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Chapter 1

Introduction

1 The Big Data Era: Hype and Reality

“We live in the Big Data era”. So could this thesis have started if we
were to believe many recent press titles. Since 2008, Big Data appeared in
Nature [34], the Economist [94], the Harvard Business Review [8], the Wall
Street Journal [100], Wired [7], The New York Times [58] and truckloads
of others. The expression Big Data describes the idea that businesses,
scientists and public administrations can perform tasks with large amounts
of data that would not have been possible otherwise. Journalists are often
enthusiastic, sometimes hyperbolic. According to many, it is “a revolution
that will transform how we live, work, and think” [62]. And this enthusiasm
has spread beyond media. Figure 1.1 shows the number of Google searches
containing the terms “Big Data” from all around the world. From 2012 on,
the popularity of the term explodes: the number of searches quadruples in
4 years.
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Figure 1.1: Number of Google searches for the terms “Big Data” and “Soft-
ware”, from Google Trends.



1.2. Queries, Results and Exploration

And yet, the promises of Big Data do not convince everyone. In March
2014, the Financial Times titled one article “Big data: are we making a big
mistake?” [37]. A month later, the New York Times was reporting “Eight
(No, Nine!) Problems with Big Data” [61]. These articles argue that Big
Data is a vacuous term, used by companies to appear innovative. And
indeed, no one seems to agree about which datasets are “big” and which
are not [40]. Furthermore, skeptics point out that data analysts are too
naive. For instance, Chris Anderson of Wired attracted lots of attention
when he predicted that Big Data would make the scientific method “obse-
lete”, because “with enough data, the numbers speak for themselves” [7].
This claim was bold, but probably wrong. The size of a dataset does not
eliminate its biases [54]. In fact, it increases the chance of making spurious
findings [45].

Our view is that the need for efficient techniques to manage data goes
well beyond the Big Data phenomenon. Businesses and scientists have
had access to data for decades, probably centuries. The quest for better
tools to store it, query it, process it and visualize it is still ongoing and
relevant. To illustrate, let us get back to Figure 1.1. What interests us
now is not the content of the chart, but how we made it. To create this vi-
sualization, we queried the website Google Trends, exported the results in
comma-separated format, cleaned the file with command line tools, loaded
the result in the statistical package R. We then applied grouping opera-
tions to reduce the granularity of the data, plotted the result with a third
party charting library and cropped the file with an image editor. These
operations involved four different interfaces, and took about half an hour.
For our sake and that of all future researchers, we hope that advances in
data management will not stop here.

2 Queries, Results and Exploration

In this thesis, we focus on structured data, that is, tables stored in a
Database Management Systems (DBMS). To manipulate those, engineers
have come up with the query-result paradigm. Users interrogate the sys-
tem, specifying which subset of the data they are interested in, and what to
do with it. The system replies with the results, as accurately and quickly
as possible [69]. The most popular language to carry out this task has long
been SQL, but alternatives exist. For instance, several Microsoft products
have supported Query-By-Example [112], a language for non-programmers.
With Tableau [88], users interrogate their data warehouses with drag-and-
drops and inspect their results with sophisticated visualizations.

14



1. Introduction

In its current implementations, the query-result paradigm relies on a
strong hypothesis: it assumes that users know exactly what they want,
and how to get it. Query languages expect precise instructions, such as
“give me all the rows of table Country for which the value of CountryID
is NL”, or “give me the last 20 rows of my file”. But there exists an important
use case for which this assumption does not hold: data exploration.

Data exploration is the task of querying a dataset to increase
the knowledge that we have of it.

Typically, users explore a database when they first encounter it, in order to
develop an intuition of what it contains. This task is a challenge because
it is subject to a reciprocal dependency: on one hand, users need to pose
queries to know the data. On the other hand, they need to know the data
to pose queries. Therefore, explorers operate by trial and error. They
start with simple, naive queries, to get an overview of the dataset. Then,
as their knowledge increases, their queries become more specific.

The exploration process is rarely structured. Most users “play” with
their DBMS, or they “tweak” it, to build a mental representation of its
content [1]. This approach is problematic because it is completely manual:
it depends entirely on patience, intuition and good luck. If the data is
small, trial and error may be sufficient. But how to deal with hundreds of
columns and hundreds of thousands of tuples? Manual effort is tedious,
time consuming, and subject to errors. Users need more systematic tools.
This leads us to our research problem:

How can we provide automatic support for data exploration?

Our aim is to develop techniques and software tools to help users discover
their data in a quick, easy and thorough fashion. Ultimately, we envision
a system to answer the question behind data analysis:

“Computer, what is interesting in my data?”

Data exploration is important because it is ubiquitous. Tools to sup-
port this task would find applications in virtually all fields which involve
a database. They would help employees from large companies, whose
databases are often complex and undocumented. They would uncover
new investigation material for journalists. And they would serve scientists
seeking inspiration. After all, few researchers know what they are after
before they actually have found it.

15



1.3. How Hard is Our Problem?

3 How Hard is Our Problem?

Unfortunately, automating data exploration is arduous, maybe even un-
feasible. Indeed, this task is subject to two fundamental contradictions:

Contradiction 1. Exploration is a subjective process: what is interest-
ing for a user may be boring for the other. But then, how can we automate
such a subjective activity?

Contradiction 2. Exploration is an ad hoc, open ended process. The
portion of the database involved in a discovery can take any form: a tuple, a
set of columns, a correlation or even a column name. How can we engineer
a closed, systematic solution for such an open task?

These contradictions are fundamental because they rule out full automa-
tion. At this point, we simply cannot design a “magic” autonomous system,
which would make discoveries while the user waits. To solve the first para-
dox, we would need to read our users’ mind. To solve the second, we
would need to develop a universal query language, which would be flex-
ible enough to adapt to any human requirement. Those are still distant
scientific prospects.

4 Our Contribution: Exploration Assistants

Our solution is to provide a middle ground between full automation and
manual effort. We present virtual assistants, to explore data in a semi-
automatic fashion. Each assistant relies on a user model, that is, a for-
malized set of assumptions about the explorer’s interests for a predefined
scenario. From these models, our systems make recommendations, collect
feedback and react accordingly. Thus, they invite users to a “discussion”,
involving database queries, pattern analysis and visualization. Let us in-
troduce each system:

• Our first assistant, Claude, excels at detecting the relationships
between the columns in a data warehouse. To interrogate Claude,
users specify a variable in which they are interested (e.g., Profit in
a marketing context, or Salary for a census). In response, Claude
suggests database views, highlighting the columns and tuples which
strongly influence this variable.

• Our second assistant, Blaeu, is a cartography expert: it creates
maps, to summarize the content of the database. These maps are
interactive: users can zoom in, project, or highlight properties of

16



1. Introduction

interest. Through these actions, explorers can browse their data,
and discover potentially interesting Select-Project-Join queries.

• Ziggy completes Claude and Blaeu’s suggestions. Its aim is to help
users who already have a query, but do not know what is interest-
ing about it. Our system can pinpoint what makes a set of tuples
“special”, by highlighting its differences with the rest of the database.

• Finally, Raimond generalizes our approaches to non-structured data.
Raimond targets microblogs (e.g., tweets), written in natural lan-
guage. From those, it can extract quantitative data and organize its
findings with thematic timelines. To demonstrate Raimond, we fo-
cus on news events. We show that generalizing semi-automatic data
exploration beyond tables is feasible.

Our work relies heavily on machine learning. We will show that many
methods from this field are applicable to data exploration, but they are
too heavy in terms of user involvement. Our explorers are not statisticians,
and they may have neither the patience nor the skills to tune statistical
inference algorithms. Hence, an important contribution of this thesis is to
provide new statistical techniques, focusing on interpretability, convenience
and speed rather than strict accuracy.

5 Structure and Covered Publications

We present the background material necessary to understand this thesis
in the next three chapters. Chapter 2 focuses on data warehouses and
visual analytics. Chapter 3 deals with data mining. Chapter 4 presents
elementary notions of information theory. We then dedicate one section to
each assistant. In Chapter 5, we describe Claude, based on the following
paper:

• Semi-Automated Exploration of Data Warehouses
Thibault Sellam, Emmanuel Müller, Martin Kersten
ACM Conference on Information and Knowledge Management (CIKM),
Knowledge Management track, 2015

In Chapter 6, we present Blaeu. This chapter is based on the following
three papers:

• Meet Charles, Big Data Query Advisor
Thibault Sellam, Martin Kersten
Conference on Innovative Data Research (CIDR), 2013

17



1.5. Structure and Covered Publications

• Cluster-Driven Navigation of the Query Space
Thibault Sellam, Martin Kersten
IEEE Transactions on Knowledge and Data Engineering (TKDE),
Submitted and accepted in 2015

• Blaeu: Mapping and Navigating Large Tables with Cluster
Analysis
Thibault Sellam, Robin Cijvat, Richard Koopmanschap and Martin
Kersten
Very Large Databases (VLDB), demonstration track, 2016

Ziggy, presented in chapter 7, is based on the following papers:

• “Hey Ziggy, What Am I Looking At?” - Describing Tuples
for Data Explorers
Thibault Sellam, Martin Kersten
Scientific and Statistical Database Management (SSDBM), 2016

• Ziggy: Characterizing Query Results for Data Explorers
Thibault Sellam, Martin Kersten
Very Large Databases (VLDB), demonstration track, 2016

• Have a Chat with Clustine, Conversational Engine to Query
Large Tables
Thibault Sellam, Martin Kersten
Workshop on Human in the Loop Data Analytics (co-located with
SIGMOD), 2016

In Chapter 8, we describe Raimond. Raimond was developed during an
internship at Microsft Research (Mountain View, CA) and was patented.
We describe Raimond in this paper:

• Raimond: Quantitative Data Extraction from Twitter to
Describe Events
Thibault Sellam, Omar Alonso
International Conference on Web Engineering (ICWE), 2015

In Chapter 9, we confront our findings with related work, conclude, and
present future research directions.
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Chapter 2

Background 1: Data Warehouses

and Visualization

Relational database systems appeared in the 70’s, to support operational
business tasks. Typical use cases included storing client information or
processing bank operations. The ability to update tables concurrently and
consistently was critical and transaction throughput was the key measure
of success. This model is still widely in used today, and it is referred to as
OLTP. In the 80’s and 90’s, businesses began to aggregate their databases
across departments, to get a strategic view of their resources and results.
They set up data warehouses, that is, large data repositories to contain
those aggregates [21]. For software engineers, data warehouses posed a
whole world of new challenges. For a start, the queries involved more
data than in the OLTP world. For instance, managers would be interested
in the sales of a whole semester, rather than that of a unique transaction.
Furthermore, these queries were more difficult to optimize, as they involved
complex aggregations and arithmetic operations. Lastly, data warehouses
were meant to be queried by humans, not by automated processes. In this
context, the couple formed by SQL queries and tabular results was not
optimal anymore: SQL was too rigid, and raw tuples were overwhelming.
Software editors and researchers had to invent new interaction methods.
In this chapter, we review two of those: data cubes and visual analytics.
Both of these approaches aim at summarizing the data. The first uses
aggregates, while the second uses multivariate visualizations.

1 The OLAP model, data cubes and pivot tables

The OLAP model first appeared in the database system Arbor Essbase,
in the early 90’s. Its aim is to provide a generic mechanism to manipulate
and summarize multidimensional data. Roughly, this model relies on two
concepts: the data cube, which is an abstract model of the database, and
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Figure 2.1: Two abstractions for a multidimensional dataset.
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2. Background 1: Data Warehouses and Visualization

Figure 2.2: A screenshot of Tableau 9.2 (with permission from Tableau
Software, 2015).

a set of primitives to manipulate this cube. Let us present those concepts
through an example. Figure 2.1a shows fictive marketing data, in tabular
form. According to the OLAP model, this dataset contains two types of
columns: the measure, Sales, and three dimensions, Country, Year and
Product. The measure is the variable that we want to analyze. The
dimensions describe the context in which it varies. The top-left part of
Figure 2.1b presents the data cube corresponding to this set. Observe that
the three dimensions define a grid, in which each cell contains a value of the
measure. The OLAP model provides us with (at least) four primitives to
inspect this cube: we can slice, dice, pivot, or drill. Slicing lets us project
the cube on a subset of its dimensions. For instance, we can select a two
dimension view of the cube, to visualize it (as we did in the figure). By
dicing, we restrict the range of the dimensions. With a pivot, we replace
one dimension by another. Finally, drilling lets us inspect the data at
a thinner level of granularity. The data cube is a pure abstraction. It
reflects in no way how the data is stored physically. Neither does it reflect
the logical schema of the database (i.e., at the SQL level). It is merely an
additional layer, meant to facilitate the navigation of data warehouses.

In principle, we could manipulate data cubes directly through SQL. In-
deed, most OLAP primitives have a direct equivalent in this language.
But in practice, many users prefer graphical front-ends. Historically, the
tools of choice were spreadsheet systems; first with Lotus 1-2-3, then with
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2.2. Visual Analytics

Microsoft Excel. In fact, these systems had already introduced pivot tables
in the late 80’s, which essentially are light data cubes. But alternatives
have emerged. Nowadays, a dozen software editors offer so-called Business
Intelligence dashboards, which exploit modern graphical methods. Pop-
ular products include QlikView, IBM Cognos or Microsoft BI. Figure 2.2
presents a screenshot of Tableau [88], which has gained a large success in
both academia and industry.

2 Visual Analytics

In parallel to the development of the OLAP model, experts in computer
graphics have introduced visual analytics software, such as XmdvTool [101],
GGobi [90], and ScatterDice [30]. These tools have the same objective as
data cubes: they help users query and visualize large datasets. However,
their logic is different. In the OLAP world, users interact with the data
through aggregates and statistics. They manipulate computed summaries,
they never access their data in its raw form. Visual analytics provide a
more direct access to the database. They present the original values, not
aggregates. To do so, they map the tuples to visual metaphors, which ex-
ploit the user’s visual bandwidth to its maximum. Also, they provide com-
mands to interact with the resulting displays: typically, users can zoom,
pan, or select. We now present four families of visualization techniques,
on which much of visual analytics rely: pixel-oriented methods, icon-based
displays, geometric projections, and hierarchical techniques [47].

Pixel oriented visualizations. Pixel oriented visualizations map each
value from the database to a colored area. As an illustration, Figure 2.3
represents the Iris dataset, a database of flowers from the UCI reposi-
tory [10]. Each panel represents a variable. Within the panels, the rect-
angles represent tuples, organized in a round robin fashion. Observe the
flag-like structure of the two rightmost displays: we perceive three clusters,
which correspond the three types of flowers present in the database.

Icon-based visualizations. Figure 2.4 presents an example of icon-
based visualization. This method maps each tuple to an icon, which shape
represents the data values. In the example, each variable is mapped to
a star, and each column is represented by the length of one axis. This
techniques is efficient to compare items and detect micro-variations, but it
gives a poor view of the overall structure of the data.

Projection-based methods. One drawback of pixel-oriented and icon-
based methods is that they do not actually show the multidimensional
space where the data lives. Projection-based methods address this issue.
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Figure 2.3: Pixel Oriented view of the Iris dataset.
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51 52 53 54 55 56 57 58 59 60
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Figure 2.4: Star plots representing 30 rows of the Iris dataset. In clock-
wise order, the axises represent the variables Sepal.Length, Sepal.Width,
Petal.Length, and Petal.Width.
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2.2. Visual Analytics

Figure 2.5 presents a scatter-plot matrix. It depicts a matrix of projections,
where each panel represents a two-dimensional view of the database. This
method excels at describing the density of the data, that is, empty zones
and clusters. It can also reveal pairwise correlations. But it is limited to a
few dimensions: for M variables, it requires M2 panels. Figure 2.6 presents
parallel coordinates, another popular approach based on projections. This
methods represents each tuple by a series of connected segments. It sup-
ports more variables than scatter-plot matrices, but less tuples.

Hierarchical displays. Hierarchical displays present the data with
nested sets of categories. Consider for instance the treemap in Figure 2.7.
The data is divided in three sections: Setosa, Versicolor and Virginica.
Within these sections, the map represents two categories: “Long Sepal”
and “Short Sepal”. Those are then divided in sub-categories, “Long Petal”
and “Short Petal”. Generally, hierarchical displays constitute a poor choice
to describe continuous multidimensional data, but they are efficient for
categorical variables, or datasets that are inherently hierarchical (e.g., file
systems). In the following chapters, we will use them to describe the results
of cluster analysis.
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Figure 2.7: Tree Map of the Iris dataset.
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Chapter 3

Background 2: Data Mining

Data cubes and visualizations involve a great deal of manual effort. Ty-
pically, analysts must start with a hypothesis (“there is something strange
is my October sales”), specify a view which will confirm or infirm it (“give
me all the sales of October”), then interpret the results (“aha, indeed I
see an unusual deviation”). Data mining is an attempt to automate this
process. Instead of writing queries, users specify patterns (e.g., “give me
all the outliers in my sales”), or statistical models (e.g., “give me a syn-
thetic formula to describe my sales”). Then, the system is responsible for
identifying the portion of the database that fits the requirements. With
data mining, users operate at a higher level of abstraction than bits and
tuples. For this reason, this discipline is also referred to as knowledge dis-
covery. Data mining is also very close to machine learning, a subfield of
AI. In fact, all the techniques and algorithms discussed in this thesis di-
rectly come from this domain. Therefore, we will often use the terms data
mining and machine learning interchangeably.

Because our work relies heavily on data mining, our presentation of this
field will be substantially more detailed than that of OLAP cubes and
visual analytics. This section is self-contained: readers who are already
familiar with the concepts covered may freely skip it. In Section 1, we
will present the basics of machine learning: we will introduce supervised
learning, unsupervised learning, and describe a few algorithms for each
task. In Section 2, we will discuss datasets with high dimensionality. We
will present the “curse of dimensionality”, discuss how it affects different
data mining, and discuss practical solutions for both supervised and un-
supervised learning.
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Salary Age Job Credit
80k 59 Executive Safe
12k 22 Student Risky
75k 24 Actor Risky
55k 30 Architect Safe
. . . . . . . . . . . .

(a) Training set.

Salary Age Job
70k 59 Lawyer
32k 29 Engineer
25k 23 Student
75k 50 Marketing
. . . . . . . . .

(b) Testing set.

Figure 3.1: Dummy data sets for a classification task. The aim is to predict
the credit rating of loan applicants.

1 A Data Mining Primer

This thesis focuses on the two most common tasks from data mining:
supervised learning and unsupervised learning.

Supervised learning. The aim of supervised learning is to make pre-
dictions from examples. This method operates in two steps, the learning
phase and the prediction phase.

1. During the learning phase, our system infers a statistical model from
a training set. The training set is a bag of couples (x, t) where
x = (x1, . . . , xM ) is a vector and t is a label. The statistical model is
a function f which maps each x to its label t. Figure 3.1a presents
a training set for a credit rating task. In this example, we wish to
produce a model f to map applicants to ratings.

2. During the prediction phase, we consider a set of tuples for which the
labels t are missing, as shown in Figure 3.1b. Our aim is to guess
the labels, using the model f found previously.

If the labels t come from a continuous domain, our task is called regression.
If they are categorical, we call it classification. For regression, linear models
and Gaussian processes are popular methods. For classification, common
algorithms include Naive Bayes, decision trees, SVMs and neural networks.
We will describe the first two techniques in the following sections.

Unsupervised learning. Unsupervised learning involves no training
phase. It assigns the classes t to the training items x directly, without any
preliminary example. The most common approach for this task is cluster
analysis, or clustering. Clustering consists in partitioning the data such
that similar items are grouped and different items are separated. Figure 3.2
shows an example of such partitions.
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Figure 3.2: Clustering credit applicants.

All the algorithms that we will discuss in the remainder of this thesis
rely on the assumption that the tuples are independent and identically
distributed (or i.i.d.). This means that all the tuples come from the same
probability distribution, and they were all drawn independently of each
other. This assumption is disputable in many cases, but it greatly simplifies
the computations. Methods to tackle it (e.g., drift detection or Markov
sequences) are beyond the scope of this thesis.

1.1 Classification

We now focus on supervised learning, and more specifically on classifi-
cation. We can divide classification methods in two families: generative
methods and discriminative methods. The first family specifies a full prob-
ability distribution for the couples (x, t), from which we can draw samples.
The second predicts t directly, without describing the distribution of the
data. The following sections present one algorithm for each approach:
Naive Bayes for the generative method and Decision Trees for the dis-
criminative method. We will then discuss how to tune these algorithms,
and how to evaluate their accuracy.

1.1.1 Naive Bayes

Let us return to our example of Figure 3.1. For a given tuple x =
(x1, . . . , xM ), our aim is to predict if the variable t is more likely to have
the value “Safe” or “Risky” . One way to do so is to compute the prob-
abilities P (Safe | x) and P (Risky | x), which respectively represent the
likelihood that a given user x is safe or risky. We then compute the ratio:

R =
P (Safe | x)
P (Risky | x) (3.1)
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Figure 3.3: Modeling the conditional attribute densities P (xj | t).

If R is greater than 1, we keep the value “Safe”. Otherwise, we set t to be
“Risky”.

Naive Bayes helps us compute the probabilities P (t | x). Suppose that
P (xj |t) represents the probability function of the variable xj for the class t,
for instance, the age of all safe applicants. The key observation is that un-
der certain assumptions (which we discuss next), the following relationship
holds:

R =
P (Safe | x1, . . . xm)

P (Risky | x1, . . . xm)

=
P (x1|Safe) · . . . · P (xM | Safe)

P (x1|Risky) · . . . · P (xM | Risky)
· P (Safe)
P (Risky)

=

M∏
j=1

P (xj | Safe)
P (xj | Risky)

· P (Safe)
P (Risky)

(3.2)

Fortunately, we can obtain all the elements of this equation from the train-
ing set. To compute the terms P (xj | t), we model the distribution of each
variable xj for safe and risky applicants separately. If xj is continuous, we
fit Gaussians, as in Figure 3.3a. If it is categorical, we use histograms, as
in Figure 3.3b. To estimate the ratio P (Safe)

P (Risky) , we simply count and divide
the number of observations from each class in the data.

Equation 3.2 relies on a very strong assumption: it assumes that within
the tuples of each class, all the attributes are independent from each other.
Formally, we have P (xi, xj |t) = P (xi|t) · P (xj |t). In reality, this assump-
tion almost never holds, which is why Naive Bayes carries its name. Yet,
this algorithm is surprisingly accurate in many practical situations. Its
precision, combined with its speed and its ability to cope with mixed data
types make it one of the most widely used classification algorithms [106].
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Age ≥ 27 Age < 27 

Salary ≥ 50 Salary < 50 

Risky

Risky Safe

Figure 3.4: Example of decision tree for the Credit data set.

1.1.2 Decision Trees

Naive Bayes is a “black box” method: its decision are hard to interpret.
We now present a popular alternative: decision trees. Decision trees are
legible, which partly explains their success, but they are also fast and
flexible [106].

A decision tree is a nested sequence of tests. Consider the example
pictured in Figure 3.4. This structure can be interpreted as an algorithm
to classify credit applicants. For any new item x, we explore the tree
from top to bottom, choosing the branches for which the condition holds.
Eventually, we end up at a terminal node, which indicates the final decision.

Authors have developed several algorithms to infer decision trees from
training data, such as CART, ID3 and C4.5 [106], but the general principles
are similar. All these algorithms build trees in a top-down fashion. At each
step, they select a leaf from the tree, select the corresponding portion of
the data, and split it in two (sometimes more for C4.5). To create the split,
they test each variable successively and keep the one that yields the “best”
split. The quality of a split depends on how well it separates the class: we
want the descendant nodes to be as pure as possible. In our example, a
perfect split would separate safe and risky applicants, with no exceptions.
To measure the impurity of a node, each algorithm uses its own function.
By default, CART uses the Gini index:∑

k∈[1,K]

pk · (1− pk) (3.3)

where pk denotes the proportion of individuals of class k. A popular alter-
native is the cross-entropy: ∑

k∈[1,K]

pk · ln pk (3.4)
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Figure 3.5: The non-monotonic relationship between mode complexity and
prediction accuracy.

Both functions return 0 if all the data belongs to the same class, and they
reach their maximum when the classes are present in equal proportions
(e.g., in a two class case, p1 = 0.5 and p2 = 0.5).

Observe that deep trees are not always better. In practice, it is often
necessary to prune our tree after we have built it, in order to obtain good
prediction performance. We discuss this point in the following section.

1.1.3 Model Complexity, Overfitting and Underfitting

All supervised learnings algorithms provide ways to control the complexity
of the model to be created. In the case of Naive Bayes, we can incorporate
or ignore variables. In the case of decision trees, we can tune the height
of the tree, either during the learning phase or during an optional pruning
step. A model should not be too simple, otherwise it may miss important
features of the training set. But it should not be too complex either. This
is a consequence of the fact that training sets are limited, and therefore
biased. They rarely show the full picture of the phenomenon that we are
modeling. If our model fits the data too closely, it may reflect artifacts
of the sample instead of properties of the real world. This situation is
called overfitting, and it is major source of concern for data analysts. The
smaller the data is, the higher are the chances that our model overfits. This
effect is amplified by noisy observations (e.g., inconsistent labels), and it
becomes critical in high dimensionalities, as we will later show. Figure 3.5
illustrates the balance between underfitting and overfitting.
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Figure 3.6: 4-fold cross validation.

1.1.4 Evaluation

To evaluate the quality of a statistical model, we need to answer two
questions: which test data do we use? Then, what is our metric?

Start with the test data. Typically, we only have access to one labeled
data set, which we can use for either training or testing. One option
is to use it for both. But this mode of evaluation does not account for
overfitting: it cannot detect whether our algorithm actually “understood”
the target concepts, or if it simply learned the labels “by heart”. A better
option is to split the training data in two: one set for learning, and another
one for validation. We can generalize this approach with cross-validation.
Cross-validation partitions the training set in k equally large subsets. We
use the first subset for validation, and the remainder for training. We
then rotate: we use the second subset for validation, and the remainder
for training. We repeat this operation for each of the k folds and average
the scores. Figure 3.6 illustrates this method.

For a given testing set, the simplest metric to evaluate a classifier is the
misclassification rate, that is, the proportion of correctly classified items.
Nevertheless, dozens of alternatives exist. The most popular ones are the
precision, the recall and the F1 score. Consider an arbitrary class to be
predicted. The precision measures the purity of the set of items mapped
to this class. The recall measures the completeness of this set. The F1 is
the harmonic mean of these values. Formally, if TP , TN , FP and FN
respectively represent the number of true positives, true negatives, false
positives and false negatives, we have:
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Precision =
TP

TP + FP
(3.5)

Recall =
TP

TP + FN
(3.6)

F1 = 2 · Precision · Recall
Precision + Recall

(3.7)

The advantage of the F1 is that it can deal with classes of different sizes.
In contrast, we can “cheat” the misclassification rate by systematically
predicting the most frequent class.

1.2 Cluster Analysis

Previously, we presented supervised learning. We now discuss clustering.
The aim of clustering is to split data into clusters, that is, groups of similar
objects. We can classify the algorithms along two axes: flat/hierarchical,
and feature-based/dissimilarity-based [46].

• Flat algorithms (also called divisive algorithms) partition the objects
into disjoint sets. In most cases, users must specify the number of
partitions k a priori. Oppositely, hierarchical algorithms return a
tree of nested partitions.

• Feature-based algorithms operate on the tuples as they are stored
in the database. Oppositely, dissimilarity-based algorithms take a
dissimilarity matrix as input. A dissimilarity matrix contains the
pairwise dissimilarity between all the objects in the database. This
matrix is square, and usually symmetric, as shown below:

D =

⎡
⎢⎢⎢⎢⎣
d(x1,x1) d(x1,x2) . . . d(x1,xM )

d(x2,x1)
. . .

...
...

. . .
...

d(xN ,x1) . . . . . . d(xN ,xM )

⎤
⎥⎥⎥⎥⎦

The advantage of dissimilarity-based clustering approach is that it
can deal with non-numeric data. For instance, we can easily obtain a
dissimilarity matrix from a set of strings, using e.g., the edit distance.
Applying a feature-based algorithm to the same is much harder.

We will now present one algorithm for each combination, as shown in
table 3.1. We will then discuss methods to detect the best number of
clusters in a dataset.
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Flat Hierarchical
Feature-based k-means Divisive k-means
Dissimilarity-based PAM Agglomerative clust.

Table 3.1: Algorithms covered.
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(b) Centroid update step.

Figure 3.7: One iteration of the k-means algorithm.

1.2.1 The k-means Algorithm

The k-means algorithm is probably the most widely used procedure in
all data mining. It splits data in such a way that the distance between
the points inside each partition is minimal. In other words, it seeks tight
clusters. To evaluate the tightness of a cluster, it relies on the within-
cluster sum of squares (WSS). The WSS aggregates the distance between
the points and the centers of the clusters to which they belong (also called
centroids). Formally, consider a set of k clusters Ci with centers xi. The
aim of k-means is to minimize the following quantity:

WSS =
∑

Ci∈{C1,...,Ck}

∑
x∈Ci

||x− xi||2 (3.8)

The most popular heuristic to solve this optimization problem is Lloyd’s
algorithm. The algorithm starts by picking k random centers. Then, each
iteration is based on two steps. During the first step, it creates the clus-
ters by assigning each point to its closest center, as shown in Figure 3.7a.
During the second, it recomputes the centers using the new cluster assign-
ments, as in Figure 3.7b. It repeats those two steps until convergence.
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Figure 3.8: A dendrogram shows the hierarchy of the partitions.

1.2.2 Partitioning Around Medoids

Partioning Around Medoids (PAM) [46] generalizes k-means to arbitrary
data types, such as strings, texts or videos. The main difference is that it
works with a dissimilarity matrix rather than a table of tuples. Also, it
relies on medoids instead of centroids. A medoid is a database object that
lies at the center of a cluster (medoids come from the data, while centroids
are artificial). If x∗

i describes the medoid of a cluster Ci, and d describes
a distance function, the PAM algorithm seeks to minimize:

WSS =
∑

Ci∈{C1,...,Ck}

∑
x∈Ci

d(x,x∗
i ) (3.9)

The body of the algorithm is itself very similar to k-means. Each iteration
relies on two steps. During the first step, PAM assigns each point to its
closest medoid. During the second step, it recalculates the medoids.

In its original form, PAM’s time complexity is quadratic with the num-
ber of tuples in the database. In fact, the computation of the dissimilarity
matrix itself runs in O(N2). A more scalable alternative is CLARA [46].
At each step, CLARA takes a small sample from the database and ex-
tracts a set of medoids with PAM. It then assigns the whole database to
those medoids, and computes the total score. It repeats this operation a
predefined number of times, and keeps the best configuration.

1.2.3 Divisive Clustering

The k-means and PAM algorithms rely on a critical parameter: the num-
ber of clusters k to generate. In practice, we rarely have the background
knowledge to set this number. Divisive clustering lets us bypass this prob-
lem. The algorithm operates as follows. First, we partition the database in
two sets using k-means with k = 2. We then identify the largest partition,
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and split it in two. We obtain three partitions. We detect the largest one,
and repeat the process. We stop when each partition contains one item,
or when we reach some arbitrary threshold. The result of this procedure
is a tree of nested partitions, which we can visualize with a dendrogram,
as shown in Figure 3.8.

1.2.4 Agglomerative Clustering

Divisive k-means is a top-down algorithm: it starts with one large partition
and finishes with small groups. Agglomerative clustering operates the
other way around. To initialize the algorithm, we assign each object to its
own cluster. Then, at each iteration, we detect the two closest clusters,
and merge them. We stop when one cluster contains all the data. To define
how close two clusters are, we have several possibilities. One option is to
use the distance between their closest points. In this case, we have:

D(Ci, Cj) = min{d(x,x′) : x ∈ Ci,x
′ ∈ Cj} (3.10)

An alternative is to use the distance between the two furthest points:

D(Ci, Cj) = max{d(x,x′) : x ∈ Ci,x
′ ∈ Cj} (3.11)

The former function leads to loose partitions, while the latter leads to tight
clusters. We can obtain a compromise with the mean:

D(Ci, Cj) =
1

|C1| · |C2|
·

∑
x∈Ci,x′∈Cj

d(x,x′) (3.12)

The algorithms corresponding to the three distance functions are respec-
tively called single link, complete link and average link clustering.

1.2.5 Choosing the Number of Clusters k

Hierarchical methods provide a convenient way to avoid setting a number
of clusters k explicitly. However, in many cases we need flat partitions,
and therefore we need to set this k. The literature provides dozens of rules
to detect the “best” number of clusters from the data, and we will now
present three of those. However, we must warn the reader that these are
heuristics. Eventually, the right decision depends on the data, the users
and their use case.

The most simple method to detect the number of clusters in a dataset is
the “elbow rule”, illustrated in Figure 3.9a. The idea is to run our clustering
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Figure 3.9: Methods to detect the number of clusters k.

algorithm for different values of k, and plot the quality of the results (e.g.,
the WSS) against the number of clusters. If the data is strongly clustered,
a shift in the distribution will appear, which looks like an elbow. This
point corresponds to the natural number of clusters in the data set.

Unfortunately, the elbow is rarely clear or visible in practice. An alterna-
tive approach is to exploit the silhouette coefficient [80]. As the WSS, the
silhouette coefficient measures the quality of a cluster assignment. How-
ever, it is not monotonous. If we plot it against different values of k, a
peak appears, as shown in Figure 3.9b. This peak corresponds to the best
number of clusters. Technically, the silhouette coefficient describes how
well each object “fits” inside its cluster. Consider an object xi. If a(xi)
represents the average dissimilarity between xi and the other tuples from
its cluster, and b(xi) is the lowest average dissimilarity between xi and the
points of another cluster, we have:

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(3.13)

If xi is at the center of its cluster, then we will have s(xi) = 1. If it lies
on the border of the cluster, we obtain s(xi) = 0. Finally, if xi is closer to
another cluster than its own, the score is negative (-1 in the worst case).
To obtain a global score, we average the silhouette scores of each object
the database.

Finally, a more robust alternative is the Gap statistic [93]. This index
uses two datasets: the original database, and a synthetic set which serves as
a baseline. To generate the baseline, we sample tuples uniformly from the
bounding box of the original dataset. Thus, we obtain a database which
values have the same domain as that of the real data, but which contains
no cluster. For a given k the value of the Gap statistic is the difference

38



3. Background 2: Data Mining

Dim. 1

Dim. 1
D

im
. 2

Dim. 1

D
im

. 2

D
im

. 3

Figure 3.10: Five data points in 1, 2 and 3 dimensions. Observe how the
data gets sparser as the number of dimensions increase.

in clustering quality between those two sets. Formally, if WSS(k) is the
score obtained with the real data and ES [WSS(k)] is the expected score
of clustering S uniformly distributed samples, we have:

GapS(k) = ES [logWSS(k)]− logWSS(k) (3.14)

The notation ES [WSS(k)] expresses the fact that we run the experiment
with several samples and then average results, i.e., we perform Monte-Carlo
simulation.

2 Mining High Dimension Datasets

Previously, we presented the basics of classification and clustering. We
now discuss the problem which arise with these methods when datasets
contain many variables.

The curse of dimensionality tells us that the more variables a database
contains, the sparser it gets. Consider for instance the 5 points pictured
in Figure 3.10. As we increase the number of dimensions in our dataset,
the distance between the points grows, and the space in which they live
get emptier. And this effect increases exponentially with the number of
dimensions. This observation has important consequences for machine
learning. In the following section we will present those that concern su-
pervised learning. In the next, we will discuss unsupervised learning.
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Figure 3.11: A grid-based classifier.

2.1 Supervised Learning with Many Variables

2.1.1 The Explosive Need For Data

We present the effect of dimensionality on regression and classification
through an example, largely inspired by Bishop [14]. Consider the classifi-
cation task introduced in Figure 3.1. We want to predict the credit rating
of a set of applicants. We already presented two methods to do so, namely
Naive Bayes and decision trees. We now introduce a third one: grid-based
classification. The idea behind this method is to divide the data space
into cells, as shown in Fig. 3.12. Then, we associate each cell to the most
frequent credit rating, either Risky of Safe. When a test tuple comes in, we
identify the cell to which it belongs, and retrieve the corresponding value
of the target.

To produce an accurate classifier, we need as many training points as
possible. Ideally, we should have at least one per cell. Suppose that we
bin each dimension into S cells. If our data contains one dimension, then
we need S training points. If contains two dimension, we need S2 exam-
ples. More generally, if our dataset contains M dimensions, we need SM

examples. Therefore, the number of training examples we need grows ex-
ponentially with the number of dimensions of the data. This is a typical
manifestation of the curse of dimensionality: we end up like the mytholog-
ical king who had to place ever more wheat on a chessboard to catch up
with a geometric progression. And this problem does not only plague our
grid-based classifier: without proper tuning, all classification algorithms
suffer from this effect.
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2.1.2 Feature Selection

To deal with the curse of dimensionality, data analysts have two options:
either they provide more training data, or they reduce the number of
columns in their database. Let us discuss the second option. The most
common method to reduce the dimensionality of a dataset is feature selec-
tion. Feature selection aims at identifying the variables which are useful for
a given inference task, and eliminate all the others. The hope is that the
resulting set will be small enough to be processed efficiently. We cannot
overstate how important this step is in practice. Following the classifica-
tion of Guyon and Elisseff [36], we present three types of feature selection
methods: wrappers, filters and embedded methods.

Wrappers. Consider a training set and a supervised learning algorithm.
Wrappers use the algorithm as a “black box” to check the predictive power
of different subsets of variables. They start by building a classifier for each
dimension separately. They check which one leads to the best results, and
attempt combinations with two variables. They keep the best candidate,
and reiterate with higher number of columns. They repeat the process
until the performance starts to decrease. Wrappers can also go the opposite
direction: they start with all the variables in the database, and suppress
them one by one. This method is simple, flexible and accurate. However, it
is often slow, because it builds a classifier for each combination of variables
to be tested.

Filters. Filters separate the variable selection from the actual classifi-
cation. In a first step, they identify potentially interesting variables. In
the second step, they run the actual learning algorithm. To detect in-
teresting variables, they usually check if the dimensions are statistically
dependent to the variable to be predicted, using for instance the correla-
tion coefficient. They then rank the variables and keep those that satisfy
an arbitrary threshold. We will describe these approaches in detail and
generalize them in Chapter 5.

Embedded methods. Embedded methods combine classification and
feature selection in one procedure. In fact we have already reviewed the
most popular of those: decision trees, which have a built-in mechanisms
to filter variables. An alternative is to chose an existing full-space algo-
rithm, such as linear regression or SVM, and force them to “mute” some
variables by modifying their objective function. This process is known as
regularization.
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Figure 3.12: Effect of the curse of dimensionality on distances. The Y axis
represents the normalized difference between the largest and the smallest
pairwise distance between the objects in the data.

2.2 The Curse of Dimensionality in Clustering

We now discuss the effects of high dimensionality on unsupervised learning.

2.2.1 The Leveling of Distances

We have seen that when we introduce new variables in a database, the
pairwise distance between its objects grows (cf. Figure 3.10). If the new
variables are strongly correlated to the original ones, then this effect is
relatively harmless: the pairwise distances are scaled, but their relative
proportions remain identical. However, if the new variables are indepen-
dent from the old ones, then the distances are distorted: objects that
were close will become distant, and objects that were far apart will be-
come close. Therefore, increasing the dimension of the data has a leveling
effect on the distances between the data points. Eventually, all the ob-
jects become equidistant. Figure 3.12 illustrates this effect. Formally,
if M represents the number of independent variables in the data, and if
MAXd(M) and MINd(M) respectively represent the largest and smallest
pairwise distance between the objects in the database, we have [13]:

lim
M→+∞

MAXd(M)−MINd(M)

MINd(M)
= 0 (3.15)

Yet, recall that the aim of cluster analysis is to group similar objects
and separate different ones. In high dimensionality, this task loses all
its meaning: the objects become equidistant, and therefore the clusters
disappear. A partitioning based on clustering is as good as random.
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Figure 3.13: Subspace clustering.
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Figure 3.14: Multiview clustering.

2.2.2 Subspace Clustering, Multiview Clustering

This last decade, several researchers have generalized cluster analysis to
high dimensionality spaces. The main idea is to seek clusters into sub-
spaces of the data. Instead of returning simple partitions, the algorithms
seek couples (Si, Ci) where Si is a subspace and Ci is a cluster. Thus,
they return both tuples and the sets of dimensions on which they are clus-
tered. Subspace clustering returns one subspace per cluster, as shown in
Figure 3.13. Alternatively, multiview clustering decouples subspace search
and the cluster analysis, as shown in Figure 3.14. We will discuss these
methods in more detail in Chapter 6, and introduce our own.

2.3 Principal Component Analysis

To finish, observe that we can distinguish the data’s physical dimension-
ality from its intrinsic dimensionality. The first property refers the num-
ber of columns in the database. The second one describes the number
of independent variables necessary to represent the dataset without loss
of information [17]. Consider a database with M columns. The physical
dimensionality of this set is M . If all the columns are completely indepen-
dent, then its intrinsic dimensionality is also M . Oppositely, if all columns
contain exactly the same data, then the intrinsic dimensionality falls to 1.
Indeed, we need just one variable to represent the whole dataset. Many
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Figure 3.15: Principal Component Analysis.

real-life datasets lie between these two extremes: the columns present some
statistical dependency, but these are not full correlations. Accordingly,
their intrinsic dimensionality varies between 1 and M .

The Principal Component Analysis (PCA) algorithm lets us transform a
wide dataset into a dense, compressed version. The physical dimensional-
ity of its output is smaller than that the original data, and hence it is easier
to process. However, the intrinsic dimensionality is preserved. Thus, PCA
is a common preprocessing step for cluster analysis, classification, or for
visualization. Technically, PCA seeks to project the data onto low dimen-
sion hyperplanes, in such a way that the subsequent loss of information is
minimized. Figure 3.15 illustrates this idea: PCA projects a 3D cloud of
points onto a 2D plane, but it manages to preserve much of the point’s
distribution. The axes on which the data is projected are called principal
components. We obtain them by analyzing the spectrum of the database’s
covariance matrix [14].
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Chapter 4

Background 3: Information Theory

We now turn to information theory, a branch of applied mathematics con-
cerned with the compression and transmission of data. Information theory
provides us with a powerful framework to understand how variables relate
to each other, and we will heavily rely on it in the coming chapters.

1 Introducing the Entropy

The entropy H(X ) of a variable X describes its variability, that is, how
“unpredictable” it is [23]. If X is a constant, then H(X ) = 0. In contrast,
if X is highly unpredictable (e.g., X is the outcome of flipping a perfectly
balanced coin) then H(X ) is maximal. Formally, if X is a discrete variable
with sample space Ω, then we have:

H(X ) = −
∑
x∈Ω

P (X = x) · logP (X = x) (4.1)

Figure 4.1 gives several examples of distributions along with their respec-
tive entropies.
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Figure 4.1: Histograms and entropy for three discrete distributions.
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Figure 4.2: Distributions P (Salary) and P (Salary | Masters.Degree = T).

It is often said that the entropy contains the “quantity of information”
contained in a message. To understand why, let us briefly turn to compres-
sion theory. Consider a file in which each character X is drawn randomly
from the distribution p(X ). Furthermore, suppose that we wish to com-
press this file, without loss of information. According to Shannon’s source
coding theorem [23], the average number of bits necessary to store each
symbol cannot fall below the entropy. In other words, the entropy is a the-
oretical lower bound on the average code length in a lossless compression
scheme. Accordingly, we measure it in bits.

2 The Mutual Information

Apart from its compression-related properties, the entropy gives us a mean
to quantify how variables interact. Indeed, if two variables are statistically
dependent, then conditioning one variable (that is, restricting the range of
its values) will affect the entropy of the second. Suppose that we wish to
test the relationship between two variables from a census, Masters.Degree
and Education. We can do so as follows. First, we compute the distribution
of Salary and compute its entropy H(Salary). Second, we compute the
distribution of Salary for all the individuals with a Master’s, and compute
the new entropy H(Salary | Masters.Degree = T). Figure 4.2 illustrates
both distributions. Finally, we compute the difference between the two
entropies:

ΔH = H(Salary)−H(Salary | Masters.Degree = T) (4.2)

If ΔH is positive, then the variables Masters.Degree and Salary are de-
pendent: knowing the value of one reduces the uncertainty of the second.
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Oppositely, if ΔH is null, these variables are independent. Therefore, ΔH
quantifies the degree of relationship between two variables.

The mututal information is a generalization of ΔH. If X and Y are two
random variables, the expression H(Y |X = k) describes the entropy of Y
given X = k. If we average this expression over all possible values of k, we
obtain the conditional entropy :

H(Y|X ) = Ex[H(Y|X = x)] (4.3)

We define the mutual information I as follows:

I(X ;Y) = H(Y)−H(Y|X ) (4.4)

The mutual information describes the loss in entropy between Y and Y |X ,
and therefore it quantifies the dependence between X and Y . It is sym-
metric, and it is always positive or null.

The mutual information is not the only method to quantify the depen-
dence between variables. The statistics literature contains several other
candidates, including the correlation coefficient. The advantage of the
mutual information is its generality: it can cope with both categorical and
continuous data (after adjustments, cf. next section). It supports univari-
ate and multivariate distributions indifferently. More importantly, it can
detect non-linear relationships between variables.

A few authors have presented extensions to the mutual information. A
notable variant is the variation of information [63]:

V I(X ,Y) = H(X ) +H(Y)− 2 · I(X ;Y) (4.5)

As opposed to the regular mutual information, the VI is a true metric.
Hence, it obeys the triangle inequality V I(X ,Y)+V I(Y,Z) ≤ V I(X ,Z).
This property will come in handy when we will apply cluster analysis to
variables in Chapter 6.

3 Chain Rule and Conditional Mutual Information

The entropy and the mutual information can handle more than one vari-
able. The expression H(X ,X2) describes the entropy of the random vector
(X1,X2). Also the expression I(X1,X2;Y) describes the dependency be-
tween this vector and the variable Y (observe the difference between the
comma and the semicolon).
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Figure 4.3: Discretized probability function.

To compute the mutual information I(X1,X2;Y), we can generalize Equa-
tion 4.4 as follows:

I(X1,X2;Y) = H(X1,X2)−H(X1,X2|Y) (4.6)

Alternatively, we can use the mutual information chain rule, which is better
suited for iterative processing:

I(X1, . . . ,XD;Y) = I(X1;Y) + I(X2;Y|X1) + . . .+ I(XM ;Y|X1, . . .XM−1)

(4.7)

=
∑

m∈[1,M ]

I(Xm; T |X1, . . . ,Xm−1) (4.8)

In those equations, the notation I(Xj ; T |Xi) expresses the conditional mu-
tual information. The conditional mutual information is a conditioned
version of the mutual information: it describes the dependency between
Xj and T given restrictions on Xi. To obtain it, we compute the mutual
information between Xj and T given all the possible values of Xi, and
average the results. Formally:

I(Xj ; T |Xi) = Exi

[
I(Xj ; T )|Xi = xi)

]
(4.9)

The influence of Xi can go either way: it can weaken the dependency
between Xj and T , or it can strengthen it. The conditional mutual infor-
mation is positive or null, and it is bounded by the entropy of Xj and T .

4 Continuous Entropy

The entropy as defined in Equation 4.1 only supports discrete data. The
differential entropy generalizes it to continuous domains. If p(X ) is a
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continuous probability distribution, we define it as follows:

H(X ) = −
∫
Ω
p(x) · log p(x)dx (4.10)

We replaced the sum in Equation 4.1 by an integral, but we preserved
the functional form. We can substitute this version of the entropy in
equations 4.3 and 4.4: we obtain the continuous form of the conditional
entropy and the mutual information.

The continuous and discrete versions of the entropy are intimately linked.
Suppose that we discretize the continuous variable X into a new variable
X b, where b is the bin size as shown in Figure 4.3. Assuming that p(X ) is
Riemann integrable, the following result holds:

H(X ) = lim
b→0

H(X b) + log b (4.11)

Observe that the term log b tends to −∞. It compensates for the fact
that H(X b) diverges when b gets small. We refer the interested reader to
Thomas and Cover [23] for more details.

5 Estimation

In practice, we almost never know the exact distribution of the random
variable X that interests us. We only have access to samples. Hence,
we must use estimators. If the variable is discrete, we can use simple
histogram-based solutions. We set P̂ (X) ≈ P (X = x) to be the propor-
tion of tuples with X = x, and we plug this estimator in our information
theoretic measurements. Dealing with continuous variables is more com-
plex, as we need more expensive density estimators [19]. A pragmatic (but
lossy) solution is to discretize those variables. We will use this method by
default.

6 Summary

Let us summarize the main points in this section.

• The entropy H(X ) of a variable X describes its uncertainty. We
generalize this notion to vectors with the notation H(X1, . . .Xm).

• The mutual information I(X ;Y) measures the statistical dependency
between X and Y. We generalize this notion to vectors with the no-
tation I(X1, . . .Xm;Y1, . . .Yn). The mutual information is sensitive
to both linear and non-linear dependencies.
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4.6. Summary

• The mutual information is not trivially additive: in the vast majority
of cases, we have I(X1,X2;Y) �= I(X1;Y) + I(X2;Y). The correct
value depends on complex three-variable interactions, described by
the conditional mutual information.

• In its original form, the entropy is undefined for continuous variables.
A pragmatic (though lossy) solution is to bin the data and treat it as
categorical. A more advanced (though typically expensive) approach
is to estimate the differential entropy, a generalization of the entropy
to continuous domains [11].

50



Chapter 5

Claude: a Data Warehouse

Explanation System

1 Introduction

In Chapter 2, we presented data warehouses and described two methods to
explore them, data cubes and visualizations. Usually, those tools are fast
and intuitive. They excel at providing quick answers and clear displays.
But they rely entirely on manual effort. Eventually, they are merely a
layer on top of SQL. They rely on the query-result paradigm, and they
can involve long cycles of trial and error. In Chapter 3, we discussed data
mining. These techniques bring automation to data exploration. Yet, they
require much more background knowledge. At the time of writing, experts
in data mining (so-called “data scientists”) were still a rare and expensive
resource. Can we find a middle way? Can we design a method to analyze
data warehouses that would be both automatic and accessible?

1.1 Contributions

We now introduce Claude, a semi-automatic system to explain the con-
tent of a data warehouse. Claude answers the question: “What is in my
database?” To do so, it analyzes the statistical structure of the data and
infers potentially informative queries. Three features make Claude unique
compared to other machine learning algorithms. First, it returns SQL
statements instead of abstract statistical models. Thus, users can directly
visualize its findings with existing database front ends. Second, it explains
its choices: it can illustrate its findings with examples. Finally, Claude
enforces results diversity. Instead of seeking one optimal query, it returns
several different possibilities to be validated by the user. Thus, our sys-
tem combines the automation of data mining with the transparency and
flexibility of database queries.



5.2. General Model

In this chapter, we will first present a mathematical model of what makes
a database view informative. The main idea is to exploit the linear and
non-linear statistical dependencies between the columns of the database.
We will formalize this idea with information theory; more specifically we
will exploit the mutual information and the Kullback-Leibler divergence.
Then, we will present several algorithms to generate views from this model.
We will show that naive solutions are too slow to be useful in practice.
Therefore, we will present aggressive heuristics based on approximations
and greedy search. In the last sections of this chapter, we will present
our experiments with real-life datasets. First we will describe a use case,
for which will we discuss our system’s findings. Then, we will report on
systematic experiments, during which we simulate users with statistical
classifiers. Our results will reveal that Claude can effectively capture the
statistical structure of the database, and that it is faster than existing
solutions.

1.2 Outline

The rest of this chapter is organized as follows. Section 2 gives an overview
of our model, which we refine in Section 3. Sections 4 describes how
to compute the quality of a view, Section 5 presents our view detection
algorithm, and Section 6 describes how to justify our results. We present
our experiments in Section 7, related work in Section 8 and conclude in
Section 9.

2 General Model

2.1 Objective

Let us present our model through an example. We want to understand
which US cities are prone to crime. We have a database that provides
several dozen socio-economic indicators for thousands of US cities (for
instance, employment, age, or diplomas), as well as the number of crimes
for each city. Following the OLAP terminology, we refer to the first group
of columns as the dimensions, and the crime index as the measure (we
presented these notions in Chapter 2). We are oblivious to the physical
structure of the data, we assume that our database is stored in one large
table. Our aim is to understand the “big picture”: which variables correlate
with unusually high or low levels of crime? Which cities are impacted? We
want to describe how the measure varies across the dimensions.
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Figure 5.1: Example view, with two points of interest. All values are
normalized.

To answer these questions, our system generates views and points of
interest (POIs).

• A view is an “informative” selection of dimensions.

• A POI is a region in the view where the measure behaves “unusually”.

We will formalize the terms “informative” and “unusual” in the following
section. Let us first present them with an example. Figure 5.1 presents one
view and two POIs. The view involves the dimensions Unemployment
and Population Density. Why did Claude pick these two columns?
The POIs provide explanations. Cities with high densities and high unem-
ployment rates have more crimes (cf. POI1). In contrast, cities with low
densities and lower employment rates tend to be safer (cf. POI2). We see
that the columns of the view influence the measure. The POIs illustrate
how this influence manifests itself.
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5.2. General Model

2.2 Formalization

We introduced views and POIs. Let us now discuss how to measure their
quality.

2.2.1 View Quality

In our example, we consider that the columns Unemployment and Popula-
tion Density are informative because their combination influences the
target Crime. One way to measure this influence is to use statistical
dependency. If two columns are independent, then there is little chance
that they are related in the real world. Oppositely, a correlation indicates
a possible relationship. Therefore, a view in which the dimensions are
strongly dependent to the measure contains potentially interesting infor-
mation. Our whole model relies on this observation: we assume that a
view is interesting if its dimensions are jointly dependent to the measure.
To formalize this property, we introduce the view strength:

Definition 5.1. Consider a view V = {X1, . . . , XD}, the target T , and a
measure of statistical dependence S. We define the strength of the view V
as follows:

σ(V ) = S(X1, . . . ,XD; T ) (5.1)

The notation X refers to database columns, while X refers to their un-
derlying random variables. The variables Xm and T respectively represent
a dimension and the measure. We will instantiate the function S later, in
section 3.

2.2.2 POI quality

Observe the two POIs in Figure 5.1. The measure behaves “unusually”: its
distribution in these regions differs from that in the rest of the database.
It is skewed to the right in POI1, it is skewed to the left in POI2. We
name this property POI divergence. Consider a view based on the random
variables X1, . . . ,XD, with respective sample spaces Ω1, . . . ,ΩD. The set
R ⊂ Ω1 × . . .× ΩD represents a region in this view. The random variable
T represents the target for the whole database. The random variable[
T |(X1, . . . ,XD) ∈ R

]
represents the target for the tuples within R. We

shorten this notation to T |R. In our model, the region R is a good point
of interest if T |R and T have large differences in distribution.
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5. Claude: a Data Warehouse Explanation System

Definition 5.2. Let R ⊂ Ω1 × . . . × ΩD represent a region in the view
{X1, . . . , XD}, and let T represent our target variable. The function D
measures the dissimilarity between two probability distributions. We define
R’s divergence as follows:

δ(R) = D
(
T |R; T

)
(5.2)

Here again we will instantiate the function D in Section 3.

2.2.3 Problem Statement

We presented views and POIs, and we defined how to measure their quality.
We can now formulate the general problem statement behind Claude:

Problem 5.1. Consider a dataset DB, a target column T , a measure of
statistical dependence S and a measure of distribution dissimilarity D.

• Find the top K strongest views with at most D columns.

• For each of these views, find the top P divergent POIs.

We call the first sub-problem column search and the second POI detection.

In the rest of this chapter, we will illustrate Claude’s views with math-
ematical notation or visualizations. In practice however, Claude expresses
its recommendations with SQL queries. It describes the views with simple
Select-Project statements:

SELECT X1, ... , Xd, T
FROM DB;

It returns each point of interest as follows:

SELECT X1, ... , Xd, T
FROM VIEW
WHERE X1 BETWEEN [L1, H1]

AND ...
AND Xd BETWEEN [Ld, Hd]

In these queries, X1, . . . ,Xd represent the variables of the view, the inter-
vals [L1, H1] . . . [Ln, Hn] represent the bounds of the POI, and T
represents the target.
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5.3. Model Instantiation

3 Model Instantiation

We presented views and POIs without specifying any measure of depen-
dence S or dissimilarity D. We now instantiate these quantities with
fundamental information theory.

3.1 View Strength

According to our model, a set of dimensions is interesting if its columns
are jointly dependent to the target. To quantify this dependence, we use
the mutual information, presented in Chapter 4. Recall that this measure
presents many advantages: it is sensible to non-linear effects, it can cope
with any kind of variables, and it is practical to compute. Accordingly, we
set:

σ(V ) = I(X1, . . . ,XD; T ) (5.3)

We consider, that a view is strong if the mutual information between the
dimensions and the measure is high.

Recall from Chapter 4 that the mutual information deals natively with
categorical data. Extensions for continuous data exist, but they are more
computationally involved. In our implementation, we opted for a prag-
matic solution: we bin the continuous variables and treat them as categor-
ical.

3.2 Points of Interest and Divergence

Let us now refine our definition of divergence. We established that the
divergence of a POI is the dissimilarity between the target’s distribution
within this POI, and the target’s distribution in the whole database. To
measure this dissimilarity, we use the Kullback-Leibler divergence (KL).
The KL divergence measures the difference between two probability distri-
butions. It is null if the two distributions are similar, and it grows when
the distributions differ. Formally, if X and Y are two discrete random
variables with the same sample space Ω, we have:

KL
(
X ‖ Y

)
=

∑
x∈Ω

P (X = x) · log P (X = x)

P (Y = x)
(5.4)

In the continuous case, we have:

KL
(
X ‖ Y

)
=

∫
Ω
P (X = x) · log P (X = x)

P (Y = x)
dx (5.5)
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Ω1
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Figure 5.2: Example of a view with three discrete variables V =
{X1, X2, X3}. The average divergence of the cells δ(x) equals the strength
of the view σ(V ).

Here is our final version of the POI divergence:

δ(R) = KL
(
T |R ‖ T

)
(5.6)

Our region R is a good point of interest if KL(T |R ‖ T ) is as large as
possible. Here again, we can speed up the computations by discretizing
the continuous variables, to approximate the integral in Equation 5.5.

3.3 The Relationship Between Strength and Divergence

We now justify the choice of the Kullback-Leibler to instantiate the POI
divergence. The main idea is that the KL divergence and the mutual infor-
mation are “two sides of the same coin”: we obtain the latter by averaging
the former over all possible POIs. Therefore, our instantiation of strength
and divergence are tightly related.

Consider a view V , made of discrete variables. If we compute the diver-
gence of each distinct tuple and average the results, we obtain V ’s strength.
We illustrate this property with Figure 5.2. We generalize this observation
as follows:

Lemma 5.1. If V is a view with d variables and X ∈ Ω1 × . . .ΩD is a
tuple from this view, then:

σ(V ) = EX

[
δ({X})

]
(5.7)
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Proof. Consider the random vector X = [X 1, . . . ,XM ]� and the measure
T . From Cover and Thomas, Equation 2.35 [23] and Bayes’ theorem, we
make the following derivation:

I(X, T ) =

∫
X

∫
T
P (X, T ) log

P (X, T )

P (X)P (T )
dXdT (5.8)

=

∫
X
P (X)

∫
T
P (T | X) log

P (T |X)

P (T )
dT dX (5.9)

=

∫
X
P (X) ·KL

(
T |X ‖ T

)
dX (5.10)

= EX

[
KL

(
T |X ‖ T

)]
(5.11)

Substituting the left side with Equation 5.3, and the right side with Equa-
tion 5.6, we obtain the lemma. We skip the discrete case, which uses the
exact same development with sums instead of integrals.

Let us now study the effects of discretization, as discussed in Section 3.1
and 3.2. Suppose that we obtained a view V by binning a set of continuous
variables V ∗. The average divergence of V ’s bins equals the strength of V ,
but not that of V ∗. Fortunately, these quantities converge as the bins get
small.

Lemma 5.2. The view V is a set of continuous variables, V b is a dis-
cretized version of V in which each variable is binned with bin size b, and
Xb is a tuple from V b. We have EXb

[
δ({Xb})

]
→ σ(V ) as b → 0.

Proof. Let the D-dimensional random vector X describe the (continuous)
variables of V , and Xb describe the (discrete) variables of V b. By general-
izing Equation 4.11 to the multivariate case, we obtain:

lim
b→0

H(Xb) +D · log b = H(X) (5.12)

Using Equation 4.4, we have:

lim
b→0

I(Xb, T ) = lim
b→0

H(Xb)−H(Xb | T ) (5.13)

= H(X)−H(X | T )−D log b+D log b (5.14)
= H(X)−H(X | T ) (5.15)

By substituting with Equation 5.3, we obtain

lim
b→0

σ(V b) = σ(V ) (5.16)

We apply Equation 5.7 to obtain the lemma.
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4 Approximate View Strength

We now have a functional definition of view strength. At this point, we
could easily envision a greedy heuristic to detect the top K views in a
database. We start with simple views, based on one dimension. We then
add columns, one by one. To test if a column X is worth adding to a view
V , we compute the strength σ(V ∪ {X}). If the result is high enough,
we keep the candidate. If not, we discard it. We will present such an
algorithm in Section 5. However, we must first discuss how to compute
σ(V ∪ {X}).

Equations 5.3 and 5.7 describe several methods to compute the strength
of a view. Nevertheless, none of these fit iterative algorithms. Suppose
that we wish to compute the strength of a view V , then the strength of
another view V ∪ {X}. These equations give us no opportunity to share
computations: we must obtain σ(V ) and σ(V ∪ {X}) separately. Further-
more, both expressions are expensive, as they involve group-by queries
over the whole database. Therefore, we need an alternative, iterative for-
mulation for the strength of a view. Our solution is to exploit the Mutual
Information chain rule, as follows:

Lemma 5.3. Consider a view V = {X1, . . . , Xi}, and a target T . For any
column Xi+1:

σ(V ∪ {Xi+1}) = σ(V ) + I(Xi+1; T |X1, . . . ,Xi) (5.17)

Proof. This lemma is a direct consequence of Equation 4.7.

Recall from Chapter 4 that I(Xi+1; T |X1, . . . ,Xi) expresses the condi-
tional mutual information. It describes the dependency between Xi+1 and
T given the variables X1, . . . ,Xi. Recall also that the variables on which
we condition can both strengthen or weaken the dependency. The value
of I(Xi+1; T ) may be high, but I(Xi+1; T |X1, . . . ,Xi) may be low. Oppo-
sitely, I(Xi+1; T ) may be low and I(Xi+1; T |X1, . . . ,Xi) high.

Unfortunately, computing the conditional mutual information is expen-
sive - in fact it is as expensive as computing σ(V ∪{Xi+1}) directly. How-
ever, we can use an approximation. We introduce the following scheme:

I(Xi+1; T |X1, . . . ,Xi) ≈ I(Xi+1; T |Xi) (5.18)

We simply ignore the high order dependencies. This approximation is
naive, but lets us compute the strength of our candidates much faster:

σ(V ∪ {Xi+1}) = σ(V ) + I(Xi+1; T |X1, . . . ,Xi)

≈ σ(V ) + I(Xi+1; T |Xi)
(5.19)
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X
1

X
2

X
3

X
4

X
5

View V

0.9

0.8

0.6

0.5

Figure 5.3: Example of co-dependency graph with 5 dimensions. To ap-
proximate the strength of V ∪ {X5}, we add the weight of edge (X4, X5)
to V’s strength - in this case 0.5.

Thanks to this approximation, we can stage the view strength computa-
tions. We operate in two steps: one offline step and one online step. Offline,
we compute the conditional mutual information I(Xj ; T |Xi) between ev-
ery pair of variable (Xi,Xj). We call the resulting structure co-dependency
graph. In this directed graph, the vertices represent the dimensions, and
the edges represent the conditional mutual information. Online, we obtain
the view strength iteratively, exploiting Equation 5.19. To compute the
strength of a view V ∪{Xi+1} with V = {X1, . . . , Xi} , we fetch the value of
I(Xi+1; T |Xi) in the co-dependency graph and add it to V ’s strength. We
illustrate this method in Figure 5.3. Previously, computing σ(V ∪{Xi+1})
involved heavy groupings and aggregations on the whole dataset. Now, we
simply perform a lookup in a graph with N edges, where N is the number
of columns in the database.

Note that our approximation has a drawback: it depends on the order in
which we include the variables in the view. If we enrich a view by succes-
sively adding variables X1, X2 and X3, then we obtain a different strength
than if we incorporate X3, X2 then X1. Similarly, in Equation 5.19, we ob-
tain different approximations if we change the indexing of the dimensions
X1, . . . ,Xi. For more robustness, we introduce a “pessimistic” variant:

σ(V ∪ {Xi+1}) ≈ min
n∈[1,i]

σ(V ) + I(Xi+1; T |Xn) (5.20)

Instead of adding the strength I(Xi+1; T |Xi), where Xi is the last variable
inserted, we add I(Xi+1;T |Xn), where Xn is the variable which weakens
Xi+1 the most.
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Figure 5.4: Example of Beam Search, with D = 3 and beam size B = 2

5 Practical Column selection

This section presents our view search strategy. Our aim is to find the top
K views with at most D columns. If our database includes N dimensions,
our search space contains

∑
n≤N

(
N
n

)
= 2N combinations, which is clearly

impractical. Therefore, we resort to a greedy, level-wise heuristic.

5.1 Base algorithm

Our algorithm is based on beam search, illustrated in Figure 5.4. To ini-
tialize the algorithm, we compute the strength of each variable separately.
We sort the candidates, and keep the top B elements. We call this set the
beam, greyed in the figure. Then, we generate new candidates, by append-
ing each variable of the database to each variable in the beam. We obtain
views with two columns. We compute the strength of these views, keep
the top B strongest and discard the others. This gives us a new beam. We
repeat the procedure until the views in the beam contain D variables, or
the views stop improving. Algorithm 1 presents the full procedure.

Thanks to our strategy, we avoid exploring an exponentially large search
space. Instead, we compute the strengths of at most N.B candidates at
each level. The size of the beam lets us control the trade-off between ac-
curacy and runtime. With a small beam, we evaluate less candidates, and
thus terminate earlier. Oppositely, a large beam lets us explore more candi-
dates. Let us explain why this is necessary. At each level of the algorithm,
we discard the views which are too weak to reach the top B candidates.
We assume that if a combination of columns is weak at level i, then it will
be weak at all subsequent levels. Unfortunately, this assumption rarely
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5.5. Practical Column selection

Algorithm 1 Beam Search for view selection
function TopViews(K, D, B, DB)

Beam ← {}
for i ∈ [1, D] do

Cand ← {}, Scores ← {}
for V ∈ Beam do

for X ∈ columns(DB) do
Cand ← Cand ∪ {V ∪ {X}}
Scores ← Scores ∪ σ(V ∪ {X})

end for
end for
Beam ← findTopK(Cand, Scores, B)

end for
return findTopK(Cand, Scores,K)

end function
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Figure 5.5: Limit cases of the beam search strategy. The variables X1 and
X2 represent two dimensions. The symbol and color of the plots represent
the value of the target.
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Figure 5.6: Beam search augmented with a deduplication step. We display
in italic the size of the intermediate results. Note that N ·B ≥ B′ ≥ B.

holds: we can form strong views by combining weak columns; there are
“jumps” in the search space. Consider for instance the two classic scenarios
pictured in Figure 5.5. The dimensions X1 and X2 taken in isolation are
weak: we can infer no useful information about the target from either of
them. However, their combination is very interesting. Equivalently, the
views {X1} and {X2} have a very poor strength, but {X1, X2} is an excel-
lent candidate. If the beam is too tight, we may discard {X1} and {X2}
early because of low scores. We lose the opportunity to discover {X1, X2}.
Therefore, we recommend to set B > K. During our experiments, we
obtained excellent results with B ≥ 2 ·K (cf. Section 7.3).

5.2 Approximations and Refinements

In total, we evaluate the strength of B · N candidates for the D levels
of the beam search. To carry out this computation, we can either use
the exact formulation of strength, as shown in Equation 5.3, or use the
approximation scheme presented in Section 4. In Claude’s implementation,
we opted for a hybrid approach. We perform the first two levels of search
with the exact strength (which is equivalent to building the co-dependency
graph). Then, for all subsequent steps, we use the approximations. Finally,
we revert to the exact strength for the top k ranking, at the very end of
the procedure. Thanks to this method, we obtain significant speed gains
at little accuracy cost.

5.3 Deduplication

Our algorithm seeks strong views. In some cases however, it may be prefer-
able to have weaker but more diverse views. To deal with those cases,
we introduce an optional deduplication step, during which we reduce the
number of views with an algorithm from the literature. As pictured in
Figure 5.6, we run this procedure at the end of each beam search iteration.
By definition, deduplication reduces the number of candidates. Therefore,
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to obtain B views at the end of the algorithm, we must generate B′ > B
views beforehand. A low B′ yields more variety, while a high B′ may lead
to stronger views.

Authors have proposed a quantity of methods to deduplicate itemsets in
the pattern mining literature [108, 96]. We opted for a simple compression-
based approach. First, we compute the dissimilarity between every pair
of views with the Jaccard dissimilarity. Given two views Vi and Vj , it is
defined as follows: dJ(Vi, Vj) = |Vi ∩ Vj |/|Vi ∪ Vj |. We then cluster the
resulting matrix with Partitioning Around Medoids, an algorithm of type
k-medoids. We refer the interested reader to Section 1.2.2 of Chapter 3 for
more details.

6 Detecting Points Of Interest

We previously described how to find strong views. We now explain how to
identify P points of interests for each of these views.

We instantiate POIs by a well-known analysis called subgroup discov-
ery [49, 105], which can be formulated as follows: given a set of tuples,
a target column and a measure of exceptionality, detect sets of tuples for
which the target behaves exceptionally. In our case, we instantiate the
exceptionality measure with divergence. As pointed our by van Leeuwen
and Knobbe [95], we can also solve the subgroup discovery problem with
beam search. Let V represent the view to analyze. As the variables are
binned, we can form a grid over V , as shown in Figure 5.2. We denote
by b the number of bins for each variable. To initialize the algorithm, we
compute the divergence of each cell and keep the top BPOI most divergent
ones. We obtain our beam. We then “drill” into each of these cells: we
decompose them into smaller cells by splitting the edges into b bins. We
evaluate the new candidates and keep the top BPOI most divergent. We
reiterate until the algorithm converges. As shown in the subgroup dis-
covery literature [105, 95], we can generalize this method to binary and
nominal data. For each distinct level xi of a variable X, we create two
groups: tuples for which X = xi, and tuples for which X �= xi.

In practice, KL-based approaches tends to favor smaller regions. There-
fore, Beam Search may converge late, or not at all. A practical solution is
to set a minimum count threshold. Alternatively, we can alter our model
to take the size into account [95]. Let R represents a region with count
|R|, and |DB| represent the number of tuples in the database. We intro-
duce the weighted deviation δw(R) = |R|/|DB| × δ(R). This new score
introduces a penalty for small POIs.
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Dataset Columns Rows #Views #Variables
MuskMolecules 167 6,600 22 18

Crime 128 1,996 20 17
BreastCancer 34 234 10 13

PenDigits 17 7,496 9 10
BankMarketing 17 45,213 11 8

LetterRecog 16 20,000 10 12
USCensus 14 32,578 10 7

MAGICTelescope 11 19,022 1 10

Table 5.1: Characteristics of the datasets. The last two columns are used
for comparison with 4S, cf. Section 7.3.

View Score (normalized)
Police.Overtime, Pct.Vacant.Boarded, Pct.Race.White 0.51
Pct.Families.2.Parents, Pct.Race.White,
Police.Requests.Per.Officer

0.49

Pct.Police.White, Pct.Police.Minority,
Pct.Vacant.House.Boarded

0.37

Pct.Empl.Profes.Services, Pct.Empl.Manual,
Pct.Police.On.Patrol

0.37

Pct.Retired, Pct.Use.Public.Transports,
Pct.Police.On.Patrol

0.35

Pct.Recently.Moved, Population.Density, Police.Cars 0.34

Table 5.2: Example of views generated by Claude for the US Crime dataset.

7 Experiments

We now present our experimental results. All our experiments are based
on 8 datasets from the UCI Repository, described in Table 7.6. The files
are available online1. In several experiments, we report the normalized
view strength instead of the usual strength. If V is a view with entropy
H(V ), we obtain it as follows: σnorm(V ) = σ(V )/H(V ). The advantage
of this this measurement is that varies between 0 and 1.

7.1 Detailed Example: Crimes in the US

In this section, we showcase Claude with a real-life example: we analyze
the Communities and Crime dataset from the UCI repository2. Our aim is
to understand which US cities are subject to violent crimes. Our database

1archive.ics.uci.edu/ml/
2archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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Figure 5.7: Heatmaps of the US Crime Dataset, based on Claude’s output.
Each box represents a Point of Interest.
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compiles crime data and socio-economic indicators about 1994 communi-
ties, with a total of 128 variables. The data comes mostly from the 90’s,
and it was provided by official US sources - among others, the 1990 US
census and the 1995 FBI Uniform Crime Report. All the variables are
normalized to have a minimum of 0 and a maximum of 100.

We generated K = 100 views with up to D = 3 dimensions, both with
and without deduplication. We present a selection of views in Table 5.2,
along with 2-dimension heat maps in Figure 5.7. Observe that strong views
have a visual signature: in the top two maps, the blue and red areas are
neatly separated. In the bottom two views, the distinction is less clear.

The first view of Table 5.2 is the best one we found: Police.Overtime,
Pct.Race.White, Pct.Vacant.Boarded. It has a score of 0.51.
which means that these three variables contain 51% of the target’s informa-
tion. The columns Police.Overtime and Pct.White.Race respec-
tively describe the average time overworked by the police and the percent-
age of caucasian population. The third variable, Pct.Vacant.Boarded
was surprising to us: it describes the percentage of vacant houses which
are boarded up. How does this relate to crime? We could assume that
boarded houses are associated with long term abandon, and thus, poverty.
The top-left plot of Figure 5.7 shows the relation between race, boarded
houses and crime. Observe that the variables complement each other: a
high proportion of caucasians may or may not lead to low crime. However,
a high proportion of caucasians combined with a low rate of boarded house
correspond to safe areas, while few caucasians and many boarded houses
correspond to more violent communities.

Our second view shows that cities with more monoparental families tend
to be more violent: the correlation is clearly visible, and both POIs point
to the bottom of the chart. However, close inspection also reveals surprises:
a few communities have a relatively high number of two-parents families,
but also high indicators of police requests and crime (in the top right
corner of the chart). Manual queries reveal that many of these cities are
located in the suburbs of Los Angeles, and contain a majority of Hispanics.
Does this explain the peculiarity? We leave this question open for future
investigations. We see that some findings come from the recommendations
directly while others are serendipitous. But in both cases, Claude lets us
discover “nuggets” with little prior knowledge and few assumptions.
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Figure 5.8: Strength vs. Classification accuracy for 500 random views. We
obtained the blue and red lines with linear regression.
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7.2 View Strength and Prediction

In this section, we show experimentally that our notion of view strength
“works”, e.g. that strong views effectively provide information about the
target column. To verify this assumption, we simulate users with statis-
tical classifiers. Consider a view V over a database. If a classifier can
predict the value of the target from V ’s columns, then V is informative.
Oppositely, if the classifier fails, then V is potentially uninteresting. In a
nutshell, we should observe a positive correlation between view strength
and classification accuracy.

We now detail our experiment. We chose three datasets from the UCI
repository. For each dataset, we generated 500 random views and mea-
sured their strengths. We then trained classifiers on each of these views,
and measured their performance. We report the results in Figure 5.8. We
chose two classification algorithms: Naive Bayes, and 5-Nearest Neigh-
bors. We chose those because they contain no built-in mechanism to filter
out irrelevant variables (as opposed to, e.g., decision trees). We measure
classification performance with 5-fold validation, to avoid the effects of
overfitting.

In all three cases, we observe a positive correlation between the strengths
of the views and the accuracy of the predictions. We confirm these obser-
vations with statistical tests: the coefficients of determination (R2) vary
between 0.11 and 0.84, which indicates the presence of a trend (despite
some variability). Furthermore, the p-values associated to the coefficients
are all under 10−3, this gives us excellent confidence that the strength in-
fluences positively the prediction accuracy. In conclusion, strong views are
indeed more instructive.

7.3 View Selection

We now evaluate Claude’s output and runtime in detail. In this section,
we verify if Claude’s algorithm produces good views in a short amount
of time. To do so, we compare it to four methods, three of which come
from the machine learning literature. Our first baseline, Exact, is similar
to Claude, but we removed the approximation scheme presented in 4 -
instead we compute the exact the mutual information, as in Equation 5.3
The method should be slower, but more accurate.

The second algorithm, Clique, is a top-down approach inspired by re-
cent work on pattern mining [107]. We build a graph where each vertex i
represents a column Di, and each edge (i, j) represents the view {Di, Dj}.
We then eliminate all the edges except those which represent the top B

69



5.7. Experiments

0.00

0.25

0.50

0.75

1.00

U
S

C
ensus

C
rim

eM
uskM

oleculesM
A

G
IC

Telescope
P

enD
igits

B
ankM

arketing
B

reastC
ancer

LetterR
ecog

D
ataset

Accuracy − F1
C

laude
4SC

lique
E

xact
W

rap 5−
N

N

(a)
P
erform

ance
of

the
V

iew
Selection

algorithm
s.

For
each

data
set,

w
e

generate
q

view
s,

train
a

5-N
N

classifier
over

the
colum

ns
of

each
view

and
report

the
classification

accuracy
(F

1,5-fold
cross

validation).
T

he
points

represent
m

edian
scores,

the
bars

represent
the

low
est

and
greatest

scores.

X
X

X
X

X
X

X

0 10 20 30 40 50 60

U
S

C
ensus

C
rim

eM
uskM

oleculesM
A

G
IC

Telescope
P

enD
igits

B
ankM

arketing
B

reastC
ancer

LetterR
ecog

D
ataset

Execution Time (s)

C
laude

4SC
lique

E
xact

W
rap 5−

N
N

(b)
E

xecution
tim

e
of

the
V

iew
Selection

algorithm
s.

A
X

sym
bol

indicates
that

the
experim

ent
did

not
finish

w
ithin

3,600
seconds.

F
igure

5.9:
E

xperim
ents

w
ith

the
view

selection
algorithm

.

70



5. Claude: a Data Warehouse Explanation System

views. To detect views with D > 2 columns, we seek cliques in this de-
generated graph. We used the igraph package from R. We expect this
algorithm to be very fast, but less accurate.

The third method, Wrap 5-NN, is a classic feature selection algorithm [36].
The idea is to train a 5-Nearest Neighbor classifier with increasingly large
sets of variables. We first test each variable separately, and keep the col-
umn which led to the best prediction. Then we keep adding variables in a
breadth-first manner, until the quality of the predictions stops increasing
or we reach n variables. Our implementation is based on the class pack-
age from R. We modified the original algorithm to maintain and update q
distinct sets of variables instead of just one. We chose the nearest neighbor
algorithm because it is fast, and it gave us good performance, as shown in
7.2. We expect this algorithm to be very slow, but close to optimal.

Finally, the last method, 4S is a state-of-the-art subspace search method
from the unsupervised learning literature [70]. The aim of the algorithm
is to detect “interesting” subspaces in large databases, independently of a
target variable. To do so, it seeks groups of variables which are mutu-
ally correlated, with sketches and graph-based techniques. We used the
author’s implementation, written in Java. We expect the algorithm to be
very fast and reasonably accurate.

We use 8 public datasets, presented in Section 7. For a fair comparison,
we must ensure that each algorithm generates the same number of views
(K) with the same number of variables (D). However, we have no way
to specify these parameters a priori with 4S, because the algorithm has a
built-in mechanism to pick optimal values. Therefore, we run 4S first on
each dataset, we let it chose K and D, and we use these values for the
remaining algorithms. We report the obtained parameters in Table 7.6.

We implemented Claude in R, except for some information theory primi-
tives written in C. For practical reasons, we interrupted all the experiments
which lasted more than 1 hour. Our test system is based on a 3.40 GHz In-
tel(R) Core(TM) i7-2600 processor. It is equipped with 16 GB RAM, but
the Java heap space is limited to 8 GB. The operating system is Fedora 16.

7.3.1 Accuracy

In Figure 5.9a, we compare the quality of the views returned by each
algorithm. For each competitor, we generate K views with D variables,
train a classifier on each view and measure the quality of the predictions.
For the classification, we use both Naive Bayes and 5-Nearest Neighbors,
and report the highest score. We measure accuracy with the F1 score on
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5-fold cross validation; higher is better.
The method Wrap 5-NN comes first for all the datasets on which it

completed. This is not surprising since the algorithm optimizes exactly
what we measure: Wrap 5-NN is our “gold standard”. Our two algorithms,
Claude and Exhaustive, come very close. This indicates that both
algorithms find good views, and that our approximation scheme works
correctly. The algorithms 4S and Clique come much lower. As 4S is
completely unsupervised, we cannot expect it to perform as well as the
other approaches. The assumptions behind Clique are apparently too
naive.

7.3.2 Runtime

Figure 5.9b shows the runtime of our experiments. The algorithms Exact
and Wrap 5-NN are orders of magnitude slower than the other approaches.
The remaining three approaches are comparable: depending on the datasets,
either Clique or 4S come first. Claude comes first for MuskMolecules,
and close second for all the other datasets. In conclusion, Claude is com-
parable to its competitors in terms of runtime, but it generates better
views.

7.4 Impact of the beam size

Figure 5.10a shows the impact of the beam size B on Claude’s perfor-
mance, for 4 databases. To obtain these plots, we ran Claude with K = 25
and D = 5, and varied B between 25 and 250. We observe that smaller
beam sizes lead to lower execution times, while larger beam sizes lead to
stronger views. However, the heuristic converges fast: we observe little to
no improvement for B greater than 50.

7.5 Impact of the deduplication

We show the impact of our deduplication strategy in Figure 5.10b. We ran
Claude with K = 25 and D = 5 and increased the level of deduplication,
i.e., varied the value of B′ between B and N.B (cf. Section 5.3). A level
of 0% means that B′ = B. A level of 100% means that B′ = N.B. To
measure the diversity of the views, we measured the Jaccard dissimilarity
between every pair of views and averaged the results. We observe that
the strategy works in all four cases, but with different levels of efficiency.
In the BankMarketing case, our strategy almost doubles the pairwise
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Figure 5.10: Experiments with beam size and deduplication.
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dissimilarity of the views. The effect is much lighter on datasets with few
columns, such as USCensus and MAGICTelescope.

7.6 POI Detection

In this section, we evaluate Claude’s POI detection strategy. We compare
two approaches. The first approach is the algorithm presented in the chap-
ter: first we search K views, then we return P POIs per view. The second
approach, FullSpace, is the method used in much of the recent Sub-
group Discovery literature [95, 29]. The idea is to apply Beam Search on
the whole database directly. Instead of seeking P POIs in K projections,
we seek K.P selections from the full column space; we skip the view selec-
tion step. We use the same datasets as previously. Our default parameters
are K = 25, D = 5, B = 50 and P = 10. To set the beam size, we use
a rule of thumb: BPOI = 2.k (BPOI is the beam used for POI detection,
not for view search). To gather sufficient data, we raise our time limit to
2 hours.

Figure 5.11a compares the quality of the POIs found by both algo-
rithms. The strategy FullSpace gives slightly better results on Crime
and PenDigits, but the difference is close to null. The scores are sim-
ilar on all the other datasets. We conclude that Claude’s POIs are very
close to those found by a state-of-the-art Subgroup Discovery approach.
Figure 5.11b compares the runtimes of both approaches. We observe that
Claude is much faster than FullSpace. The difference grows with the
number of columns: the runtimes are almost similar for datasets with
few columns (MAGICTelescope), but Claude is considerably faster for
larger databases (more than an order of magnitude difference for Musk-
Molecules). This is a positive side-effect of our approach: decoupling
view search and POI extraction allows us to find subgroups faster in high
dimensional datasets.

8 Related Work

8.1 SQL Query Recommendation

We identify two types of approaches: human-driven systems and data-
driven systems. Human-driven systems learn from user feedback. For
instance, Chatzopoulou et al. make recommendations from query logs,
similarly to search engines [20]. In Explore-by-Example, the system infers
queries from examples provided by the user [26]. Sarawagi’s method builds
a maximum entropy model over the database from the user’s history [83].
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Bonifati et al. propose a similar method to recommend joins [15]. Claude
competes with neither of these approaches, since it uses the content of the
database only.

Our work is closer to data-driven data recommendation. The general
idea is to build a statistical model of the database, and find regions which
behave unexpectedly. Sarawagi et al. have published seminal work on
this topic [82]. But their system target a different use case. They as-
sume that the database contains only a dozen well-known dimensions, and
that the challenge is to drill-in correctly. Therefore, they make no recom-
mendations concerning columns, and they focus on micro-patterns. In our
model, databases can contain more than a hundred dimensions. The whole
challenge is to present how they relate to each other. We are interested
in broad dependencies, not local exceptions. Gradient analysis [42, 27] is
close to our work, but it also focuses on micro-deviations. Finally, Dash et
al. have proposed a method to reveal surprising subsets in a faceted search
context [24]. This method is related to Claude, but it targets document
search, not OLAP views.

8.2 Projection Search

Authors from the data visualization literature have proposed methods to
detect the “best” projections of multidimensional data sets, such as Projec-
tion Pursuit [32], Scagnostics [104], or Tatu et al.’s relevance measures [91].
Such methods would form excellent complements for Claude’s recommen-
dations. Nevertheless, most of them focus on 2-dimensional scatterplots,
are limited to continuous variables, and involve materializing and analyz-
ing every possible 2D projection of the data.

8.3 Feature Selection, Subspace Search

Choosing which variables to use for classification or regression is a crucial
problem, for which dozens of methods were proposed [36]. Similarly to
Claude, some of these methods rely on mutual information [74]. Neverthe-
less, the objective is different. A feature selection algorithm seeks one set
of variables, on which a statistical predictor will perform optimally. Claude
seeks several, small sets of variables, simple enough to be interpreted by a
humans. In fact, Claude is halfway between inference and exploration. On
the unsupervised learning side, our work is close to subspace search. The
idea is detect subspaces where the data is clustered distinctly [48, 70]. We
compare Claude to state-of-the-art methods in our Experiments section.
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5. Claude: a Data Warehouse Explanation System

9 Summary

We formalized what makes a data warehouse query “informative”, using the
mutual information and the Kullback-Leibler divergence. We presented
practical methods to detect these queries, using carefully designed approx-
imations. Finally, we presented and evaluated Claude, a system based on
these ideas. The methods we developed for this study have broader ap-
plications than the strict realm of query recommendation. Our column
selection scheme competes with state-of-the-art feature selection methods.
Also, the idea to decouple column selection from subgroup search could
benefit a wide range of subgroup discovery algorithms.
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Chapter 6

Blaeu: Maps to Navigate the

Query Space

1 Introduction

Previously, we introduced Claude, a query recommendation system for
data warehouses. The main idea is to exploit the specific nature of the
OLAP model: we know that our data contains dimensions and measures,
and we know that data warehouse users seek to understand how the mea-
sure varies across the dimensions. Consequently, we can exploit the statis-
tical dependencies between the two types of columns.

We now generalize query recommendation beyond the OLAP use case.
Here again, we model the database with one large table. However, we
make no assumption about the content of this table: a column could be a
dimension, a measure, or simply noise. We only assume that somewhere
in the database lies an interesting set of tuples.

1.1 Contributions

In this chapter, we introduce Blaeu, a system to write queries through
cluster analysis. With Blaeu, users proceed in a step-by-step, interactive
manner. At each step, the system generates presents a map of the data,
obtained through clustering. This map gives a summary of the database.
Furthermore, it gives options for query refinements: if the users are inter-
ested in one of the clusters, they can click on it. The system then zooms
in, and present a new map. If they are not satisfied, they can zoom out, or
request an alternative map, based on other columns. Thanks to these ac-
tions, our explorers can effectively browse their databases. They discover
their content in an assisted, semi-automatic fashion. Figure 6.1 presents a
screen capture of Blaeu’s interface.



6.1. Introduction

Figure 6.1: Screenshot of Blaeu’s interface

Our first contribution is the data mapping model: we expose the link
between query recommendation and cluster analysis, and study the mathe-
matical properties of the subsequent query space. Our second contribution
is Blaeu’s mapping engine. To create data maps, Blaeu must find clusters
in the database. Yet, it must be fast enough to support interaction, and
it must rely on few parameters. We present three clustering algorithms
which address these requirements. The first algorithm, SimpleMap, tar-
gets small to medium data sets. The second algorithm, MultiMap, supports
high dimensional datasets with a multi-view approach. The last algorithm,
LightMap, focuses on speed and interaction. Additionally, we present an
aggressive sampling strategy to accelerate mapping. Experiments will re-
veal that Blaeu can cluster millions of tuples in dozens of subspaces within
seconds, on a commodity laptop.

1.2 Outline

The rest of this Chapter is organized as follows. Sections 3, 4 and 5 present
our three algorithms. Section 6 discusses how sampling and recycling ac-
celerate Blaeu’s mapping engine. We present use cases and experiments in
Sections 7 and 8. Finally we compare Blaeu to related work in Section 9
and conclude in Section 10.
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2 Data Cartography

In this section, we present the most important concept behind Blaeu: the
data map. Through this simple abstraction, users can visualize and query
their data. We introduce our terminology and our system.

2.1 Overview

Our users are confronted with an unknown database. This database con-
tains a few special, interesting tuples. If the users saw these tuples, they
could recognize then. Yet, they are hidden among thousands of others.
How can we help?

With Blaeu, users write queries in a top-down fashion. They start with a
wide Select-Project-Join query. Then, they refine it, step by step. At each
step, they visualize the current selection, identify the interesting tuples,
and narrow their query. Thus, they drill in iteratively, as they discover
the database. In principle, users could carry out top-down exploration
through any database front-end. However, raw tables are often difficult
to read and the number of potential refinements can be huge. Our idea is
to guide the users with cluster analysis. At each step, Blaeu decomposes
the current selection into clusters. If the users suspects that one of the
partitions contains the tuples of interest, they can click on it. Then, Blaeu
updates the selection and creates new clusters. The process is repeated
until the users are satisfied.

Cluster analysis is a classic data mining technique. Its aim is to partition
a data set, such that similar items are grouped, and distinct objects are
separated [46]. The literature contains dozens of different ways to define
a cluster, we will instantiate the definition later in the chapter. In our
case, this method is helpful in two ways. First, it lets Blaeu summarize
the users’ selection: instead of showing long list of tuples, it displays a few
clusters. Second, our system uses clustering to suggest refinements. If a
tuple is interesting, then its neighborhood probably contains other inter-
esting tuples. Oppositely, if a tuple is irrelevant, its neighbors are likely to
be irrelevant too. Therefore, grouping similar tuples helps users separate
the interesting tuples from the noise. We will refine these arguments in
the following section. First, let’s show how Blaeu works in practice.

With Blaeu, users explore their data through data maps. A data map is
an interactive representation of the clusters in a data set. Figure 6.2 illus-
trates how to work with data maps. Suppose that we explore a database
which describes the alumni of a fictional university. To seed the process,
we provide a wide query. We select the whole database, projected on the
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6.2. Data Cartography

Figure 6.2: “Surfing” the data maps

columns Salary and Education. Blaeu clusters the data, and it returns
a data map, titled Map 1. The map describes four types of individuals:
alumni with a Bachelor’s and a low salary, alumni with a Bachelor’s and
high salary, alumni with a Master’s and a low salary, alumni with a Mas-
ter’s and a high salary. The size of the slices represent the count of the
clusters. We see that the map summarizes our selection. Furthermore, it
gives us options: to refine our selection, we can simply click on one of the
regions. Then, Blaeu returns a new map. For instance, if we select the
region MSc, we obtain Map 2. We call this operation a zoom.

Blaeu offers two additional primitives: the projection and the rollback.
The projection does not affect the selection of tuples, but it changes the
columns used by the map. If we project Map 2 on Sex, we obtain Map 3.
With a rollback, we go back to a previous state of the system. Thanks to
zooms, projections and rollbacks, we can “surf” from one map to another.

Figure 6.3 gives an overview of the system’s components. Users interact
with a graphical interface. They specify the seed query with an input
menu. They zoom with clicks, and project with drags. Internally, all the
user actions are translated into a proprietary language, MapQL.
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Figure 6.3: High level view of Blaeu’s architecture.
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2.2 Formalization

We introduced the data map, and presented how to interact with it. We
now define these concepts formally.

Definition 6.1. Let Q ⊂ DB represent a set of tuples in a database DB.
We obtain a partitioning C = {C1, . . . , CK} over Q with cluster analysis.
A data map is a representation of C which supports zooms, projections and
rollbacks.

Our definition contains two degrees of freedom: it is oblivious to our
choice of clustering method, and it does not specify how to represent the
clusters. These choices depend on practical considerations, discussed in
further sections.

Each data map is based on a set of tuples Q. We call this set the context
of the map. To start an exploration session, the user provides a first context
Q0 explicitly. We name it the seed context. The subsequent contexts are
obtained iteratively, with zooms, rollbacks and projections. At each step i,
these operations transform a context Qi into a new, refined context Qi+1.
Let us define the possible transformations with relational algebra:

Definition 6.2. Let Qi describe a set of tuples with primary key k, i ≥ 0.
A data map over Qi supports three types of operations:

• Zoom in cluster Cj: Qi+1 = σt∈Cj (Qi)

• Projection on a set of variables Vp: Qi+1 = πVp∪{k}(Qi �� Q0)

• Rollback: Qi+1 = Qi−1, undefined if i < 1

As we defined the operators in a declarative way, implementation details
may vary. For instance, we described the projection with an inner join
Qi �� Q0, to fetch the columns missing from Qi. In practice, we can
bypass this join: we maintain all the columns of Q0 during the whole
session, and perform the projections lazily, when we build the maps. This
method speeds up the exploration and lets Blaeu operate without any
primary key.

Thanks to these definitions, we can formalize Blaeu’s expressivity.

Lemma 6.1. Let QSPJ describe the set of all possible Select-Project-
Join queries over a database DB. If clus describes all the clusters in
the database and col describes all the columns in the database, the set of
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queries that users can express with zooms, projections and rollbacks is the
following:

QBlaeu = {πP (σR(Q)) | P ⊂ col, R ∈ clus,Q ∈ QSPJ}

Proof. The first query of the session Q0 is a SPJ query. The property can
be derived recursively with definition 6.2.

This lemma leads to QBlaeu ⊂ QSPJ : Blaeu’s primitives yield SPJ
queries. Yet, not all SPJ queries may be expressed. Blaeu quantizes QSPJ ,
transforming this large continuous space into a small and finite set of op-
tions.

Blaeu trades control for accessibility. This approach is useful in two
cases. First, it helps users with fuzzy, high level queries. Suppose that our
users are seeking “young, well paid individuals” in the alumni database. A
classic query language requires that they set precise thresholds on the age
and the salary; for instance, less than 35 years old and more than $100,000
per year. Thus, they need some preliminary knowledge, or some investiga-
tion time. In contrast, Blaeu automatically partitions the columns age and
salary into semantic groups, such that the users can reach the target tu-
ples with a few zooms. Second, Blaeu supports users with no query. These
users are browsing; they seek interesting tuples but they ignore where to
find them. With a classic SQL-based system, they must make guesses.
These guesses can lead to empty or overwhelmingly large result sets. With
Blaeu, the users obtain a few query suggestions. Thus, they can assess
each option in turn, and pick one according to their preferences.

2.3 Properties

According to Definition 6.1, a data map serves both as output and input.
It serves as output because it summarizes the user’s current selection.
It serves as input because users can refine their queries by clicking on
the clusters. The idea to summarize data with clusters has been studied
for decades [46]. However, it is less clear how clustering can generate
interesting query refinements. In this section, we create a user model, and
show under which conditions this property holds.

We model a user by an utility function u : DB → {−1, 1}. The function
takes a tuple t as input, and returns u(t) = +1 if t is interesting, u(t) = −1
otherwise. To deal with sets, we sum the utility of each tuple. Formally, for
a set of tuples Q ⊂ DB, the aggregated utility is U(Q) =

∑
t∈Q u(t). Our

aim is to suggest interesting subsets of the data. For a given partitioning,
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Figure 6.4: Example of informative map. Each point represents a tuple in
a two dimensional space, the symbols + and - represent the utility, the blue
dashed lines represent clusters. The grey area around tuple t represents
the separation threshold θ(C). Most of Partition 3’s tuples are within θ(C)
of tuple t. Therefore, t belongs to Partition 3. Conversely, as t does not
belong to Partition 2, the majority Partition 2’s tuples are beyond θ(C).

if at least one of the partitions is interesting, then we reached our goal.
We formalize this objective as follows:

Definition 6.3. Let set Q ⊂ DB describe a set of tuples, and let C rep-
resent a partitioning {C1, . . . , CK} of Q. We say that C is informative if
and only if there exists a Cj ∈ C such that U(Cj) > U(Q).

Generating informative partitions would be trivial if we knew our user’s
utility function. This is not the case, we know almost nothing. However,
we can prove the following property: if the interesting tuples are sufficiently
close to each other, then recommending clusters is a safe bet.

Consider a partitioning of C over Q, obtained by clustering. From C
we infer a separation threshold θ(C). This function measures how well
separated the clusters are. It returns a high value if C’s clusters are tight
and far apart. It returns a low value if C’s clusters have a large overlap.
We define this threshold as follows:

Definition 6.4. The separation threshold θ(C) of a partitioning C is the
largest distance such that for any tuple t, for any partition Cj ∈ C: if at
least half of Cj’s tuples are within a distance θ(C) of t, then t ∈ Cj.

We illustrate this property with Fig. 6.4. Thanks to this notion, we can
identify scenarios in which clusters always form interesting recommenda-
tions.
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Lemma 6.2. Consider a set of tuples Q with at least one interesting tuple.
Let φ represent the largest possible distance between two interesting tuples
of Q (φ = 0 if there is only one interesting tuple). Any partitioning C of
Q such that θ(C) > φ is informative.

Proof. Let T represent the set of all the interesting tuples. There is at least
one tuple t∗ in the database such that u(t∗) = +1. We note C∗ its cluster in
C. Now consider a cluster C �= C∗. For the majority of C’s tuples t we have
d(t, t∗) > θ(C). If θ(C) > φ, then the majority of C’s tuples are outside
T . Therefore, U(C) < 0. Note that U(Q) = U(C∗) +

∑
C∈C\{C∗} U(C).

We derive the following: U(C∗) = U(Q) − ∑
C∈C\{C∗} U(C) > U(Q). In

conclusion, the map C is informative.

Intuitively, this lemma states that data maps work when the interesting
tuples are similar to each other and the data is clustered. If these condi-
tions are met, then the interesting tuples end up in the same cluster, as in
Figure 6.4. Therefore, at least one partition in the map is interesting. Op-
positely, if the interesting tuples are far from each other, they may spread
over several clusters. In this case, we have no guarantee about the map’s
interestingness. This property highlights a limitation of our model: if the
interesting subset of tuples is large and heterogeneous, then users must
decompose their exploration in several stages, discovering at each stage a
small, homogeneous selection of tuples.

To avoid confusion, we insist that Blaeu also works when the users are
seeking outliers. According to Blaeu, a subset is interesting if its tuples
are close to each other. This does not mean that the tuples must be close
to the rest of the data. Therefore, outliers can very well appear in data
maps. For Blaeu, an outlier is simply a small, isolated cluster.

2.4 Representation

We now discuss how to represent clusters. Which information about the
clusters should we convey? Which visualization method should we use?

A data map should at least provide one identifier for each cluster. Ad-
ditionally, it should reflect the structure of the partitions: if we use hi-
erarchical clustering, the map should show the inclusions; if we use flat
partitions, it should present the clusters side-by-side. Our implementation
describes the clusters with bounding boxes (e.g., Education: ’MSc’,
Age < 30), and it organizes them in a tree (we justify these choices in
Section 3). Thus, we instantiate the maps with sunburst charts, known to
be efficient in this case [109]. Note that several other visualization methods
could qualify, based on treemaps (cf. Chapter 2), trees or even raw text.
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Figure 6.5: Example of map, augmented with additional statistics. For
each region, we show a histogram of the variable Salary.

In practice, identifiers such as bounding boxes may not provide enough
information to assess the content of the clusters. For each partition, Blaeu’s
front-end provides additional statistics and a few sample tuples. In this
chapter, we annotate each cluster with a count, conveyed by the size of the
slices. Our prototype provides more options: users can request an aggre-
gate or a histogram over any variable in the database. As an illustration,
Figure 6.5 shows how Blaeu displays the distribution of Salary for differ-
ent generations of alumni. In effect, this feature enriches Blaeu’s expres-
sivity: it allows grouping and aggregating on top of the queries in QBlaeu.
Thus, users can quickly perform side-by-side comparisons. More generally,
this function lets Blaeu emulate traditional OLAP front-ends: the high-
lighted variable is equivalent to a measure, and the context variables are
equivalent to dimensions. In the interface, users request aggregates with
mouse-overs.

3 Algorithm 1: Building Maps

In the previous sections, we discussed cluster analysis as an abstract task,
we were indifferent to how it was implemented. In this section, we discuss
how to make it work in practice. We present a first algorithm, SimpleMap,
based on existing machine learning methods. We will use this procedure
as building block for the following sections.

Blaeu is subject to two contradictory requirements. On one hand, the
mapping engine should be accurate, and it should be flexible enough to
handle any kind of data, including missing values and categorical at-
tributes. On the other hand, the output should be simple. The descriptions
of the clusters must be interpretable by non technicians, and they must be
translatable into SQL to express zooms. To avoid setting a fixed number
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Figure 6.6: The SimpleMap algorithm combines cluster analysis and deci-
sion tree inference.
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6.3. Algorithm 1: Building Maps

1: function SimpleMap(DB, MAXc, MAXt)
2: DB′ ← preprocess(DB)
3: labels ← PAM(DB′,MAXc)
4: tree ← CART(DB, labels,MAXt)
5: return tree
6: end function

Figure 6.7: Detail of SimpleMap for mixed datasets. SimpleMap relies on
a preprocessor (preprocess), an unsupervised learning algorithm (PAM),
and a tree inference algorithm (CART).

of clusters, Blaeu should return a hierarchy of clusters rather than a flat
partitioning. When the clusters are organized in nested sets, users can
see several levels of resolution simultaneously. They can experiment with
different settings without running the algorithm several times.

The idea behind SimpleMap is to separate cluster detection from clus-
ter description. We pipeline two algorithms: one to detect the clusters,
and another one to generate simpler, hierarchical descriptions. For both
steps, we exploit existing work from the data mining literature. First,
we cluster the data with a well established algorithm, such as k-means or
PAM (Partitioning Around Medoids) [46], described in Chapter 3. Then
we build a classification tree, using the cluster assignments as class labels.
We illustrate the procedure with Figure 6.6.

Thanks to SimpleMap, we can use sophisticated clustering methods
without sacrificing interpretability of the results. Another advantage is
that we can run the clustering step and the decision tree step on two
different versions of the data. This is useful when the data contains cate-
gorical variables. During the cluster analysis, we transform these variables
into dummy binary variables, such that each binary variable represents
one category. Then, we build the decision tree on the original dataset.
The cost of SimpleMap is that of chaining two heuristic algorithms: each
procedure induces a latency and some inaccuracies.

We present the detail of Simple Map in Figure 6.7. In our implementa-
tion, we use k-means if the data contains only numerical data, and PAM
otherwise. PAM is a k-medoid algorithm: for each cluster, it seeks to
minimize the distance between all the data points and a central, repre-
sentative point called medoid. PAM can use any metric, therefore it can
cope with a wide range of input data [46]. For the decision tree, we used
CART (Classification and Regression Trees). CART operates by splitting
the database recursively, minimizing an impurity criterion. This method
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is well established, it copes with both numerical and categorical data [16].
We present it in more details in Chapter 3.

Our algorithm relies on two parameters: the initial number of clusters to
generate MAXc, and the maximum number of leaves in the decision tree
MAXt. The first parameter can take any value, as long as we generate
more clusters than leaves in the tree (MAXc > MAXt). A higher value
leads to more precision, but also longer runtimes. By default, we set
MAXc = 2MAXt. For the second parameter MAXt, we generate as
many leaves as the users’ screen can display (by default, 8). If the users
wish to work with less partitions, they can use intermediate nodes from
the tree.

The total time complexity of SimpleMap depends on the choice of un-
derlying algorithms. Let N represent the number of tuples in the database,
and M the number of columns. The complexity of k-means is O(MNMAXc).
The complexity of the original PAM algorithm is quadratic in N , but we
used CLARA [46], a randomized variant which also runs in O(NMMAXc)
(described in Chapter 3). The CART algorithm runs in O(MNMAXt).
Therefore, the total time complexity of SimpleMap is O

(
MN(MAXc +

MAXt)
)
.

4 Algorithm 2: Mapping High-Dimension Data

Previously, we presented a first mapping algorithm, SimpleMap. In this
section, we extend our model to support datasets with many columns. We
show that such large tables cannot be summarized with one map. We
introduce Multimap, an algorithm to generate sets of maps, in which each
map uses a different subset of columns.

4.1 Problem Formulation

Mapping large tables is challenging for two reasons. First, we must deal
with the curse of dimensionality. In high dimensional spaces, all items
tend to be equidistant. Therefore, clustering does not make sense. Ex-
perimental studies showed that problems start to appear with as little as
10-15 columns [13]. Second, we must consider the diversity of the data.
Nothing stops a user from using completely unrelated variables. Cluster-
ing a survey on eye color, job and tupleID is irrelevant. Yet, this
could very well happen in an exploration scenario. Our solution is to use
a multi-view approach: we generate several maps instead of a large one.
We operate in two steps. First, we partition the data vertically. Then, we
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create one map for each partition.
The aim of the vertical partitioning is to detect groups of columns which

describe the same aspect of the data. To form the groups, we use statisti-
cal dependency. If two variables are perfectly independent, there is little
chance that they are related in real life. Oppositely, a perfect correlation
means that they measure the same property. To partition the data, we
identify sets of columns which are mutually dependent.

A flexible and robust way to quantify the dependency between two vari-
ables is the Variation of Information (VI) [63]. As explained in Chapter 4,
the VI measures the distance between two variables. It has a low value if
the variables are similar, and a high value if the variables are independent.
We compute it as follows: if X and Y are two variables, H denotes the en-
tropy and I the mutual information, V I(X ,Y) = H(X )+H(Y)−2I(X ,Y).
As the VI can only cope with two variables, we introduce the diameter.
The diameter of a set of variables is the largest VI observed among every
pair:

Definition 6.5. For a set of variables V = {X1, . . . , XD}, we define the
diameter as follows:

diameter(V ) =

⎧⎨
⎩

max
Xi,Xj∈V

V̂I(Xi, Xj) if D ≥ 2

0 otherwise

Observe that V̂I(Xi, Xj) is an estimator of VI(Xi,Xj). We discuss the
difference between those two quantities in Chapter 4.

To make coherent maps, we need to identify sets of variables with low
diameters. We represent this problem with a graph in Figure 6.8a. In this
weighted, undirected graph, the vertices represent the variables, and the
edges represent the distances. We want to find partitions inside which the
heaviest edge is as light as possible.

Unfortunately, the diameter alone cannot tell us which partitions are
the best. If we create one partition per variable, we obtain low diameters
but the maps are not satisfying. We want a few sets with many columns
but minimal diameters. We must strike a balance between dependency and
cardinality. Formally, we can express this statement as a multi-objective
optimization problem. Let the set VDB contain all the variables of the
database, and the set of sets V describe a partitioning of VDB. We want
to solve the following system:
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(a) VI graph (b) Sub-optimal set

(c) Comprehensive sets (d) Max-simple sets

Figure 6.8: The VI graph describes the dependencies between the variables.
The vertices represent the variables, the thickness of the edges depicts their
weight, i.e., VI.

minimize
∑
V ∈V

diameter(V )

minimize |V|
subject to

⋃
V ∈V

V = VDB

V ∩ V ′ = ∅ for every distinct V , V ′ in V
These two objectives are conflicting: less partitions lead to higher diame-
ters, and lower diameters lead to more partitions.

4.2 Enumerating Candidates

We defined variable grouping as a multi-objective optimization problem:
we want a large groups of strongly related variables. As our objectives

93



6.4. Algorithm 2: Mapping High-Dimension Data

Figure 6.9: The Pareto front contains the set of acceptable partitionings.

are conflicting, there is no unique partitioning which satisfies them both.
However, there exists a set of solutions for which we cannot improve one
objective without degrading the other, the Pareto front [33]. The solutions
in this set are called Pareto-efficient, we depict them in Figure 6.9. In this
section, we discuss how to compute this Pareto front. We show that the
problem can be solved by finding cliques in the VI graph.

First, we introduce a useful property. A set of variables is comprehensive
if we cannot add any variable without increasing its diameter. To illustrate
this notion, we use a counter-example. Consider the partition highlighted
in Figure 6.8b. We could add the vertex Sex without degrading its diame-
ter, because no edge from Sex is heavier than Size-Salary. Therefore,
the set is not comprehensive.

Definition 6.6. Let VDB describe the columns of the database and VC ⊂
VDB a set of columns. The set VC is comprehensive iff.

∀Xi ∈ VDB \ VC , diameter(VC ∪ {Xi}) > diameter(VC)

The relation between comprehensive sets and our optimization problem
is straightforward.

Lemma 6.3. The set of partitions V = {V1, . . . , VK} is Pareto-efficient if
and only if its elements V1, . . . , VK are comprehensive.

Proof. Suppose that we wish to decrease the total diameter. To achieve
this, we must split a partition, which increases the count. Suppose we wish
to decrease the count. To achieve this, we must merge partitions. If the
sets are comprehensive, this will increase the sum of diameters. Thus, we
cannot ameliorate one objective without degrading the other, the set V is
Pareto-efficient.

94



6. Blaeu: Maps to Navigate the Query Space

Figure 6.8c shows the comprehensive sets in the example graph, and
Figure 6.8d gives an example of Pareto-efficient partitioning based on this
set. Note that any other partitioning based on the comprehensive sets
would be valid. We postpone the discussion about the final choice to the
end of this section.

How do we detect comprehensive sets? In fact, there is a tight connection
between this problem and maximal cliques. Recall that a clique is a tight
subset of vertices. In a clique, every pair of vertices is connected with an
edge. The clique is maximal if there is no larger clique which contains it.
To understand the relationship between comprehensive sets and cliques,
we introduce the threshold function tσ. This function takes a weighted
graph as input, and eliminates all the edges with a weight larger than σ.

Lemma 6.4. Consider a weighted, undirected graph G = (V,E). A set of
vertices U ⊂ V is comprehensive iff. there is a σ such that U is a maximal
clique in tσ(G).

Proof. Let U describe a comprehensive set of vertices with diameter p.
Consider the graph tp(G). The edges between the vertices of U weigh at
most p. Therefore U is a clique in tp(G). Also, one cannot add a vertex of
tp(G) \ U without degrading the diameter. Thus, U is a maximal clique.
Oppositely, consider a graph tσ(G), and the maximal clique W . Every
edge in tσ(G) weighs at most σ. Also, for every vertex in tσ(G) \W , there
is an edge to W which weighs more than σ. W’s diameter is at most σ,
and it is comprehensive.

Thanks to this connection, we can obtain the complexity of our problem.

Lemma 6.5. Enumerating all the comprehensive sets of a weighted undi-
rected graph is NP-hard.

Proof. Enumerating maximal cliques in a non-weighted, undirected graph
is NP-hard [46]. We can reduce this problem to enumerating compre-
hensive sets. Therefore, enumerating comprehensive sets is NP-hard. To
perform the reduction, we map a non weighted graph H to a weighted
graph G. For any pair of vertices, we create an edge of weight 0 in G if
there is an edge in H. Otherwise, we create an edge with weight 1. If we
know the comprehensive sets of G, we can infer the maximal cliques of H
in polynomial time.
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1: function MultiMap(DB, MAXc, MAXt, MAXp)
2: columns ← extractColumns(DB)
3: colGroups ← comprehensiveSets(columns,MAXp)
4: atlas ← {}
5: for colGroup ∈ colGroups do
6: db ← pasteColumns(colGroup)
7: map ← SimpleMap(db,MAXc,MAXt)
8: atlas ← atlas ∪ {map}
9: end for

10: return atlas
11: end function

Figure 6.10: Detail of MultiMap. The function extractColumns takes a
table as input and decomposes it into a set of arrays, where each array
represents a column. The function pasteColumn does the opposite: it
forms a table from a set of arrays.

Enumerating comprehensive sets is hard. Our solution is to relax our
requirements. Consider a set of vertices U in a graph G. If we can find
a threshold graph tσ(G) in which U is a clique (not necessarily maximal),
then U is “good enough”. Finding cliques in threshold graphs is precisely
what the Complete Link algorithm does [46]. As detailed in Chapter 3, the
Complete Link algorithm is a hierarchical clustering algorithm. It operates
as follows. First, it creates one partition for each vertex. Then, it finds the
two “closest” partitions, and it merges them. The distance between two
partitions is the diameter of their union. The procedure is repeated until
all the partitions are merged.

The output of the Complete Link algorithm is a tree of nested partitions
called dendrogram. Figure 6.11 displays the dendrogram of our example.
A node is drawn at height σ if the partitions it represents forms a clique
in the graph tσ(G). To obtain near-Pareto efficient partitionings, we “cut”
the tree: we let the user choose a maximum number of partitions MAXp,
and keep the solution which is just under this threshold. The threshold
encodes the user’s preference for one objective function over the other: a
low MAXp will lead to large partitions, a high value will yield many tight
sets. In practice, setting this parameter can be difficult for novice users.
We help them with two mechanisms. First, we present the dendrogram ex-
plicitly in the interface. This provides visual feedback. Second, we propose
default values. Several dendrogram-cutting heuristics were introduced in
the clustering literature, such as the Silhouette method [46] or Dynamic-
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Figure 6.11: Dendrogram produced by the complete link algorithm. A
node at height σ represents a clique in the graph tσ(G).

TreeCut [53]. Although they provide no accuracy guarantee, they form
excellent starting points for exploration. We used DynamicTreeCut in our
implementation.

4.3 Summary and Complexity

Previously, we presented the algorithm SimpleMap. We can now enrich it
to deal with high dimensional spaces. Here is our new framework, Mul-
tiMap:

1. Partition the columns of the context into comprehensive sets

2. Create one map for each partition with SimpleMap

In essence we process the columns first, then the rows: we decouple sub-
space search and clustering [67]. Figure 6.10 details the algorithm. Recall
that N and M describe the number of rows and columns respectively. The
complexity of the column partitioning is O(NM2), because we need to
compute the dependency between every couple of columns and run the
Complete Link algorithm. If the procedure generates P partitions, the
second step will run in O

(
PNM(MAXc +MAXt)/P

)
= O

(
NM(MAXc +

MAXt)
)
, using the results from Section 3. Thus the total time complex-

ity of MultiMap is O
(
NM2 + NM(MAXc + MAXt)

)
≈ O(NM2). The

quadratic term in M indicates a potential bottleneck. To bypass it, we
compute the VI graph offline, and reuse the vertical partitions across zooms
(cf. recycling, discussed in Section 6). Also, our experiments nuance the
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Figure 6.12: Overview of LightMap

complexity analysis: as long the the data does not contain more than sev-
eral hundred columns, the execution time is completely dominated by the
map creation step, linear in N and M (as shown in Section 10).

5 Algorithm 3: Lightweight Data Mapping

We now present our third algorithm LightMap. LightMap is more flexible
than its predecessors: the maps it generates can be modified by the users
at little cost. Also, it is very fast. We will see that this comes at a price:
the algorithm is less accurate than MultiMap. LightMap operates in three
phases. First it creates layers. A layer is a map, based on one column
only. LightMap creates one layer for each column of the database. Then,
it forms groups of similar layers, e.g., layers which describe the same aspect
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Figure 6.13: Two layers, their combination

of the data. Finally, it combines the layers of each group into larger maps.
This process is illustrated in Figure 6.12.

The first two steps of LightMap use the primitives we presented earlier.
We create the layers with SimpleMap. To group similar layers, we exploit
the notion of comprehensive sets discussed in Section 4. However, this
time we cluster maps, not columns - in fact, we form clusters of clusterings.
During the last step, LightMap forms complex maps by combining layers.
To combine two layers, LightMap intersects every partition of one map
with the partitions of the other. We call the resulting structure overlay
table. From this table, LightMap can generate hierarchical partitionings
for any permutation of the variables. Consider for instance Figure 6.13.
We present two layers, one based on Sex, the other on Age. The figure
presents the overlay table in the center. This table lets us compute two
maps: one based on Sex then Age, the other on Age then Sex. If we keep
the overlay table in memory, the users can switch from one representation
to the other at little cost, in order to chose the variable ordering which
suits them most. By default, we order the layers by clustering quality
(obtained during the layer creation phase).

We now summarize the full LightMap procedure:

1. Create one layer for each column in the context

2. Create comprehensive groups of layers

3. Overlay the layers in each group
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1: function LightMap(DB, MAXc, MAXt, MAXp)
2: /* Generate Layers */
3: columns ← extractColumns(DB)
4: layers ← {}
5: for column ∈ columns do
6: lay ← SimpleMap(column,MAXc,MAXt)
7: layers ← layers ∪ {lay}
8: end for
9: /* Form groups of layers */

10: layerGroups ← comprehensiveSets(layers,MAXp)
11: /* Aggregate the layers of each group */
12: atlas ← {}
13: for layerGroup ∈ layerGroups do
14: oTable ← overlayTable(layerGroup)
15: map ← makeMapFromTable(oTable,MAXt)
16: atlas ← atlas ∪ {map}
17: end for
18: return atlas
19: end function

Figure 6.14: Detail of LightMap. The function extractColumns splits a
table into a set of arrays, one for each column. The function pasteColumn
forms a table from a set of arrays. The function makeMapFromTable
generates a map from an overlay table, with at most MAXt leaves (if
necessary, it truncates the overlay table).
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Figure 6.15: Limit case of the LightMap algorithm. The data contains
four clusters, which full two-dimension structure is lost in the projections.

The detail of the algorithm is given in Figure 6.14. Note that LightMap’s
partitions are not real clusters. They approximate what the full MultiMap
algorithm would have found. We suppose that this approximation is good
enough for exploration. Formally, we can justify our scheme with the
downward closure property of density. If an area has a high density in D
dimensions, its projections on any D − 1 dimensional subspace is dense.
In other words, the clusters do not “disappear” when they are projected
to single dimensional spaces, and therefore they appear on the layers [51].
However, the projection incurs a loss of information, because the clusters
may be stacked onto each other. Therefore, LightMap can incur mispre-
dictions, as shown in Figure 6.15. This accuracy penalty is the counterpart
for significant speedups.

The respective time complexities of map creation, layer grouping and
layer combination are O

(
NM(MAXc +MAXt)

)
, O(NM2) and O(NM),

using the results from Sections 3 and 4. Here again, we bypass the layer
grouping step by recycling (presented in Section 6). Furthermore, our
experiments nuance the complexity analysis: in our implementation, the
first phase totally dominates the total runtime, even with several hundred
columns (cf. Section 8.2).
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6 Optimization

We improve the latency of Blaeu with two optimizations. First, we recycle.
We compute the VI graph offline. During the exploration, we do not
recluster the variables after each zoom. We run the full procedure for the
first query, and reuse the comprehensive sets until the user changes the
variables in the context.

Second, we sample. For each user action, we only take a few tuples
from the context. As we have no preliminary knowledge about the data
and we wish to estimate the relative proportions of each group, we use
random sampling with replacement. To pick an optimal sample size, we
run a calibration phase when Blaeu starts up. During this phase, we create
synthetic data sets with different sizes, run Blaeu and measure the time
spent. From these observations, we generate a cost model. Thanks to this
model, we can pick a maximum sample size given a time objective and a
number of columns.

To build our cost model, we fit a multiplicative model on the observed
runtime. If #rows represents the number of tuples, and #columns the
number of columns, our model can be expressed as follows:

runtime ≈ α×#rowsβ ×#columnsγ (6.1)

If we compute the logarithm of each operand, the model becomes linear:
log(runtime) ≈ log(α) + β.log(#rows) + γ.log(#columns). Thanks to
this transformation, we can obtain the coefficients with linear regression.
Figure 6.16 pictures an example of calibration session. We used the same
hardware as in our Experiments section. We observe that the model fits
the observed values almost perfectly.

7 Sample Sessions

We now illustrate the system with two “real-life” scenarios. All the datasets
are available on our website1.

First, we use a sample of the On-Time database, provided by the US
Bureau of Transportation Statistics. The dataset describes delays of US
internal flights during January 2010. It contains about 521,000 rows and
91 columns.

1http://homepages.cwi.nl/~sellam/blaeu.html
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Figure 6.16: To calibrate our system, we run Blaeu on synthetic data,
measure the runtime and fit a multiplicative model. The points represent
the observations, the plane our fitted model. We obtain a correlation
coefficient of 0.98, which indicates an almost perfect correlation.
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Our users want to understand the causes of flight delays. For now, we
assume that they know where to begin: they seed the exploration with
the columns Distance and ArrDelay. The first variable Distance
refers to the distance covered by the flight (in Miles). ArrDelay is the
delay of the flight (in minutes). We reproduce Blaeu’s map in the top-left
corner of the figure. Four categories of flights appear: short flights (up to
1167 miles), or longer ones, with or without long delays. Our users decide
to zoom in the short delays on short flights, and project to highlight the
causes. About a quarter of delays come from the carrier. Another quarter
is caused by a late aircraft. They rollback to the first map and zoom into
the long delays on short flights. A slightly higher proportion of delays
come from weather conditions. Also, the carriers are responsible for more
than a quarter of the late flights. They zoom in the longest carrier delays,
and project on the name of the companies. They observe that roughly half
the delays come from only five carriers. Do they have more delays because
they operate more flights? Or should they be suspicious next time we book
a flight?

Our second example describes a somewhat more glamorous domain: Hol-
lywood films. Our database describes a few economic indicators for 785
movies released between 2007 and 2012. Our users’ focus is abstract and
subjective: they are looking for disappointing movies, also called “flops”.
This time, they do not even know where to begin. Therefore, they run
Blaeu on the whole database. Blaeu replies with a set of maps, listed in
the top part of Figure 6.18. Two maps seem like good candidates: the
first one, which shows the number of theater for each movie, and the third
one, which describes the public and critic’s response. Our users pick the
first map, and zoom on the movies shown in many cinemas. Then, they
switch map, and select those for which the critiques were bad. After three
clicks, they already have a list of candidates. With a few more, they could
dig further: did these movies generate any income? Did they fail similarly
everywhere? Were they expensive? We see Blaeu lets our users “dive” in
the data with only a few clicks.

8 Validation and Evaluation

Blaeu’s suggestions only make sense if they reflect the structure of the
data, and it they are computed at interaction time. In this section we
evaluate the runtime and accuracy of our algorithms. In what follows, we
will abbreviate SimpleMap, MultiMap and LightMap as S-Map, M-Map
and L-Map respectively.
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1. Zoom + Proj.

2. Rollback

3. Zoom + Proj.

4. Zoom + Proj.

Figure 6.17: Running Blaeu on the Ontime database
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1. Select theme 3. Change theme

Figure 6.18: Running Blaeu on the Hollywood database
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We confront Blaeu to state-of-the-art algorithms from the clustering lit-
erature. We used two families of algorithms: subspace search and subspace
clustering. Methods from the first family return only subspaces, the user is
responsible for the actual clustering. Typically, they seek “high contrast”
subspaces, that is, subspaces with clusters and outliers. To do so, they
enumerate different combinations of variables with level-wise search, and
return the top k best candidates. Algorithms from the second family seek
clusters and subspaces simultaneously. For each cluster, they return a set
of tuples and a set of variables.

To represent the subspace search family, we used CMI [68]. CMI is the-
oretically well founded, and it resembles Blaeu: like DM, CMI maximizes
a mutual information criterion (the Cumulative Mutual Information). To
get the actual clusters, we use SimpleMap. For the subspace clustering
family, we chose PROCLUS [2] and FIRES [51]. These algorithms have
been shown to be fast and accurate [66]. Also, they are close to our ap-
proach: like LightMap, FIRES combines one-dimension clusterings.

Contrary to our system, CMI, PROCLUS and FIRES target data miners.
They value exhaustivity, while we seek simplicity and speed. Consequently,
they rely on a broad range of parameters (up to 9 for FIRES), while we
need just one (the maximum tree size). Also, their search space is larger.
With these algorithms, a variable can appear in several subspaces, or not
at all. With Blaeu, each variable appears exactly once in the whole result
set. Our approach may miss some interesting subspaces, but it has two
advantages. First, it completely eliminates redundancy in the result set
(Blaeu’s competitors often return dozens, sometimes hundreds of highly
redundant subspaces on small datasets). Second, it reduces latency.

Our code, settings and datasets are available online2. We used Open
Subspace’s implementation of PROCLUS and FIRES [66] (written in Java).
For CMI, we used the author’s Java implementation3. We implemented
S-Map, M-Map and L-Map in R 3.0.1, but some of the critical parts are
either native C primitives or our own C function. We use three functions
from the R repository: CLARA for the cluster analysis, DynamicTreeCut
to chose a number of subspaces and rpart for detection tree inference.
The function CLARA is a randomized variant of PAM, and rpart is an im-
plementation of CART. Our test system is based on a 3.40 GHz Intel(R)
Core(TM) i7-2600 processor. It is equipped with 16 GB RAM, but the
Java heap space is limited to 12 GB. The operating system is Fedora 16.
Unless written otherwise, we disable sampling.

2http://homepages.cwi.nl/~sellam/blaeu.html
3http://www.ipd.kit.edu/~muellere/CMI/

106



6. Blaeu: Maps to Navigate the Query Space

Table 6.1: Parameters of the Data Generator

Parameter Distribution Value

Tuples Constant 20,000

Columns Constant 40

Columns per subspace Uniform [2,10]

Clusters per subspace Constant 5

Centroid position Uniform [1,100]

Cluster radius Uniform [2,10]

Table 6.2: Characteristics of the datasets

Name Rows Col.
breast 198 33
diabetes 768 8
communities 1,994 127
internet 7,390 70
pendigits 7,494 16
adult 32,561 14
covertype 581,012 54
gisette 7,000 2,500
mutant1 16,592 4,000
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8.1 Synthetic Data

In this section, we report the results of experiments on synthetic data.
We create datasets for which we know the “truth”, and evaluate Blaeu’s
output. We generate columns by groups, such that the data is clustered
differently on each group of columns. Therefore, each dataset contains
several clustered subspaces. Note that the groups are not overlapping.
The clusters are based on multinomial Gaussian distributions, with random
parameters. The default options of the generator are reported in Table 6.1.
The subspaces are isolated, and the clusters are well separated: this is an
“easy” scenario for Blaeu, but also for its competitors.

We made significant efforts to tune FIRES, PROCLUS and CMI cor-
rectly. As the data is synthetic, we can calculate the “ideal” parameters.
We report them on our website. Also, recall that S-Map, M-Map and L-
Map are hierarchical. For a meaningful comparison, we altered them so
that they return a fixed number of clusters. For each setup, we run each
algorithm with five different datasets, and report the average performance.
For practical reasons, we interrupt the experiments which take more more
than 10,000 seconds (2 hours and 46 minutes).

As in the recent subspace clustering literature, we measure clustering
quality with a variant of the F1 measure called E4SC [66][35]. The tra-
ditional F1 score focuses on tuples only: two clusters are similar if they
contain the same data points. With the E4SC, two clusters are similar
if they contain the same tuples and they appear on the same dimensions.
Therefore, the E4SC considers both the clusters and the subspaces in which
they were found. The measure varies between 0 and 1; a high value indi-
cates that the found clusters are similar to the true clusters, a low value
shows discrepancies.

Figure 6.19a compares MultiMap to CMI, PROCLUS and FIRES. We
observe that MultiMap is accurate. The results are stable with regards to
the number of tuples and columns. In most cases, FIRES comes second,
closely followed by CMI, and PROCLUS comes last. Figure 6.19b shows
the runtime of the algorithms. MultiMap and PROCLUS are orders of
magnitudes faster than CMI and FIRES. M-Map is almost always faster
that PROCLUS. Our approach is validated.

We compare S-Map, M-Map and L-Map in Figure 6.20. As SmallMap
cannot detect subspaces, it generates poor E4SC scores. Its performance
is particularly low when the subspaces have a low dimensionality, and it
gets better when the data contains a few wide subspaces. MultiMap is the
most accurate algorithm, but it is also the slowest. Recall that MultiMap
is based on a combination of cluster analysis an decision tree classification.
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Figure 6.21: Execution time breakdown of MultiMap and LightMap.

To separate the errors of both components, we introduced a variant in
which we removed the decision tree. We observe very little difference in
E4SC, which indicates that the accuracy penalty incurred by the decision
tree is acceptable. However, the runtime increases more than twofold.
Finally, LightMap is at least twice fast as MultiMap, but this comes at the
price of inaccuracies.

Figure 6.21 details the time consumption during the execution of M-Map
and L-Map. In MultiMap, more than half the time is spent building the
decision tree. Blaeu spends comparatively very little time clustering the
rows and the columns. Fortunately, this step can easily be accelerated by
sampling (cf. 8.3). In LightMap, almost all the time is spent creating
layers. The subsequent steps are very fast, except when the data contains
many columns.
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8.2 Real Data

We showed that S-Map, M-Map and L-Map perform well on synthetic data
sets. In this section, we run them on nine databases from the UCI repos-
itory [10], described in Table 6.2. As we do not have any base truth, we
use a “trick” from the subspace clustering literature: we exploit the class
labels originally designed for classification and regression, in the hope that
they reflect the structure of the data [66]. We report the F1 between
these labels and our predictions. The F1 varies between 0 and 1, higher
is better. To tune the algorithms, we generate different sets of parame-
ters and report the best results. For instance, we try 50 combinations for
FIRES and 56 for CMI. The details of the experiments are published on
our website. We do not enforce any time limit, but we discard the algo-
rithms which saturate the 12GB heap space limit. Table 6.3 reports the
accuracy of the algorithms. The highest and lowest values are highlighted.
There is no clear winner: each algorithm can perform very well with a
dataset, and underperform with an other. For instance, FIRES performs
very well with Communities, but comes last for PenDigits. Similarly,
SimpleMap excels with PenDigits and Adult, but fails with Breast,
Diabetes and Internet. CMI and MultiMap are more consistent, and
they appear to have similar scores. We observe that MultiMap does not
always outperform SimpleMap: when the data contains few columns (less
than 16 in our case), MultiMap’s vertical partitioning strategy may be
too aggressive. LightMap is slightly over-performed by its competitors.
In conclusion, Blaeu does not outperform subspace search and clustering
algorithms, but its performance is comparable.

Table 6.4 shows the execution times. Clearly, S-Map and L-Map are
the fastest algorithms. They are up to three orders of magnitude faster
than CMI and FIRES, and up to five times faster than PROCLUS. In
most cases, MultiMap comes third. Also, all the competitors exceed the
memory limit for the sets gisette and mutant1. Remarkably, LightMap
overperforms SimpleMap for mutant1. We conclude that out algorithms
are more efficient than CMI, FIRES and PROCLUS.

8.3 Scaling and Sampling

We now show how sampling helps us deal with very large data sets. For
each dataset, we train Blaeu with a small sample, extract the resulting
decision tree and apply it to the full dataset. We then compare the result
to a base truth: if the labels are similar, then our strategy works. We
sampled the data uniformly, with replacement. For each experiment, we
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6. Blaeu: Maps to Navigate the Query Space

Table 6.3: Accuracy (F1) for SimpleMap, MultiMap, LightMap, CMI,
FIRES and PROCLUS with real datasets

S.Map M.Map L.Map CMI FIRES PROC
breast 0.20 0.60 0.53 0.69 0.39 0.58
diabetes 0.12 0.55 0.40 0.54 0.42 0.37
comm. 0.62 0.60 0.56 0.61 0.89 0.57
internet 0.27 0.39 0.44 0.40 * 0.38
pendigits 0.91 0.47 0.37 0.36 0.22 0.59
adult 0.61 0.59 0.54 0.56 * 0.52
covertype 0.48 0.47 0.44 0.48 * 0.50
gisette 0.34 0.51 0.42 * * *
mutant1 0.43 0.64 0.51 * * *

Table 6.4: Runtimes (seconds) for SimpleMap, MultiMap, LightMap, CMI,
FIRES and PROCLUS with real datasets

S.Map M.Map L.Map CMI FIRES PROC
breast 0.18 0.72 0.08 0.87 1.01 0.25
diabetes 0.16 0.35 0.05 0.45 1.98 0.26
comm. 0.57 4.53 1.22 3.97 150.8 1.65
internet 0.43 2.31 0.54 16.70 * 3.17
pendig. 0.46 5.69 0.90 40.82 94.25 1.00
adult 0.83 6.00 1.32 683.81 * 3.31
covert. 17.88 79.77 47.08 79,069 * 12,139
gisette 154.4 688.2 177.75 * * *
mutant1 960.9 2,155 829.21 * * *
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took 5 different samples and averaged the results.
Figure 6.22a shows the results of our experiments with MultiMap on

synthetic data. We observe that Blaeu makes considerable progress with
the first thousand tuples. Then, the sample size has almost no influence
on the accuracy of the results. We conclude that small samples are good
enough: Blaeu can very well infer the structure of the data from small
subsets of the data. Two factors explain this result. First, Blaeu operates
at a very coarse level. It seeks at most a dozen large clusters. Therefore, it
is not sensitive to noise and micro-clusters. Second, it works mostly with
low dimensional subspaces. Even if the data contains hundreds of columns,
a map rarely contains more than a dozen of them. This also explains why
the number of variables has such little impact on our results (the top-left
and top-right charts are almost similar).

Figure 6.22b presents a similar experiment with real data. We used two
public datasets, available through our Website. Here again, we observe
an increase of accuracy with the first few hundred samples. Then, the F1
stays almost constant : Blaeu makes little to no progress. However, we do
observe that the F1’s variability decreases as the sample size increases.

Considering Blaeu’s execution times in both experiments, we conclude
that Blaeu can produce high precision maps of million-tuples datasets
within two seconds. Note however that our measurements do not include
the actual sampling: we assume that Blaeu’s back-end can produce sam-
ples quickly enough (our back-end MonetDB generates samples in less than
a second when the data is “hot”)

9 Related work

Researchers have recently shown much interest in data exploration. The re-
search effort is multidisciplinary: proposed studies range from core database
technology [86] to visualization [71]. A comprehensive overview of the field
is provided by Idreos et al. [41].

9.1 OLAP cubes

Drilling and slicing through graphical tools have been common practice
for years in the OLAP world. We discuss related techniques in detail in
Chapter 5.
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Figure 6.22: Experiments with sampling.
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9.2 Iterative interaction systems

Our system is the direct descendant of the vision system Charles [85]. Like
Blaeu, Charles is based on top-down exploration. However, it does not use
any clustering, it only considers partitionings based on medians. Query
Steering is related [26], but it models the user rather than the data. Our
method is orthogonal, both approaches could be combined. Finally, the
vision system SeeDB [71] is close to Blaeu because it choses visualizations
automatically. Nevertheless, it focuses on the presentation of the results,
not on the user input: it relies on traditional SQL queries.

9.3 Clustering

Our work relies on subspace clustering. An exhaustive review of the field
was written by Kriegel et al. [52]. We describe the most relevant approaches
in Section 10. All the algorithms mentioned in this chapter are based on
axis-parallel subspaces. We chose to discard more general techniques, e.g.,
based on affine projections or kernel methods [52], because their results
are much harder to interpret, especially for non statisticians.

10 Summary

Too often, data exploration tools assume that users know the data and
know what they are after. In this chapter , we challenge this assumption.
We introduce a new mode of interaction, based on data maps. We for-
malize the problem of generating maps, study its complexity and present
our algorithms. Experiments on real and synthetic data reveal that our
framework is fast and accurate.

116



Chapter 7

Ziggy: What Makes My Query

Special?

1 Introduction

In the previous two chapters, we introduced systems to help users write
queries. The assumption was that users did not know their data well
enough to issue SQL statements. However, if they saw an interesting set
of tuples, they could recognize it immediately, possibly endorsing it with a
“Aha!” exclamation. But this assumption is simplistic. The usefulness of
a set of tuples is rarely obvious. One of the largest obstacle to assessment
is the users’ “bandwidth”, i.e., the amount of information that they can
grasp without being overwhelmed. A user can analyze a table with a
dozen columns, but not one with hundreds of variables. Multidimensional
visualization methods can help, but they have their limits too. Consider
for instance scatter-plot matrices, presented in Chapter 2. To represent a
data set with 50 columns, we would need at least 1,250 different plots. Few
users would have the will or the patience to go through all these views. How
can we characterize a set of tuples in medium to high dimension spaces?

1.1 Contribution

In this chapter, we introduce Ziggy, a subset characterization engine. Zig-
gy’s aim is to show what makes a given set of tuples “special”. To do so, it
detects characteristic subspaces, that is, small, non redundant projections
which highlight the difference between the selection and the rest of the
data. By inspecting those, the users can grasp what makes their tuples
unique and assess whether their subset is interesting or not.

We will first present the subset characterization problem in its general
form. We will then discuss how to quantify the “peculiarity” of a set of
tuples. Next, we will present our system in detail. We will show that Ziggy



7.2. Overview

generates informative views: experiments with statistical classifiers reveal
that it captures the distribution of the user’s selection accurately. But it is
also very fast. Thanks to aggressive optimizations, it can process 10,000s
tuples on dozens of variables within a second - an order of magnitude faster
than state-of-the-art algorithms, at minimal accuracy costs. Finally, Ziggy
is a white box: every choice it makes is fully explainable. As a proof of
concept, we will present a method to convert its findings into natural lan-
guage, i.e., plain English. In general, few data mining algorithms provide
this functionality, and none of those that do tackle view search.

1.2 Outline

In Sections 2 and 3, we present our general problem. We instantiate this
problem in Section 4 and describe our algorithms in Section 5. We discuss
how to validate our results and report them in Sections 6 and 7. We
describe how to set parameters in Section 8. In Sections 9 and 10, we
apply our solution to real and synthetic data. Finally, we present related
work and conclude in Sections 11 and 12.

2 Overview

Let us introduce our system through an example. A government analyst
tries to understand which demographic, social and economic factors lead to
innovation. More specifically, she is interested in patents: in which parts of
the world do individuals submit patents? What lessons can she learn? She
collects several hundred regional statistics, and loads them in her favorite
Business Intelligence tool (possibly based on SQL or spreadsheets). She
selects the top 10% regions for which many patents are submitted, and ends
up with an overwhelmingly large table, comprising a few dozen tuples and
hundreds of columns. How can we help her?

Our idea to detect sets of columns for which the analyst’s tuples have
an unusual statistical distribution compared to the rest of the database.
A fundamental assumption behind our work it that the user is interested
in the differences between her selection and the remaining tuples, not the
similarities. This is a strong hypothesis, but recent work has shown that
it covers a wide range of use cases [97].

Figure 7.1 depicts two of those sets: {Yearly Production, Average
Income}, and {Years in Education, Number of Universities}.
We refer to them as views, or subspaces. We see that on all the variables,
the selection has unusually high values. This shows that regions with many

118



7. Ziggy: What Makes My Query Special?

Average Income ($)

Ye
ar

ly
 P

ro
du

ct
io

n 
($

)

Years in Education

N
um

be
r 

of
 U

ni
vs

er
si

tie
s

Rest of the database
User selection
(many patent applications)

Figure 7.1: Two examples of subspaces for which the user’s selection has
an unusual distribution (using fictive data).

patent applications tend to be richer and have solid education systems. Ob-
serve that these views have low dimensionalities: each of them illustrates
one “characteristic” of the selection. In fact, our aim is not to show all the
variables on which differences appear. Instead, we seek a few small, non
redundant subspaces. We call this approach multi-view characterization.

To visualize the subspaces, our analyst may use tables or charts, as in
Figure 7.1. She may also wonder why the system chose these views. For
instance, she may wish to check the sanity of the results, or she may seek
guidance. To help her, we provide justifications in natural language. Here
is an example:

“On the columns Average Income and Yearly Production,
your selection has a high average and low variance. The effect is
similar and stronger on Years in Education and Number
of Universities.”

This paragraph describes the rationale behind our choice. It explains what
makes the tuples special, and which characteristics our analyst should
check.

3 General Problem Statement

Let us now formalize the multi-view characterization problem. We repre-
sent our database with a table containing M columns and N rows. We
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represent each column by a vector Xm = (x1m, . . . , xNm)�. Let the subma-
trix V = [X1, . . . , XD] describe a view (i.e., subspace, or set of columns).
We split this view in two: V t contains the tuples in the selection, V t the
remainder, as shown below:

x1
1

xN
M

x1
2

x2
2x2

1

. . .

...

. . .

X2 XM

V t

V t

X1
. . . . . .

. . .

...

. . .

To measure how much V t and V t differ, we compare the empirical proba-
bility distribution of their rows. If these distributions differ, then the view
exhibits some “peculiarity” of the data. Therefore, V is likely to be infor-
mative. We measure this difference with a mass dissimilarity measure
D(V t, V t). This function returns 0 if the tuples come from from the same
distribution, it grows otherwise. The statistics literature contains several
candidates, for example estimators of the Kullback-Leibler Divergence, al-
ready discussed in Chapter 5. We will present our own function in the
following section.

We can already propose a first, naive, formulation of our problem:

Problem 7.1. Consider a distribution dissimilarity function D and two
integers K and D. Find the top K distinct views Vi with at most D di-
mensions which maximize D

(
V t
i ;V

t
i

)
(ignoring column permutations).

This approach is simple, but it yields redundancy: a small number of
good columns may dominate the results and appear in all K views. In a
data exploration scenario, users may value diversity, even if the views are
sub-optimal. To enforce this requirement, we introduce a penalty factor in
the objective function.

Measuring redundancy between columns is not straightforward, as this
notion is partially subjective. In our model, we exploit statistical depen-
dency: if two sets of columns are tightly correlated, then there is a high
chance that they describe the same property of the “real world”. Oppo-
sitely, if they are independent, then they probably convey different types
of information. From this observation, we introduce a new version of our
problem: we seek views which maximize the dissimilarity measure, while
minimizing inter-view dependency. We define this problem in a recursive
way:
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Problem 7.2. Suppose that we have already detected i − 1 views (i > 1,
V0 = ∅). We obtain V1..i−1 = [V1, . . . , Vi−1] by concatenating these views.
Let S describe a statistical dependency measure. Given a positive real λ,
find the view Vi with at most D columns which maximizes:

D
(
V t
i ;V

t
i

)
− λ ·S(Vi;V1..i−1) (7.1)

Statistics textbooks offer many options to instantiate the dependency
measure S. Well established examples are multivariate variants of the
correlation coefficient, or the mutual information [102]. Here again, we
will present our own function in Section 4.2.

In Equation 7.1, the parameter λ controls the trade-off between dissim-
ilarity and diversity: a high value enforces that that the view are diverse,
while a low value expresses our preference for maximizing D(V t

i ;V
t
i ). In

practice, this parameter is not convenient because it has no intuitive scale.
For some L, an equivalent way to express our problem is the following:

ArgmaxVi
D
(
V t
i ;V

t
i

)
s.t. S(Vi;V1..i−1) < L

(7.2)

Equation 7.1 in the Lagrangian of Equation 7.2, up to a negligible additive
constant. We prefer this form because the trade-off parameter L has the
same scale as S(Vi;V1..i−1). For example, if we instantiate S with a mea-
sure of correlation, then L will simply describe the maximal acceptable
correlation between Vi and V1..i−1.

4 Instantiation: Meet Ziggy

We now instantiate the dissimilarity measure D and redundancy mea-
sure S.

4.1 Explainable Mass Dissimilarity

Let us begin with the dissimilarity D. As mentioned previously, we could
borrow any general divergence measure from the statistics literature, such
as the KL-divergence. However, these measurements operate as “black
boxes”: they describe the intensity of the differences, but they do not
explain how the tuples differ. Our approach is diametrically opposed:
we introduce the Zig-Dissimilarity DZig, a completely explainable mass
dissimilarity measure.
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Figure 7.2: Illustration of Ziggy’s Dissimilarity.

The idea behind our dissimilarity measure is to compute several simple,
interpretable indicators of difference, called Zig-Components, and ag-
gregate them in a single composite score, the Zig-Dissimilarity. Consider
for instance two sets of tuples V t and V t with V columns. If these subsets
have the same average for every column, then they probably come from
the same distribution. Oppositely, if the averages are different, then they
probably come from different distributions. From this observation, we can
build an elementary dissimilarity measure: for each column X, we compute
the differences between the means X̄t− X̄t, as shown in Figure 7.2. These
are our Zig-Components. We then aggregate these scores, by averaging
their absolute values: we obtain the Zig-Dissimilarity.

Let us now formalize these ideas. We define Zig-Components as follows:

Definition 7.1. Let V describe all possible subsets of tuples from a view
V . A Zig-Component is a function z : V × V → R which describes
one difference between two sets of tuples. If the tuples are similar, then
z(V t, V t) = 0. If not, the magnitude of z(V t, V t) grows with the strength
of the difference.

For the sake of presentation, we abbreviate z(V t, V t) as z. Once we
computed the Zig-Components z1, . . . , zZ , we obtain the Zig-Dissimilarity
as follows. First, we compute the absolute values |z1|, . . . , |zZ | for each
component. We then normalize the values across components of same
type. We obtain a set of intermediary scores z1, . . . , zZ . We aggregate
these scores with a weighted sum. These operations give us one scalar
indicator, which summarizes the magnitude of all the differences.
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Definition 7.2. Let z1, . . . , zZ represent a set of normalized absolute val-
ues of zig-components, and w1, . . . , wZ a set of weights. We define the
Zig-Dissimilarity as follows:

DZig(V
t, V t) ≡

∑
k∈[1,Z]

wk · zk(V t, V t) (7.3)

In our implementation, we combined five types of Zig-Components, sum-
marized in Table 7.1. A few of them come from the statistics literature,
where they are referred to as effect sizes [22, 38]. We chose these indicators
because they have intuitive interpretations, as well as known asymptotic
properties (we will use those in Section 6). A majority, but not all of them
are normalized and vary between -1 and 1. None of these functions are
symmetric, and most of them change sign according to the direction of the
underlying effect.

Observe that Ziggy computes univariate, but also bivariate components:
in this case it compares columns by pairs. Our motivation is to check
which correlations are present in V t and not in V t, or more generally which
correlations are either strengthened or weakened across the subsets. In the
discrete case, we substitute the correlation coefficient by Cramér’ s V. This
function also measures the associations between two variables, and it varies

similarly between 0 and 1 [22]. Its value is
√
χ2/(N(min(N t, N t)− 1)),

where χ2 is Pearson’s χ2 statistic, and N t, N t are the number of distinct
values in Xt and Xt respectively.

In principle, we could test differences in spaces with more than two
dimensions. We chose not to do so, for two reasons. First, the number of
relationships to be inspected grows exponentially with the dimensionality
of the Zig-Component. This hurts Ziggy’s runtime, and leads to much
longer outputs. Second, relationships in three dimensions or more are
harder to convey and understand. We will show in Section 10 that this
restriction has surprisingly little effect on Ziggy’s accuracy in practice.

The aim of the weights wk is to balance the effects across column types.
For instance, we measure two components for the numerical columns,
and only one for categorical data. Thus, we set wk = 1/2 for the for-
mer and wk = 1 for the latter. These parameters also let users express
their preferences: for example, a novice user may value one-dimension
Zig-Components over those based on correlation.
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Avg. salary

Avg. rent

Production

sDependency

V1 V2

Figure 7.3: Illustration of Ziggy’s redundancy measure. Vertices represent
columns, edges represent pairwise dependencies.

4.2 Dependency Measure

We now present two instantiations for the measure of redundancy, Shard

and Ssoft. Both measures are a variant of the same principle, and we will
refer to them collectively as the Zig-Dissimilarity SZig. Here again, our
motivation is to aggregate several simple interpretable indicators.

Let V1 and V2 represent two views. We compute the Zig-Dependency
in two steps. First, we compute the pairwise dependency s(X1, X2) be-
tween every column X1 of V1 and every column X2 of V2, as shown in
Figure 7.3. The measure s is a convenience function, which allows us to
combine different types of variables:

s(X1, X2) =

{
r(X1, X2) if X1, X2 are continuous (correlation)
V (X1, X2) otherwise (Cramér’s V, cf. Sec. 4.1)

(7.4)

During the second step, we aggregate these dependencies. The function
Shard utilizes the maximum, while Ssoft uses the mean. If D1 and D2

respectively represent the number of columns in V1 and V2:

Shard(V1, V2) = max
X1∈V1,X2∈V2

|s(X1, X2)| (7.5)

Ssoft(V1, V2) =

∑
X1∈V1,X2∈V2

|s(X1, X2)|
D1 ·D2

(7.6)

Both functions Ssoft and Shard vary between 0 and 1, 0 indicating no
dependency. The crucial difference lies in how they treat overlap. If one
column is present in both V1 and V2, then Shard is at its maximal value
1, regardless of the other columns in the views. It is not necessarily so for
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Avg. rent

Production

Avg. salary

[V1, V2]

V3

Excluded
Candidates

Previously Detected
Views 

New View

Taxes Income

Valid
Candidates

Education

ΔS
ΔD

Figure 7.4: Ziggy’s greedy view composition algorithm, with i = 3 and
D = 3. The grey edges represent the amount of redundancy added by each
candidate. The blue edges represent the amount of dissimilarity added by
each candidate.

Ssoft. Thus Shard leads to less redundancy, while Ssoft is more flexible.
We will demonstrate these effect in our Experiments section.

Finally, observe that our choice for S is computationally efficient: we
get the pairwise correlations “for free”, because we need to compute them
anyway to obtain the Zig-Components zχ and zr.

5 Algorithms To Detect Views

We introduced a mass dissimilarity measure DZig and a view dependency
measure SZig. We now discuss how to maximize the former while con-
straining the latter, as exposed in Equation 7.2.

5.1 Base algorithm

Once the user has provided a selection of tuples, Ziggy performs two steps.
First, it computes the Zig-Components, for each column and each pair
of columns in the database. Then, it composes the views greedily: it
successively picks the columns associated with the highest components,
while ensuring that the dependency threshold L is not breached.

The first step is straightforward, but it is also by far the most time
consuming. We discuss in Section 5.2 how to optimize it. During the
second step Ziggy creates the views by adding columns in a best-first
fashion. Figure 7.4 illustrates this approach. Suppose that Ziggy has
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Algorithm 2 View Construction
function DetectViews(K, D, L)

for k ∈ [1,K] do
Cand ← {X1, . . . , XM}
Red.Gains ← {ΔS(X,V1..k), for X ∈ Cand}
Cand ← {X where not Red.Gains(X) > L}
Dis.Gains ← {ΔD(X,X ′), for X,X ′ ∈ Cand}
Vk ← Vk ∪ {argmaxX,X′ Dis.Gains}
for d ∈ [3, D] do

Cand ← {X1, . . . , XM} \ Vk

Red.Gains ← {ΔS(X,V1..k), for X ∈ Cand}
Cand ← {X where not Red.Gains(X) > L}
Dis.Gains ← {ΔD(X,Vk), for X ∈ Cand}
Vk ← Vk ∪ {argmaxX Dis.Gains}

end for
end for

end function

previously obtained two views, V1 and V2, and it is currently building a
third one, V3. For each column in V \ V3, our algorithm computes two
scores: the gain of dissimilarity ΔD induced by adding the candidate to
V3, and the gain of redundancy ΔS induced by the same. Ziggy excludes
the columns which exceed the redundancy capacity, e.g., those for which
S([V1, V2], V3) +ΔS > L. It then detects the best candidate among those
that remain and adds it to the view. It repeats the process until either
the maximal number of columns D is met, or there are no more eligible
columns. We present the pseudo-code in Algorithm 2.

To compute ΔS, we apply Equations 7.5 and 7.6 directly. Computing
ΔD requires more care, because each column is involved in several Zig-
Components, and the bivariate components depend on the current state of
the algorithm. Suppose for instance that we are building a view Vi, and we
wish to compute ΔD for a given candidate X. In our implementation, if X
contains numeric values, then it is associated with at least two components:
the difference between the means zμ, and the difference between the stan-
dard deviations zσ. We obtain those from the first step of the algorithm.
But we must also account for the difference between dependencies, for all
the columns already included in Vi. Thus, if z describes the normalized
absolute value of a Zig-Component z, and if V num

i and V cat
i respectively
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represent the numerical and categorical variables of Vi the final score is:

ΔD = zXμ + zXσ +
∑

X′∈V num
i

zX,X′
r +

∑
X′∈V cat

i

zX,X′
V (7.7)

The last two terms of the equation depend on the current state of Vi.
Therefore we must update ΔD after each step.

If we use the redundancy measure Shard, then we can avoid comput-
ing ΔS altogether: Ziggy can discard the redundant candidates before it
starts building the view. Consider a candidate column X, and let V1..i−1

describe the union of all previously built views. If Shard(V1..i−1, X) > L,
then the column is not exploitable: adding it to the current view Vi will
breach the threshold, regardless of Vi’s current state. Conversely, if we
have Shard(V1..i−1, X) < L, then the candidate is “safe”, it will never
breach the dependency threshold. Thus Ziggy, builds the view in two
separate steps: first it eliminates the redundant columns (i.e., those for
which Shard(V1..i−1, X) > L), then it selects the top D candidates.

To conclude, our greedy algorithm is not exact, but it runs in O(KMD).
Thanks to this heuristic, we avoid an exhaustive search of

(
M
D

)
possible

view combinations, which would lead to an unpractical O(KMD) runtime.

5.2 Staging Computations

We now discuss how to compute the Zig-Components for each column of
the database. This task is critical: in the best case, it requires a full scan
of the database. In the worst case it runs in O(NM2), because we need to
compute and compare every possible pair of correlations in V t and V t to
obtain the scores zr and zV .

Our idea is to prepare some computations offline, before the user starts
submitting queries. Let us focus on the Zig-Component zμ, which reports
the difference (X̄t − X̄t)/st, for a given column X of the database. Fig-
ure 7.5a presents the naive method to compute this component. As soon
as our user submits a selection, we compute the average X̄t for those tu-
ples, the values X̄t and st for the rest of the database, and we apply the
formula (X̄t − X̄t)/st directly. Thus, we read the whole column.

Figure 7.5b illustrates our staging strategy. Offline, we compute the
mean X̄ and the standard deviation s for the whole column X. Online,
when the user submits a selection, we compute X̄t and st only - thus, we
read the selection and ignore the rest of the database. We then reconstitute
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Xt Xt

X̄t stX̄t

Online

zX
t,Xt

μ

(a) Computing zμ without staging.

Xt

X̄t st

zX
t,Xt

μ

X

X̄ s

Xt st

Offline

Online

(b) Computing zμ with staging.

Figure 7.5: Our staging strategy.

X̄t and st, as follows:

N t = N −N t (7.8)

X̄t =
N · X̄ −N t · X̄t

N −N t
(7.9)

(st)2 =
N

N t
· s2 − N t

N t
· (st)2 − N t

N
· (X̄t − X̄t)2 (7.10)

We now have all the elements to compute the Zig-Component. To obtain
these equations, we used formulas designed to compute the mean and vari-
ance incrementally [73], and we reversed them - in fact we compute X̄t

and st in a “decremental” fashion.
In effect, our staging scheme does not reduce the complexity of the al-

gorithm, but it greatly reduces the amount of tuples to read. The smaller
the user’s selection is, the greater is the performance gain. Fortunately, we
managed to extend it for all the Zig-Components presented in Table 7.1.
We can derive similar computations to update correlation coefficients. If
q represents the covariance between X1 and X2:

qt =
N

N t
· q − N t

N t
· qt − N t

N
· (X̄t

1 − X̄t
1) · (X̄t

2 − X̄t
2) (7.11)

To cope with categorical data, our approach is slightly different. Offline,
we compute a histogram for X. Online we compute another histogram for
Xt. From those, we can infer the distribution of Xt’s values, and compute
zχ and zV .
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6 Model Validation

We now focus on the following problem: for a given view V , how significant
is the Zig-Dissimilarity S = D(V t;V t)? A high value may indicate that V t

and V t come from two different distributions. But it could also be caused
by chance. How confident are we of this result? Confidence scores help
Ziggy decide which Zig-Components to show, and it helps users interpret
its results.

The statistics literature proposes a completely generic way to solve this
problem: permutation testing. This methods works with the Zig-Dissimilarity,
but it can also handle other divergence measures. In consists in repeatedly
shuffling the rows of V , such that tuples are randomly affected to V t or
V t. We then observe how the dissimilarity S varies: if the permutations
have no effect on S, then there is high chance that the dissimilarity was
caused by chance. Oppositely, if S is very sensitive, then we have a high
confidence in our result. We refer the interested reader to Wasserman [102]
for more details.

Permutation testing offers plenty of advantages, but shuffling the rows
is computationally heavy. In our implementation, we used an alternative
approach: we exploit the composite nature of the Zig-Dissimilarity, and
test each Zig-Component individually. We then aggregate these scores
in a synthetic confidence indicator. Therefore we do not test the Zig-
Dissimilarity directly - instead we focus on its underlying effects. This
method is much lighter because we can use known asymptotic results,
or at least approximations thereof. For instance, we know that under
certain assumptions, we can test the difference between the means with a
Wald test [102], which only requires an extra O(1) computation. Similarly,
we can use a F-test for the ratio of the variances, or a χ2 test for the
differences in categorical distributions. Table 7.2 summarizes our choices.
To aggregate the tests, we report the minimum observed confidence, a
purposely conservative approach [102].

7 Report Generation

We explained how our system detects views. We now detail Ziggy’s report
generation pipeline, through which it justifies its choices.

Ziggy describes its views one by one. For each view, it generates a re-
port, comprising a few sentences and several charts. The aim of the text is
to give a general presentation of how the tuples differ from the rest of the
data. The charts let users inspect the details. Figure 7.6 illustrates how
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7.7. Report Generation

Collection Labelling Rating

Grouping

Redaction

Rewriting

Plotting

Std. Deviation

Std. Deviation

Mean

Mean
AvgIncome

YearsOfEducation

ComponentColumn

Increase

Decrease

Increase

Increase

Label

Weak

Except.

Grade

ComponentColumn

Mean incr. + Std Dev. decr.

Mean incr.

AvgIncome

YearsOfEducation

On AvgIncome, the mean increases and the standard 
deviation decreases. On YearsOfEducation, the mean 
increases.

On AvgIncome, your selection has a high mean and a low 
variance. On the column YearsOfEducation, the mean is 
higher but the variance is identical.

Figure 7.6: Ziggy’s report generation pipeline.
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Description Exceptional? Weak?
zμ ≥ 0 ∧ X̄t ≥ 0: “increase”

zXμ in
top 5%

|zXμ | <
0.2 or
pXμ <

0.01

zμ ≥ 0 ∧ X̄t < 0: “decrease”
zμ < 0 ∧ X̄t ≥ 0: “decrease”
zμ < 0 ∧ X̄t < 0: “increase”

Table 7.3: Example of handwritten rules for the difference of means zμ. The
variable pμ describes the confidence (p-value), as described in Section 6.

Ziggy proceeds. First, it gathers all the Zig-Components associated with
each columns of the database. It then generates a short description for
each component using hand-written rules such as those presented in the
first column of Table 7.3. It also rates each component, with three possi-
ble grades: “weak”, “neutral”, and “exceptional”. These grades are based on
both the values of the components and their confidence, as illustrated in
Table 7.3. To set the thresholds, we took inspiration from classic statistics
textbooks [22], and chose conservative options. Nevertheless, these quan-
tities are inherently arbitrary. It is therefore important to communicate
them to the end users, and motivate each decision with its corresponding
rule.

Once Ziggy has collected, labeled and rated the Zig-Components, it
groups the columns which have the same “profile”, that is, the same vari-
ations on the same components. It then generates one sentence for each
group, such that each sentence has the same structure: on [column_names],
the [zig-component] [label]. If several components are involved,
as in Figure 7.6, the Ziggy enumerates all the pairs [zig-component]
[label], separated by and. At this point, the text produced is un-
derstandable, but it is also highly redundant and possibly grammatically
incorrect. During the last phase, Ziggy rewrites it with a set of hand-
written rules. Such rules include inserting connectors (e.g., “Additionally”,
“Finally”), using random synonyms (e.g., “the tuples”, “the selection”, “your
data”) or replacing wider chunks (e.g., “has a lower variance” by “spreads
more widely”).

By default, Ziggy only produces visualizations for the variables asso-
ciated with exceptional components. It plots the remainder on demand.
To determine which type of visualization to use, it checks the type of
the columns, and applies usual techniques: it uses density plots and his-
tograms for one dimensional data, and scatterplots and heat maps for two
dimensional data.

133



7.8. Setting Parameters

8 Setting Parameters

Ziggy’s model relies on three parameters: the total number of views K to
generate, the width of the views D, and the dependency threshold L.

Number of Views K. When should we stop producing views? We pro-
pose to generate as many views as possible, and delegate the final decision
to the users - after all, we have little idea about what they are seeking.
In practice, we do so lazily: we start with a small selection of views (e.g.,
as many as the display can contain), and we generate the remainder on
demand, for instance with a “show me more” button. In our experience,
the number of views stays manageable because the algorithm is blocked
by the redundancy constraint: after a certain number of views, Ziggy finds
no more columns to exploit.

Size of the Views D. In our implementation, we set this parameter in
an adaptive fashion, using a method presented by Zhu and Ghodsi [111].
We summarize it as following. When building a view, we keep track of the
gains ΔDd induced by each column d. We then detect change points in
the sequence (e.g., “jumps” or “elbows”). If we observe such a behavior,
we truncate the current view and start a new one. The advantage of
this method is that D can adapt to each subspace. However, it is only a
heuristic. Fortunately, inaccuracies have little consequence in practice: if
the dependency constraint is weak, then the excluded columns are simply
pushed to the next view.

Dependency threshold L. Admittedly, there is no optimal way to set
this parameter: it depends entirely on the user and the exploration context.
By default, we use Shard, and we limit to L = 0.99. This setting enforces
that the views are non-overlapping, but it adds no other constraint - we
see this as a safe option.

Zig-Components. Previously, we proposed several Zig-Components,
in order to capture a wide range of effects. Nothing forces to use them all.
For instance, a user interested in quick and concise results may prefer to
ignore bivariate components.

9 Use Case

We now apply Ziggy on the data which inspired our running example. Our
aim is to understand which factors lead to innovation, and more specifically
patents. To answer this question, we aggregated several databases from
the OECD, an international economic organization. All the data we used
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Columns
Except. Weak

DZigComp. Comp.
(%) (%)

Patent_applications_p_inhabitant
83.3 0 25.4PCT_patent_applications

Personal_earnings
Dwellings_no_basic_facilities

64.2 7.1 18.9Educational_attainment
Emp._work_very_long_hours
Life_expectancy
Average_hours_worked

50 42.2 12.4Population_growth_rates
Working_age_population
Pop_under_the_age_of_15
Assault_rate, Homicide_rate 77.7 11.1 12.1Current_account_balance
Export_Pharmaceutical

57.1 57.1 11.4Incidence_part_time_emp
Long_term_unemp
Production_crude_oil
Air_pollution, Job_security 77.7 11.1 10.1Student_skills
Employment_rate

66.6 33.3 7.1Total_primary_energy_supply
Trade_Balance._Pharmaceutical
Triadic_patent_year 28.5 75.5 6.2Time_devoted_to_leisure
Renewable_energy_supply

33.3 55.5 5.5Voter_turnout
Total_tax_revenue
Consultation_on_rule_making

7.1 78.5 5.3Implicit_GDP_Price_Indices
Years_in_education
Quality_of_support_network 33.3 55.5 4.5Taxes_on_income_and_profits
Value_Added_of_Industry

0 100 2.9Exchange_Rates
Gross_Domestic_Product

Table 7.4: Detail of Ziggy’s views, by decreasing order of dissimilarity. The
two middle columns indicate the proportion of Zig-Components marked as
Exceptional and Weak.
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may be found online1. Our core dataset is the Patents per Region
database, which contains 15 years of patent statistics for 2,180 regions
in 31 countries. We augmented this set with several other region-level
databases (Demographics per Region and Labour per Region)
and country-level indicators (Better Life, Well Being and Innova-
tion Indicators). We obtain a table with about 6,823 rows and 519
columns, including mixed types and missing values. We filtered out the
categorical columns with more than 20 distinct values (e.g., primary keys,
countries and region names).

Our selection of tuples contains the top 10% regions for the statistic
patent applications per inhabitant. We set D = 6, with the
adaptive stopping method described in Section 8. We use Shard, with a
maximum value of L = 0.75. Ziggy detects a total of 12 views, which
columns are reported in Table 7.4.

Some of Ziggy’s choices are not surprising. For instance, the first col-
umn mentioned in the Table is precisely the variable we used to define our
selection. The second one, PCT patent applications is highly simi-
lar (the PCT is an international patent treaty, which allows transnational
patents). Likewise, we expected some relationship between education and
innovation (views 2, 6 and 10). However, some effects are less straight-
forward. How does Employees working very long hours impact
innovation? Are patents produced at work, or during hobby time? Simi-
larly, how do our regions behave on the variable Job security?

Figure 7.7 presents Ziggy’s explanations for two views. To obtain this
figure, we made only two edits: we removed some plots to save space,
and we inserted references to the charts in the text. Consequently, the
figure illustrates accurately what Ziggy’s users would obtain. The first
view reflects the fact that innovative regions usually offer high incomes.
Ziggy expresses this through its comments about the variable Personal
earnings, but also through the last chart. As it points out, there is a
correlation between patent applications and income, but this correlation
disappears when we focus on innovative regions. Then, the regression
line is flat, with a high offset, which indicates that all these regions are
relatively rich, regardless of their patent statistics.

The second view offers a different perspective. The first and third charts
show that innovative regions tend to be safer, but the relationship is not
straightforward. Ziggy shows that these regions have less extreme values
on Assault rate, but the mean is similar. Also, the expected corre-
lation between Assault rate and Homicide rate is inverted. This

1http://stats.oecd.org/
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reflects the fact that assaults do exist in our innovative regions, but little
of them actually lead to a homicide. The last chart is more puzzling: nor-
mally, there exists no relationship between Assault rate and Current
account balance. And indeed, we expect these variables to be inde-
pendent, because they describe completely different topics. Yet, in our
regions, a clear correlation appears. How can we interpret this effect? If
this dependence completely spurious? Are those variables cofounded by
a third, hidden variable? Or maybe sane public accounts causes anger
among inventors? As implausible as this last hypothesis may seem, the
chart gives us no way to discard it. We leave the question open for future
investigations.

10 Experiments

10.1 Setup

Metrics. We now present our experimental results. We evaluate three
aspects of our system: the quality the views, their diversity, and Ziggy’s
runtime. To evaluate the quality of the views, we simulate users with
statistical classifiers. We assume that if a classifier can learn from a view,
then so can a real user. Technically, we materialize the user’s selection
into a vector t = (t1, . . . , tn)

�: ti = 1 if the tuple is chosen, 0 otherwise.
We then train a classifier, using the view V as feature set and the user’s
selection t as target. To obtain our quality score, we check if the classifier
can accurately model the user’s selection t with the variables in V. If so,
we deduce that the selection has a “peculiar” structure in the subspace,
and therefore the view contains exploitable information. Oppositely, if the
classifier cannot reconstruct the user’s selection, then either the classifier
is poor, or the view contains no information about the selection. We use a
5-Nearest Neighbor (5-NN) classifier, and we report the F1 measure with
5 cross-validation (higher is better). We chose the 5-NN algorithm for
convenience: it is fast, and it gave us good predictive performance.

To measure diversity, we report the number of distinct columns used by
the views in the result set (higher is better). We measure runtime with
the total wall clock time, including preprocessing in Ziggy’s case (lower is
better).

Baselines. We compare Ziggy to four subspace detection methods:
Claude, Clique, Wrap-5NN and 4S. The first three methods are su-
pervised: their aim is to detect informative columns for a classification or
regression task. We adapt them to our problem by setting t as the target
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column. The last algorithm is unsupervised.
We already presented Claude in Chapter 5. Although its objectives are

different, Claude resembles Ziggy on many aspects. Like Ziggy, Claude
seeks “informative” subspaces. Also, it uses a multi-view approach: it
returns a fixed number of subspaces, with a user-specified number of di-
mensions. But it differs on two points. First, it uses a different notion
of interestingness: it seeks groups of columns which are strongly depen-
dent to the target, dependency being measured with the mutual infor-
mation. In contrast, Ziggy seeks subspaces where tuples with different
target values behave differently, using simple, interpretable indicators of
difference. Second, Claude builds all the subspaces simultaneously, using
a beam search algorithm. Ziggy generates the views one after the other.
We expect Claude to be accurate, but slower than Ziggy - after all, Claude
was designed to generate queries, while Ziggy’s aim is to support real-time
interaction.

As in Chapter 5, we compare Ziggy and Claude to Clique, 4S and
Wrap-5NN. The first two algorithms are fast, but possibly approximative.
The last one is very accurate, because it optimizes exactly what we are
measuring. However, it is also very slow. Therefore, we only use it as a
“gold standard” for our experiments with real data. We refer the reader to
page 69 for more details about these algorithms.

Setup. We implemented Ziggy in R, exploiting its native primitives
for critical operations (namely computing means, covariance matrices and
cross-tabulation). We interrupted all the experiments which lasted more
than 1 hour. Our test system is based on a 3.40 GHz Intel(R) Core(TM) i7-
2600 processor. It is equipped with 16 GB RAM, but the Java heap space
is limited to 8 GB. All the algorithms we present are single-threaded. The
operating system is Fedora 16.

10.2 Synthetic Data

In this set of experiments, we benchmark our algorithms in a synthetic
environment. Since we know the structure of the data, we can tune the
competitors optimally. For instance, if we generate a dataset with 3 sub-
spaces of 5 columns, then we set K = 3 and D = 5. We must however
report that 4S tunes itself: it computes how many subspaces to gener-
ate, and how large these should be. We use two versions of Ziggy: for
Ziggy-Soft we use the dependency measure Ssoft and we limit it to
0.1. For Ziggy-Hard, we use Shard and we limit it to 0.9.

Our generator produces columns by groups. It yields two types of sub-
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Parameter Value
Selection (tuples) 3,000
Tuples from Gauss. mixture 15,000
Tuples from Unif. distrib. 15,000
Sep. / Non-sep. variables 20 / 4
Num. dimensions subspaces 4
Num. components Gaussians 5
Mean / Variance Gaussians Unif. in [-10,10] / [1, 20]
Uniform noise Unif. in [-45,45]

Table 7.5: Default parameters for our data generator.

space: non-separated subspaces, and separated subspaces. In the non-
separated case, the selection and the rest of the data are sampled from the
same distribution, namely a mixture of multivariate Gaussians with ran-
dom parameters. In the separated case, the selection is sampled from a sep-
arate Gaussian distribution, with its own random parameters. Addition-
ally, our generator produces uniform noise on all the columns. Table 7.5
presents our parameters. For each experiment, we generate 4 random data
sets and report the average F1 of all the views.

10.2.1 Quality of the Views

The first chart in Figure 7.8 presents the robustness of the algorithms
with regards to the size of the selection. For all our baselines, raising this
parameter ameliorates the views, but the quality converges fast (at around
15% of the database size). The algorithm Claude comes first, but it is
very closely followed by the two instances of Ziggy and 4S. The ranking
is almost identical in the second chart, which displays the accuracy of the
algorithms varying the dimensionality of the subspaces. All algorithms
involved seem robust, but Ziggy-Soft, Ziggy-Hard and Claude are
above, followed closely by 4S, then Clique. The last graph illustrates
the robustness of the views with regards to the number of non-separated
columns. All our baselines achieve good scores, except 4S. We interpret
this effect by the fact that 4S is unsupervised, it has therefore no way to
detect which subspaces are interesting and which are not. In conclusion,
despite its simple assumptions, Ziggy delivers high quality, robust views,
largely comparable to state-of-the-art feature selection algorithms.
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10.2.2 Runtime

Figure 7.9a illustrates the total runtime with regards to the number of
rows and columns in the database. We ignored the algorithms 4S and
Clique, which were slower than the other candidates. We observe that
Ziggy’s performance is spectacular: it is an order of magnitude faster than
Claude, which is itself faster than the other competitors. And yet, all the
algorithms involved in our benchmark have the same O(ND2) complexity.
We explain the difference with Ziggy’s simpler computations. Ziggy relies
on means and correlations, which are much lighter than Claude’s infor-
mation theoretic estimators. Besides, when evaluating its views, Ziggy
considers at most two dimensions at a time, while its competitors test
higher level dependencies.

Figure 7.9b shows where Ziggy-Soft spends its time. By far, the
most expensive operations are the offline computations. This validates our
staging strategy. Table 7.5 reports that the database contains 1 selected
tuple for every 10 non selected tuples. Therefore we expected the online
phase to be about 10 times faster, ignoring overhead costs. The figure
confirms this estimation.

10.2.3 Diversity

Figure 7.9c presents the number of distinct columns mentioned in the
views. In the leftmost chart, we compare four competitors, varying the
width of the subspaces. We notice two distinct groups of algorithms.
The approaches Ziggy-Hard and 4S offer a very high diversity, because
they enforce that no column is shared among subspaces. The approaches
Claude and Ziggy-Soft offer much less variety. The rightmost figure
illustrates the effect of the dependency threshold. In the Hard case, it
has no apparent effect because the views are completely disjoint anyway
(the threshold does decorrelate the views, but this does not influence our
metric). In the Soft case, we see that our deduplication strategy works: a
lower threshold forces Ziggy to introduce variety.
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Figure 7.9: Experiments with synthetic data.
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Dataset Columns Rows #Views Dim Views
MuskMolecules 167 6,600 22 18

Crime 128 1,996 20 17
BreastCancer 34 234 10 13

PenDigits 17 7,496 9 10
BankMarketing 17 45,213 11 8

LetterRecog 16 20,000 10 12
USCensus 14 32,578 10 7

MAGICTelescope 11 19,022 1 10

Table 7.6: Characteristics of the datasets.

10.3 Real Data

We now presents our experiments on real data from the UCI Repository.
We use the algorithm Wrap-5NN as “gold standard”, since it optimizes
precisely the metric we report. To set the number and width of the sub-
spaces, we rely on 4S. Table 7.6 describes the datasets and our settings.
Because all the competitors have the same parameters, the comparison is
fair.

10.3.1 Accuracy

Figure 7.10a illustrates the quality of the views for each algorithm. We ob-
serve that Wrap 5-NN always comes first. It is closely followed by Ziggy-
Soft, Claude and Ziggy-Hard, in different orders (although Crime is
a striking counter-example). The unsupervised 4S follows in most cases,
tailed by Clique. Here again, we conclude that Ziggy’s performance is
largely comparable to good feature selection algorithms. However, we ob-
serve that Ziggy-Hard is often below Ziggy-Soft, the most extreme
case being the LetterRecog set. This is a consequence of Ziggy-Hard’s
diversity. In the synthetic case, it had several equally good subspaces to
chose from. In the last three datasets, it seems that some subspaces are
better than others, and therefore non-redundancy induces an accuracy loss
(observe that 4S suffers from the same problem).

10.3.2 Diversity

Figure 7.10b presents the diversity results. As with synthetic data, we
observe that 4S and Ziggy-Hard dominate the other algorithms, partic-
ularly with wide tables such as Crime and MuskMolecules. The algo-
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rithms Ziggy-Soft and Clique follow, then Claude and Wrap-5NN
comes last - which we expected since they mostly target accuracy. This
chart, in conjunction with Figure 7.10a, shows that the algorithms which
generate the best F1 rarely generate the best diversity, and reciprocally.
This motivates our choice to offer both Shard and Ssoft.

10.3.3 Runtime

We present the runtime of our algorithms in Figure 7.11. The results
are consistent with our previous conclusions: Ziggy outperforms all of its
competitors, and the speedup gets more dramatic as the size of the datasets
increase.

11 Related Work

11.1 Dimensionality Reduction

We mentioned dimensionality reduction techniques such PCA in Chap-
ter 3. These methods differ with our work on three points. First, they are
unsupervised: they process the data independently of any user selection.
Second, they transform the columns of the database, by rotating and scal-
ing them. Hence, their output can be difficult to interpret. In contrast,
Ziggy operates on the raw data. Finally, they return a unique subspace,
while Ziggy returns several non-redundant views.

11.2 Outlier Description

Outlier description consists in finding subspaces inside which a particular
tuple is an outlier [9, 28, 50, 110]. This task inspired our work, but its
objectives are different. Outlier description describes single objects, while
we describe sets of tuples. It focuses on distance-based outliers, while we
focus on probability distributions, regardless of how central or isolated the
user’s selection is. Authors focus on specific data types (either numerical
or categorical, but not both), and little of them mention redundancy (an
exception is [28], which seeks closed sets). None of these works discuss
how to report results.

11.3 Contrast Mining

Contrast mining is a similar task, but in a pattern mining context: the
aim is to differentiate two or more populations by identifying patterns

146



7. Ziggy: What Makes My Query Special?

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

0102030

U
S

C
en

su
s

C
rim

e

M
us

kM
ol

ec
ul

es M
A

G
IC

Te
le

sc
op

e
P

en
D

ig
its

B
an

kM
ar

ke
tin

g
B

re
as

tC
an

ce
r

Le
tte

rR
ec

og

D
at

as
et

Execution Time (s)

Z
ig

gy
−

S
of

t
Z

ig
gy
−

H
ar

d
C

la
ud

e
4S C

liq
ue

W
ra

p 
5−

N
N

F
ig

ur
e

7.
11

:
R

un
ti

m
e.

T
he

X
m

ar
k

in
di

ca
te

s
th

at
w

e
tr

un
ca

te
d

th
e

co
lu

m
n.

147
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which are present (e.g., have a high support) in one population but not in
the other [99, 103]. This line of work is related but orthogonal, because
we deal with neither itemsets nor patterns. Notably, Loekito and Bailey
introduced a method to identify discriminative variables [57]. Yet, their
work focuses on “contrast of contrasts” for categorical data, a close but
different task

11.4 Feature Selection

As noted in Section 10, our work is intimately related to feature selection.
Feature selection seeks predictive variables for a classification or regression
task [36]. We can map this task to our problem by treating the user’s
selection as a column to be predicted. The main difference is that feature
selection targets statistical accuracy, while we target interpretation. Thus,
most feature selection algorithms seek one optimal set of variables, while we
seek several small sets of variables. Also, feature selection tends to optimize
class separability, while we are interested in any difference in distribution.
Nevertheless, we acknowledge the similarity between our work and some
algorithms, and compare them directly in Section 10.

11.5 Other Data Exploration Approaches

Recent works in data exploration have tackled different but related prob-
lems. Similarly to our work, SeeDB [97] recommends visualizations by
seeking columns on which a set of tuples have an unusual behavior. How-
ever, it focuses on GROUP BY aggregates in data warehouses, while we
focus on describing the general distribution of the selection, independently
of any sub-grouping. Li and Jagadish [55] tackle the counterpart of our
problem: they describe how to issue queries in natural language. Lloyd
et al.’s automated statistician [56] describes regression models in natural
language. These approaches are somewhat complementary to ours, and
there would be much to gain by combining them.

12 Summary

In this chapter, we reversed the query recommendation problem. Instead
of assuming that the users are looking for a query, we assumed that they
already have one but they do not know what is interesting about it. To
solve this problem, we introduced the idea of tuple characterization and
presented a practical solution, Ziggy. Our experiments show that Ziggy
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can produce informative, non-redundant results within a fraction of the
time taken by state-of-the-art machine learning algorithms.
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Chapter 8

Raimond: Exploring Event

Reports

1 Introduction

Previously, we presented software tools to help users explore structured
data, that is, tables. We now extend our study to unstructured data, that
is, plain text. How can we help users make sense of such datasets? How can
we adapt semi-automated exploration to natural language documents? In
fact, answering these questions would require at least a thesis on its own.
For this chapter, we chose to focus on one specific scenario, inspired by an
industrial use case. We show that extending semi-automated exploration
to unstructured is indeed feasible, and we open the way for future research.

Let us now describe our use case. An analyst is interested in news
events, and more specifically the series of earthquakes which shook Japan
in March 2011. To understand these events, she has access to an archive
of microblogs, i.e., tweets. Microblogging platforms provide access to an
incredible volume of data. This data was produced as the events unfolded
by individuals, official organizations, and news agencies from all around
the world. It is diverse, timely, and exhaustive. But this volume is a mixed
blessing. In the few days which followed the first shocks, several million
posts were written and shared on Twitter. No reasonable human would
consider reading them all. And yet, these posts may contain precious
information.

In this chapter, we focus on one particular type of information: quantita-
tive data. In our Japan example, how many earthquakes actually stroked
the country? How many casualties were reported? How much funds were
unlocked to help? We see that the event has a number of objective quanti-

This work was carried out during a summer internship at Microsoft Research
(Moutaint View, CA), under the supervision of Dr Omar Alonso.
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tative properties, such as cardinalities and measures. Collecting and ana-
lyzing these properties could lead to valuable insights. Our aim is to devise
a systematic mechanism to extract and browse this information.

1.1 Contributions

We present Raimond, a virtual text curator for event reports. Raimond
has two aims. First, it extracts quantities from microblogs. Second, it
organizes its findings and presents them with thematic time lines. Thus,
it builds veritable narratives, to be browsed by our analyst.

Raimond collects, cleans, organizes and recommends fragments of text
which contain quantitative information. It operates as a pipeline, where
each stage solves a different sub-problem. First, it identifies relevant tweets
which contain quantitative data. Then, it groups those tweets into sub-
topics, removes the low quality content, and display the results. Given the
complexity of the problem, we designed Raimond as a hybrid system. On
one hand, we automated the data intensive parts of the extraction process.
On the other hand, we let humans interpret the text through a crowdsourc-
ing platform. Experiments with real-life data will reveal that Raimond can
effectively capture and organize useful facts about news events. Hence, we
show that generalizing data exploration beyond simple tables is feasible
and promising.

1.2 Outline

In Section 2, we present the notion of quantfrag. In Section 3, we detail
how Raimond extracts quantitative data. Section 4 showcases Raimond
with real-word examples. We present our evaluation in Section 5, related
work in Section 6 and conclude in Section 7.

2 Introducing the Quantfrag

Overview. The central concept behind Raimond is the quantfrag. A
quantfrag is a snippet of text which contains a piece of quantitative infor-
mation. Observe for instance the following tweets, recorded after the 2011
earthquakes in Japan1:

"Breaking News: A 8.8 earthquake just hit #Japan."
"At least 2,369 are missing after #quake. I have no

1All the examples in this section are based on actual tweets. Nevertheless, we took
the liberty to truncate the original posts to shorten the presentation.
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words."
"This is insane. The Earth’s rotation sped up by 1.6
microseconds. #japan #planet"

Each post contains some quantitative information, surrounded by com-
ments or details about the context. We call quantfrags the fragments of
text which contain the quantities. We highlight these fragments in bold
in the example. Ideally, a quantfrag should contain enough information
to understand the quantity, but no more. It should be self-contained, but
short. This leads to our first definition:

Definition 8.1. A quantfrag is a complete, minimal piece of text which
describes a fact based on a quantity.

Not all tweets contain quantfrags. We use the term qweets for those
which do. We illustrate our terminology in Table 8.1. Raimond’s aim is to
detect qweets, extract quantfrags, and present the collection in a browsable
form.

Natural catastrophes are not the only events which yield quantitative
data. The following quantfrags describe the 2014 World Cup Brazil-
Germany game:

"BRA undefeated in 62 straight competitive home games
since 1975"
"GER have now scored 221 goals in WorldCup history"

These quantfrags were produced during the 2014 Ukraine political crisis:

"EU to provide $15 billion help package to Ukraine"
"Crimea referendum: 97% voted to join Russia"

We will present these two topics in detail in Section 4.
Detection. We now discuss how to detect qweets and quantfrags algo-

rithmically. Most qweets contain numbers, written with letters or digits.
However, Twitter data also contains a plethora of counter-examples. A
post can describe a quantity without using any number:

"the country’s strongest earthquake on record"

Also, it is not difficult to find numbers without quantities:

"Japan I pray 4 U"
"Please text the words Text Red Cross to 90999"
"Barack Obama will give a special address at 1130"
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To complicate the matter further, many fragments form valid quantfrags,
but they teach us little about the event:

"A fire has broken out at Cosmo Oil’s 220,000 b/d Chiba
refinery after earthquake."
"I have a friend in japan. And he actually owes me ten
bucks."

These examples show that reporting all tweets which contain numbers is a
very naive solution. Raimond relies on the combination of several methods,
which we will discuss thoroughly in the following section.

Single Quantfrags, Serial Quantfrags. During our experiments, we
encountered two types of quantfrags. Single quantfrags state independent,
self-contained facts. For instance, the following quantfrag is single:

"The Pacific Plate slid west by 79 feet"

Oppositely, serial quantfrags describe the same property of the event, but
at different points in time. Therefore, they describe a time series. Here is
an example of such fragments:

11 March 2011 - "530 people were reported missing after
#earthquake in Japan"
12 March 2011 - "about 1800 missing in #japan as a result
of #earthquake"
15 March 2011 - "at least 3,743 are missing #earthquake
#tsunami"

These three quantfrags describe the number of people reported missing
after the earthquakes, but at different points in time. They are particu-
larly interesting because they let us reconstitute the original time series,
as shown in Figure 8.1. One of Raimond’s functions is to organize the
quantfrags in subtopics, such that serial quantfrags are displayed together.

Validity. In general, qweets may contain approximations, omissions,
exaggerations or time lags. Unfortunately, this noise is inherent to social
data. For instance, thousands of tweets mentioned 88,000 missing people
during the Japan earthquakes. We found no trace of the original report,
and official sources hint that this number is largely overestimated1. Our
aim is to depict microbloggers’ views on events, regardless of their overlap
with objective truth. Fact checking is, for now, beyond the scope of this
study.

1www.jst.go.jp/pr/pdf/great_east_japan_earthquake.pdf, page 13
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Table 8.1: Illustration of our terminology.

Tweet Japan update: five nuclar plants shut down
in Japan, tsunami waves continue to hit

Event 2011 Japan Earthquakes
Quantfrag five nuclear plants shut down in Japan
Property Nuclear plants shut down
Quantity 5
Is a Qweet? Yes

+
+ +
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Date
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Figure 8.1: Time series reconstituted from seven serial quantfrags.
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Table 8.2: Seeding the Raimond pipeline.

Type Input field

Content
Hashtags
Keywords
Language

Network
Twitter’s verified flag
Account’s followers
Message retweets

3 Methodology

Raimond’s goal is to detect and organize quantfrags. To do so, it oper-
ates in four consecutive stages, pictured in Figure 8.2. First, Raimond
detects the most promising tweets, and extracts the quantfrags. Then, it
groups the fragments which cover the same topic. During the third phase,
Raimond filters out the fragments which are irrelevant or not informative
with a combination of coded rules and crowdsourcing. Finally, it labels
and displays the clean groups.

3.1 Extracting Quantitative Data

During this first phase, Raimond detects the tweets associated to the event
of interest, parses them and retrieves the quantfrags.

Setup. To seed the Raimond pipeline, we define an event configuration.
The configuration specifies which authors to follow and which tweets to
select. For our Japan example, we tracked the hashtag #japan during 5
days, and selected the posts with more than 25 retweets. Table 8.2 shows
all the settings offered by Raimond. The aim of content-related parameters
is to spot relevant tweets. Network-related parameters measure trust and
influence.

Selection. Once the event configuration is defined, Raimond fetches the
tweets from our archive, and it applies a filter to discard tweets with no
quantities. At this point, we include every tweet which could potentially
be interesting, regardless of it its quality - we value recall much more than
precision. The filter relies on two tests, assembled in a disjunction. The
first test uses a quantity classifier. The classifier is based on statistical
learning, and it was trained by Microsoft staff. For the second test, we
wrote a set of regular expressions. These regular expressions detect cardi-
nal and ordinal numbers, expressed with letters or numbers. At the end
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Extract

Assemble

Filter

Display
Automatic

Semi-Automatic
(crowd + CPU)

Setup

Selection

Popularity Filtering

Near-Duplicates Removal

Crowd-Based Cleaning

Annotate

Illustrate

Display

Stopwords Removal, Stemming

Augmentation with WordNet

Clustering

Quantfrags Extraction

Figure 8.2: Overview of the Raimond pipeline
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This is insane the Earth’s rotation sped up by 1.6 microseconds
DT VBZ DTJJ NN POSNN VBNRP IN CD NNS

PP
NPNP

VPNP
S

NP VP
S

ADJP

S

Figure 8.3: Extracting quantfrags from the parse tree. The nodes of the
tree represent constituent tags, as defined by the Penn Treebank. Our aim
is to extract the subtree which contains the quantfrag. The quantfrag is
highlighted in bold.

of this phase, we obtain a set of potential qweets, which typically contains
lots of false positives.

Extraction. During this phase, Raimond extracts the quantfrags. Pre-
viously, we defined quantfrags as complete, minimal pieces of texts which
convey a quantity. Unfortunately, evaluating whether a quantfrag is com-
plete and minimal depends a lot on the user and the use case. Our defini-
tion is not practical. We propose to operationalize the notion as follows:

Definition 8.2 (operational). A quantfrag is a grammatical clause which
contains a quantity.

To detect clauses with numbers, we use a grammatical parser. The parser
takes a tweet as input, and returns a tree, as pictured in Figure 8.3. In
this tree each node represents a grammatical constituent. We check if the
tree contains a quantity, tagged CD (Cardinal number) in the example. If
it does, we extract the smallest clause which contains this quantity (S in
our example). If we detect several numbers, we extract one clause for each.
We used an internal Microsoft parser trained specifically for tweets, but
several open source NLP suites can handle this type of task (e.g., Stanford
NLP).

3.2 Assembling Quantfrags

In this phase, Raimond aggregates the quantfrags which describe the same
topic, or, in some cases, the same variable (cf. serial quantfrags in Section
2). To achieve this, Raimond uses cluster analysis. As the quantfrags are
short and noisy, preprocessing is crucial.
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Preprocessing and Augmentation. To clean the quantfrags, we ap-
ply classic preprocessing operations: we replace smileys by keywords, we
remove punctuation symbols and stop words, and we stem every term.
Typically, the quantfrags we obtain are very short. This is problematic
for clustering, because they are not likely to share terms. Consider for
instance the following two quantfrags:

"Troops of 500+ to provide help"
"More than 500 militaries sent for assistance"

Both phrases have exactly the same meaning, yet they do not have any
word in common. We use a lexical database, WordNet [64], to tackle this
problem. For a given term, WordNet gives us hypernyms. Intuitively, a
hypernym is a semantic superclass of a term. For instance, army unit
is a hypernym of troop. Thanks to hypernyms, we can augment our
quantfrags. We query the WordNet database for each noun and append
the results to the fragment. This increases the chance that similar tweets
share words. For instance, if we augment the first noun in each of our
example tweets, we obtain:

"Troops army unit military force of 500+ to provide
help"
"More than 500 militaries military force organization
sent for assistance"

WordNet entries are organized in a hierarchy: hypernyms themselves
have hypernyms. Therefore, we can expand our terms with several levels
of generality. We used two levels of recursion in the example, we use three
in our system.

In many cases, nouns have several competing WordNet entries. Each
entry is represented by a set of synonyms, such as assistance - aid
- help, or assistance - financial aid - economic aid. To
resolve the ambiguity, we check how many of the synonyms are contained
in the corpus, and keep the entry with the highest count. If the procedure
finds no match, we take the most frequent sense. We refer the reader to
the work of Hotho et al. for an empirical validation of this method [39].

Clustering. We represent the quantfrags with bags of words, and clus-
ter them with agglomerative clustering [87]. We chose this approach be-
cause it is simple enough to be tuned by non-technical users. Recall from
Chapter 3 that agglomerative clustering operates bottom-up. To initialize
the algorithm, we assign each quantfrag to its own cluster. Then, at each
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iteration, we detect which two clusters are the closest, and merge them.
As the algorithm runs, the clusters get larger. We stop when we reached a
threshold. The algorithm requires three parameters, summarized in Table
8.3.

3.3 Filtering Irrelevant Quantfrags

During the two first phases, Raimond typically accumulates lots of false
positives. Some quantfrags do not contain any quantity ("Japan, I
pray 4 u"), are not related to the topic ("Japan, thank you for
Playstation 4!"), are not informative ("3 reasons why we must
help Japan") or simply redundant. To make things worse, the clusters
we detect are rarely perfect, as they may combine unrelated but lexically
similar topics. To address this problem, we developed a cascade of filters,
based on automatic rules and crowdsourcing. We summarize the filters in
Table 8.4, and detail them below.

Filtering on Popularity. Typically, the size of the clusters obey ap-
proximately a power-law distribution. We observe a few large clusters,
and a long tail of micro-topics. Raimond gives the the option to select
the large clusters (the head of the distribution) and discard the smaller
groups. The rationale is that large clusters describe popular topics, while
smaller clusters may contain noise, such as personal reaction or irrelevant
facts.

Near-Duplicates Removal. So far, we have kept (near) duplicates
to assess the popularity of the topics. We now eliminate the redundancy.
In fact, this task is close to the clustering phase, described in 3.2. We
detect near-duplicates with the exact same method, but we operate at a
thinner granularity. We reuse the dendrogram structure produced at the
end of the clustering phase, and we cut it at a low level of dissimilarity (by
default, 0.1). We obtain lots of micro-clusters, we represent each of them
by a representative quantfrag (by default, the most frequent one).

Crowd-Based Cleaning. At this stage, the collection of quantfrags
still contains false positives, with numbers but no quantities. It also con-
tains uninformative quantfrags, i.e., quantfrags which are technically valid
but provide no useful information about the event. We discard those with
human computation.

Our crowdsourcing strategy is based on two consecutive tasks. During
the first task, workers evaluate the overall quality of the clusters. They
assign a grade to each cluster, based on a relevance. We aggregate the
scores, and check if the value is above a certain threshold. If not, we
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Table 8.3: Parameters for the cluster analysis.

Parameter Range Default
Distance Cosine, Euclidean, p-Minkowski Cosine
Linkage Single, Complete, Average Average

Maximum distance 0 - 1.0 0.9

Table 8.4: Sequence of filters used to remove false positives.

Precision Level Filter Computation
Cluster Size Machine

Quantfrag Near-duplicates Machine
Cluster Relevance Machine + Crowd

Quantfrag Relevance Machine + Crowd

Cluster of
Quantfrags

Task: How informative 
is the content of the 

cluster?

Aggregated 
Grade > 

Threshold?

Discard 
Cluster

Task: Identify the low 
relevance quantfrags

Quantfrag 
relevant?

Discard 
Quantfrag

Phase 2: Quantfrags 
Defect Rate per Cluster

Phase 1: Detecting
High Quality Clusters

High 
Quality

Quantfrags

Yes

No

Yes

No

Figure 8.4: Flow-Chart illustrating our crowdsourcing strategy to select
high quality quantfrags.
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discard the cluster. We then run another task, in which the goal is to
identify low quality quantfrags within the clusters. Figure 8.4 describes
the overall process. We can think of this approach as a two-step quality
control: the first phase checks if the cluster is relevant to the event. The
second phase provides a defect rate per cluster. The final output is a set
of high quality clusters, with useful quantfrags. In our surveys, we avoid
spammers with purposely trivial questions and redundancies.

3.4 Annotation and Visualization

The aim of the last step is to annotate and display the clusters of quant-
frags. The operations described in this section do not add content, but
they enhance the presentation of the quantfrags.

Title. Raimond summarizes each cluster with a title. To produce the
title, it creates documents by concatenating the quantfrags of each cluster.
Then, it computes a tf-idf matrix, and reports the top k terms for each
cluster/document (we set k = 5 for the rest of this chapter).

Illustration. We observed that many qweets contain links to images.
Our idea is to exploit these links to illustrate the clusters. Raimond parses
the tweets for image URLs with a set of regular expressions. If it encounters
such URLs, it tries to download the documents. It then presents the images
side-by-side with the quantfrags in the interface. If a cluster links to several
images, Raimond presents them sorted by decreasing order of popularity
(using the number of retweets).

Display. Raimond’s last task is to display the quantfrags. We provide
a screenshot of the interface in Figure 8.5. The bottom part of the display
presents the titles of the clusters on a timeline. To anchor the labels, we
calculate peak dates. The peak date of a cluster is the timestamp at which
it is the most popular. To calculate it, we retrieve the dates at which the
quantfrags of the cluster are mentioned, estimate a density function with
Gaussian density estimation and compute the mode of this distribution.
We will present some examples in Section 4. Users can focus on a cluster
by clicking on its title. Then, Raimond displays the quantfrags with their
timestamps and the qweets from which they were extracted.
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Table 8.5: Filtering and extraction of quantfrags. The sets are sorted by
inclusion - each set is a refinement of the previous one. The Japan set was
filtered and deduplicated before our experiments.

Dataset Ukraine BRAvGER Japan
Tweets 7,326,838 16,481,551 3,049,463
. Trusted 441,151 992,980 NA
.. Unique 10,508 6,438 6,210
... Contain quantities 1,093 1,207 1,729
.... Quantfrags 718 762 1,354

4 Use Cases

In this section, we present our experiments with three datasets. The first
dataset is based on the 2011 Japan earthquakes, discussed throughout
the chapter. The second dataset describes the political crisis in Ukraine,
still ongoing at the time of writing. To obtain it, we tracked the hashtag
#ukraine during 134 days. The third dataset contains tweets about
the Brazil-Germany football game of the 2014 World Cup. Using five
hashtags, we gathered approximately 16 millions of Tweets in less than 24
hours. We detail our data collection methodology and event configurations
in Table 8.6.

Table 8.5 shows the size of the data as Raimond processes the tweets.
We start with several million tweets. We tuned the pipeline to extract only
those that come from official sources and news accounts (cf. Table 8.6).
We obtain less than a million tweets (about 5% of the initial volume).
This number includes the tweets written by official sources, but relayed
by non-trusted individuals. After removing the retweets and the dupli-
cates, we obtain less than 10,000 posts. This decrease is spectacular, but
not surprising: by definition, popular accounts are massively retweeted.
For instance, in the BRAvGER dataset, posts about spectacular actions
and goals are retweeted by thousands of supporters. At the end of the
pipeline, after filtering, cleaning and aggressive deduplication, we obtain a
few hundred quantfrags.
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Table 8.7: Hints about resource consumptions.

Phase Computation Runtime Resources
Extraction

Machine 10-120 min <500 nodesSelection
Extractiom
Preprocessing

Machine 30-90 min 1 nodeAugmentation
Clustering 1-5 min
Popularity Machine <2 min 1 nodeDeduplication
Cleaning Human 1-5 hours >100 workers
Annotation

Machine
<1 min

1 nodeIllustration 5-10 min
Display <1 min

In terms of implementation, Raimond runs partly on a cluster, and partly
on a local machine. The cluster gives a huge throughput, but a low latency.
The local machine operates the other way around. Therefore, we imple-
mented the operations which require no user intervention on the cluster
(in particular the extraction). We run the Clustering step and parts of
the Filtering step on the local machine, because these tasks require several
rounds of trial and error. We provide hints about the execution times and
resource consumptions in Table 8.7 (as Raimond runs on a shared produc-
tion cluster, its exact runtime depends on the on resources available).

Table 8.8 displays the labels of a few clusters generated by Raimond for
the Japan dataset. As in our interface, we ordered the clusters by peak
date. We observe that the topics are semantically intelligible. The first
cluster describes physical properties of the earthquake. The second one
mentions the nuclear plant explosion which followed. Twitter users discuss
the impact of the disaster on people and on the environment. Then, they
give more details about casualties, and encourage donations.
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Table 8.8: Clusters from the Japan Dataset

Keywords Peak Size
quake, magnitude, upgraded, usgs, felt 11/03 4,029
nuclear, fukushima, plant, two, explosion 11/03 2,464
axis, moved, shifted, feet, earths 12/03 5,771
people, missing, tsunami, dead, quake 12/03 10,761
toll, death, quake, missing, tsunami 13/03 5,007
effort, help, donate, relief, redcross 13/03 7,414
plant, radiation, nuclear, fukushima, says 15/03 3,062
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Figure 8.6: Ukraine Data Set.

We show a few clusters created from the Ukraine dataset in Table 8.9.
The quantfrags spread across a variety of small topics, such as casualties
(“people, clashes, died”), international help (“aid, billion, package”), gas
markets (“gas, price, imf”) or sanctions (“imposes, officials, sanctions”). We
describe the dynamics of the five first clusters in Figure 8.6. To obtain these
charts, we tracked the number of quantfrags produced for each cluster. We
observe bursts, which last several hours, sometimes days. These bursts
actually reflect real events. The first cluster describes the clashes which
took place on February 18th and 20th. According to the quantfrags, this
was the worse day of violence that Ukraine had known in 70 years. During
the followed two weeks, several hundred thousands Ukrainians asked for
asylum to Russia and a $15 billion Dollars help package was approved
by the European Union. The fourth cluster describes the outcome of the
Crimean status referendum, which happened on March 16th. Finally, the
last cluster discusses a raise in consumer gas tariffs, requested by the IMF
in exchange for a rescue loan.
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Table 8.9: Examples of clusters for the Ukraine dataset.

Keywords Peak Date Size Qweet
people, clashes,
died, kiev, dead

18/02 1,128 "#Ukraine police say four
officers have died in
today’s riots, 39 have
sustained gunshot wounds
and more than 100 others
have been injured"

last, asylum,
russia, hours,
applied

01/03 451 "#UKRAINE: 143,000
Ukrainians have asked
for asylum in #Russia for
last two weeks"

aid, billion,
package, gives,
imf

05/03 330 "BREAKING: Top official
says EU to provide
#Ukraine $15 billion
aid package in loans and
grants"

voted, crimea,
favour, resolu-
tion, abstained

14/03 765 "#Crimea parliament
declares independence
from #Ukraine after
referendum. Final tally
shows 97% voted to join
#Russia"

gas, price, imf,
announces,
natural

13/04 406 "As the IMF announces aid
package of $14-18bn for
#Ukraine, the Ukrainian
PM warns the price paid
to Russia for gas will
rise 79% from 1 Apr"

imposes, offi-
cials, sanctions,
entry, russia

28/04 587 "BREAKING NEWS: #EU
imposes sanctions on 21
officials from #Russia
and #Ukraine over Crimea.
More soon..."

donetsk, bal-
lots, region,
results, selfde-
fense

11/05 578 "Preliminary results
show 89.7% support of
self-rule in #Donetsk
region, #referendum
election commission says"
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Figure 8.7: Brazil-Germany dataset.

Table 8.10 presents our Brazil-Germany dataset. As opposed to our pre-
vious example, the clusters are semantically close to each other - they are
all somehow related to scoring goals. We highlight serial quantfrags in the
fifth cluster (“goal, home, kroos”): the count of German goals is regulary
incremented, finally reaching seven goals. We detail the dynamics of the
clusters in Figure 8.7. We see that they appear in short, intense bursts
of several minutes. The game starts at 21.00, the first cluster discusses
the kick-off. Within the first 30 minutes, the German team scores five
goals. This triggers two consecutive clusters, explaining with quantities
why the event is “historical” and “stunning”. For instance, Germany is the
first country to score 221 goals in a World Cup. With two goals in two
minutes, the main attacker, Tony Kroos, has a cluster on his own. The
last cluster shows that Brazil had not been defeated at home since 1975.
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Table 8.10: Examples of clusters for the BRAvGER dataset.

Keywords Peak Time Size Qweet
reach, semi-
finals, first,
country, con-
secutive

17:40:22 2,671 "GER is the first team
ever to reach four
straight #WorldCup
semifinals."

kicks, minutes,
every, kickoff,
less

18:01:22 7,095 "Still more than two
hours to go until
kick-off... #Copacabana
#Brazil "

history, goals,
top, alltime,
scoring

21:37:26 4,683 "#GER have now scored
221 goals in #WorldCup
history, more than any
other side and one ahead
of #BRA."

goals, minutes,
stun, opening,
happened

21:47:02 3,535 " That. Just. Happened.
Germany stun Brazil with
5 goals in the opening 29
minutes."

goal, home,
kroos,

21:51:09 921 "#GER 5 goals in the
first 29 minutes!"

makes, blasts “6-0... Germany got once
and GOAL... #Amazing”
“GOAL!!!! ’79
Schurrle blasts home a
pitch-perfect pass from
Mueller to make it 7-0.”

klose, record,
now, miroslav,
goals

22:57:58 5,331 "#GER’s Mirsolav Klose
has a chance to break his
record of 15 #WorldCup
goals against Brazil."

competitive,
home, since,
lost, match

23:00:02 4,275 "Entering this match,
Brazil had not lost a
competitive game on
home soil in 14,161
days. Until today....
#BRAvsGER"
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5 Crowdsourcing Experiments

In this Section, we evaluate the effectiveness of Raimond’s output. We pro-
cess the three datasets introduced in Section 4, and present the clusters
to a set of crowdworkers. We ask them if the quantfrags contain quantita-
tive information, and how informative this data is, with a grade between
1 (not informative) and 5 (very informative). As we only have a limited
pool of workers, we decided to remove the crowd-based filtering step from
the pipeline - to avoid having workers check their own work. Thus, our
evaluation is conservative. We evaluated 70 clusters (20 for Ukraine and
Brazil-Germany, 30 for Japan), containing between 2 and 75 quantfrags.
Each cluster is reviewed by at least two workers.

Figure 8.8a represents the overall distribution of the grades. The neat
dominance of the value 4 indicates that most clusters are informative.
Nevertheless, Raimond also returns some noise: about a fifth of the clusters
have a grade lower than 2.

Figure 8.8b shows the grades for each dataset. The Ukraine and Brazil-
Germany clusters have good scores. In the Ukraine case, more than 90%
of the clusters have at least a grade of 3. Most of the noise comes from the
Japan dataset. There are many informative clusters, but there are about
as many irrelevant clusters. Further inspection revealed lots of calls for
donations, such as:

"Txt ASIA to 30333 to donate $5."
"100% donations go to Canadian Red Cross"
"text REDCROSS to 90999 to donate $10 from your phone"

Also, some personalities are so popular that any quantfrag involving them
will be retweeted thousands of times:

"Justin Bieber donated $1,000,000 to Japan."
"Lady Gaga donated 16 million to Japan"
"Disney made a $2.5 million donation to the Red Cross"

Such fragments are difficult to filter programmatically, because they form
valid quantfrags and they are extremely popular. To conclude, Raimond
does generate useful clusters. Nevertheless, with popular events such Japan
earthquake, the diversity and noise in the data justifies the need for human
intervention.
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Figure 8.8: Crowdsourcing experiment results.
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6 Related Work

Studying events on social media has gained considerable interest in the
last five years. In particular, catastrophes and emergency situations have
attracted lots of attention [43]. The resulting works can be classified in four
categories: event detection, event summarization, information extraction
and visualization (note that these areas overlap). We describe these works
below. There is to our knowledge no previous work on quantitative data
extraction from Twitter.

6.1 Event Detection

Sayyadi et al. have published one of the first studies on event detection
with social media, based on lexical community detection [84]. Sakaki et
al. use microblogging to detect earthquakes and track their location [81].
Popescu and Pennachiotti focus on controversial events, which they recog-
nize with supervised learning [77]. Petrović et al. focus on computational
efficiency. They present a scalable algorithm based on Locality-Sensitive
Hashing [75].

6.2 Event Summarization

Authors have investigated how to extract key sentences to summarize a
text for decades [59]. In 2001, Allan and Khandelwal proposed a method
to summarize news coverage. They decompose a main event in sub-events
with language models, and describe each sub-topic with a piece of news
[4]. Several studies have extended this method to social data with more
advanced statistical models. For instance, Chakrabarti et al. use a custom
version of Hidden Markov Models to segment the events [18].

6.3 Information Extraction

Extracting structured information about events from social media involves
complex NLP methods. One of first the research effort on the topic was
presented by Popsecu et al., who use entity extraction to recognize actors
[78]. Benson et al. go one step further, as they infer structured records
about entertainment events from Twitter [12]. Imran et al. combine several
classifiers and a sequence labelling algorithm to extract structured infor-
mation about disasters [44]. These approaches are generalized by Ritter
et all, who introduce a method to analyze events in open domains. They
present a pipeline, somehow similar to Raimond, which extracts named
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entities, event phrases, calendar dates and event type. Their pipeline com-
bines custom NLP tools and unsupervised learning [79].

6.4 Event Visualization

Finally, several authors have studied how to create visual dashboards
from Twitter to describe events. Diakopoulos et al. combine raw data,
automatically-generated statistics (such as sentiment or relevance) and
timelines to help journalists [25]. Marcus et al. propose a similar sys-
tem, with geographical information and peak detection [60]. Alonso and
Shiells introduce a display based on multiple timelines, and illustrate their
method with sports events [6].

6.5 Social Media Analysis

A number of studies resemble ours by their methods, but target other
problems. Alonso et al. study to what extent crowdsourcing can be used
to assess the interestingness of tweets [5]. For instance, NIFTY by Suen et
al. is also an information extraction pipeline based on Twitter and unsu-
pervised learning. However, it focuses meme-tracking [89]. More generally,
news processing is an active related domain of research [3, 76].

7 Summary

In this chapter, we introduced a semi-automatic solution to explore non
structured data. We focused on quantitative information, enclosed within
microblogs. We presented Raimond, a pipeline to extract, process and
present this information. The central concept behind our approach is the
quantfrag, We illustrated the concept with a number of examples. We
presented how to extract those with the help of NLP techniques, how to
organize them with clustering, and how to clean them with a hybrid au-
tomatic/crowdsourcing approach. Finally, we showcased quantfrags about
three real events. We described their semantics, their dynamics and eval-
uated their content. We showed that semi-automated exploration of plain
text document is indeed feasible, opening the way for exciting develop-
ments.
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Chapter 9

Conclusion

1 The Big Picture

In the first chapter of this thesis, we presented three fields of research con-
cerned with the exploration of large databases : machine learning, query
languages and visualization. We showed that these fields solve the same
problem. Yet, each has taken a life on its own, with its own abstractions,
its own tools and its own body of experts. A few software packages com-
bine them all. Popular examples are R, SAS or Matlab. But those target
precision and exhaustivity, not exploration. They provide all the “bricks”
necessary to build exploration pipelines, but they completely rely on the
users’ patience and expertise to assemble them. This paradigm leaves space
for imagination and flexibility, but it cannot deliver quick insights.

Our proposal is to reverse this logic. Each assistant is based on a tightly
coupled, pre-packaged combination of queries, machine learning and visual-
izations. Admittedly, our systems are less expressive than general purpose
statistical software. But they are much easier to use. They only require
little knowledge about the dataset or about data processing in general.
Furthermore, they are faster. Since their architectures are fixed, we can
organize their computations efficiently. We can stage execution times, or
share intermediate results.

A major challenge was to define exploration tasks that would be gen-
eral enough to be useful, but narrow enough to be solved in a reasonable
amount of time. To tackle it, we surveyed both the database and the
machine learning literatures and identified synergies. We discovered that
feature selection and data warehousing deal with similar problems but in
different contexts. This led us to build Claude. We also realized that
cluster analysis could help explorers issue Select-Project-Join statements.
This inspired us for Blaeu. But practice also helped us discover use cases
that had never been studied before. For instance, Ziggy solves the inverse
of the exploration problem: instead of considering that users seek queries,



9.1. The Big Picture

System Type Data Input Output Type Learning
Claude Table Target Column Views, POIs Supervised
Blaeu Table User feedback Data Maps Unsupervised
Ziggy Table Target query Views Supervised
Raimond Text Filters Timelines Unsupervised

Table 9.1: Concepts and methods used by each assistant.

it assumes that they already have them, but they do not how interesting
they are. This problem was dictated by usage, during the development
of Blaeu. Also, Raimond helps users extract and explore quantitative in-
formation in tweets. This work was carried out during an internship at
Microsoft, and indeed it was inspired by practical and commercial needs.
We summarize these scenarios and the main ideas behind each system in
Table 9.1 and Figure 9.1.

Once we identified our use cases, we established that existing machine
learning algorithms did not suffice to solve them. Indeed, the requirements
of data exploration are different from those of classic statistical analysis.
For a start, accuracy is not the first citizen. Instead, users value speed and
diversity. A quick, approximate answer is better than a slow, exact one.
And users may prefer a dozen alternative solutions to an optimal one. Fur-
thermore, interpretability matters. The aim of exploration is to discover
the data, not to make predictions. Therefore, users may prefer simple
structures such as boxes and decision trees, rather than complex, high-
dimension probabilistic models. Finally, our algorithms must be robust.
They must cope with mixed types, noise, missing values and sparsity. To
address these requirements, we had to transform existing techniques (we
did so with Blaeu and Raimond) or invent our own (as we did with Claude
and Ziggy).

The last challenge we faced was to evaluate the quality of our systems.
For a start, we had to check whether the assumptions we made about the
users held. To do so, we introduced practical use cases. Among others, we
discussed Hollywood movies, crime in large cities and innovation in Euro-
pean countries. The hope was that our systems’ findings would surprise
the reader as much they did us. Then, we had to ensure that our systems
made good recommendations within these frameworks. We did so with
public datasets, already annotated by experts. We also used synthetic
databases in which we controlled the occurrence of statistical patterns. In
all cases, we found out that our systems could produce quick, accurate and
useful results.

178



9. Conclusion

Dependency
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(a) Claude exploits a target column to recommend queries.
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(b) Blaeu exploits the user’s feedback to recommend queries.
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(c) Ziggy exploits a target query to recommend views.

Figure 9.1: Overview of Claude, Blaeu and Ziggy. Each assistant exploits
a hint from the user (colored in grey) from which they make recommenda-
tions (colored in blue).
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One danger with semi-automated solutions is that the users may blindly
trust the system’s recommendations and accept them as ground truth.
This would be a mistake. No model is perfect, especially not one that
represents human users. Furthermore, our assistants rely on heuristics
and approximations to beat huge search spaces. Hence, they are free of
neither false positives nor false negatives. The correct way to use them is
to consider them as hypothesis generators. They produce rules about the
data, which hopefully the user did not know before. But those rules must
pass the test of common sense and critical appreciation. More generally,
the necessity to inspect and verify statistical models is one more argument
in favor of “white box”, interpretable machine learning. Data analytics
should be transparent and open for skeptical inspection, and our work
made a step in this direction.

At the time of writing this thesis, many considered data scientist as
“the sexiest job of the 21st century” (the Harvard Business Review [92]).
Large Internet firms were initiating gigantic AI projects and many science
graduates were steering their careers towards data analytics. But it should
not be so. At the risk of being self-destructive, we believe that analyzing
data should not require a doctoral degree. It should be quick, easy and
accessible to users with all kind of backgrounds. In fact, it should be
commonplace, as commonplace as using a smartphone or a search engine.
This thesis opened the way for a new generation of user-friendly tools to
discover large databases. It showed that achieving this vision is indeed
possible.

2 Future Research

The road for more intelligent interfaces lies wide open. We now present
opportunities for future research.

2.1 Human-Centered Analytics

Our four systems rely on user models. In each case, we make assumptions
about what interests the users, and develop tools to help them within
these frameworks. Our assumptions are grounded in statistical theory: we
assume that if a pattern (e.g., a correlation, a cluster) is interesting for a
data miner, then it will be interesting for a data explorer too. But more
work is necessary to understand what real users need and how they interact
with data. We can do so in two ways. We can collect this information
offline, with user studies and benchmarks. We can also gather it online,
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by incorporating feedback collection mechanisms directly in our solutions.
Let us consider these options in turn.

2.1.1 User Studies, Benchmarks

The first step to ameliorate our assistants is to conduct user studies with
a broad base of real users. So far, we mostly focused on issues related to
back-end engineering. In the future, we will study how humans interact
with data exploration tools, and we will use our findings to build more
practical, intuitive interfaces.

In general, data exploration has only interested the database community
for a few years [41]. Although a dozen papers were submitted about this
problem, it is not yet clear how to evaluate data exploration systems in a
standardized, rigorous, and exhaustive way. In fact, there exists no bench-
mark for data exploration. But can such a benchmark really exist? On
one hand, data exploration is an open-ended, subjective process. On the
other hands, scientists from other fields have successfully managed to stan-
dardize tasks which seemed equally difficult (e.g., the TREC benchmark
for text mining [98]). As authors publish more and more studies about
data exploration, the need for a standardized set of metrics to evaluate its
success is getting pressing.

2.1.2 Human-In-The-Loop Systems

Another way to narrow the gap between users and systems is to incorporate
the users’ preferences directly in the mining algorithms. We can achieve
this by studying the users’ past interactions: where they clicked, what
they selected and what they inspected. Based on those hints, we can infer
what type of knowledge interests them, and make appropriate recommen-
dations. For instance, we envision an adaptive system that considers which
views the user has inspected before, and recommends either “different” or
“similar” visualizations. To implement this function, we could exploit the
intrinsic features of the views or set up relevance feedback mechanisms.
Thus, we could chose the variables to show, personalize the type of charts
to represent them or set an optimal level of detail to display.

An other promising research direction is to involve the users in the exe-
cution of the exploration algorithm. If we know that a query or a mining
algorithm needs to explore a large search space, we can interrupt it in
“mid-flight”, ask the user whether they are interested in the portion of the
space being inspected, and steer the execution accordingly.
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2.1.3 Alternative Devices

In this thesis, we focused on traditional desktop or laptop-based interfaces.
But alternatives exist, involving for instance, tablets, large touch screens,
motion capture or even virtual reality headsets. The questions of how to
explore data with these devices and whether this is actually desirable is
still open.

2.2 More Exploration Assistants

In this thesis, we only covered a limited number of statistical methods and
exploration scenarios. We now discuss how to go further.

2.2.1 Other Statistical Methods

A promising research direction would be to target the same exploration
scenarios as those described in this thesis, but involve other statistical
models than those used so far. Take Claude, which recommends OLAP
views. Instead of using information theory, we could exploit on the recent
and quickly expanding field of causality detection [65]. For Blaeu, we
could incorporate other data sources: for instance, we could exploit the
meta-data associated with the database (e.g., textual description of the
columns) or knowledge bases to make better groups of columns. Also, we
could borrow concepts from social network analysis, such as community
detection or edge recommendation, to explore the graph formed by the
correlations between the columns.

2.2.2 New Exploration Tasks

Clearly, our four assistant are far from covering all the possible tasks of
data exploration. Many scenarios remain to be solved. To find those,
we could survey companies and users and understand how to help them.
Alternatively, we could study the data mining tasks that we have not yet
covered. For instance, this thesis has made no mention of outlier detection,
semi-supervised learning or frequent patterns. Yet, those are important
problems in data mining research. They could probably find applications
in data exploration too.

A significant research effort is also necessary to deal with non tabular
data. In Chapter 8, we introduced a semi-automated exploration tool to
analyze text. But we only focused on a specific use case. Plenty of other
problems arise with this natural language, involving for instance explor-
ing the relationship between people, extracting and plotting references to
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places, or identifying topics and their evolution. Furthermore, many other
data types remain to be tackled. We have not discussed images, videos,
genetic sequences and the combination of all of those. We have not men-
tioned multi-database settings either.

We believe that data exploration has a bright future ahead. Eventually,
our task will only truly be complete when casual users will be able to
process and understand Terabytes of noisy, non structured, mixed-type
data within micro-seconds on a laptop. The challenge is open.
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Summary

Database management systems (DBMSs) rely on an implicit pact. They
provide quick and correct answers, in exchange for precise, complete and
syntactically correct questions. In most cases, database users express those
questions with a query language, such as SQL. The practical and formal
benefits of those languages are well established. But they are also de-
manding, and rarely forgiving. Mastering them can take days, possibly
weeks. Furthermore, query languages require precision. Database users
must specify exactly what they want and where to get it. Hence, they
need well-defined requirements, along with a solid knowledge of the data.

There exists an important class of scenarios in which this model reaches
its limit: data exploration. Data explorers interrogate a database to dis-
cover its content. Their aim is to get an overview of the data and discover
interesting new facts. They have little to no knowledge of the data, and
their requirements are often vague and abstract. How can such users match
the precision required by a query language? Typically, they must resort
to trial and error. Yet, the success of this approach depends entirely on
patience and luck. Manual effort may suffice to process small data sets
(containing, e.g., a dozen columns and a few hundred tuples), but it can
prove tedious and error-prone for larger ones.

This thesis presents four assistants, to help users compose and refine
interesting new queries: Claude, Blaeu, Ziggy and Raimond. These sys-
tems operate in a semi-automatic fashion: they infer recommendations
from input parameters and interaction. Each assistant focuses on a spe-
cific exploration task. Claude helps users analyze data warehouses, by
highlighting the combinations of variables which influence a predefined
measure of interest. Blaeu helps users build and refine queries, by allowing
them to select and project clusters of tuples. Ziggy is a tuple characteri-
zation engine: its aim is to show what makes a selection of tuples unique,
by highlighting the differences between those and the rest of the database.
Finally, Raimond is an attempt to generalize semi-automatic exploration
to text data, inspired by an industrial use case.

For each system, we present a user model, that is, a formalized set of as-
sumptions about the users’ goals. To express these models, we rely heavily



on information theory and statistics. We then present practical methods
to make recommendations. We either adapt existing algorithms from the
machine learning literature or present our own. Next, we validate our ap-
proaches with experiments. We present use cases in which our systems
led to discoveries. We benchmark the quality and the robustness of our
assistants’ output, using both real and synthetic datasets. Finally, we
demonstrate the scalability of our algorithms.

In conclusion, our assistants can quickly deliver informative query re-
commendations from a wide range of data, thereby fulfilling their promises.
Nevertheless, the field of data exploration is immense, far greater than the
four scenarios discussed in this study. We close this thesis with a program
for future research, as well as early-stage ideas for future solutions.
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Samenvatting

Databasesystemen sluiten een impliciete overeenkomst met hun gebruikers.
Ze geven snelle en correcte antwoorden, in ruil voor precies geformuleerde
vragen. In de meeste gevallen stellen database gebruikers deze vragen met
een zogenaamde query-taal, zoals SQL. De praktische en formele voordelen
van deze talen zijn nauwkeurig vastgesteld. Maar ze zijn ook veeleisend, en
alles behalve vergevend. Gebruikers moeten dagen of zelfs weken besteden
voordat ze zo’n taal onder de knie hebben. Verder vereisen deze talen
precisie. Gebruikers moeten exact specificeren wat ze willen en waar het
vandaan moet komen. Het is daarom noodzakelijk dat gebruikers precies
weten wat ze nodig hebben, en wat de structuur van de data is.

Bij data-exploratie is dit model slecht toepasbaar. Hier wil de gebruiker
de data verkennen, en interessante informatie in de database ontdekken.
In dit scenario weet de gebruiker niks over de database, en hun vragen
zijn vaak onduidelijk of abstract. Hoe kunnen zulke gebruikers de vereiste
precisie van een query-taal bereiken? Gewoonlijk moeten ze eerst met
vallen en opstaan kennis vergaren over de database. Hun succes is volledig
gebaseerd op geduld en geluk. Voor kleine datasets kan dit genoeg zijn,
maar voor grote datasets wordt dit al snel foutgevoelig monnikenwerk.

Deze scriptie presenteert vier assistenten die zulke gebruikers helpen
op hun zoektocht: Claude, Blaeu, Ziggy en Raimond. Deze systemen
helpen de gebruiker om makkelijker de data te onderzoeken door gebruik
te maken van semi-automatische exploratie. Elke assistent focust op een
specifieke exploratietaak. Claude helpt gebruikers data warehouses te an-
alyzeren, door te vertellen welke data invloed op een vooraf gedefiniëerd
effect hebben. Blaeu helpt gebruikers om queries te maken en verfijnen,
door de gebruiker interessante clusters in de data te tonen. Ziggy laat ge-
bruikers zien wat een bepaalde selectie van tupels interessant maakt door
de verschillen met de rest van de dataset weer te geven. Tenslotte proberen
we met Raimond semi-automatische exploratie toe te passen op textuele
data.

Voor elk systeem presenteren we een gebruikersmodel; dat is een formele
set van assumpties die we maken over de doelen van de gebruiker. We
stellen deze doelen op met gebruik van informatietheorie en statistiek. We



presenteren dan praktische methoden om aanbevelingen te doen. Hiervoor
passen we bestaande algoritmes van de machine learning literatuur aan,
of gebruiken we een eigen algoritme. Daarna valideren we de systemen
met experimenten. We presenteren use cases waarin ons systeem helpt
ontdekkingen te maken, en meten de kwaliteit en robuustheid van de aan-
bevelingen van de systemen. We maken hiervoor gebruik van zowel echte
als synthetische datasets. Als laatste demonstreren we de schaalbaarheid
van onze algoritmes.

Onze assistenten kunnen snel informatieve aanbevelingen geven over een
wijde selectie van data. Hiermee helpen we de gebruiker hun datasets beter
te begrijpen en helpen we de gebruiker om antwoorden op hun vragen
te vinden. Desalniettemin is het veld van data-exploratie immens; veel
groter dan de vier scenarios die we in deze studie hebben laten zien. We
sluiten deze scriptie af met suggesties voor toekomstig onderzoek, samen
met onuitgewerkte ideeën voor toekomstige oplossingen.
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