1,030 research outputs found

    Storage Capacity Estimation of Commercial Scale Injection and Storage of CO2 in the Jacksonburg-Stringtown Oil Field, West Virginia

    Get PDF
    Geological capture, utilization and storage (CCUS) of carbon dioxide (CO2) in depleted oil and gas reservoirs is one method to reduce greenhouse gas emissions with enhanced oil recovery (EOR) and extending the life of the field. Therefore CCUS coupled with EOR is considered to be an economic approach to demonstration of commercial-scale injection and storage of anthropogenic CO2. Several critical issues should be taken into account prior to injecting large volumes of CO2, such as storage capacity, project duration and long-term containment. Reservoir characterization and 3D geological modeling are the best way to estimate the theoretical CO 2 storage capacity in mature oil fields. The Jacksonburg-Stringtown field, located in northwestern West Virginia, has produced over 22 million barrels of oil (MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is the primary reservoir.;The Upper Devonian fluvial sandstone reservoirs in Jacksonburg-Stringtown oil field, which has produced over 22 million barrels of oil since 1895, are an ideal candidate for CO2 sequestration coupled with EOR. Supercritical depth (\u3e2500 ft.), minimum miscible pressure (941 psi), favorable API gravity (46.5°) and good water flood response are indicators that facilitate CO 2-EOR operations. Moreover, Jacksonburg-Stringtown oil field is adjacent to a large concentration of CO2 sources located along the Ohio River that could potentially supply enough CO2 for sequestration and EOR without constructing new pipeline facilities.;Permeability evaluation is a critical parameter to understand the subsurface fluid flow and reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon storage. In this study, a rapid, robust and cost-effective artificial neural network (ANN) model is constructed to predict permeability using the model\u27s strong ability to recognize the possible interrelationships between input and output variables. Two commonly available conventional well logs, gamma ray and bulk density, and three logs derived variables, the slope of GR, the slope of bulk density and Vsh were selected as input parameters and permeability was selected as desired output parameter to train and test an artificial neural network. The results indicate that the ANN model can be applied effectively in permeability prediction.;Porosity is another fundamental property that characterizes the storage capability of fluid and gas bearing formations in a reservoir. In this study, a support vector machine (SVM) with mixed kernels function (MKF) is utilized to construct the relationship between limited conventional well log suites and sparse core data. The input parameters for SVM model consist of core porosity values and the same log suite as ANN\u27s input parameters, and porosity is the desired output. Compared with results from the SVM model with a single kernel function, mixed kernel function based SVM model provide more accurate porosity prediction values.;Base on the well log analysis, four reservoir subunits within a marine-dominated estuarine depositional system are defined: barrier sand, central bay shale, tidal channels and fluvial channel subunits. A 3-D geological model, which is used to estimate theoretical CO2 sequestration capacity, is constructed with the integration of core data, wireline log data and geological background knowledge. Depending on the proposed 3-D geological model, the best regions for coupled CCUS-EOR are located in southern portions of the field, and the estimated CO2 theoretical storage capacity for Jacksonburg-Stringtown oil field vary between 24 to 383 million metric tons. The estimation results of CO2 sequestration and EOR potential indicate that the Jacksonburg-Stringtown oilfield has significant potential for CO2 storage and value-added EOR

    Development of Coordinated Methodologies for Modeling CO2-Containing Systems in Petroleum Industry.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Clathrate hydrates formation in natural gas processing facilities or transportation pipelines may lead to process and/or safety hazards. On the other hand, a number of applications are suggested on the basis of promoting the gas hydrate formation. Some researchers have investigated separation and purification processes through gas hydrate crystallization technology. Some works report that the hydrate formation is applicable to the gas transportation and storage. Gas hydrate concept is also studied as a potential method for CO2 capture and/or sequestration. Water desalination/sweetening, and refrigeration and air conditioning systems are other proposed uses of hydrates phenomenon. In the realm of food processing and engineering, several studies have been done investigating the application of gas hydrate technology as an alternative to the conventional processes. Accurate knowledge of phase equilibria of clathrate hydrates is crucial for preventing or utilizing the hydrates. It is believed that energy production or extraction from different fossil fuels is responsible for considerable emissions of CO2, as an important greenhouse gas, into the atmosphere. Furthermore, CO2 removal from the streams of natural gas is important for enhancing the gaseous streams’ heating value. Employment of solvent-based processes and technologies for removing the CO2 is a widely employed approach in practical applications. Amine-based or pure amine solutions are the most common choice to remove the produced CO2 in numerous carbon capture systems. Further to the above, ionic liquids (ILs) are capable to be utilized to capture CO2 from industrial streams. Other potential solvent are sodium piperazine (PZ) and glycinate (SG) solutions. Equilibrium absorption of carbon dioxide in the aqueous phase is a key parameter in any solvent-based CO2 capture process designing. The captured CO2, then, can be injected into the hydrocarbon reservoirs. In addition to the fact that injection of CO2 into potential sources is one of the most reliable methodologies for enhanced hydrocarbon recovery, utilizing this process in conjunction with the CO2 capture systems mitigates the greenhouse effects of CO2. One of the most significant variables determining the success of CO2 injection is known to be the minimum miscibility pressure (MMP) of CO2-reservoir oil. This research study concerns implementation of computer-based methodologies called artificial neural networks (ANNs), classification and regression trees (CARTs)/AdaBoost-CART, adaptive neuro-fuzzy inference systems (ANFISs) and least squares support vector machines (LSSVMs) for modeling: (a) phase equilibria of clathrate hydrates in: 1- pure water, 2- aqueous solutions of salts and/or alcohols, and 3- ILs, (b) phase equilibria (equilibrium) of hydrates of methane in ILs; (c) equilibrium absorption of CO2 in amine-based solutions, ILs, PZ solutions, and SG solutions; and (d) MMP of CO2-reservoir oil. To this end, related experimental data have been gathered from the literature. Performing error analysis, the performance of the developed models in representing/ estimating the independent parameter has been assessed. For the studied hydrate systems, the developed ANFIS, LSSVM, ANN and AdaBoost-CART models show the average absolute relative deviation percent (AARD%) of 0.04-1.09, 0.09-1.01, 0.05-0.81, and 0.03-0.07, respectively. In the case of hydrate+ILs, error analysis of the ANFIS, ANN, LSSVM, and CART models showed 0.31, 0.15, 0.08, and 0.10 AARD% of the results from the corresponding experimental values. Employing the collected experimental data for carbon dioxide (CO2) absorption in amine-based solutions, the presented models based on ANFIS, ANN, LSSVM, and AdaBoost-CART methods regenerated the targets with AARD%s between 2.06 and 3.69, 3.92 and 8.73, 4.95 and 6.52, and 0.51 and 2.76, respectively. For the investigated CO2+IL systems, the best results were obtained using CART method as the AARD% found to be 0.04. Amongst other developed models, i.e. ANN, ANFIS, and LSSVM, the LSSVM model provided better results (AARD%=17.17). The proposed AdaBoost-CART tool for the CO2+water+PZ system reproduced the targets with an AARD% of 0.93. On the other hand, LSSVM, ANN, and ANFIS models showed AARD% values equal to 16.23, 18.69, and 15.99, respectively. Considering the CO2+water+SG system, the proposed AdaBoost-CART tool correlated the targets with a low AARD% of 0.89. The developed ANN, ANFIS, and LSSVM showed AARD% of more than 13. For CO2-oil MMP, the proposed AdaBoost-CART model (AARD%=0.39) gives better estimations than the developed ANFIS (AARD%=1.63). These findings revealed the reliability and accuracy of the CART/AdaBoost-CART methodology over other intelligent modeling tools including ANN, ANFIS, and LSSVM

    The determination of petroleum reservoir fluid properties : application of robust modeling approaches.

    Get PDF
    Doctor of Philosophy in Chemical Engineering. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file

    Developing tools for determination of parameters involved in COâ‚‚ based EOR methods

    Get PDF
    To mitigate the effects of climate change, COâ‚‚ reduction strategies are suggested to lower anthropogenic emissions of greenhouse gasses owing to the use of fossil fuels. Consequently, the application of COâ‚‚ based enhanced oil recovery methods (EORs) through petroleum reservoirs turn into the hot topic among the oil and gas researchers. This thesis includes two sections. In the first section, we developed deterministic tools for determination of three parameters which are important in COâ‚‚ injection performance including minimum miscible pressure (MMP), equilibrium ratio (Káµ¢), and a swelling factor of oil in the presence of COâ‚‚. For this purposes, we employed two inverse based methods including gene expression programming (GEP), and least square support vector machine (LSSVM). In the second part, we developed an easy-to-use, cheap, and robust data-driven based proxy model to determine the performance of COâ‚‚ based EOR methods. In this section, we have to determine the input parameters and perform sensitivity analysis on them. Next step is designing the simulation runs and determining the performance of COâ‚‚ injection in terms of technical viewpoint (recovery factor, RF). Finally, using the outputs gained from reservoir simulators and applying LSSVM method, we are going to develop the data-driven based proxy model. The proxy model can be considered as an alternative model to determine the efficiency of COâ‚‚ based EOR methods in oil reservoir when the required experimental data are not available or accessible

    Proceedings of the 1st Annual WASM: MECE HDR Conference

    Get PDF
    1st Annual WA School of Mines: Minerals, Energy and Chemical Engineering HDR conference program and conference abstracts

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that
    • …
    corecore