also compare the actual runtime of HALG and HALR. As mentioned earlier,

HALG is computational expensive because it needs to compute model change for every
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Figure 5.4: Total runtime (seconds) of different methods on the first 100 queries.

candidate group in every cycle. One remedy would be to parallelize the calculation of model

change for different candidate groups as each group is independent to others.

To illustrate how much time it takes for all methods we show in Figure 5.4 the total

runtime (in seconds) that is needed to pose the first 100 queries. The chosen 4 data sets are

the most complex or the largest sets among all the data sets so they can best represent the

runtime of different methods. Apparently according to the results, HALR is able save the

runtime significantly compared to HALG or even parallelized HALG.

5.7 Chapter Summary

In this chapter, we presented HALR, a second framework that can actively learn instance-

based classification models from region (group) proportion feedback. The high-level idea is

to directly split the input space and dynamically form regions for querying, much like the
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decision tree learning algorithm. But unlike decision tree learning, we do not have labeled

instances to determine the splits. So we develop a region-based procedure for active region

selection and split. This is done in two steps: (1) choose the most uncertain region, and (2)

actively split it into two sub-regions. The split dimension and value are determined by a

competition procedure (HALR) or an MAB-Based procedure (A*HALR) with unsupervised

heuristic and supervised heuristic.

Compared to HALG, there are two essential benefits. First, while HALG identifies groups

within a fixed group hierarchy, HALR allows more flexibility to explore meaningful groups.

The positive outcome is that since each region selection and split is explicitly controlled by

the base model (supervised heuristic), HALR is able to find regions that are more relevant to

the class distribution. Hence, HALR is able to identify purer regions more quickly. Second,

the active learning strategy maximum model change used in HALG requires much more

computation power than the active procedure used in HALR. Indeed, according to our

experiment results, HALR is able to learn more efficiently than HALG, no matter in terms

of number of queries, or runtime.

Lastly, we would like to note that the two hypothesis H1 and H2 (Section § 1.4) are also

supported by the results. The two representative instance-based active learning methods

DWUS and HS have been shown inferior to HALG previously, and thereby perform less well

than HALR; compared to the representative group-based active learning method RIQY, both

HALG and HALR outperform it, and thus our hierarchical active learning framework has

been demonstrated more query-efficient.
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6.0 Hierarchical Active Learning With Overlapping Regions: HALOR

6.1 Introduction

6.1.1 Limitations Of Building Single Hierarchies

In our second completed work HALR, we have seen the potential of learning models

from regions with proportion feedback. The regions identified for learning are formed hi-

erarchically. To build such region hierarchy, we repeatedly split and query one leaf region

(initially it is the region region X ), and then learn from the new set of leaf regions that

are disjoint to each other. While this hierarchical solution works well, we do notice there is

one major limitation in current solutions. The problem of HALR is that if some splits are

uninformative (i.e. little information gain after the split), we cannot “revert” such splits.

As those uninformative splits are already made, they will permanently affect the successive

hierarchy building process. As we have seen in HALR, the initial several splits dominate

the construction of the whole hierarchy. It is a dangerous situation because initially there is

very little supervision given so the splits are often determined by clustering (unsupervised

heuristic) that may be irrelevant to the underlying class distribution. Therefore, the initial

splits overly dominate the hierarchy building process, and thus the regions formed may not

be meaningful to humans or to model learning. Another drawback of HALR is that the

leaf regions can be progressively more complex and specific as the hierarchy grows deeper; a

negative effect of this is that the conjunctive patterns may become very difficult for humans

to review and assess.

To further understand the limitation, let’s consider one example. Suppose in a learning

task we are interested in predicting when a particular disease will be present on a patient.

The input space X consists of patient features. Assume the first split performed on the root

region X is “Age ≤ 40” or “Age > 40”. Then we can imagine that all successive queries

must include either “Age ≤ 40” or “Age > 40” in their conjunctive patterns. In the worst

situation, if the first split is uninformative, i.e. not mattering at all for physicians to diagnose
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Figure 6.1: An illustration of the multiple-hierarchy solution HALOR applied to the survival

analysis for colorectal cancer patients. The figure shows two trees that are constructed using

different feature combinations.

the disease, then all the successive queries will be very awkward for human annotators. They

may complain that “I have said that patient’s age greater or less 40 is not important; why

do you keep sending me queries with this information?”.

6.1.2 Framework Overview

In order to mitigate the above issues, we propose and develop a more robust approach

HALOR that grows multiple HALR trees in parallel and permits learning with multiple

Overlapping regions. Algorithm 9 gives the main steps. The solution is intuitive - if one

hierarchical tree turns out to be uninformative or class-irrelevant, we can grow different

trees to find more informative regions. For this purpose, we need to diversify the feature

combinations in constructing different hierarchies. Figure 6.1 illustrates the idea. Hence,

the multiple-hierarchy solution HALOR appears to be more robust. In addition to this, we

note that by growing multiple trees we have multiple different regions to choose from, and

in general, the complexity of all possible regions we can query and want to assess is not as

high when compared to the approach with one tree hierarchy. As a result, the multiple-

tree solution has a tendency to rely on less complex regions and thus makes it easier for

humans to annotate such regions. Lastly, another difference of HALOR is on the learning

algorithm. Since now regions created by HALOR can overlap to each other, the sampling
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Algorithm 9 HALOR Framework

Input: Unlabeled data pool U ; Labeling budget B; # of trees K

Output: A binary classification model P (y|x; θ̂)

1: Initialize a root region R

2: Query the class proportion µ of R

3: Initialize K trees, each having one split on R

4: Query or infer the class proportions of all the child regions

5: Maintain a fringe F (K+1) of all the leaf regions of the K trees

6: Active learning timer t← K + 1 (# of queries)

7: repeat

8: Learn the base model P (y|x; θ̂
(t)

) from F (t)

9: Identify the most informative split (d∗, v∗, R∗), where R∗ from F (t)

10: Split R∗ from value v∗ at dimension d∗

11: Query or infer the class proportion of the new sub-regions

12: F (t+1) ← {F (t) − (R∗, µ∗)} ∪ {R∗’s labeled sub-regions}

13: t← t+ 1

14: until the budget B runs out

15: return P (y|x; θ̂)

based algorithm (Section § 4.3) used in HALG and HALR does not apply to HALOR. To

this end, we will leverage a standard LLP learning algorithm introduced in Chapter § 3. In

the following text, we provide the details of HALOR and its implementation.

6.2 Building Of One Hierarchy

We first talk about how to construct one HALOR hierarchy of regions. Building K

different HALOR hierarchies can be further extended.
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6.2.1 Preliminaries

Before we proceed, let us quickly review some notations used before and then introduce

new ones. Our goal is to learn a binary classification model f : X → Y = {0, 1} which can

make label inference for any instance x ∈ X . X ⊂ Rm is the input data space and it consists

of m features {d1, ..., dm}. The features can be numeric, nominal and categorical. Without

loss of generality, we proceed with learning of a binary probabilistic model P (y|x;θ), and

we refer to it as our base model. To perform the actual LLP learning, we collect a pool of

unlabeled data U = {xi|xi ∈ X , 1 ≤ i ≤ n} as our training data, and we assume the data

have been properly normalized and encoded according to their feature types.

A region R is a hypercubic subspace of the input space X , defined as a pair R = (C,D).

C is the region description, realized by using conjunctive patterns that are joint value ranges

over the input features:

C = (v1,min < d1 ≤ v1,max) ∧ ... ∧ (vi,min < di ≤ vi,max) ∧ ...

Absence of any feature (or value) in conjunctive patterns indicates unbounded values on

that feature dimension. D ⊂ U is the faction of empirical data of which the feature values

are satisfied by the conjunctive patterns C. Each region R also comes with a label µ that

is class proportion of the instance subpopulation represented by that region. By assuming

that instances in U are i.i.d. sampled according to the underlying distribution of data p(x),

and that there are sufficiently many of them, we assume that the class proportion of the

empirical instances D is close to µ and the difference is negligible.

Algorithmically, HALOR starts from an unbounded region R that covers the entire X

space and this region serves as the root of the hierarchy (or tree). R also covers all data

instance U we have collected. Thus R can be denoted by R = ({},U) where the conjunctive

pattern set is empty because of no value constraint defining it. The class proportion of

R is the prior class distribution p(y = 1), annotated by a human. With such a 1-node

tree defined, we incrementally grow the tree by repeatedly performing a rectangular, binary

split on one of the leaf regions. Formally, suppose at each time step t = 1, 2, ... (t = the

number of queries consumed so far) there are N (t) = t labeled leaf regions in a fringe:
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F (t) = {(Ri, µi)|1 ≤ i ≤ N (t)}. Our procedure aims to find the most influential split

(d∗, v∗, R∗) which refers to the split of a region R∗ in fringe F (t) using feature dimension

d∗ and its value v∗. The influence of a split is measured by how much class entropy it

can reduce. After the split, we solicit the class proportion of either sub-region from human

annotators and then infer the proportion of the other. The label inference is valid because

the total proportion remains unchanged during the split. Finally, we expand the fringe

F (t+1) ← {F (t)− (R∗, µ∗)} ∪ {(R∗)′s sub-regions}, and re-train the base model with the new

F (t+1) by LLP algorithm.

6.2.2 A Comparison To HALR

Building one HALOR hierarchy is very similar to building HALR except for the following

two differences (or improvements). First, we notice that the ultimate goal of HALR’s active

learning strategy is to find a very informative split that is made on some region. Yet HALR

does it in two separate steps: (1) identifies the most uncertain region and then (2) seeks the

most informative split only on that region. While it is sensible to split the most uncertain

region, it may not produce the most information gain in the end, in that large uncertainty

in parent region does not guarantee an informative split in the end. An extreme case is that

the new sub-regions might be of the same uncertainty as their parent, and consequently the

information gain would be zero. Having realized such a shortcoming, in HALOR, we combine

the region selection and split procedures as one step and explicitly study the information

gain globally with every possible split made on every candidate leaf region.

The second difference is that HALR treats the two splitting heuristics as two independent

actions. That is, in each iteration they only choose one of the two heuristics to split the most

uncertain region. They formulate the action-choosing puzzle as a Multi-Arm Bandit (MAB)

problem and a MAB algorithm can strategically choose the better heuristic to perform the

split. The key to a MAB framework is the trade-off between exploration and exploitation;

HALR used a naive uniform exploration strategy which blindly tests each heuristic and

choose the heuristic with more information gain; A*HALR improved the algorithm by using

an adaptive exploration strategy that smartly selects a better heuristic based on the past
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performance of the two heuristics. Either of the MAB algorithms, however, requires explo-

ration steps that waste initial queries on exploring supervised heuristic that is yet known to

be poor in the beginning. In HALOR, we combine the two heuristics into one formula and

thus avoid the action-choosing puzzle. We explicitly balance the two heuristics by using a

supervised weight which is determined by the current model performance. In this way, we

not only simplify the heuristic choosing procedure but also associate the heuristic weights

with the model performance.

6.2.3 Active Region Selection And Split

Building one HALOR hierarchy is similar to growing a decision tree. Recall that when we

build a decision tree we iteratively split one leaf region using one the input dimensions and its

value. By comparing all eligible splits for that region, the split that leads to the maximum

information gain, or equivalently, maximum impurity reduction, is identified as the best

region split. The impurity is measured by using labeled instances that fall in the region. In

HALOR we still use Gini-Index as the impurity measurement, i.e. I(µ) = 2µ(1− µ). More

formally, suppose one eligible split (d, v) splits a region Ri into two sub-regions Rl and Rr.

Then, the information gain of this split is defined as:

G(d, v, (Ri, µi)) = Gain(d, v, (Ri, µi)) = I(µi)−
nl

ni
I(µl)− nr

ni
I(µr) (6.1)

where I(µ) is the impurity measure for a region with a class proportion µ; µi, µ
l, µr are

the class proportions calculated from data instances in regions Ri, R
l, Rr; ni, n

l, nr are the

number of instances.

Back to our HALOR framework, unfortunately, such region splitting process cannot be

replicated exactly as we do not know any instance labels. Therefore, in order to implement

decision tree like splits in HALOR, we still leverage the two heuristics used in HALR (Section

§ 5.3).
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6.2.3.1 Supervised Heuristic Suppose the base model is learned as P (y|x; θ̂
(t)

) from

F (t), then the class proportion of any sub-region Rs (s = l or r) can be inferred as:

µ̂s =
1

ns

ns∑
j=1

P (yj = 1|xj; θ̂
(t)

) (6.2)

With such approximation we can calculate the supervised information gain of a split (d, v)

made on region Ri:

Gs(d, v, (Ri, µi)) = I(µi)−
nl

ni
I(µ̂l)− nr

ni
I(µ̂r) (6.3)

where µi is the true proportion label of Ri, and µ̂l and µ̂r are the estimated class proportions

of sub-regions Rl and Rr.

6.2.3.2 Unsupervised Heuristic We implement the unsupervised heuristic based on

2-means clustering. Consider splitting a region Ri in the current fringe of leaf regions F (t).

We perform a 2-means probabilistic clustering on the instances Di = {xij}ni
j=1 in Ri. After

clustering, each instance xij will have an unsupervised probabilistic label puij indicating the

chance of belonging to one of the two clusters. Given these instance-level labels, we use the

following equation to measure the information gain (w.r.t. separating clusters) of a split

(d, v) that is made on region Ri along feature dimension d at value v:

Gu(d, v, Ri) = I(µ̃i)−
nl

ni
I(µ̃l)− nr

ni
I(µ̃r) (6.4)

where µ̃i, µ̃
l, µ̃r are the cluster proportions of the parent region Ri and the two sub-regions

Rl, Rr.
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6.2.3.3 Combination Of The Two Heuristics Different from HALR which treats the

two heuristics as two different actions, in HALOR we combine their gains as one formula.

That is, we define the final gain of splitting region Ri at (d, v) as a weighted sum of the

supervised gain (Gs) and the unsupervised gain (Gu) defined above:

Gs+u(d, v, (Ri, µi)) = α(t)
s ·Gs(d, v, (Ri, µi)) + (1− α(t)

s ) ·Gu(d, v, Ri) (6.5)

where α
(t)
s ∈ [0, 1] is the weight of supervised gain. Intuitively, α

(t)
s should be small initially

(when the model is poor) and then gradually increases as the model becomes more accurate.

To realize this intuition, we set α
(t)
s ∝ [1/ε(t)]2 where ε(t) is the training error of fitting the

model to the labeled regions in F (t){(Ri, µi)|1 ≤ i ≤ N (t)}:

ε(t) = ε(F (t), θ̂
(t)

) =
N(t)∑
i=1

ni
n
|µ̂i − µi| (6.6)

where

µ̂i =
1

ni

ni∑
j=1

P (yj = 1|xj; θ̂
(t)

) (6.7)

6.2.3.4 Selection And Split Of The Most Influential Region Finally, with Equa-

tion (6.5) defined above, we can iterate each possible split that can be made on each region

(Ri, µi) in the fringe F (t), and identify the most informative split (d∗, v∗) made on a region

R∗ that would lead to the maximum reduction in the impurity measure. That is:

(d∗, v∗, R∗) = arg max
(d,v) splits (Ri,µi)∈F (t)

[ni
n
·Gs+u(d, v, (Ri, µi))

]
(6.8)
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6.3 Building Of Multiple Hierarchies

6.3.1 Initialization Of Multiple Hierarchies

Building multiple region hierarchies extends from the process of building one HALOR

hierarchy. We initialize an unbounded root region R that is equivalent to the entire input

space X . It covers all data instances U . The root region is queried with a class proportion

µ. After that, we split the root region K times to create K different trees where each tree

has only one split and the split dimension is different from the other K−1 trees. As initially

we do not have enough supervision, we do the K splits using unsupervised heuristic. More

specifically, we first perform a 2-means clustering on the instances U and then choose the top-

K features (associated with their best split values) that can best separate the two clusters.

Again, the best split is the one that gives rise to the maximum unsupervised information

gain (see the notation used in Equation (6.4)):

Gu(d, v, R) = I(µ̃)− nl

n
I(µ̃l)− nr

n
I(µ̃r) (6.9)

Unsupervised splits, however, may find features that are not very relevant to the classification

task we want to solve. This bias issue, in general, is unavoidable in weakly supervised

learning, but can be mitigated by multiple different trees. We will see in the experiments

that even a small K ≈ 2, 3 can effectively alleviate such issue. After each of the K splits, we

query one sub-region and then infer the label of the the other. In the end, the initialization

phase outputs K one-split trees, together 2K labeled regions in total. We put them into the

fringe F (K+1).

6.3.2 Active Region Selection And Split

The active region selection and split procedure remains the same as in Section 6.2.3

(except one modification that will be discussed later). That is, given the fringe F (t) of

labeled leaf regions at time t, we split the most influential region that leads to the maximum

combined information gain:

(d∗, v∗, R∗) = arg max
(d,v) splits (Ri,µi)∈F (t)

[ni
n
·Gs+u(d, v, (Ri, µi))

]
(6.10)
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where Gs+u(d, v, (Ri, µi)) is the combination of the unsupervised and supervised gains:

Gs+u(d, v, (Ri, µi)) = α(t)
s ·Gs(d, v, (Ri, µi)) + (1− α(t)

s ) ·Gu(d, v, Ri) (6.11)

6.3.2.1 Removal Of Region Duplicates One key point of HALOR is to diversify re-

gions it generates. However, it is still possible that the regions generated from two different

trees become identical or very close to each other. To prevent this we define a region removal

procedure that executes before Formula (6.10) and removes the region duplicates from con-

sideration. We note that this procedure is also applied for the initial K splits that seed K

different hierarchies (trees). We define the region duplicates as follows:

Definition 4. Given two regions R1 = (C1, D1) and R2 = (C2, D2). Let S1, S2 denote a set

of unique features that are used in conjunctive patterns C1, C2. Let D = D1∩D2 denotes the

intersection of data instances D1, D2. If (1) S1 ≡ S2 and (2) either |D|/|D1| or |D|/|D2|

is greater than a threshold γ ∈ [0, 1], then R1 and R2 are duplicates.

The first condition requires that the duplicate regions must be described by the same set of

features. Even though a region is a super set of another, if they are described by different

features they are not considered duplicate in that the smaller region is described more specif-

ically and can acquire more accurate label information. The second condition ensures that

two duplicate regions have sufficient overlapping with each other. In our experiments we

set γ = 0.1 to perform a strict deduplication. With the definition above, when we traverse

all eligible splits for each of the leaf regions in Formula 6.10, we first apply a deduplica-

tion procedure that disregards any invalid split (d, v) if it generates at least one sub-region

that is duplicate to any other regions in F (t). Formally, consider a split (d, v) that splits

a region Ri ∈ F (t) into two sub-regions Rl and Rr. If Rl or Rr is duplicate to any region

R′ ∈ F (t) − {Ri}, then the split (d, v, Ri) is invalid and will be disregarded. An efficient

implementation of this procedure is to first select out valid features as well as valid values

and then only compute gains for these valid splits.
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6.4 Learning From Overlapping Regions

After acquiring labels for the new sub-regions, the new fringe regions can be calculated

as:

F (t+1) = {F (t) − (R∗, µ∗)} ∪ {(Rl, µl), (Rr, µr)} (6.12)

To learn a classification model from the labeled regions (some of them overlap), we can then

adopt the general LLP learning algorithm presented in Section 3.3. We design a loss function

in spirit of the weighted lease squares:

L(F (t);θ) =
N∑
i=1

ni
n

(µ̂i − µi)2 + λC(θ) (6.13)

where µ̂i is the estimated class proportion by the base model (Equation 6.7) and λC(θ) is

the regularization term penalizing model complexity. In our experiments we use L2 penalty:

C(θ) = ‖θ‖2.

Finding of the best parameter θ̂ can be worked out by a standard optimization program

[Givens and Hoeting, 2012]. We use a gradient-based optimization approach. The loss func-

tion defined above is trained by minimizing squared loss via L-BFGS that was introduced in

[Nocedal and Wright, 2006]. The gradient is computer as:

∇θL =
N∑
i=1

ni
n

(µ̂i − µi)∇θµ̂i + λ∇θC (6.14)

where ∇θµ̂i is subject to specific model choice. For larger data sets or more complex base

models, stochastic gradient descent (SGD) can be applied by decomposing the summation

in Eq. (6.14) and computing just one region’s gradient ni

n
(µ̂i − µi)∇θµ̂i to perform gradient

update.
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6.5 Methodology Summary

We have presented HALOR, a third framework that actively builds one or more region

hierarchies that are annotated by humans. The framework defines regions in a top-down

(general-to-specific) manner. The selection of the regions is driven by the maximum impurity

reduction principle in order to identify pure leaf regions as quickly as possible. This is

because the purity of regions is the key to LLP learning success. To implement it, we

leverage clustering, an unsupervised but usually class-relevant heuristic, and incorporate it

into our active learning strategy.

The motivation of proposing HALOR is to remedy (at least partly) the limitations of

HALR. A hierarchy built by HALR may be overly dominated by unsupervised heuristic that

can be irrelevant to the actual class distribution. We thereby propose HALOR that grows

multiple trees in parallel and helps one to recover from bad region selection.

6.6 Experiments

As the last set of experiments, we conduct a very comprehensive study to empirically

evaluate all of our approaches (HALG, HALR, HALOR) on 18 data sets that are collected

from OpenML machine learning repository [Vanschoren et al., 2013]. The purpose is to see

how efficiently (in terms of the number of queries) our hierarchical active learning approaches

can learn classification models when labelling of examples is associated with a human anno-

tation cost.

6.6.1 Data Sets

In general, data sets used in empirical studies should be unbiased (i.e. not in favor of

any method), general and influential. In order to do so, we did the following steps to collect

the 18 data sets:

1. Go to “Data Sets” page on OpenML;
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2. Click “Filters” to select data sets that are “Active, Binary Classification, and No Miss

Values”;

3. Sort the filtered data sets by “Highest Impact”;

4. Skip data sets that have too few (< 10) or too many (> 500) features;

5. Finally, select the top 18 data sets1.

These data sets come from a variety of real life applications. Table 6.1 summarizes their basic

information and statistics. Some data sets have high-dimensional feature space:{musk, ozone,

nomao, hill-valley, scene}; some carry highly unbalanced class distribution: {satellite,

ozone, pc1, climate}.

6.6.2 Baselines

We compare HALG, HALR (actually using A*HALR) and HALOR-K (K trees) to three

other representative active learning approaches:

• HS2: Hierarchical Sampling for active instance sampling [Dasgupta and Hsu, 2008]. It

leverages a pre-compiled hierarchical clustering to drive the instance-selection procedure.

This strategy intends to query instances from impure clusters. It also splits clusters when

it believes some of the child clusters are pure enough. In terms of model learning, not only

the labeled instances but also the instances with predicted labels within those sufficiently

pure clusters are used for learning. The reason for doing so is because they assume that

the cluster structure is well aligned with the actual class labels.

• DWUS3: Density-Weighted Uncertainty Sampling [Settles, 2012]. It is an instance-

based active learning approach that queries instances not only uncertain but also repre-

sentative of other data. It is related to our methods as it also considers both unsupervised

and supervised heuristics.

• RIQY3: the first active learning work that deals with forming and querying regions

[Rashidi and Cook, 2011]. Its region-construction strategy, well, is driven by an instance-

1By the time of October 2019.
2We use the original code at http://www.cs.columbia.edu/˜djhsu
3Because the original code is unavailable, we have implemented this approach tightly according to its

original algorithm description and also fine-tuned the hyper-parameters.
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Table 6.1: 18 binary classifications data sets.

Dataset Data# Feature# Class% Feature Type About

musk 6598 167 84.59% Num, Ord, Cat Molecules

satellite 5100 36 98.53% Num Satellite images

bank 45211 16 88.30% Num, Ord, Cat Financial accounts

ozone 2534 72 93.69% Num Ozone levels

kc1 2109 21 84.54% Num NASA software

pc1 1109 21 93.06% Num NASA software

wdbc 569 30 62.74% Num Breast cancer images

eye 14980 14 55.12% Num Eye states

ilpd 583 10 71.35% Num, Cat Indian liver patients

biodeg 1055 41 66.26% Num Chemicals

phishing 11055 30 55.69% Ord, Cat Phishing websites

nomao 34465 118 71.44% Num, Ord, Cat Places deduplication

climate 540 20 91.48% Num Climate model

hill-valley 1212 100 50.00% Num Hill valley recognition

click 39948 9 83.16% Num Web ad clicks

telescope 19020 10 64.84% Num Gamma telescope

scene 2407 299 82.09% Num, Cat Scene recognition

steel-plates 1941 33 65.33% Num Steel-plate faults

selection procedure. That is, it first selects an instance x∗ determined by DWUS algo-

rithm and then forms a compact small region centered on x∗. It relies on DWUS because

they want x∗ to be not only uncertain but also representative of other data in the region.

In such a way, the region would likely to be pure, and thus they can safely assign the

major class label of the region to all the instances within. On the other hand, however,

if x∗ poorly represents the data in the region or the region turns out to be very impure,

RIQY would only assign the major class label to x∗ alone; such kind of region query, we
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Figure 6.2: Model performance on the first 9 data sets.

say, degenerates to an instance-based query of x∗.

6.6.3 Experimental Settings

We split each data set into three disjoint parts: the initial labeled dataset (about 1%-2%

of all available data), a test dataset (about 25% of data) and an unlabeled dataset U (the

rest) used as training data. Note that only RIQY and DWUS require a small portion of

labeled data to start training, while others do not. To simulate region proportion feedback

from human annotators, we count the empirical instances labels that fall into some region
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and report the class fraction as the class proportion. Such a simulation method was originally

used to test RIQY and has also been used in previous LLP studies [Quadrianto et al., 2009,

Rueping, 2010, Patrini et al., 2014, Yu et al., 2013].

We evaluate all methods using two metrics. The first metric is the model performance

against the number of queries. We adopt the Area Under the Receiver Operating Character-

istic curve (AUC) to evaluate the generalized classification quality of Logistic Regression on

the test data. Models trained by all methods use the same regularization parameter λ which

has been chosen mildly between [10−5, 10−3]. The second metric is the query complexity

against the number of queries. This metric reflects how complex each query could be (i.e.

how many features have been used in a query).

In the following sub-sections, we will show plots on how AUC score and query complexity

would change after each t queries (t < 200) have been posed. To best visualize each plot,

we omit the remaining tails of curves after most methods have converged. To reduce the

experiment randomness, all results are averaged over 20 runs with different training/test

data splits.

6.6.4 Results: Model Performance Vs. Number Of Queries

The main results are shown in Figure 6.2 and 6.3. Table 6.2 summarizes the ranking of

all methods. Overall, HALR and HALOR are leading the best performance; RIQY, DWUS

and HALG follow; HS ranks at the last place. There are a couple of general observations we

can make:

• First, comparing region-based active learning methods (HALs, RIQY) to instance-based

ones (DWUS, HS), we can see that initially when only a very few queries are available

(<10 queries), learning with regions outputs better models than learning with instances.

The reason is that, a few labeled instances are usually insufficient to determine a good

decision boundary. In contrast to this, generic region queries cover more instance sub-

populations as well as larger input sub-space. Consequently, one region query can provide

much wider class information than one instance query to drive model learning. Later on,

as more queries are queried, regions are refined to be purer and they in turn accelerate
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Figure 6.3: Model performance on the second 9 data sets.

the model convergence. Such observations demonstrate the advantages of active querying

and learning with regions.

• Second, comparing our hierarchical active learning framework (HALs) with RIQY, we see

that HAL frameworks, especially HALR and HALOR, are able to find better regions for

labeling and learning. Briefly, RIQY is a very conservative method for finding regions,

as it is in fact an instance-driven approach. In contrast to it, HALs construct regions

in a systematic way and also learn models via LLP algorithms. The results show that

HALs can learn better instance-based models from actively labeled regions.

• Finally, among the three HAL implementations, HALR shows the best performance.
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In general, dynamically building a decision tree like hierarchy (HALR and HALOR) is

able to identify more meaningful regions than pre-computing a region hierarchy which is

done in unsupervised manner by a hierarchical clustering approach in HALG. Comparing

HALR and HALOR, we see that HALR performs slightly better. The likely reason for

this is that clustering heuristics was likely able to identify and match closely the class

structure in the dataset by following the greedy selection on just one tree. However, we

also notice that HALR fails on data set hill-valley. This is the only problem out of

18 problems where clustering is irreverent to classification; consequently, the single-tree

implementation HALR is not able to identify well pure regions and thus the learning

process turns out to be slow. Please note that multiple-tree approach (HALOR) has

mitigated this problem by growing multiple trees. However, we note the initial perfor-

mance of HALOR slightly drops since it needs more queries initially to grow multiple

trees.

Now let us analyze each of the methods (and its performance) in detail.

6.6.4.1 HS As discussed, HS is an instance-based active learning method and its selec-

tion strategy is driven by the underlying hierarchical structure of data. Its actual perfor-

mance shown here, unfortunately, is not as good as one would hope for. There are two

possible reasons for it. First, as we pointed out for HALG, hierarchical clustering is an

unsupervised heuristic which may not form good clusters at the very beginning. Hence,

HS may only be applied to applications where the cluster structure is well aligned with the

actual class distribution. Based on our results, such an assumption may not hold in general

as almost all results show it to be inferior to other methods. The second limitation of HS

is that it trains models also with un-queried examples that are yet to be labeled with the

majority label in those sufficiently pure clusters. However, such predicted labels are risky

and they can mislead model learning, especially when the underlying class distribution is

severely unbalanced. For example, in highly unbalanced data, HS may take numerous queries

before the first instance from the rare class is sampled, and thus the whole active learning

efficiency may not be very good. Data sets satellie, ozone, pc1 and climate carry highly

unbalanced class distributions and they show an even slower learning rate of HS. Finally, we
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Table 6.2: Ranking of all methods on all data sets.

Dataset HS DWUS RIQY HALG HALR HALOR

musk 4 2 2 3 1 1

satellite 3 2 2 1 1 1

bank 3 2 2 2 1 1

ozone 3 2 2 2 1 1

kc1 3 2 2 2 1 1

pc1 5 4 3 3 1 2

wdbc 2 1 1 1 1 1

eye 4 2 2 3 1 2

ilpd 3 2 2 1 1 1

biodeg 2 1 1 1 1 1

phishing 4 3 3 2 1 1

nomao 3 1 1 2 1 1

climate 4 3 3 2 1 1

hill-valley 6 1 2 5 4 3

click 6 5 4 3 1 2

telescope 5 3 3 4 1 2

scene 4 1 1 3 2 1

steel-plates 3 1 1 2 1 2

Average 3.72 2.11 2.06 2.33 1.22 1.39

Std 1.45 1.10 0.84 1.05 0.71 0.59

note that HS is unable to reach very good AUC score on these data sets for the number of

queries considered in the experiments.

6.6.4.2 DWUS Density-weighted uncertainty sampling is a good representative of the

classic instance-based active learning approach. Besides using the basic uncertainty mea-
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surement of data, it also considers the underlying structure of data in order to avoid sample

outliers. Overall, DWUS appears to work very well on the majority of the data sets4 except

pc1 and click. But surprisingly, DWUS shows its best model convergence on hill-valley.

It is because DWUS is the only method that directly uses queried labels to train models.

That is, it does not use predicted labels on unlabeled data for model learning (while HS

and RIQY do), nor does it use LLP algorithm (like HALs) which may not recover a good

instance-based model from not-pure-enough regions.

6.6.4.3 RIQY RIQY is one of first active learning frameworks that works with generic

region-based queries. But based on our results it is also very conservative. It is conservative

because it tends to assign the majority class label obtained for a region to all instances within

it. It is also the reason why RIQY tries to form a relatively small compact region around

x∗. However, if the region defined around x∗ does not cover other instances the region query

would degenerate to the query of x∗ only. Moreover, if the region queried is impure, x∗ may

be assigned a wrong label. Unfortunately, according to our results, most of RIQY’s region

queries cover single instances. This is why we usually see RIQY and DWUS overlap with

each other on the plots. Nevertheless, when region queries manage to cover more instances,

we can see that RIQY outperforms DWUS. This is visible for kc1, pc1 and click datasets.

6.6.4.4 HALG HALG is the first implementation of our hierarchical region-based active

learning framework. Overall, it shows reasonably good and stable performance. Compared to

RIQY or DWUS, it has 6 wins, 4 draws and 8 losses. However, there are two major drawbacks

of HALG. First, hierarchical clustering can slow down the process of finding pure regions.

We can see this fact on data sets bank, hill-valley, click, scene and steel-plates,

where HALG has a slower learning rate than region-based HALR and HALOR methods.

The second limitation which appears to be more serious is that HALG is unable to converge

to a very good model on many problems, such as, musk, bank, pc1, eye, nomao, click,

telescope and scene. The reason is the gap between the actual group formation and the

corresponding region that is used for querying. Recall that in HALG, each group is described

4On most of the plots DWUS overlaps with RIQY so it may be hard to see the light blue curve of DWUS.
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by an approximate region which, however, may represent a different set of instances. As a

result, the returned label proportion of the region does not exactly reflect the proportion of

the group. Such a gap turns out to be harmful to model learning.

6.6.4.5 HALR HALR is the second implementation of the HAL framework that directly

queries and learns with regions. Its overall performance has shown to be the best among

all methods on all data sets except hill-valley. This evidence shows that HALR works

very well for general classification tasks. Its advantage is that it does not assume a strong

correlation between the structure of data and the classification problem we want to solve

(unlike HS which only works when clustering is closely aligned with the actual labels). Under

such a condition, the two splitting heuristics used in HALR - unsupervised and supervised

heuristics - can work together to build a concise hierarchy of regions that can quickly find

out pure leaf regions. On the other hand, however, we see it fail on hill-valley data.

If clustering and classification are close to independent, HALR would become inefficient in

finding pure regions.

6.6.4.6 HALOR The third hierarchical active learning approach we have developed is

HALOR. It grows multiple HALR trees together and each tree is built from different feature

combinations. In the experiments we grow 4 trees for HALOR, hence we refer to it as to

HALOR-4. More analysis on the number of trees will follow. As expected, on hill-valley

HALOR dramatically outperforms HALR and shows more solid performance. The reason

why HALOR improves over HALR is that it can explore more class-relevant feature combina-

tions using different trees and then automatically grow the trees that have high potential for

reducing class entropy. On the other hand, since initially more queries are spent on building

features for multiple trees, its initial performance may drops compared to HALR. Data sets

reflecting this are pc1, hill-valley, click, telescope and steel-plates. However, we

can also see that after this initial phase HALOR can rapidly improve and even outperform

HALR.
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Figure 6.4: Query complexity of regions on the first 9 data sets.

6.6.5 Results: Query Complexity Vs. Number Of Queries

The analysis of classifier model performance vs. the number of queries is just one way to

compare the quality of the active learning algorithms. Another important measure closely

related to annotation cost is the complexity of the queries. In general, simpler queries are

easier for human annotators to review and assess, while more complex queries may take extra

time to review. Along the same lines (as pointed out in the introduction section), labeling

of data instances can be very intricate for human annotators to do if instances have many

features and when features are expressed in terms of high precision numbers. In contrast to

this, well-built region-based queries may be much simpler, to understand and annotate for
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Figure 6.5: Query complexity of regions on the second 9 data sets.

human as each region can be described using a limited number of features.

To measure this aspect of queries, we define the complexity of a region query as:

Complexity(query) =
# of features used in the query

total # of all features
(6.15)

According to the definition above, the complexity of a query can range from 0 to 1. Being 1

means using up all the features, while close to 0 means using very few features in the query.

Figure 6.4 and 6.5 shows and compares the query complexities of all region-based methods.

Here are some of the findings:
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• First of all, we note that instance-based queries use all features so their query complexity

is 1. As opposed to this, region-based queries often rely only on a small subset of

features. For example, it could be extremely time-consuming and difficult for human

annotators to review a record in high-dimensional data sets musk (167 features), nomao

(118), hill-valley (100) and scene (299). In contrast to this, our methods (HALR

and HALOR), rely only on a few features (< 5%) to describe generic regions. Such a

property makes the labeling process a lot easier for a human to perform.

• The query complexity of our hierarchical active learning methods (HALG, HALR and

HALOR) increases at best logarithmically and at most linearly with the total number of

queries. It is because our hierarchical methods split regions and each split increases the

complexity of the region by one condition. For HALG, we see more variations because

the region descriptions are automatically learned by a rule inducer which may return

imperfect and more complex regions. In contrast, HALR and HALOR increase more

stably because they build decision tree like hierarchies that add new feature dimension

to the queries incrementally. Please also note that the query complexity of HALOR that

uses multiple trees in parallel typically grow slower that HALR that relies on just one

tree. The reason is that HALOR promotes simpler region descriptions.

• Lastly, we see RIQY’s curves are very close to 1 which means it often uses almost all the

features to describe regions. There are two reasons for this. First, because RIQY tends

to construct very small and compact regions, it leads to induce regions of high complexity

defined by many conditions (features). Second, as we mentioned earlier, RIQY has the

query degeneration problem which means it fails to construct a pure enough region so it

compromises to building an instance-based query instead. This problem directly results

in the query complexity to be 1.

6.6.6 Analysis Of HALOR Performance With Different Number Of Trees

The hyper-parameter K in HALOR-K approach determines how many trees are grown

in parallel. Figures 6.6 and 6.7 show how the model performance and query complexity vary

with the number of trees K. To save space, we only plot the results for the top 9 data sets
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Figure 6.6: Model performance for various number of trees in HALOR.

for which the performance of different versions of HALORs differ the most (the remaining

nine datasets show only little differences for different values of K). The figures and results

therein illustrate a couple of trade-offs between HALR and HALOR:

• In terms of query complexity, apparently, growing more trees in HALOR translates into

simpler region and hence simpler queries. This fact is clearly demonstrated by Figure

6.7.

• In terms of model performance, it initially takes more queries for HALOR to explore the

feature information in the different trees. This results in slower performance improvement

in the initial (exploration) phase. However, once HALOR identifies trees with class-
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Figure 6.7: Query complexity for various number of trees in HALOR.

relevant features, it has a higher potential of further model performance improvement.

As a result, the HALOR improvement accelerates. The results further suggest that

usually 2 or 3 trees in HALOR would be good enough to learn models well from the tree.

See the performance boosting from HALOR-1 to HALOR-2 on hill-valley.
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6.7 Chapter Summary

In this chapter, we presented HALOR, a third implementation of the HAL framework

that can actively learn instance-based classification models from region proportion feedback.

The essential idea of HALOR is to build multiple region hierarchies simultaneously which

provide more flexibility for finding informative and simple regions. When building only

one hierarchy (i.e. HALOR-1), we adopt maximum information gain or maximum impurity

reduction principle that is used to grow decision trees. In particular, when determining

each split we consider all possible splits that can be made on all the leaf regions and adopt a

combined information gain which is a weighted sum of a supervised gain and an unsupervised

gain to evaluate each candidate split. When building multiple hierarchies (i.e. HALOR-K

with K > 1) we diversify the feature combinations that construct different hierarchies.

Finally, we adopt a general LLP learning algorithm that can learn instance-based models

from a set of overlapping regions.

Compared to HALR, although being slightly less query-efficient than HALR, HALOR is

shown to be a more robust approach. According to the experiment results, we see that when

the unsupervised heuristic fails to suggest a good region hierarchy, HALOR can quickly build

different hierarchies that are more class-relevant. Usually building two or three hierarchies

appears sufficient. Besides, building multiple shallower hierarchies also reduces the query

complexity of regions and thus helps avoid asking too complex queries to human annotators.

Through experiments on a much larger number of datasets, we have demonstrated that

HALOR can learn good models from a very few and simple region queries. Compared to

two instance-based active learning methods (DWUS and HS) and one group-based active

learning approach (RIQY), HALOR is demonstrated more query-efficient. Therefore, the

results again support the two hypothesis H1 and H2 (Section § 1.4).
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7.0 Conclusions And Future Work

7.1 Thesis Summary

This thesis has developed and explored a region-based active learning framework that

efficiently learns classification models from human feedback. A region is defined as a hyper-

cubic subspace of the input space and represents a subpopulation of instances. Regions

are described by conjunctive patterns that are easy to understand for humans. Annotators

label a region with an estimate of the proportion of the instance subpopulation that belongs

to one of the classes. By leveraging learning from label proportions (LLP) algorithms, the

framework can learn a variety of instance-based classification models from labeled regions.

The motivation for studying region-based active learning methods is that learning with

regions can be annotation-efficient. In many applications, it may be easier for human an-

notators to label regions than to label instances. Conventional data instances are usually

recorded by numerous and detailed feature values while regions can be described by a concise

feature set. Moreover, when regions are actively formed, the number of queries made for

regions can be reduced, and thus the human annotation effort can be further saved.

To identify meaningful regions for labeling and learning, we have developed a novel hier-

archical active learning framework named HAL. It actively builds one or multiple hierarchies

of regions and queries regions in a top-down, general-to-specific fashion. The key is to quickly

identify pure leaf regions in the hierarchy, which ensures the LLP learning success. We have

implemented three versions of the HAL framework: (1) HALG that pre-compiles a hierarchy

of clusters and then selects groups (hypercubic clusters) within the hierarchy for labeling

and learning, (2) HALR that dynamically builds a decision tree like region hierarchy and

employs two heuristics for region splits, and (3) HALOR that builds multiple different hi-

erarchies simultaneously and provides additional flexibility and robustness for finding more

informative and simpler regions.

Among these three implementations, the major difference is how much they rely on the

unsupervised heuristic (clustering). We have seen that clustering overly dominates HALG,
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and HALR reduces the reliance of clustering heuristic by dynamically controlling it; HALOR

relies on clustering least since it has an initialization phase to explore class-relevant features

that are used to construct informative hierarchies. Another difference lies in the query com-

plexity of regions. We have seen that HALR and HALOR can learn models from very simple

regions that only need a few features (<10 on average). This property greatly simplifies the

labeling process when the input data instances are recorded by a large number of features.

Through comprehensive experiments on a number of datasets, we have demonstrated

that our HAL framework is able to learn high-quality models from a very few and simple

region-based queries. Also, it is more query-efficient than instance-based active learning

methods, thereby providing empirical support for the first hypothesis H1.

H1: Active learning of binary classification models from group-based feedback can be more

query-efficient than learning from instance-based feedback.

Compared to another region-based active learning method RIQY, our solutions demon-

strate higher stability and faster model convergence while using simpler queries. Therefore,

the second hypothesis H2 is also supported empirically.

H2: Our hierarchical approach can discover more informative and simpler groups than

existing methods that identify groups based upon instances, and therefore our solution is more

query-efficient.

7.2 Assumptions Of The Current Work

While the HAL framework may successfully solve many classification learning problems,

it is important to note the key assumptions and possible limitations of our studies.

• Simulated region annotations. All experiments in this thesis so far were conducted

using simulated region annotations that are derived from available instance labels and

their class proportions. A natural open question that arises is how these methods work

when regions are labeled by humans. Of particular concern here are labeling noise,

labeling bias, and inability of humans to provide accurate proportion labels to region-

based queries. We will present a small pilot study addressing this question in the next
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section.

• Clustering heuristic. One assumption the HAL relies on when it identifies regions is

that the structure of data mimics their class distribution. This assumption has been used

frequently in semi-supervised learning [Zhu et al., 2003], and the logic is that similar data

instances tend to carry similar class labels. This is an important assumption in our HAL

framework as we have frequently used the clustering heuristic to help build region hier-

archies. If it does not hold then the single-tree solutions HALG and HALR can fail. The

multi-tree solution (HALOR) is also affected but to a lesser degree. Overall, according

to our last set of experiments, we have seen positive support for this assumption.

• Supervised heuristic. The second heuristic that HAL relies on is supervised heuristic.

It uses a specific family of classification models to split regions. In all our experiments,

we used linear classification models. However, we note this model may not be the best

choice for all the problems explored. Therefore, using different families of models may

lead to different performances of HAL, as well as, other alternative methods.

• Annotation cost. Throughout this work, we assumed that the cost of answering a

region-based query by human annotators is comparable to answering an instance-based

query. This is the assumption we use when comparing the query-efficiencies of different

active learning methods in terms of the number of queries. Moreover, we assume that

the cost of answering region-based queries is proportional to their query complexities

(i.e. how many features are used in their conjunctive patterns.) These assumptions may

not hold when a region-based query is simplistic, non-informative, or overly complex

to assess and review. In such cases, the cost of answering a query is nonlinear with

respect to the number of features. Finally, we note that annotation costs may differ for

the different data types (say text, images), from application to application. Also, data

objects with high-dimensional nature can make them intrinsically hard to structure and

annotate. We will address some of these issues later in this chapter.

• Binary classification learning. Lastly, the current work only deals with binary clas-

sification problems. It is not immediately clear how annotators can provide similar

multi-class proportion feedback. Later in this chapter, we will discuss some new types

of feedback that can be potentially used for these problems.
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Figure 7.1: We use ordinal proportion categories as the human feedback. The seven cate-

gories partition the whole range of the positive class proportion values.

In the next section, we present a preliminary study showing that the HAL framework

may indeed learn from human expert feedback. After that, we list open issues and future

research directions that would allow us to relax some of the assumptions of the framework

and make it applicable to a broader set of classification problems.

7.3 A Pilot Study: Human Annotation Of Regions

In this section, we present a pilot study to evaluate our HAL framework by interfacing it

with a human annotator. We interact with an oncologist who provides feedback on whether a

set of patients with colorectal cancer could survive three years or not. The data are publicly

accessible and are collected from the U.S. NIH cancer database [NIH-SEER, 2019].

7.3.1 Methodology

For the purpose of this study, we have built a new implementation of our HAL frame-

work named HALQ (HAL with Qualitative feedback). It is similar to HALR, in that it

dynamically builds a hierarchy of regions. However, instead of using numerical proportion

feedback it relies on ordinal proportion categories (Figure 7.1). An example of one hierarchy

built by HALQ is shown in Figure 7.2.

The HALQ has been modified to address some practical issues when compared to the

previous implementations. There are three such modifications. The first one is to address

the labeling noise issue that is concerned with providing exact class proportions to regions.
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Figure 7.2: An example of a hierarchy of regions built by HALQ for survival analysis of

colorectal cancer patients. The hierarchy has made two splits: the first one uses attribute

Age (at value 70 ); the second one uses attribute Adjusted AJCC 6th M which is a key factor

for determining the cancer patient survival [NIH-SEER, 2019]. Instead of exact propor-

tion estimates, we assume regions are assigned to one of the ordinal proportion categories.

The framework repeatedly selects the most uncertain leaf region, splits it, and asks for the

oncologist to assess the new leaf regions.

We mitigate it by designing a small set of ordinal categories as the region feedback. These

categories are formed by coarsely-defined ranges of proportions as shown in Figure 7.1. Such

qualitative feedback has been shown precise in assessing human attitudes in psychological

studies [Likert, 1932, Ekman, 1978].

As qualitative feedback loses labeling precision, the second modification is to additionally

solicit from annotators discriminative feature feedback that is used to split regions. Such fea-

ture feedback often comes with no extra cost [Druck et al., 2009, Dasgupta et al., 2018] but

can substantially help construct discriminative regions. More concretely, when determining

how to split a most uncertain region we ask the annotator to provide a splitting suggestion

using any of the following granularity:

1. Provide both the splitting dimension d and value v;

2. Provide only the splitting dimension d;
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3. Provide neither d nor v.

The first option is applicable when d is a categorical or a binary feature. For example, gender

may be a key factor for diagnosis. The second option may be used most often since usually

people may know what features are discriminative but are not exactly sure where the split

values are. The last option serves as a backup. In either situation 2 or 3, HALQ needs to

apply the two splitting heuristics as before to complement the split.

The last modification is to change the LLP learning algorithm to adapt to the qualitative

feedback. We simply change the loss function in Formula 6.13. Recall that the loss minimizes

a sum of region-level proportions (µ̂i−µi)2 where µ̂i is a model estimate of the class proportion

for region Ri, and µi the true proportion. Here we modify it as [I(µ̂i, li)]
2 that is defined as:

I(µ̂i, li) =


|µ̂i − ub(li)|, if µ̂i > ub(li)

|µ̂i − lb(li)|, else if µ̂i < lb(li)

0, otherwise

In above, li is one of the ordinal categories defined in Figure 7.1 and annotated to region Ri,

and lb(l), ub(l) are the lower, upper range boundaries of a label l. After the substitution, a

new loss function is defined similarly as follows:

L(F (t);θ) =
N∑
i=1

ni
n

[I(µ̂i, li)]
2 + λC(θ) (7.1)

The optimization procedure remains the same and an instance-based model can be learned

when the new loss function is minimized.
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Figure 7.3: Performance of different methods in the real study.

7.3.2 Experiments

7.3.2.1 Data We randomly select 5000 colorectal cancer patient cases covering years

1973 to 2015. We also pre-select 10 features as the predictors and assign binary survival

labels according to the mortality record. The labels indicate whether patients can survive

the following three years or not upon diagnosis. Overall, there are 68.13% patients labeled

positive (survived). Note that we only use the survival labels for test data; for training data,

the oncologist provides the labels. The 10 features are:

• Numeric: Age, CS tumor size

• Ordinal: Cancer grade, Adjusted AJCC 6th T, Adjusted AJCC 6th N, Total number of

situ/malignant tumors

• Categorical: Marital status, Sex, Adjusted AJCC 6th M

7.3.2.2 Experimental Settings We compare our HALQ to DWUS that represents

instance-based active learning methods. The base classification model is still Logistic Regres-

sion. To reduce the randomness in experiments we perform 5 runs of different training/test

data split. The split ratio is still 3:1. We plot AUC score on test data vs. the number of

queries or the time used (in second). We terminate the running of each method whenever

the test AUC score becomes stable.
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7.3.2.3 Results And Analysis Before we present the results, there are some facts about

the annotation process. When the oncologist suggests features for splitting regions, 84% of

the time he provides only the splitting features; 15% of the time he provides both the splitting

feature and the value; <1% he provides nothing. The most important features he provides

are ranked as Age, Adjusted AJCC 6th M, Adjusted AJCC 6th N and Cancer grade. The

results are shown in Figure 7.3. We plot all the 5 runs. They demonstrate strong evidence

that HALQ is both more label- and time-efficient than DWUS. Furthermore, we can see that

HALQ, in general, has a more stable performance. Again, because regions can better cover

the input space and present larger populations of instances, learning with regions yields

steady learning curves. By comparison, learning with a limited number of instances may be

sensitive to newly labeled ones. This is a typical problem in instance-based active learning

methods.

7.3.3 Discussion

In this pilot study, we have presented HALQ, a more practical implementation of the

HAL framework. Compared to other HAL implementations, HALQ overcomes the limitation

of using exact proportion labels by adopting qualitative feedback for region assessment.

Moreover, by allowing humans to provide feature feedback on constructing regions, HALQ

is shown also efficient in constructing informative region hierarchies. The experiment results

support that HALQ is both label- and time-efficient to build binary classification models.

There is one potential issue of HALQ concerned with its solicitation of feature feedback

from human annotators. As humans can be subjective, their suggestions of discriminative

features can be very different and thus result in constructing different hierarchies. One

alleviation to the annotation bias issue is to have multiple annotators build different hi-

erarchies and grow those with more informative regions. This is in spirit to the HALOR

implementation.
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7.4 Open Questions And Future Directions

The region-based active learning methods proposed in this thesis form a new direction of

learning classification models from an alternative human feedback. Its novelty creates many

opportunities for further refinement and its application to new problems. It also leaves some

interesting open issues and problems to address. In the following, we list some of these new

future directions and open problems.

• Query complexity and the cost of human annotation. One important open ques-

tion regards the actual difficulty of understanding and answering region-based queries

by human annotators. We assumed that in general, simpler queries defined by shorter

conjunctive patterns are easier to review and assess. Also, we assumed the cost of an-

swering more complex queries is proportional to the query complexity defined in terms of

the number of features used in the query. However, these assumptions may not hold in

practice. For example, if some queries are very short they may not be very informative,

especially when they contain features that are irrelevant to the classification problem,

then proportion labels may be hard to provide for humans. We expect that less informa-

tive queries increase the time of query reviewing and assessment. At the other extreme,

if some queries are too complex and contain complicated feature combinations then un-

derstanding such queries could be mentally fatiguing; thus, the time and cost needed to

review them could become a non-linear function of their complexity. Therefore, finding

concise and relevant feature combinations for region description is the key to easing the

human annotation process. A better understanding of all these annotation trade-offs

could lead to better and more cost-effective querying strategies.

• Noisy proportion label estimates. Another important question is related to the

quality of class proportion estimates that are used to assess regions. In general, humans

are not very accurate in estimating class proportions so the feedback received from human

annotators could come with various biases and noise. An open question is how such a

labeling noise could affect the construction of hierarchies and the learned models. This

aspect of the problem prompts a more rigorous exploration of the group learning methods

and their robustness.
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• Multi-class classification problems. Another set of open questions is related to the

extension of the HAL framework to multi-class and multi-label classification problems.

For multi-class classification problems, the main obstacle lies in whether human annota-

tors can provide accurate class proportions to regions for all the classes. If this is feasible

for humans to do (e.g. when the number of classes is small), then our HAL framework

can be directly applied (note that LLP algorithms can learn multi-class classifiers). How-

ever, if such an annotation process is costly or infeasible then we need to solicit different

feedback and modify our framework. Xue and Hauskrecht [Xue and Hauskrecht, 2018]

have dealt with a similar situation for annotating instances (not regions) for multi-class

classification problems. One of their solutions [Xue and Hauskrecht, 2018] was to ask

the user to only identify the most likely class and the soft label was provided only for

that class. The model learning algorithm was also changed accordingly so as to adapt to

such feedback.

• Multi-label classification problems. Multi-label classification problem is differ-

ent. In general, labels assigned to instances are not independent of each other, so

many state-of-the-art multi-label classification algorithms such as [Batal et al., 2013,

Pakdaman et al., 2014, Hong et al., 2014, Hong et al., 2015] as well as

[Hong and Hauskrecht, 2015b, Hong and Hauskrecht, 2015a] are trying to assure that

the dependencies among different labels are modeled properly. One possible direction

to adapt our region-based algorithms to multi-label settings is to rely on chain classifi-

cation approach that decomposes the multi-label classification problem into a chain of

single-label classification sub-problems:

P (y1, y2, · · · , yK |x) = P (y1|x)P (y2|y1,x) · · ·P (yK |y1, y2, · · · , yK−1,x)

where the learning of each single-label classifier is solved by our group-based model. In

terms of how human annotators assign different class labels to groups, if each yi is a binary

class label then providing class proportions is still possible. However, if there are labels

that are multi-classed then the annotation process could become much harder. In light

of this, [Xue and Hauskrecht, 2019] has proposed a efficient protocol for instance-based

annotation. They ask for an ordered set of classes without soliciting exact proportions
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and then learn relative ranking functions that are further used to build classification

models.

• Time-series classification. One of our current assumptions is that instances are de-

fined by a fixed set of features and their values. Regions are hypercubic subspaces that

are defined by this feature space. However, the data objects we often need to classify can

be more complex and their featurization is not always straightforward or human-friendly.

One such data type is time series. Briefly, time series are formed by sequences of observa-

tions. Two classification tasks are typically defined upon time series [Batal et al., 2016]:

time-series classification and time-series or event prediction. Both of these tasks typi-

cally transform time series to a different feature space for problem-solving. Examples

of such transformations for time series classification problems are discrete Fourier or

discrete wavelet transform [Batal and Hauskrecht, 2009]. On the other hand, time se-

ries prediction tasks are most often handled by using various kinds of latent models

and latent representations based on models, such as Hidden Markov Models, Linear dy-

namic models [Liu and Hauskrecht, 2015b, Liu et al., 2013, Liu and Hauskrecht, 2015a,

Liu and Hauskrecht, 2016a, Liu and Hauskrecht, 2016b], point processes

[Liu and Hauskrecht, 2019, Liu et al., 2017a, Liu et al., 2017b, Liu et al., 2018], or more

recently, models based on recurrent neural networks (RNNs) [Lee and Hauskrecht, 2019,

Lee and Hauskrecht, 2020]. Unfortunately, these latent feature representations are typ-

ically not very friendly for a human to review and assess. One possible direction to

extend our work to time-series problems is to build upon predictive temporal pattern min-

ing solutions. Briefly, predictive temporal pattern mining methods [Batal et al., 2012,

Batal et al., 2016, Batal et al., 2009b, Batal et al., 2009a] use time series and their value

and trend abstractions to define temporal patterns that can characterize and describe

the time series in terms of the original variables and their temporal behaviors. The

basic temporal patterns can be combined with more complex temporal patterns with

temporal logic operations and by making conjunctions of such patterns. The advan-

tage of such representations is that they are friendly for humans to read and interpret

[Batal et al., 2012, Batal et al., 2016]. In addition, more complex temporal patterns are

typically built hierarchically via apriori-style algorithms. It is similar to our hierarchical
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decision tree group refinement strategies which makes it a viable solution for defining

region hierarchies.

• Classification of images and text. Apart from time series, other data objects and

data types need to be often classified. Take images or texts for an example, the data in-

stances and their representations for these two data types are typically high-dimensional.

Hence, using conjunctive patterns to summarize groups of images or documents from

these representations could be very hard. However, we can abstract the idea of HAL and

adapt to these data types. The essence of the group-based labeling technique is summa-

rizing groups in a human-understandable way and soliciting a meta-label for the group.

Using conjunctive patterns and class proportions to describe and label groups is just one

specific way. Therefore, if images or texts can be summarized and labeled by humans,

then the HAL framework can be potentially applied. Currently, there are many auto-

matic summarization techniques for images [Tschiatschek et al., 2014, Yang et al., 2013]

and texts [Gambhir and Gupta, 2017]. How to integrate such techniques into a more

general version of HAL is an interesting direction.

• Multi-task learning. Multi-task learning refers to a category of machine learning

methods that learn multiple related tasks simultaneously. The motivation is to exploit

task relationships, commonalities, and differences. Multi-task learning methods can take

advantage of available data for similar learning tasks by imposing similarities between

the behavior of related models. Multi-task learning has shown promising results in

improving individual tasks compared to the standard solution of learning each task in-

dependently [Malakouti and Hauskrecht, 2019]. Our current work can be extended to

learning multiple tasks that are associated with each other. For example, in the work

of [Malakouti and Hauskrecht, 2020], the tasks to learn are hierarchically structured and

thus the information from the parent tasks can be inherited to the child tasks. In our

work, if the learned region hierarchy of one task can be used to initialize the hierarchy

of another one, then the active learning efficiency can be further improved.
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Figure 7.4: Model performance of different methods on 3 data sets.

7.5 Sample-Efficiency Of Learning From Groups

In this section, we introduce and describe an interesting theoretical direction that studies

more systematically the complexity of the learning from groups framework.

Throughout this thesis, we have seen empirical results that support our first hypothesis:

H1: Active learning of binary classification models from group-based feedback is more query-

efficient than learning from instance-based feedback.

Two possible reasons that could explain this hypothesis are:

1. Our active learning strategies are more effective;

2. Learning from group proportion feedback itself (without the active learning component)

is more sample-efficient than learning from instance-based feedback.

But which of the two reasons is more important? Our conjecture is that the second one.

We have observed empirical support for this conjecture when the number of group queries

was very small (for example, when we had less than 10 queries). In this case, learning from

labeled groups was able to output a decent model while learning from labeled instances

typically failed. This fact is supported by three example data sets illustrated in Figure 7.4.

We believe that the performance gap shown in the plot is less likely due to the active learning

strategies. The reason is that initially there is a very little supervision which is unable to

produce very effective supervised strategies. Instead, the performance gap should be mostly

attributed to the group proportion feedback, which is able to cover larger portions of the
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input data space and thereby provides broader class information than instance labels.

An interesting research direction related to the above observation could be the study

of group learning with class proportion labels when groups are i.i.d. generated and its

efficiency compared to learning from labeled instances. More precisely, consider the following

statement:

Under some conditions and for some family of binary classification functions, learning

the true function from i.i.d. generated groups achieves lower sample complexity than learning

from i.i.d. generated instances.

In other words, given the same number of i.i.d. labeled groups and instances, the question

is if learning from groups can output a more accurate classification function than learning

from instances. If the above statement holds, it will also benefit instance-based active learn-

ing methods. One application would be providing some general groups and their proportion

feedback to initialize a classification model and then using it for the successive active learning

process, either instance-based or group-based.

7.5.1 Probably Approximately Correct

Studying sample complexity (i.e. how many training data are needed to estimate a

distribution or to learn a good model) has a long history in statistics and machine learning

research [Vapnik, 1998, Van der Vaart, 2000, Friedman et al., 2001]. One useful tool is the

probably approximately correct model (PAC) [Valiant, 1984]. The intent of the PAC model is

that successful learning of an unknown target concept (i.e. the true classification function)

should entail obtaining, with high probability, a hypothesis that is a good approximation of

it. Hence the name Probably Approximately Correct. In other words, it studies the sample

complexity if the hypothesis learned from the sample is ε-close to the target concept, with

high probability 1−δ. To qualify as a PAC learning algorithm, it must satisfy this guarantee

for all possible target concepts in a given family and under all possible data distributions. To

achieve this objective, the learning algorithm is supplied with a training sample that consists

of n i.i.d. labeled data instances, along with the corresponding correct classifications. One

of the central questions in the study of PAC learning is determining the minimum number
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S(ε, δ) of training instances necessary and sufficient such that there exists a PAC learning

algorithm requiring at most S(ε, δ) labeled data (for any given ε and δ). This quantity S(ε, δ)

is known as the sample complexity.

We begin by introducing some background essential to the following discussion. Let X

be a nonempty set called the input space and Y = {0, 1} the class space. A classifier is any

function of mapping h : X → Y . Also, fix a nonempty set C of classifiers called the concept

space. Conventional to PAC, we use f ∗ ∈ C to denote the target concept, and use h to denote

the hypothesis learned from a sample of data. Note that h is not necessarily in C.

In a learning problem, assume there is an instance distribution P over X . Then we

can collect one training sample Sn = {(x1, y1), ..., (xn, yn)}, where each xi is independently

sampled according to P and yi is the true label of xi, i.e. yi = f ∗(xi). For any probability

measure P over X and any classifier h, denote by errP(h, f ∗) = P (x : h(x) 6= f ∗(x)). Then

for any ε, δ ∈ (0, 1), the sample complexity S(ε, δ), is defined as the smallest positive integer

for which there exists a learning algorithm that outputs h, such that for every possible data

distribution P and all the target concept f ∗ ∈ C, the following inequality holds:

P (errP(h, f ∗) ≤ ε) ≥ 1− δ

Determining the sample complexity of PAC learning is a long-standing open problem.

There have been upper and lower bounds established for decades. Before we present the

known results, we should introduce the concept of the Vapnik-Chervonenkis dimension (or

VC dimension) [Vapnik, 1998]. This quantity is of fundamental importance in characterizing

the sample complexity of PAC learning. Roughly speaking, the VC dimension of a concept

class C measures how complex the classification functions in C could be. For binary classifi-

cations, each instance x can be mapped to two outcomes, 0 or 1. So for any vector consisting

of k instances 〈x1, ...,xk〉, there could be potentially 2k distinct classifications for the k in-

stances. So we say a vector 〈x1, ...,xk〉 of k points in X is shattered by C if ∀y1, ..., yk ∈ Y ,

there exists an f ∈ C such that ∀i ∈ {1, ..., k}, f(xi) = yi. Then the VC dimension of C is

defined as the largest such k for which there exists a vector 〈x1, ...,xk〉 in X shattered by C.

For example, the VC dimension of homogeneous linear classification function class in Rm is

m. We denote by VC(C) the VC dimension of C.
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With VC dimension, we can present the known bounds of sample complexity. A basic

lower bound of 1−ε
ε

log(1/δ) was established by [Blumer et al., 1989] for 0 < ε < 1/2 and

0 < δ < 1. A second lower bound of VC(C)−1
32ε

was supplied by [Ehrenfeucht et al., 1989] for

0 < ε < 1/8 and 0 < δ < 1/100. Taken together, these two bounds yield a general lower

bound, that for any 0 < ε < 1/8 and 0 < δ < 1/100,

S(ε, δ) ≥ max{VC(C)− 1

32ε
,
1− ε
ε

log(1/δ)} = Ω(
1

ε
(VC(C) + log(

1

δ
)))

This lower bound is complemented by classic upper bounds on the sample complexity.

[Blumer et al., 1989] also established an upper bound of

S(ε, δ) = O(
1

ε
(VC(C) log(

1

ε
) + log(

1

δ
)))

So the general lower and upper bounds differ by a logarithmic factor.

As we have seen, the sample complexity has been well studied for the instance-based

learning protocol. However, to our best knowledge, there is no known work that studies

the sample complexity of learning from groups methods. Hence, this future work needs

to explore (1) under what conditions, (2) for what kind of function classes, (3) and with

what design of groups, the learning from groups methods achieve competing or lower sample

complexity than methods that learn models from instances.
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