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ABSTRACT 

Accurate prediction of gas-condensate reservoir performance below the saturation 

pressure is an inherent problem. This is due to the compositional variation and phase 

change during the depletion process. In doing so, ensuring accurate reservoir 

performance modelling for various pressure – volume – temperature (PVT) properties 

such as two phase “gas/condensate” viscosities and compressibility factor (Z factor) 

in desired reservoir conditions are particularly important. However, the existing 

viscosities and Z factor models cannot capture fluid flow complexity of gas-condensate 

reservoirs below the saturation pressure for modelling purposes.  

The major contribution of the thesis is development of new gas/condensate viscosity 

and two-phase Z factor models using comprehensive experimental data sets.  The 

data sets are representing downhole and reservoir condition. In the development 

process, an investigation on the use of soft computing techniques such as Support 

Vector Machine (SVM), Artificial Neural Network (ANN) and fuzzy logic (Mamdani & 

TSK) has been carried out. It is found that developed TSK fuzzy logic approaches offer 

the most accurate viscosity and two-phase Z factor prediction. The developed models 

can predict viscosity and two-phase Z factor of gas-condensate reservoirs in high 

pressure high temperature (HPHT) conditions with variety of non-hydrocarbon 

contents and they are not limited within geographical location. 

The impact of viscosity and two-phase Z factor models towards the production 

calculation was the ultimate interest of this research. This led to further contribution on 

proposing the new method for computation of gas-condensate reservoir production 

rate performance, which involves integrating pseudopressure integral with volumetric 

material balance. For the computation of production rate, dynamic three-phase 

effective permeability has also been adopted. Distinctively, the proposed method 

provides better level of accuracy to compositional commercial simulation software in 

term of production forecast and economic impact of gas-condensate wells. 

Furthermore, the proposed method offers simpler computational procedures, where 

less input parameters are required.  

  

Keywords: Gas-condensate, gas-condensate PVTs, Viscosity, Compressibility factor 

(Z factor), Soft Computing approach, Artificial Neural Network (ANN), Fuzzy Logic. 
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CHAPTER 1 INTRODUCTION 

                                INTRODUCTION 
 

1.1 Background  

 
Increasing energy demand worldwide and quest for cheaper and cleaner source of 

energy place natural gas and gas-condensate reservoirs in a unique position in today’s 

energy market. The global move to use natural gas is an evolution in energy market 

that is changing economic and the environment for the better (Tillerson, 2015). Figure 

(1.1) shows the continuous increase of demand for natural gas in United State since 

1980. Figure (1.2) highlites the explored hydrocarbon reserves in Russia, which 

include substantial amount of gas-condensate fields. This also demonestrate the 

strong share market of gas-condensate reservoirs in the world. Gas-condensate 

reservoirs are playing an important role in respond to the huge global energy market. 

It has been reported that gas-condensate reservoirs accounts for 68% of all giant gas 

reservoirs (reservoirs larger than 1012m3 ) worldwide (Zhang et al., 2019). Examples 

of some of the giant’s gas-condensate fields around the globe are Arun field in 

Indonesia, Shtokmanovskoye field in Russia, North field in Qatar (South Pars field in 

Iran) and Cupiagua field in Colombia.  

 

Figure 1.1. USA Natural Gas withdrawals (EIA, 2020).  
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Figure 1.2. Breakdown of Gazprom Group’s explored hydrocarbon reserves in Russian 

regions (Gazprom, 2019). 

Another example of a giant gas-condensate reserve is Khuff gas-condensate reservoir 

known as north field in Qatar and south pars field in Iran. Khuff is the world biggest 

gas-condensate reservoir in the world, holds between 1000 – 2000 trillion cubic feet 

initial gas in place and 30 to 70 billion barrels of condensate in place.  However, these 

important source of energy are suffering from productivity decline and loosing its most 

valuable hydrocarbon source in the depth of the reservoir. This is due to the reduction 

of bottom-hole flowing pressure (Pwf) to below the saturation (dew point) pressure, 

which triger condensate (liquid) drop out from the gas phase. This liquid drop out has 

a significant impact on gas relative permeability and lead to production decline. For 

example well productivity in the Arun field, in North Sumatra, Indonesia, declined 

significantly 10 years after the production began and it creates serious problem as the 

reservoir could not produce the required gas to meet contractual obligation (Fan et al., 

2005). In Arun field, which its opertor is ExxonMobile, the production loss in some 

wells were greater than 50% (Afidick, Kaczorowski and Bette, 1994; 

Ayyalasomayajula, Silpngarmlers and Kamath, 2005). Another example is Britannia 

gas-condensate field where the productivity declined between 50 – 60% in the first 

year of production even before stabilization of the fluid flow occurs (Göktaş, Macmillan 

and Thrasher, 2010). Shell and Petroleum development Oman reported 60% loss of 

productivity of the wells in one of the fields (Smits, Van der Post and Al Shaidi, 2001). 
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This reduction in deliverability and losing productiuon was due to the accumulaion of 

the liquid phase (condensate) near the wellbore region. To understand the well 

deliverability reduction in gas-condensate reservoirs the phenomenon will be 

explained in the following section. 

1.2 Gas-condensate characteristics  

 
Gas-condensate reservoirs are a class of hydrocarbon reservoirs that charcterized by 

production of surface gas and varying quantities of stock-tank-oil (STO). The STO 

usually known as “condensate” or “distillate”. In this study the “condensate” phrase is 

used for stock tank oil. Classification of the hydrocabon reservoirs are important for 

modelling and also selecting appropriate engineering practices. As illustrated in Table 

1.1 hydrocarbon reservoirs are classified in terms of composition and other fluid 

properties to dry gas, wet gas, gas-condensate, near-critical oil, volatile oil and black 

oil. The composition and reservoir condition (temperature and pressure) would 

determine the category the reservoir fluid. For a given composition, a reservoir fluid 

can be classisfied to different category with different pressure and temperature. Gas-

condensate fluids typically exhibit condensate (oil) to gas ratio (OGR’s) ranging from 

5 to 350 barrel of liquid per million standard cubic feet (STB/MMscf). The API gravity 

of gas-condenste fluid, which is measure of weight or density, is between 40⁰ to 60⁰ 

API (Whitson and Brulé, 2000). Most well known gas-condensate reservoirs are found 

in the range of 5000 to 10000 feet deep, at pressure of 3000 to 8000 psia and 

temperature of 200⁰F to 400⁰F (Moses, 1986; Moses and Donohoe, 1987). These wide 

range of pressure, temperature and compositions of gas-condensate reservoirs lead 

to wider difinitions in literature. However, one of the widely accepted defintion is in 

terms of temperature as if the reservoir temperature located between critical 

temperaure (𝑇𝑐 = 127°𝐹) and cricondentherm temperature (𝑇𝑐𝑡 = 250°𝐹) the 

reservoir classified as gas-condensate reservoirs (Whitson and Brulé, 2000; Thomas, 

Bennion and Andersen, 2009; Ahmed, 2010). To further settle wide definition of gas-

condenste reservoirs two main characteristics that distinguish all gas-condensate 

reservoirs from other type of hydrocarbon systems are introduced by Raghavan and 

Jones, (1996) as follow: 

 The condensation of the gas at reservoir conditions during isothermal depletion.  

 The retrograde and revaporization of the condensate liquid by further decline in 

pressure (Raghavan and Jones, 1996).  
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The above characterisctics of gas-condensate reservoirs can be related to fluid 

behaviour below the saturation pressure. The fluid behaviour is divided into two 

sections of phase behaviour and drawdown behaviour. The fluid behaviour is major 

contributor to productivity decline in gas-condensate reservoirs below the dew point 

pressure. The fluid behaviour is explained in the following section and in wider context 

it will be related to the productivity decline.  

 

Table 1.1. Compositions and properties of several reservoir fluids (Whitson and Brulé, 2000). 

Compositions (mol%) 

Componenet Dry Gas  Wet Gas  Gas-

Condensate  

Critical 

Oil  

Volotile 

Oil  

Black Oil  

CO2 0.10 1.41 2.37 1.30 0.93 0.02 

N2 2.07 0.25 0.31 0.56 0.21 0.34 

C1 86.12 92.46 73.19 69.44 58.77 34.62 

C2 5.91 3.18 7.80 7.88 7.57 4.11 

C3 3.58 1.01 3.55 4.26 4.09 1.01 

i-C4 1.72 0.28 0.71 0.89 0.91 0.76 

n-C4 ------ 0.24 1.45 2.14 2.09 0.49 

i-C5 0.50 0.13 0.64 0.90 0.77 0.43 

n-C5 ------ 0.08 0.68 1.13 1.15 0.21 

C6 ------ 0.14 1.09 1.46 1.75 1.61 

C7+ ------ 0.82 8.21 10.04 21.76 56.40 

Properties 

MC7+ ------ 130 184 219 228 274 

𝛾𝐶7+ ------ 0.763 0.816 0.839 0.858 0.920 

𝐾𝑤𝐶7+ ------ 12 11.95 11.98 11.83 11.47 

GOR, 

scf/STB 
∞ 105000 5450 3650 1490 300 

OGR, 

STB/MMscf 
0 10 180 275 ------ ------ 

API gravity  ------ 57 49 45 38 24 

𝛾𝑔 ------ 0.61 0.70 0.71 0.70 0.63 

𝑃𝑠𝑎𝑡, psia ------ 3430 5650 7015 5420 5810 

𝐵𝑠𝑎𝑡, ft
3/scf ------ 0.0051 0.0039 2.78 1.73 1.16 

𝜌𝑠𝑎𝑡, lbm/ft3 ------ 9.61 26.7 30.7 38.2 51.4 
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1.3 Gas-condensate flow behaviour 

 

 Phase behaviour  
 
Gas-condensate reservoir behaviour is a function of two parameters of phase 

envelope of the fluid and condition of the reservoir (Roussennac, 2001). A typical 

phase envelope (P-T diagram) of gas-condensate fluid shown in Figure 1.3. These 

phase envelop diagram consists of bubble point line (where first bubbles of gas 

vaporizes from the liquid content) and dew point line (where first droplet of liquid 

condenses from the gas phase). The bubblepoint line and dew point line meet at the 

mixture critical point. The critical point is representing a state where all intensive 

properties of gas and liquid phases are equal (Ahmed, 2010; Craft and Hawkin, 2015). 

The cricondentherm and cricondenbar are maximum temperature and pressure 

respectivly that above them the mixture is only in the form of gas or liquid (only one 

phase).  

As the reservoir produces, the formation temperature normally doesnot change 

(isothermal behaviour) but the average reservoir pressure and flowing bottom hole 

pressure varies. In gas-condensate reservoirs the fluid is initialy in single phase (point 

B on the graph Figure. 1.3), which consists of predominantly methane “C1” and other 

short chain hydrocarbons, called heavy ends. Isothermal pressure depletion to below 

the dew point line cause heavy end hydrocarbons drop out of the solution and form 

the liquid inside the reservoir (Between point B1 and B2). The liquid phase known as 

condensate liquid has zero mobility ratio to the associated gas between B1 and B2. At 

this point only gas flows where the heavy end hydrocarbons left behind in the reservoir. 

This phenomenon causes a compositional changes of the reservoir mixture. 

Further reservoir pressure decline lead to further accumulation of the liquid to the 

maximum level at point B2 (known as critical oil saturation). At this point condensate 

liquid have enough energy to overcome the gravity segregation in porous media and 

move towards the wellbore simultaneously with gas phase. The dashed lines on the 

phase diagram represents the percentage of the vaopur phase (gas phase) in the 

mixture. Some gas-condensate phase diagrams shown the amount of liquid 

percentage inside the two phase region. However in Figure 1.3 the amount of gas 

phase shown in two-phase region.  

Additional reduction of reservoir pressure, move down point B2 towards point B3. 

Between point B2 and point B3 the accumulated condensate liquid vaporizes and turn 
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back to gases state. At point B3 most of the condensate liquid revaporizes and the 

reservoir fluid in only in the form of gas (100% vapour). This thermodinamically 

anomalous phenomenon first noticed by Kuenen, (1892) and he called it “retrograde 

condensation”.  

  

Figure 1.3. Typical phase diagram of gas condensate systems (Modified from Fan et al., 
2005).  

Condensate drop out significantly alter the permeability of the reservoir formation to 

the gas flow and fundementally change the drawdown behaviour of the reservoir near 

the wellbore region. The amount of liquid phase not only depends on compostions of 

the mixture shown in Table 1.1, also to the other reservoir behaviour and production 

strategy (depletion model of recovery). This amount of generated condensate normally 

determines if the reservoir is lean or rich gas-condensate. If the reservoir generates 

small amount of liquid normally less than 100 barels per million square cubic feet the 

gas-condensate known as lean whereas if the amount of liquid between 150 to 300 

barels per million square cubic feet its known as rich gas-condensate reservoir.  

 Drawdown behaviour  
 
If depletion drive system is selected as mode of recovery for any hydrocarbon 

reservoirs, the energy for producing hydrocarbon on the surface comes from the 

difference between formation pressure gradient (reservoir pressure) and bottomhole 

flowing pressur (Pwf) of the wells. The Pwf is the pressure at the formation of the 

wellbore of the producing well (Ahmed, 2010, p. 354). In gas-condensate reservoirs 

with depletion mode of recovery when reservoir pressure declined due to the 
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production, Pwf of the wells need to be changed to compensate reservoir pressure 

decline, and keep the pressure gradient to meet predetermined rate on the surface. 

The relation between a well constrained Pwf and the rate of the production known as 

well deliverability (Fevang, 1995).  

When the Pwf keeps decreasing to reach the point known as dew point pressure (the 

point where first drop of liquid evolve from gas), physics of the flow inside the reservoir 

is changing and three flow regions are established.These three main flow regions 

proposed by Fevang, (1995) extending from wellbore outward and illustrated in Figure 

1.4. These regions are gradually changing during lifetime of a gas-condensate 

reservoir. The Pwf controls the production of hydrocarbon fluids on the surface.  If Pwf 

is above the dew point pressure, the fluid in the reservoir is single phase and region 3 

exist. If Pwf goes down to below the dew point pressure, region 2 starts to grow and 

two-phases of gas and condensate (oil) are exist as shown in Figure 1.4. In region 2 

only gas flows toward the wellbore and condensate (oil) phase is imobile. The 

saturation of condensate phase is increasing with time and reaches critical condensate 

saturation (Sor). When the maximum Sor is reached the transition is starting from region 

2 to region 1, where both phases are flowing toward the wellbore.  

Region 1 is the main source of deliverabiity loss in gas-condensate wells because of 

higher pressure drop in this region caused by condensate accumulation. Condensate 

accumulation in region 1, would decrease gas phase permeability to flow sharply.  

The amount of condensate saturation in region 1 is a function of fluid properties that 

entering this region and the production rate (Fevang, 1995; Roussennac, 2001).  

These properties consist of viscosity of the original mixture, formation volume factor 

and solution oil to gas ratio. Condensate drop out further apart the behaviour of the 

gas-condensate reservoir mixture from ideal gas law. This deviation is deterimined by 

compressibility factor (Z factor). Among the fluid properies condensate (oil) viscosity 

in each depletion stage has the highest uncertainity for the purpose of the modelling 

in such reservoirs. Accurate Z factor prediction also plays a key role for reliable 

modelling of gas-condensate well deliverability (Fevang, 1995; Fevang and Whitson, 

1996; Mott, 2002; Whitson and Kuntadi, 2005) 

The main objective of this research is to develop several models for acurate prediction 

of the gas/condensate (oil) viscosity as well as Z factor. The developed models will be 

used for reliable prediction of gas-condensate well production forecast.   
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Figure 1.4. Gas/condensate flow in three regions. 

.  

1.4 Problem Statement  

 
A reliable model that accurately simulate phase and drawdown behaviour and their 

effect on gas-condensate well performance is highly desirable for financial projection 

and field production planning. The focus of this research is in developing well 

deliverability (productivity) model and condensate blockage effect with an emphasis 

on accurate prediction of phase behaviour. Although extensive research have been 

conducted in general well deliverability modelling of gas-condensate reservoirs, there 

is still outstanding issues and shortfall in this area. We highlights some of these 

difficulties in following. 

Developing accurate and reliable gas-condensate system well deliverability model, 

governed by accurate fluid phase behaviour, which require well define   pressure – 

volume – temperature (PVT) model.  A PVT model describes key phase, viscosity and 

volumetric behaviour of hydrocarbon mixture that are dictating the recovery of gas and 

oil at the surface (Whitson et al., 1999). For gas-condensate mixture, a PVT model for 

all reservoir pressure and temperature conditions cannot accurately define certain 

properties (e.g., viscosity, compressibility factor, hydrocarbon plus characterization). 

For example a PVT model such as equation of state (EOS) often have difficulty of 

matching compositional variation of gas and condensate dropout in near critical gas-

condensate systems. Among the PVT properties condensate viscosities are difficult to 

predict and has the largest prediction uncertainty using any PVT models (Fevang, 
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1995; Whitson, Fevang and Yang, 1999; Mott, 2002). This is mainly due to inadequacy 

of the available methods in prediction of condensate viscosity and unavailability of 

experimental condensate viscosity data to tune the existing models (Fevang, 1995; 

Whitson, Fevang and Yang, 1999; Mott, 2002; Al-Meshari et al., 2007; Yang et al., 

2007).  

Unavailability of experimental data is due to the absence of reservoir sample to carry 

out laboratory experiments for gas-condensate systems. This is because obtaining 

representative sample of gas-condensate reservoirs are extremely difficult than other 

type of hydrocarbon systems (e.g., black oil). The difficulty of sampling is due to 

condensation of liquid during sampling process, which leads to incorrect estimation of 

gas/condensate percentage and erroneous estimation of reservoir composition 

(Ahmed, 2010, p. 171).  

Compressibility factor (Z factor) is another PVT property that its accurate estimation is 

always needed to develop an accurate PVT model, and consequently for a reliable 

gas-condensate well deliverability model (Whitson, Fevang and Yang, 1999). Accurate 

estimation of Z factor cannot be overemphasized in gas reserve evaluation, material 

balance calculation, reservoir simulation studies, analytical models, well testing and 

gas/condensate processing calculations (Rayes et al., 1992; Heidaryan, Moghadasi 

and Rahimi, 2010; Sun et al., 2012). 

Ideally, condensate viscosity and Z factor should be estimated using laboratory 

experiments, however lack of enough experimental data for the reasons mentioned 

earlier, motivated to use correlations and EOS extensively in current literature. Using 

correlations and EOS for estimation of these PVT properties has several problems 

that will be explained in the following.  

There are many EOSs in literature for determination of PVT properties (e.g., Peng and 

Robinson, 1976; Redlich and Kwong, 1949; Soave- Redlich-Kwong, 1972; Van der 

Waals, 1873). However, all EOSs are implicit in nature; this means for instance Z factor 

is estimated as a root of EOSs. This makes using EOSs for estimation of gas-

condensate Z factor computationally inconvenient for engineering purposes. 

Furthermore their performance deteriorate for estimation of gas-condensate mixture 

because of convergence problem they face for near critical point when the phase 

change occurs (Sarkar, Danesh and Todd, 1991; Elsharkawy, 2006; Shokir, 2008; Sun 

et al., 2012). 
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For estimation of condensate viscosity, the industry heavily rely on correlations, which 

their prediction accuracy is very limited especially for near critical gas-condensate 

fluids and all thermodynamic conditions. A few issues of using correlations for 

prediction of condensate viscosity are as follow. 

 Existing condensate viscosity correlations in current literature were developed 

with simple assumption of single-phase dry gas and their applicability for 

estimation of gas-condensate viscosity below the dew point pressure, where 

the two-phase flow exist is arguable.  

 Most of available correlations in literature have limited applicability to specific 

range (e.g., pressure, temperature and viscosity). 

 For high pressure high temperature (HPHT) conditions, which majority of gas-

condensate reservoirs are located, using correlations for estimation of viscosity 

is uncertain due to lack of measured data (Al-Meshari et al., 2007; Sun et al., 

2012).  

Based on the above shortfalls in literature in relation to sufficient models that can well 

define phase behaviour of gas-condensate fluid below the saturation pressure, the aim 

and objectives of this study are defined and presented in following section.   

 

1.5 Research aim and objectives   

 

The ultimate aim of this study is to develop an accurate gas-condensate well 

deliverability (productivity) model with an emphasis on accurate determination of 

phase behaviour.  

Based on the gaps in current literature highlighted in section 1.4 for accurate modelling 

of PVT properties the following objectives are defined. 

I. Investigate the accuracy and applicability of current existing literature models 

for estimation of gas/condensate viscosity and Z factor in lean/rich gas-

condensate reservoirs. 

II. Development of reliable and accurate gas/condensate viscosity, that can cope 

with non-linearity of gas-condensate mixture below the saturation pressure.  

III. Developing several models to accurately estimate Z factor of gas-condensate 

reservoirs below the saturation pressure.  
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IV. Investigate the effect of dynamic of condensate build up near well bore region 

on well inflow performance and production profile through utilizing the 

developed viscosity and Z factor models. 

1.6 Proposed approach  

 
The following methodologies and approaches were adopted to achieve aim and 

objectives of the study.  

I. An extensive gas-condensate laboratory experimental and field data were 

collected to investigate the accuracy of existing gas/condensate PVT models 

for prediction of gas/condensate viscosity and two-phase Z factor.  

II. Non-linear regression has performed to optimize several literature models in 

order to characterize phase behaviour of gas-condensate mixture through 

accurate estimation of viscosity and two-phase Z factor.  

III. Sophisticated algorithms of Machine Learning (ML) including Support Vector 

Machine (SVM), Artificial Neural Network (ANN), Fuzzy Logic (TSK and 

Mamdani) and Adaptive Neuro Fuzzy Inference System (ANFIS) were 

employed to develop several gas/condensate viscosity and two-phase Z factor 

models.   

IV. The optimized and the developed gas/condensate viscosity and two-phase Z 

factor models in this study employed for better characterization of gas-

condensate mixture phase behaviour below the saturation pressure and in 

establishing an accurate PVT model.  

V. A well-defined PVT model in this study is used for generating reliable production 

profile of gas-condensate reservoirs experiencing liquid drop out, through 

utilizing three regions pseudopressure approach for well inflow calculation and 

volumetric material balance for well production forecast.  

 

1.7 Organization of the thesis  

 

The thesis comprises of seven chapters as follow:  

Chapter 1 provides the background information and highlights the challenges of gas-

condensate performance modelling. It also covers aims, objectives and proposed 

approaches in this study.  
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Chapter 2 covers the literature and relevant theory of fluid flow in porous media in 

relation to gas-condensate well deliverability modelling. Various factors that are 

influencing the modelling were also discussed.  

 

Chapter 3 outlines methodologies and current modelling approaches of gas-

condensate wells undergoing depletion. The approaches and methodologies 

undertaken in this study have been discussed in this chapter.  

 
Chapter 4 investigates the applicability of existing literature models (correlations and 

equation of state based models) for prediction of gas-condensate viscosity below the 

saturation pressure. Several existing condensate viscosity models in literature have 

been optimized using experimental data and presented in this chapter. Machine 

learning techniques including regression, Artificial Neural Network (ANN), Least 

Square Support Vector Machine (LSSVM) and Fuzzy Logic [Takagi-Sugeno-Kang 

(TSK) and Mamdani] were extensively used in developing new models. The new 

models can be used for reliable prediction of gas/condensate viscosity of gas- 

condensate reservoirs below the saturation pressure as an alternative approach to 

EOSs.  

 

Chapter 5 assesses the accuracy of the existing literature models for prediction of 

gas-condensate two-phase Z factor below the saturation pressure using 

comprehensive data bank. Then several new two-phase Z factor models based on 

Cascade Forward Neural Network (CFNN), Feed Forward Neural Network (FFNN) and 

Adaptive Neuro Fuzzy Inference System (ANFIS) were developed. Development of 

new models including structure of each network are described in details. 

 

Chapter 6 presents well deliverability forecast of gas-condensate reservoirs in tight 

formation using back pressure equation and three regions pseudopressure integral for 

computation of well inflow performance. Pressure Transient Analysis (PTA) test of a 

gas-condensate well is used for computation of effective permeability of 

gas/condensate phases. Three regions pseudopressure integral was incorporated 

with the developed gas/condensate viscosity as well as the developed two-phase Z 

factor model. The detail description of volumetric material balance used for reservoir 

depletion is provided. A new production forecast for a gas-condensate field case study 
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is generated utilizing three regions pseudopressure integral incorporated with material 

balance method. Furthermore, the detail of compositional reservoir simulation using 

Eclipse 300 is given in this chapter.  

 

Chapter 7 presents the conclusion and recommendations of the research and 

provides future research avenue.  

 

The flow chart in Figure 1.5 illustrates the organization of the thesis and the tasks that 

have been carried out throughout each chapters.  
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CHAPTER 2  WELL DELIVERABILITY 

MODELLING OF GAS-CONDENSATE RESERVOIRS 

WELL DELIVERABILITY MODELLING OF GAS 

CONDENSATE RESERVOIRS 

 

2.1 Introduction  

 
This chapter provides a critical review towards the modelling of gas-condensate 

reservoirs below the dew point pressure. Various modelling approaches have been 

critically reviewed and evaluated. The influence of condensate drop out when the 

reservoir pressure depleted to below the dew point pressure on modelling approaches 

are also discussed.  

Modelling and calculation of well deliverability in gas-condensate reservoirs is a 

historical issue without simple solution (Fevang and Whitson 1996). Reliable 

calculation of well deliverability requires great understanding of phase and drawdown 

behaviour in reservoir condition. Gravity segregation of the heavy hydrocarbon 

components in gas-condensate reservoirs, trigger liquidation of these heavy ends 

below the saturation pressure. Increasing the saturation of the hydrocarbon liquid in 

the reservoir will create condensate blockage near the wellbore region. Consequently, 

the productivity of the wells in gas-condensate field will dramatically reduce due to the 

condensate blockage (Thornton, 1946; Kniazeff and Naville, 1965; Daltaban, 1985; 

Vo, Jones and Raghavan, 1989; Raghavan and Jones, 1996). In gas-condensate 

reservoirs, the initial phase is gas but typically, the fluid of interest is condensate (oil) 

because of higher profitability that produced condensate can bring to the project. The 

condensate loss is one of the greatest economical concerns because of its valuable 

heavier components of the original reservoir fluid, which trapped in the depth of the 

reservoir (Roussennac, 2001).  

This chapter provides fundamental of fluid flow inside porous media in relation to the 

gas-condensate flow behaviour and well deliverability modelling. First gas flow theory 

and fundamentals are discussed then the parameters that required for well 

deliverability modelling and phase behaviour are highlighted. Critical review of each 

parameter is provided in respective chapter.    
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2.2 Gas Rate Theory 

 
The fluid flow equations for describing fluid behaviour in hydrocarbon reservoir are in 

many forms depending on combination of variables such as type of flow, type of fluid 

and number of mobile phases in the reservoirs (Ahmed, 2010). By combining the fluid 

transport equation (Darcy’s law) with continuity equation for material balance, the 

appropriate fluid flow equation can be developed for hydrocarbon reservoirs. 

Fundamental principle of fluid flow in porous media defined by Darcy’s law proposed 

by Henry Darcy (1856). Darcy equation in the form of 2.1 states that the apparent 

velocity (𝑣) of a homogeneous fluid in a porous media with absolute permeability of k 

is directly proportional to the pressure difference (dp) and inversely proportional to fluid 

viscosity (μ) in a radial flow (dr). The negative sign represents the inverse direction of 

pressure gradient with respect to direction of flow.  

 

𝑣 =
𝑞

𝐴
= −

𝑘 𝜕𝑝

𝜇 𝜕𝑟
 

 

2.1 

 

Integrating Darcy’s law yields gas flow rate (qg) equation in a pseudosteady state for 

any well geometry (e.g. vertically fractured, radial and horizontal wells) as shown in 

2.2. Gas flow rate in equation 2.2 is written in terms of gas formation volume factor 

(Bg) or equivalent gas compressibility factor (Z).  

 

{
 
 

 
 𝑞

𝑔
= 𝐶 ×∫

1

𝜇
𝑔
𝐵𝑔
𝑑𝑝

𝑃𝑅

𝑃𝑤𝑓
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𝑔
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𝑃

𝜇
𝑔
𝑍
𝑑𝑝

𝑃𝑅

𝑃𝑤𝑓 }
 
 

 
 

 

 

2.2 

 

C includes basic reservoir properties and for vertical/horizontal unfractured wells, is 

defined as follow: 

 

{
 
 

 
 𝐶 =

2𝜋𝑎𝑘ℎ

ln (
𝑟𝑒
𝑟𝑤
) − 0.75 + 𝑠 + 𝐷𝑞

𝑔

𝐶∗ = 𝐶
𝑇𝑠𝑐
𝑃𝑠𝑐𝑇𝑅 }

 
 

 
 

 

 

2.3 

 

Where 𝑎 represents conversion factor of 1/(2𝜋. 141.2) for field units, 𝑎𝑛𝑑 𝑎 =  1 for SI 

units, s is skin factor, k is absolute permeability of the formation, h is reservoir 

thickness, re is drainage radius, rw is wellbore radius, 𝑇𝑠𝑐 and 𝑃𝑠𝑐 are temperature and 
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pressure at standard condition (sc) and TR is temperature at reservoir condition. The 

unique relationship between pressures and gas properties in pressure integral of 

equation 2.2 proposed by Al-Hussainy et al., (1966) and commonly known as 

pseudopressure integral.  

Gas rate equation in 2.2 is valid within laminar flow region where Reynolds number is 

less than 2000. However, in a radial flow system the flow velocity increases 

significantly near the wellbore region and flow becomes turbulent. Therefore, gas rate 

equation shown in 2.2 no longer follows a linear relationship between velocity and 

pressure drop of Darcy’s law in higher gas velocity. Subsequently the gas rate 

changes to Forchheimer, (1901) quadratic form as follow.   

 

𝐴𝑞𝑔 + 𝐵𝑞𝑔
2 = ∫

𝑃

𝜇𝑔𝑍
𝑑𝑝

𝑃𝑅

𝑃𝑤𝑓

 

 

2.4 

 

Where A and B are,  

 

𝐴 = 
ln (

𝑟𝑒
𝑟𝑤
) − 0.75 + 𝑠

2𝜋𝑎𝑘ℎ
 

 

2.5 

 

 

𝐵 =
𝐷

2𝜋𝑎𝑘ℎ
 

 

2.6 

 

D is non-Darcy or turbulent flow factor and can be calculated by the following equation.  

 

𝐷 =

3.161 × 10−12 [
𝛽𝑇𝛾𝑔
𝜇𝑔ℎ2𝑟𝑤

] 𝑘ℎ

1422𝑇
 

 

2.7 

 

Where the turbulent parameter 𝛽 = 1.88(10−10)𝐾−1.47𝛷−0.53, T is temperature in 

Rankine, 𝛾𝑔 is gas specific gravity and 𝛷 is the porosity of the reservoir formation. The 

turbulent flow is contributing to additional pressure drop around the wellbore region. 

This is particularly important in gas-condensate reservoirs because accumulation of 

the liquid around the wellbore in region 1 introduces additional skin damage, which in 

return add extra pressure drop into the system.  

Plotting the function inside the integral “𝑃/( 𝜇𝑔 𝑍) or 1/(𝜇𝑔 𝐵𝑔)” against the reservoir 

pressure yields a graph shown in Figure. 2.1 with three distinct regions. Substituting 
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2.5 and 2.6 in Forchheimer gas rate equation 2.4 resulted a pseudo-psteady state 

equation for estimating gas flow in porous media in three forms representing three 

areas of the graph in 2.1. The low-pressure region known as region 1, where pressure 

is usually less than 2000psia and pressure function 𝑃/( 𝜇𝑔 𝑍) or 1/(𝜇𝑔 𝐵𝑔) exhibit a 

linear relationship with pressure. The following equation can be used for exact 

calculation of gas flow rate when 𝑃 < 2000 psia.  

 

𝑞𝑔 =
𝑘ℎ(𝑃𝑅

2 − 𝑃𝑤𝑓
2)

1422𝑇(𝜇𝑔𝑍)𝑎𝑣𝑒𝑟𝑎𝑔𝑒
[ln (

𝑟𝑒
𝑟𝑤
) − 0.75 + 𝑠 + 𝐷𝑞𝑔]

 

 

2.8 

 

The above method known as pressure squared approximation method. The product 

of  (𝜇𝑔𝑍) in 2.8 is assumed to be constant for pressures below 2000psia.   

In second region the relationship between 𝑃/( 𝜇𝑔 𝑍) or 1/(𝜇𝑔  𝐵𝑔) and pressure is a 

curvature shape. In this region, both bottom-hole flowing pressure (Pwf) and average 

reservoir pressure (PR) are between 2000 – 3000psia. To estimate gas flow rate when 

pressure is between aforementioned values, the following equation known as pressure 

approximation method is used.  

 

 

𝑞𝑔 =
7.08 × (10−6)𝑘ℎ(𝑃𝑅 − 𝑃𝑤𝑓)

(𝜇𝑔𝛽𝑔)𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑇 [ln (
𝑟𝑒
𝑟𝑤
) − 0.75 + 𝑠 + 𝐷𝑞𝑔]

 

 

2.9 

 

The third region is devoted to high pressure region with pressures (Pwf and PR) 

between 3000 – 5000psia. In this pressure region the relationship between pressure 

and 𝑃/( 𝜇𝑔 𝑍) or 1/(𝜇𝑔  𝐵𝑔) become almost constant as this can be observed from the 

graph. The gas flow rate in this region can be estimated by real gas potential or 

pseudopressure form in pressure region between 3000 < 𝑃 < 5000𝑝𝑠𝑖𝑎. 

 

𝑞𝑔 =
𝑘ℎ(𝑚𝑝𝑟 −𝑚𝑝𝑤𝑓)

1422𝑇 [ln (
𝑟𝑒
𝑟𝑤
) − 0.75 + 𝑠 + 𝐷𝑞𝑔]

 

 

2.10 

 

Where mp is pseudopressure integral shown in Forchheimer gas rate equation of 2.4.   
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Figure 2.1. Typical plot of gas pressure function vs pressure where the area between Pwf 

and PR representing the integral in 2.2.   

The derived gas flow rate equations in either forms of 2.8 to 2.10 are implicit, where 

direct determination of qg is not possible. Furthermore for determination of gas flow 

rate in high pressure region because the product of 𝑃/( 𝜇𝑔 𝑍) is almost constant, the 

pressure integral has simple analytical solution, which is not suitable for rate-time 

forecasting of a gas well above 3000psia.   

Rawlins and Schellhardt, (1936) propsed a simple back presure equation which relate 

gas flow rate to bottom-hole flowing pressure (Pwf) regardless of value of Pwf. The 

Rawlins and Schellhardt, (1936) is known as well deliverability equation and is 

discussed in following section.  

2.3 Well Deliveraility Theory 

 
Rawlins and Schellhardt, (1936) developed an empirical equation known as 

backpressure equation, that defines relationship between the gas flow rate and some 

constraint average reservoir pressure (PR) and bottom hole flowing pressure (Pwf). 

Their empirical equation shown in 2.11 is widely accepted in petroleum industry for 

estimating gas flow rate (Eilerts, Sumner and Potts, 1965; Gondouin, Iffly and Husson, 

1967; Fevang, 1995; Akhimiona and Wiggins, 2005; Al-Attar and Al-Zuhair, 2009; 

Ogunrewo, 2014). The equation also referred as backpressure equation or well 

deliverability equation.  
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𝑞𝑔 = 𝐶(𝑃𝑅
2 − 𝑃𝑤𝑓

2)
𝑛
 

 

2.11 

 

Where qg, PR, Pwf and C are defined in 2.4 to 2.6 and n is deliverability exponent.  

Well deliverability equation in 2.12 was developed, as a result of testing several 

hundred gas rates of gas wells in different fields. The square terms in backpressure 

equation accounts for pressure dependent of the pseudopressure integral. The 

exponent n represents degree of flow velocity in non-Darcy flow and is depending on 

flowing conditions. This exponent is between 0.5 – 1, where 1 representing completely 

laminar flow and 0.5 for fully turbulent flow. Pressure squared terms (𝑃𝑅
2 − 𝑃𝑤𝑓

2) can 

be replaced by ΔP2.  

The well deliverability equation is valid for calculating gas flow rate for reservoir 

pressure of less than 2500 psia. If the average reservoir pressure (PR) is greater than 

2500 psia, then ΔP2 should be replaced by ΔP. If the coefficients of n and C are known, 

the gas flow rate at the surface for any bottom-hole flowing pressure (Pwf) can be 

estimated from well deliverability equation. Plotting qg vs. Pwf results in constructing 

Inflow Performance Relationship (IPR) curves. IPR curve is demonstrating ability of 

the reservoir to produce gas/condensate to the wellbore (Sousa, Garcia and Waltrich, 

2017).  

In gas-condensate reservoirs undergoing depletion, accumulation of condensate drop 

out near wellbore region creates condensate blockage, which introduce extra pressure 

drop. This would results in well productivity reduction at the surface. Condensate 

blockage and its effect on well deliverability should be considered for reliable and 

accurate prediction of gas-condensate well performance. Introducing condensate 

blockage into well deliverability equation in 2.11 has been an active area of research 

for many years. Some of the attempts by many scholars will be reviewed here.   

 

Muskat, (1949) was first that addressed condensate blockage in gas-condensate 

reservoirs operating below the dew point pressure. He introduced a simple method for 

estimating the radius of the condensate blockage as a function of time, gas rate, 

reservoir rock and fluid properties. Fetkovich, (1973) used Muskat’s results and 

highlighted condensate blockage problem by introducing a skin factor as a function of 

gas rate and time for use in standard dry gas equation of 2.4. Eilerts, (1964) was 
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among the first that numerically solved partial differential equation for transient flow in 

gas-condensate reservoir. Then Kniazeff and Naville, (1965) continued numerical 

solution of Eilerts, (1964) for a radial gas-condensate’s well deliverability. Both studies 

confirmed reduction in well deliverability as a results of condensation blockage.  

Gondouin et al., (1967) extended the work of Kniazeff and Naville, (1965) by 

performing black oil simulations, showing the effect of condensate blockage and non-

Darcy flow on well deliverability. They used deliverability equation to measure gas flow 

rate. The work of Gondouin et al., (1967) is a significant contribution in understanding 

of gas-condensate reservoirs and well deliverability improvement. They showed 

change of formation permeability in near wellbore region and also reservoir fluid 

characteristic due to the condensate blockage.  

 

In all above studies, the concept of single-phase pseudopressure approach shown in 

equation 2.8 was utilized. However, gas-condensate reservoirs experiencing two-

phase flow near wellbore region and gas rate equation representing two phases are 

more adequate. Therefore, the concept of two-phase pseudopressure approach later 

introduced for gas-condensate well deliverability modelling, which will be explained in 

following. 

 
Pseudopressure (𝑚𝑝) is an integral over pressure presented in 2.8, which expresses 

gas rate through reservoir to the wellbore. O’Dell and Miller, (1967) presented the first 

gas rate equation using pseudopressure function (𝑚𝑝) to describe the effect of 

condensate blockage. Their results were indicated a significant reduction in well 

deliverability for even small condensate blockage. Their equation is valid when the 

radius of the blockage around the wellbore is small, which means the Pwf is 

considerably above the dew point pressure. The pseudopressure integral used by 

O’Dell and Miller, (1967) is based on two regions consisting gas and condensate 

phase. They were among the first that discovered the existing of the various regions 

during fluid flow in gas condensate reservoirs. Fussell, (1973) proposed an Equation 

of State (EOS), for prediction of gas-condensate well productivity using compositional 

simulator. The simulator tracks the compositional changes below the dew point 

pressure. Fussell, (1973) showed that O’Dell and Miller, (1967) theory cannot predict 

the saturation profile in two-phase region correctly. He showed that the productivity of 

gas-condensate well is much higher than the results showed by O’Dell and Miller, 
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(1967). Then Jones and Raghavan, (1988) showed that pressure responses from gas-

condensate drawdown test can be correlated with classical liquid solution, if pressures 

were transformed into two-phase pseudopressure. They also showed that steady-

state two-phase pseudopressure integral can be used for estimation of reservoir flow 

capacity (kh) in equation 2.7.  Similar results were developed for pressure build up test 

in gas-condensate wells by Jones et al., (1989). Using steady-state pseudopressure 

Raghavan et al., (1995) studied several gas-condensate field and concluded that their 

method is working best when the reservoir pressure is much higher than the saturation 

pressure. Aforementioned scholars utilized the concept of steady state (SS) 

pseudopressure method in interpreting and developing the results. The SS model 

assume fluid flow in the reservoir with two regions without the transition zone. These 

two regions are near wellbore region, where oil and gas are present and both are 

mobile toward the wellbore, and an outer region containing only gas phase where the 

oil saturation is zero. Fevang, (1995) added another region known as transition zone 

where both gas and oil present, but oil (condensate) is not moving towards the 

wellbore. In his well deliverability study Fevang, (1995) divided the pseudopressure 

integral into three parts representing three flow regions. Xu and Lee, (1999) showed 

that using three regions pseudopressure integral of Fevang, (1995) is more accurate 

than previous steady-state concept for estimation of flow capacity (kh). Fevang, (1995) 

pseudopressure integral required prior knowledge of relative permeability curves as a 

function of saturation, correct fluid properties and accurate knowledge of producing 

gas to oil ratio (Rp). One of the difficulties of Fevang’s pseudopressure integral is its 

dependency on using simulator for accurate estimation of producing gas to oil ratio 

(Rp).  

To tackle this issue Mott, (2002) proposed simpler technique for calculating Rp based 

on growing of region 1 as a function of time. His method does not need simulator 

software for estimation of Rp and can be implemented in spreadsheet format. Similar 

concept was applied by Raghavan and Jones, (1996), where the size of two-phase 

region for gas-condensate reservoir calculated for deliverability of the well. Chowdhury 

et al., (2004) proposed a semi-analytical model similar to Mott, (2002) with the effect 

of capillary number and non-Darcy flow that was missed in previous analytical 

approaches. Their method provides accurate results in prediction of lean/rich gas-

condensate well deliverability, verified by compositional numerical simulation.  
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Jokhio and Tiab, (2002) also used Fevang, (1995) method for gas-condensate well 

pressure transient test and predict well deliverability. They used effective permeability 

concept in using the pseudopressure integral, which eliminates prior knowledge of 

relative permeability curves.  

The analytical method (e.g., three regions pseudopressure method) are the efficient 

and quick way to analyse the impact of the various factor such as viscosity, 

compressibility or rock properties on gas-condensate well deliverability modelling 

(Dake, 2001; Fan et al., 2005). Many scholars have used three regions 

pseudopressure approach as a predictive tool and modelled well deliverability of gas-

condensate reservoirs (Raghavan and Jones, 1996; Dehane, Tiab and Osisanya, 

2000; Guehria, 2000; Jokhio, Tiab and Escobar, 2002; Maravi, 2003; Penula, 2003; 

Xiao and Al-Muraikhi, 2004; Wheaton and Zhang, 2007; Vo, 2010; Bonyadi, 

Rahimpour and Esmaeilzadeh, 2012; Al-Shawaf, Aramco and Kelkar, 2014; Arabloo, 

Heidari Sureshjani and Gerami, 2014; Behmanesh, Hamdi and Clarkson, 2015, 2017; 

Rahimzadeh et al., 2016; Khanal, Khoshghadam and Lee, 2016; Hekmatzadeh and 

Gerami, 2018). Hence, also in this study analogy of three-flow regions pseudopressure 

approach is employed for well deliverability modelling of gas-condensate reservoirs.  

Fevang, (1995) pseudopressure integral for estimation of total gas flow rate in terms 

of black oil PVT properties is as follow. 

 

𝑞𝑔,𝑡𝑜𝑡𝑎𝑙 = 𝐶∫
𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+

𝑘𝑟𝑜
𝐵𝑂𝜇𝑂

𝑅𝑆𝑑𝑝
𝑃𝑅

𝑃𝑤𝑓

 

 

2.12 

 

Where C is defined in equation 2.3; Krg and Kro are representing gas and oil 

(condensate) relative permeabilities respectively; Bg and Bo are gas and oil formation 

volume factor (both are function of compressibility factor); μg and μo are gas and 

condensate (oil) viscosity; Rs is solution gas to oil ratio.  

If the bottom-hole flowing pressure (Pwf) falls below the saturation pressure then the 

reservoir contains three flow regions as suggested by Fevang, (1995), shown in Figure 

1.4. To represent these flow regions the pseudopressure integral in equation 2.12 

splits into three parts, representing three flow regions as previously explained in 1.1. 

Existence of the three flow regions are solely function of pressure and will be 

discussed in details in the following.  
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Region 1: is near wellbore region and the main source of well deliverability reduction 

due to condensate blockage. In this region both gas and oil (condensate) flow 

simultaneously toward the wellbore at different velocity rate. If bottom-hole flowing 

pressure (Pwf) is less than the dew point pressure (𝑃𝑤𝑓 <  𝑃𝑑𝑒𝑤), region 1 will always 

exist and can be represented by the following integral.  

 

𝑞𝑔,𝑟𝑒𝑔𝑖𝑜𝑛 1 = 𝐶∫
𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+

𝑘𝑟𝑜
𝐵𝑂𝜇𝑂

𝑅𝑆𝑑𝑝
𝑃∗

𝑃𝑤𝑓

 

 

2.13 

 

Where 𝑃∗ is the pressure in the interface between region 1 and region 2.  

 

Condensate build up Region 2: in this region condensate is dropping out of the gas 

but the mobility ratio is zero or very low, which is not enough for the condensate phase 

to flow toward the wellbore. The first droplet of the liquid dropped out from the original 

gas at the outer edge of region 2 (at the boundary with region 3). Hence, the pressure 

at the boundary of the region 2 with region 3 is equal to the dew point pressure. Since 

in this region only gas flows the pressure integral with the pressure limits between dew 

point pressure (Pdew) and pressure at the interface between region 1 and region 2 (𝑃∗) 

is as follow.  

 

𝑞𝑔,𝑟𝑒𝑔𝑖𝑜𝑛 2 = 𝐶∫
𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
𝑑𝑝

𝑃𝑑𝑒𝑤

𝑃∗
 

 

2.14 

 

Roussennac, (2001) in his experimental study observed that region 2 is initially 

expands from the well outwards as soon as the bottom-hole flowing pressure drops to 

below the dew point pressure. Then region 2 moved away from the wellbore and region 

1 developed next to the wellbore. 

Single – phase gas Region 3: this region exist when bottom-hole flowing pressure 

(Pwf) is above the dew point pressure (Pdew). If 𝑃𝑤𝑓 >  𝑃𝑑𝑒𝑤 then the whole reservoir 

is in single dry gas phase and equation 2.12 turns back to standard gas rate equation, 

where 𝐾𝑟𝑜 = 0 and Krg is function of irreducible water saturation (Swi) as follow. 

 

𝑞𝑔,𝑟𝑒𝑔𝑖𝑜𝑛 1 = 𝐶∫
𝑘𝑟𝑔(𝑆𝑤𝑖)

𝐵𝑔𝜇𝑔
𝑑𝑝

𝑃𝑅

𝑃𝑑𝑒𝑤

 

 

2.15 
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It should be noted if the pressure interface between region 1 and 2 (𝑃∗) is bigger than 

average reservoir pressure (PR) [𝑃∗ > 𝑃𝑅], then integration of region 1 pressure 

function should be only from 𝑃𝑤𝑓 to 𝑃𝑅.  In this case region 2 and 3 don’t exist (Fevang, 

1995; Fevang and Whitson, 1996). This is the case in highly saturated gas-condensate 

reservoirs (Fevang, 1995; Fevang and Whitson, 1996; Jokhio and Tiab, 2002).  

Adding up all three-flow region pressure integrals yield an equation for estimating total 

gas flow rate in gas-condensate reservoirs as follow.  

 

𝑞𝑔,𝑡𝑜𝑡𝑎𝑙 = 𝐶 (∫
𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+

𝑘𝑟𝑜
𝐵𝑂𝜇𝑂

𝑅𝑆𝑑𝑝
𝑃∗

𝑃𝑤𝑓

+∫
𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
𝑑𝑝 +∫

𝑘𝑟𝑔(𝑆𝑤𝑖)

𝐵𝑔𝜇𝑔
𝑑𝑝

𝑃𝑅

𝑃𝑑𝑒𝑤

𝑃𝑑𝑒𝑤

𝑃∗
) 

 

2.16 

 

Prior and accurate knowledge of phase and drawdown behaviour is essential for 

accurate estimation of well deliverability using three-flow regions pseudopressure 

approach. The knowledge of phase behaviour is essential for reservoir engineer to 

plan optimum production strategy for gas-condensate field development (Ugwu, 

2011).  

In concept of well deliverability modelling using equation 2.16, accurate estimation of 

fluid phase behaviour determines the reliability of the developed model. The phase 

behaviour of gas-condensate mixture is one of the most complex due to existing of 10 

to 15% of heptane and heavier hydrocarbon components in the mixture. Estimating 

fluid properties of such system to develop phase envelope require advance knowledge 

of each composition as a function of pressure and temperature. A PVT model (e.g., 

equation of state or black oil) defines the relation between phase behaviour, 

compositional variation and fluid properties. To emphasise the importance of accurate 

PVT model for gas-condensate mixture, Whitson et al., (1999) highlighted that in 

engineering treatment of gas-condensate reservoirs, the extra issues that must be 

addressed are:  

1. “how yielding the condensate will change during the life of the reservoir; 

2. how two-phase gas and oil (condensate) flow near the wellbore, effect the 

productivity”. 

They suggested both aforementioned issues are strongly related to PVT properties of 

the fluid. The knowledge of PVT properties and accurate estimation of each 

parameters is paramount factor for accurate well deliverability modelling of gas-

condensate reservoirs.  
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Although the three-flow regions pseudopressure approach extensively used for 

deliverability modelling of gas-condensate reservoirs in recent decade, but there is a 

gap in current literature to show how inaccuracy in estimation of governing parameters 

including PVT properties and relative permeabilities will affect the performance of the 

equation. Main objective of this research is to identify the most important parameters 

that effect well-deliverability modelling of gas-condensate reservoirs with an emphasis 

to PVT properties. The effect of inaccurate estimation of PVT properties on 

performance of three regions pseudopressure approach in equation 2.16 will be 

investigated. Modified black oil (MBO) PVT properties were used in development of 

three-flow region pseudopressure integral in 2.16. Hence, our analysis is based on 

MBO approach and its parameters for estimation of three-flow regions 

pseudopressure method. In following section, first we introduce two main PVT 

modelling approach then the parameters that are contributing to three-flow regions 

pseudopressure approach in equation 2.16 is discussed in details.  

 

2.3.1 Modelling Fluid Properties 
 
Currently there are two PVT models including black oil (BO) approach and 

compositional approach. BO is based on simple interpolation of PVT properties as a 

function of pressure (Spivak and Dixon, 1973; Coats, 1985; Coats and Smart, 1986; 

Fevang and Whitson, 1996); and compositional model based on thermodynamically 

consistent model such as cubic equation of state (Coats et al., 1995; Gomes and 

Corrêa, 1992; Rubin and Buchanan, 1985).  

BO PVT model is a fluid characterization formulation that represents multi-components 

reservoir hydrocarbons in only two pseudo-components; “surface gas” and stock tank 

oil (Fevang, Singh and Whitson, 2000; Walsh and Lake, 2003). Black oil model 

quantifies gas and oil phase from a reservoir condition to standard surface condition 

(pressure 14.69psia and temperature 60⁰F). The calculation is based on volumetric 

estimation (conversion) of gas and oil in the reservoir condition to the surface 

condition. This conversion also known as geologic condition of hydrocarbon fluid to 

sellable value at the surface. Schematic diagram in Figure 2.2 shows the traditional 

BO PVT formulation where the model accounts for surface gas and surface oil through 

reservoir to the surface.   
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In order to estimate the volumetric values using BO PVT, the knowledge of how much 

gas dissolved in oil phase at reservoir condition and how much of that oil would shrink 

at surface condition is necessary. In addition, the knowledge of expansion of free gas 

to several hundred times when it brought to the surface is required. To relate this 

surface volume to reservoir volume and vice versa several factors were defined in BO 

PVT formulation. Three main properties that serve the computations are wet gas 

formation volume factor (Bg), oil formation volume factor (Bo) and solution gas to oil 

ratio (Rs) shown in equation 2.17 to 2.19 respectively (Whitson and Brulé, 2000; Walsh 

and Lake, 2003).  

 

𝐵𝑔 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑔𝑎𝑠 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑔𝑎𝑠 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑔𝑎𝑠 
 

 

2.17 

 

 

𝐵𝑜 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑜𝑖𝑙

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑐𝑘 𝑡𝑎𝑛𝑘 𝑜𝑖𝑙 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑜𝑖𝑙 
 

 

2.18 

 

 

𝑅𝑠 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑔𝑎𝑠 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑜𝑖𝑙 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑐𝑘 𝑡𝑎𝑛𝑘 𝑜𝑖𝑙 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑔𝑎𝑠 
 

 

2.19 

 

 

Figure 2.2. Schematic diagram of traditional black oil formulation of PVT model. 

These three properties constitute of traditional black oil model and are developed 

based on the following assumptions.    

A. Reservoir oil consists of only two components of stock-tank oil and surface gas 
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B. Reservoir gas does not yields liquid when brought to the surface (see diagram 

in Figure 2.2) 

C. The property of surface gas released from reservoir oil is the same as 

properties of reservoir gas 

D. Properties of oil and gas are constant during pressure depletion 

For gas-condensate reservoirs the assumptions of A and B are implicit because they 

ignore the amount of oil (condensate) evolves from gas phase at the surface. 

Neglecting the amount of produced oil (condensate) cause severe underestimation of 

condensate recovery prediction at the surface. Therefore, to account for the amount 

of produced condensate from reservoir gas at the surface another term called solution 

oil to gas ratio (rs) was added to the traditional black oil PVT formulation by Kniazeff 

and Naville, (1965).  

Another assumption in BO PVT model is that the compositional variation is constant 

during pressure depletion. This is not the true for gas-condensate reservoirs as the 

composition of the mixture is changing with pressure depletion (Evinger and Muskat, 

1942; Vo, 2010). Solution gas to oil ratio (rs) that introduced by Kniazeff and Naville, 

(1965)  also mimics the effect of the compositional variation on condensate properties 

in BO PVT model (ECLIPSE, 2014). Solution oil to gas ratio (rs) various with respect 

to pressure change in the reservoir.  

 

Additional modification of traditional black oil PVT is reformulation of gas formation 

volume factor to only include dry gas at the surface, which known as dry gas formation 

volume factor (Bgd). Dry gas formation volume factor (Bgd) is the ratio between volume 

of produced gas and volume of its gas components (Whitson, Da Silva and Soreide, 

1988; Coats, Thomas and Pierson, 1995; Nassar, El-Banbi and Sayyouh, 2013). 

Adding two aforementioned terms to black oil PVT model introduced modified black 

oil model (MBO) PVT model. The schematic diagram of MBO PVT model is shown in 

Figure 2.3 where four hydrocarbon components can be quantified in terms of volume 

ratios defined in following.  
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Figure 2.3 schematic diagram of modified black oil (MBO) model. 

 

𝐵𝑔𝑑 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑔𝑎𝑠 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑔𝑎𝑠 
=
𝑉𝑔

𝑉𝑔̅𝑔
 

 

2.20 

 

 

𝐵𝑜 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑜𝑖𝑙

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑐𝑘 𝑡𝑎𝑛𝑘 𝑜𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑜𝑖𝑙 
=
𝑉𝑜
𝑉𝑜̅𝑜

 

 

2.21 

 

 

𝑅𝑠 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑜𝑖𝑙 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑐𝑘 𝑡𝑎𝑛𝑘 𝑜𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑜𝑖𝑙 
=
𝑉𝑔̅𝑜

𝑉𝑜̅𝑜
 

 

2.22 

 

 

𝑟𝑠 =
𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑔𝑎𝑠 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑔𝑎𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑔𝑎𝑠 
=
𝑉𝑜̅𝑔

𝑉𝑔̅𝑔
 

 

2.23 

 

MBO PVT mode successfully used for simulation of gas-condensate reservoirs PVT 

characterization below the saturation pressure in previous studies (Whitson and Torp, 

1983; Fevang and Whitson, 1996; Fevang, Singh and Whitson, 2000; Jokhio and Tiab, 

2002; Mott, 2002; Izgec and Barrufet, 2005; Nassar, El-Banbi and Sayyouh, 2013; 

Khamis and Fattah, 2019). 

Fevang et al., (2000) in their simulation study compared MBO method with full 

compositional PVT model using 22 components. They showed there is no significant 

difference between MBO and compositional model in relation to 10 years of production 
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of a lean gas-condensate fluid. A comprehensive guideline for choosing compositional 

and black oil models for gas-condensate reservoirs is provided by Fevang et al., 

(2000). For the case of gas injection using MBO for PVT simulation is not 

recommended due to extra non-linearity that the injected gas (e.g., CO2) can added 

to the mixture properties. Despite some deficiencies of the MBO PVT model, it is very 

popular in industry due to its simplicity and faster CPU running time in reservoir 

simulation studies.  

 

Alternative approach for quantifying PVT properties of gas-condensate reservoirs are 

compositional simulation studies (Coats, Thomas and Pierson, 1995). The 

development of the compositional models is started due to increasing occurrence of 

gas-condensate and volatile oil reservoirs (Coats, 1985; Rubin and Buchanan, 1985). 

In compositional PVT model, the phase equilibrium and fluid properties such as 

compressibility, density, and viscosity are determined by equation of state (EOS). An 

equation of state presents a theoretical relationship between pressure, volume and 

temperature of each individual components at various pressure and temperature 

condition (Khanal, Khoshghadam and Lee, 2016). The cubic Peng and Robinson, 

(1976) and Soave- Redlich-Knowng (1972) equations of state are commonly used in 

the petroleum industry. In this technique, the phase composition is determined by 

flashing the fluid over wide range of conditions (pressure and temperature). During the 

computation process, the mass balance equation for each composition is used, where 

sum of the saturations should be 1 (100%). The number of mass balance equations 

increases as the number of compositions in the system increase, which require extra 

computation time. Recently, full compositional simulation become more feasible with 

advancement in computational techniques, however for large number of cells it is still 

impractical. 

The main advantage of the compositional method over black oil is in determining and 

understanding relative effects of variable and parameters controlling/governing well 

deliverability. Despite advantages of the compositional modelling of PVT, it requires 

more computational effort than black oil model due to its great complexity. This can 

restrict the model application in reservoir studies where significant compositional 

variations occur (Gomes and Corrêa, 1992). Using either black oil or compositional 

model for simulating PVT properties the PVT quantities required by reservoir simulator 

are essentially the same (Whitson, 2006).  
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Well deliverability equation of 2.16 for gas-condensate reservoirs is presented in terms 

of MBO PVT model. In following sections, the detail calculation of each parameter in 

equation 2.16 is discussed. Some of the parameters like density and Z factor are not 

appear in equation 2.16, however they are required for generating PVT table.  

 

2.3.2 Compressibility Factor (Z factor) 
 
The properties of gas mixtures are well defined with many graphical charts and 

numerous equation of state in literature (Beggs and Brill, 1973; Standing, 1981; 

McCain and Cawley, 1991). The behaviour of the gases at lower pressure originally 

correlated based on experimental study of gases by Charles and Boyle, which is the 

basis for ideal gas law. Ideal gas law is a thermodynamic equation shown in 2.24 that 

allows correlating pressure, volume, temperature (PVT) and number of molecules 

(moles) that are present in a gas sample.  

 

𝑃𝑉 = 𝑛𝑅𝑇 

 

2.24 

 

Where p is pressure in pound square inch absolute (psia), V is occupied volume by 

gas in cubic feet (ft3), n is mole of gas in pound-mole (lb-mole); T is temperature in 

Rankine (R) and R is universal gas constant, which in customary unit is 

10.73146 
𝑝𝑠𝑖×𝑓𝑡3

𝑅 𝑙𝑏𝑚 𝑚𝑜𝑙𝑒 
. Using ideal gas equation of state is suitable for gases in very low 

pressure. However, in higher pressure it leads to about 500% error for establishing the 

PVT relationship. This is because ideal gas law assume no attraction or impulsive 

forces between the molecules and all collisions between the molecules are assumed 

perfectly elastic. Nevertheless, in reality, this is not the case for real gases and 

intermolecular forces between mixture components strongly affect volumetric 

behaviour. The deviation from ideal gas behaviour can be expressed as a factor. This 

factor expressed as compressibility factor, deviation factor or Z factor. Throughout this 

report, we used Z factor term. 

Z factor is a dimensionless quantity and defined as actual volume of real gas to ideal 

volume at specific pressure and temperature 𝑍 = 𝑉(𝑎𝑐𝑡𝑢𝑎𝑙 )/𝑉𝑖𝑑𝑒𝑎𝑙. Following is the 
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real gas law equation, which is standard description of volumetric behaviour of 

hydrocarbon gas.  

 

𝑃𝑉 = 𝑍𝑛𝑅𝑇 

 

2.25 

 

The real gas equation is valid for engineering calculations of most reservoir gases. 

From real gas law in equation 2.25, all other volumetric PVT properties of gases can 

be derived. In following sections, PVT properties that required for estimation of gas 

and condensate production using three regions pseudopressure approach will be 

reviewed.  

 

2.3.3 Density of the mixture 
 
Density is defined as a mass per unit volume in a specified pressure and temperature 

(McCain and Cawley, 1991). In MBO PVT model the density of mixture gases is 

defined as a function of pressure, well stream gravity, Z factor, universal gas constant, 

temperature and some numerical constant as follow.  

 

𝜌𝑔 = 28.97
𝑃𝛾𝑤
𝑍𝑅𝑇

 

 

2.26 

 

Where pressure is in (psia), temperature in (R), density is in (lbm/ft3), 𝛾𝑤 is well stream 

gravity. In gas-condensate reservoirs, it is important to use well stream gravity in 

estimating density of the mixture. This is because well stream gravity represents the 

average molecular weight of the mixture (produced gas and condensate) at the 

surface condition (standard condition) and can be estimated from following equation 

proposed by Standing, (1974).  

 

𝛾𝑤 =
𝛾̅𝑔̅ + 4580𝑟𝑝𝛾̅𝑜̅

1 + 133,000𝑟𝑠 (
𝛾
𝑀)𝑜̅

 

 

2.27 

 

Where rp is total producing oil (condensate) to gas ratio at the surface in STB/scf; 𝛾̅𝑔̅ 

is average surface gas gravity; 𝛾̅𝑜̅ represents surface condensate gravity; 𝑀𝑜̅ is surface 

condensate molecular weight. Average surface gas gravity can be calculated from the 

following equation: 
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𝛾̅𝑔̅ =
∑ 𝑅𝑝𝑖𝛾𝑔𝑖
𝑁
𝑖=1

∑ 𝑅𝑝𝑖
𝑁
𝑖=1

 

 

2.28 

 

Where Rpi is producing gas to oil ratio (GOR) at separator stage i in scf/STB and 𝛾𝑔𝑖 is 

gas specific gravity at separator stage (Whitson and Brulé, 2000). The relation 

between surface specific gravity and condensate molecular weight (
𝛾

𝑀
)
𝑜̅
in equation 

2.27, is defined by following equation proposed by Eilerts, (1947), which is valid for all 

types of gas-condensate fluids (Whitson and Brulé, 2000). 

 

(
𝛾

𝑀
)
𝑜̅
= 0.001892 + 0.0000735𝛾𝐴𝑃𝐼 − (4.52 × 10

−8)𝛾𝐴𝑃𝐼
2 

 

2.29 

 

Surface condensate gravity 𝛾̅𝑜̅ in 2.27 is ratio of density of condensate (oil) to density 

of water measured at standard conditions. 𝛾̅𝑜̅ is dimensionless quantity and is 

calculated accurately by the following relation.  

 

𝛾̅𝑜̅ =
141.5

131.5 + 𝛾𝐴𝑃𝐼
 

 

2.30 

 

The major issue with engineering calculation of gas-condensate reservoirs are 

unavailability of all the data. In practice only first-stage separator data including 

solution gas to oil ratio (Rs1), gas specific gravity (𝛾𝑔1), stock tank oil gravity (𝛾̅𝑜̅), 

pressure (Psp1) and temperature (Tsp1) are available (Gold, McCain and Jennings, 

1989; Whitson, 2006). However, the total producing oil (condensate) to gas ratio (rp) 

is still needed for calculation of well stream gravity using equation 2.27. This is inverse 

of solution gas to oil ratio (Rs1) and additional gas that is released from condensate 

phase at first-stage separator (Rs+).  

 

𝑟𝑝 =
1

𝑅𝑠1 + 𝑅𝑠+
 

 

2.31 

 

Where 𝑅𝑠+ can be calculated from the following correlation proposed by (Whitson, 

1989).  
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𝑅𝑠+ = [(
𝑃𝑝𝑠1

18.2
+ 1.4) × 10(0.0125𝛾𝐴𝑃𝐼−0.00091𝑇𝑠𝑝1)]

1.205

× 𝛾𝑔+ 

 

2.32 

 

Where 𝑃𝑝𝑠1 is in psia, 𝑇𝑠𝑝1 is in ⁰F and 𝑅𝑠+ is in scf/STB. 𝛾𝑔+ is a gas gravity of additional 

solution (gas released from separator oil). 𝛾𝑔+ can be estimated from Katz, (1942) 

correlation as follow.  

 

𝛾𝑔+ = 0.25 + 0.02𝛾𝐴𝑃𝐼 − (3.57 × 10
−6)𝛾𝐴𝑃𝐼 × 𝑅𝑠+ 

 

2.33 

 

Substituting equation 2.31 in 2.32 yields the 𝑅𝑠+ in the following form.  

 

𝑅𝑠+ =
𝐴1𝐴2

(1 − 𝐴1𝐴3)
 

 

2.34 

 

Computation of gas phase density from aforementioned procedure normally gives a 

reasonable estimation if accurate Z factor is provided in gas-condensate fluid. Gas 

density is used for estimation of gas viscosity in MBO PVT model.  

To estimate condensate phase density, condensate formation volume factor is 

required. Hence, we discuss formation volume factor of gas-condensate mixture in 

next section. 

 

2.3.4 Formation Volume Factor of Gas-Condensate Mixture  
 
Formation volume factor is a PVT property of black oil model to convert volume of 

hydrocarbon mixture at elevated pressure and temperature to the volume of product 

phase at surface pressure and temperature. Surface pressure and temperature in 

standard condition is defined as pressure of 14.7 psia and temperature of 520 

°Rankine or 60°Fahrenheit.  

 

𝐵𝑔 =
𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 (𝑃, 𝑇)

𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑃𝑠𝑐, 𝑇𝑠𝑐)
 

 

2.35 

 

Where Psc and Tsc are pressure and temperature at standard condition. For gas-

condensate mixture, because reservoir fluid produce liquid (condensate) at the surface 

as shown in Figure 2.3, two forms of formation volume factor are used for PVT 
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calculation as discussed before in equations 2.17 and 2.20. These include wet gas 

formation volume factor (Bg) and dry gas formation volume factor (Bgd).  

Using real gas law in equation 2.25, mathematically the wet gas formation volume 

factor in ft3/scf is defined as follow.  

 

𝐵𝑔 =

𝑍𝑛𝑅𝑇
𝑃

𝑍𝑠𝑐𝑛𝑅𝑇𝑠𝑐
𝑃𝑠𝑐

=
𝑃𝑠𝑐𝑍𝑇

𝑇𝑠𝑐𝑃
 

 

2.36 

 

Where Z factor at standard condition (Zsc) is unity and substituting standard condition 

of 14.7 psia for Psc and 520°Rankine for Tsc, following relationship yields for calculating 

wet gas formation volume factor.  

 

𝐵𝑔 = 0.02827
𝑍𝑇

𝑃
 

 

2.37 

 

It should be noted that wet gas formation volume factor (Bg) is fully defined from real 

gas law as shown in equation 2.37, therefore no correlations are available in literature 

for computation of Bg.  

In MBO PVT model for gas-condensate fluid, to take the phase change during 

depletion into consideration, dry gas formation volume factor is normally used.  

The dry gas formation volume factor (Bgd) at standard pressure and temperature (14.7 

psia and 520 °R or 60 °F) is defined as follow (Katz, 1942; Standing, 1974; Whitson 

and Brulé, 2000).  

 

𝐵𝑔𝑑 =
𝑃𝑠𝑐𝑍𝑇

𝑇𝑠𝑐𝑃
(1 + 𝐶𝑜̅𝑔𝑟𝑠) = 0.02827

𝑍𝑇

𝑃
(1 + 𝐶𝑜̅𝑔𝑟𝑠) = 𝐵𝑔(1 + 𝐶𝑜̅𝑔𝑟𝑠) 

 

2.38 

 

Where temperature (T) is in ⁰R, pressure (P) is in psia, solution oil to gas ratio (rs) is in 

STB/scf and dry gas formation volume factor (Bgd) is in ft3/scf. 𝐶𝑜̅𝑔 is conversion factor 

from surface oil volume in Stock Tank Barrel (STB) to equivalent surface gas in 

Standard Cubic Foot (scf) and estimated as follow.  

 

𝐶𝑜̅𝑔 = 133000
𝛾𝑜̅𝑔

𝑀𝑜̅𝑔
 

 

2.39 
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Where 
𝛾𝑜̅𝑔

𝑀𝑜̅𝑔
 can be estimated from equation 2.29. If composition of the mixture is not 

available condensate phase molecular weight can be estimated from Cragoe, (1929) 

recommended by Whitson et al., (2000).  

 

𝑀𝑜̅𝑔 =
6084

𝛾𝐴𝑃𝐼 − 5.9
 

 

2.40 

 

Because formation volume factor is inversely proportional to pressure, reciprocal of 

wet (1/Bg) and dry (1/Bgd) gas formation volume factors are used in reservoir 

simulation. The typical graph of (1/Bg) and (1/Bgd) against reservoir pressure is shown 

in Figure. 2.4 for gas-condensate reservoirs. Accurate estimation of wet and dry gas 

formation volume factor is directly affected by accurate determination of Z factor at 

desired pressure and temperature.  

 

Figure 2.4. Typical gas-condensate formation volume factor as a function pf pressure. 

Condensate (oil) phase formation volume factor (Bo) is another PVT property that 

should be considered in computation of black oil PVT model. As shown in equation 

2.21 the oil formation factor determines the volumetric ratio of oil (condensate) at 

reservoir pressure and temperature to standard (surface) pressure and temperature. 

Condensate (oil) formation volume factor is usually measured using constant volume 

depletion (CVD) test if the reservoir sample is available. However, in many cases, the 

samples are not always available and Bo is estimated using correlations. Developing 

accurate correlation for estimating Bo at various pressure and temperature has 
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received extensive attention among the researchers. As a result, many correlations 

are available for estimation of oil formation volume factor. Majority of the methods 

developed based on experimental data from reservoir samples or measurement of 

separator oil at the surface as a function of solution gas to oil ratio (Rs), specific gravity 

of gas (𝛾𝑔), oil specific gravity (𝛾𝑜) and temperature (T) (Ahmed, 2010, p. 96). To select 

the appropriate correlation for gas-condensate reservoirs the characteristics of 

condensate fluid should be considered. The gravity of produced oil (condensate) can 

be used as a selection criteria. Produced condensate is a very light oil with normally 

specific gravity between 40 ≤ 𝐴𝑃𝐼 ≤ 60°𝐴𝑃𝐼. Six popular methods that are valid within 

aforementioned API limit and frequently used in industry for estimation of Bo are 

discussed in following.  

Standing, (1947) presented a graphical correlation that correlated oil formation volume 

factor as function of Rs, 𝛾𝑜, 𝛾𝑔, and T that later in 1981 its mathematical form presented 

as follow by the author (Standing, 1981). 

 

𝐵𝑜 = 0.9759 + 0.000120 [𝑅𝑠 (
𝛾𝑔

𝛾𝑜
)
0.5

+ 1.25(𝑇)]

1.2

 

 

2.41 

 

Where T is in ⁰F, Bo is in bbl/STB and 𝛾𝑜 is specific gravity of stock tank oil. The above 

correlation is developed based on 105 experimental data points obtained from 22 

Californian hydrocarbon reservoirs. Subsequently many other correlations have been 

developed based on original Standing method.  

 

Vazquez and Beggs, (1980) developed an oil formation volume factor correlation 

based on 6000 data collected from world wide oil samples at various pressure. Using 

regression analysis their correlation is valid for light oils with 𝛾𝐴𝑃𝐼 ≥ 30 and presented 

as follow. 

 
𝐵𝑜 = 1 + 4.670 × 10−4(𝑅𝑠) + 0.11 × 10

−4(𝑇 − 60) × (
𝛾𝐴𝑃𝐼
𝛾𝑔𝑐

)

− (1.8106 × 10−8)𝑅𝑠(𝑇 − 60) × (
𝛾𝐴𝑃𝐼
𝛾𝑔𝑐

) 

 

2.42 

 

Where 𝛾𝑔𝑐is the corrected gas specific gravity, included for the effect of separator 

conditions and can be estimated from following correlation proposed by the same 

authors.  
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𝛾𝑔𝑐 = 𝛾𝑔 [1 + 5.912(10
−5)𝛾𝐴𝑃𝐼 (𝑇𝑆𝑒𝑝 − 460)𝑙𝑜𝑔 (

𝑃𝑆𝑒𝑝

114.7
)] 

 

2.43 

 

Where Tsep is separator temperature in Rankine and Psep stands for separator pressure 

in psia.  

 

From studying 45 oil PVT data Glaso, (1980) proposed his oil formation volume factor, 

that can be used for saturated oil (condensate) Bo estimation. Comparative study of 

Bo correlations by Sutton and Farshad, (1990) indicates Glaso’s correlation is 

accurate for 𝐵𝑜 ≥ 1.4. Glaso’s correlation is presented in following form. 

 

𝐵𝑜 = 1 + 10
−6.58511+2.91329𝑙𝑜𝑔𝐵𝑜𝑏

∗−0.27683𝑙𝑜𝑔𝐵𝑜𝑏
∗2

 

 

2.44 

 

Where 𝐵𝑜𝑏
∗is a correlating parameter that can be estimated as follow. 

 

𝐵𝑜𝑏
∗ = 𝑅𝑠 (

𝛾𝑔

𝛾𝑜
)
0.526

+ 0.968(𝑇 − 460) 

 

2.45 

 

In above equation T is in ⁰F.  

 

Based on 160 experimental data point of Middle Eastern oil reservoirs Al-Marhoun, 

(1990) developed his saturated formation oil factor correlation as a function of Rs, 𝛾𝑜, 

𝛾𝑔 and T. He recommended a linear relationship between Rs and Bo as follow. 

 
𝐵𝑜 = 0.497069 + (0.8629 × 10−3𝑇) + (0.18259 × 10−2𝐹)

+ (0.31809 × 10−5𝐹2) 

 

2.46 

 

Where F can be estimated as  

 

𝐹 = 𝑅𝑠
0.742390𝛾𝑔

0.323294𝛾𝑜
−1.202040 

 

2.47 

 

Different approach for estimation of oil formation volume factor is recently developed 

based on material balance relation (Ahmed, 2010, p. 97). The correlation is function 
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of solution gas to oil ratio (Rs), gas specific gravity (𝛾𝑔), oil specific gravity (𝛾𝑜) and oil 

density and presented as follow.   

  

𝐵𝑜 =
62.4𝛾𝑜 + 0.0136𝑅𝑠𝛾𝑔

𝜌𝑜
 

 

2.48 

 

Where 𝜌𝑜 is density of oil (condensate) at specified pressure and temperature in lb/ft3. 

Ahmed (2010) shows that using equation 2.48 for estimation of Bo is the best among 

aforementioned methods with the least average absolute error. More comprehensive 

review on validity of oil formation volume factor correlations by Al-Shammasi, (2001) 

and Aamir Mahmood and Ali Al-Marhoun, (1996) showed that the studied methods 

return the measured Bo with less than 2% error for large data bank. The accuracy of 

above Bo correlations are acceptable for PVT modelling of gas-condensate fluid in 

three-flow region pseudopressure integral of 2.16. Accurate determination of Bo is also 

important for reliable estimation of condensate density.  

 

Condensate (oil) density is mass of a unit volume at specified pressure and 

temperature usually estimated from the following relation proposed by Standing, 

(1981). 

 

𝜌𝑜 =
62.4𝛾𝑜 + 0.0136𝑅𝑠𝛾𝑔

𝐵𝑜
 

 

2.49 

 

Substituting equation 2.41 for Bo in above correlation yields the following relation that 

is widely used in industry for estimation of density of oil at or below the bubble-point 

pressure. 

 

𝜌𝑜 =
62.4𝛾𝑜 + 0.0136𝑅𝑠𝛾𝑔

0.9759 + 0.000120 [𝑅𝑠 (
𝛾𝑔
𝛾𝑜
)
0.5

+ 1.25(𝑇)]
1.2 

 

2.50 

 

For gas-condensate mixture, gas specific gravity 𝛾𝑔 should be gravity of gas released 

from separator oil (condensate). Standing correlation for density of the oil is superior 

to other methods as it does not require correction term for pressure and temperature 

(Whitson and Brulé, 2000; Ahmed, 2010). In a recent comparative study by Mmata 

and Onyekonwu, (2014) it has been shown that using Standing correlation of 2.50 for 
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estimation oil density return the experimental values with reasonable accuracy of 2.4% 

average absolute error.  

 

2.3.5 Solution Gas to Oil Ratio (Rs) 
 

Another important PVT property that needs accurate estimation in MBO PVT model is 

solution gas to oil ratio (Rs). Rs defined as the number of standard cubic feet (scf) of 

gas that dissolved in one stock tank barrel (STB) of oil at certain pressure and 

temperature.  This ratio also known as gas solubility (Ahmad, 2020). Rs is an important 

volumetric property of MBO, normally measured using laboratory tests of constant 

volume depletion (CVD) or constant composition expansion (CCE). Initial value of Rs 

remains constant until the reservoir pressure drops to below the dew point pressure 

and increases afterward. The relationship between Rs and reservoir pressure is 

demonstrated for a North Sea gas-condensate sample in following figure. 

 

Figure 2.5. Solution gas to oil ratio (Rs) for North Sea gas-condensate sample at T=280⁰F 

(Modified from Whitson and Torp, 1983). 

Accurate estimation of Rs is important and directly affect accuracy of other PVT 

properties such as formation volume factor (Bo), density (𝜌𝑜) and well stream gravity 

(𝛾𝑤). If compositional data of the gas-condensate fluid is available solution gas to oil 
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ratio can be estimated through material balance method of Whitson and Torp, (1983) 

or more complicated cubic equation of state (e.g., Peng and Robinsons).  

There are also many empirical correlations for estimating Rs when composition of the 

mixture is not available. Different authors developed their correlations based on the 

data of certain localities, hence their applications are limited. Many comparative 

studies are also conducted to see the superiority of these correlations (Ostermann and 

Owolabi, 1983; McCain and Cawley, 1991; De Ghetto et al., 1994; Sutton, 2007). A 

few more widely accepted correlations for estimation of Rs is discussed in following.  

 

Standing, (1947) proposed a graphical correlation for solution gas to oil ratio as a 

function of pressure, temperature, API gravity and specific gravity. Standing used 

same oil samples discussed previously (105 Californian oil samples) in developing 

following correlation for estimating Rs. The correlation is valid in the range of 20 – 1425 

scf/STB (Danesh, 1998). 

 

𝑅𝑠 = 𝛾̅𝑔̅ [(
𝑃

18.2
+ 1.4) × 100.0125𝐴𝑃𝐼−0.00091(𝑇−460)]

1.2048

 

 

2.51 

 

Where temperature is in Rankine and pressure is in psia. The Standing correlation 

return the experimental solution gas to oil ratio with 4.8% error.  

Following Standing’s method Vazquez and Beggs, (1980) developed a correlation for 

estimating solution gas to oil ratio based on 5008 measured data points. The 

correlation is valid for oil gravity of larger than 30 API and presented in the following 

fashion.  

 

𝑅𝑠 = 0.178𝛾𝑔𝑐𝑃
1.1870𝑒𝑥𝑝 [23.931 (

𝛾𝐴𝑃𝐼
𝑇
)] 

 

2.52 

 

To adjust the gravity to reference separator pressure corrected gas specific gravity 

should be used. This is because specific gravity of gas depends on the conditions that 

gas separated from the oil phase. Corrected gas specific gravity (𝛾𝑔𝑐) in equation 2.43 

can be used in Vazquez and Beggs, (1980) solution gas to oil ratio correlation. Sutton 

and Farshad, (1990) showed that using Vazquez and Beggs, (1980) for estimating Rs, 

predicts the experimental measurements with 12.7% error within the range of 0 – 2199 

scf/STB.  
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To improve accuracy of previous models Glaso, (1980) proposed another solution gas 

to oil ratio correlation based on 45 oil samples from North Sea, which is valid for Rs in 

the range of 90 – 2637 scf/STB. The correlation reported as follow.  

  

𝑅𝑠 = 𝛾̅𝑔̅ [(
𝛾𝐴𝑃𝐼

0.989

(𝑇 − 460)0.712
)102.8869−[14.1811−3.3093log (𝑃)]

0.5
]

1.2255

 

 

2.53 

 

The author stated an average error of 1.28% for estimating solution gas to oil ratio.  

Other correlations are also available in literature for computation of Rs, however most 

of them followed Standing, (1947)’s correlation in their development process.  

Another well received correlation was proposed by Petrosky and Farshad, (1998) for 

estimation of Rs. They used 81 oil samples obtained from Gulf of Mexico in developing 

their correlation. Petrosky and Farshad, (1998) proposed the following expression for 

Rs.  

 

{ 𝑅𝑠 = [(
𝑃

112.727
+ 12.340) 𝛾̅𝑔̅

0.843910𝑋]
1.73184

𝑋 = 7.916 × 10−4𝛾𝐴𝑃𝐼
1.5410 − 4.561 × 10−5𝑇1.3911

} 

 

2.54 

 

The above Rs correlation is valid within the range of 217 ≤ 𝑅𝑠 ≤ 1406𝑠𝑐𝑓/𝑆𝑇𝐵. The 

authors reported that their correlation predicts the experimental Rs in specified range 

with -0.05 average relative error.  

Modelling solution gas to oil ratio (Rs) has received extensive attention among the 

research community in recent decades. Many correlations are available that can be 

used for accurate estimation of Rs in gas-condensate reservoirs. For instance Petrosky 

and Farshad, (1998) predicts Rs with absolute error of -0.05. Also De Ghetto et al., 

(1994) showed that Rollins, McCain and Creeger, (1990) solution gas to oil ratio 

correlation predicts the experimental Rs with 4.3% error for light oil with API >31⁰.  

 

2.3.6 Viscosity (Gas/Condensate) 
 
Two types of viscosities are usually applied for engineering calculation of hydrocarbon 

reservoirs including dynamic viscosity (μ) and kinematic viscosity (ν). Dynamic 

viscosity is defined as measuring resisting of fluid (gas and liquid) to flow under 

external forces with the unit of centipoise (cp). However, kinematic viscosity is 

resistance to flow of a fluid under gravitational affect (weight of fluid due to gravity 
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effect) with the unit of centistokes (cSt). Two viscosities are related by density of the 

fluid (𝜇 = 𝜈𝜌).  

Most petroleum engineering applications are using dynamic viscosity, which is for 

Newtonian fluid (fluid that flows regardless of external forces with predictable viscosity 

when pressure and temperature changes) mathematically defined as follow.  

 

𝜇 =
𝜏𝑔𝑐
𝑑𝑢

𝑑𝑦⁄
 

 

2.55 

 

Where 𝜏 is shear stress per unit area in a shear plane parallel to the direction of flow, 

𝑑𝑢
𝑑𝑦⁄ is velocity gradient perpendicular to plane of shear and 𝑔𝑐 is a unit conversion 

from mass to force.  

Developing condensate phase below the saturation pressure in gas–condensate 

reservoirs necessitate calculation of gas and condensate phase separately. Gas 

viscosities of hydrocarbon reservoirs are generally within the range of 0.01 – 0.03cp 

at standard reservoir conditions, increasing to 0.1cp for near critical gas-condensate 

systems (Lohrenz, Bray and Clark, 1964; Whitson and Brulé, 2000). Measurement of 

gas viscosities are rare because most of laboratories do not have the facility to conduct 

the experiments and the prediction is normally through using correlations. Viscosity of 

gases are usually correlated as a function of pressure, temperature and mixture 

composition [𝜇𝑔 =  𝑓(𝑃, 𝑇, 𝑦𝑖)]. Based on this relationship many empirical and semi-

empirical correlations have been developed for estimating of gas viscosity. The 

fundamental principle of using any gas viscosity correlations are as follow: 

 Low pressure gas viscosity (𝜇𝑔𝑠𝑐) at standard pressure and temperature 

condition should be estimated 

 Corresponding state principle should be used to estimate actual value of 

viscosity (𝜇𝑔) 

This would relate the actual gas viscosity (𝜇𝑔) at P and T to low pressure viscosity by 

a ratio of 𝜇𝑔 ⁄ 𝜇𝑔𝑠𝑐 as a  function of pseudoreduced properties (Ppr) and (Tpr) or as a 

function of pseudoreduced density (ρpr). In following a few existing literature 

correlations that are using this principles reviewed.  

Carr et al., (1954) developed a graphical chart for estimation of gas viscosity using the 

relationship of 
𝜇𝑔

𝜇𝑔𝑠𝑐⁄ = 𝑓(𝑇𝑝𝑟, 𝑃𝑝𝑟). Later Dempsey, (1965), presented polynomial 
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relation of Carr et al., (1954) viscosity method with 15 constants. Dempsey, (1965) is 

valid in the range of 1.2 ≤ 𝑇𝑟 ≤  3 and 1 ≤ 𝑃𝑟 ≤ 20. In 1962, Jossi et al., (1962) 

developed an empirical viscosity correlation for estimation of pure component. Then 

Lohrenz et al., (1964) extended Jossi et al., (1962) correlation for estimation of mixture 

viscosity. Lohrenz et al., (1964) mixture viscosity correlation usually referred to 

Lohrenz – Bray – Clark (LBC) method. The LBC become standard compositional 

reservoir simulator correlation for estimating gas/liquid viscosities. The LBC method is 

very sensitive to the value of reduced density as the viscosity is estimated based on 

forth degree polynomial reduced density.  

Lucas, (1981) used 
𝜇𝑔

𝜇𝑔𝑠𝑐⁄ relationship similar to Carr et al., (1954) and developed his 

gas viscosity correlation that is valid for wider range of 1 ≤ 𝑇𝑟 ≤  40 and 0 ≤ 𝑃𝑟 ≤

100.  

Using corresponding state principle Pedersen and Fredenslund, (1987) developed a 

viscosity model where the methane was reference fluid  based on work of Christensen 

and Fredenslund, (1980). In this method, viscosity of reference fluid (gas, liquid) is 

estimated based on pressure, temperature, molecular size and density effect. Last two 

parameters can be estimated empirically from fluid molar mass and reduced density. 

The Pedersen and Fredenslund, (1987) is one of the fundamental viscosity methods 

used in reservoir simulators such as Eclipse (Schlumberger) and  Landmark’s Nexus 

(Halliburton). Baled et al., (2018) in their review study showed that using Pedersen 

and Fredenslund, (1987) correlation return the mixture viscosities with 5 – 15% error 

and 15 – 30% for heavy alkane and binary mixtures.  

 

Later in 1966 the authors Lee – Gonzalez – Eakin (LGE) (Lee, Gonzalez and Eakin, 

1966) proposed simpler semi-empirical viscosity correlation irrespective the 

knowledge of pseudo critical properties (Tpr and Ppr). The correlation is based on 

density, molecular weight for estimation of gas viscosity. The correlation developed as 

a function of pressure, gas density, temperature and molecular weight. Since its 

publication, LGE become very popular due to its simplicity for estimating gas viscosity 

in compare to corresponding state based methods. The LGE correlation is used by 

most PVT laboratories for estimating gas viscosity and its application extended for 

reservoirs simulators. Following LGE correlation, many other correlations have been 

developed  in similar fashion (Elsharkawy, 2006; Londono et al., 2002; Sutton, 2005). 
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These correlations are computationally simple and effective for quick estimation of gas 

viscosity. For lower range of gas viscosities (0.01 – 0.03cp) the accuracy of gas 

viscosity correlations are within 5 – 10% error, which is adequate for most applications 

(e.g., dry gas, black oil reservoirs). However, in higher range of gas viscosities (0.03 

– 0.1cp) the error of 20 – 30% may be expected (McCain and Cawley, 1991; Whitson, 

2006). This error would proportionally effect the production forecast and well 

deliverability estimation for gas-condensate reservoirs.  

 

The difficulty of viscosity estimation even become harder for condensate phase. The 

developed condensate inside the reservoir is a form of light oil with API gravity 

between 40 – 60 (0.74 – 0.82 condensate specific gravity). The viscosity of 

condensate fluid almost never measured or very rare because of several reasons 

highlighted in flowing. Measurement of condensate viscosities are  very difficult to 

obtain due to unavailability of the samples, lack of high pressure high temperature 

(HPHT) facilities, small volume cell viscometers and time and cost required for the 

measurements (Whitson, Fevang and Yang, 1999; Al-Meshari et al., 2007; Hemmati-

Sarapardeh et al., 2014).  

Therefore using correlations for estimation of condensate viscosity is become a norm 

in industry. Nevertheless, using correlations for estimation of condensate viscosity are 

exceedingly inaccurate. The best performance of the prevalent existing correlations 

are within 10 – 30% error, and often increase to 50% (Whitson, 2006; Yang et al., 

2007).  

Unacceptable accuracy of condensate viscosity may cause a serious problem in 

developing a reliable well deliverability model, especially when condensate blockage 

has significant impact on well deliverability (e.g., rich gas-condensate fluid in tight 

formation) (Fevang, Singh and Whitson, 2000; Whitson, 2006). Previous studies show 

1% error in reservoir fluid viscosity resulted in a 1% error in cumulative production 

(total production of gas and oil) (Whitson, Fevang and Yang, 1999; Al-Meshari, 2004; 

Yang et al., 2007).  

Sutton, (2005) further investigate using existing literature models for estimation of gas-

condensate viscosity below the saturation pressure and highlights the following 

drawbacks of existing literature models: 

 They have a limited range of application.  
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 Smooth transition near critical point cannot be achieved. 

 Accuracy of many viscosity models are function of accurate density estimation, 

in other word they are density dependant. 

 Many correlations are required heavy tuning of their constants to match the 

experimental data. 

 The performance of almost all viscosity correlations are notorious for estimation 

of condensate phase viscosity.  

Among the MBO PVT properties that associated with three regions pseudopressure 

approach in 2.16 for estimation of well deliverability, viscosities (gas/condensate) has 

highest prediction error as mentioned in this section. The aforementioned challenges 

for viscosity (gas/condensate) prediction and gap in current literature motivated this 

study to further focus on developing new approaches for estimation of this important 

PVT parameter. The detail description of each viscosity model along with current 

modelling approaches is discussed in chapter 4.    

 

2.3.7 Drawdown Behaviour on modelling   
 
The drawdown behaviour of gas-condensate reservoirs undergoing depletion 

discussed in 1.3.2. This behaviour is directly affect permeability of the developed 

phases as a results of pressure depletion inside the reservoir. Gas rate equation in 2.4 

includes absolute permeability (k), which is the capacity and ability of the formation to 

transmit fluid in a porous medium (Ahmed, 2010). In a single phase system using 

absolute permeability is enough for well deliverability modelling. However, when 

several phases (e.g., gas, condensate, water) flow simultaneously in a porous 

structure like a hydrocarbon reservoirs, the permeability of the formation to each phase 

should be estimated. Respective permeability of each phase known as relative 

permeability (Kr). Relative permeability is one of the governing parameters that 

influence gas and condensate flow rate at the surface using pseudopressure approach 

in equation 2.16.  

The flow in gas-condensate below the dew point is a combination of several phases 

(at least two phases of gas and condensate), moving towards the wellbore region 

simultaneously. Relative permeability characterizes how easily each fluid phase flows 

through a porous medium in a multi-phase system. Fevang and Whitson, (1996) 
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investigated the effect of condensate banking on well deliverability by introducing 

relative permeability into pseudopressure integral in equation 2.16.  

Laboratory measurements are most common methods in determination of gas-

condensate relative permeabilities (Sumnu-Dindoruk and Jones, 1998). The data 

obtained from measurements are the base of constructing relative permeability curves 

as a function of phase saturation. Conceptual modelling of gas-condensate systems 

suggests that relative permeability curves dictate the magnitude of gas productivity 

loss (Afidick, Kaczorowski and Bette, 1994; Bourbiaux, 1994; Altug, Mo-Yuen Chen 

and Trussell, 1999; Behmanesh, Hamdi and Clarkson, 2017). The use of inaccurate 

relative permeability curves may result in over or underestimation of gas-condensate 

reservoir performance prediction. Although laboratory measurements are standard 

methods for estimating gas and condensate relative permeabilities using core flood 

experiment, they involved several challenges as follow: 

 The laboratory measurements of relative permeabilities are very expensive.  

 The experiment is very difficult to conduct due to complexity of the gas- 

condensate fluid below the dew point pressure. 

 Limitation of core samples makes the obtained data from the experiments 

limited where the whole saturation range cannot be determined (Sumnu-

Dindoruk and Jones, 1998).  

Deficiencies of experimental procedure motivate engineers to rely on available existing 

relative permeability correlations. Many empirical relative permeability methods have 

been developed in past several decades to predict relative permeability under different 

conditions. Some of these correlations are Brooks and Corey, (1964), Chierici, (1984); 

Corey et al., (1956), Stone, (1973, 1970) and Wyllie, (1951).  

In gas-condensate reservoirs when multi-phase flow occurs complex surface tension 

(effect of the forces on the interface), and flow velocity effect near wellbore region, 

makes relative permeability estimation even more difficult. This would influence the 

accuracy of the correlational approach in estimating relative permeability. 

 

The aforementioned difficulties of laboratory measurements make relative 

permeability curves scarce and contradictory. Therefore, other approaches have been 

proposed in literature for determination of relative permeabilities based on field 

performance and or well pressure test data. Fetkovich et al., (1986) proposed a 
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method to determine relative permeabilities for solution gas drive reservoirs using oil 

and gas flow rate time data. Al-Khalifa et al., (1987) proposed in-situ method to 

estimate three-phase relative permeabilities using pressure transient analysis. 

Hatzignatiou and Reynolds, (1996) proposed a procedure to estimate the effective 

permeability (absolute permeability multiply by relative permeability) curve from 

drawdown well test pressure data.  Serra et al., (1990) introduced a procedure to 

estimate effective permeability from transient radial drawdown data.  

Sumnu-Dindoruk and Jones, (1998) modified Fetkovich et al., (1986) for estimation of 

gas-condensate relative permeabilities. Their method require gas and condensate 

production rate, PVT properties, calculated initial gas in place (IGIP) from material 

balance, average reservoir pressure and critical water saturation. Jokhio, (2002) and  

Jokhio and Tiab, (2002) developed a scheme to estimate gas and condensate 

effective permeabilities from well pressure buildup test for gas-condensate reservoirs.  

 

In this study mathematical manipulation of three regions pseudopressure approach 

developed by Jokhio, (2002) is used for estimation of effective permeability of each 

phase. The method relies on actual well test data during pressure build up/drawdown. 

This would eliminate uncertainty of the correlational approach in generating relative 

permeability curve, which is one of the main factors for inaccurate estimation of three-

flow regions pseudopressure approach in 2.16. The method is further discussed in 

chapter 6 of this study.  

 

2.4 Summary  

 
Gas-condensate wells undergoing depletion are experiencing substantial productivity 

lose at the surface due to condensate blockage near wellbore region. Condensate 

blockage is a result of condensate drop out (heavy hydrocarbon drop out from gas 

phase) below the saturation pressure. Condensate drop out effect phase and 

drawdown behaviour of such system significantly. A model that accurately predict the 

phase and drawdown behaviour with the effect of condensate blockage in gas-

condensate reservoirs are highly desirable. Such model require accurate estimation 

of PVT properties and reliable treatment of phase permeabilities. The emphasis of this 

study is on accurate estimation of gas and condensate PVT properties. Among the 

PVT properties, accurate estimation of Z factor is the key because almost all other 
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PVT properties such as gas density, gas and oil formation volume factor (Bg and Bo), 

well stream gravity are function of Z factor (Whitson and Brulé, 2000). Although there 

are extensive research on accurate estimation of Z factor for natural gas systems 

(Chamkalani et al., 2013; Elsharkawy, 2006; Rostami et al., 2018; Standing and Katz, 

1942), however investigations for developing accurate Z factor models of gas-

condensate systems have not received enough attention.  

Viscosity is another PVT property that need accurate prediction, yet it has highest 

uncertainty as highlighted in 2.3.6 among the PVT properties. This is highlight the fact 

that current literature approaches for estimation of gas-condensate viscosity are not 

adequate in various conditions. The fundamental PVT properties of any PVT models 

are Z factor and viscosity. The two properties of viscosity and Z factor are strongly 

dependant on pressure and temperature. The performance of almost all existing 

viscosity models are with very high error between 10 – 50% for gas-condensate 

reservoirs (Whitson, 2006). Z factor is another crucial PVT property that always should 

be estimated with high accuracy. Nevertheless previous studies (Elsharkawy, Hashem 

and Alikhan, 2000; Ghiasi et al., 2014; Saghafi and Arabloo, 2018) showed that using 

different mixing rules and hydrocarbon plus characterization the accuracy of current 

existing methods for prediction of Z factor is with deviation of 8 – 56% from actual 

values.  

Hence, throughout the remaining of the thesis, the focus is on accurate modelling of Z 

factor and viscosity for better PVT representation of gas-condensate fluid below the 

saturation pressure. The effect of accurate determination of gas and condensate 

viscosities and Z factor on well production profile is ultimate interest of this study. For 

this purpose, three regions pseudopressure integral in equation 2.16 incorporated with 

volumetric material balance to generate the production profile of studied gas-

condensate reservoir. The result of this study will be compared with actual field data 

as well as compositional reservoir simulator. 
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CHAPTER 3 METHODOLOGY AND 

CONCEPTUAL FRAMEWORK 

METHODOLOGY AND CONCEPTUAL FRAMEWORKM 
 

 

3.1 Introduction  

 
This chapter introduces the methodologies and framework that have been taken to 

conduct this research study. First, a brief discussion of the existing literature 

approaches for characterizing PVT models is provided. Then various well deliverability 

models are discussed, where the advantages and drawbacks of each method are 

highlighted. The justification behind the selected approach is also provided.  

 

3.2 Pressure – Volume –Temperature (PVT) modelling  

 
Traditionally PVT properties of hydrocarbon mixtures are estimated using black oil 

(two components) model and compositional (several components) model. The later 

fluid modelling provides better accuracy for gas-condensate reservoirs, as it has the 

ability to monitor each component’s saturation at all reservoir pressure and 

temperature stages (Khanal, Khoshghadam and Lee, 2016). However, the 

computational procedure is more complex and require more time to run in compare to 

black oil PVT model.  

The development of the compositional models are started due to increasing 

occurrence of gas-condensate and volatile oil reservoirs. The phase equilibrium and 

fluid properties such as compressibility, density, and viscosity are determined by 

equation of state (EOS). An equation of state represents a theoretical relationship 

between pressure, volume and temperature. The cubic Peng and Robinson, (1976) 

and Soave - Redlich - Knowng (1972) equations of state are commonly used in the 

petroleum industry.  

In this technique, the phase composition is determined by flashing the fluid over wide 

range of pressures. During the computation process, the mass balance equation for 

each composition is used, where sum of the saturations should be 1 (100%). The 

phase behaviour of the fluid has to be consistent with pressure, temperature and 

composition in each grid cell in reservoir simulations.  
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The number of mass balance equations increase as the number of compositions in 

the system increase. This would add extra computation time in simulation studies. 

Recently, full compositional simulation become more feasible with advancement in 

computational techniques, however for large number of cells it is still impractical.  

Despite advantages of the compositional modelling of PVT properties, it requires more 

computational effort than black oil model due to its great complexity. The prediction 

accuracy of equation of state in compositional simulation is deteriorate in near critical 

regions (e.g., rich gas-condensate fluid and highly volatile oil) (Elsharkawy, 2006). This 

can restrict the model application in reservoir studies where significant compositional 

variations occur (Gomes and Corrêa, 1992).  

To attempt for modifying black oil PVT model an approach was developed known as 

modified black oil (MBO), where the knowledge of expansion of gas and shrinkage of 

oil in the surface due to the amount of dissolved gas is added to the MBO (Izgec and 

Barrufet, 2005; Nassar, El-Banbi and Sayyouh, 2013). MBO is discussed in details in 

2.3.1. Many studies show excellent agreement of MBO with compositional models 

(EOS) for simulating gas-condensate fluid (Whitson and Torp, 1983; Coats, Thomas 

and Pierson, 1995; Mott, 2002; Chowdhury et al., 2004; Fan et al., 2005; Behmanesh, 

Hamdi and Clarkson, 2017). MBO is much simpler than compositional formulation 

using EOS.  Three-flow regions pseudopressure equation in 2.16 proposed by 

Fevang, (1995) written in terms of MBO PVT model. Therefore, in this study MBO PVT 

approach also adopted to generate PVT properties of gas-condensate fluid.  

 

3.3 Approaches of Well Deliverability Modelling  

 
Existing of condensate liquid below the saturation pressure in gas-condensate 

reservoir is making well deliverability modelling of such reservoir a challenging task. 

This is because a comprehensive model that account for condensate blockage and 

effect of capillary, viscous and inertial forces is a significant task for reservoir 

engineers to implement.  

Two fundamental approaches to study fluid flow in any hydrocarbon reservoirs are 

including “classical” and “modern” techniques. Classical approach based on utilizing 

analytical solutions of linear differential equations while modern methods consist of 

numerical simulation models. Use of analytical technique can be regarded as more 
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specialized and difficult to apply, since it requires considerable knowledge to use in 

particular equation to describe a physical situation in a reservoir (Dake, 2001).  

 

The most common approach of modelling well deliverability of gas-condensate 

reservoir and predicting well performance is through reservoir simulation studies. The 

simulation models incorporate the rock and fluid properties to predict the dynamic 

influence of condensate blockage over gas and condensate production (Fan et al., 

2005). The standard compositional industry simulator is Eclipse – 300 that enables 

better prediction of well deliverability by using small grids near wellbore region, where 

condensate blockage is exist (Fan et al. 2005). The small grids can be constructed 

using Local Grid Refinment (LGR). The disadvantage of LGR for modelling near 

wellbore region is a significant increase in computation time especially for reservoirs 

with tight formation. One of the major issues of gas-condensate resevoirs undergoing 

depletion is compositional changes during depletion. Compositional simulation studies 

enable engineers to detect compositional changes below the saturation pressure using 

advanced cubic equation of state (EOS). 

Although compositional simulation studies are very popular in industry, however there 

are many applications that these type of analaysis is not justifiable (Mott, 2002; Fan et 

al., 2005; Bonyadi, Rahimpour and Esmaeilzadeh, 2012). This is due to their 

computational efficiency and considerable data required to start the study. The typical 

problem with engineering calculation of gas-condensate reservoirs  is unavailability of 

all the data to run the simulation (Whitson, 2006). Therefore, other techniques so 

called analystical methods (e.g,. steady-state pseudopressure or three-flow regions 

pseudopressure approach) are currently exist in literature that allow such studies with 

good accuracy comparable to compositional simulation studies (Fevang and Whitson, 

1996; Mott, 2002; Chowdhury et al., 2004; Fan et al., 2005). The  

For gas-condensate well deliverability modelling, three-flow regions pseudopressure 

approach, introduced in 2.16, has become a standard choice in recent years. This 

method can be implemented in spreadsheet and its very useful for quick estimation of 

well deliverability where many sensitivity runs are required (Fan et al., 2005). 

Comparison of fully compositional simulation and local grid refinement with 

pseudopressure approach of equation 2.16 incorporated with non-Darcy flow show 

that pseudopressure method captured all near wellbore condensate blockage effect 

accurately (Mott, 2002; Chowdhury et al., 2004; Fan et al., 2005; Behmanesh, Hamdi 
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and Clarkson, 2017). The main advantage of pseudopressure approach is easy to 

implement and there is no increase in computational time (Mott, 2002; Chowdhury et 

al., 2004; Fan et al., 2005). To successfully implement three-flow regions 

pseudopressure approach reliable relative permeability curves, accurate estimation of 

GOR and accurate determination of PVT properties are required (Fevang and 

Whitson, 1996; Roussennac, 2001).  The aim of this study is to investigate the 

accuracy of three-flow regions pseudopressure approach for gas-condensate 

performance modelling with an emphasis on accurate estimation of PVT properties 

including gas/condensate viscosity and Z factor. 

 

3.4 Current Study Approach 

 
One of the major issues in modelling of well deliverability in gas-condensate reservoirs 

using any discussed approaches is accurate determination of PVT properties. In 

relation to MBO PVT, used in three-flow regions pseudopressure integral in equation 

2.16, the main PVT properties are gas and oil formation volume factor (Bg, Bo) (they 

are function of two-phase Z factor), gas and condensate viscosities (𝜇𝑔, 𝜇𝑜) and 

solution gas to oil ratio (Rs). The estimation of MBO PVT properties mainly rely on 

correlations when the compositional data is not available. The problems and limitation 

of existing literature correlations for estimating different PVT parameters (Bg, Bo, 

Rs,𝜇𝑔, 𝜇𝑜) are reviewed in 2.3.  

In this research, extensive attempt has been made to eliminate some of the difficulties 

that PVT systems encounter for modelling gas-condensate fluid properties below the 

saturation pressure. In doing so for better and more accurate PVT representation of 

gas-condensate fluid the Artificial Intelligent (AI) or known as machine learning 

techniques were utilized. This approach was taken due to availability of the data in 

recent years for gas-condensate reservoirs. The AI methods are data driven 

techniques, that making prediction based on the real data rather than physics of the 

problem. There are many successful applications of AI techniques for reservoir 

modelling in recent years. Some of the examples of the machine learning techniques 

for different aspect of reservoir modelling in literature can be found in (Ahmadi et al., 

2014; Ghiasi et al., 2014; Hemmati-Sarapardeh et al., 2014; Kamari et al., 2013; 

Naderi and Khamehchi, 2019; Shokir, 2008).  

 



 

54 | P a g e  
 

Various algorithms of Artificial Intelligent manipulated for better modelling of gas-

condensate PVT properties. The AI methods applied in this study listed as follow. 

 Artificial Neural Network (Feed Forward Neural Network, Cascade Forward 

Neural Network) 

 Support Vector Machine (SVM) 

 Fuzzy Logic [including Takagi – Sugeno – Kang (TSK) and Mamdani] 

 Adaptive Neuro Fuzzy Inference System (ANFIS) 

Based on the above AI methods several models have been developed, which offer 

accuracy, mathematical efficiency and simplicity in compare to existing literature 

correlations for estimation of viscosity and Z factor of gas-condensate reservoirs.  

In order to see the effectiveness of the developed viscosity and Z factor models in 

relation to well deliverability of gas-condensate reservoirs; three regions 

pseudopressure method also was employed. Three regions pseudopressure method, 

incorporated with results of PVT properties (gas/condensate viscosity, Z factor) for 

calculation of well inflow performance. The ultimate interest of this study is to improve 

gas-condensate well production performance modelling. Hence, the results obtained 

from pseudopressure method incorporated with volumetric material balance to 

generate production profile of gas and condensate on the surface.  

 

Our approach for computation of well inflow performance and generating production 

profile is similar to previous study performed by (Fevang and Whitson, 1996; Jokhio 

and Tiab, 2002; Mott, 2002; Chowdhury et al., 2004; Arukhe and Mason, 2012; 

Bonyadi, Rahimpour and Esmaeilzadeh, 2012; Behmanesh, Hamdi and Clarkson, 

2015, 2017; Hekmatzadeh and Gerami, 2018). However, the advantage of the current 

approach is that the properties that require for computing three-flow regions 

pseudopressure integral estimated using AI techniques to ensure better accuracy of 

the model is achieved. 

 

3.5 Major Work Steps  

 
The conceptual framework of this investigation can be summarized and major work 

steps that have been taken are highlighted as follow. 

i. Critical review of the relevant literature was carried out and the gaps and 

shortfalls in current literature are identified. This literature review assisted to 
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shape aims and objectives of the study in improving well deliverability 

modelling of gas-condensate reservoirs.  

ii. Extensive published literature used to develop a data bank to improve PVT 

modelling of gas-condensate reservoir through accurate modelling of  

gas/condensate viscosity and two-phase Z factor.  

iii. Several dynamic gas/condensate viscosity models have been developed using 

regression and AI methods including ANN, SVM and Fuzzy Logic. 

iv. Several two-phase Z factor models have been developed using smart AI 

methods including Cascade-Forward Neural Network (CFNN), Feed-Forward 

Neural Network (FFNN) and Adaptive Neuro Fuzzy Inference System (ANFIS).  

v. A dynamic Inflow Performance Relationship (IPR) curve has been developed 

using two-phase pseudopressure integral for high temperature gas-

condensate reservoirs in tight formation.  

vi. The developed models in this study (viscosity, Z factor) were combined with 

well deliverability equation of pseudopressure integral and material balance 

equation to establish production profile of a single gas-condensate well.  

  

3.6 Data Acquisition and Validation  

 
Practical application of the developed models were verified by using several case 

studies. Required data for this study was sourced from published open literature. PVT 

reports, experimental studies, published papers were source of our data bank. An 

extensive data bank for each phase of the study was collected and utilized in 

developing data driven (AI) methods.  Availability of the data to some extent in recent 

years motivated using the current approach in this study. 

The gathered data covered wide range of gas-condensate reservoir conditions 

(pressure, temperature and compositional differences). An example of this data bank 

shown in Appendix A.  

To ensure the validity and accuracy of the data used for this study the following steps 

were taken, 

 The statistical and graphical analysis of the gathered data against current 

methods in literature were performed in order to verify the data bank.  

 The physical trend of the data were performed and the consistency of the data 

sets have been confirmed.  



 

56 | P a g e  
 

3.7 Summary  

 
The methodologies in this chapter have been implemented to ensure accurate well 

deliverability modelling for gas-condensate reservoir below the dew point pressure is 

achieved.  The data bank for development of models in this study is from published 

literature. This data source partially used for development, testing and validating of 

each model. To ensure robustness of the developed models the random selection of 

the data in each step has been implemented. The current chapter provides a road map 

of the methodologies that have been adopted in this study.  
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CHAPTER 4 IMPROVEMENT OF GAS-

CONDENSATE FLUID VISCOSITY PREDICTION 

IMPROVEMENT OF GAS-CONDENSATE FLUID VISCOSITY 

PREDICTION  

 

4.1 Introduction 

 

Viscosity is one of the governing parameters for modelling gas-condensate well 

deliverability (Whitson, Fevang and Yang, 1999; Hernandez; et al., 2002; Yang et al., 

2007; Arukhe and Mason, 2012). To emphasise the importance of viscosity on 

production the research shows 1% error in calculating reservoir fluid viscosity resulted 

in 1% error in cumulative production (Al-Meshari et al., 2007; Fevang and Whitson, 

1996; Hernandez; et al., 2002; Sutton, 2005; Whitson et al., 1999). Davani et al., 

(2013) also showed that small error in viscosity prediction would have big impact on 

production forecast. This lead to significant error in financial evaluation of the project. 

Although the accurate estimation of viscosity is critical for well deliverability modelling, 

yet it has highest uncertainty prediction using existing literature models.   

Behmanesh et al., (2017) found that using single dry gas viscosity and Z factor effect 

the performance prediction of gas-condensate reservoirs. Using single-phase 

viscosity models for estimation of gas-condensate viscosity are valid above saturation 

pressure, as condensate liquid yet to develop. However, below the saturation pressure 

using single-phase viscosity models are not valid as the fluid become two phases of 

gas and condensate. The developed phases of gas-condensate mixture should be 

computed individually for modelling purposes due to gravity segregation of the phases. 

The aim of this chapter is to improve several models for better prediction of gas-

condensate fluid viscosity below the saturation pressure.   

This chapter provides the detail modelling of gas-condensate fluid viscosity below the 

saturation pressure. Initially the viscosity of gas phase in gas-condensate reservoirs 

is studied using existing viscosity models in literature. The actual gas phase viscosity 

data is used to optimize a well-known viscosity model using non-linear regression. 

Several models have been developed for better and accurate prediction of condensate 

viscosity in gas-condensate reservoirs using ANN, SVM and Fuzzy Logic approaches.  
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4.2 Assessment of gas phase viscosity models  

 
Gas viscosity models in literature are categorized to two types based on availability of 

the data and other reservoir information. First type are semi-empirical correlations that 

correlate gas viscosity as a function of pressure, temperature and mixture 

composition. These type of correlations initially are estimating the fluid (gas & liquid) 

viscosity at lower pressure (𝜇𝑔𝑠𝑐) and relate this value to actual viscosity (𝜇𝑔) using 

corresponding state principles (CSP). The CSP states that two substances at the 

same conditions of critical pressure and critical temperature will have similar 

properties. These conditions are known as reduced temperature (Tr) and reduced 

pressure (Pr) (Katz, 1959).  

To name a few of these correlations such as (Carr, Kobayashi and Burrows, 1954; 

Jossi, Stiel and Thodos, 1962; Lohrenz, Bray and Clark, 1964; Lucas, 1981; Pedersen 

and Fredenslund, 1987). In compositional reservoir simulators (e.g., Eclipse), 

(Pedersen and Fredenslund, 1987) and  Lohrenz et al., (1964) known as LBC are very 

popular for estimating viscosity of hydrocarbon fluid (gas/liquid).  

Second catagory of the correlations are less computationally intensive and they are 

very popular for reservoir engineering PVT calculations. Some of these methods 

specifically developed to address gas-condensate issues in estimating viscosity.  

The applicability of the most popular literature methods in prediction of gas viscosity 

will be assessed in following using actual viscosity data obtained from the open 

literature.  

 Lohrenz – Bray – Clark (LBC), 1964 
 
Jossi et al., (1962) proposed a correlation for estimating viscosity of gas and liquid 

pure components. Later Lohrenz et al., (1964) used same equation of Jossi et al., 

(1962) for estimating hydrocarbon mixture viscosity. The equation usually referred to 

Lohrenz – Bray – Clark (LBC) correlation and originally developed based on residual 

viscosity concept and the theory of corresponding state principle (CSP). LBC 

correlation shown in following relates mixture viscosity (𝜇) to fourth degree polynomial 

of the reduced density.  

 

[(𝜇 − 𝜇∗)𝜁 + 10−4]
1
4 = 𝐴 0 + 𝐴 1𝜌𝑟 + 𝐴 2𝜌𝑟

2 − 

𝐴 3𝜌𝑟
3 + 𝐴 4𝜌𝑟

4 

 

4.1 
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Where ζ, 𝜌𝑝𝑟 and  𝜇∗  represent viscosity reducing parameter, reduced density and low 

pressure gas mixture viscosity respectively, A0 – 4 are LBC coefficients of 0.1023, 

0.023364, 0.058523, -0.040758 and 0.0093324 respectively.  

 

{
 
 
 

 
 
 𝜁 = 5.35(

𝑇𝑝𝑐

𝑀𝑖3𝑃𝑝𝑐
4)

1/6

𝜌
𝑝𝑟
=

𝜌

𝜌
𝑝𝑐

=
𝜌

𝑀
𝜈𝑝𝑐

𝜇∗ =
∑ 𝑧𝑖𝜇𝑖
𝑁
𝑖=1

∑ 𝑧𝑖√𝑀𝑖
𝑁
𝑖=1

 

 

4.2 

 

 

Where pseudocritical properties of temperature 𝑇𝑝𝑐, pressure 𝑃𝑝𝑐 and volume 𝜈𝑝𝑐 can 

be calculated from Kay’s mixing rule (Kay, 1936). In equation 4.2, 𝑧𝑖 stands for mole 

fraction of each pure component 𝑖 and 𝑀𝑖 is molecular weight of each component.  

To establish special relation between 𝐶7+ fractions of gas-condensate mixture and 

critical volume, LBC suggested the following relationship.  

 

𝑣𝑐𝐶7+  =  21.573 + 0.015122 𝑀𝐶7+ −  27.65𝛾𝐶7+  +  0.070615 𝑀𝐶7+𝛾𝐶7+   

 

4.3 

 

Where 𝑣𝑐𝐶7+ is the critical molar volume, 𝑀𝐶7+ is molecular weight of C7+ fraction and 

𝛾𝐶7+ is specific gravity of C7+ fraction.  

The low pressure, pure component gas viscosity for each composition 𝜇𝑖
∗, can be  

calculated using Stiel and Thodos, (1962) expression as follows.  

 

{
𝜇𝑖
∗𝜁𝑖 = (34 × 10

−5)𝑇𝑟0.94                                            𝑓𝑜𝑟 𝑇𝑟 ≤ 1.5

𝜇𝑖
∗𝜁𝑖 = (17.78 × 10−5)(4.58𝑇𝑟 − 1.67)5/8          𝑓𝑜𝑟 𝑇𝑟 > 1.5

} 

 

4.4 

 

In LBC mixture viscosity correlation ‘𝜇’ is in centipoise (cp), viscosity reducing 

parameter ‘ζ’ is in cp-1, density ‘ρ’ is in lbm/ft3, specific volume ‘𝑣𝑐 ’ is in ft3/lbm mol, 

temperature ‘T’ is in Rankine (°R), pressure ‘P’ is in psia, and molecular weight of each 

component ‘Mi’ is in lbm/lbm mol. The accuracy of the LBC in predicting oil viscosity 

reported with average absolute deviation of 16 percent. They reported that their 

correlation is best performed in the range of 8.33 – 73.49⁰F operating temperature and 

4.94 – 7014psia reservoir pressure. 
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We selected LBC correlation for this study because it is widely implemented in 

compositional reservoir simulators and it is computationally simpler and faster than 

other CSP based viscosity correlations such as Pedersen and Fredenslund, (1987).  

LBC method is sensitive to the density value since the method is developed with fourth 

degree polynomial of reduced density.  

LBC can be used for estimating viscosity of gas and liquid at various reservoir pressure 

and temperature. However to match the measured viscosity values, the LBC 

coefficients are normally tuned. The tuning is generally through critical volume of C7+ 

components or LBC original constantans.  

 

 Lee – Gonzalez – Eakin (LGE) 
 
Unlike the LBC correlation, which correlates low-pressure gas viscosity with 

temperature, molecular weight, pseudocritical temperature, and pseudocritical 

pressure, Lee et al., (1966) proposed a correlation that relates low-pressure gas 

viscosity with gas gravity (or molecular weight) and temperature. Lee et al., (1966) 

correlation commonly referred to Lee – Gonzalez – Eakin (LGE). In both LBC and LGE 

method gas viscosity is estimated by multiplying low pressure viscosity by a ratio. The 

ratio is correlated with density in LGE and reduced density in LBC. Sutton, (2007) 

showed that the performance of both corresponding state principle based correlations 

and LGE method is the same for estimation of gas viscosity.  

In LGE method the authors modified theoretical viscosity expression of Starling and 

Ellington, (1964) and proposed a semi-empirical relation for estimation of viscosity of 

natural gas as a function of reservoir temperature, gas density (ρ) and fluid 

composition (yi). The LGE correlation shown in 4.5 is based on measured data of pure 

component of 8 natural gases with specific gravity of less than 1.   

 

{
  
 

  
 𝜇𝑔 = 10−4𝐾 × 𝑒𝑥𝑝 [𝑋 (

𝜌𝑔

62.4
)
𝑌

]

𝐾 =
(9.379 + 0.016𝑀𝑎)𝑇1.5

209.2 + 19.26𝑀𝑎 + 𝑇

𝑋 = 3.448 +
986.4

𝑇
+ 0.01009𝑀𝑎

𝑌 = 2.4 − 0.2𝑋

 

 

4.5 
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Where T is temperature in Rankine (⁰R) and 𝜌𝑔 is density at reservoir pressure and 

temperature in lb/ft3, Ma is apparent molecular weight. Apparent molecular weight is 

calculated as follow (Ahmed, 2010). 

 

𝑀𝑎 =∑𝑦𝑖𝑀𝑖

𝑖=1

 

 

4.6 

 

Where Mi is molecular weight of each component in the mixture and can be obtained 

from property tables; 𝑦𝑖 is mole fraction of each composition in the mixture. LGE is one 

of the main viscosity correlations in any compositional reservoir simulator for 

estimating of gas viscosity. In addition, the LGE method is very simple to use and is 

very popular for quick estimation of gas viscosity.  

The method is limited for temperature range of 100 – 340⁰F and pressure range 

between 100 – 8000psia. The authors reported +/-2.7 error for estimating low pressure 

gas viscosity and 4% error for high pressure, provided density and molecular weight 

of compositions. The LGE correlation becomes less accurate for prediction of gas 

viscosity above the specific gravity of 1.  

Success of LGE method for estimating gas viscosity motivated many researchers to 

present their viscosity correlations in similar fashion to LGE. Some of these methods 

will be discussed in following sections.  

 

 Londono – Archer – Blasingame (LAB)  
 
Londono – Archer – Blasingame (LAB) (Londono, Archer and Blasingame, 2002) 

optimized LGE method to make it more accurate for estimating viscosity of pure 

component and light-natural gas mixture. LAB used large database of 4909 data points 

and cast the LGE method in the following form.  

 

{
 
 
 
 

 
 
 
 

𝜇𝑔 = 10
−4𝐾𝑒𝑥𝑝[𝑋𝜌𝑔

𝑌]

𝐾 =
(16.7175 + 0.0419188𝑀𝑤)𝑇1.40256

212.209 + 18.1349𝑀𝑤 + 𝑇

𝑌 = 1.09809 − 0.0392581𝑋

𝑋 = 2.12575 +
2063.71

𝑇
+ 0.011926𝑀𝑤

𝜌𝑔 = 1.601846 × 10
−2
𝑀𝑤.𝑃

𝑅𝑇

 

 

4.7 
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Where 𝜌𝑔 is density (g/cm3); Mw is molecular weight of the gas, T is temperature, 𝜇𝑔 is 

gas viscosity, R is universal gas constant and P is reservoir pressure. The average 

absolute error (AAE) using optimized form of LGE in 4.7 was reported 2.29% for LAB 

data. The main difference between original and optimized form of LGE in 4.7 is that 

the original form of LGE generated using smaller database of mixture component, 

whether the optimized version used extensive database.  

 

 Sutton, (2005) 
 
Sutton, (2005) used low pressure gas viscosity (𝜇𝑔𝑠𝑐) of Lucas, (1981) and modified 

original LGE correlation for estimating viscosity of gas and gas-condensate reservoirs. 

Sutton correlation is as follow, 

 

{
 
 

 
 𝜇𝑔 = 𝜇𝑔𝑠𝑐 × 𝑒𝑥𝑝 [𝑋 (

𝜌𝑔

62.4
)
𝑌

]

𝑋 = 3.47 +
1588

𝑇
+ 0.0009𝑀𝑎

𝑌 = 1.66378 − 0.04679

 

 

4.8 

 

Where 𝜇𝑔𝑠𝑐 is defined as a function of pseudo critical properties of temperature (Tpc), 

pressure (Ppc) and can be estimated as follow. 

 

 

{
 
 

 
 𝜇𝑔𝑠𝑐𝜉 = 10

−4 [
0.807𝑇𝑟

0.618 − 0.357 exp(−0.449𝑇𝑟) +

0.34𝑒𝑥𝑝(−4.058𝑇𝑟) + 0.018
]

𝜉 = 0.9490 (
𝑇𝑝𝑐

𝑀3𝑃𝑝𝑐
4)

1/6  

 

4.9 

 

  

The relationship between pseudo critical properties and reduced properties can be 

defined as follow.    

 

{
 
 

 
 𝑇𝑟 =

𝑇

𝑇𝑝𝑐

𝑃𝑟 =
𝑃

𝑃𝑝𝑐

 

 

4.10 

 

 

The pseudo-critical properties of temperature and pressure related to the gas specific 

gravity (𝛾𝑔) and following two correlations were introduced by Sutton, (2005).  
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{
𝑇𝑝𝑐 = 164.3 + 357.7𝛾𝑔 − 67.7𝛾𝑔

2

𝑃𝑝𝑐 = 744 + 125.4𝛾𝑔 + 5.9𝛾𝑔
2  

 

4.11 

 

The above two correlations are based on 634 hydrocarbon sample compositions 

obtained from 275 constant volume depletion (CVD) report for gas-condensate and 

associate gas samples. Sutton, (2005) method is valid for gas specific gravity of 

between 0.554 – 2.819, temperature of 0 – 460⁰F and pressure of 12 – 17065psia. 

Sutton method is widely accepted among the research community for estimating gas 

viscosity using pseudocritical properties in 4.11 based on specific gravity of the 

mixture, knowing the compositions.  

 

 Elsharkawy (2006) 
 
Elsharkawy, (2006) added calculation of non-hydrocarbon impurities including carbon 

dioxide (CO2) and hydrogen sulphite (H2S) to original LGE gas viscosity correlation. 

He also added another expression to LGE to account for existing of heptane plus 

fraction (C7+), which is particularly important in estimating viscosity of gas-condensate 

fluid. Existing of non-hydrocarbon impurities in natural gas and gas-condensate 

mixtures influence the accuracy of PVT properties such as viscosity and Z factor. 

Elsharkawy, (2006) used 2400 data point collected from experimental and published 

literature in developing his method. Elsharkawy, (2006) method is as follow.  

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜇𝑔𝑐 = 𝜇𝑔 + ∆𝜇𝐶7+ + ∆𝜇𝐶𝑂2 + ∆𝜇𝐻2𝑆

𝜇𝑔 = 10−4𝐾 × 𝑒𝑥𝑝 [𝑋 (
𝜌𝑔

62.4
)
𝑌

]

𝐾 =
(9.379 + 0.016𝑀𝑎)𝑇1.5

209.2 + 19.26𝑀𝑎 + 𝑇

𝑋 = 3.448 +
986.4

𝑇
+ 0.01009𝑀𝑎

𝑌 = 2.4 − 0.2𝑋
∆𝜇𝐶7+ = 𝑦𝐶7+(−3.2875 × 10

−1𝑙𝑜𝑔𝛾𝑔 + 1.2885 × 10
−1)

∆𝜇𝐻2𝑆 = 𝑦𝐻2𝑆(−3.2268 × 10
−3𝑙𝑜𝑔𝛾𝑔 + 2.1479 × 10

−3)

∆𝜇𝐶𝑂2 = 𝑦𝐶𝑂2(6.4366 × 10
−3𝑙𝑜𝑔𝛾𝑔 + 6.7255 × 10

−3)

 

 

4.12 

 

 

Elsharkawy, (2006) was also optimized pseudo-critical properties of Sutton, (2005) 

shown in 4.13 based on 1200 data sets of gas-condensate mixtures compositions. 

Pseudo-critical properties recommended by Elsharkawy, (2006) is as follow.   
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{
𝑇𝑝𝑐 = 149.18 + 358.14𝛾𝑔 − 66.976𝛾𝑔

2

𝑃𝑝𝑐 = 787.06 + 147.34𝛾𝑔 + 7.916𝛾𝑔
2  

 

4.13 

 

Elsharkawy, (2006) viscosity and critical properties methods are valid for the 

temperature range of 94 to 327⁰F and pressure between 200 to 11,830psia. The 

author reported 8.9% absolute average deviation for estimating gas viscosity using his 

method.  

 

In this study, the applicability of the above gas viscosity models for prediction of gas-

condensate fluid is assessed.  For this purpose two sets of viscosity experimental data 

by Al-Meshari et al., (2007) and Yang et al., (2007) have been selected. These studies 

carried out in elevated pressure and temperature in laboratory condition similar to the 

reservoir temperature and pressure condition. The fluids used in these experimental 

studies are from gas-condensate reservoirs in Saudi Arabia and North Sea. The 

collected fluids (gas and liquid) recombined in laboratory and gas viscosity 

measurements were made (Al-Meshari et al., 2007; Yang et al., 2007). Statistical 

accuracy of the existing literature models against experimental data examined using 

percentage of Absolute Average Relative Deviation (AARD%), presented in 4.14. 

Figure 4.1 illustrates the performance of each model in predicting gas phase viscosity.  

 

The correlation proposed by Londono – Archer – Blasingame (LAB) provides best 

performance in predicting experimental viscosity data with lowest AARD%, hence it 

has been selected for further modification.  

 

𝐴𝐴𝑅𝐷% =
1

𝑁𝑝
∑|

𝜇𝑖
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝜇𝑖

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝜇𝑖𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
|

𝑁

𝑖=1

× 100 

 

 

4.14 

 

 



 

65 | P a g e  
 

 

Figure 4.1. The prediction performance of existing literature models in estimating gas phase 

viscosity of gas-condensate reservoirs below the saturation pressure.  

In an attempt to minimize the error between experimental data and the LAB correlation 

a non-linear regression model on MATLAB was employed. Then the LAB model was 

cast in the following form: 

 

{𝜇𝑔 = 2.469 × 10−4𝐾𝑒𝑥𝑝 [𝑋 (
𝜌𝑔

27.6718
)
𝑌

] 

 

4.15 

 

The parameters of K,Y and X are same as the original Lee – Gonzalez – Eakin (LGE) 

equation shown in 4.5.  Half of the experimental data were used for optimizing LAB 

model and the other half used to test the performance of the model. The performance 

of proposed model in 4.15 plotted against the experimental data and shown in Figure 

4.2. New optimized LAB model is predicting experimental data with 5.2% average 

absolute relative deviation (AARD%). This model will be used for prediction of gas 

phase viscosity of gas-condensate reservoirs, required for well deliverability modelling 

in chapter 6 of this study.  
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Figure 4.2. Plot of calculated viscosity using new developed model against measured 
viscosity data. 

The viscosity of liquid phase (condensate) is another factor that need accurate 

determination for reliable modelling of gas-condensate reservoirs undergoing 

depletion. Next section focuses on studying condensate viscosity of gas-condensate 

reservoir below the saturation pressure.  

 

4.3 Assessment of condensate (oil) phase viscosity models 

 

Accurate and reliable estimation of condensate viscosity is required for reliable 

estimation of PVT properties using any available PVT modelling approaches (e.g., 

Modified black oil or equation of state). Less attention is given for accurate estimation 

of condensate viscosity in existing literature. Yet condensate viscosity has the highest 

prediction uncertainty (Whitson, 2006; Yang et al., 2007). 

In this section, initially the validity of the existing literature models for prediction of 

condensate viscosity is examined, and then several models will be proposed for 

prediction of this crucial PVT property.  

The existing literature models are divided into two categories as follow: 

 Corresponding state principle (CSP) based model (also known as 

compositional modelling)  
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 Gas-saturated oil viscosity based models (also known as live-oil viscosity 

correlations) 

The example of compositional models are LBC (1964) introduced in 4.2.1 and 

Pedersen and Fredenslund, (1987). LBC is originally proposed for estimating viscosity 

of hydrocarbon mixture (gas/liquid). For estimating condensate viscosity in this study 

we employed LBC method due to its simplicity and its extensive use in numerical 

reservoir simulation. The compositional model of LBC is used when compositional 

data is available (see 4.2.1). However, the typical problem in engineering calculation 

of gas-condensate reservoirs are unavailability of all required data (Gold, McCain and 

Jennings, 1989; Whitson, 2006). In this case, to estimate condensate viscosity 

engineers rely on other purely empirical correlations known as live-oil or gas-saturated 

oil correlations.  

These correlations are function of solution gas to oil ratio Rs, reservoir pressure, 

reservoir temperature, fluid API gravity, gas specific gravity (𝛾𝐺𝑎𝑠 ) and dead oil 

viscosity “𝜇𝑜𝑑"(viscosity that contain no dissolved gas and relatively thick oil).  

There are many live-oil (oil contains dissolved gas) correlations in literature that can 

be used for prediction of condensate phase viscosity. We defined some standard 

criteria to pick the most adequate models for our purpose. It is known that condensate 

liquid is a light oil mixture with viscosity, ranging from 0.1 to 1cp, in the near wellbore 

region (Whitson, Fevang and Yang, 1999; Al-Nasser and Al-Marhoun, 2012) and also 

the API gravity between 40 – 60 ⁰API. The aforementioned two conditions were our 

constraints in selecting existing live oil literature correlations that can be used for 

prediction of condensate viscosity in this study. These correlations are useful when 

compositional data of the gas mixture is not available. Five well-known live oil literature 

models have been selected for estimating condensate viscosity and will be discussed 

in this chapter. 

Furthermore, in order to assess applicability of existing literature models for estimating 

condensate viscosity the compositional model of LBC which introduced in 4.2.1 is 

utilized.  

 

 Data acquisition  
 
To assess the validity of existing literature models as well as developing AI models 

comprehensive published experimental data sets was collected. The source of the 
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data is from (Fevang, 1995; Guo et al., 1997; Audonnet and Pádua, 2004; Gozalpour 

et al., 2005; Al-Meshari et al., 2007; Yang et al., 2007; Thomas, Bennion and 

Andersen, 2009; Kariznovi, Nourozieh and Abedi, 2012; Kashefi et al., 2013; Khorami 

et al., 2017; Strand and Bjørkvik, 2019). In aforementioned studies, various methods 

of rolling ball viscometer, electromagnetic pulse technology viscometer, capillary 

viscometer and vibrating-wire sensor have been used for measurement of condensate 

phase viscosity. Binary mixtures of methane and n-decane in different temperature 

and pressure considered as gas-condensate fluid in most of previously mentioned 

experimental studies. This data bank consists of 335 data sets, which covers API 

gravity, gas specific gravity, reservoir fluid compositions, reservoir pressure, reservoir 

temperature and initial gas to oil ratio.  

Statistical distribution of the data is summarized in Table 4.1. Complete description of 

the data bank is provided in Appendix A.  

Table 4.1. Statistical information of the data bank. 

Property Minimum  Maximum  Average 

Pressure, (MPa) 0.25 75.84 25.25 

Reservoir Temperature, 
(°K) 

303 443.15 353.15 

Solution GOR, Rs, 
(scf/STB) 

41.7 13496 3628 

API gravity  39.7 65 57.3 

Gas Specific gravity 
(𝛾𝑔) 

0.57 1.49 0.89 

Condensate viscosity, 
(cp) 

0.0404 0.982 0.232 

 
 

 Beggs and Robinsons, (1975) 
 
Almost all live oil (gas-saturated oil) viscosity correlations are in a similar form of 

original Chew and Connally, (1959). Live oil viscosity correlated by Chew and 

Connally, (1959) as a function of solution gas to oil ratio and dead oil viscosity at the 

reservoir condition. They showed that in fixed solution gas to oil ratio (Rs) the relation 

between the live oil and corresponding dead oil viscosity is a straight line with 

logarithmic scale (Chew and Connally, 1959). They propose this relationship in the 

following simple mathematical form.  



 

69 | P a g e  
 

 

𝜇𝑜𝑏 = 𝐴(𝜇𝑜𝑑)
𝐵 

 

4.16 

 

Where A and B can be estimated from the original chart of Beal, (1946). Beggs and 

Robinson, (1975) developed a functional relation for A and B based on 2073 live oil 

viscosity measurements. The viscosity values measured with -1.83% uncertainty.  

 

{
 
 

 
 𝐴 =

10.715

(𝑅𝑠 + 100)0.515

𝐵 =
5.44

(𝑅𝑠 + 150)0.338

 

 

4.17 

 

Using live oil viscosity relation shown in 4.16 along with Beggs and Robinsons 

correlation in 4.17 is limited to Rs within the range of 20 to 2070 scf/STB, oil gravity of 

16 to 58°API, pressure range of 0 to 5250 and temperature of 70 to 295°F (Beggs and 

Robinson, 1975; Aily et al., 2019).  

 

 De Ghetto et al., (1994)   
 
De Ghetto et al., (1994) used similar form of Chew and Connally, (1959) live oil 

viscosity correlation and optimized the parameters of the A and B functions in 4.17, 

proposed originally by Beggs and Robinsons, (1975). They used 195 oil samples 

collected worldwide to optimize the values of A and B and indicate that the correlation 

is applicable to viscosity of live oil with API > 31.1. De Ghetto et al., (1994) present the 

following relation for A and B as a function of Rs.  

 

{
 
 

 
 𝐴 =

25.192

(𝑅𝑠 + 100)0.6487

𝐵 =
2.7516

(𝑅𝑠 + 150)0.2135

 

 

4.18 

 

They showed that using above A and B values, the live oil viscosity can be estimated 

with less than 10% error within the temperature range of 80.6 to 334.6 °F, Rs of 8.61 

to 3299scf/STB and 0.07< 𝜇𝑜𝑏< 295.9cp (De Ghetto et al., 1994).   

 

 Elsharkawy and Alikhan (1999) 
 
Elsharkawy and Alikhan, (1999) optimized the value of A and B to be used for 

estimation of live oil viscosity in 4.16 not similar to Beggs and Robinsons, (1975) and 

De Ghetto et al., (1994). They used 254 datasets from Middle Eastern oil samples and 
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proposed two new functions for A and B.  They concluded that estimating A and B 

values using their proposed equation shown in 4.19, would predicts live oil viscosity 

with 18.6% average absolute relative error. Their correlation is valid for the range of 

10 to 3600 for (Rs) and 0.05 to 20.89cp (𝜇𝑜𝑏) (Elsharkawy and Alikhan, 1999).   

 

{
𝐴 = 1241.932(𝑅𝑠 + 641.026)

−1.12410

𝐵 = 1768.84(𝑅𝑠 + 1180.335)
−1.06622 

 

4.19 

 

 Bergman and Sutton, (2007) 
 
Bergman and Sutton, (2007) used 2048 live oil measured viscosity data sets collected 

from worldwide and proposed equation 4.20 to estimate values of A and B. They 

showed that live oil viscosity can be estimated using their proposed equation in 4.20 

incorporated with 4.16 with absolute average error of 9%. Their method best fit the 

value of live oil viscosity within the range of 5 to 2890scf/STB solution gas to oil ratio 

(Rs) and range of 0.125 to 123cp live oil viscosity (𝜇𝑜𝑏). 

 

{
𝐴 = 𝑒[4.768−0.8359 ln(𝑅𝑠+300)]

𝐵 = 0.555 +
133.5

𝑅𝑠 + 300

 

 

4.20 

 

 Kartoatmodjo and Schmidt, (1991) 
 
Kartoatmodjo and Schmidt, (1991) proposed a live oil viscosity correlation as a 

function of solution gas to oil ratio (Rs) and dead oil viscosity. Their correlation is 

slightly different from original live oil viscosity of Chew and Connally, (1959) shown in 

4.16 as shown in 4.21. They used 5321 gas-saturated-oil samples collected globally 

to develop their live oil correlation. Their correlation can be applied to crude oils in the 

range of 14.4 to 59°API gravity, temperature range of 80 to 320°F, Rs range of 0 to 

2890scf/STB and live oil viscosity range of 0.098 to 586cp (Kartoatmodjo and Schmidt, 

1991).  

 

{

𝜇𝑜𝑏 = −0.06821 + 0.9824𝑋1 + 4.034 × 10
−4𝑋2

2

𝑋1 = 0.43 + 0.5165 × 10(−8.1×10
−4𝑅𝑠)

𝑋2 = [0.2001 + 0.8428 × 10
(−8.1×10−4𝑅𝑠)]𝜇𝑜𝑑

𝑋1

 

 

4.21 

 

 

All live oil viscosity methods in literature and seen above are function of solution gas 

to oil ratio (Rs) and dead oil viscosity (𝜇𝑜𝑑). Accurate estimation of Rs and 𝜇𝑜𝑑 is 
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required for reliable estimation of live oil viscosity. Measured values of Rs and 𝜇𝑜𝑑 are 

preferable for calculation; however, in the absence of experimental values, 

correlational estimation of viscosities are very popular (Chew and Connally, 1959; 

Beggs and Robinson, 1975). Rs is correlated with gas gravity, saturation pressure, 

stock tank oil gravity and temperature (Beal, 1946; Standing, 1947). Further discussion 

about important determination of Rs is given in 2.3.5. Among the most well-known 

methods for calculating Rs, we employed equation 2.50 proposed by Standing, (1947). 

This equation is still widely used in industry and recommended by Whitson et al., 

(2000) and Yang et al., (2007) as one of the most accurate correlation in literature.   

Considerable number of dead oil viscosity correlations are also exist in literature (Beal, 

1946; Beggs and Robinson, 1975; Bergman and Sutton, 2007; Egbogah and Jack, 

1990; Elsharkawy and Alikhan, 1999; Kartoatmodjo and Schmidt, 1994; Labedi, 1992; 

Naseri et al., 2005; Standing, 1981). Bergman and Sutton, (2007) reviewed the 

performance of 23 dead oil viscosity correlations with an extensive data bank. They 

found their proposed dead oil correlations is superior to all other techniques in 

literature. Whitson and Brulé, (2000, p. 36) also recommend Bergman and Sutton, 

(2007) for estimating dead oil viscosity for engineering calculation of gas-condensate 

reservoirs.   

Therefore in this study Bergman and Sutton, (2007) is employed for estimation of dead 

oil viscosity. Bergman and Sutton, (2007) correlation is as follow. 

 

{

ln ln(𝜇𝑜𝑑 + 1) = 𝐴0 + 𝐴1ln (𝑇 + 310)

𝐴0 = 22.33 − 0.194𝛾𝐴𝑃𝐼 + 0.00033𝛾𝐴𝑃𝐼
2

𝐴1 = −3.20 + 0.0185𝛾𝐴𝑃𝐼

 

 

4.22 

 

 

Where 𝛾𝐴𝑃𝐼 is oil (condensate) stock tank gravity, T is temperature in Fahrenheit. All 

discussed live oil correlations as well as compositional model of LBC is applied for 

estimating experimental condensate viscosity. In following section the results of 

existing literature models are discussed.  

 

 Results of existing models  
 
Three statistical metrics of coefficient of determination (R2), root mean square error 

(RMSE) and absolute average relative deviation percentage (AARD%), shown in 
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equations 4.23 to 4.25 respectively, used for assessing the performance of existing 

literature models in prediction of condensate viscosity.  

To visualise the accuracy of each model the graphical error analysis in a form of cross 

plot was employed. The results of statistical and graphical error analysis show that the 

performance of existing literature models in predicting condensate viscosity is very 

poor. Hence, to improve the accuracy of each models, non-linear regression was 

applied to refine the models. Table 1 depicts the original and tuned form of the utilized 

correlations for estimating condensate viscosity. Graphical error analysis of the 

original and refined literature correlations in predicting condensate viscosity are 

presented in Figure. 4.3a-f. The slope line of 45° in aforementioned figures 

representing zero error line in matching between measured and calculated values. 

The reason for poor performance of LBC viscosity models might be due to sensitivity 

of LBC method to mixture density and critical volumes of the heavy components 

(Whitson and Brulé, 2000; Yang et al., 2007). Live oil viscosity correlations are function 

of deal oil viscosity and solution gas to oil ratio. It should be noted that dead oil 

viscosity is one of the most difficult properties to be estimated by correlations due to 

its dependency to paraffin, aromatic, naphthalene and asphaltene content (Whitson 

and Brulé, 2000; Hemmati-Sarapardeh et al., 2014). This can be a reason for poor 

performance of live oil viscosity correlations for estimating condensate viscosity.  

 

The procedure for tuning of the LBC, (1964) correlation recommended by Yang et al., 

(2007) followed in this study, where coefficients of A0 – 4 of the LBC correlation are 

optimized to match the experimental data. The new coefficients of LBC correlation are 

shown in Table 4.2. Coefficients of live oil viscosity models were also optimized using 

regression to match the experimental condensate viscosity data. The original and new 

tuned correlations of live oil viscosity are shown in Table 4.2.  

 

𝑅2 = 1 −
∑ (𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑖) − 𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐴𝑐𝑡𝑢𝑎𝑙(𝑖)̂ )2𝑁
𝑖

∑ (𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑖) − 𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐴𝑐𝑡𝑢𝑎𝑙(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑁

𝑖

 

 

4.23 

 

 

𝑅𝑀𝑆𝐸 = (
∑ (𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑖) − 𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐴𝑐𝑡𝑢𝑎𝑙(𝑖))

2𝑁
𝑖

𝑁
)

0.5

 

 

4.24 
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𝐴𝐴𝑅𝐷% =
100

𝑁
∑

|(𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑖) − 𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐴𝑐𝑡𝑢𝑎𝑙(𝑖))|

𝑐𝑜𝑛𝑑 𝑣𝑖𝑠𝐴𝑐𝑡𝑢𝑎𝑙(𝑖)

𝑁

𝑖

 

 

4.25 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.3. Cross plot of the experimental condensate viscosity versus predicted condensate 

viscosity using employed literature correlations and refined results. 
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Table 4.2. The original and tuned form of the utilized literature correlations. 

Author Original Correlation Tuned Correlation 

LBC, (1964) 

[(𝜇 − 𝜇∗)𝜁 + 10−4]
1
4

= 0.1023
+ 0.023364𝜌𝑟
+ 0.058523𝜌𝑟2 − 

0.040758𝜌𝑟
3 + 0.0093324𝜌𝑟

4 
 

[(𝜇 − 𝜇∗)𝜁 + 10−4]
1
4

= 0.11364
+ 0.02173𝜌𝑟
− 0.20666𝜌𝑟

2

+ 0.06283𝜌𝑟
3

+ 0.17139𝜌𝑟
4 

 

Beggs & 

Robinson, 

(1975) 

𝜇𝑜𝑏

=
10.715

(𝑅𝑠 + 100)0.515
(𝜇𝑜𝑑)

5.44
(𝑅𝑠+150)0.338 

 
 
 

𝜇𝑐

=
17.99

(𝑅𝑠 + 100)0.515
(𝜇𝑜𝑑)

4.056
(𝑅𝑠+150)0.338 

 
 

Kartoatmodj

o & Schmidt, 

(1991) 

𝜇𝑜𝑏 = −0.06821 + 0.9824𝑋1 + 4.034

× 10−4𝑋2
2 

 

𝑋1 = 0.43 + 0.5165 × 10
(−8.1×10−4𝑅𝑠) 

 
𝑋2
= [0.2001 + 0.8428

× 10(−8.1×10
−4𝑅𝑠)]𝜇𝑜𝑑

𝑋1 

 

𝜇𝑐 = −0.30612 + 1.174𝑋1 + 4.034

× 10−4𝑋2
2 

 

𝑋1 = 0.43 + 0.5165 × 10
(−8.1×10−4𝑅𝑠) 

 
𝑋2
= [0.2001 + 0.8428

× 10(−8.1×10
−4𝑅𝑠)]𝜇𝑜𝑑

𝑋1 

 

 

De Ghetto et 

al, (1994) 

For (°API > 

31.1) 

        

𝜇𝑜𝑏

=
25.192

(𝑅𝑠 + 100)0.6487
(𝜇𝑜𝑑)

2.7516
(𝑅𝑠+150)0.2135 

 
 
 

 

𝜇𝑐

=
62.96

(𝑅𝑠 + 100)0.6487
(𝜇𝑜𝑑)

2.1334
(𝑅𝑠+150)0.2135 

 
 
 

 

Elsharkawy 

& Alikhan, 

(1999) 

𝜇𝑜𝑏 = 𝐴(𝜇𝑜𝑑)
𝐵 

 

𝐴 = 1241.932(𝑅𝑠 + 641.026)
−1.12410 

 

𝐵 = 1768.84(𝑅𝑠 + 1180.335)
−1.06622 

 

𝜇𝑐 = 𝐴(𝜇𝑜𝑑)
𝐵 

 

𝐴 = 3978.167(𝑅𝑠 + 641.026)
−1.12410 

 

𝐵 = 1361.93(𝑅𝑠 + 1180.335)
−1.06622 

 

Bergman & 

Sutton , 

(2000) 

𝜇𝑜𝑏 = 𝐴(𝜇𝑜𝑑)
0.555+

133.5
𝑅𝑠+300 

 

𝐴 = 𝑒[4.768−0.8359 ln(𝑅𝑠+300)] 
 

𝜇𝑐 = 𝐴(𝜇𝑜𝑑)
0.555+

133.5
𝑅𝑠+300 

 

𝐴 = 𝑒[4.6792−0.7772 ln(𝑅𝑠+300)] 
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The accuracy of condensate viscosity using existing literature models depends on 

accurate estimation of many parameters (e.g., solution gas to oil ratio, reduced 

density, dead oil viscosity, well stream gravity for condensate). Although the attempt 

to improve the accuracy of the viscosity models were made by optimizing associated 

constants od each model, yet the accuracy is still less than satisfactory. Hence, in this 

study we took different approach known as Machine Learning (ML) for accurate 

estimation of condensate viscosity without going through tedious computational 

procedure of existing literature models. These methods are also known as Artificial 

Intelligent (AI) techniques. In next section, a brief overview of AI techniques for 

application of reservoir modelling is discussed.  

 

4.4 Machine Learning (ML) Approach 

 
In order to use computers for solving and processing applications, mathematical 

models are required (Forsyth, 1989). The fundamental approach to acquiring these 

models in natural sciences and engineering disciplines is by applying fundamental 

laws and theories in physics, chemistry and other related science to determine usually 

the relationships between variables (Forsyth, 1989). The input variabes are called the 

independent variables, while the output varaibles are  the dependant variables. For 

some tasks, however the relationship between dependant and independent variables 

are not defined and there are no governing mathematical equations between them. 

Therefore the transformation between the input and the output can not be done directly 

(Flach, 2012). For instance physics of gas-condenste fluid below the saturation 

pressure is becoming more thermodanamically complex, which makes it very difficult 

to establish a robust relationship between the input and the output varaibles for 

instance in the case of condensate viscosity.  

Because of that lack of knoweledge or complexities of the problems, alternative 

methods to build models have been introduced by scientists. These methods rely on 

using sets of measured input and output data that have been obtained during 

measurement process or from past saved data (Flach, 2012). The computer which is 

being trained uses certain algorithms and statistical analysis to build a model which 

can; for instance; predict the output values (condensste viscosity). This type of process 

is known as machine learning (ML).  
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Arthur Samuel has used the term machine learning for first time in 1959. He defined 

ML as “a field of study that gives computers the ability to learn without being explicitly 

programed”  (Samuel, 1959). Figure 4.4 shows the main structure of modelling by 

machine learning.  

 

Figure 4.4 Machine Learning Block Diagram.  

Based on the method selected to feed the input and output data for learning process, 

there are two main class of machine learnings known as supervised and unsupervised 

learning (Louridas and Ebert, 2016). In supervised machine learning, the nature and 

the label of the output are known. For example in this chapter using experimental 

database, we know the output is condensate viscosity. In the other word the data that 

provided for training of the network include sets of input and output parameters.  

In unsupervised learning, the training set is containing the data but no solutions; and 

the computer must find the solution on its own by relating the pattern on the data set 

(Louridas and Ebert, 2016). Regardless of classes of ML (supervised or unsupervised) 

the process is that the computer first learns to perform a task by studying a training 

set. Then the computer performs the same task with the data it hasnot encountered 

before.  

The recent development and success of machine learning (ML) techniques in solving 

complex engineering problems have drawn attention to their various application in 

petroleum industry. Shell recently announced using new artificial intelligence (AI) 

platform to drive its effort in predictive maintenance and spread AI-powered 

applications across the company. British Petroleum (BP) has invested heavily on using 

AI techniques aims at accelerating project lifecycle from exploration through reservoir 

modelling (Norton, 2018; BP, 2019). In modelling aspect, which is the scope of this 

research, availability of the data in recent years motivated to utilize the data driven 

techniques for reliable and accurate forecast of outputs (e.g., flow rate, Z factor and 
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GOR). Some of these example can be found in the literature include (Ahmadi et al., 

2014; Ghiasi et al., 2014; Hemmati-Sarapardeh et al., 2014; Kamari et al., 2013; 

Naderi and Khamehchi, 2019; Shokir, 2008).  

For gas-condensate reservoirs Ahmadi and Ebadi (2014), Elsharkawy and Foda 

(1998), Jalali et al. (2007) and Nowroozi et al. (2009) were using machine learning 

(ML) approaches for predicting dew point pressure. Zendehboudi et al. (2012) used 

ML approach to model condensate-to-gas ratio (CGR). Recently Ghiasi et al. (2014) 

employed least square support vector machine (LSSVM) to predict compressibility 

factor of gas-condensate reservoirs. Although the aforementioned studies utilized ML 

techniques for modelling gas-condensate reservoirs such as dew point pressure, CGR 

and compressibility factor, however there is still significant potential to use various 

approaches of ML for modelling this type of reservoir. There is not any models in 

current literature for prediction of condensate viscosity using any ML methods. Hence, 

the aim is to use ML based techniques to develop a robust and accurate models for 

prediction of condensate viscosity in gas-condensate reservoirs below the saturating 

pressure. For this purpose, three ML based techniques including Support Vector 

Machine (SVM), Artificial Neural Network (ANN) and Fuzzy logic methods employed 

and will be discussed in details in the following sections. 

 

 Support Vector Machine (SVM) 
 
The support vector machine (SVM) has been identified as an efficient and powerful 

strategy developed from the machine-learning community (Cortes and Vapnik, 1995; 

Suykens et al., 2002). SVM is a tool for a set of related supervised learning methods 

that analyse data and recognize pattern using regression analysis and it is identified 

as a non-probabilistic binary linear classifier.  

SVM method has many advantages over other machine learning techniques as 

follows: they are more likely to converge to the global optima, prior determination of 

the network is not required in this model and can be automatically determined as the 

training ends (Suykens et al., 2002; Eslamimanesh et al., 2012). Furthermore, the 

number of hidden layers and hidden nodes should not be determined and this 

algorithm has fewer adjustable parameters compared to ANN network (Ahmadi and 

Ebadi, 2014; Eslamimanesh et al., 2012; Hemmati-Sarapardeh et al., 2014; Kamari et 
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al., 2013). SVM is mapping the predictor’s data using kernel function and initial formula 

indicates that any function can be regressed as follow: 

 

𝑓𝑥 = 𝑤
𝑇𝜑(𝑥) + 𝑏 

 

4.26 

 

Where 𝑤𝑇 and 𝜑(𝑥) and b are transposed output layer vector, kernel function and 

bias, respectively. The input of the model x is of a dimension of 𝑁 ×  𝑛 in which N and 

n denotes to number of data points and number of inputs parameters, respectively. In 

order to calculate w in above function, Cortes and Vapnik, (1995) proposed 

minimization of the cost function, defined in 4.26 subject to some constraint shown in 

4.27 (Ahmadi and Ebadi, 2014; Eslamimanesh et al., 2012, 2011; Hemmati-

Sarapardeh et al., 2014; Suykens et al., 2002). 

 

𝐽 =
1

2
𝑤𝑇 + 𝐶∑(𝜉𝑘 − 𝜉

∗
𝑘
)

𝑁

𝑘=1

 

 

4.27 

 

Where J is the cost function, c is the tuning parameter of the SVM and 𝜉𝑘 and  𝜉∗
𝑘
 are 

the slack variables. 

 

{

𝑦𝑘 − 𝑤𝑇𝜑(𝑥𝑘) − 𝑏 ≤ 𝜀 + 𝜉𝑘,    𝑘 = 1.2, … ,𝑁

𝑤𝑇𝜑(𝑥𝑘) + 𝑏 − 𝑦𝑘 ≤ 𝜀 + 𝜉∗
𝑘
,   𝑘 = 1,2, … ,𝑁 

𝜉𝑘, 𝜉
∗
𝑘
≤ 0        𝑘 = 1,2, … ,𝑁   

} 

 

4.28 

 

Where xk is input of kth data point and yk is output of kth data points. ε is the fixed 

precision of the function approximation. Choosing a small ε leads to developing an 

accurate model, however some data points may be outside of ε precision, and may be 

result in infeasible solution. Therefore, slack parameters can be used to define 

allowable margin error. C in equation 4.26 is one of the tuning parameters, which 

determine the amount of deviation of the model from the desired ε. The optimum value 

of cost function in SVM can be reached by minimization process, where Lagrangian 

approach can be used as follow. 
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{
  
 

  
 𝐿(𝑎, 𝑎∗) = −

1

2
∑ (

𝑁

𝑘,𝑙=1

𝑎𝑘 − 𝑎
∗
𝑘)(𝑎𝑙 − 𝑎

∗
𝑙)𝐾(𝑥𝑘, 𝑥𝑙) − 𝜀∑(

𝑁

𝑘=1

𝑎𝑘 − 𝑎
∗
𝑘)…

…+∑𝑦𝑘(𝑎𝑘 − 𝑎)
∗
𝑘
)

𝑁

𝑘=1

∑(𝑎𝑘 − 𝑎
∗
𝑘) = 0, 𝑎𝑘, 𝑎

∗
𝑘 ∈ [0, 𝑐]

𝑁

𝑘=1

𝐾(𝑥𝑘, 𝑥𝑙) =  𝜑(𝑥𝑘)
𝑇𝜑(𝑥𝑙),   𝑘 = 1,2, … ,𝑁 }
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Where 𝑎𝑘 and 𝑎∗𝑘 are Lagrangian multipliers, and the final form of least square SVM 

function is obtained as follow. 

 

𝑓(𝑥) = ∑ (

𝑁

𝑘,𝑙=1

𝑎𝑘 − 𝑎
∗
𝑘)𝐾(𝑥, 𝑥𝑘) + 𝑏 

 

4.30 

 

To solve the above equation and find  𝑎𝑘 , 𝑎∗𝑘 and b, quadratic programming problem 

can be used which is very difficult to implement. Thus the least square modification 

proposed by  Suykens and Vandewalle, (1999) to facilitate original SVM algorithm. 

They reformulated the SVM cost function J as follow. 

 

𝐽 =
1

2
𝑤𝑇𝑤 +

1

2
𝛾∑𝑒2𝑘

𝑁

𝑘=1

 

 

4.31 

 

 
𝑌𝑘 = [𝑤𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘], 𝑘 = 1,… ,𝑁. 

 

 

4.32 

 

Where 𝛾 is a tuning parameter, ek is error variable, Yk is constraint of the cost function 

(J). Equation 4.31 is new form of SVM equation known as least square SVM (LSSVM). 

The Lagrangian solution for this equation is calculated as follow. 

 
𝐿(𝑤, 𝑏, 𝑒; 𝑎) =

1

2
𝑤𝑇𝑤 +

1

2
𝛾∑𝑒2𝑘

𝑁

𝑘=1

−∑𝑎𝑘(𝑤
𝑇𝜑(𝑥𝑘) + 𝑏 +

𝑁

𝑘=1

𝑒𝑘 − 𝑦𝑘) 

 

 

4.33 

 

Where 𝑎𝑘 denotes to the Lagrange multiplier, that may be either positive or negative, 

since LSSVM has equality restrictions. The above equation can be solved by equate 

the derivate of each parameter (w, b, e, and a) to 0 according to Karush Kuhn-Tucher’s 

(KKT) conditions (Fletcher, 1987). These conditions are demonstrated in equation 

4.34 for cost function to achieve optimum goal (Suykens and Vandewalle, 1999; 
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Pelckmans et al., 2002; Suykens et al., 2002). Hence, the following equations are 

obtained for optimal solution of the cost function.  

 

{
 
 
 
 

 
 
 
 𝜕𝐿

𝜕𝑤
= 0 ⟹ 𝑤 =∑𝑎𝑘𝜑(𝑥𝑘)

𝑁

𝑘=1

𝜕𝐿

𝜕𝑏
= 0 ⟹∑𝑎𝑘 = 0

𝑁

𝑘=1

𝜕𝐿

𝜕𝑒
= 0 ⟹ 𝑎𝑘 = 𝛾𝑒𝑘,    𝑘 = 1,2, … ,𝑁

𝜕𝐿

𝜕𝑎
= 0 ⟹ 𝑤𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘 − 𝑦𝑘 = 0    𝑘 = 1,2, … ,𝑁}

 
 
 
 

 
 
 
 

 

 

4.34 

 

 

To turn the above equation to a linear form the following expression can be 

demonstrated.  

 

[
0 −1𝑇

1 𝛺 +
1

𝛾
𝐼𝑁
] [
𝑏
𝛼
] = [

0
𝑦
] 

 

4.35 

 

 

while 𝑦 = (𝑦1, … , 𝑦𝑛)
𝑇 , 1𝑛 = (1,… ,1)

𝑇 , 𝑎 = (𝑎1, … , 𝑎𝑛)
𝑇and 𝛺𝑖𝑙 = 𝜑(𝑥𝑖)

𝑇𝜑(𝑥𝑙) for 𝑖, 𝑙 =

1, … , 𝑛. By Mercer’s theorem, the resulting LSSVM model for function approximation 

turns to the following equation (Cortes and Vapnik, 1995; Suykens and Vandewalle, 

1999). 

 

𝑓(𝑥) = ∑ 𝛼𝑘

𝑁

𝑘,𝑙=1

𝐾(𝑥, 𝑥𝑘) + 𝑏 

 

4.36 

 

Where 𝛼 and b are the routes to equation 4.36 and can be determined as bellow: 

 

{
  
 

  
 

𝑏 =
1𝑛
𝑇 (𝛺 +

1
𝛾 𝐼𝑛)

−1

𝑦

1𝑛𝑇 (𝛺 +
1
𝛾 𝐼𝑛)

−1

𝐼𝑛

𝛼 = (𝛺 +
1

𝛾
𝐼𝑛)

−1

(𝑦 − 1𝑛𝑏)

 

 

4.37 

 

 

Knowing a and b from 4.37, then  𝑓(𝑥) in 4.36 may be executed as choice of nonlinear 

regression and utilize the Kernel function. (Cortes and Vapnik, 1995; Suykens and 

Vandewalle, 1999; Suykens et al., 2002; Eslamimanesh et al., 2012; Fazeli et al., 
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2013). In equation 4.35, 𝐾(𝑥, 𝑥𝑘) stands for dependency of Kernel function to the inner 

values of two vectors x and xi in the feasible area referred to the inner products of 

vectors ɸ(𝑥)𝑇ɸ(𝑥𝑖) as shown in below equation:  

 
𝐾(𝑥, 𝑥𝑘) = ɸ(𝑥)𝑇ɸ(𝑥𝑘) 

 

 

4.38 

 

Where the radial basis function (RBF) Kernel may executed as following formulation 

(Cortes and Vapnik, 1995; Eslamimanesh et al., 2012; Pelckmans et al., 2002; 

Suykens et al., 2002).  

 
𝐾(𝑥, 𝑥𝑘) = exp (−

‖𝑥𝑘 − 𝑥‖
2

𝜎2
) 

 

 

4.39 

 

Where   𝛾 and 𝜎2 are tuning parameters of LSSVM, that they can be indicated by 

performing of any optimization algorithm such as Simulated Annealing algorithm or 

Genetic Algorithm (GA). In order to achieve the optimum values of aforementioned 

parameters in LSSVM method, our objective function is root mean square error 

(RMSE) between the experimental values and the output of the LSSVM.  

Our task in this chapter was to develop a smart model for prediction of condensate 

viscosity using LSSVM, explained in details earlier. To implement the LSSVM for 

prediction of condensate viscosity database, initially the data sets divided into three 

subsets of “Training”, “Optimization” and “Testing”. Training set is used for generating 

the model structure, optimization is used for minimization of the error in trained model 

and test data is used to investigate the prediction capability of the developed model. 

Optimization sets also known as the validation set. The database was randomly split 

into three sub data sets of 80% training, 10% testing and 10% validation. We also 

ensure the homogeneous accumulations distribution of the data for the domain of the 

three data sets (Eslamimanesh et al., 2011; Gharagheizi et al., 2014).The allocation 

percentage of the data is selected according to the recommendations by Ahmadi and 

Ebadi, (2014) and Eslamimanesh et al., (2012) to enhance the performance of the 

developed model.  

During the training of the model cross validation has been performed where, the 

training data sets into several folds and accuracy of each fold was checked. The 

LSSVM implemented in MATLAB and powerful Simulated Annealing (SA) algorithm 
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was utilized to minimize the error between the experimental viscosity and predicted 

values by the model. The objective function of minimization procedure was root mean 

square error as defined as follow.  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑉𝑖𝑠𝑒𝑠𝑡𝑖 − 𝑉𝑖𝑠𝑒𝑥𝑝𝑖)

2𝑛
𝑖=1

𝑛𝑠
 

 

4.40 

 

Where 𝑉𝑖𝑠 represents condensate viscosity, subscripts est and exp represent the 

predicted and actual value, ns is number of data points from the initial assigned 

population of 144 data sets. The optimized values of   𝛾 and 𝜎2 using SA optimization 

method for predicting the condensate liquid viscosity presented in the following table.  

 

Table 4.3. The optimum values of the LSSVM parameters. 

LSSVM model Input parameters Model parameters 

𝛾 𝜎2 

Condensate phase 

viscosity  

Reservoir pressure, 

Temperature, API, gas SG, Rs  

 

5625.256 

 

23.65 

 

The algorithm reduces the error between the experimental values of viscosity, and the 

model to reach the optimum solution. The input variables for this model are as 

pressure, temperature, API gravity, gas specific gravity and solution gas to oil ratio 

“Rs”.  

The prediction capability of the trained model was tested for new data sets using the 

generated LSSVM code. The cross plot of in Figure. 4.5A-B illustrates the performance 

of developed LSSVM model in training stage and testing stage, respectively. The 

majority (73%) of the data points in this study are within lower viscosity range of 0 – 

0.4cp. Therefore, the performance of the LSSVM in testing new data is toward lower 

viscosity region, which is more realistic characterisation of condensate viscosity below 

the dew point near wellbore region (Whitson, Fevang and Yang, 1999; Yang et al., 

2007). The viscosity of condensate liquid in near wellbore region (Region 1), where 

condensate liquid is mobile is very low. This is due to the existence of more lighter C7+ 

fractions in mobile condensate liquid composition in aforementioned region (Fevang, 

1995, p. 44).   
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A 

 

B 

Figure 4.5. Performance of LSSVM in predicting condensate (oil) viscosity in training and 

testing stage. 

Graphical representation of the error analysis of the LSSVM in predicting the 

condensate viscosity depicted in Figure. 4.6. Ability of the trained LSSVM in predicting 

new data sets are also analysed by presenting graph of standard deviation error in 

Figure. 4.6A and standard error from the mean in Figure. 4.6B. 

 

 

A 

 

B 

Figure 4.6. Graphical error analysis of LSSVM performance for predicting condensate (oil) 

viscosity.  

Three statistical error analysis including coefficient of determination (R2), root mean 

square error (RMSE) and average absolute relative deviation percentage (AARD%) 

shown in equations 4.22 to 4.24 respectively, were adapted for estimating the 

performance of the LSSVM. Table 4.4 shows the result of this analysis in training, 

validation and testing stage of the LSSVM.  
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Table 4.4. Statistical error performance of the LSSVM. 

Stage of the process 𝑅2 RMSE AARD% 

Training set 0.9139 0.10845 13.96 

Validation set 0.87256 0.111121 14.12 

Testing set 0.7723 0.121037 14.25 

 

The results obtained from LSSVM approach indicate a promising outcome for reliable 

and more accurate prediction of condensate viscosity. The results indicate that 

LSSVM is performing better than tuned literature correlations. However, the error is 

still high, approximately about 23% in testing stage, where the capability of the model 

assessed using new data sets. Therefore, to certify the effectiveness and accuracy of 

the suggested LSSVM model for estimation of condensate viscosity among smart 

approaches in another attempt an Artificial Neural Network (ANN) was developed, 

which is presented in following section. 

 

 Artificial Neural Network (ANN) 
 
Artificial Neural Network (ANN) is a type of machine learning and artificial intelligence 

model that mimics human central nervous system, in particular the brain in human 

body (Bell, 2014). An ANN network consists of several organized layers containing 

hundreds or even more single units and artificial neurons that are connected through 

weight functions (Agatonovic-Kustrin and Beresford, 2000; Giri Nandagopal and 

Selvaraju, 2016). There are many types of neural networks but the main distinguish 

features between them are transfer functions of their neurons, learning rules and 

connection formula.  

In ANN network complex computation system is performed for predicting the output 

responses. ANNs are inspired by biological networks, performing in a massive parallel 

connection between nonlinear, parametrized, and bounded functions called neurons 

(Cios and Shields, 1997; Mesbah, Soroush and Rostampour Kakroudi, 2017). Such a 

network is a massively parallel-distributed processor that has a natural tendency for 

storing experimental knowledge and making it available for future use. In ANN system 

knowledge is acquired by the network through a learning process and synaptic weights 

will store this knowledge (Haykin, 1994). Hence, mathematical interpretation of the 

problem does not required. Neurons in such system coordinate their work, and they 
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transfer information by using synapses “electromagnetic communications” (Ghaffari et 

al., 2006a). Through a set of known input and output data the network will be trained. 

Through a learning process the network monitors the error between the predicted and 

desired outputs and continue to adjust the weights until the optimization criteria are 

reached. This process is usually carried out in two following stages: 

 first the input variables are linearly combined  

 the result is used as an argument of non-linear activation function (a)  

The activation function must be non-decreasing and differentiable function; the most 

common choices are either the identity function (𝑦 = 𝑥), or bounded sigmoid (s-

shaped) function, as the logistic [𝑦 = 1/(1 + 𝑒−𝑥)] (Haykin, 1994; Hippert, Pedreira 

and Souza, 2001; Ghaffari et al., 2006b; Eslamimanesh et al., 2011).  

The neurons are organized in a way that define the network architecture. In this 

chapter we applied multilayer perception (MLP) type, in which the neurons are 

organized in continuous layers.  

In MLP architecture, the neurons in each layer may share same inputs, but they are 

not connected to each other. As shown in Figure 4.7, typical neural networks consist 

of hidden layers, output layer, inputs and bias units. Number of hidden layers and 

number of neuron of each layers can be arbitrary (Khosrojerdi et al., 2016). However, 

increasing number of neurons may cause overfitting while decreasing their numbers 

may result on poor performance of the network.  The main advantage of ANN is ability 

to process large amount of data sets (Ghaffari et al., 2006; Khosrojerdi et al., 2016; 

Mesbah et al., 2017; Hippert et al., 2001).  

 

 

Figure 4.7. Schematic illustration of the ANN structure and computational steps to measure 

output. 
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The mathematical definition of the typical MLP neural network shown in Figure 4.7 is 

presented in the following section where superscripts are values associated with each 

layer. 

In this mathematical definition 𝑎𝑖(𝑗) = activation" 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑗 and                                                         

Ɵ(𝑗) = matrix of weights controlling function mapping from layer j to layer j+1. In order 

to calculate each activation function (𝑎) a sigmoid function (g) is multiplied by sum of 

linear combination of inputs for each neuron; these inputs in Figure 4.7 include 

(𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑏𝑖𝑎𝑠 𝑢𝑛𝑖𝑡 𝑥0) in hidden layer. The activation function (a) then can be 

calculated from the following equation.   

 

{
 
 

 
 𝑎1

(2)
= 𝑔(Ɵ10

(1)
 𝑥0 + Ɵ11

(1)
 𝑥1 + Ɵ12

(1)
 𝑥2 + Ɵ13

(1)
𝑥3)

𝑎2
(2)
= 𝑔(Ɵ20

(1)
 𝑥0 + Ɵ21

(1)
 𝑥1 + Ɵ22

(1)
 𝑥2 + Ɵ23

(1)
𝑥3)

𝑎3
(2)
= 𝑔(Ɵ30

(1)
 𝑥0 + Ɵ31

(1)
 𝑥1 + Ɵ32

(1)
 𝑥2 + Ɵ33

(1)
𝑥3)
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Then the output function ℎ𝜃(𝑥) in Figure 4.7, is sum of each neuron’s weight multiplied 

by activation function of same neuron in layer 2 defined by equation 4.42.The neurons 

of the output layer have linear transfer functions. 

 

ℎƟ(𝑥) = 𝑎1
(3)
= 𝑔( Ɵ10

(2)
 𝑎0
(2)
+ Ɵ11

(2)
𝑎1
(2)
+ Ɵ12

(2)
𝑎2
(2)
+ Ɵ13

(2)
𝑎3
(2)
) 

 

4.42 

 

Where g is a sigmoid function can be evaluated from the following equation.  

 

𝑔(𝑧) =
1

(1 + 𝑒−𝑧)
 

 

4.43 

 

In order for neural network to perform, the activation function of each neuron should 

be vectorised in a matrix form of z as follow.  

 

{

Ɵ10
(1)
 𝑥0 + Ɵ11

(1)
 𝑥1 + Ɵ12

(1)
 𝑥2 + Ɵ13

(1)
𝑥3 = 𝑍1

(2)

Ɵ20
(1)
 𝑥0 + Ɵ21

(1)
 𝑥1 + Ɵ22

(1)
 𝑥2 + Ɵ23

(1)
𝑥3 = 𝑍2

(2)

Ɵ30
(1)
 𝑥0 + Ɵ31

(1)
 𝑥1 + Ɵ32

(1)
 𝑥2 + Ɵ33

(1)
𝑥3 = 𝑍3

(2)

} 
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Substituting 4.44 into 4.42 transforms the activation function into the following form. 
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{
 
 

 
 𝑎1

(2)
= 𝑔(𝑍1

(2)
)

𝑎2
(2)
= 𝑔(𝑍2

(2)
)

𝑎3
(2)
= 𝑔(𝑍3

(2)
)}
 
 

 
 

 

 

4.45 

 

And if x and z represented by the following two matrices,  

 

{
 
 
 

 
 
 
𝑥 =      [

𝑥0
𝑥1
𝑥2
𝑥3

]

𝑧(2) = [

𝑧1
(2)

𝑧2
(2)

𝑧3
(2)

]

}
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The value of the output layer is a sigmoid function of z(3), and can be determined by 

the following equation.  

 

ℎƟ(𝑥) = 𝑔(𝑧(3)) 

 

4.47 

 

Where the value of x are considered as input of activation function. The above 

calculation procedure was implemented using MATLAB software in this study. The 

detailed computation procedure is for simple ANN network with only one hidden layer 

shown in Figure. 4.7. The complexity of a neural network is influenced by its size, i.e., 

the number of neurons and hidden layers as previously mentioned. However, the 

network should be designed with enough level of complexity, so that it does not start 

to over fit the data (Hagan et al., 2014; Soroush et al., 2015). 

Figure 4.8 depicts the schematic diagram of ANN structure for prediction of 

condensate viscosity. This design has one input layer consists of five parameters, one 

hidden layer, two bias units and one output unit. This architecture recommended by 

Hagan et al. (2014), Hagan and Menhaj (1994) and Hippert et al. (2001) as an efficient 

and the most popular multilayer feed-forward architecture. Nevertheless, there are 

large number of other designs, which might be considered suitable for other 

applications. To select the best architecture in terms of number of neurons in a hidden 

layer a trial and error procedure was implemented. The performance of each structure 

was assessed by comparing coefficient of determination (R2) and root mean square 

error (RMSE). We came up with the proposed structure shown in Figure 4.8, which 
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comprises of five neurons in layer two as the best topology. The input parameters are 

API gravity, solution gas to oil ratio (Rs), pressure, temperature and gas specific gravity 

(SG). The output layer is viscosity of condensate fluid calculated by the ANN network.  

 
Figure 4.8. Developed ANN model architecture for prediction of condensate viscosity. 

 

There are many algorithms available to train the network. The role of any algorithm is 

to minimize the error between the output of the network and target values 

(experimental condensate viscosity). This can be done by finding the optimum values 

of the weights and biases in an iterative procedure. The most well-known training 

algorithms are Levenberg–Marquardt (LM), scaled conjugate gradient (SCG), 

Bayesian Regularization (BP) and resilient back propagation (Hippert, Pedreira and 

Souza, 2001; Soroush et al., 2015). The LM backpropagation algorithm introduced by 

Kenneth, (1944) and recommended by Behera and Chattopadhyay, (2012) as one of 

the fastest and most popular backpropagation algorithm was used for adjusting the 

weights in this study. The tangent sigmoid transfer functions selected as an activation 

function for the neurons in hidden layer. For training of the model 70% of whole data 

bank (210 data points) randomly selected and split into three subsets of 80% (168 

data points) for training, 10% (21 data points) for validation and 10% (21 data points) 

for testing. The ANN network is trained to map input data by iterative adjustment of 

the weight functions. Information from the input layer feed forwarded through the 

network to optimize the weight between the neurons. Optimization of the weight 

function is carried out by back propagation of the error during training or learning stage. 
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The ANN reads the inputs and output values in training stage and changes the value 

of weight functions to minimise the difference in predicted and the target (observed) 

values. The error in prediction is minimized across training iterations (epochs) and 

training continues to the point that  the network reaches a specified level of accuracy 

(Ghaffari et al., 2006a). Once the model has reached satisfactory accuracy or the 

model is converged, the training will stop. The performance of the ANN network in 

predicting the condensate viscosity has been shown in following graphical figures.  

 

 

A 

 

B 

Figure 4.9. Prediction performance of developed ANN network for condensate liquid viscosity 

in training (A) and testing (B) stage.  

To ensure that the developed model of LSSVM and ANN follow the physical trend of 

condensate viscosity as a function of pressure, their performance have been tested 

using three independent condensate viscosity samples adopted from the literature. 

These samples are binary fluids representing gas-condensate mixture that show liquid 

drop out below the saturation pressure. The samples are from (Al-Meshari et al., 2007; 

Yang et al., 2007; Kashefi et al., 2013).  

The results shown in Figure 4.10 and Figure 4.11 indicate that ANN and LSSVM are 

following physical trend of condensate viscosity as a function of pressure with good 

accuracy.  
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Figure 4.10. Prediction performance of the developed LSSVM condensate viscosity model 

as a function of pressure for three independent samples.  

 

 

Figure 4.11. Prediction performance of developed ANN condensate viscosity model as a 

function of pressure for three independent samples. 

 Results and discussion  
 
The prediction performance of several existing literature models against experimental 

condensate viscosity data were tested. All existing literature models failed to predict 

condensate viscosity with acceptable accuracy.  

The cross plot of the results shown in Figure 4.3a confirms the poor performance of 

widely used compositional based LBC, (1964) model in prediction of condensate 
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viscosity. The reason for this is due to sensitivity of LBC method to mixture density 

and critical volumes of the heavy components. Hence, in this study the coefficients of 

the LBC correlation were optimized using least-square approach to match the 

experimental condensate viscosity data. The tuned LBC correlation shown on Table 

4.1. Figure 4.3a represents the prediction performance of LBC, (1964) with default and 

adjusted coefficients.  

Furthermore, the coefficients of five well-known live oil viscosity correlations were 

regressed to match the condensate experimental data. The results of these 

regressions presented in Figure 4.3b – f. These empirical correlations are function of 

dead oil viscosity and solution gas to oil ratio (Rs). It should be noted that dead oil 

viscosity is one of the most “difficult” properties to be estimated by correlations due to 

its dependency to paraffin, aromatic, naphthalene and asphaltene content (Whitson 

and Brulé, 2000; Hemmati-Sarapardeh et al., 2014). This might be one of the reasons 

for poor performance of the default empirical live oil viscosity correlations. Moreover, 

these correlations were originally developed using crude oil samples, which its 

properties are fundamentally different from condensate liquid. The API gravity of crude 

oil sample is between 15 – 45⁰API while API gravity of condensate liquid is normally 

above 50⁰API.  

Poor performance of the published literature correlations in predicting condensate 

viscosity, motivated to develop two machine leaning models of LSSVM and ANN 

network in this study. The performance of the newly proposed models of LSSVM and 

ANN were compared against refined previously published correlations through 

graphical and statistical error analysis. The statistical error analysis carried out using 

coefficient of determination (R2), root mean square error (RMSE) and average 

absolute relative deviation percentage (AARD%). The result of this error analysis is 

tabulated in the Table 4.5. Graphical representation of statistical analysis is provided 

in Figure 4.12 and Figure 4.13. The results indicate that ANN model outperformed 

other methods with AARD of 16.20%, R2 of 0.8423 and RMSE of 0.1144. ANN followed 

by LSSVM, Kartoatmodjo and Schmidt (1994), Elsharkawy and Alikhan (1999), 

Bergman and Sutton (2007), LBC (1964), De Ghetto et al. (1994) and Beggs and 

Robinson (1975). 
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Table 4.5. Statistical parameters of developed ML based models and utilized correlations for 

prediction of condensate viscosity. 

 
Method R2 RMSE AARD% 

LBC, (1964) 0.7241 0.1240 27.07 

Bergman & Sutton, (2007) 0.7297 0.1236 26.29 

Beggs & Robinson, (1975) 0.7207 0.1244 27.84 

Elsharkawy & Alikhan, 
(1999) 

0.7344 0.1228 24.87 

De Ghetto et al, (1994) 0.7243 0.1240 27.56 

Kartoatmodjo & Schmidt, 
(1994) 

0.7412 0.1220 23.89 

LSSVM 0.7738 0.1208 17.22 

ANN 0.8423 0.1144 16.20 

 
 

 
 

Figure 4.12. Statistical performance comparison of tuned literature models against developed 

ANN and LSSVM models (AARD% and RMSE) for prediction of condensate viscosity.   
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Figure 4.13. Statistical performance comparison of tuned literature models against 

developed ANN and LSSVM models (R2) for prediction of condensate viscosity.  

 
The results confirm using either compositional model of LBC or live oil viscosity 

correlations require significant tuning of coefficients for prediction of condensate 

viscosity of gas-condensate reservoirs below the saturation pressure. Whereas 

developed two intelligent approaches were able to monitor condensate viscosity with 

appropriate precision and integrity.  

Non-linear relationship between the available experimental data and the desired 

outputs created using developed LSSVM model. The optimum values of two important 

tuning parameters of LSSVM include 𝜎2and 𝛾 are presented in Table 4.3. Simulated 

Annealing optimization (SA) algorithm was applied to achieve these two optimum 

values. 

The ability of proposed LSSVM and ANN models for calculating condensate liquid 

viscosity as a function of changing pressure have been investigated for three gas 

condensate samples from the literature. Figure 4.10 and Figure 4.11 are 

demonstrating experimental and predicted condensate viscosities using LSSVM and 

ANN models respectively. The results show that both models are able to forecast 

physical trend of experimental condensate viscosity. The accuracy of the models for 

predicting condensate viscosity of two independent samples determined by AARD%. 
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The error analysis show that both AI models perform well with acceptable level of 

accuracy.  

From Figure 4.10 and Figure 4.11, it is evident that increasing pressure would 

decreases the condensate viscosity. The pressure changes due to depletion in gas-

condensate reservoirs can have significant effect on condensate viscosity variation 

near wellbore region (Fevang and Whitson, 1996). These changes might due to the 

complex behaviour of gas-condensate reservoir below the dew points pressure, which 

violate thermodynamic laws. The developed LSSVM and ANN models successfully 

captured the trend of condensate viscosity while utilized correlations were not accurate 

enough in tracking these changes.  

Although the prediction performance of the LSSVM was better than published 

literature correlations, however the error was still high with R2 of 0.7738 and AARD of 

17.22%. Therefore, Artificial Neural Network (ANN) method was used aiming to 

improve the accuracy. Performance prediction of ANN network is a function of number 

of neurons that is used in hidden layer. A trial and error approach were implemented 

to find the optimum number of neurons. For this study the ANN architecture with five 

neurons provides the most satisfying results with the least RMSE and the highest R2. 

Both machine learning models are providing promising results in prediction of 

condensate viscosity.  

Although the developed ML based models are performing better than existing literature 

models, however the main deficiencies of both ML models is that they sacrifice the 

physics of the problem for accurate outcome. Hence, in another attempt of this study, 

different machine learning method known as Fuzzy Logic (FL) employed in order to 

compensate the neglected physics by ANN and LSSVM. The output of the TSK fuzzy 

logic is in a form of linear equation. This approach will be explained in the following 

sections of this chapter.   

 

4.5 Fuzzy Logic Approach 

 
In previous section of this chapter, it has been demonstrated that the accuracy of 

existing literature models for predicting condensate viscosity are inadequate. Hence, 

an alternative two soft computing approaches namely LSSVM and ANN models have 

been developed for better estimation of condensate viscosity. Although 

aforementioned approaches provide satisfactory estimation of condensate viscosity, 
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however the major criticism is that they are black box methods and visual relationship 

between input and output parameters cannot be established (AlQuraishi and Shokir, 

2011; Fayazi et al., 2014). These approaches are based on statistical truth of the 

utilized data rather than scientific relationship between the input/output parameters. 

As a result, not any meaningful correlation can be derived from these approaches. Our 

aim is to develop accurate yet mathematically efficient condensate viscosity 

correlation. The proposed correlation has to cope with nonlinearity of the condensate 

viscosity that occurs due to various stage of pressure depletion in gas-condensate 

reservoirs. For this purpose, another machine learning approach known as Fuzzy 

Logic was utilized. There are two typical Fuzzy Logic approaches in literature as follow: 

 Takagi – Sugeno – Kang (TSK) rule based fuzzy logic  

 Mamdani approach  

The TSK fuzzy gives accuracy of the ML based method without compromising the 

physics of the problem.  

Mamdani approach is purely linguistic; means interpret the mathematical problem in a 

language understandable to the human logic. Both approaches utilized for accurate 

modelling of condensate viscosity in gas-condensate reservoirs. In this section, first, 

we give background information to the fuzzy logic approach in general and then TSK 

and Mamdani techniques will be explained in details.  

 
The science today is based on Aristotle’s crisp logic, formed more than 2000 year ago. 

In Aristotle’s logic, every problem has a bivalent manner, means black and white, yes 

or no and 0 and 1. The Aristotle’s bivalent logic made accessible to modern science 

by German mathematician Cantor, who developed set theory for this purpose. In the 

Cantor’s theory sets are defined as a collection of distinguishable objects. In 1937 the 

first paper published on the theory of vague sets by Black, (1937). The vague sets 

basically is similar to probability theory in mathematics. In vague sets, the objects no 

longer are distinguishable as introduced by Cantor’s theory. In 1965, Zadeh continued 

the work on vague sets and he introduced well known theory of fuzzy sets, which we 

know it as fuzzy logic in today’s science literature (Zadeh, 1965). He developed many, 

key concepts, including the idea of membership function and provide comprehensive 

framework to apply the theory for solving engineering and scientific problem. 

Fuzzy theory deals with vagueness, imprecision and uncertainty in a system. Unlike 

the classical bivalent logic, that only admits (e.g., black and white, true (1) or false (0)) 
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of an occurrence, fuzzy logic covers degree of truth of a factor between 0 and 1. In 

another word in contrast to the classical crisp set, where an object either belongs to a 

set or it does not, everything is a matter of degree in fuzzy set. The belonging of an 

object to a set can be done by the membership function. Fuzzy logic provides a 

linguistic solution for a problem, means it lifts the restriction of computer language (0 

&1) for a problem.  

Fuzzy logic approach has been used in several petroleum engineering application 

including petro physics, reservoir characterization, enhanced oil recovery, drilling, 

decision-making analysis and well-stimulation (Chen et al., 1993; Zhou, Wu and 

Cheng, 1993; Zhanggui et al., 1998; Shokir, 2006, 2008; Ahmadi et al., 2015; Zhao et 

al., 2018; Khazali, Sharifi and Ahmadi, 2019). Shokir, (2006) used rule based fuzzy 

logic for modelling density and viscosity of natural gas reservoirs. Liao et al., (2008) 

utilized fuzzy approach in separation process of oil;  Khazali et al., (2019) applied fuzzy 

decision tree for enhance oil recovery screening; Ahmadi and Ebadi, (2014) used 

fuzzy logic method for calculation of minimum miscible pressure of injected gas and 

reservoir oil.  

 

Gas-condensate reservoirs modelling with condensate blockage effect, exhibits all 

characteristics that a fuzzy logic system proposed to deal with. For instance the well 

deliverability-modelling associate with inaccuracy in PVT and rock properties 

estimation. Some properties like condensate (oil) viscosity has the largest uncertainty 

both experimentally and in prediction (Fevang, 1995; Whitson, Fevang and Yang, 

1999). Accurate determination of PVT properties is challenging task due to the 

complex fluid behaviour of gas-condensate reservoirs below the dew point that violate 

thermodynamic laws. The thermodynamic abnormality is because of the condensation 

of gas phase “become liquid hydrocarbon (condensate)” phase instead of vaporization 

as it is expected when pressure reduced and expansion induced in an isothermal 

system. After many years of research, this behaviour is still not understood accurately 

and we call it vague in this study. Such behaviour directly affect the accurate 

estimation of PVT properties (condensate viscosity, compressibility factor).  

These vagueness behaviour and difficulties motivated us in this study to take fuzzy 

logic approach, hoping to tackle if not all some of these challenges. 

Two most well-known methods of fuzzy logic in literature are Mamdani and Takagi – 

Sugeno – Kang (TSK) approach. In this study, both methods have been adopted for 
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developing intelligent models for prediction of condensate viscosity below the 

saturation pressure.  

 

4.6 Takagi – Sugeno – Kang (TSK) Fuzzy approach  

 
The most well know rule based fuzzy inference systems (FIS) are linguistic Mamdani-

type and Takagi – Sugeno – Kang (TSK) (Mamdani and Assilian, 1975; Takagi and 

Sugeno, 1985). Both antecedents and consequence are fuzzy sets in Mamdani 

approach, whereas in TSK model antecedent contains of fuzzy sets and the 

consequence is a linear equation. Therefore, the outcome of TSK fuzzy model can be 

interpreted as a linear equation. This linear equation would benefit the accuracy of the 

intelligent model as well as representing the physics of the problem.  

This linear relationship between input/output is defined by set of fuzzy so called IF – 

THEN rules as follow.  

 
𝑅1: 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝐴𝑖1𝑎𝑛𝑑…𝑎𝑛𝑑 𝑥𝑚 𝑖𝑠 𝐴𝑖𝑚  𝑡ℎ𝑒𝑛  

𝑦𝑖 = 𝑎𝑖1𝑥1 +⋯+ 𝑎𝑖𝑚𝑥𝑚 + 𝑎𝑖0 

 

4.48 

 

Where 𝑅1 = (1, 2, … , 𝑛) is number of fuzzy rules, 𝑥𝑖 = (1,2, … ,𝑚) are the input 

variables, 𝑦𝑖 are the output variables whose values are inferred, 𝐴𝑖1, … , 𝐴𝑖𝑚 are 

membership functions of the fuzzy sets in the premises and 𝑎𝑖0, 𝑎𝑖1, … , 𝑎𝑖𝑚 are the 

model parameters in the consequence (Takagi and Sugeno, 1985). To determine 

these three items using input-output data of a respective system “gas-condensate 

viscosity data” the design procedure of TSK fuzzy model can be summarized in three 

steps as follow: 

1. Fuzzy clustering 

2. Setting the membership functions  

3. Parameters estimation (Takagi and Sugeno, 1985; Passino and Yurkovich, 

1998; Shokir, 2006, 2008).  

Partitioning set of input variables into some fuzzy sub sets can be carried out in first 

two steps, while  the relation of input/output of each fuzzy sub sets is defined in third 

step (Takagi and Sugeno, 1985). The outline of the TSK fuzzy algorithm is shown in 

Figure 4.14. From the diagram, it can be seen that TSK algorithm requires combination 

of input/output variable called premise variables, where in this study the input variables 

are pressure (P), temperature (T) and solution-gas to oil ratio (Rs), and the output 
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variable is condensate viscosity (𝜇𝑐). As previously mentioned temperature has a 

significant effect on viscosity and it has given a special attention in this study because, 

strictly speaking, according to Ahmed, (2010) and Whitson et al., (2000) gas 

condensate reservoirs are defined by only temperature. If temperature located 

between critical and cricondentherm temperature (326°K – 395°K) the reservoir 

classed as gas-condensate reservoir. 

 

After preparing the dataset the partitioning of the data is required, which any clustering 

technique can be used for this step. Subsequently, the membership functions are 

defined by Gaussian distribution, which essentially relates the premise variables to 

each cluster with a certain degree of membership. Least square approach can be used 

to determine the value of constants in 4.42.  

 

Figure 4.14. Outline of the TSK fuzzy algorithm.  

The optimum number of clusters is fundamental for efficiency of the TSK algorithm. 

This also known as optimum number of rules for data sets. The optimum number of 

rules, for condensate viscosity utilized data were determined using Calinski and 

Harabasz, (1974) cluster evaluation method. The data bank introduced in 4.3.1 is used 

for developing the fuzzy models in this section. Having determine optimum number of 

clusters (rules), K-mean fuzzy clustering approach, as one of the most popular 

classification techniques  (Bezdek and Pal, 1992; Klawonn et al., 2015) for  partitioning 

set of data has been used to develop the TSK fuzzy model.  

Then Gaussian membership function as an efficient technique over other methods 

such as triangular or trapezoidal function (Ahmadi and Ebadi, 2014) was utilized to 

determine the degree of membership of an object to a set. Hence, membership degree 

of input/output data in respect to each cluster has been defined (Zadeh, 1965; Ross, 

2017). The details description of each step highlighted in Figure 4.14, is given in the 

following section.  
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 Fuzzy Clustering  
 
Partitioning set of data points ‘input/output’ into several groups (clusters) in a way that 

the points in the same group are highly similar and dissimilar from points of other 

clusters is the aim of fuzzy clustering (Bai et al., 2017). In this study 250 data sets 

were selected as a training data sets and divided into several clusters and then 

interpreted as rules.  

There are several fuzzy clustering methods in literature such as fuzzy c-means (FCM), 

Gustafson-Kessel (GK), K-means clustering and subtractive clustering. 

Comprehensive introduction to each clustering technique can be found in (Bezdek and 

Pal, 1992). 

In this study K-means clustering method was used as one of the most popular 

classification algorithm for the data without any defined categories or unlabelled data. 

This algorithm, is an iterative, hill climbing data-partitioning algorithm, where “𝑁” 

observations can be partitioned into “𝑐 “ clusters. Each observation in the process 

belongs to a cluster with nearest mean. Each cluster is represented by a so-called 

prototype, which has to be in the centre of the corresponding cluster. K-means 

clustering algorithm is based on an objective function “J” that can be determined from 

the following equation (Klawonn, Kruse and Winkler, 2015). 

 

𝐽 =∑∑𝑢𝑖𝑗𝑑𝑖𝑗

𝑛

𝑗=1

𝑐

𝑖=1

 

 

4.49 

 

J also known as cost function and should be minimized under the following constraints:  

 

∑𝑢𝑖𝑗 = 1    𝑓𝑜𝑟 𝑎𝑙𝑙  𝑗 ∈ {1, … , 𝑛}

𝑐

𝑖=1

 

 

4.50 

 

Where 𝑢𝑖𝑗 ∈ {0,1} indicates whether data vector 𝑥𝑗 is assigned to a cluster 𝑖 (𝑢𝑖𝑗 = 1) 

or not (𝑢𝑖𝑗 = 0);  𝑑𝑖𝑗 = ‖𝑥𝑗 − 𝑣𝑖‖
2
is squared Euclidean distance between data vector 

𝑥𝑗 and cluster prototype 𝑣𝑖. In this method the number of cluster “𝑐 “must be known in 

advance. Our criteria for assigning initial number of clusters is based on the 

assumption that nonlinearity in the data can be approximated by 12 clusters (Shokir, 

2006, 2008).   
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In general, there is no specific rule for defining optimum number of clusters “𝑐 “ 

however several number of techniques such as elbow method, the silhouette method 

G-means algorithm and Calinski-Harabasz are exist in literature. In this study Calinski-

Harabasz cluster evaluation method was used as an efficient technique (Calinski and 

Harabasz, 1974). The criteria of Calinski-Harabasz also called variance ratio criterion 

(VRC) and its defined as follow.  

 

𝑉𝑅𝐶𝑐 =
𝑆𝑆𝐵
𝑆𝑆𝑤

×
(𝑁 − 𝑐)

(𝑐 − 1)
 

 

4.51 

 

Where 𝑆𝑆𝐵 and 𝑆𝑆𝑤 are between and within overall cluster variance respectively, 

𝑐 stands for number of clusters, and N represents the data points. The 𝑆𝑆𝐵 and 𝑆𝑆𝑤 

are defined as follow. 

 
𝑆𝑆𝐵 =∑𝑛𝑖

𝑐

𝑖=1

‖𝑚𝑖 −𝑚‖
2 

𝑆𝑆𝑊 =∑∑‖𝑥 −𝑚𝑖‖
2

𝑥∈𝑐𝑗

𝑐

𝑖=1

 

 

4.52 

 

Where 𝑛𝑖 is number of observations in cluster 𝑖, 𝑚𝑖 is centroid of cluster 𝑖, 𝑚 stands 

for mean of the data, 𝑥 is number of data samples, 𝑐𝑗 is the ith cluster and  ‖𝑚𝑖 −𝑚‖
2, 

‖𝑥 − 𝑚𝑖‖
2 is Euclidean distances between two vectors. Large 𝑆𝑆𝐵 and a smaller  𝑆𝑆𝑤 

are representing well-grouped clusters, which means the larger 𝑉𝑅𝐶𝑐 ratio, the better 

data partition (Calinski and Harabasz, 1974). Therefore to achieve the optimum 

number of clusters, the validity measure of 𝑉𝑅𝐶𝑐 is maximized with respect to number 

of clusters 𝑐. Hence, highest Calinski-Harabasz index is the optimum number of 

clusters (Calinski and Harabasz, 1974; Bandyopadhyay and Maulik, 2002). Figure 

4.15 illustrates the obtained results using validity criterion function 𝑉𝑅𝐶𝑐 using equation 

4.51 for training data set.  
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Figure 4.15. Optimum number of cluster for the training data sets using validity function 

(VRC), for condensate viscosity input data.  

Having defined the optimum number of clusters for our training data, k-means 

algorithm, presented in equation 4.49 was proceed for assumed finite set of points 𝐴 =

{𝑥1, 𝑥2… , 𝑥𝑛} in n-dimensional space ℝ𝑛 as follow.   

Step 1: Choose an initial cluster centres 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝐾 randomly from the 𝑛 points 

{𝑥1, 𝑥2… , 𝑥𝑛}.  

Step 2: assign data points 𝑎 = 𝐴 to its closest centre and obtain 𝑘-partition of 𝐴. 

Step 3: Recalculate centres for the new partition and go to step 2 until no more data, 

change their clusters, or the algorithm is converged.  

K-means algorithm is minimizing distances of sum of point-to-centroid, over all defined 

clusters. This is an iterative procedure where centre of each cluster k, and membership 

values of each cluster (maximum and minimum) can be obtained at the end (Jain, 

Murty and Flynn, 1999; Bandyopadhyay and Maulik, 2002; Bagirov, 2008; Klawonn, 

Kruse and Winkler, 2015).  

 

 Setting the membership function 
 
To determine membership degree of an object to a certain set, 𝐴𝑖1, … , 𝐴𝑖𝑚 in equation 

4.48 the membership function has to be set (Zadeh, 1965; Mohaghegh, 2000). The 

membership degree is usually between 0 and 1.    

Mathematical expression in equation 4.53 states the membership (1) or non-

membership (0) of a component x to a set (universe U). This is a binary issue, which 

state an object is either belong to a set or not (Zadeh, 1965). 
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𝜇𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0,        𝑥 ∉ 𝐴

 

 

4.53 

 

Where 𝜇𝐴(𝑥) represents an ambiguous membership of component x in set A, and ∈ 

and ∉ represent contained or not contained in set A, respectively. Zadeh, (1965) 

extended classical binary membership of only 0 and 1 to a real continuous intervals 

where the numbers between 0 and 1 can represent various degree of a membership 

of an object to a set. This mathematically can be represented as follow. 

 

𝜇𝐴: 𝑈 → [0,1] 

 

4.54 

 

Where U represents a universal set defined for specific problem in fuzzy set A. For 

instance if 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛 }, then the degree of membership of 𝑥1, 𝑥2, … , 𝑥𝑛 in U can 

be defined by the following equation.  

 

𝐴 = {(𝜇𝐴 (𝑥1 )|𝑥1), (𝜇𝐴 (𝑥2 )|𝑥2),… , (𝜇𝐴 (𝑥𝑛 )|𝑥𝑛)} 

 

4.55 

 

The relation between the input/output are defined by fuzzy if/then rules, where 

conclusion can be achieved based on the hypothesis. This explain the principle of an 

inference mechanism that states if a fact of a hypothesis is known then another fact 

or conclusion can be reached (Shokir, 2008). 

The information that how the data points are distributed in the input space would 

provide the guideline for creating number of fuzzy clusters and their detection. Cluster 

centres and eigenvalues of fuzzy covariant matrices can be used for capturing this 

information (Takagi and Sugeno, 1985; Shokir, 2006, 2008). For example if the input 

space of ith cluster centre is 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑚, then the antecedent fuzzy sets of TSK 

model can be defined by any membership function. In this study gaussian membership 

function is employed to define the antecedent fuzzy sets as follow.  

 

𝜇𝐴𝑖(𝑣𝑖) = 𝑒𝑥𝑝 (−
(𝑣𝑖 − 𝑐𝑖)

2

2𝜎𝑖2
) 

 

4.56 
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Where 𝑣𝑖𝑗 is scalar values of inputs, 𝜎𝑖 is standard deviation and 𝑐𝑖 is the mean of the 

ith fuzzy set 𝐴𝑖. The centre 𝑐𝑖 and variance 𝜎𝑖of the membership function is shown in 

following figure. 

 

Figure 4.16. Gaussian membership function for detecting fuzzy clusters.  

 

 Determination of constants 
 
In order to develop condensate viscosity correlation the data bank collected from open 

literature, divided to two parts, where 242 of these data sets randomly selected to build 

the TSK model and 84 data sets utilized to test the developed model. The data sets 

N=1,2,…., 242 have been organized in a matrix form with dimension of a 242 ×  4, as 

shown in equation 4.57. Having determined optimum number of clusters using Calinski 

and Harabasz, (1974) method, K-mean algorithm has been applied to define the range 

of each cluster. Gaussian membership function then used to determine how a data 

point belongs to a defined cluster by means of membership degree between 0 and 1. 

Figure 4.17 illustrates the output respond of Gaussian membership functions to one 

of the inputs (reservoir pressure).  

 

𝑁 = [

𝑃1 𝑇1 𝑅𝑠1 𝜇𝑐1
𝑃2 𝑇2 𝑅𝑠2 𝜇𝑐2
⋮ ⋮ ⋮ ⋮
𝑃𝑁 𝑇𝑁 𝑅𝑠𝑁 𝜇𝑐𝑁

] 

 

4.57 
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Figure 4.17. Gaussian membership function for input 1 “pressure”. 

The consequent parameters of the TSK model 𝑎𝑖0, 𝑎𝑖1, … , 𝑎𝑖𝑚 term in equation 4.48 

are computed using least-square approximation method in the following fashion.  

If X denotes to a matrix having 𝑖𝑡ℎ row in the input vector of 𝑥𝑖 (inputs), Y represents 

a vector column with 𝑦𝑖 (output) as its 𝑖𝑡ℎ component and 𝑤𝑖 denotes to 𝑁 ×  𝑁 real 

matrix, then the degree of firing 𝛽𝑖𝑗 is defined by equation 4.57. The 𝛽𝑖𝑗 is jth diagonal 

of the real matrix. (Takagi and Sugeno, 1985; Shokir, 2008).  

 

𝛽𝑖𝑗 =
𝛽𝑖(𝑥𝑖)

∑ 𝛽𝑖(𝑥𝑗)
𝑐
𝑧=1

 

 

4.58 

 

And if 𝜃𝑖 = [𝑎𝑖1, … , 𝑎𝑖𝑚, 𝑎𝑖0] represents consequent parameters of ith rule in each 

vector, in order to determine 𝑎𝑖0 in 𝜃𝑖, a unitary column 𝐼 is added to the matrix X,  𝑋𝑒 =

[𝑋, 𝐼]. This is an extended matrix for the input values, then 𝜃𝑖 is calculated by the 

following equation.   

 

𝜃𝑖 = [𝑋𝑒
𝑇 .𝑊𝑖. 𝑋𝑒]

−1
𝑋𝑒

𝑇 .𝑊𝑖 . 𝑌 

 

4.59 

 

Where 𝑋𝑒
𝑇 is transpose of matrix 𝑋𝑒. The obtained parameters 𝜃𝑖 for each matrix, 

substituted in equation 4.60 to approximate output value Y.  
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𝑌 ≈ 𝑋. 𝜃𝑖 

 

4.60 

 

Y represents condensate viscosity in this study, which can also be represented as a 

linear function that is explained in following section.  

 

 Development of new correlation  
 
In this part of the study, a simple yet accurate correlation has been developed for 

prediction of condensate (oil) viscosity in gas-condensate reservoirs below the dew 

point pressure, using TSK fuzzy approach. The proposed correlation is function of 

pressure, temperature and solution gas to oil ratio. Our reasoning for aforementioned 

selection of the factors explained in following. Condensate viscosity is direct function 

of reservoir pressure as changing in pressure due to reservoir depletion has a major 

impact on this important property (Fevang, 1995; Whitson, 2000). The effect of 

pressure on condensate viscosity is demonstrated in Figure 4.10 and Figure 4.11. In 

many gas-condensate reservoirs, condensate liquid developed only when BHFP 

depleted below the dew point pressure. Moreover, it is well-known that temperature 

has a significant effect on hydrocarbon viscosity (Gozalpour et al., 2005; Craft and 

Hawkin, 2015). Another factor that has been considered in developing the viscosity 

function is solution gas to oil ratio (Rs). Solution gas to oil ratio determine how much 

gas is dissolved in the liquid, which indicate if the mixture behave more like liquid or 

gas. This in return directly influence the viscosity of gas-condensate mixture. The 

recommended linear function in this study has the following form.  

 

𝜇𝑐 = 𝐴𝑃 + 𝐵𝑇 + 𝐶𝑅𝑠 + 𝐷 

 

4.61 

 

Where P, T and Rs stand for reservoir pressure, temperature and solution gas to oil 

ratio respectively and A, B, C and D are arbitrary constants of the model. Pressure 

and temperature are directly were imported from the data bank as an input. Rs is 

calculated from Standing and Katz, (1942) shown in 4.22.  

The TSK fuzzy approach is employed to determine and optimize the parameters of A, 

B, C and D in 4.60. The architecture of fuzzy system using TSK fuzzy with Gaussian 
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MFs shown in Figure 4.18. Numerical value of 9, next to the inputs, are devoting to the 

number of rules.   

 

Figure 4.18. Architecture of constructed TSK fuzzy model for predicting condensate viscosity. 

The range of each cluster for input variables (P, T, Rs) and the values of constants 

parameters (A, B, C, D) in equation 4.60 is presented in Table 4.6. For instance, the 

function introduced in 4.60 can be used in the following fashion: 

{

𝜇𝑐 = 𝐴𝑃 + 𝐵𝑇 + 𝐶𝑅𝑠 + 𝐷
𝑅1: 𝑖𝑓 44.99 <  𝑃 < 75.15 𝑎𝑛𝑑 303.15 < 𝑇 < 405.37 𝑎𝑛𝑑 5245 < 𝑅𝑠 < 6101

 𝑇ℎ𝑒𝑛 𝜇𝑐 = −0.0063𝑃 + 0.0025𝑇 + 0.0452𝑅𝑠 + 0.0032 
 

 
Table 4.6. The range of constants and input parameters of proposed condensate viscosity 

model. 

Pressure 
(MPa) 

Temperature 
(°K) 

Rs 
(scf/STB) 

A B C D 

44.99 – 75.15 303.15 – 405.37 5245 – 6101 -0.0063 0.0025 0.0452 0.0032 

11.29 – 26.93 348 – 404.6 714 – 9732 0.0003 0.0025 -0.0123 -0.0063 

19.91 – 20.24 390.72 – 393.15 1167 – 1465 0.0024 0.0022 0.000124 -7.007 

50.07 – 75.44 303.15 – 315.92 971 – 3646 0.0011 -0.0056 -0.0017 23.84 

7.99 – 11.29 348.15 – 353.92 1160 – 9869 0.0008 -0.0019 0.000012 -0.5807 

28.52 – 31.16 323.15 – 353.15 4955 – 6267 0.0006 -0.0034 0.0001 -0.7915 

3.55 – 10.49 255.37 – 303.15 4695 – 5425 0.0007 0.0014 0.0001 0.2219 

21.90 – 60.08 315.28 – 405.37 1235 – 9186 0.0001 0.00004 - 0.001 0.6126 

11.29 – 31.16 323.15 – 443.15 2222 – 2618 0.00001 0.0036 -0.0053 13.97 

 
 

 Results and discussions  
 
The new developed model was compared with well-known literature correlations of 

LBC (1964); Beggs and Robinsons, (1975); Kartoatmodjo and Schmidt, (1991), De 

Ghetto et al. (1999) and Elsharkawy and Alikhan, (1999). These existing literature 
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correlations were introduced previously in this chapter. The developed correlation was 

also compared with other tow developed machine learning (ML) based models of ANN 

and LSSVM in this study. Statistical error parameters of root mean square error 

(RMSE), mean absolute error (MAE) and average absolute relative deviation 

percentage (AARD%) shown in Table 4.7, and were used for comparison of the 

results. RMSE and AARD% were estimated using equations 4.24 and 4.25 

respectively. MAE is determined from the following equation.  

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝜇𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝜇𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 |

𝑛

𝑗=1

 

 

4.62 

 

To visualize the performance of the new developed model against other methods 

graphical error analysis include error distribution and cross plot have been utilized. We 

tested the prediction performance of the developed correlation as well as other models 

for condensate viscosity in the range of (0 – 0.5cp). This is because the viscosity of 

condensate liquid is normally between 0 – 1cp (Fevang, 1995; Whitson and Brulé, 

2000) and in lower range, this liquid can flow toward the wellbore along with the gas 

phase. In higher viscosity range the interfacial tension of the condensate liquid is high, 

which not allowed the liquid flow towards the wellbore. In higher viscosity range, most 

of the liquid drop out not able to flow simultaneously with gas phase and trapped inside 

the porous structure (become non-recoverable condensate). This is due to stronger 

intermolecular forces that imposed to the liquid droplets in lower viscosity region.  

The results indicate that the developed condensate viscosity correlation yields good 

agreement between the predicted and measured condensate viscosity with the lowest 

RMSE of 0.0194, MAE of 0.0163, and AARD % of 7.123. The cross plot of estimated 

against experimental condense viscosity is presented in Figure 4.19A-H. From the 

results we can see that Kartoatmodjo and Schmidt, (1994) has the highest scattering 

around zero error line while Beggs and Robinson, (1975) provides least spreading for 

prediction of condensate viscosity. The reason for the high error by utilized literature 

models is might due to individual limitation of each model and also different oil type 

(e.g., oil with lower API gravity) that was used in their development.  Both ANN and 

LSSVM performance for prediction of condensate viscosity are good in lower range of 

(0 – 0.3cp) as it shown in Figure 4.19F and Figure 4.19G. However, in higher viscosity 

range between 0.3 – 0.5cp, the data scatter and their prediction performance 
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deteriorate. This is because the majority of the utilized data bank (73%) that used in 

development of ANN and LSSVM models are within the range of 0 – 0.4cp.  Hence, 

their performance is better within aforementioned range are more accurate. Although 

the error is high in higher viscosity range, but still the performance of these two ML 

based models are better than existing literature correlations. This inconsistency of 

condensate viscosity prediction by ANN and LSSVM was tackled in this study using 

TSK fuzzy approach. Figure 4.19H depicts the performance of the developed 

condensate viscosity model using TSK fuzzy approach in the range of (0 – 0.5cp). The 

result confirms that TSK fuzzy model well predicts experimental viscosity in 

aforementioned range.  

Table 4.7. Statistical accuracy of condensate phase viscosity models. 

Method RMSE MAE AARD% 

Lohrenz-Bray-Clark 
(1964)  

0.1826 0.1493 54.98 

Beggs and Robinson 
(1975)  

0.1205 0.0926 39.14 

Elsharkawy and Alikhan 
(1999)  

0.1468 0.1199 47.75 

De Ghetto (1994) ) 0.1427 0.1149 45.19 

Kartoatmodjo and 
Schmidt, (1994)  

0.1865 0.1666 63.49 

ANN  0.0656 0.0474 20.11 

LSSVM 0.074 0.0631 26.50 

TSK Fuzzy  0.0194 0.0163 7.123 
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Lohrenz-Bray-Clark, (1964) [A] 

 

 
Beggs and Robinson, (1975) [B] 

 

 
De Ghetto et al., (1994) [C] 

 

 
Kartoatmodjo and Schmidt, (1994) [D] 

 

 
Elsharkawy and Alikhan, (1999) [E] 

 

 
LSSVM [F] 

 
ANN [G] 

 
TSK Fuzzy method [H] 

 
Figure 4.19. Cross plot of estimated against condensate viscosity measurements of existing 

literature correlation, ANN, LSSVM and TSK Fuzzy method. 
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It is important to know how the developed models behave in prediction of condensate 

viscosity as a function of pressure and temperature. This is because condensate 

viscosity is strong function of pressure and temperature. Therefore, Figure 4.20A – H 

and Figure 4.21A – H were generated, which illustrate how each model performs in 

predicting condensate viscosity using relative errors percentage based on reservoir 

pressure and temperature. Both figures confirm that the developed correlation using 

TSK fuzzy approach scatter less than other models around the zero error line. In 

addition, the results show that compositional model of LBC, (1964) underestimates the 

condensate viscosity while other correlations are overestimating the condensate 

viscosity in specified pressure range of (0.25 – 75.84 MPa) and temperature range of 

(303 – 443.15°K).  

Figure 4.20H and Figure 4.21H both are showing that the new condensate viscosity 

model is responding very well to the pressure and temperature change in prediction 

of condensate viscosity, while existing literature models cannot cope with non-linearity 

of the gas-condensate system due to pressure/temperature change in the system. 

This confirms by poor performance of the existing literature models depicted in Figure 

4.20A – E.  

 
LBC, (1964) [A] 

 
Beggs and Robinson, (1975) [B] 

 

 
De Ghetto et al., (1994) [C] 

 

 
Kartoatmodjo and Schmidt, (1994) [D] 
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Elsharkawy and Alikhan, (1999) [E] 

 

 
LSSVM [F] 

 
ANN [G] 

 
TSK Fuzzy  [H] 

 

Figure 4.20. Residual plot of relative error percentage for different viscosity models as a 

function of reservoir pressure. 

 
Lohrenz-Bray-Clark, (1964) [A] 

 
Beggs and Robinson, (1975) [B] 

 

 
De Ghetto et al., (1994) [C] 

 
Kartoatmodjo and Schmidt, (1994) [D] 
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Elsharkawy and Alikhan, (1999) [E] 

 

 
LSSVM [F] 

 

 
ANN [G] 

 

 
TSK Fuzzy [H] 

Figure 4.21. Residual plot of relative error percentage for different viscosity models as a 

function of reservoir temperature. 

 
In order to see the effect of temperature, pressure and solution gas to oil ratio on 

condensate viscosity, the trend analysis of the developed model has also been 

studied. Figure 4.22A – C show the effect of reservoir pressure in the range of (0 – 

78MPa) on condensate viscosity. As the pressure increases condensate oil viscosity 

is also increasing. The results also comply with the physics of the problem as 

explained in following. 

In gas-condensate reservoirs with depletion mode of recovery in the beginning of the 

production, the initial reservoir pressure is high and condensate liquid behave like a 

gas phase, due to existing very high amount of (Rs) in the mixture. The relationship 

between Rs and reservoir pressure in this study is illustrated in Figure 4.23. As the 

reservoir pressure depleted, it reaches the dew point pressure where hydrocarbon 

liquid phase developed, the amount of dissolved gas (Rs) is decreasing proportionally 

with pressure reduction. Hence, in lower reservoir pressure there is less amount of 

dissolved gas, which in return increase the viscosity of the condensate liquid (Bergman 

and Sutton, 2007a; Hemmati-Sarapardeh et al., 2014). The result in Figure 4.22B also 
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confirms the aforementioned criterion. As it can be seen from these Figure 4.22 and 

Figure 4.23, the developed condensate viscosity correlations are following the physical 

trend of the experimental data with very good accuracy.   

The effect of temperature on condensate viscosity within the temperature range of 

(338 – 420°K) illustrated in Figure 4.22C. It is well known that increasing temperature 

will decrease the viscosity of the liquid either in isobaric condition or as saturated liquid 

condition (Craft and Hawkin, 2015, p. 511). According to the particle theory when 

temperature of a liquid increases this would increase distance between the molecules, 

which reduce the binding forces that hold the molecules of the liquid. This 

proportionally decrease the viscosity of the liquid. The result presented in Figure 4.22C 

satisfies the particle theory very well and confirms the validity of the developed TSK 

model for prediction of condensate viscosity as a function of temperature.  

 

 

(A) 

 

(B) 

 

(C) 

Figure 4.22. Experimental prediction capability of the developed TSK fuzzy model as a 

function pressure (A), solution gas to oil ratio (B) and temperature (C).  
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Figure 4.23. The relation between pressure and solution gas to oil ratio (Rs) for the utilized 

databank.  

4.7 Mamdani Fuzzy Approach 

 
In previous section, it has been observed that using TSK fuzzy approach given 

promising results for prediction of condensate viscosity. In this section another well 

known fuzzy logic approach known as Mamdani fuzzy is applied for better modelling 

of condensate viscosity in gas-condensate reservoirs.  

Mamdani fuzzy approach has been applied for many engineering applications. The 

main reason for using this method was to use completely new methodology based on 

linguistic approach in modelling gas-condensate PVT property (condensate viscosity) 

and simplify the computational procedure. 

In this section, first we introduce the nature of fuzzy algorithm and show how Mamdani 

method embedded in the algorithm. Then the detail description of Mamdani approach 

for modelling condensate viscosity will be provided.  

 

 Fuzzy Engine process 
 
It is concluded by Biezma et al., (2018) that the fuzzy system introduced by Zadeh, 

(1973) has three main following features. 

 Linguistic variables instead of or in addition to numerical variables 

 An inference mechanism that uses approximate reasoning algorithms; 

 Simple relations between the variables in terms of IF-THEN rules to formulate 

complex relationships.  
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These aforementioned characteristics of FL allow us to deal with any problem that has 

imprecise, ambiguous and vague information to be dealt with conventional binary 

logic. Figure 4.24 depicts the relationship between aforementioned three features 

introduced by Zadeh, (1973) in a typical fuzzy logic system. 

 

Figure 4.24. General architecture of a Fuzzy Logic System (FLS). 

The input data is the condensate viscosity data including pressure, temperature and 

solution gas to oil ratio (Rs). The output of the system would be condensate viscosity.  

In the fuzzification step, the considered value of the input variables converted into 

grades of memberships of fuzzy sets. Fuzzy sets are defined by membership functions 

(e.g., Triangular, Gaussian, Trapezoid, etc.,). These MFs utilizes the spectrum of 

logical values between 0 and 1. To achieve the spectrum membership functions are 

divided into certain number of subsets identified with linguistic terms (e.g., Very Low, 

Low, Medium, High and Very High).  

In next step having generated number of fuzzy rules either manually or automatically, 

these so called IF-THEN rules transferred into the inference fuzzy engine for fuzzy 

reasoning and establishing input, output relationship. During the process several fuzzy 

rules are fired in parallel-rule firing to allow simultaneous consideration of all the 

information (Ahmadi and Ebadi, 2014; Mohaghegh, 2000; Ross, 2017). The 

information generated in fuzzy inference system should be defuzzified to be able to 

see a numerical values in the form of a crisp sets. Mathematically, the defuzzification 

of a fuzzy sets are the process of “rounding it off” from its location in the unit hypercube 

to the nearest. The last step is implementation of the defuzzified fuzzy sets to obtain 

the produced output from fuzzy inference system (FIS) in the form of crisp values.  

The detail of each step for modelling condensate viscosity is explained in following 

sections.  
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 Membership Functions (MFs) fuzzification 
 
The role of MFs in any fuzzy inference system discussed in details in section 4.6.2, 

here the focus is on using different type of MFs in fuzzy inference systems.  

All the information in fuzzy set is described by its membership function, which they can 

be symmetrical or asymmetrical. This can specify the degree of membership of input 

variables to different subsets (e.g., Very Low, Low, Medium, High, and Very High). 

Different kind of MFs with the variety of the detected advantages and disadvantages 

have been proposed in literature. It is very important to select right type of membership 

function suitable to the relevant problem as success of one MF in one problem cannot 

guarantee its applicability to another.  

Several geometrical shapes proposed in literature for defining MFs. In this study we 

choose three most widely used MFs in literature include gaussian, triangular and 

trapezoidal due to their flexibility, transmissibility and eye catching ability (Ahmadi and 

Ebadi, 2014; Hameed, 2011; Khazali et al., 2019). In this part we examine the 

performance of these three well-known membership functions for determination of 

condensate viscosity in gas-condensate reservoirs.  

Gaussian MFs, defined by equation 4.63, are suitable for problems that require 

continuously differentiable curves and smooth transition (Hameed, 2011). Gaussian 

MFs initially utilized to relate the three inputs (pressure, temperature and RS) to one 

output (condensate viscosity) of FIS system. 

 

𝑓(𝑥; 𝜎, 𝑐) = 𝑒
−((

𝑥−𝑐)2

2𝜎2
)
 

 

4.63 

 

Where c is the centre (i.e., mean) of ith fuzzy set and 𝜎 is the width (i.e., standard 

deviation) of the ith fuzzy set. 

Based on the above formula the three inputs of pressure, temperature and solution 

gas to oil ratio (Rs) and one output of condensate viscosity were defined. Then several 

main linguistic subsets known as Very Low (VL), Low (L), Medium (M), High (H) and 

Very High (VH) used to interrelate the inputs and output. Figure 4.25A-D is illustrating 

the input and output parameters of Mamdani approach using Gaussian MF. 

 



 

117 | P a g e  
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
Figure 4.25. The constructed gaussian membership function representing (A) pressure (B) 

temperature (C) solution gas to oil ratio and (D) condensate viscosity. 

The triangular shape MFs are the second most important and widely used function in 

fuzzy inference systems. The triangular shape is vector of x and depends on three 

scalar parameters a, b and c. The scalar parameters are basically representing the 

three sides of triangle. Mathematically triangular MFs are defined as follow.  

 

𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0,       𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,    𝑎 ≤ 𝑥 ≤ 𝑏  

𝑐 − 𝑥

𝑐 − 𝑏
,       𝑏 ≤ 𝑥 ≤ 𝑐

0,        𝑥 ≥ 𝑐 }
 
 

 
 

 

 

 

4.64 

 

Graphical representation of triangular MFs for condensate viscosity estimation 

depicted in following figure.   
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(A) 

 
(B) 

 
(C) 

 
(D) 

 
Figure 4.26. The constructed triangular membership function representing (a) pressure (b) 

temperature (c) solution gas to oil ratio and (d) condensate viscosity. 

In the last step of this level to relate the inputs and output parameters of condensate 

viscosity within linguistic subintervals, trapezoidal membership functions have been 

utilized. Mathematical definition of trapezoidal MF is given in equation 4.65. The 

trapezoidal shape is a function of a vector, x, and four scaler parameters of a, b, c and 

d. The parameters of a and d represent the “feet” of the trapezoid and b and c 

represent the “shoulder” (MathWorks, 2019). Figure 27A-D illustrates the trapezoidal 

MFs for three inputs of pressure, temperature and solution gas to oil ratio and the 

output of condensate viscosity.  

 

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
  
 

  
 
0,                    𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,    𝑎 ≤ 𝑥 ≤ 𝑏

1,           𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
,    𝑐 ≤ 𝑥 ≤ 𝑑

0,          𝑥 ≥ 𝑑 }
  
 

  
 

 

 

 

4.65 
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(A) 

 
(B) 

 
(C) 

 
(D) 

 
 

Figure 4.27. The constructed trapezoid membership functions (A) pressure (B) temperature 

(C) solution gas to oil ratio and (D) the condensate viscosity. 

 Mamdani Fuzzy Inference System  
 
Having defined the MFs in previous section, the expert knowledge has been 

introduced into the fuzzy inference system, defining IF-THEN rules. The degree of 

membership in one fuzzy set is determined by IF portion of the rule and the 

consequence associated with system output is determined by THEN portion of the 

rule.  

To implement IF-THEN rule procedure, Mamdani FIS is proposed by Mamdani and 

Assilian, (1975) and widely accepted among the fuzzy community due to the following 

advantages  (Asklany et al., 2011; MathWorks, 2019). 

 Very fast computational procedure  

 Easy to implement 

 It is intuitive  

 Well suited to human input 
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The applicability of Mamdani fuzzy approach for modelling condensate viscosity is 

examined by this study. 

In this method the fuzzy sets from the consequent of each rule are combined through 

the aggregation operator and the resulting fuzzy set is defuzzified to yield the output 

of the system (Mamdani and Assilian, 1975; Asklany et al., 2011).The typical IF-THEN 

rule of the Mamdani algorithm is shown in the following equation.  

 

𝐼𝐹 𝑥1 𝑖𝑠 𝐴1𝐴𝑁𝐷 𝑥2 𝑖𝑠 𝐴2…𝐴𝑁𝐷 𝑥𝑛 𝑖𝑠 𝐴𝑛 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵 

 

4.66 

 

Where: 𝑥1,2,...,𝑛 are input variables; 𝐴1,2,…,𝑛 are value of a certain linguistic input (VL, L, 

M, H or VH); y is output and B is value of the output (VL, L, M, H or VH).  

In this study the parameters of pressure, temperature and solution gas to oil ratio (Rs) 

are input variables and condensate viscosity is the output variable. The relationship 

between considered input variables and condensate viscosity (𝜇𝑐) is defined by set of 

15 rules shown in Table 4.8. These set of rules are including all input, output 

relationship possibilities.  

This table is read from left to right for instance, rule no 1 can be read as follow: 

IF Pressure is VL AND Temperature is VLLMHVH AND Rs is VLLMHVH THEN 

Condensate Viscosity is VL.  

Where VLLMHVH = Very Low, Low, Medium, High or Very High. 
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Table 4.8. Fuzzy rules defined for estimation of condensate viscosity in gas-condensate 

reservoirs.  

no Pressure 

(psia) 

Temperature 

(F) 

Rs 

(scf/STB) 

Condensate 

Viscosity (cp) 

1 VL VLLMHVH VLLMHVH VL 

2 L VLLMHVH VLLMHVH L 

3 M VLLMHVH VLLMHVH M 

4 H VLLMHVH VLLMHVH H 

5 VH VLLMHVH VLLMHVH VH 

6 VLLMHVH VL VLLMHVH VL 

7 VLLMHVH L VLLMHVH L 

8 VLLMHVH M VLLMHVH M 

9 VLLMHVH H VLLMHVH H 

10 VLLMHVH VH VLLMHVH VH 

11 VLLMHVH VLLMHVH VL VL 

12 VLLMHVH VLLMHVH L L 

13 VLLMHVH VLLMHVH M M 

14 VLLMHVH VLLMHVH H H 

15 VLLMHVH VLLMHVH VH VH 

 

Maximum – minimum (max-min) composition method was utilized to implement 

Mamdani FIS model as one of the most common type in literature (Ross, 2017). The 

max-min method is initially used by Zadeh, (1965) in definition of approximate 

reasoning using natural language IF-THEN rules. In max-min method minimum 

operator is used to model  the implication and the resulting output membership 

functions are combined by using maximum operator (Hameed, 2011; Ross, 2017; 

Biezma, Agudo and Barron, 2018).  

 

 Defuzzification in Mamdani approach 
 
Defuzzification is required to convert the fuzzified quantity of inputs to a precise 

quantity of output. There are many methods in literature for defuzzification of FIS 

output. In this study we used Centroid or centre of gravity (COG) method as one of the 

most prevalent and physically attractive among all the defuzzification methods (Takagi 

and Sugeno, 1985; Leekwijck and Kerre, 1999; Ross, 2017, p. 121). Centroid 
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defuzzification returns the centre of area under the curve using integration technique 

as expressed by the following equation. 

 

𝜇𝑐𝑒𝑛𝑡𝑟𝑒 =
∫𝑥. 𝜇(𝑥)𝑑𝑥

∫𝜇(𝑥)𝑑𝑥
 

 

4.67 

 

Where 𝜇(𝑥) is representing values of membership functions obtained from output of 

FIS engine,  𝜇𝑐𝑒𝑛𝑡𝑟𝑒 is the centre of the fuzzified membership functions. The integrals 

are taken over the entire range of the FIS output (condensate viscosity) and present 

the 𝜇𝑐𝑒𝑛𝑡𝑟𝑒  as a crisp value.  

This crisp value is the numerical value of condensate viscosity returned by the FIS 

system. All calculation procedure of the Mamdani approach carried out in MATLAB.  

Three Mamdani fuzzy using the above discussed procedure was constructed with 

different membership functions for prediction of condensate viscosity. Figure 4.28 

represents the constructed Mamdani fuzzy model using Gaussian MFs. Another two 

Mamdani fuzzy systems using Triangular and Trapezoidal membership function were 

constructed in similar fashion. Numerical values of 5 next to the inputs and output of 

the system represent utilized 5 linguistic terms of Very Low (VL), Low (L), Medium (M), 

High (H) and Very High (VH).  

 

Figure 4.28. Architecture of the fuzzy inference (FIS) system for predicting condensate 

viscosity using Gaussian membership function.   

 Results and Discussion 
 
The accuracy of the developed Mamdani fuzzy model using three types of MFs in 

prediction of condensate viscosity was quantified by metric quantifiers of root mean 

square error (RMSE), average absolute relative deviation percentage (AARD%) and 
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mean absolute error (MAE) shown in equations 4.24. 4.25 and 4.61 respectively. The 

performance of the developed models compared to four existing live oil viscosity 

models of Bergman and Sutton, (2007), De Ghetto et al., (1994), Elsharkawy and 

Alikhan, (1999) and Kartoatmodjo and Schmidt, (1994). Summary of the statistical 

error analysis is presented in Table 4.9.  

 
Table 4.9. Statistical error comparison between Mamdani fuzzy approach with three MFs and 

existing literature models for prediction of condensate viscosity.  

Method RMSE MAE AARD% 

Bergman (2000) 0.3287 0.2635 104.65 

Elsharkawy and Alikhan 
(1999) 

0.2744 0.1935 60.64 

De Ghetto (1994) 0.2656 0.1842 57.47 

Kartoatmodjo and 
Schmidt (1994) 

0.2924 0.2185 62.92 

Mamdani approch 
(Triangular MF)  

0.3265 0.1389 73.99 

Mamdani approch 
(Trapezoid MF)  

0.2057 0.1644 46.45 

Mamdani method 
(Gaussian MF) 

0.0556 0.0443 17.22 

 

To visualize the performance of the developed Mamdani fuzzy model for prediction of 

condensate viscosity, graphical representation of the results in terms of cross plot 

were generated. The aim of this graphical error analysis is to demonstrate how the 

prediction deviate from zero error line or 45°, the slope. This slope line is representing 

zero error and make perfect match between measured and calculated values 

(Mansour et al., 2013; Aily et al., 2019). Figure 4.29A, Figure 4.30A and 4.31A depict 

the cross plot of developed Mamdani fuzzy model with Gaussian, Triangular and 

Trapezoidal MFs for prediction of condensate viscosity. Mamdani fuzzy models with 

gaussian MFs, Figure 4.29A, predicted values of condensate viscosity close to the 

diagonal line (zero error line) for all condensate viscosity ranges between 0 – 1cp.  

This model outperformed other utilized techniques with lowest RMSE of 0.0556, MAE 

of 0.0443 and AARD% of 17.22%.  

The statistical error analysis for implemented triangular based fuzzy model, shows that 

this model predicts condensate viscosity with RMSE of 0.3265, MAE of 0.1389 and 

AARD% of 73.99. As can be seen from Figure 4.30A cross plot of triangular based 
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Mamdani fuzzy model the estimated values are not in good match with diagonal line 

especially in higher condensate viscosity range (𝜇𝑐𝑜𝑛𝑑𝑒 ≥ 0.35𝑐𝑝).  

Figure 4.31A demonstrates graphical error estimation of trapezoidal MF’s based 

Mamdani fuzzy model for forecasting condensate viscosity. This model predicts 

condensate viscosity with RMSE of 0.2057, MAE of 0.1644 and AARD% of 46.45. 

Comparing the prediction performance of all three fuzzy models verify that using the 

developed Mamdani fuzzy models incorporated with triangular and trapezoidal MFs 

predict condensate viscosity with uncertainty. The large uncertainty of these two 

models is because the triangular and trapezoidal MFs are not able to include all ranges 

of condensate viscosity or all ranges of input variables (pressure, temperature and 

solution gas to ratio). 

 
(A) 

 
(B) 

Figure 4.29. Performance prediction of Gaussian based MFs Mamdani fuzzy model in 

predicting condensate viscosity.   

 
(A) 

 
(B) 

 

Figure 4.30. Performance prediction of triangular based MFs Mamdani fuzzy model in 

predicting condensate viscosity.  
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(A) 

 
(B) 

 
Figure 4.31. Performance prediction of trapezoidal based MFs Mamdani fuzzy model in 

predicting condensate viscosity.   

To further illustrate the performance of the developed Mamdani fuzzy models for 

prediction of condensate viscosity the time series graphs are generated and shown in 

Figure 4.29B, Figure 4.30B and Figure 31B for gaussian, triangular and trapezoidal 

based Mamdani fuzzy models respectively. These graphs highlight the contrast 

between the developed Mamdani fuzzy model outputs and condensate viscosity 

measured experimental values versus relevant data index. From these figures, it can 

be seen that the Gaussian-based Mamdani fuzzy approach forecast the condensate 

viscosity in all data indexes while other two models deviate from the experimental data.   

From the graphical and statistical error analysis of this work, it can be concluded that 

the fuzzy model with Gaussian membership function can predict the condensate 

viscosity in depleted gas-condensate reservoirs with acceptable accuracy in compare 

to triangular and trapezoidal fuzzy models and also live oil literature correlations. 

 

To make sure the developed Mamdani fuzzy models are physically following the trend 

of the condensate viscosity a set of data from Coats, (1986) was selected. The 

performance of the Mamdani fuzzy with gaussian MFs as well as existing literature 

correlations was tested using experimental data as a function of pressure. Figure 4.32 

depicts this comparison and show satisfactory match that achieved between 

developed Gaussian MFs based fuzzy model and target condensate viscosity data. 

Variation of condensate viscosity with pressure can be observed from Figure 4.32, 

where reducing the reservoir pressure would decrease the condensate viscosity. This 

is a true characterization of condensate liquid viscosity, hence the developed fuzzy 

model is valid physically for prediction of condensate liquid viscosity.  
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Figure 4.32. Performance of utilized literature correlations and Mamdani fuzzy model with 

gaussian MFs for predicting condensate viscosity as a function of pressure; sample from 

Coats, (1986). 

The effect of solution gas to oil ratio (Rs) on condensate viscosity is also investigated 

and shown in Figure 4.33. Confirmed by the results of Figure 4.33, it can be concluded 

that Rs has negative impact on condensate viscosity in gas-condensate reservoirs, 

means increasing Rs, would decrease viscosity. This is also true characteristic of 

condensate liquid viscosity, as increasing solution gas to oil ratio would increase the 

amount of gas phase in liquid phase, which in return make the mixture lighter with 

lower viscosity. Both Figure 4.32 and Figure 4.33 indicate the validity of the developed 

condensate viscosity using Mamdani fuzzy approach in following physical trend of the 

experimental data as other literature correlations do.  
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Figure 4.33. Performance of literature correlations along with gaussian fuzzy approach in 

predicting condensate viscosity as a function of solution gas to oil ratio Rs; sample from 

Coats, (1986). 

4.8 Computational efficiency of the developed models 

 
The developed ML models in this chapter for prediction of condensate (oil) viscosity 

of gas-condensate reservoirs are favourable to the existing literature models as they 

require less parameters. ANN and LSSVM are only function of P, T, Rs, API gravity 

and Gas Specific gravity. Both developed TSK and Mamdani models are function of 

P, T and Rs. In terms of computational efficiency (the required time for each model to 

return the output), the developed AI models predict condensate viscosity very fast as 

shown in Figure 4.34. All developed AI methods predict the condensate viscosity with 

less than a minute. However, Mamdani fuzzy is faster than other AI techniques with 

only required 5 seconds to return the output values. Mamdani Fuzzy followed by ANN, 

TSK fuzzy and LSSVM.    
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Figure. 4.34. Computational efficiency of the developed AI models (00:00:00 stands for 

Hour: Minute: Second).  

 

4.9 Summary  

 
Viscosity is one of the governing parameters that influence well deliverability modelling 

of gas-condensate reservoirs. This important PVT property should be treated 

separately and with high precision for both phases of gas and condensate (liquid) 

below the saturation pressure.  

In this chapter, extensive effort has been made for accurate modelling of viscosity of 

both phases (gas and condensate). The applicability of existing literature models for 

prediction of viscosity of gas and condensate (oil) has been examined using published 

experimental data. The results show that the performance of existing literature models 

for prediction of gas and condensate (oil) viscosity are inadequate. In fact, for 

prediction of condensate (oil) viscosity existing literature models show significant error. 

To improve the performance of the existing literature models in prediction of gas phase 

viscosity non-linear regression was performed and a well-known method of Londono 

et al., (2002) was modified. New optimized Londono et al., (2002) model is predicting 

experimental data with 5.2% average absolute relative deviation (AARD%). 

Variety of machine learning (ML) as well as non-linear regression approaches were 

utilized for better modelling of condensate viscosity.  
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Initially non-linear regression employed for optimizing several existing literature 

models of Beggs and Robinson, (1975); Bergman and Sutton, (2007); De Ghetto et 

al., (1994); Elsharkawy and Alikhan, (1999); Kartoatmodjo and Schmidt, (1991) and 

LBC, 1964). Then, several smart approaches including Support Vector Machine 

(SVM), Artificial Neural Network (ANN), TSK fuzzy logic, and Mamdani fuzzy logic 

were employed for better modelling of condensate viscosity in gas-condensate 

reservoirs. 

Statistical and graphical error analysis confirmed the superiority of ML based 

approaches in prediction of condensate viscosity in comparison to the existing 

literature models. A unique condensate viscosity correlation as a function of pressure, 

temperature and solution gas to oil ratio was proposed using TSK fuzzy approach.  

Physical accuracy of the developed machine learning models in this chapter for 

prediction of condensate viscosity is verified using trend analysis of independent data 

sets.  

The results of present work could be utilized for quick estimation of the gas-

condensate viscosity below the dew point pressure. These models offers 

computational efficiency, high accuracy and require less parameters for predicting 

condensate viscosity. The developed models can be embedded inside PVT packages 

and other simulation software currently in use in industry for better well deliverability 

modelling of gas-condensate reservoirs.  

 
The developed ANN and LSSVM are predicting the experimental condensate viscosity 

with 0.1144 and 0.1208 RMSE, respectively as well as AARD% of 16.20 and 17.20.  
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CHAPTER 5 DEVELOPMENT OF TWO-

PHASE Z FACTOR OF GAS-CONDENSATE MIXTURE  

DEVELOPMENT OF TWO-PHASE Z FACTOR OF GAS-

CONDENSATE MIXTURE 

 

5.1 Introduction  

 
The development and optimization of gas-condensate recovery and accurate well 

deliverability modelling require accurate determination of PVT properties. One of the 

most important factors that need accurate determination by engineers in calculation of 

well flow rate through reservoir rock, material balance calculations, evaluation of gas 

reserves, design of production equipment, and planning the development of a gas-

condensate reservoir is the fluid Z factor (Elsharkawy and Foda, 1998; Sun et al., 

2012; Zendehboudi et al., 2012). As explained in chapter 2, Z factor is one of the 

fundamental PVT properties in gas rate equations of 2.2 and 2.4.  Furthermore, as 

described in chapter 2, Z factor is influencing the well deliverability calculation in gas 

condensate reservoirs.  

In calculation of gas-condensate well deliverability accurate estimation of Z factor, is 

critical for the following reasons. Firstly, accurate and consistent estimation of initial 

hydrocarbon fluid in place require accurate estimation of compressibility factor. 

Secondly, correct estimation of Z factor dictates accurate prediction of recovery factor 

(gas and condensate liquid) as a function of pressure in depletion drive gas-

condensate reservoirs (Whitson, Fevang and Yang, 1999). 

Furthermore, at average reservoir pressure above the dew point condensate recovery 

is exactly equal to the gas recovery. Consequently, condensate recovery is strongly 

dependant on accurate description of Z factor both above and below the dew point 

pressure. To emphasise the important of accurate estimation of compressibility factor 

in gas-condensate well deliverability modelling Whitson et al., (1999) quoted; “A “+5% 

error in initial compressibility factor and a –5% error in compressibility factor at the 

dewpoint will result in (a) a +5% error in initial gas and initial condensate in place, and 

(b) a +5 to +10% error in recovery of gas and condensate at the dewpoint”.  
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In this chapter, primarily the fundamental theories behind the Z factor will be 

discussed. Then the performance accuracy of existing literature models for estimation 

of gas-condensate Z factor will be reviewed. Finally, several Z factor models are 

proposed to ensure accurate estimation of gas-condensate reservoir Z factor below 

the saturation pressure.  

 

5.2 Preliminary theory of Z factor calculation  

 
In 1873, Johannes Diderik van der Waals recognized a unique relationship between Z 

factor, reduced pressure (Pr) and reduced temperature (Tr), which known as two 

parameters corresponding state principle. The corresponding state principle is 

generalization of properties of gases (pressure and temperature) and are related to 

the critical properties in universal way. It describes that the two substances at the 

same condition of reduced pressure (Pr) and reduced temperature (Tr) have similar 

properties. In other word Z factor of any pure gases at same Pr and Tr are the same.  

For mixture compositions such as gas-condensate fluid, the reduced properties 

replaced by pseudocritical properties and become pseudo-reduced pressure (Ppr) and 

pseudo-reduced temperature (Tpr). These values are serving as a correlating 

parameters for corresponding state principle and the way they are estimated effect the 

accuracy of the Z factor (Sutton, 2005).  

Prior to discuss computation of Z factor, it is important to understand the calculation 

of pseudoreduced properties. The pseudo-reduced pressure and pseudo-reduced 

temperature are expressed by the following equations: 

 

{
 
 

 
 𝑃𝑝𝑟 =

𝑃

𝑃𝑝𝑐

𝑇𝑝𝑟 =
𝑇

𝑇𝑝𝑐

 

 

5.1 

 

Where Ppc is pseudocritical pressure and Tpc stands for pseudocritical temperature. 

These pseudocritical properties can be estimated with gas compositions and mixing 

rules or from correlations based on gas gravity (Whitson and Brulé, 2000, pp. 23–24; 

Sutton, 2005b). Several correlations have been proposed in literature for calculation 

of pseudocritical properties (Ppc and Tpc) if the composition of the mixture is available 

(Kay, 1936; Stewart, Burkhardt and Voo, 1959; Sutton, 1985; Piper, McCain and 

Corredor, 1993; Elsharkawy, 2006). Based on gas specific gravity there are other 

correlations in literature for estimation of pseudocritical properties (Matthews and 
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Roland, 1942; Standing, 1981; Elsharkawy, Hashem and Alikhan, 2000; Elsharkawy 

and Elkamel, 2001; Londono, Archer and Blasingame, 2005; Sutton, 2007).  

The Z factor data bank that is collected and used in this chapter include all 

compositional details of gas-condensate mixtures. This would allow us to use widely 

accepted Kay’s mixing rule (Kay, 1936) shown in following equation for estimating 

critical properties of hydrocarbon components.  

 

{
 
 

 
 
𝑃𝑝𝑐 = ∑ 𝑦

𝑖
𝑃𝑐𝑖

𝑁

𝑖=1,2,..

𝑇𝑝𝑐 = ∑ 𝑦
𝑖
𝑇𝑐𝑖

𝑁

𝑖=1,2,..

 

 

5.2 

 

Where y is mole fraction of component i in the mixture. Gas-condensate mixture 

frequently contains non-hydrocarbon impurities such as hydrogen sulphide (H2S), 

nitrogen (N2) and carbon dioxide (CO2). These impurities influence the accuracy of the 

PVT properties including Z factor estimation and need to be considered in calculation 

of pseudocritical properties. Wichert and Aziz, (1972) proposed a correction to include 

non-hydrocarbon impurities for calculation of pseudocritical properties. Wichert and 

Aziz’s correlation has widely been accepted in industry; hence, in this study we 

employed same method for estimating non-hydrocarbon impurities in gas-condensate 

mixture. Wichert and Aziz, (1972) presented their equation in following form.  

 

{
 
 

 
 

𝑇𝑝𝑐
∗ = 𝑇𝑝𝑐−∈

𝑃𝑝𝑐
∗ =

𝑃𝑝𝑐(𝑇𝑝𝑐−∈)

𝑇𝑝𝑐
∗ + 𝑦𝐻2𝑆(1 − 𝑦𝐻2𝑆) ∈

∈= 120 [(𝑦𝐶𝑂2+𝑦𝐻2𝑆)
0.9
− (𝑦𝐶𝑂2+𝑦𝐻2𝑆)

1.6
] + 15(𝑦𝐶𝑂2

0.5 − 𝑦𝐻2𝑆
4)

 

 

5.3 

 

 

Where Tpc and Ppc are mixture pseudocritical properties based on Kay’s mixing rule.  

In addition to non-hydrocarbon impurities one of the important properties that influence 

the calculation of Z factor in gas-condensate reservoirs below the saturation pressure, 

is accurate determination of hydrocarbon plus (C7+) pseudocritical properties. Many 

correlations such as Lee and Kesler, (1975); Kesler and Lee, (1976); Rowe, (1978); 

Whitson, (1983); Pedersen, Thomassen and Fredenslund, (1984); Riazi and Daubert, 

(1987); Elsharkawy, Hashem and Alikhan, (2000); Sutton, (2005b) have been 

proposed for this purpose. Many of these methods are applicable for characterization 
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of C7+ fractions when compositional data is not available. If compositional data is 

available Matthews and Roland, (1942) is conventional method for estimating 

pseudocritical properties of C7+. This method is practical and widely used in industry 

for estimation of hydrocarbon plus pseudocritical properties (Sutton, 1985; Whitson 

and Brulé, 2000; Maravi, 2003).  

Due to availability of compositional data in this study Matthews and Roland, (1942) 

shown in equation 5.4 utilized for estimating pseudocritical properties of C7+.Their 

method calculates hydrocarbon plus pseudocritical properties as a function of 

hydrocarbon plus specific gravity (𝛾𝐶7+) and molecular weight (𝑀𝐶7+). 

 

{

𝑇𝑐𝐶7+ = 608 + 364𝑙𝑜𝑔(𝑀𝐶7+ − 71.2) + (2450𝑙𝑜𝑔𝑀𝐶7+ − 3800)𝑙𝑜𝑔𝛾𝐶7+
𝑃𝑐𝐶7+ = 1188 − 431𝑙𝑜𝑔(𝑀𝐶7+ − 61.1) +⋯

… [2319 − 852𝑙𝑜𝑔(𝑀𝐶7+ − 53.7)](𝛾𝐶7+ − 0.8)
 

 

5.4 

 

5.3 Assessment of Z factor models  

 
Based on the theory of corresponding state principle Standing and Katz, (1942) 

introduced a chart for estimating Z factor of natural dry and sweet gases as a function 

of pseudo reduced pressure (Ppr) and pseudo reduced temperature (Tpr). Standing 

and Katz (SK) chart is one of the most widely accepted practical correlation in 

petroleum engineering for calculating gas-phase Z factor. The data of binary mixture 

of methane with propane, ethane, butane and natural gases with wide range of 

composition was used in developing SK chart. The molecular weight of the mixtures 

used in SK chart not exceeding 40 (Elsharkawy, Hashem and Alikhan, 2000). The SK 

chart is suitable for estimating Z factor of dry gases. Several corrective methods 

introduced to SK chart to account for existence of high molecular weight gases and 

hydrocarbon plus fraction C7+ (Stewart, Burkhardt and Voo, 1959; Sutton, 1985, 

2005b; Elsharkawy, Hashem and Alikhan, 2000). The importance of SK chart in 

industry motivated scholars to develop mathematical representation of the chart. 

Some of these methods are Dranchuk, Purvis and Robinson, (1973); Hall and 

Yarborough, (1973); Dranchuk and Abou-Kassem, (1974); Yarborough and Hall, 

(1974). Engineering community typically uses the published methods by Hall and 

Yarborough, (1973) and Dranchuk and Abou-Kassem, (1975) as they fit best the SK 

chart (Takacs, 1976). These methods are form of an equation of state that have been 

derived in an iterative procedure to estimate the Z factor as a function of Ppr and Tpr. 
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The Ppr and Tpr are determined using one of the available mixing rules for instance 

Kay, (1936).  

Other scholars also tried to develop methods for direct calculation of SK chart, which 

using fitting techniques (e.g., regression). Some of these methods in literature are as 

follow (Papay, 1968; Beggs and Brill, 1973; Gopal, 1977; Azizi, Behbahani and 

Isazadeh, 2010; Heidaryan, Moghadasi and Rahimi, 2010; Sanjari and Lay, 2012). 

These correlations are explicit, which means they don’t need numerical iterative 

procedure. These correlations recently become popular and they have been utilized 

by many researchers in the field for calculation of Z factor due to their simplicity and 

acceptable accuracy in wide range of pressure and temperature condition.  

 

Another methodology for estimation of Z factor is through implementation of cubic 

equation of state (EOS). Cubic EOS are simple computation procedure that define 

relationship between pressure, volume and temperature of pure hydrocarbon 

components and mixtures components. First cubic EOS proposed by Van der Waals, 

(1873). Many equations of state after Van der Waals have been proposed in literature 

to model reservoir fluid phase behaviour and Z factor (Carnahan and Starling, 1969; 

Fuller, 1976; Lawal, 1999; Nasrifar and Moshfeghian, 2001). Redlich and Kwong, 

(1949) improved initial Van der Waals EOS for more accurate calculation of vapour 

phase Z factor. Evolutionary path of van der Waals EOS lead to proposing an excellent 

form of EOS by Soave-Redlich and Kwong (SRK) in 1972.  SRK and later Peng and 

Robinson, (1976) EOSs become the industry leader for calculation of PVT properties 

(e.g., Z factor). Generally performance of EOS are good for simple hydrocarbon 

systems like natural gas and black oil reservoirs, however their performance 

deteriorates for more complex systems like volatile oil and gas-condensate reservoirs 

(Sarkar, Danesh and Todd, 1991; Elsharkawy and Foda, 1998; Ghiasi et al., 2014). 

This is because the interaction between the gas and liquid molecules is not well 

simulated in critical conditions. 

Availability and accessibility of the data in oil and gas industry motivated many 

scholars to use different approach so called intelligent models for prediction of various 

fluid properties. Recently giant oil and gas companies such as British Petroleum (BP) 

and Shell have supported using artificial intelligent (AI) techniques in different area of 

their operations. Many researchers are also using AI techniques for prediction of PVT 

properties in recent years. A few examples are (Heidaryan, Moghadasi and Rahimi, 
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2010; Chamkalani et al., 2013; Hatampour and Ghiasi-Freez, 2013; Ghiasi et al., 

2014). The intelligent methods provide promising breakthrough in accurate prediction 

of PVT properties.  

The core objectives of this chapter can be separated to two parts. Part 1 is to assess 

previously developed methods for estimation of two-phase Z factor in gas-condensate 

reservoirs.  Second part is to develop smart, yet accurate models for prediction of gas-

condensate two-phase Z factor for wide range of reduced pressure and temperature 

when composition of the mixture is available. An extensive data bank from the 

literature was collected to achieve the objective of this chapter. In the following 

sections, the most frequent methods in literature for computation of Z factor are briefly 

introduced.  

 

 Hall-Yarborough (1973) 
 
Success of Standing and Katz (SK) chart in petroleum industry for estimating Z factor, 

motivated many scholars to reproduce the SK chart in a mathematical (equation) form. 

Hall and Yarborough, (1973) and Yarborough and Hall, (1974) were among the first 

researchers that start this journey. They modified Carnahan and Starling, (1969) 

equation of state that accurately describes SK Z factor chart. The coefficient of their 

equation estimated by fitting the data obtained from SK chart. Hall and Yarborough, 

(1973) and Yarborough and Hall, (1974) propose the following equation for estimating 

of Z factor. 

 

𝑍 = [
0.06125𝑃𝑝𝑟𝑡

𝑌
] 𝑒𝑥𝑝[−1.2(1 − 𝑡2)] 

 

5.5 

 

Where Ppr is pseudo-reduced pressure; t is reciprocal of pseudo-reduced temperature 

(e.g., Tpc/T) and Y is the product of the Van der Walls co-volume and reduced-density 

and can be obtained by solving F(Y) as follow.  

 

𝐹(𝑌) = 𝑋1 +
𝑌 + 𝑌2 + 𝑌3 + 𝑌4

(1 − 𝑌)3
− 𝑋2𝑌

2 + 𝑋3𝑌
𝑋4 

 

5.6 

 

Where the parameters of X are determined as follow.    
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{
 
 

 
 𝑋1 = −0.01625Ppr𝑡[−1.2(1 − t

2)]

𝑋2 = (14.76𝑡 − 9.76𝑡
2 + 4.58𝑡3)

𝑋3 = (90.7𝑡 − 242.2𝑡
2 + 42.48𝑡3)

𝑋4 = (2.18 + 2.82𝑡)

 

 

5.7 

 

 

 
To solve function F(Y) an iterative technique of Newton-Raphson with the initial guess 

of Y=0.001 is used. The method returned the experimental Z factor within 3 to 10 

iterations.  

Hall – Yarborough method is representing SK chart Z factor with very good accuracy 

in wide range of pressure and temperature. This method is valid for the reduced 

temperature in the range of  1 ≤ 𝑇𝑟 ≤ 3 and reduced pressure in the range of 0.2 ≤

𝑃𝑟 ≤ 25 − 30 (Yarborough and Hall, 1974; Whitson and Brulé, 2000; Ahmed, 2010).  

 

 Dranchuk – Abu – Kassem (1975) 
 
Unlike Hall and Yarborough Z factor equation, which is only function of pseudoreduced 

pressure and temperature, Dranchuk and Abou-Kassem, (1975) or known as DAK 

proposed an equation of state for calculation of Z factor that also include reduced gas 

density. Reduced gas density (𝜌𝑟) is a ratio of gas density at specific pressure and 

temperature over gas density at critical pressure and temperature. DAK used 1500 Z 

factor data points obtained from SK chart in developing their method. DAK proposed 

Z factor equation with 11 constants as follow.  

 

{
  
 

  
 𝑍 = [𝐴1 +

𝐴2

𝑇𝑝𝑟
+

𝐴3

𝑇𝑝𝑟
3
+

𝐴4

𝑇𝑝𝑟
4
+

𝐴5

𝑇𝑝𝑟
5
] 𝜌𝑟 + [𝐴6 +

𝐴7

𝑇𝑝𝑟
+

𝐴8

𝑇𝑝𝑟
2
] 𝜌𝑟2 …

…− 𝐴9 [
𝐴7

𝑇𝑝𝑟
+

𝐴8

𝑇𝑝𝑟
2
] 𝜌

𝑝𝑟
5 + 𝐴10(1 + 𝐴11𝜌𝑟

2)
𝜌
𝑟
2

𝑇𝑝𝑟
3
3𝑒𝑥𝑝[−𝐴11𝜌𝑟

2] + 1

𝜌
𝑟
=
0.27𝑃𝑃𝑟

𝑍𝑇𝑝𝑟

 

 

5.8 

 

Where the constants of A1 to A11 are as follow, 𝐴1 = 0.3265,   𝐴2 = −1.0700,  𝐴3 =

−0.5339,  𝐴4 = 0.01569,  𝐴5 = −0.05165, 𝐴6 = 0.5475,  𝐴7 = −0.7361,   𝐴8 = 0.1844, 𝐴9 =

0.1056, 𝐴10 = 0.6134, 𝐴11 = 0.7210. 𝜌𝑟 is the reduced density of the mixture.  

A1 to A11 constants obtained by the authors using non-linear regression using SK chart 

data points. In implementing DAK method for estimating Z factor, Newton – Raphson 

iterative technique has been used (Lee and Wattenbarger, 1995). For high-density 

gases DAK method estimates Z factor with high error. Hence the modification has 
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been introduced to the original DAK code by Borges, (1991), where he sets the 

reduced density from value of 2.2 to 3 or greater. The DAK method predicts Z factor 

for reduced temperature in the range of 1 ≤ 𝑇𝑟 ≤ 3 and reduced pressure range of 

0.2 ≤ 𝑃𝑟 ≤ 25 − 30.  

 

 Beggs and Brill (1973) 
 
Although Hall – Yarborough and DAK method simulate SK Z factor chart with good 

accuracy, however the computation procedure is tedious and iterative techniques are 

needed. For easing the computation of the Z factor without using iterative procedure 

Beggs and Brill, (1973) proposed a direct correlation. For many petroleum engineering 

applications Beggs and Brill, (1973) give satisfactory representation of the SK chart 

with 1 – 2% deviation in reduced temperature range of 1.2 <  𝑇𝑟 <  2. The main 

limitations of Beggs and Brill are that reduced temperature must be greater than 1.2 

(≈80°F) and less than 2.0 (≈340°F) and reduced pressure should be less than 15 

(≈10,000psia). The Beggs and Brill is presented as follow for calculation of Z factor.  

 

𝑍 = 𝐴 +
1 − 𝐴

𝑒𝐵
+ 𝐶𝑃𝑝𝑟

𝐷 

 

5.9 

 

Where the parameters of A, B C and D can be determined as follow: 

 

{
 
 
 
 

 
 
 
 𝐴 = 1.39(𝑇𝑝𝑟 − 0.92)

0.5
− 0.36𝑇𝑝𝑟 − 0.10

𝐵 = (0.62 − 0.23𝑇𝑝𝑟)𝑃𝑝𝑟 + (
0.066

𝑇𝑝𝑟 − 0.86
− 0.037)𝑃𝑝𝑟

2 +
0.32𝑃𝑝𝑟

6

10𝐸

𝐶 = 0.132 − 0.32log (𝑇𝑝𝑟)

𝐷 = 10𝐹

𝐸 = 9(𝑇𝑝𝑟 − 1)

𝐹 = 0.3106 − 0.49𝑇𝑝𝑟 + 0.1824𝑇𝑝𝑟
2

 

 

5.10 

 

 

The main advantage of Beggs and Brill is that the equation is explicit and easy to use 

in many engineering calculation.  

 

 Rayes et al., (1992) 
 
SK chart and subsequent models of Hall – Yarbrough, DAK and Beggs and Brill, 

(1973) are good representation of Z factor as for natural gas with single-phase 
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behaviour. Gas-condensate reservoirs undergoing depletion are developing 

condensate phase, which make the flow at least two-phase or even more if connate 

water enter the pay zone. Therefore using single-phase Z factor for this type of 

reservoirs is arguable.  

Evolving condensate (liquid) phase below the saturation pressure in gas-condensate 

reservoirs motivated Rayes et al., (1992) to develop a two-phase Z factor as a function 

of pseudocritical properties of temperature and pressure. They used 131 constant 

volume depletion (CVD) studies of gas-condensate reservoirs for developing their 

correlation. Their correlation is valid for reduced temperature range between 1.1 <

 𝑇𝑟 <  2.1 and reduced pressure range of 0.7 <  𝑃𝑟 <  20. They propose the following 

equation for computation of two-phase Z factor.  

 

𝑍2−𝑝ℎ𝑎𝑠𝑒 = 𝐴0 + 𝐴1(𝑃𝑟) + 𝐴2 (
1

𝑇𝑟
) + 𝐴3(𝑃𝑟)

2 + 𝐴4 (
1

𝑇𝑟
)
2

+ 𝐴5 (
𝑃𝑟

𝑇𝑟
) 

 

5.11 

 

Where 𝐴0 = 2.24353, 𝐴1 = −0.0375281, 𝐴2 = −3.56539, 𝐴3 = 0.000829231, 𝐴4 =

 1.53428  and 𝐴5  = 0.131987.  

Rayes et al., (1992) is the only two-phase Z factor model that specifically developed 

for gas-condensate reservoirs. The equation can be calculated explicitly for 

determining two-phase Z factor. However, the equation is limited for high pressure and 

high temperature (HPHT) condition.  

 

 Azizi et al., (2010) 
 
The methods that developed to representing SK chart such as DAK and Hall –

Yarbrough were based on limited data from the original SK chart. In another attempt 

to simulate the SK chart by a mathematical equation, Azizi et al., (2010) used a large 

Z factor data bank of 3038 points obtained from SK chart and proposed a direct Z 

factor correlation. Their proposed method include 14 constants obtained from fitting 

with SK chart Z factor data. They proposed their Z factor correlation in the following 

fashion. 

 

𝑍 = 𝐴 +
𝐵 + 𝐶

𝐷 + 𝐸
 

 

5.12 
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Where A, B, C and D are determined from the following equations.  

 

{
 
 

 
 

𝐴 = 𝑎𝑇𝑟
2.16 + 𝑏𝑃𝑟

1.028 + 𝑐𝑃𝑟
1.58𝑇𝑟

−2.1 + 𝑑𝑙𝑛(𝑇𝑟)
−0.5

𝐵 = 𝑒 + 𝑓(𝑇𝑟)
2.4 + 𝑔𝑃𝑟

1.56 + ℎ𝑃𝑟
0.124𝑇𝑟

3.033

𝐶 = 𝑖𝑙𝑛(𝑇𝑟)
−1.28 + 𝑗𝑙𝑛(𝑇𝑟)

1.37 + 𝑘𝑙𝑛(𝑃𝑟) + 𝑙𝑙𝑛(𝑃𝑟)
2 +𝑚𝑙𝑛(𝑃𝑟)𝑙𝑛(𝑇𝑟)

𝐷 = 1 + 𝑛(𝑇𝑟)
5.55 + 𝑜(𝑃𝑟)

0.68(𝑇𝑟)
0.33

𝐸 = 𝑝𝑙𝑛(𝑇𝑟)
1.18 + 𝑞𝑙𝑛(𝑇𝑟)

2.1 + 𝑟𝑙𝑛(𝑃𝑟) + 𝑠(𝑃𝑟)
2 + 𝑡𝑙𝑛(𝑃𝑟)𝑙𝑛(𝑇𝑟)

 

 

5.13 

 

 

The tuned values of 𝑎 − 𝑡 in equation 5.13 are given in following table.  

 

Table 5.1. Coefficients of Azizi et al., (2010) Z factor correlation. 

Coefficient Value Coefficient Value 

a 0.0373142485385592 k −24449114791.15 

b −0.0140807151485369 l 19357955749.32 

c 0.0163263245387186 m −126354717916.60 

d −0.0307776478819813 n 623705678.38 

e 13843575480.94 o 17997651104.33 

e −16799138540.76 p 151211393445.06 

g 1624178942.649 Q 139474437997.17 

h 13702270281.08 r −24233012984.09 

i −41645509.89 s 18938047327.52 

j 237249967625.01 t −141401620722.68 

 

The advantage of Azizi et al., (2010) method over other DAK and Hall-Yarborough for 

simulating SK chart is that it does not need an iterative computational method for 

estimating Z factor. It is a direct correlation that developed to represents SK chart as 

simple as possible. This model is valid for reduced pressure between 0.2 < 𝑃𝑟 < 11 

and reduced temperature between  1.2 < 𝑇𝑟 < 2.  

To assess the applicability of all studied literature model for estimating two-phase Z 

factor of gas-condensate fluid below the saturation pressure a large data bank has 

been collected, which is discussed in following section.  

 

 Data bank  
 
To examine the performance of the discussed literature methods in prediction of gas-

condensate Z factor and also developing new methods for this important PVT property, 
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a data bank was collected. The data bank include 1084 data sets (19518 data points). 

This is largest and one of the most comprehensive data bank to assess and improve 

accuracy of gas-condensate reservoirs Z factor. Experimental studies of gas-

condensate fluids and also the PVT reports are source of our data bank. The following 

references is used in sourcing the Z factor data bank: (Olds, Sage and Lacey, 1945, 

1949; Whitson and Torp, 1983; Coats, 1985; Coats and Smart, 1986; Moses, 1986; 

Kenyon and Behie, 1987; Drohm, Goldthorpe and Trengove, 1988; Yang, Chen and 

Guo, 1997; Elsharkawy and Foda, 1998; Sun et al., 2012; Liu et al., 2013; Bonyadi et 

al., 2014). In most of these studies constant volume depletion (CVD) has been 

employed in order to estimate the phase behaviour of gas-condensate samples. The 

data bank includes hydrocarbon compositions, molecular weight of C7+, pressure, 

temperature, gas specific gravity and two-phase Z factor. The data covers wide range 

of reservoir conditions as well as reservoir compositions from lean gas-condensate to 

very rich obtained from worldwide. The statistical description of the data is provided in 

Table 5.2.  
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Table 5.2. Statistical description of the data used for development of two-phase Z factor. 

Property Minimum Maximum Average 

Temperature, ⁰F 86 351 207 

Tpr 1.1631 4.261 2.901 

Pressure, psia 200 23244 8305 

Ppr, (mole %) 0.2878 33.525 11.917 

H2S, (mole %) 0.000 0.5137 0.0075 

CO2, (mole %) 0.0001 0.749 0.0472 

N2, (mole %) 0.000 0.525 0.0326 

C1, (mole %) 0.0687 96.003 5.1115 

C2, (mole %) 0.0024 2.101 0.1529 

C3, (mole %) 0.0007 0.202 0.028 

IC4, (mole %) 0.0002 0.0638 0.0065 

NC4, (mole %) 0.00 0.0638 0.0084 

IC5, (mole %) 0.00 0.06 0.0037 

NC5, (mole %) 0.00 0.0431 0.0032 

C6, (mole %) 0.0002 0.0592 0.0047 

C7+, (mole %) 0.0004 0.228 0.0249 

SG gas 0.046717 1.410137 0.26218 

MW C7+ 102.30 253.00 186.78 

Two-phase Z-factor  
 

0.553 2.162 1.287 

 

 Results of literature models  
 
Using the data bank shown in Table 5.2 applicability and accuracy of the existing 

literature models for prediction of gas-condensate Z factor is assessed. Statistical and 

graphical error analysis carried out to see the performance of the literature models in 

prediction of two-phase Z factor. The statistical parameters of mean average error 

(MAE), root mean square error (RMSE) and absolute average relative deviation 

percentage (AARD%) have been employed to see the accuracy of the utilized 

methods. The results of this statistical error analysis shown in Table 5.3. These 

analyses indicate DAK method best performed among existing literature models with 

MAE of 0.1300, RMSE of 0.1671 and AARD% of 2.4945. DAK method followed by 

Hall-Yarborough, (1973), Rayes et al., (1992), Beggs and Brill, (1973) and Azizi et al., 

(2010) for estimation of gas-condensate Z factor below the saturation pressure.  
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Table 5.3. Performance of employed literature models in predicting two-phase Z factor of 

gas-condensate systems. 

Model MAE RMSE AARD% 

Hall-
Yarborough, 

(1973) 

 
0.1421 

 

 
0.1846 

 

 
3.0906 

 

DAK, (1975) 
 

0.1300 

 

 
0.1671 

 

 
2.4945 

 

Beggs and Brill, 
(1973) 

 
0.2047 

 

 
0.2769 

 

 
17.0566 

 

Azizi et al., 
(2010) 

 
0.3851 

 

 
0.4822 

 

 
28.6958 

 

Rayes et al., 
(1992) 

 
0.1516 

 

 
0.1904 

 

 
10.0522 

 
 

In order to visualize the performance of literature models several graphical error 

analysis were performed. The graphs in Figure 5.1 are presenting cross plot of the 

obtained results against the experimental values of two-phase Z factor. The diagonal 

line is representing zero error line, means scattering the data over or under this line 

showing poor performance of the model. The results of cross plot show that DAK, 

(1975), Hall-Yarborough, (1973) and Rayes et al., (1992) predict the expariemntal 

values of two-phase Z factor with some level of accuracy while Beggs and Brill, (1973) 

and Azizi et al., (2010) performance is unsatisfactory.  

 
(A)  

(B) 
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(C) 

 
(D) 

 
(E) 

Figure 5.1. Scatter plot of five literature models in prediction of two-phase compressibility 

factor of gas condensate reservoirs below the saturation pressure.   

 

To investigate the performance of each method in predicting various range of 

experimental gas-condenste two-phase Z factor the graph of relative error was 

generated and presented in Figure 5.2. As the graph shows prediction performance of 

DAK, (1975) and Hall-Yarborough, (1973) methods are poor especially in the specific 

range of 1.5 < 𝑍𝑡𝑤𝑜−𝑝ℎ𝑎𝑠𝑒 < 0.7. The reasons for poor performance of both 

aforementioned methods in predicting gas-condensate two-phase Z factor could be 

behind their initial development. Hall-Yarborough (HY), (1973) and DAK, (1975) are 

both iterative techniques that are representing mathematical description of well-known 

SK (Standing and Katz, 1942) Z factor chart. The associated constants in DAK and 

HY equations were tuned using the data obtained from SK chart. SK chart is suitable 

for prediction of single phase sweet and dry gas systems, nevertheless not for 

prediction of two-phase Z factor of gas-condensate fluid (Rayes et al., 1992; 

Elsharkawy, Hashem and Alikhan, 2000). Both DAK and HY also shown similar 
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behaviour for prediction of two-phase Z factor, as they initially were developed to 

simulate the SK chart.  

 
(A)  

(B) 

 
(C) 

 
(D) 

 
(E) 

Figure 5.2. Graph of relative error utilizing literature models for prediction of two-phase Z 

factor. 

 

Azizi et al., (2010) performance is also associated with high error as indicated by the 

results in Figure 5.1D and Figure 5.2D. In developing their correlation Azizi et al., 

(2010) used 3038 data points obtained from SK chart. The poor performance of this 
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correlation also indicates that SK chart is not applicable for estimating two-phase Z 

factor of gas-condensate reservoir below the saturation pressure (two-phase Z factor). 

 

Beggs and Brill, (1973) correlation also predicts the experimental data with large error 

as can be seen from Figure 5.1C and Figure 5.2C. Rayes et al., (1992) method is the 

only method that specifically developed for prediction of gas-condensate Z factor 

below the dew point pressure. This method also return the experimental data with high 

error shown in Figure 5.1E and Figure 5.2E. 

For fair evaluation of each literature models it should be highlighted that each method 

developed for specific range of Tpr and Ppr. Hence, the performance of the each 

method plotted against various range of Tpr and Ppr and shown in Figure 5.3 and Figure 

5.4. 

Hall-Yarborough and DAK methods well predict Z factor of reservoir gases (dry and 

sweet) within the range of 1 ≤ 𝑇𝑝𝑟 ≤ 3 and  0.2 ≤ 𝑃𝑝𝑟 ≤ 25 − 30 (Hall and Yarborough, 

1973; Dranchuk and Abou-Kassem, 1974; Whitson and Brulé, 2000). The results in 

Figure (5.3A-B) and Figure (5.4A-B) show that even within aforementioned ranges of 

reduced pressure and temperature Hall-Yarbrough and DAK predict two-phase Z 

factor of gas-condensate reservoirs with high error.  

 

Beggs and Brill Z factor correlation is only valid for specific range of pseudo reduced 

temperature of 1.2 <  𝑇𝑝𝑟 <  2 and pressure of 𝑃𝑝𝑟 < 15. This correlation forecasts 

the two-phase gas-condensate Z factor within the aforementioned Tpr and Ppr with 

large deviation as can be seen from Figure 5.3C and Figure 5.4C.   

 

Azizi, et al, (2010) model is valid for reduced temperature between 0.2 < 𝑃𝑟 < 11 and 

reduced temperature between  1.2 < 𝑇𝑟 < 2. Looking at the results in Figure 5.12D 

and Figure 5.3D where performance of Azizi’s model in specified reduced pressure 

and temperature depicted respectively, the two-phase Z factor experimental data is 

highly overestimated.  

Rayes et al., (1992) performs very well if the Z factor is within the range of 0.704 <

𝑍𝑡𝑤𝑜−𝑝ℎ𝑎𝑠𝑒 <  1.775, and deviate under and beyond these range. In terms of relative 

error as a function of Tpr and Ppr, Rayes et al., (1992) method returns two-phase 
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experimental Z factor with unsatisfactory accuracy, as illustrated by Figure 5.3E and 

Figure 5.4E for reduced pressure and reduced temperature respectively.  

We should also highlight the fact that another reason for high error by utilized methods 

are using different reservoirs fluid samples in their development. Based on the 

presented results it can be concluded that using existing literature methods for 

calculation of two-phase Z factor of gas-condensate reservoirs are not adequate and 

associated with large error. The unsatisfactory performance and applicability to only 

limited range of data of literature models motivated to focus on developing methods 

for prediction of two-phase Z factor of gas-condensate reservoirs. There is a need for 

robust models that cope with non-linearity of gas-condensate systems below the 

saturation pressure in relation to prediction of Z factor. Availability of the data in 

literature and success of using machine learning techniques in recent years, motivated 

us to use several methods known as machine learning (ML) techniques. A 

comprehensive background information for ML techniques are provided in chapter 4.4 

of this thesis.  

 
(A)  

(B) 

 
(C) 

 
(D) 
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(E) 

Figure 5.3. Residual plot of relative error percentage of utilized literature correlations in 

predicting gas-condensate two-phase Z factor as a function of pseudo reduced pressure (Ppr). 

 
(A) 

 
(B) 

 
(C) 

 
(D) 
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(E) 

Figure 5.4. Residual plot of relative error percentage of literature models in predicting two-

phase Z factor of gas-condensate systems as a function of pseudo reduced temperature (Tpr). 

5.4 Development of new Z factor models 

 

One of the primary aim of this study is to use innovative and different approach for 

modelling various aspect of gas-condensate well deliverability modelling. As it can be 

seen from chapter 4 of this thesis, a new modern numerical techniques known as 

machine learning (ML) extensively used to achieve our primary aim of the study. For 

modelling gas-condensate two-phase Z factor below the saturation pressure, various 

ML based techniques were implemented. The reason for implementing ML based 

approaches in estimating PVT properties are given as follow.  

 The correlations for estimating properties such as Z factor are limited to various 

range of operational conditions (temperature and pressure). 

 Based on the presented figures and plots in previous section it is concluded 

that using existing literature methods for calculating two-phase gas-condensate 

Z factor associated with large error.  

The developed ML techniques should tackle the above mentioned challenges that 

exist using correlations for estimating Z factor. For this purpose two artificial neural 

networks models namely feed forward neural network (FFNN) and cascade forward 

neural network (CFNN) have been employed for better estimation of gas-condensate 

Z factor. Furthermore, another form of TSK fuzzy model known as adaptive neuro 

fuzzy inference system (ANFIS) also has been utilized. Based on ANFIS modelling a 

set of gas-condensate two-phase Z factor correlations were proposed. In this part the 

methodology of each utilized ML based approaches is discussed in details.  
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 Cascade Forward Neural Network (CFNN) 
 
One of the class of neural networks alongside feed forward neural network (FFNN), 

are cascade forward neural network (CFNN). This network also known as cascade 

forward back propagation (CFBP). CFBP algorithm resembles FFNN and the only 

different is that each individual neurons in input layer attached to each neuron in 

hidden layer and to each neuron in the output layer (Warsito, Santoso and Yasin, 

2018).  This means each subsequent neuron is bound to the previous one and training 

is performed accordingly. The typical CFNN for one input and one hidden layer is 

shown in Figure 5.5, where the neurons in input layer is connected to the output layer 

activation function. This additional connection of the input and output is the main 

difference between the conventional FFNN and CFNN.    

 

Figure 5.5. Architecture of the cascade forward (CFNN) neural network used in this study. 

The relation between input and output layer of CFNN with one bias unit shown in 

Figure. 5.5 can be defined as follow.  

 

𝑦(𝑥) =∑𝑔𝑖Ɵ𝑖
𝑖𝑥𝑖 + 𝑔

𝑜 ( Ɵ𝑏  +  ∑Ɵ𝑗
𝑜𝑔ℎ

𝑘

𝑗=1

(Ɵ𝑗
𝑏 +∑Ɵ𝑗𝑖

ℎ𝑥𝑖

𝑛

𝑖=1

))

𝑛

𝑖=1

 

 

5.14 

 

Where 𝑥𝑖 is representing inputs; Ɵ𝑖(𝑡) is connection weight function between input and 

output layer; 𝑔𝑖is the input activation function (usually sigmoid type), 𝑔𝑜 is output 
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activation function, Ɵ𝑏is the weight function of the bias unit, Ɵℎ is the weight function 

of the hidden layer and 𝑔ℎis hidden layer activation function.  

The input layer of CFNN has 16 parameters include reservoir pressure (P), 

temperature (T), hydrogen sulphide (H2S), nitrogen (N2), carbon dioxide (CO2), 

hydrocarbon compositions (C1 – C7), molecular weight of C7+ (MWC7+), specific gravity 

of gas on the surface (SGg). The constructed network aims at predicting two-phase Z 

factor as output value. The inputs of the networks are independent variable and output 

is dependant. In another word gas-condensate two-phase Z factor is a function of all 

the inputs and can be written as follow.   

𝑍2−𝑝ℎ𝑎𝑠𝑒 = 𝑓(𝑃, 𝑇, 𝐻2𝑆, 𝑁2, 𝐶𝑂2, 𝐶1,  𝐶2,  𝐶3,  𝐼𝐶4, 𝑁𝐶4,  𝐼𝐶5, 𝑁𝐶5,  𝐶6,  𝐶7+,𝑀𝑊𝐶7+, 𝑆𝐺𝑔) 

In preparing the data, the data bank divided into three different data sets of training, 

validation and testing. The random selection of the data is employed, where 70% of 

the data bank assigned for training, 15% for validation and 15% for testing. Then 

several architecture of CFNN with various hidden layer in terms of size and 

combination of different neurons in each hidden layer examined. This is to ensure in 

developing a network with acceptable topology. 

The objective for choosing the best CFNN network was the least mean square error 

(MSE) and highest coefficient of determination R (1). An example of the constructed 

CFNN in Matlab with three hidden layers and various neurons in each layer shown in 

following figure.  

 

Figure 5.6. Cascade forward neural network with three hidden layer constructed in Matlab for 

prediction of two-phase Z factor.  

Table 5.4 illustrates the results of this comparison for 1 hidden layer in constructed 

CFNN with different neurons. Same procedure was repeated to see the effect of 

number of hidden layers on improving the performance of the CFNN by means of 

increasing R. Among many algorithms available to train the network Levenberg – 
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Marquardt (LM) was used due to its stability and rapid convergence (Tanasa et al., 

2013; Mohamadi-Baghmolaei et al., 2015; Rostami, Hemmati-Sarapardeh and 

Shamshirband, 2018).  The LM algorithm is utilized for optimizing weights and biases 

of constructed CFNN, where the weights are computed as follow.  

 

𝑊𝑘+1 = 𝑊𝑘 − [𝐽
𝑇
𝑊𝑘
𝐽𝑊𝑘

− Ƞ𝐼]
−1

× 𝐽𝑇𝑊𝑘
𝑒𝑊𝑘

 

 

5.15 

 

Where the weight matrix is 𝑊𝑘+1 and 𝑊𝑘 during 𝑘 + 1𝑡ℎ and 𝑘𝑡ℎ repetitions, J stands 

for Jacobian matrix, e is accumulated errors vector, 𝐼 is the identity matrix and Ƞ is the 

parameter to express the ability of LM algorithm for altering the searching method 

(Hagan and Menhaj, 1994; Rostami, Hemmati-Sarapardeh and Shamshirband, 2018).  

 

Table 5.4. The relation between the number of neurons and coefficient of determination for 1 

hidden layer CFNN, using Levenberg – Marquardt (LM) as training algorithm. 

No. Neurons Training R Validation R Testing R Convergence 

time 

5 0.9931 0.9829 0.9919 00:00:00 

10 0.9945 0.9953 0.9871 00:00:09 

15 0.9951 0.9865 0.9744 00:00:00 

20 0.9978 0.9926 0.9330 00:00:01 

25 0.9972 0.9900 0.9778 00:00:02 

30 0.9957 0.9931 0.9854 00:00:11 

35 0.9965 0.9981 0.9869 00:00:04 

40 0.9957 0.9953 0.9926 00:00:01 

45 0.9943 0.9943 0.9686 00:00:02 

50 0.9956 0.9923 0.9651 00:00:01 

55 0.9967 0.9923 0.9651 00:00:02 

60 0.9959 0.9962 0.9862 00:00:03 

65 0.9973 0.9803 0.9974 00:00:13 

70 0.9949 0.9858 0.9822 00:00:04 

 

After attempting several trial and error to come up with the best CFNN network for 

prediction of gas-condensate two-phase Z factor, the topology of CFNN with one 
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hidden layer with only five neurons return the output with the lowest MSE and highest 

coefficient of determination (R). The developed code for this network provided in 

Appendix B.  

 

 Feed Forward Backpropagation Neural Networks  
 
There are many different types of ANN networks that can be used for different 

applications. Feed-forward neural network is the first and simplest type of the neural 

network. In this type the information only moves in one direction forward from input to 

the hidden layer and then output (Giri Nandagopal and Selvaraju, 2016). In 

implementing ANN, it is important to recognize the different between the network 

structure (the network’s arrangement) and ANN algorithm (the computation that 

eventually produce the output of the network). Once the ANN is structured for 

prediction of particular application (in our case Z factor), the network is ready to be 

trained. Two approaches of supervised and unsupervised learning are currently exist 

in literature for training of the data. Supervised learning is working with a set of labelled 

data where an output response exist for each input data (training stage). In 

unsupervised learning the algorithm would find any hidden relations or pattern among 

the input and output data (Bell, 2014, p. 4).   

The most widely used ANN architecture is fully connected, supervised network with 

backpropagation algorithm. Selecting the type of network depends on the nature of 

the data that is used for developing the network. Our data bank allows us to use 

supervised learning ANN method incorporated with backpropagation algorithm for 

training of the data. This type of networks are excellent for prediction task (Agatonovic-

Kustrin and Beresford, 2000). The architecture of feedforward backpropagation ANN 

network that constructed for prediction of two-phase Z factor is shown in Figure 5.7. 

This architecture is for one hidden layer, the number of hidden layers are arbitrary and 

trial and error can be used to get the optimum structure to achieve the highest 

performance of the network.  



 

153 | P a g e  
 

 

Figure 5.7. Feed Forward Artificial Neural Network structure used for prediction of Z factor. 

 
In FFNN structure if 𝑥 represents the input variables, 𝜔 represents weight function of 

each neuron and y stands for output of the network, the mathematical equation can 

be written as follow.  

 

𝑦 = 𝑓𝑜 (𝜔𝑏 +∑ 𝜔𝑗
𝑜𝑓ℎ (𝜔𝑗

𝑏 +∑ 𝜔𝑗𝑖
ℎ𝑥𝑖

𝑛

𝑖=1
)

𝑘

𝑗=1
) 

 

5.16 

 

Where 𝜔𝑏 is the bias of input layer to output and 𝜔𝑗
𝑏 is the weight from bias to hidden 

layer.  

The accuracy of the neural network performance is influenced by network’s 

architecture such as number of neurons, hidden layers and the training algorithm 

(Haykin, 1994; Gharagheizi et al., 2014). 

Despite high popularity of the FFNN, its main defect is correct determination of the 

neurons required in each layer. Using fewer neurons leads to poor performance of the 

model and higher number of neurons results in overfitting (Soroush et al., 2015; 

Mesbah, Soroush and Rostampour Kakroudi, 2017). Defining the optimal architecture 

that simulate the actual behaviour of experimental two-phase Z factor is not an easy 

task. Hence, a trial and error scheme has been developed to find the size of hidden 

layers and magnitude of the neurons in each individual layer.   
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Initially the collected data bank 1084 data sets (19518 data points) were partitioned 

into three parts of training (70%) validation (15%) and testing (15%). The data 

selection for each developed networks is random, which means training, validation 

and testing in one network is not necessarily similar to other network. This gives high 

capability of the trained networks to predict the output with various input.  

Furthermore, to train the network diverse algorithms can be used to minimise the error 

during the training. Some of these algorithms are including Levenberg–Marquardt 

(LM), Bayesian – Regularization (BR), Resilient Back Propagation (RBP) and Scaled 

Conjugate Gradient (SCG) (Majidi et al., 2014). The most frequently used algorithms 

of Levenberg – Marquardt (LM) and Bayesian – Regularization (BR) have been 

implemented in our scheme to achieve the optimum network performance. LM 

algorithm is shown in equation 5.15. Here the formulation of BR algorithm is presented.  

 

BR algorithm minimizes the combination of squared error and weights and then 

generalized the network by determination of correct weights and biases. The BR 

function uses Jacobian matrix, which performance of the network will be assessed by 

sum of mean square error (Mackay’, 1992). BR takes place within LM algorithm, where 

backpropagation can be used to calculate Jacobian matrix with respect to the weights 

and biases of the network (Louridas and Ebert, 2016). The BR is formulated in the 

following. 

 

𝑊𝑘+1 = −(
[𝐽𝑇𝑊𝑘

𝐽𝑊𝑘
+ Ƞ𝐼]

𝐽𝑇𝑊𝑘
𝑒𝑊𝑘

) 

 

5.17 

 

Both LM and BR algorithm are used in order to find the best neural network to perform 

for prediction of Z factor. Our criteria for selecting the best FFNN was chosen by 

monitoring network performance through mean square error (MSE) and coefficient of 

determination (R). The results of these comparisons for one hidden layer are given in 

Table 5.5 and Table 5.6 for FFNN with LM and FFNN with BR algorithm respectively. 

The networks are constructed in Matlab and the codes are presented at Appendix B.  
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Table 5.5. Statistical parameters and convergence time of FFNN with one hidden layer using 

LM algorithm. 

No. Neurons  R2 MSE  Convergence time 

(Second) 

5 0.9864 0.0074 00:00:02 

10 0.9891 0.0034 00:00:00 

15 0.9892 0.0033 00:00:01 

20 0.9605 0.0072 00:00:00 

25 0.9914 0.0026 00:00:01 

30 0.9947 0.0013 00:00:01 

35 0.9854 0.0039 00:00:02 

40 0.9922 0.0021 00:00:02 

45 0.9953 0.0013 00:00:02 

50 0.9741 0.0061 00:00:02 

55 0.9917 0.0018 00:00:03 

60 0.9537 0.0115 00:00:06 

65 0.9861 0.0032 00:00:09 

70 0.9503 0.0120 00:00:06 
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Table 5.6. Statistical parameters and convergence time of FFNN with one hidden layer using 

BR algorithm for training.  

No. Neurons  R2 MSE  Convergence time 

(Hours) 

 

5 0.9756 0.0060 00:00:05 

10 0.9895 0.0026 00:00:47 

15 0.7559 0.0838 00:01:43 

20 0.9909 0.0024 00:09:01 

25 0.9965 0.0023 00:00:55 

30 0.9726 0.0079 00:08:01 

35 0.9746 0.00557 00:08:33 

40 0.9956 0.00106 00:08:33 

45 0.8411 0.0442 00:03:08 

50 0.9877 0.0031 00:05:27 

55 0.9834 0.00478 00:05:50 

60 0.9876 0.003375 00:11:20 

65 0.9872 0.003272 00:09:54 

70 0.8442 0.004076 00:10:04 

 

The performance of the FFNN in terms of MSE with two different algorithms of LM and 

BR is presented in Figure 5.8. As the results in Figure 5.8 shows the constructed FFNN 

incorporated with BR algorithm consists of 40 neurons returns the output values with 

the least MSE of 0.001062 than other networks. This followed by constructed network 

using LM algorithm with 30 neurons with the MSE of 0.001346. Taking the 

convergence time (computational efficiency) into consideration we propose the 

network with LM algorithm for prediction of gas-condensate two-phase Z factor as BR 

needs more time (00:08:30) than LM algorithm (00:00:01) in the training stage. The 

proposed FFNN is shown in Figure 5.9. This network consists of 16 inputs, one hidden 

layer with 30 neurons, one bias in each layer and one output (two-phase Z factor). 

This network is representation of the ANN structure in Figure 5.7.  The FFNN will be 

used for prediction of gas-condensate two-phase Z factor below the saturation 

pressure.  
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Figure 5.8. Comparison of constructed feed-forward neural network (FFNN) performance with 

different number of neurons in hidden layer.  

 

 

Figure 5.9. Proposed FFNN for prediction gas condensate two-phase compressibility factor. 

 

 Adaptive Neuro Fuzzy Inference System (ANFIS) 
 
Another intelligent technique that is utilized in this study for prediction of two-phase Z 

factor in gas-condensate reservoirs known as Adaptive Neuro Fuzzy Inference System 

(ANFIS). The method is another form of TSK fuzzy algorithm implemented in 4.6. The 

method is combination of artificial neural network and fuzzy rule based system. The 

main reason for adopting ANFIS to estimate two-phase Z factor is to have the benefits 

of artificial neural network as well as fuzzy reasoning.  

As explained in section 4.5 and 4.6 fuzzy inference system is employing fuzzy IF-

THEN rules that can model the qualitative aspects of human knowledge of a system 
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or process without any need of precise quantitative analysis. The ability of fuzzy sets 

for modelling and fuzzy identification initially was identified by Takagi and Sugeno, 

(1985).  Although there has been numerous application of fuzzy system in various 

fields of engineering after Takagi and Sugeno, (1985) discovery, there was not any 

standard method for transforming human knowledge into rule base fuzzy inference 

system (FIS). Furthermore there was not an effective method available for tuning the 

membership function of Takagi and Sugeno, (1985) FIS system.  

Adaptive Neuro Fuzzy Inference System (ANFIS) was developed following TSK fuzzy 

method to fulfil the aforementioned deficiencies of TSK fuzzy approach. In early 

development of TSK algorithm type 1 and type 2 of ANFIS were shaped. In these two 

types calculation of the errors in ANFIS algorithm was through using back-propagation 

gradient decent, which calculate the error signals from output layer backward to the 

input nodes. This learning rule is same as backpropagation gradient descent of feed-

forward neural network. The difficulty with this approach is in tuning the membership 

functions through rigorous trial and error, which is not an easy task to implement. 

Furthermore, the gradient decent learning rule is notorious for slowness and has 

tendency to trap in local minima. Hence, Jang, (1993) introduced type – 3 Adaptive 

Neuro Fuzzy Inference System (ANFIS) in order to tackle the aforementioned 

deficiencies and enhance previous version of ANFIS model. He proposed an adaptive 

hybrid neural network based on combination of gradient decent algorithm and least 

square method for better optimization of the parameters of Takagi and Sugeno FIS 

system. This optimization of FIS system makes type 3 ANFIS a powerful tool for 

prediction and forecast of various applications. The architecture of type 3 fuzzy 

reasoning and ANFIS with two input variables of 𝑥 and 𝑦 is shown in Figure 5.10 and 

will be explained in following.  

 

a 
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Figure 5.10. Schematic illustration of type – 3 fuzzy reasoning (a); ANFIS structure type – 3 

(b). 

 
Figure. 5.10a represents the fuzzy reasoning behind the ANFIS model with two input 

variables and triangular membership function. This is essentially explains Takagi and 

Sugeno’s fuzzy type with introducing number of rules in this case two as follow: 

Rule 1: If 𝑥 is A1 and 𝑦 is B1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule 2: If 𝑥 is A2 and 𝑦 is B2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

Where A1, A2, B1 and B2 are membership functions x and y are inputs, p1, q1 and r1 are 

constant parameters of linear function.  

The typical ANFIS structure shown in Figure 5.10b consists of five layers, each 

processing different operations in the structure. Two square and circular nodes have 

been proposed in Figure 5.10b, where square nodes reflect adaptive (having constant 

parameters) and circular nodes are fixed (without parameters) (Jang, 1993). The 

operation of ANFIS algorithm in each layer is as follow.  

Layer 1: every node 𝑖 in this layer represents by a function of square node as follow:  

 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥) 

 

5.18 

 

Where 𝑥 is input of the node 𝑖, 𝐴𝑖 is a linguistic term of fuzzy sets (very low, low, etc.,…) 

associated with the node function. The main role of this layer is to turn the raw data 

into linguistic terms based on previously selected membership functions (node 

functions). Many membership functions can be selected such as triangular, gaussian, 

trapezoidal, sigmoidal, s-shape and z-shape in this layer. 

b 



 

160 | P a g e  
 

Layer 2: the nodes in this layer labelled with ∏, where the results are calculated as 

multiplication of incoming signals from layer 1. Effectiveness of the network is 

determined by the results of this layer, as the outcome is a weight function. Following 

equation represents the network operation in layer 2.  

 

𝜔𝑖 = 𝜇𝐴𝑖(𝑦) × 𝜇𝐵𝑖(𝑦) = 𝜔𝑖,           𝑖 = 1,2 

 

5.19 

 

Where 𝐴𝑖and 𝐵𝑖 are linguistic terms of y input in universe of 𝜇. The output of the above 

equation is the firing weight of each node (𝜔𝑖). 

Layer 3: Incoming weight’s strengths calculated in layer 2 are normalized in this step 

to identify the difference between the firing strength of each rule from the total firing 

strength of entire rules. This normalization in layer 3 labelled by N and following 

equation can be used to determine each weight’s strength. 

 

𝜔𝑖 =
𝜔𝑖

𝜔1/𝜔2
 

 

5.20 

 

Layer 4: This layer characterizes the linguistic terms of the output model. This means 

the influence of each rule on output is determined in this layer with some degree. A 

square node with the following function carries out the computation in layer 4.  

 

𝑂𝑖
4 = 𝜔𝑖̅̅ ̅𝑓𝑖 = 𝜔1̅̅̅̅ (𝑝1𝑥 + 𝑞1𝑦 + 𝑟1) 

 

5.21 

 

Where 𝑝1, 𝑞1 and 𝑟1are linear variables. These variables are optimized by ANFIS 

algorithm to provide the accuracy between the model outcome and the target value.  

Layer 5: A circular signal node in this layer is used to sum up all the incoming signals 

(rules) from previous layer. The computation transfers the rules to numeric values 

using weighted average sum approach as follow. 

 

𝑂𝑖
5 =∑𝜔𝑖̅̅ ̅𝑓𝑖 = 𝜔1̅̅̅̅ 𝑓1 + 𝜔2̅̅ ̅̅ 𝑓2 =

∑ 𝜔𝑖̅̅ ̅𝑓𝑖𝑖

∑ 𝜔𝑖̅̅ ̅𝑖
𝑖

 

 

5.22 

 

Where 𝑂𝑖
5stands for output of the network, 𝑓 1,2 represent output functions of rule 1 and 

rule 2.  
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The above procedure also has been adopted for calculation and prediction of two-

phase Z factor for gas-condensate reservoirs below the dew point pressure. For this 

purpose an ANFIS structure is proposed and will be explained in following section.  

 

 Proposed ANFIS structure  
 
In this part a new ANFIS structure based on Jang, (1993) was developed for prediction 

of two-phase Z factor of gas-condensate reservoirs. A Matlab code has been 

developed and used for this purpose (refer to Appendix B for details of the developed 

code). The inputs variables consist of 16 parameters including, pressure (P), 

temperature (T), carbon dioxide (CO2), hydrogen sulphide (H2S), nitrogen (N2), HCC1, 

HCC2, HCC3, HCIC4, HCNC4, HCIC5, HCNC5, HCC6, HCC7+, molecular weight of C7+ 

(MWC7+) and gas specific gravity (SG). To distinguish between the parameters of the 

fuzzy rule and English letters HC is added to each hydrocarbon components. The 

output parameter of the network is two-phase Z factor. To be consistent with other 

intelligent model CFNN and FFNN, the data bank divided to three parts of training 

(70%), validation (15%) testing (15%). These proportions were randomly selected to 

ensure suitable coverage of all the data ranges of the variables.  

 

For simplicity if we assume the proposed structure with only two rules and using Takagi 

– Sugeno type FIS system, then the two-phase Z factor can be presented as follow. 

Rule 1: 

 if T is A1, P is B1, CO2 is C1, H2S is D1, N2 is E1, HCC1 is F1, HCC2 is G1, HCC3 is H1, 

HCIC4 is I1, HCNC4 is J1, HCIC5 is K1, HCNC5 is L1, HCC6 is M1, HCC7+ is N1, MWC7+ 

is O1 SG is P1;  Then 

𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝟏 = 𝑎1𝑇 + 𝑏1𝑃 + 𝑐1𝐶𝑂2 + 𝑑1𝐻2𝑆 + 𝑒1𝑁2 + 𝑓1𝐻𝐶𝐶1 + 𝑔1𝐻𝐶𝐶2 + ℎ1𝐻𝐶𝐶3

+ 𝑖1𝐻𝐶𝐼𝐶4 + 𝑗1𝐻𝐶𝑁𝐶4 + 𝑘1𝐻𝐶𝐼𝐶5 + 𝑙1𝐻𝐶𝑁𝐶5 +𝑚1 𝐻𝐶𝐶6 + 𝑛1𝐻𝐶𝐶7+

+ 𝑜1𝑀𝑊𝐶7+ + 𝑝1𝑆𝐺 + 𝑞1 

Rule 2: 

if T is A2, P is B2, CO2 is C2, H2S is D2, N2 is E2, HCC1 is F2, HCC2 is G2, HCC3 is H2, 

HCIC4 is I2, HCNC4 is J2, HCIC5 is K2, HCNC5 is L2, HCC6 is M2, HCC7+ is N2, MWC7+ 

is O2 SG is P2;  Then  
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𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝟐 = 𝑎2𝑇 + 𝑏2𝑃 + 𝑐2𝐶𝑂2 + 𝑑2𝐻2𝑆 + 𝑒2𝑁2 + 𝑓2𝐻𝐶𝐶1 + 𝑔2𝐻𝐶𝐶2 + ℎ2𝐻𝐶𝐶3

+ 𝑖2𝐻𝐶𝐼𝐶4 + 𝑗2𝐻𝐶𝑁𝐶4 + 𝑘2𝐻𝐶𝐼𝐶5 + 𝑙2𝐻𝐶𝑁𝐶5 +𝑚2 𝐻𝐶𝐶6 + 𝑛2𝐻𝐶𝐶7+

+ 𝑜2𝑀𝑊𝐶7 + + 𝑝2𝑆𝐺 + 𝑞2 

 

In above rules T, P, CO2, H2S, N2, HCC1 – HCC7+, MWC7+ and SG are input 

parameters of the model, 𝐴𝑖 to 𝑃𝑖 is representing the membership function (gaussian, 

triangular, trapezoidal and etc.,). In the developed functions, 𝑎𝑖 to 𝑞𝑖 are the constant 

parameters of the ANFIS model (optimized by training algorithm). In order to estimate 

these constant parameters, least square approach was used. The corresponding 

ANFIS architecture for prediction of gas-condensate two-phase Z factor is shown in 

Figure 5.11.  

 

Figure 5.11. Proposed ANFIS architecture for prediction of gas condensate two-phase Z 

factor. 

The effectiveness of the developed ANFIS model for prediction of two-phase Z factor 

influenced by the type of membership function, cluster range and number of fuzzy 

rules. Several membership functions are exist to relate the input variables to the 

output. The ability of 9 membership functions and their effectiveness in prediction of 

two-phase Z factor have been investigated. These membership functions are including 

gaussian, triangular, trapezoidal, generalized-bell shaped, gaussian combination 
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membership function, pi (∏) shaped, sigmoidal, S shaped and Z shaped membership 

functions. The description and mathematical representation of gaussian, triangular 

and trapezoidal membership functions previously given in section (4.7.2). The shape 

and mathematical formula of other studied membership functions presented in Table 

5.7. Primarily the effectiveness of all membership functions have been studied using 

constant number of fuzzy rules (for instance 8 rules). The statistical parameters of 

mean square error (MSE) and coefficient of determination (R2) have been recorded to 

see the best performance of the ANFIS using various membership functions. As the 

results in Table 5.8 shows gaussian membership function has the best performance 

for prediction of the output (two-phase Z factor). This is proven by lower mean square 

error (MSE) and highest coefficient of determination (R2). Hence, gaussian 

membership function has been chosen to incorporate with ANFIS algorithm in this 

study for modelling gas-condensate two-phase Z factor. 

 

Table 5.7. The description and details of the utilized membership functions for prediction of 

gas-condensate two-phase Z factor using ANFIS. 

Name Description Shape 
 

generalized-
bell shaped 

 

The generalized-bell shaped 

membership function has three 

parameters of a, b and c. The 

parameter of c representing centre of 

the curve and a and b represent the 

feet of the shape. Parameter b is 

usually positive.  

𝑓(𝑥; 𝑎, 𝑏, 𝑐) =
1

1 + |
𝑥 − 𝑐
𝑎 |

2𝑏
 

 

 
𝒈𝒃𝒍𝒎𝒇 = 𝒇(𝒙; 𝟐, 𝟒, 𝟔) 
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Gaussian 
combinatio

n 
membershi
p function 

This membership function is a 

combination of sigmoid function and 

parameter; 𝑦 =

𝑔𝑎𝑢𝑠𝑠2𝑚𝑓(𝑥: 𝑠𝑖𝑔1, 𝑐1, 𝑠𝑖𝑔2, 𝑐2).  

The first function sig1, c1 determine 

the shape of the most left curve. 

The second function sig2, c2 

represents the shape of the most 

right curve shape. The function can 

be written mathematically as follow. 

𝑓(𝑥; 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝜎2  

 

 
𝑔𝑎𝑢𝑠𝑠2𝑚𝑓 = 𝑓(𝑥; 0.1, 10) 

pi (∏) 
shaped 

The name of this membership 

function is because of its pi (∏) 

shape. Four parameters of a, b, 

c and d is used in construction of 

the shape. The parameters of a 

and d locate the feet of the 

curve, while b and c locate its 

shoulders. 

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑)

=

{
 
 
 
 
 

 
 
 
 
 

0,       𝑥 ≤ 𝑎

2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,    𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2
 

1 − 2 (
𝑥 − 𝑏

𝑏 − 𝑎
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1 − 2 (
𝑥 − 𝑐

𝑑 − 𝑐
)
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, 𝑐 ≤ 𝑥 ≤
𝑐 + 𝑑
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2 (
𝑥 − 𝑐

𝑑 − 𝑐
)
2

,   
𝑐 + 𝑑

2
≤ 𝑥 ≤ 𝑑

0,        𝑥 ≥ 𝑑 }
 
 
 
 
 

 
 
 
 
 

 

 

 
𝒑𝒊𝒎𝒇 = 𝒇(𝒙; 𝟏, 𝟒, 𝟓, 𝟏𝟎) 
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Sigmoidal 

The sigmoidal membership function 

is depending on two parameters of a 

and c. Depending on the sign of 

these parameters the sigmoidal 

membership function is open to the 

right or to the left. This would give 

this function ability to cover very 

large or very negative data points.  

𝑓(𝑥; 𝑎, 𝑐) =
1

1 + 𝑒−𝑎(𝑥−𝑐)
 

 

 
𝒔𝒊𝒈𝒎𝒇 = 𝒇(𝒙; 𝟐, 𝟒) 

S shape  

The S shape membership function is 

spline based curve on vector x. the 

parameters of a and b represents the 

extreme slope portion of the curve. 

The mathematical description of the 

function is: 

𝑓(𝑥; 𝑎, 𝑏)

=

{
 
 

 
 

0,       𝑥 ≤ 𝑎

2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,    𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2
 

1 − (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,      
𝑎 + 𝑏

2
≤ 𝑥 ≤ 𝑏

1,        𝑥 ≥ 𝑐 }
 
 

 
 

 

 

 
𝒔𝒎𝒇 = 𝒇(𝒙; 𝟏, 𝟖) 

Z shape 

The shao of this membership 

function is Z shape and it is function 

of two parameters of a and b. 

mathematically this function can be 

written as follow. 

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑)

=

{
 
 

 
 

1,       𝑥 ≤ 𝑎

2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,    𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2
 

2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,      
𝑎 + 𝑏

2
≤ 𝑥 ≤ 𝑏

0,        𝑥 ≥ 𝑏 }
 
 

 
 

 

 

 
𝒁𝒎𝒇 = 𝒇(𝒙; 𝟑, 𝟕) 
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Table 5.8. Performance of the developed ANFIS model using various membership function. 

 
Membership 

function 
No. IF-THEN 

rules 
R2 MSE 

Training  Testing Training  Testing  

Gaussian 8 0.9956 0.8454 0.001057 0.0486 

Triangular 8 0.9265 0.76672 0.00253 0.1163 

Trapezoidal 8 0.9512 0.8077 0.00105 0.0482 

generalized-bell 
shaped 

8 0.9365 0.79521 0.001253 0.0576 

Gaussian 
combination 

8 0.9486 0.80549 0.001059 0.0486 

pi (∏) shaped 8 0.87562 0.74372 0.002365 0.01087 

sigmoidal 8 0.86256 0.73243 0.002563 0.11784 

S shape 8 0.85236 0.72376 0.002623 0.12060 

Z shape 8 0.86325 0.73301 0.002585 0.11886 

 
 
 

 Clustering (Partitioning) of the data 
 
Prior selection of adequate membership functions for ANFIS modelling need 

partitioning of the training data set to certain number of clusters. For partitioning of the 

data to number of clusters several clustering methods are available in literature. The 

examples are look up table method, fuzzy c-means (FCM), Gustafson-Kessel (GK), 

K-means clustering and subtractive clustering (SC). Using the look up table method is 

not recommended for the large scale problem due to increasing the parameters of the 

model and number of MFs, which consequently leads to the complexity of the model 

(Lee, 2005; Safari et al., 2014) . Further details about different clustering techniques 

is given in section 4.6.1. FCM and SC are two methods that have been used 

extensively in the literature for data organization and also data compressions in ANFIS 

modelling. Both methods shown high efficiency over wide range of data for various 

applications, however many studies preferred SC over FCM due to its simplicity in 

calculation procedure and also its independency of problem dimensionality (Jang, Sun 

and Mizutani, 1997; Nikravesh, Zadeh and Aminzadeh, 2003; Lee, 2005). 

FCM clustering algorithm determines the degree of belonging of each data point to 

each cluster. The centre of each cluster is found in an iterative procedure by 

minimizing an objective function called mountain function. If the data is highly non-

linear and multidimensional the computation time is growing exponentially. This is 

because the algorithm needs to evaluate the mountain function over all of the grid 

points (Bezdek and Pal, 1992; Jang, Sun and Mizutani, 1997). Nevertheless, 

subtractive clustering is more adaptable to non-linear more dimensional data and 
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return the number of clusters quickly and efficiently in a simple computational 

procedure. SC is an appropriate choice for the data sets without knowing how many 

clusters are required (Chiu, 1994). Hence, in this study we utilized SC method 

proposed by Chiu, (1994) for partitioning two-phase Z factor training data bank. SC 

assumes that each data point is a potential cluster centroid. The results of SC can be 

used for initializing centroid of the FCM algorithm. The SC proposed by Chiu, (1994) 

is an extension of mountain clustering method of Yager and Filev, (1994). Based on 

density index (𝐷𝑖) of potential centroid data, the SC algorithm evaluates the density 

index of each data point  𝑥𝑖  as follow (Chiu, 1994; Chen et al., 2015).  

 

𝐷𝑖 =∑𝑒𝑥𝑝 [−
‖𝑥𝑖 − 𝑥𝑘‖

2

(
𝑟𝑎
2⁄ )

2 ]

𝑛

𝑘

 

 

5.23 

 

Where 𝑥𝑖 and 𝑥𝑘 are data points, 𝑟𝑎 is clustering radius and can be determined by the 

following equation.  

 

𝑟𝑎 = 0.5𝑚𝑖𝑛{𝑚𝑎𝑥‖𝑥𝑖 − 𝑥𝑘‖} 

 

5.24 

 

The data beyond the radius has little or no effect on the density index (𝐷𝑖). To 

implement equation 5.24, first, the data index of cluster 1 (𝑥c1) should be selected. 

This data index has the highest density index (Dc1) at the first cluster centroid. Then 

the data in the radius ra is removed from potential centroid data set, and the 

neighbourhood with lower density index is defined by the following equation.    

 

𝐷𝑖 = 𝐷𝑖 − 𝐷𝑐1𝑒𝑥𝑝 [−
‖𝑥𝑖 − 𝑥𝑘‖

2

(
𝑟𝑏
2⁄ )

2 ] 

 

5.25 

 

Where 𝑟𝑏 > 𝑟𝑎, this would distinguish between two clusters. The above mathematical 

procedure of SC can be summarized in five steps as follow: 

1. Using equation 5.23 based on the density of surrounding data points; calculate 

the likelihood that each data point would define a cluster centre. 

2. Choose the data points with the highest potential to be the first cluster centre. 

3. Using equation 5.24 remove all data points near the first cluster centre. 

4. Choose the remaining points with the highest potential as the next cluster 

centre using equation 5.25.  
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5. Repeat steps 3 and 4 until all data points are within the influence range (ra) of 

a cluster centre.  

 
Accurate determination of clustering radius (𝑟𝑎) using above procedure is directly 

influence the performance of the developed ANFIS model. Changing the value of ra 

would change the number of membership functions, consequently number of IF-THEN 

fuzzy rules. To obtain optimum number of rules the value of clustering radius changed 

between 0 < 𝑟𝑎 < 1. The performance of the ANFIS system evaluated by the statistical 

metric of RMSE in the training and testing stage.  

In this study a new iterative technique is developed and carried out to find the optimum 

number of fuzzy rules and determine the optimum number of clusters. The 

implementation of the method is as follow:  

1. Calculate ra values between 0 < 𝑟𝑎 < 1 in ten intervals using equation 5.24; and 

record the RMSE of training and testing of ANFIS model.  

2. Select two intervals with lowest RMSE (for example 5 and 6 in table 15), and 

eliminate other clustering radius with high error. 

3. Calculate ra values for two new selected intervals (0.45 < 𝑟𝑎 < 0.5); and record 

RMSE of the ANFIS model.  

4. Repeat step 2 to 3 until the RMSE reduced to the point where number of IF-

THEN rules converged or no longer changes.  

5. Use the calculated clustering radius (ra) value as an optimum choice for 

developing number of rules in ANFIS model.  

The results in Table 5.9 and 5.10 illustrate the values of RMSE for training and testing 

data sets using the above procedure. As it can be seen from Table 5.9 the number of 

IF-THEN rules is converged at 11, with the cluster radius of (𝑟𝑎 ≈ 0.45). Therefore, the 

proposed ANFIS model for prediction of gas-condensate two-phase Z factor consists 

of 11 fuzzy IF-THEN rules.  
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Table 5.9. Effect of clustering radius on number of fuzzy rules and the performance of the 

model (1st iteration). 

 

No. ANFIS Clustering radius 

(ra) 

No. IF-THEN 

rules 

RMSE 

Training  Testing  

1 0.25 35 852 4451 

2 0.30 23 3.60 277 

3 0.35 17 43 1286 

4 0.40 12 0.07252 1.13 

5 0.45 11 0.04224 0.08657 

6 0.50 9 0.04773 0.12197 

7 0.55 8 0.04734 0.07299 

8 0.60 6 0.05029 0.26412 

9 0.65 4 0.05077 0.49331 

10 0.70 4 0.049461 0.39360 

11 0.75 4 0.05025 0.28450 

12 0.80 3 0.05869 0.09796 

13 0.85 2 0.06338 0.05266 

14 0.90 2 0.06289 0.05207 

15 0.95 2 0.06228 0.05146 

16 1 2 0.06224 0.05696 
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Table 5.10.  Effect of clustering radius on number of fuzzy rules and the performance of the 

model (2st iteration). 

 
No. ANFIS Clustering radius 

(ra) 

No. IF-THEN 

rules 

RMSE 

Training  Testing  

1 0.45 11 0.04224 0.08657 

2 0.451 11 0.04158 0.09991 

3 0.4515 11 0.04121 0.14248 

4 0.452 11 0.03984 0.11151 

5 0.4525 11 0.04085 0.15212 

6 0.453 11 0.03980 0.10294 

7 0.4535 11 0.04201 0.10277 

8 0.454 11 0.04206 0.09990 

9 0.4545 11 0.04203 0.20143 

10 0.455 11 0.039483 0.20952 

11 0.4555 11 0.04198 0.18015 

12 0.4560 11 0.04206 0.18578 

13 0.4565 11 0.04055 0.12805 

14 0.457 11 0.04199 0.15657 

15 0.4575 11 0.04209 0.10474 

16 0.4580 11 0.04209 0.18251 

17 0.4585 11 0.04037 0.15201 

18 0.4590 11 0.04007 0.09991 

19 0.4595 11 0.03979 0.10813 

20 0.46 11 0.03953 0.09709 

 
 

The ANFIS structure with 11 fuzzy IF-THEN rules constructed in Matlab and shown in 

Figure 5.12. The output of ANFIS is a linear function with several optimized 

parameters for each rule. More clear graphical visualization of constructed type 3 

ANFIS for prediction of gas-condensate two-phase Z factor is presented in Figure 

5.13.  
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Figure 5.12. Structure of proposed ANFIS model for prediction of two-phase Z factor of gas 

condensate reservoirs. 

 
 

Figure 5.13. Architecture of Takagi – Sugeno fuzzy model for prediction of gas condensate 

two-phase Z factor.  
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 Results and discussion  
 
Z factor of gas-condensate reservoirs is one of the most important PVT properties that 

its accurate determination leads to accurate well deliverability modelling of such 

reservoirs below the saturation pressure. In this study extensive data bank from 

various published sources have been collected to investigate the accuracy of the 

current literature models for prediction of two-phase Z factor.  

Five literature correlations of Hall-Yarborough (1973) and Dranchuk-Abu-Kassem 

(1975), Beggs and Brill (1973), Azizi et al., (2010) and Rayes et al., (1992) have been 

utilized for this purpose. 

In utilizing the existing literature models initially pseudo critical properties of 

temperature (Tpc) and pressure (Ppc) of each gas-condensate system were computed, 

using mixture composition and Kay’s mixing rule. For computing critical properties of 

hydrocarbon plus fraction because of availability of compositional data the method of 

Matthews and Roland, (1942) was used.  To include non-hydrocarbon impurities in 

computation of pseudocritical properties Wichert and Aziz, (1972) correlation was 

employed. From calculated Tpc and Ppc, pseudo reduced temperature (Tpr) and 

pressure (Ppr) were calculated. Finally, two-phase Z factor of each gas-condensate 

system was estimated. The prediction accuracy of existing literature models for 

estimating gas-condensate two-phase Z factor were not acceptable and associated 

with high error. Therefore other techniques known as machine learning  based models 

have been utilized for the prediction of gas-condensate two-phase Z factor.  

 

Accuracy and robustness of any ML based method is depending on the diversity of 

the data bank that is used for their development (Ahmadi and Ebadi, 2014; Hajirezaie 

et al., 2015; Hemmati-Sarapardeh et al., 2020; Kamari et al., 2019). The detail 

statistical description of the data bank is presented in 5.3.6 of this chapter. Two neural 

network based models known as feed forward neural network (FFNN) and cascade 

forward neural network (CFNN) and one fuzzy logic based model know as adaptive 

neuro fuzzy inference system (ANFIS) adopted for prediction of two-phase Z factor in 

gas-condensate reservoirs. The data divided into three parts of training (70%), 

validation (15%) and testing (15%). Consistent proportion of the data used for all three 

models. The random selection of the data was performed to ensure homogeneous 

distribution of the data bank. These models consist of 16 inputs of T, P, H2S, CO2, N2, 
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C1 – C7+, MWC7+ and gas specific gravity (SG), and a single output of gas-condensate 

two-phase Z factor.  

Statistical error analysis of the developed machine learning methods were performed 

using metrics of MAE, RMSE and AARD% and illustrated in Table 5.11. This table 

shows the error measurements of all data sets at training, validation and testing stage 

for three developed ML based techniques. The results confirms very good 

performance of all three ML based models. ANFIS model outperforms the CFNN and 

FFNN with lowest MAE of 0.0025124, RMSE of 0.0025367 and AARD% of 0.2191478 

followed by FFNN and CFNN for prediction of tow-phase Z factor of gas-condensate 

reservoirs. Furthermore, computational efficiency of all three developed models are 

demonstrated in table 5.11. As the results indicate the developed ML based models 

predicts the two-phase Z factor very fast with almost 0 seconds, nevertheless the 

CFNN is slightly perform better than FFNN and ANFIS.  

 

Table 5.11. Statistical error computation of the developed models in prediction of gas-

condensate’s two-phase Z factor below the saturation pressure. 

 

Model MAE RMSE AARD% 
Convergence time 

(hour,minute,second) 

FFNN 

 
0.0047 

 

 
0.0058 

 

 
0.3029 

 

 
00:00:00 

CFNN 

 
0.0053 

 

 
0.0062 

 

 
0.5117 

 

 
00:00:01 

ANFIS 

 
0.0025 

 

 
0.0025 

 

 
0.2191 

 

 

00:01:25 

 
 
To visualize the performance of ML based models Figure 5.14 shows the cross plot 

and the graph of relative error percentage of three models. The results of the cross 

plot show all three ML models predict experimental two-phase Z factor with high 

accuracy in all three stages of training, validation and testing. The statistical metrics in 

Table 5.11 and the results of cross plots/relative error in Figure 5.14E-F indicate that 

the ANFIS model has the best performance among other two utilized ML based 

methods for prediction of two-phase Z factor. This confirms high capability of ANFIS 
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for relating non-linear inputs and outputs of a problem, once correct optimization of its 

membership functions have obtained.  

In order to see the performance of the ML based models as a function of Tpr and Ppr 

for prediction of two-phase Z factor, the graph of relative error against Tpr and Ppr were 

generated and presented in Figure 5.15 and Figure 5.16. The results show an 

excellent agreement between the obtained values of ML based models and 

experimental two-phase Z factor as a function of Tpr and Ppr.  

Comparison of statistical error metrics of MAE, RMSE and AARD% of all utilized 

literature models and the developed ML based approaches presented in Figure 5.17 

and Figure 5.18. The results show that ANFIS model has superiority over all other 

techniques with the least MAE, RMSE and AARD% of 0.00251, 0.00254 and 0.219 

respectively.   

 

 
A                         CFNN  

 
B                 CFNN Relative error % 

 
C                        FFNN 

 
D                   FFNN Relative error % 
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E                        ANFIS 

 
  F                ANFIS Relative error % 

 

Figure 5.14. Cross plot and relative error of utilized three machine learning models in 

predicting two-phase Z factor at training, validation and testing stage.  

 
(A) 

 
(B) 

 
(C) 

Figure 5.15. Residual plot of relative error percentage of intelligent models in predicting two-

phase Z factor as a function of pseudo reduced pressure (Ppr).  



 

176 | P a g e  
 

 
(A) 

 
(B) 

 

 
(C) 

Figure 5.16. Residual plot of relative error percentage of intelligent models in predicting two-

phase Z factor as a function of pseudo reduced temperature (Tpr). 

 

 
 

Figure 5.17. Error comparison of all utilized literature models and the developed ML based 

approached in prediction of gas-condensate two-phase Z factor.  
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Figure 5.18. Error comparison of all utilized literature models and the developed ML based 

approaches in prediction of two-phase Z factor.  

The ability of the developed ML based models in following the physical trend of the 

two-phase Z factor of gas-condensate reservoirs as a function of pressure and 

temperature has to be tested. This is important to ensure the developed ML based 

models are following physical trend of two-phase Z factor similar to literature 

correlations. For this purpose, two independent samples of gas-condensate fluids from 

literature were collected. First sample is from a rich gas-condensate reservoir in North 

Sea obtained from Danesh, (1998, pp. 53–56). This sample is from sweet gas-

condensate with no hydrogen sulphide (H2S) content. Constant Volume Depletion 

(CVD) test was performed and compositional changes of each components were 

detected with pressure depletion. The result of CVD test for this sample is provided in 

Table 5.12. 

Second sample obtained from Elsharkawy, (2002), is a very rich sour gas-condensate 

reservoir contain considerable amount of hydrogen sulphide (H2S=28.16% at the dew 

point pressure). CVD test also was performed on this sample, where the compositional 

changes of the sample during the CVD test was recorded as shown in Table 5.13.  

 

Estimation of Z factor using literature models requires determination of pseudocritical 

properties (Ppc and Tpc). Kay, (1936) mixing rule is used for calculation of critical 

3.091 2.495

17.057

28.696

10.052

0.303 0.512 0.219
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

A
A

R
D

%



 

178 | P a g e  
 

properties. For characterization of hydrocarbon plus (C7+) properties and 

determination of pseudocritical properties (Ppc7+, Tpc7+) the method proposed by 

Matthews and Roland, (1942) is used. Non – hydrocarbon properties were also 

determined by utilizing the method of Wichert and Aziz, (1972). 

Performance of utilized literature models and also the developed ML based techniques 

in prediction of aforementioned independent samples examined by means of statistical 

parameters of MAE, RMSE and AARD%. These statistical parameters are determined 

for each model as a function of pseudo reduced pressure (Ppr). The results of this error 

analysis shown in Table 5.14 for both gas-condensate fluid samples.  

 

Graphical performance of all methods for prediction of rich sour gas-condensate 

sample is plotted as a function of Ppr and shown in Figure 5.19. As the result in Figure 

5.19 shows, among the literature models only Rayes et al., (1992) is close to the 

experimental two-phase Z factor in the range of (𝑃𝑝𝑟 ≤ 4). Other literature techniques 

of  Azizi et al., (2010); Beggs and Robinson, (1975); DAK, (1973) and Hall and 

Yarborough, (1973) estimate the experimental two-phase Z factor with high error 

below (𝑃𝑝𝑟 ≤ 4). 

The graph of experimental Z factor in Figure 5.19 also indicates that below the 

saturation pressure the Z factor has a direct correlation with reservoir pressure. As the 

pressure increases, the magnitude of two-phase Z factor also increases. The result 

show that the conventional methods cannot follow the physical trend of the change in 

Z factor of gas-condensate reservoirs below the saturation pressure. Statistical 

measurements of different approach as well as the developed models are illustrated 

in Table 5.14.  The results of statistical error metrics show that the developed methods 

predict experimental two-phase Z factor with very good accuracy in compare to 

conventional techniques.  

In sample 1, that high content of hydrogen sulphide (H2S) exist, the conventional 

techniques return the experimental two-phase Z factor with very high error as shown 

in Figure 5.19 and Table 5.14. ANFIS outperforms other methods with MAE of 0.01764 

and RMSE of 0.02994 followed by FFNN, CFNN, Rayes et al., (1992), Beggs and Brill, 

(1973), DAK, (1974), Hall and Yarborough, (1973) and Azizi et al., (2010). The results 

show reliabilty and robustness of the developed models for predction of two-phase Z 

factor in critical gas-condensate fluid below the saturation pressure. The developed 
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ML based methods follow the physical trend of the experimental Z factor with minimum 

deviation.  

For the second sample which the H2S content is zero, although the conventional 

methods perform well in terms of MAE and RMSE, however the ANFIS model 

retuened the experimental Z factor with the least AARD% of 0.4506 followd by CFNN, 

FFNN, Beggs and Brill, (1975), DAK, (1975), Hall and Yarborough, (1973),  Rayes et 

al., (1992) and Azizi et al., (2010). Figure 5.20 depicts the trend of experimental two-

phase Z factor of sample 2 as a function of pressure and the performance of utilized 

literature methods and developed ML based models. As can be seen the ML based 

models are following the physical trend of the two-phase Z factor with very good 

accuracy.  

The problem with conventional methods is that their accuracy are limited for specific 

range and their performance depends on the type of mixing rule that has been used 

in the calculation of critical properties (Ppr and Tpr). The ML based approaches 

developed in this study don’t have aformentioned limitations. Their performance is 

highly accurate for prediction of two-phase Z factor of gas-condensate reservoirs 

regradless of the compositional variation that occurs in such reservoirs below the 

saturation pressure.



 

 

 

Table 5.12. Constant Volume Depletion (CVD) results on North Sea gas-condensate sample at temperature of 394K (Danesh, 1998, pp. 53–

56). 

T(F) P 
(psia) 

H2S 
 

N2 
 

CO2 C1 
 

C2 C3 IC4 NC4 IC5 NC5 C6 C7+ MW
C7+ 

 

SG 
 

Z 2-
Phase 

249.5 6822 0.0 0.30 1.72 79.17 7.48 3.29 0.52 1.25 0.36 0.55 0.62 3.74 231 0.943 1.1718 

249.5 5800 0.0 0.30 1.71 79.93 7.44 3.22 0.51 1.23 0.35 0.54 0.58 4.19 207 0.889 1.0867 

249.5 4930 0.0 0.31 1.71 80.77 7.41 3.21 0.50 1.21 0.34 0.52 0.55 3.47 202 0.845 1.0056 

249.5 3915 0.0 0.32 1.72 81.61 7.46 3.20 0.50 1.18 0.33 0.50 0.52 2.66 190 0.797 0.9479 

249.5 3045 0.0 0.32 1.73 82.33 7.54 3.19 0.49 1.15 0.32 0.48 0.49 1.96 180 0.760 0.9176 

249.5 2030 0.0 0.33 1.75 82.71 7.64 3.22 0.49 1.15 0.32 0.48 0.46 1.45 174 0.737 0.9171 
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Table 5.13. Constant Volume Depletion (CVD) results on sour gas-condensate sample (Elsharkawy, 2002).  

 
T(F) P 

(psia) 
H2S 

 
N2 

 
CO2 C1 

 
C2 C3 IC4 NC4 IC5 NC5 C6 C7+ MW

C7+ 
 

SG 
 

Z 2-
Phase 

250 4204 28.16 3.83 6.08 40.33 4.48 2.48 0.6 1.32 0.79 0.81 1.21 9.91 165 0.818 0.838 

250 3614 27.67 4.55 6.44 43.82 4.71 2.43 0.55 1.2 0.68 0.69 0.96 6.3 121 0.778 0.788 

250 3014 27.22 4.76 6.69 46.41 4.81 2.39 0.51 1.11 0.6 0.6 0.78 4.12 116 0.773 0.75 

250  2414 26.95 4.73 6.85 48.07 4.87 2.37 0.49 1.06 0.55 0.54 0.66 2.86 112 0.768 0.718 

250 1814 27.32 4.61 6.94 48.44 4.93 2.39 0.49 1.06 0.53 0.52 0.6 2.17 109 0.764 0.686 

250 1214 28.92 4.34 6.99 46.88 4.96 2.52 0.55 1.14 0.58 0.57 0.63 1.92 107 0.762 0.639 

250 714 31.82 3.94 6.79 43.31 4.94 2.77 0.67 1.4 0.74 0.71 0.77 2.14 107 0.762 0.553 

 

1
8

1
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Table 5.14. Statistical measurement of the developed models and literature models for 

prediction two-phase Z factor of two gas-condensate samples as a function of Ppr.  

Sample 1 MAE RMSE AARD% 

Hall-Yarborough, 
(1973) 

0.1753 
 

0.2154 
 

24.04 
 

DAK, (1974) 
0.1681 

 
0.2064 

 
22.95 

 

Beggs & Brill, (1975) 
0.1680 

 
0.2072 

 
22.78 

 

Azizi, et al, (2010) 
0.2374 

 
0.2720 

 
34.36 

 

Rayes et al., (1992) 
0.0648 

 
0.0707 

 
6.91 

 

FFNN 
0.0271 

 
0.0450 

 
-2.25 

 

CFNN 
0.0420 0.0469 

 
-0.0929 

 

ANFIS 
0.0176 

 
0.0299 

 
1.49 

 

Sample 2 MAE RMSE AARD% 

Hall-Yarborough, 
(1973) 

0.0752 
 

0.0861 
 

7.41 
 

DAK, (1974) 
0.0640 

 
0.0731 

 
6.38 

 

Beggs & Brill, (1975) 
0.0299 

 
0.0394 

 
-2.75 

 

Azizi, et al, (2010) 
0.7888 

 
0.7913 

 
79.35 

 

Rayes et al., (1992) 
0.2176 

 
0.2267 

 
22.34 

 

FFNN 
0.0232 

 
0.0384 

 
-1.64 

CFNN 
0.0752 

 
0.1014 

 
-1.17 

 

ANFIS 
0.0116 

 
0.0210 

 
0.3764 

 

 
The proposed approaches in this study are particularly of great interest for prediction 

of gas-condensate two-phase Z factor at high temperature and high pressure (HTHP) 

operational conditions 𝑇𝑝𝑟 ≥ 3 and 𝑃𝑝𝑟 ≥ 30. 

In order to see the impact of each input variables on output of the developed models 

in this study, a sensitivity analysis has been carried out. The impact of all input 

variables, which are independent variables, (T, P, H2S, CO2, N2, C1 – C7+, MWC7+, 

SG) on output parameter, which is dependant variable, (two-phase Z factor) was 

investigated. This sensitivity analysis also further reveals gas-condensate fluid 
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behaviour below the dew point pressure. To conduct sensitivity analysis, Pearson 

relevancy factor (r) was employed. In this method the relevance importance of each 

input variable will be detected by assigning a quantitative scale. The scale is a 

normalized values between -1 and 1, where the negative value show the negative 

effect of the input variable on output and positive show the positive effect (highly 

relevant). If the (r) is zero, it signifies that there is no relation between the input and 

output variable. The Pearson relation is defined by the following equation: 

 

𝑟(𝐼𝑛𝑝𝑘, 𝑍𝑇𝑃 ) =
∑ (𝐼𝑛𝑝𝑘,𝑖 − 𝐼𝑛𝑝𝑎𝑣𝑒,𝑘)(𝑍𝑇𝑃,𝑖 − 𝑍𝑇𝑃,𝑎𝑣𝑒)
𝑛
𝑖=1

√∑ (𝐼𝑛𝑝𝑘,𝑖 − 𝐼𝑛𝑝𝑎𝑣𝑒,𝑘)
𝑛
𝑖=1

2
∑ (𝑍𝑇𝑃,𝑖 − 𝑍𝑇𝑃,𝑎𝑣𝑒)

2𝑛
𝑖=1

 

 

5.26 

 

Where, 𝐼𝑛𝑝𝑘,𝑖 and  𝐼𝑛𝑝𝑎𝑣𝑒,𝑘 are ith value and the average value of kth input variables 

respectively (k=T, P, H2S, CO2, N2, C1 – C7+, MWC7+, SG); 𝑍𝑇𝑃,𝑖 represents ith values 

of the predicted two-phase Z factor and 𝑍𝑇𝑃,𝑎𝑣𝑒 stands for average values of predicted 

two-phase Z factor. The relative impact of each parameter on two-phase Z factor 

presented in Figure 5.21. The result in Figure 5.21 shows that pressure (P) has the 

highest impact on two-phase Z factor of gas-condensate reservoirs below the dew 

point pressure. The positive impact of P on Z factor means increasing P would directly 

increase the Z factor. Physical law of gas-condensate fluid supports the positive 

impact of pressure on Z factor. It is well known from real gas law equation of state for 

mixture gases (𝑍 = 𝑃𝑉/𝑛𝑅𝑇), that pressure (P) has positive impact on Z factor and 

temperature should have negative impact. These relationships can be explained 

further in following and the obtained results are related to the physics of the problem.  

 

The intermolecular connection of a gas mixture diminishes with rising temperature (T) 

and cause the gas behaves more like an ideal gas. According to ideal gas law the 

temperature should have negative impact on Z factor, means increasing (T) should 

decrease the Z factor. The result in Figure 5.21 for temperature impact is against the 

aforementioned theory, as the temperature (T) has a positive impact on Z factor of 

gas-condensate fluid. The theory is correct as long as the mixture remains as a single-

phase gas. However, below the saturation pressure, the liquid phase evolved from the 

gas phase and gas-condensate mixture is no longer single phase. Hence, the mixture 

behaves more like a liquid rather than gas especially for rich gas-condensate 
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reservoirs with high amount of condensate (oil) developed inside the pores in the 

reservoirs. Hence increasing (T) like pressure contributes to higher Z factor.   

The compositional contents of C1 to C7+ has different influence on Z factor. C1, C2 and 

C3 do not have considerable effect on Z factor, whereas IC4 to C7+ have positive impact 

on Z factor. It is interesting to relate the molecular weight of each composition to the 

relevancy factor. For heavier hydrocarbon fraction with higher molecular weight, the 

impact is greater in positive direction. IC4 to C7+ have higher molecular weight than C1 

– C3, hence they have a higher positive impact on Z factor. This can be concluded that 

the higher amount of heavy hydrocarbon (IC4, NC4, IC5, NC5, C6 and C7+) would 

results in higher Z factor in the modelling.  

Non-hydrocarbon components of H2S, CO2 and N2, all have negative impact on Z 

factor. Increasing the molar fraction of H2S, CO2 and N2 would result in decreasing Z 

factor.  

After pressure the molecular weight of C7+ (MWC7+) has a highest positive impact on 

Z factor. This property causes gas-condensate mixture behave like a liquid (oil) phase, 

below the saturation pressure. This would increase the deviation from ideal gas 

behaviour, which results in larger Z factor.  

 
Figure 5.19. Testing different methods in predicting experimental Z factor as a function of 

Ppr for sour gas-condensate sample.  
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Figure 5.20. Prediction of Z factor as a function of Ppr for sweet gas condensate sample. 

 
Figure 5.21. Relevancy factor (r) for each input variables. 
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5.5 Summary  

 
Compressibility factor (Z factor) is one of the most important PVT properties that its 

accurate determination is required for reliable well deliverability modelling of gas-

condensate reservoirs above and below the saturation pressure. In this chapter 

reliability and accuracy of existing literature models for prediction of two-phase Z factor 

below the dew point pressure is initially examined using extensive data bank obtained 

from open literature. The data bank is mainly from Constant Volume Depletion (CVD) 

tests performed on lean/rich gas-condensate fluids worldwide.  

Two iterative techniques of Hall and Yarborough, (1973) and DAK, (1975) as well as 

three direct methods of Beggs and Brill, (1973), Rayes et al., (1992), and Azizi et al., 

(2010) utilized for prediction of Z factor below the dew point. Graphical and statistical 

error measurements have been carried out and indicate that DAK, (1975) best 

performed among literature models with MAE of 0.1300, RMSE of 0.1671 and AARD% 

of 2.4945 for estimating gas-condensate two-phase Z factor. DAK method followed by 

Hall-Yarborough, (1973), Rayes et al., (1992), Beggs and Brill, (1973) and Azizi et al., 

(2010). The problem with the current literatutre apporoaches is that they are not 

representing all range of operational conditions and limited to specific range of 

pseudo-reduced pressure (Ppr) and pseudo-reduced temperature (Tpr). Almost all 

literature mdoels are limited for determination of two-phase Z factor in high pressure 

high temperature (HPHT) conditions.  

In this study different approach was taken for modelling two-phase Z factor of gas-

condensate reservoirs below the saturation pressure. Three machine learning (ML) 

based models including FFNN, CFNN and ANFIS were implemented for accurate 

modelling of two-phase Z factor. Various optimization algorithms such as Levenberg 

– Marquardt (LM) and Bayesian regularization (BR) coupled with different number of 

hidden layers and neurons have been adopted to achieve best optimum performance 

of FFNN and CFNN. Integrity and robustness of FFNN and CFNN examined using 

independent data sets. The statistical and graphical error measurements of the 

obtained results show high accuracy of both methods for prediction of two-phase Z 

factor. Another ML based approach known as ANFIS was also utilized for prediction 

of two-phase Z factor of gas-condensate reservoirs below the saturation pressure. 

Subtractive clustering technique was utilized and an iterative scheme was developed 

for determination of optimum number of IF–THEN fuzzy rules in ANFIS modelling. 
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ANFIS is predicting two-phase Z factor with the best accuracy among other intelligent 

models and literature correlations. The developed ANFIS model returned the 

experimental values of two-phase Z factor with MAE of 0.00251, RMSE of 0.00254 

and AARD% of 0.5119. The developed MA based models overcome the limitation of 

existing literature models and they can be used for prediction of gas-condensate two-

phase Z factor below the dew point in all ranges of pressure and temperature 

operational conditions. Furthermore the ML based models has an excellent 

computational efficiency.  

The developed ML based models can be used as an alternative tools instead of 

existing literature models in reservoir simulation packages. This would ensure 

accuracy and reliability of the production forecast for gas-condensate reservoirs 

experiencing condensate drop out.  
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CHAPTER 6 PRODUCTION PROFILE 

FORECAST USING WELL TEST DATA  

PRODUCTION PROFILE FORECAST USING WELL TEST 

DATA 

 

6.1 Introduction  

 
Accurate and reliable well production forecast of gas-condensate reservoirs are very 

important for field development planning, projection of cash flow and future 

hydrocarbon recoveries.  

Reliable modelling of this type of reservoirs require understanding the effect of 

condensate blockage and other contributing factors. Among many factors phase 

behaviour, absolute/relative permeability and how the well is being produced are the 

most important (Fevang and Whitson, 1996; Shi, 2009). 

Phase behaviour of gas-condensate below the saturation pressure is related to 

variations in fluid properties (e.g., viscosity, Z factor). These variations would influence 

modelling of well deliverability and also production profile forecast. From gas rate 

equations of 2.1, 2.2 and 2.16, it is apparent that the cumulative production (Gp) and 

flow rate (q) are direct function of permeability, viscosity, solution gas to oil ratio (Rs), 

and Z factor. Hence, accurate determination of the aforementioned parameters will 

affect the estimation of gas and condensate production rate at the surface. Many 

studies in literature have shown that root cause of the unreliable modelling of gas-

condensate well deliverability is due to inaccurate estimation of PVT properties. Some 

of these studies are as follow (Rayes et al., 1992; Fevang and Whitson, 1996; Whitson, 

Fevang and Yang, 1999; Elsharkawy, Hashem and Alikhan, 2000; Mott, 2002; Sutton, 

2005b, 2007; Arukhe and Mason, 2012; Yan et al., 2013; Ghiasi et al., 2014; 

Behmanesh, Hamdi and Clarkson, 2017; Khazali, Sharifi and Ahmadi, 2019).  

 

Hence, to address the PVT issues in gas-condensate reservoirs, Artificial Intelligent 

algorithms were manipulated extensively in chapter 4 and 5. Several Artificial 

Intelligence (AI) or known as machine learning approaches were developed for better 

prediction of gas-condensate viscosity and two-phase Z factor. Although the machine 
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learning based models in chapter 4 and 5 predict PVT properties (viscosity and Z 

factor) very well, the reliability of the developed models in relation to production profile 

of gas-condensate reservoirs is unclear. Therefore, the aim of this chapter is to 

investigate the reliability of the developed PVT models in computation of production 

profile of gas-condensate wells, which is ultimate aim of this study. In doing so three 

regions pseudopressure integral has been utilized and coupled with material balance 

equation to generate production profile of a gas-condensate well. To verify the 

effectiveness of the developed PVT properties (e.g., viscosity and two-phase Z factor) 

in computation of production profile compositional simulation of the studied well 

performed using Eclipse 300.  

Permeability is another important parameter that would influence the accuracy of well 

deliverability modelling in gas-condensate reservoirs. In this chapter effective 

permeability of each phase (gas and condensate) will be used for computation of 

pseudopressure integral. The detail reservoir and fluid data has obtained from well 

pressure test data.  

 

6.2 Pressure Transient Test (PTA) and two-phase pseudopressure approach 

 

Detail reservoir information are essential for reservoir engineers to predict the current 

and future performance of the reservoir. Pressure transient analysis (PTA) test is 

available in industry to provide engineers with detail reservoir information required for 

the analysis. PTA is essentially measuring pressure changes in a well as a function of 

time (Lee and Wattenbarger, 1995, pp. 111–113). It is well known that pressure 

behaviour of the reservoir following a rate change reflect the geometry and flow 

properties of the reservoir. From PTA test the information such as effective 

permeability, formation damage/stimulation, volumetric average reservoir pressure, 

drainage pore volume, fracture properties and communication between wells can be 

obtained.  

 

Classical interpretation of PTA test results for determination of the aforementioned 

parameters are based on linear diffusion equation. The combination of Darcy’s law, 

continuity equation and equation of state forms the diffusivity equation. The equation 

is a differential equation that governs the transient flow of the fluid through a porous 
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medium (Sanni, 2018). The diffusivity equation determines variation of pressure with 

time and position in the reservoir as follow.  

 

∇2𝑝 −
∅𝜇𝑐𝑡
𝑘

𝜕𝑝

𝜕𝑡
= 0 

 

6.1 

 

Where ∇ devoted to gradient, P is pressure, ∅ is porosity of the medium, 𝜇 is viscosity 

of the fluid, 𝑐𝑡 is total compressibility, k is permeability and 
𝜕𝑝

𝜕𝑡
 is pressure rate of change 

with respect to time.  

Equation 6.1 is derived using several assumption as follow (Horne, 1995; Stewart, 

2011)  

 Darcy’s law apply 

 Single-phase flow 

 Porosity, permeabilities, viscosity and compressibility are constant  

 Fluid compressibility is very low 

 Pressure gradient 
𝜕𝑝

𝜕𝑡
 in the reservoir is small 

 Gravity and thermal effect are negligible 

With the above assumptions equation 6.1 is applicable for single-phase slightly 

compressible flow (oil reservoir) when average reservoir pressure is above bubble 

point pressure (𝑃𝑟 > 𝑃𝑏𝑢𝑏𝑏𝑙𝑒). However, for gas-condensate reservoirs as liquid 

condensation may occurs in the reservoir and both gas and liquid phase coexist below 

the saturation pressure, equation 6.1 is no longer valid. Furthermore, the properties of 

gas-condensate fluid are strong function of pressure and they are changing with time. 

Hence, the flow equation for gas-condensate reservoir is non-linear and equation 6.1 

is not applicable for such reservoir. A classical approach to account for this non-

linearity is defining a variable known as pseudopressure function (mp). Therefore, the 

governing pressure transmission for gas-condensate reservoirs is changing to the 

following equation.    

 

∇2𝑚𝑝 −
1

𝜂

𝜕𝑚𝑝

𝜕𝑡
= 0 

 

6.2 

 

Where 𝜂 is constant of diffusivity equation and it is function of pressure and time. 

Equation 6.2 can further be simplified using pseudotime. Computation of 
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pseudopressure and pseudotime allow all solutions (gas-condensate fluid) defined for 

standard well test analysis, using pseudopressure and pseudotime instead of pressure 

and time (Roussennac, 2001). In the case of multiphase flow for instance gas-

condensate below the saturation pressure the pseudopressure function in 6.2 must 

take into account the relative permeability data, at reservoir condition, which is very 

difficult to obtain. In this situation, effective permeability can be calculated using 

pseudopressure function. 

 

Pseudopressure function (𝑚𝑝) is defined in chapter 2 by pressure integral in equation 

2.2 after Al-Hussainy et al., (1966). For gas-condensate fluid flow, pseudopressure 

function can be combined with analogy of three flow regions introduced by Fevang, 

(1995), explained in 2.3 to estimate gas and condensate flow rates at the surface. 

Three-flow regions pseudopressure approach is very quick and easy to implement for 

well performance modelling of gas-condensate reservoirs. Using PTA data combined 

with three regions pseudopressure method resulted in estimating gas flow rate (qg) as 

a function of pressures. The established relationship between pressure and flow rates 

resulted in generating Inflow Performance Relationship (IPR). IPRs are important 

element for reservoir engineers in the design of new wells and also for monitoring and 

optimizing existing wells. In this section we discuss how to establish IPRs for gas-

condensate reservoirs using three regions pseudopressure approach when PTA data 

is available. Then generating production profile of gas-condensate reservoirs using 

results of pseudopressure integral combined with volumetric material balance will be 

discussed.  

 

Gilbert, (1954) introduced Inflow Performance Relationship (IPR) for oil wells. IPRs 

are important tool in understanding the reservoir/well behaviour and quantifying 

production rate (Guo, Sun and Ghalambor, 2008; Fattah et al., 2014). IPRs are 

essentially quantifying gas or condensate (oil) flow rates in respect to specific bottom-

hole flowing pressure (Pwf). Rawlins and Schellhardt, (1936) proposed an equation to 

relate gas flow rate (qg) to Pwf, their equation is known as back – pressure equation or 

deliverability equation and shown in 2.11. To account for non-linearity of the flow (e.g., 

variation of viscosity and Z factor) due to liquid drop out below the saturation pressure 
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in gas-condensate reservoirs, pseudopressure function (𝑚𝑝) is added to well 

deliverability equation.  

Substituting 𝑚𝑝 in 2.11 yields equation 6.3. This equation is effectively gas-

condensate well deliverability equation that can be used for construction of IPR curve.  

 

{
𝑞𝑔𝑡 = 𝐶 (∆𝑚𝑝𝑔𝑡

)
𝑛

∆𝑚𝑝𝑔𝑡
= 𝑚𝑝𝑔𝑎𝑣𝑔

−𝑚𝑝𝑔𝑤𝑓

} 

 

6.3 

 

Where C is performance coefficient in Mscf/day/psi2, ∆𝑚𝑝𝑔𝑡
is total gas 

pseudopressure function in psi, 𝑚𝑝𝑔𝑎𝑣𝑔
 is average pseudopressure function, 𝑚𝑝𝑔𝑤𝑓

 

pseudopressure function at the bottom-hole flowing pressure, n is an exponent and 

𝑞𝑔𝑡 is total gas flow rate on the surface. Depending on flowing velocity, the exponent 

n can be vary between 1 for completely laminar flow and 0.5 for fully turbulent flow. 

The coefficient of C is depending on well and reservoir geometry, permeability and 

fluid properties and its mathematically has been defined in chapter 2 equation 2.3.  

The coefficient values of C and n in equation 2.3 can also be determined using well 

test data.  

By taking the logarithm of both sides of equation 6.3 and solving for logarithm of 

pseudopressure function, the expression can be rewritten as: 

 

𝑙𝑜𝑔 (∆𝑚𝑝𝑔𝑡
) =

1

𝑛
𝑙𝑜𝑔𝑞𝑔 −

1

𝑛
log 𝐶 

 

6.4 

 

The above equation suggests that plotting ∆𝑚𝑃𝑔𝑡versus 𝑞𝑔in log-log scale should yield 

a straight line with slope of 1/n and intercept of C. The deliverability exponent n can 

be determined from any two points on a straight line as follow. 

 

𝑛 =
∆𝑙𝑜𝑔𝑞𝑔

∆log (∆𝑚𝑝𝑔𝑡
)
 

 

6.5 

 

Also coefficient C can be estimated by rearranging equation 6.3 when pressure test 

data is available as follow. 
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𝐶 =
𝑞𝑔𝑡

∆𝑚𝑝𝑔

𝑛 

 

6.6 

 

The above procedure is a conventional well deliverability estimation of any gas well in 

industry using PTA test data. Establishing Inflow Performance Relationship (IPR) 

curve using the above procedure and equation 6.3, require calculation of 

pseudopressure function ∆𝑚𝑝𝑔𝑡
.  

In this study three-flow regions pseudopressure approach of Fevang, (1995) adopted 

for estimation of ∆𝑚𝑝𝑔𝑡
. ∆𝑚𝑝𝑔𝑡

 is calculated for three flow regions of gas-condensate 

reservoirs. Substitution of Fevang’s approach in 6.3, yields the following expression in 

terms of gas and condensate effective permeabilities.  

 
𝑞𝑔𝑡 = 𝐶 {∫ (

𝑘. 𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+
𝑘. 𝑘𝑟𝑐
𝐵𝑐𝜇𝑐

𝑅𝑠)𝑑𝑝  
𝑃∗

𝑃𝑤𝑓

+∫ (
𝑘. 𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
)𝑑𝑝

𝑃𝑑𝑒𝑤

𝑃∗

+∫ (
𝑘. 𝑘𝑟𝑔(𝑆𝑤𝑖)

𝐵𝑔𝜇𝑔
)𝑑𝑝 

𝑃𝑅

𝑃𝑑𝑒𝑤

}

𝑛

 

 

6.7 

 

This is true representation of gas-condensate flow below the saturation pressure.  

Equation 6.7 includes three pressure integrals representing three flow regions inside 

gas-condensate reservoirs as discussed in 1.3. Calculation of pressure integrals in 6.7 

depends on co-existing of the regions in the reservoirs as explained in section 2.3.  

 

Pressure integrals in 6.7 has written in terms of effective permeability instead of 

relative permeability as previously shown in 2.16. This is particularly useful if the well 

pressure transient test data is available, where the effective permeability can be 

calculated from the well test data. This analogy would be more explored by using a 

gas-condensate case study in this chapter.  

 

Using equation 6.7 requires information of pressures, permeabilities, fluid properties 

and coefficients of n and C. Well pressure test analysis (PTA) are conventional method 

to obtain pressure and permeability of the formation. Several well pressure transient 

test methodologies exist in the literature such as pressure build up, pressure 

drawdown, multirate, pulse, interference, fall off, injectivity, step rate and fall off. Our 

intention is not to discuss different well test methods, as this is beyond the scope of 
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this study.  Nevertheless, the aim is to introduce how effective permeability (k.krg) and 

skin factor and pressure information that are required for computation of 6.7 can be 

calculated from well test data.  

 

Pressure build up test is usually used to provide the reservoir and other properties of 

the formation. This test describes the build up in wellbore as a function of time after 

the well shut-in for certain time. The general equation of the pressure build up and 

drawdown come from solution of diffusivity equation and principle of superposition 

theory. Pressure build up equation originally proposed by Horner, (1951) and modified 

by Earlougher, (1977). The pressure build up test in terms of pseudopressure function 

and surface flow rate for slightly compressible fluid is as follow.  

 
𝑚𝑃𝑟 −𝑚𝑃𝑤𝑓 = 162.6 (

𝑞𝑔,𝑚𝑒𝑎𝑠

ℎ
) (𝑙𝑜𝑔(𝑡) + 𝑙𝑜𝑔 (

𝑘. 𝑘𝑟𝑔(𝑝)

∅𝜇𝑔𝑐𝑡𝑟𝑤2
) − 3.23

+ 0.87𝑠𝑡𝑜𝑡𝑎𝑙) 

 

6.8 

 

Where 𝑞𝑔,𝑚𝑒𝑎𝑠 is measured gas flow rate at surface during the test; 𝑡 is recorded 

pressure test time; h is reservoir thickness; k.krg is effective permeability of gas phase; 

∅ is porosity of the media; 𝜇𝑔 is gas viscosity; ct is total compressibility factor; rw is 

wellbore radius; and stotal is total skin factor include the skin from formation damage 

and stimulation (Horner, 1951; Al-Hussainy and Ramey, 1966; Agarwal, 1979; Lee 

and Wattenbarger, 1995) 

 

𝑠𝑡𝑜𝑡𝑎𝑙 = 1.153 [
∆𝑚𝑝𝑔,1ℎ𝑜𝑢𝑟

𝑞𝑔,𝑚𝑒𝑎𝑠𝑚𝑔,1 ℎ𝑜𝑢𝑟
− 𝑙𝑜𝑔 (

𝑘. 𝑘𝑟𝑔

∅𝜇𝑔𝑐𝑡𝑟𝑤2
) + 3.227] 

 

6.9 

 

Where m is slope of the straight line. Rearranging 6.9 and comparing with straight-line 

equation of 𝑦 = 𝑚𝑥 + 𝑏 suggests an analysis technique with the arrangement of the 

following terms.  

 

{
 
 

 
 

𝑦~𝑚𝑃𝑤𝑓

𝑥~log (𝑡)

𝑚~ − 162.6 (
𝑞𝑔,𝑚𝑒𝑎𝑠

ℎ
)

𝑏~ − 162.6 (
𝑞𝑔,𝑚𝑒𝑎𝑠

ℎ
) (𝑙𝑜𝑔 (

𝑘. 𝑘𝑟𝑔(𝑝)

∅𝜇𝑔𝑐𝑡𝑟𝑤2
) − 3.23 + 0.87𝑠𝑡𝑜𝑡𝑎𝑙)

}
 
 

 
 

 

 

6.10 
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Equation 6.8 indicates that the plot of bottom-hole flowing pressure (Pwf), against 

logarithm of time (t) exhibits a straight line with the slope of  𝑚~− 162.6 (
𝑞𝑔,𝑚𝑒𝑎𝑠

ℎ
) and 

intercept of 𝑏~ − 162.6 (
𝑞𝑔,𝑚𝑒𝑎𝑠

ℎ
) (𝑙𝑜𝑔 (

𝑘.𝑘𝑟𝑔(𝑝)

∅𝜇𝑔𝑐𝑡𝑟𝑤2
) − 3.23 + 0.87𝑠𝑡𝑜𝑡𝑎𝑙). The slope “m” 

allows us to calculate the permeability of the formation (k). The plot commonly known 

as Horner plot and the typical semi log plot of Pwf against logarithm of time (t) is shown 

in Figure 6.1.  

 

 

Figure 6.1. Horner plot for pressure build up test (Earlougher, 1977).  

An early time deviation from the graph in Figure 6.1 is due to the wellbore storage 

effect and skin factor (Horner, 1951; Lee and Wattenbarger, 1995; Ahmed, 2010). This 

deviation is large if permeability is low and fluid compressibility is high. This is the case 

in heavy gas-condensate reservoir when the liquid build up starts from the beginning 

of the production.  

In this study Horner plot type analysis also has been adopted for calculation of effective 

permeability when PTA data is available. Pseudopressure integral in 6.7 rewritten in 

terms of effective permeabilities of the phases instead of relative permeabilities. This 

is due to the fact that using relative permeability data, obtained from empirical models 

such as Corey et al., (1956) would produce misleading results for very low permeability 

gas-condensate reservoirs (Ojha et al., 2017; Hassan et al., 2019). 
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The detail computation of pseudopressure integral is given in following section through 

demonstration of a case study. Pressure-volume-temperature (PVT) properties 

(viscosity and Z factor) are also an important factors for estimating pseudopressure 

function. The objective of this chapter is to investigate how the production of gas (qg) 

and condensate (qc) are influenced using different PVT properties and two-phase Z 

factor models developed in chapter 4 and 5.   

 

6.3 Computation of production profile in relation to gas/condensate viscosity   

and Z factor in HPHT gas-condensate well 

 
The example that we analyse in this section is a vertical well known as (KAL – 5). The 

is in Yugoslavia and located in very high temperature and tight formation (365 °F at 

11,500 ft [180°C at 3500m]. The compact formation makes the production impossible 

without stimulation. Pressure build up test was run in the well and bottom-hole flowing 

pressure (Pwf) was recorded against the shut in period (time in hours). The pressure 

test data, reservoir and fluid properties of the well is obtained from Economides et al., 

(1989) and presented in Table 6.1 and Table 6.2. The reservoir fluid contains high 

content of non-hydrocarbon impurities of 10.9% carbon dioxide (CO2). Initial condition 

of the reservoir fluid coincides with most gas-condensate reservoirs with GOR of 9470 

scf/STB (1706 std m3/stock-tank m3). The initial reservoir pressure (6750psi 

[46.5Mpa]) is identical to dew point pressure and condensation starts from the 

beginning of the production. This means the only region that developed during 

pressure depletion is region 1 (𝑃∗ > 𝑃𝑅). Hence, the pseudopressure integral with 

pressure limit between Pwf and PR, shown in 2.12, can be used for calculation of well 

deliverability. The obtained data from pressure transient test indicate the well is 

located in a very tight formation with the permeability of 0.0035 millidarcy.  
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Table 6.1. Reservoir and fluid property of studied gas-condensate well after (Economides et 

al., (1989).  

Well & Reservoir data Fluid Data (%mole fraction) 

Pi, (psia)                6750 

Pdew (psia)            6750 

qg, Mscf/day            75.4 

qc, STB/day               2.8 

GOR scf/STB         9470  

𝛾𝑔 (to air)                 0.94 

T, °F                         354 

h, ft                        216.5 

hp,ft                            36 

∅                           0.062 

rw, ft                         0.54 

Sw                             0.3 

Rp,scf/STB            9470 

API [Assumed]           50 

Skin                      - 4.52 

K (md)                 0.0035 

H2S                                       0.006 

N2                                          1.452 

CO2                                       10.931 

C1                                          72.613 

C2                                          6.242 

C3                                          1.631 

i – C4                                     0.553 

n – C4                                    0.693 

i – C5                                     0.442 

n – C5                                    0.379 

C6                                          0.516 

C7                                          0.644 

C8                                          0.541 

C9                                          0.388 

C10+                                       2.979 
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Table 6.2. Pressure build up data for (KAL – 5) obtained from (Economides et al., (1989). 

Time (Hours) Pressure (Psi) 

0 1083.1 

0.167 1174.5 

0.333 1226.7 

0.5 1303.6 

1.0 1490.6 

2.0 1751.6 

3.0 2046.0 

4.0 2279.4 

6.0 2759.4 

8.0 3246.5 

12.0 4221.0 

16.0 5162.0 

22.0 6161.0 

28.0 6336.0 

34.0 6406.1 

42.0 6452.5 

50.0 6487.3 

58.0 6507.6 

68.0 6526.5 

82.0 6556.9 

97.0 6587.3 

112.0 6587.3 

141.0 6601.8 

 

In order to calculate gas and oil maximum flow rates (qg, qo) using pseudopressure 

integral and construct the IPR curves the following data is needed.   

 The PVT properties of each phase in region 1, (construction of PVT tables) 

 Producing gas/oil ratio, RP (obtained from well test data) 

 Knowledge of pressure, Pwf and PR (obtained from well test data) 

 Effective permeabilities of each phase (k.krg) and (k.kro) 
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In the following section, first we discuss the construction of PVT tables and then 

mathematical solution of pseudopressure integral will be discussed. Effective 

permeability of each phase will be calculated using well pressure test data.   

 

 Construction of pressure – volume – temperature (PVT) relationship 
 
To estimate maximum gas and oil (condensate) flow rate at the surface using 

psuedopressure approach, knowledge of PVT data such as formation volume factor, 

viscosity, Z factor and solution gas to oil ratio is required. Viscosity and Z factor are 

governing parameters in computation of pseudopressure integral and determinining 

the performance of the well (Whitson, Fevang and Yang, 1999; Hernandez; et al., 

2002; Yang et al., 2007; Arukhe and Mason, 2012). In chapter 4 and 5 accurate 

determination of viscosity and Z factor of gas-condensate reservoirs have been 

comprehensivly discussed.  

It also has been shown that using current literature approaches for modelling gas-

condensate viscosity and Z factor resulted in high error. Subsequently several 

machine learning (ML) based models have been developed and presented in chapters 

4 and 5. The developed ML based models were adopted for computation of fluid 

properties and constructing PVT tables for studied gas-condenste well. These models 

were developed to address the non-linearity of fluid flow below the saturation pressure 

in gas-condensate reservoirs undergoing depletion.  

Other two PVT properties that have major influence for accurate determination of the 

pseudopressure integrals are solution GOR (Rs) and oil to gas ratio (rs) (Fevang and 

Whitson, 1996; Mott, 2002). Whitson and Torp, (1983) MBO method proved to be one 

of the most accurate techniques for calculation of Rs and rs for gas-condensate fluid 
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(Borthne, 1986; Coats and Smart, 1986; Guo, Du and School, 1989; Khamis and 

Fattah, 2019).  

Therefore, Whitson and Torp, (1983) utilized for computation of Rs and rs in region 1. 

The steps shown in following figure have been taken for construction of PVT table.   

 

 

Figure 6.2. construction of PVT table for KAL – 5 gas-condensate well. 

The constructed PVT table in this part will be used for computation of gas and 

condensate flow rates utilizing three regions pseudopressure approach.  

 

 Mathematical manipulation of pseudopressure integral 
 
The well deliverability equation for this reservoir rewritten only for region 1 as 

described in 6.3 and depicted in 6.11 for gas phase and 6.12 for oil (condensate) 

phase. 

 
 

𝑞𝑔 = 𝐶(∆𝑚𝑃𝑔1)
𝑛
= 𝐶 {∫ (

𝑘. 𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
+
𝑘. 𝑘𝑟𝑜
𝐵𝑜𝜇𝑜

𝑅𝑠)𝑑𝑝  
𝑃𝑅

𝑃𝑤𝑓

}

𝑛

 

 

6.11 

 

 

𝑞𝑜 = 𝐶(∆𝑚𝑃𝑐1)
𝑛 = 𝐶 {∫ (

𝑘. 𝑘𝑟𝑜
𝐵𝑜𝜇𝑜

+
𝑘. 𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
𝑅𝑜)𝑑𝑝  

𝑃𝑅

𝑃𝑤𝑓

}

𝑛

 

 

6.12 

 

 

Mathematical solution of pseudopressure integrals in 6.11 and 6.12 required 

producing gas to oil ratio, (Rp). Rp is a ratio of total gas production to total oil production 
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on the surface and can be estimated from following equation (Fetkovich et al., 1986; 

Fevang and Whitson, 1996; Guehria, 2000; Jokhio and Tiab, 2002; Ahmed, 2010). 

 

𝑅𝑝 =
𝑞𝑔𝑡

𝑞𝑜𝑡
=

𝐶 [(
𝑘𝑟𝑔
𝐵𝑔𝜇𝑔

) + (
𝑘𝑟𝑜
𝐵𝑜𝜇𝑜

) 𝑅𝑠]

𝐶 [(
𝑘𝑟𝑔
𝐵𝑔𝜇𝑔

) 𝑅𝑜 + (
𝑘𝑟𝑜
𝐵𝑜𝜇𝑜

)]

 

 

6.13 

 

Where, RO is oil to gas ratio in (STB/scf), 𝑞𝑔𝑡 and 𝑞𝑜𝑡 are total gas flow rate and total 

oil flow rate at the surface respectively. Simplificaion of 6.13 yeilds the following 

equation.  

 

𝑅𝑝 = 𝑅𝑠 + (
𝑘𝑟𝑔

𝑘𝑟𝑜
) (

𝐵𝑜𝜇𝑜

𝐵𝑔𝜇𝑔
) (1 − 𝑅𝑜𝑅𝑝) 

 

6.14 

 

Fetkovich et al., (1986), rearranged and solved 6.14 for relative permeabilities ratio 

(𝑘𝑟𝑔/𝑘𝑟𝑜 ) and proposed the following equation.  

 

𝑘𝑟𝑔

𝑘𝑟𝑜
(𝑃) =

(𝑅𝑝 − 𝑅𝑠)

(1 − 𝑅𝑜𝑅𝑝)
(
𝐵𝑔𝜇𝑔

𝐵𝑜𝜇𝑜
) 

 

6.15 

 

Relative permeabilities Krg and Kro can be expressed directly as a function of ratio 

(𝐾𝑟𝑔/𝐾𝑟𝑜), when both phases are mobile (Evinger and Muskat, 1942). Using 6.15, for 

a given Rp, relative permeabilities of gas (Krg) and condensate (Kro) in region 1 can be 

evaluated directly as a function of pressure, 𝐾𝑟𝑔(𝑝) = 𝑓[𝑘𝑟𝑔/𝑘𝑟𝑜(𝑝)] and 𝐾𝑟𝑜(𝑝) =

𝑓[𝑘𝑟𝑔/𝑘𝑟𝑜(𝑝)]. Presenting 6.14 in terms of effective permeabilities (k.krg) and (k.kro) 

and rearranging the equation allow us to calculate effective permeability of one phase 

as a function of other phase. The effective permeabilities of gas and oil phase in region 

1, then can be calculated using following expressions.  

 

𝑘. 𝑘𝑟𝑔 =
(𝑅𝑝 − 𝑅𝑠)

(1 − 𝑅𝑝)
(
B𝑔μg{𝑘. 𝑘𝑟𝑜}

B𝑜μ𝑜
) 

 

6.16 

 

 

𝑘. 𝑘𝑟𝑜 =
(1 − 𝑅𝑜𝑅𝑝)

(𝑅𝑝 − 𝑅𝑠)
(
B𝑜μ𝑜{𝑘. 𝑘𝑟𝑔}

B𝑔μg
) 

 

6.17 
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Substituting 6.16 in pseudopressure integral of 6.11 and simplifying yields 

pseudopressure integral in terms of gas effective permeability as follow (Fetkovich et 

al., 1986; Fevang, 1995; Fevang and Whitson, 1996; Guehria, 2000; Jokhio, 2002).  

 

∆𝑚𝑝𝑔1
= ∫ (

𝑘. 𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
)
𝑅𝑝(1 − 𝑅𝑜𝑅𝑠)

(𝑅𝑝 − 𝑅𝑠)

𝑃𝑅

𝑝𝑤𝑓

(𝑃)𝑑𝑝 

 

6.18 

 

Pseudopressure integrals can now be computed if effective permeability integral as 

well as other properties of respective phase are known. Gas phase pseudopressure 

integral in 6.18 can be rewritten without effective permeability term (Jokhio, 2002) as 

shown in 6.19. This permits to estimate the effective permeability integral using Horner 

plot and theory of well testing.  

 

 

∆𝑚𝑝𝑔1
= [∫ (

1

𝐵𝑔𝜇𝑔
)
𝑅𝑝(1 − 𝑅𝑜𝑅𝑠)

(𝑅𝑝 − 𝑅𝑠)

𝑃𝑅

𝑝𝑤𝑓

(𝑃)𝑑𝑝] = ∆𝑚𝑝𝑔1
/𝑀𝑔 

 

 

6.19 

 

The above integral is function of bottom hole flowing pressure (Pwf), average reservoir 

pressure (PR) and other PVT properties. Pwf and PR obtained from well test data and 

PVT properties were calculated as discussed in previous section. The integral is 

assumed to be equal to a term in right hand side (∆𝑚𝑝𝑔1
/𝑀𝑔). The trapezoidal rule of 

integration is utilized for integration part of 6.19.  

 

From theory of the well testing during pressure transient period for dimensionless  

𝑡𝑖𝑚𝑒 (𝑡)  > 50 gas phase effective permeability integral is determined from the 

following equation. The effective permeability integral is also assumed to be equal to 

a special term known as Mg.  

 

 
∫ 𝑘. 𝑘𝑟𝑔(𝑃)
𝑃𝑅

𝑃𝑤𝑓

𝑑𝑝 = 162.6
𝑞𝑔,𝑚𝑒𝑎𝑠

ℎ (
𝑑∆𝑚𝑃𝑔1
𝑑𝑙𝑛(𝑡)

)

= 𝑀𝑔 

 

 

6.20 

 

The above equation indicates that (K.Krg) integral in two-phase system is inversely 

proportional to the derivate of gas pseudopressure (𝑚𝑝𝑔
) with natural logarithmic of 

time (Horner, 1951; Serra, Peres and Reynolds, 1990, 2007; Dake, 2001; Jokhio, 
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2002). On semi log plot of time against pseudopressure, the rate of change of 

pseudopressure is a slope of straight line. The plot of pseudopressure (𝑚𝑝) against 

the recorded time during well test for (KAL – 5) is shown in Figure 6.3. This is a Horner 

plot, where the straight portion of the line represents the effective permeability of the 

formation defined by 6.20. This equation is valid for fully developed flow where 

pressure waves have crossed the skin and the wellbore storage effect. This means 

the enough time should be devoted to the pressure transient test to allow pressure 

waves are fully developed. 

Where, 𝑑∆𝑚𝑃/𝑑𝑙𝑛(𝑡) is the derivative function of each phase that can be estimated 

from 6.21 (Jokhio, 2002; Jokhio, Tiab and Escobar, 2002).  

 

Figure 6.3. Horner plot for KAL – 5 gas-condensate well. 

 

(
𝑑∆𝑚𝑃

𝑑𝑙𝑛(𝑡)
)
𝑖

=
(
𝑑∆𝑚𝑃𝑖−1
𝑑𝑙𝑛(𝑡)𝑖−1

) ∆𝑙𝑛(𝑡)𝑖+1 + (
𝑑∆𝑚𝑃𝑖+1
𝑑𝑙𝑛(𝑡)𝑖+1

) ∆𝑙𝑛(𝑡)𝑖−1

[∆𝑙𝑛(𝑡)𝑖+1 + ∆𝑑𝑙𝑛(𝑡)𝑖−1]
 

 

6.21 

 

The point i in above equation is the point, where the derivative is calculated and point 

(i-1) is the point before it and (i+1) is the point after it. Pseudopressure difference 

(𝑑∆𝑚𝑃) is the difference between the (𝑚𝑝) at each pressure and initial (𝑚𝑝) at zero 
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hour (𝑑∆𝑚𝑝 = 𝑚𝑝 −𝑚𝑝(𝑡=0)
). This is the difference in pseudopressure of any given 

pressure and pseudopressure at the beginning of the pressure build up test. 

 

Computing pseudopressure function and effective permeability by the above 

procedure allow us to estimate the accurate value of ∆𝑚𝑃𝑔 in region 1 as follow. 

 

∆𝑚𝑃𝑔1 = (
∆𝑚𝑝𝑔1

𝑀𝑔
) ×𝑀𝑔 

 

 

6.22 

 

For modelling condensate (oil) phase in KAL – 5, gas-condensate well similar 

approach as explained for gas phase is employed. Condensate (oil) phase flow rate 

is determined from the following equation (Penula, 2003).  

 

𝑞𝑜𝑡 = 𝐶(∆𝑚𝑃𝑜1)
𝑛 = 𝐶 {∫ (

𝑘. 𝑘𝑟𝑜
𝐵𝑜𝜇𝑜

+
𝑘. 𝑘𝑟𝑔

𝐵𝑔𝜇𝑔
𝑅𝑜)𝑑𝑝  

𝑃𝑅

𝑃𝑤𝑓

}

𝑛

 

 

6.23 

 

Where 𝑞𝑜𝑡 is the total condensate flow rate at the surface in (STB/day); ∆𝑚𝑝𝑜1
is two-

phase pseudopressure function in psi2/cp; k.kro is effective permeability to oil in Darcy 

unit; 𝑘. 𝑘𝑟𝑔 is effective permeability to gas in Darcy unit; Bo is condensate (oil) formation 

volume factor in Barrel/ STB; 𝜇𝑜 is condensate (oil) viscosity in centipoise; Bg is gas 

formation volume factor in cubic feet (ft3)/standard cubic feet (scf); 𝜇𝑔 is gas viscosity 

in centipoise and Ro is oil to gas ratio in (STB/scf).  

 

Effective permeability to condensate (oil) phase in Region 1 has previously defined in 

6.17. Substituting 6.17 into 6.23 and simplifying yields ∆𝑚𝑝𝑜1
, which represents 

condensate (oil) phase pseudopressure function in terms of effective permeability 

(Evinger and Muskat, 1942; Fetkovich et al., 1986; Fevang, 1995; Guehria, 2000; 

Penula, 2003).  

 

∆𝑚𝑝𝑜1
= ∫ (

𝑘. 𝑘𝑟𝑜
𝐵𝑜𝜇𝑜

)
(1 − 𝑅𝑜𝑅𝑠)

(1 − 𝑅𝑜𝑅𝑝)

𝑃𝑅

𝑝𝑤𝑓

(𝑃)𝑑𝑝 

 

6.24 
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Oil phase pseudopressure integral can be rewritten without oil effective permebility 

term in the folllowing form (Jokhio, 2002). 

 

∆𝑚𝑝𝑜1
= [∫ (

1

𝐵𝑜𝜇𝑜
)
(1 − 𝑅𝑜𝑅𝑠)

(1 − 𝑅𝑜𝑅𝑝)

𝑃𝑅

𝑝𝑤𝑓

(𝑃)𝑑𝑝] = ∆𝑚𝑝𝑜1
/𝑀𝑜 

 

6.25 

 

The above psudopressure integral is assumed to be equal to a special term 

∆𝑚𝑝𝑜1
/𝑀𝑜, that later can be used to simplify and determine ∆𝑚𝑝𝑜1

.  

 

Oil effective permeability integral can be defined according to well test thory. Oil phase 

effective permeability integral in two-phase system is inversely proportional to the 

derivative of oil phase pseudopressure (𝑚𝑝𝑜) with natural logarithmic of time and can 

be defined as follow. 

 
∫ 𝑘. 𝑘𝑟𝑜(𝑃)
𝑃𝑅

𝑃𝑤𝑓

𝑑𝑝 = 162.6
𝑞𝑜,𝑚𝑒𝑎𝑠

ℎ (
𝑑∆𝑚𝑝𝑜1

𝑑𝑙𝑛(𝑡)
)

= 𝑀𝑜 

 

 

6.26 

Where pseudopressure funtion and its derivative (
𝑑∆𝑚𝑝𝑜1

𝑑𝑙𝑛(𝑡)
) in above equation can also 

be calculated by utilizing 6.21. Mo is a special term that used for simplifying the 

equation. Using special terms at the right hand side of equations 6.25 and 6.26, the 

oil (condensate) phase pseudopressure integral is determined as follow.  

 

∆𝑚𝑃𝑜1 = (
∆𝑚𝑝𝑜1

𝑀𝑔
) ×𝑀𝑔 

 

 

6.27 

 

The production rate for well in low permeability formation is usually low that pressure 

drop caused by non-Darcy flow can be neglected. Reservoirs in compacted formation 

with very low permeability are usually stimulated (fractured), which eliminates the 

effect of non-Darcy flow (Fevang, 1995). Hence, the effect of non-Darcy flow on 

production rate has been excluded and the effect of condensate blockage on well 

production is our primary concern. Another assumption in our calculations is steady 
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state flow in the reservoir, meaning mass flow rate would be constant and there is no 

net accumulation of any fluid in the reservoir.  

Estimation of pseudopressure functions (∆𝑚𝑝𝑔1
) and (∆𝑚𝑝𝑜1

) in region 1 by above 

procedure, permits to calculated total gas and condensate (oil) flow rate on the surface 

using 6.11 and 6.12 respectively. The coefficients of n and C in aforementioned 

equations can be estimated using semi-log plot of ∆𝑚𝑝𝑜1
 versus measured surface 

flow rates (gas and oil). The semi-log plot is a straight line with the slope of ‘n’ and 

intercept of ‘C’. These relationship demonstrated in 6.4 to 6.6 (Forchheimer, 1901; 

Rawlins and Schellhardt, 1936). The graph in Figure 6.4 depicts plot of measured gas 

flow rate against total gas pseudopressure function. Using straight portion of the line 

on the graph, n is 0.8 and coefficient C is 0.0948. Consequently maximum gas flow 

rate can be calculated using 6.11 for gas phase and 6.12 for condensate (oil) phase 

and IPR curves can be established.  

 

Our ultimate goal in this study is to see the effect of variation in viscosity and two-

phase Z factor estimation using various approaches on computation of production 

profile of gas-condensate wells. In order to generate production profile of the well, 

pseudopressure approach incorporated with volumetric material balance equation. 

Production profile is forecasting expected flow rate of wells as a function of time. This 

is very important for assessing economic attractiveness of any reservoir engineering 

projects. Moreover it is a reflection of gas-condensate reservoir performance 

modelling.  
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Figure 6.4. Plot of gas flow rate vs total ∆𝑚𝑃𝑔𝑡 for KAL – 5. 

 Material balance calculation  
 
To relate production rate, calculated from pseudopressure integral, to time the 

volumetric material balance equation can be used (Guehria, 2000; Mott, 2002). 

Volumetric material balance provides estimation of hydrocarbon reserves in any stage 

of a reservoir depletion based on conservation of mass. It is also a tool to indicate 

cumulative gas and oil production from a reservoir with a stepwise pressure depletion. 

Tarner, (1944) developed a volumetric material balance that originally proposed for 

solution – gas drive reservoirs. Tarner volumetric material balance is utilized to relate 

the rate of production to time. This method is an iterative technique to find the 

acceptable value of producing gas to oil ratio ‘Rp’ during pressure depletion process  

(Tarner, 1944). The method adhere the following assumptions (Standing, 1979). 

 The reservoir formation is homogeneous with respect to permeability, porosity, 

fluid saturation and relative permeability. 

 Gravity forces affecting fluid flow are negligible. 

 Pressure is uniform throughout the reservoir. 

 Equilibrium exists at all time between the saturated gas and the liquid drop out 

that has been evolved from saturated gas. 

 Reservoir hydrocarbon pore volume remains constant. 
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Original form of Tarner’s material balance method simplified by Dake, (1978, pp. 81–

82) as shown in following.  

 𝑁 =
𝑁𝑃[(𝐵𝑜 − 𝑅𝑠𝐵𝑔) + 𝐺𝑝𝐵𝑔]

(𝐵𝑜 − 𝐵𝑜𝑖) + (𝑅𝑠𝑖 − 𝑅𝑠)𝐵𝑔
 

 

6.28 

Where N is cumulative production, Np is oil cumulative production and Gp stands for 

gas cumulative production. Multiplying components in 6.28 are groups of 

thermodynamic variables (defined in pseudopressure integral) that they can be 

summarized by two distinct multipliers for condensate (oil) production ɸ𝑐 and gas ɸ𝑔.  

 

{
 
 

 
 ɸ𝑐 =

𝐵𝑜 − 𝑅𝑠𝐵𝑔
(𝐵𝑜 − 𝐵𝑜𝑖) + (𝑅𝑠𝑖 − 𝑅𝑠)𝐵𝑔

ɸ𝑔 =
𝐵𝑔

(𝐵𝑜 − 𝐵𝑜𝑖) + (𝑅𝑠𝑖 − 𝑅𝑠)𝐵𝑔}
 
 

 
 

 

 

6.29 

 

Substituting ɸ𝑐 and ɸ𝑔 in 6.28 yields the following equation.  

 

𝑁 = 𝑁𝑝ɸ𝑛 + 𝐺𝑝ɸ𝑔 

 

6.30 

 

Where Np is condensate (oil) cumulative production and Gp is cumulative gas 

production. The instantaneous, producing gas-oil ratio, Rp, given as 

 
𝑅𝑃 =

∆𝐺𝑝

∆𝑁𝑝
  

 

6.31 

The value of Rp is the average of produced gas to oil ratio “𝑅𝑃,𝑎𝑣𝑒𝑟𝑎𝑔𝑒” within each 

pressure interval. In a stepwise pressure reduction between pressure intervals 𝑖 and 

𝑖 + 1, the ∆𝑁𝑝𝑖→𝑖+1 for cumulative production of 1STB oil can be calculated as follow.  

 
∆𝑁𝑝𝑖→𝑖+1 =

1 − 𝑁𝑝𝑖ɸ𝑛,𝑎𝑣𝑒  −  𝐺𝑝𝑖ɸ𝑔,𝑎𝑣𝑒

ɸ𝑛,𝑎𝑣𝑒 − 𝑅𝑃,𝑎𝑣ɸ𝑔,𝑎𝑣𝑒
 

 

6.32 

For each subsequent pressure intervals, the calculation steps is summarized in 

following steps: 

1. Define the pressure intervals, ΔP (200psia – 500psia).  

2. Determine ɸ𝑐 and  ɸ𝑔 using 6.29 and updated PVT properties obtained for 

average pressure within each pressure intervals.  
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3. Assume a value of 𝑅𝑝, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑅𝑝, 𝑔𝑢𝑒𝑠𝑠 in the interval (as an initial guess 

the Rp assumed between 9000 – 20000 scf/STB).  

4. Calculate ∆𝑁𝑝𝑖→𝑖+1 from 6.32. 

5. Calculate cumulative gas production 𝐺𝑝𝑖→𝑖+1 in each pressure intervals 

from (∆𝐺𝑝𝑖→𝑖+1 = ∆𝑁𝑝𝑖→𝑖+1 × 𝑅𝑝, 𝑔𝑢𝑒𝑠𝑠). 

6. Calculate the Condensate (oil)  saturation from 

 
𝑆𝑜 = (1 −

𝑁𝑝

𝑁
)
𝐵𝑜
𝐵𝑜𝑖

(1 − 𝑆𝑤) 

 

6.33 

7. Knowing absolute permeability (Table 6.1) and the effective permeability of  

each phase, the relative permeability of gas and condensate (oil) phase can be 

calculated from the following.  

 

{
𝑘𝑟𝑔 =

𝑘. 𝑘𝑟𝑔

𝑘

𝑘𝑟𝑜 =
𝑘. 𝑘𝑟𝑜

𝑘

}  

6.34 

8.  Estimate produced gas to oil ratio 𝑅𝑝,𝑐𝑎𝑙𝑐 from the following  equation. 

 
𝑅𝑝,𝑐𝑎𝑙𝑐 = 𝑅𝑠 +

𝐾𝑟𝑔𝜇𝑜𝐵𝑜
𝐾𝑟𝑐𝜇𝑔𝐵𝑔

 

 

6.35 

 

9. Compare two values of 𝑅𝑝,𝑔𝑢𝑒𝑠𝑠 in step 3 and 𝑅𝑝,𝑐𝑎𝑙𝑐 in step 8. If they do not 

converge, repeat steps 3 to 8 with a new value of the 𝑅𝑝,𝑔𝑢𝑒𝑠𝑠 until convergence 

occurs.  

10. With average reservoir pressure (PR) from each pressure intervals calculate 

gas/condensate flow rates from pseudopressure integral.  

11. The gas production rates 𝑞𝑔and 𝑞𝑐 then can be combined with obtained gas 

cumulative production (Gp) and condensate (oil) cumulative production (Np).  

12. Gas and condensate production profile can be calculated as a function of time.  

      13. The time of depletion for each pressure intervals is calculated from the 

       following equation. 

 
𝑡 =

∆𝐺𝑃
𝑞𝑔

 

 

6.36 

The explained computation of material balance incorporated with well inflow 

performance calculation using pseudopressure approach to generate production 
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profile of the well. In computation of pseudopressure integral the viscosity and two-

phase Z factor of gas and condensate phase were calculated using existing literature 

models and the developed AI models in chapter 4 and 5.  

 Validation of new production profile    
 

To validate the gas and condensate production results, obtained from three-flow 

regions pseudopressure approach for the studied gas-condensate (KAL – 5) 

commercial numerical reservoir simulator Eclipse 300 was performed.  

Initially Constant – Volume – Depletion (CVD) test on reservoir fluid compositions 

(table 6.1) was performed using PVTi (Schlumberger) and Peng – Robinson cubic 

equation of state. The Peng – Robinson is industry standard choice for 

characterization of gas-condensate fluid properties. This is also known as full 

compositional simulation to ensure highest accuracy of the PVT properties. 

The well (KAL – 5) is located in a compact formation with absolute permeability of 

0.0035 millidarcy, which indicate without stimulation the production is impossible. 

Therefore, in our model multiple conductive fractures were created in two X and Y 

directions inside the reservoir. The conductivity of each fracture is 500 millidarcy per 

foot, which allow gas flows towards the wellbore. 

Then a vertical well (KAL– 5) placed in middle of the created geometry. The reservoir 

and fluid details are obtained from Economides et al., (1989) as shown in Table 6.1. 

This gas-condensate well is in a high temperature (354°F [179°C]) formation of 

Pannonian basin in Yugoslavia. The field covers a large area of 131234 ft2 (40 km2). 

The outer well drainage area of the model is 2400 ft2 (731.52m2) where a vertical well 

placed in the middle of the model with the pay zone of 36ft (10.97m). The schematic 

illustration of the created model is shown in Figure 6.5. The details of the developed 

Eclipse reservoir simulator code and created fractures can be found in Appendix D.  
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Figure 6.5. Schematic illustration of 3D created model in Eclipse 300.  

Initial condition of the reservoir fluid coincides with most gas-condensate systems with 

producing GOR of 9470 scf/STB (1706 std m3/stock-tank m3). The initial reservoir 

pressure (6750psi [46.5Mpa]) is identical to dew point pressure and condensation 

starts from the beginning of the production. The result of CVD in Figure 6.6 indicates 

the reservoir fluid is a rich gas-condensate with maximum condensate saturation of 

25.2%. Three parameters Peng – Robinson cubic equation of state utilized for full 

compositional simulation of the reservoir fluid properties. Multi-flash experiment of the 

reservoir fluid in standard condition of 14.696 psi and 60˚F has been performed and 

fluid phase diagram was generated and shown in Figure 6.7. The simulation was run 

and generated results were recorded in terms of production profile. The production 

profile indicates how much gas or condensate is produced as a function of time.    

 

 

Figure 6.6. Condensate saturation curve a result of the CVD experiment of the reservoir 
fluid. 
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Figure 6.7. Phase diagram of the reservoir fluid in standard pressure and temperature. 

 
The result of compositioanl simulation will be compared to the results of three-flow 

regions psudopressure approach using optmized MBO model and the developed 

viscosities and Z factor models. 

In order to optimize MBO model, that can be used in three regions pseudopressure 

approach, several condensate viscosity models of optimized form of Beggs and 

Robinson, (1975); De Ghetto et al., (1994); Elsharkawy and Alikhan, (1999); 

Kartoatmodjo and Schmidt, (1991); LBC, (1964) and four machine learning based 

models of ANN, LSSVM, TSK fuzzy and Mamdani fuzzy developed in chapter 4 were 

used. Among the developed oil (condensate) viscosity methods TSK fuzzy approach, 

Artificial Neural Network (ANN) and least square support vector machine (LSSVM) 

outperformed other optimized methods. Therefore, aforementioned models have been 

used for prediction of oil (condensate) viscosity in generating MBO PVT table. In order 

to compute gas phase viscosity the optimized version of Londono et al., (2002) shown 

in equation 4.15 was used.  

For better computation of two-phase Z factor three developed machine learning based 

models of cascade forward neural network (CFNN), feed forward neural network 

(FFNN) and adaptive neuro fuzzy inference system (ANFIS) in chapter 5 were 

considered. ANFIS model performed better than other two methods for prediction of 

two-phase Z factor. Hence, ANFIS was utilized for computation of two-phase Z factor 

of KAL – 5 gas-condensate well in MBO PVT table. Once the gas and condensate 

MBO PVT tables were generated, the results used for computation of gas and 

condensate flow rates using three regions pseudopressure integral. The results from 
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three regions pseudopressure integral were combined with material balance equation 

and production profile of gas and condensate were established. This would allow the 

comparison of the obtained results to compositioanl reservoir simulation results using 

Eclipse 300.  

 

 Results and discussion  
 
In presenting the results first the behaviour of studied gas-condenste fluid in the 

reservoir will be explored and then the effect of inaccurate PVT data and two-phase Z 

factor in relation to production profile will be discussed.  

The graph in Figure 6.8 shows how the fluid behaves in terms of viscosity variation as 

a function of pressure. Increasing reservoir pressure would proportioanlly increase the 

gas phase viscosity as intermolecular connection of the gas phase become stronger 

and the gas behave like a liquid in very high pressure. Contrary to the gas phase the 

liquid phase (condensate) viscosity is decreased with increasing the reservoir 

pressure as the liquid behave like a gas in very high temperature due to reduction in 

intermolecular forces (obsorption and repulsion). The result of Figure 6.8 confirms the 

aformentiond criterion in regards to physical behaviour of the fluid as a function of 

pressure.  It also shows that there is a strong relation between presure and viscosity 

of gas/condensate and viscosity is extremly non-linear. Before analysisng the affect of 

various gas/condensate viscosity and Z factor on the production results, we discuss 

permeability affect.  

 

Figure 6.8. Variation of gas and oil (condensate) voscosity with pressure in KAL – 5.  
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Permeability alteration of the reservoir is a critical issue because of the condensate 

drop out. Figure 6.9 shows that gas effective permeability is sharply declined after the 

production begins. When reservoir pressure is reduced from initial reservoir pressure 

of 6750psia to 5850psia (the red line on the graph), the effective permeability of 

formation to the gas phase stabilized. The relative permeability of each phase 

calculated using equation 6.32 and the ratio of the krg to kro (krg/kro) is estimated and 

plotted against pressure in Figure 6.9. Changes in relative permeability of each phase 

due to the condensation drop out divided into five stages as it demonstrated in Figure 

6.10. Each stage are discussed in following.  

 Stage 1: The ratio of krg to kro (krg/kro) is high at the beginning of the production 

(pi=6750psia), however as the production commence, severe decline in gas 

phase relative permeability occurs, where krg lost its ratio by 230 times to kro.  

 Stage 2: The gas phase relative permeability continuous to decline further with 

a fast rate between 4200 𝑝𝑠𝑖𝑎 < 𝑃 <  6050𝑝𝑠𝑖𝑎. This is due to further 

accumulation of liquid drop out in region 1.  

 Stage 3: At this stage the gas relative permeability (krg) reduction would almost 

stabilizes. At the beginning of this stage, the liquid drop out might reaches its 

maximum saturation and after this point, it starts to decrease due to 

vaporization (this also known as retrograde behaviour). After vaporization 

condensate liquid produced as a gas form at the surface (Danesh, 1998, pp. 

26–27).  

 Stage 4: Further decline in pressure would increase the gas phase relative 

permeability. This means that the gas phase saturation inside the reservoir 

increases. This behaviour might imply the fact that the further reduction of 

reservoir pressure contributes to revaporization of the condensate phase that 

dropped out during pressure depletion.  
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Figure 6.9. Gas phase effective permeability.  

 

 
Figure 6.10. Relative permeability ratio (gas to oil) as a function of pressure for high 

temperature (354⁰F) gas condensate well.  

Figure 6.11 and Figure 6.12 depict the generated production profile for gas and 

condensate rate of the studied well. From both graphs, it is evident that three-flow 

regions pseudopressure approach incorporated with optimized MBO PVT properties 

(e.g., TSK fuzzy for condensate viscosity and ANFIS for two-phase Z factor), is 

following the results of compositional simulation very well. In presenting production 

profiles, only various viscosity models have been labelled on the graphs for 

comparison, however in the computation process, the developed ANFIS used to 

generate two-phase Z factor in all models.  
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Statistical accuracy of the obtained results examined using two statistical metrics of 

average absolute relative deviation percentage (AARD %) and root mean square error 

(RMSE) shown in 6.37. 

 

 

Figure 6.11. Gas production profile for KAL – 5 using analytical method incorporated with 

various ML techniques in generating PVT properties.  

 

Figure 6.12. Gas production profile for KAL – 5 using analytical method incorporated with 

various ML techniques in generating PVT properties. 
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The results of statistical error analysis presented in Table 6.3, Figure 6.13 and Figure 

6.14. From the results it has been observed that pseudopressure integral incorporated 

with TSK fuzzy condensate viscosity model and ANFIS model for calculating two-

phase Z factor outperform other two methods with the least RMSE of 0.0224 and 

0.1441 for gas phase and oil phase respectively in first 12 months of production 

forecast. In terms of AARD% the analytical model incorporated with TSK fuzzy 

approach condensate viscosity outperformed other methods with 0.856% for gas 

phase and 2.398% for condensate phase. The results confirm using accurate 

prediction of PVT properties (viscosity and two-phase Z factor) below the saturation 

pressure is critical for forecasting gas-condensate wells using three-flow regions 

pseudopressure integral and MBO model.  The optimized MBO PVT model using 

intelligent methods ensure the accurate production profile of gas-condensate wells in 

compact formation.  

Gas and condensate production from the studied well (KAL – 5) declined rapidly after 

45 days. This is due to accumulation of the condensate liquid inside the reservoir, 

which directly effect the gas phase relative permeability (Figure 6.10 and Figure 6.11). 

This has a direct impact on forecast of the future performance of such reservoirs. 

Successful application of three regions pseudopressure integral is depending on 

reliable prediction of viscosity and two-phase Z factor in generating PVT tables. 

Machine learning based approaches provide a promising results for better prediction 

performance accuracy of gas-condensate wells in tight formation. 

 

Table 6.3. Statistical error analysis of the developed analytical technique for predicting gas 

and condensate rates in (KAL – 5).  

Method RMSE AARD% 

Gas 
phase 

 

Pseudopressure (ANN. 
ANFIS) 

0.0829 2.358 

Pseudopressure (LSSVM, 
ANFIS) 

0.0302 1.098 

Pseudopressure (TSK  
Fuzzy, ANFIS) 

0.0224 0.856 

Oil 
phase 

Pseudopressure (ANN, 
ANFIS) 

0.1945 3.375 

Pseudopressure (LSSVM, 
ANFIS) 

0.1538 2.656 

Pseudopressure (TSK  
Fuzzy, ANFIS) 

0.1441 2.398 
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Figure 6.13. Statistical error results between analytical pseudopressure approach and 

compositional simulation results for perdition of gas phase production profile in KAL – 5.    

 
Figure 6.14. Statistical error results between analytical pseudopressure approach and 

compositional simulation results for perdition of oil phase production profile in KAL – 5.    

Using analytical method of three-flow regions pseudopressure approach combined 

with developed MBO PVT models in this study has the following advantage over fully 

compositional simulation (Eclipse 300).  

 The method is less data demanding in comparison to Eclipse reservoir 

simulation.  
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 Provide accurate and fast deliverability predictions when many sensitivity 

analyses are required particularly at the beginning of the production.  

 The pseudopressure approach does not need knowledge of using reservoir 

simulators (e.g., Eclipse) and can be implemented in spreadsheet format.  

 PVT properties required for computation of pseudopressure integral can be 

calculated using simple modified black oil model, where gas/condensate 

viscosity and two-phase Z factor can be estimated using developed smart 

models in this study. 

The results of this chapter is very close to the existing literature work of Fevang, 

(1995), Mott, (2002), Jokhio, (2002), Chowdhury et al., (2004), Behmanesh et al., 

(2015) and Hekmatzadeh and Gerami, (2018). The major different between this work 

and aforementioned studies are in treating PVT properties. They mostly used modified 

black oil method (MBO) to generate and compute the PVT properties, then validate 

their result with compositional reservoir simulators, where EOS used for computing 

PVT properties. The highest error between two methods were related in uncertainty of 

gas/condensate viscosity and two-phase Z factor below the saturation pressure. In this 

study we bridge the gap between the results of MBO and EOS models in treating PVT 

properties by ensuring accurate estimation of gas/condensate viscosity and two-phase 

Z factor using Al techniques. The justification for our approach is with an improved 

viscosity and two-phase Z factor in PVT calculation, better accuracy of gas and 

condensate liquid can be achieved.  

Our approach in this study is more efficient and assure a higher performance for 

computation of gas and oil flow rate of gas-condensate reservoirs. Inaccuracy of MBO 

model for establishing PVT properties of complex gas-condensate fluid in critical 

conditions was compensated by using AI techniques proposed in this study.  

This has been confirmed by comparing the results of this study with compositional 

simulation of a HTHP gas-condensate well in compact formation.  

 

6.4 Summary  

 
Accurate prediction of production profile in gas-condensate wells are very important 

for financial evaluation and well production planning. The aim of this chapter was to 

investigate the effect of accurate estimation of gas/condensate viscosity and two-

phase Z factor on reliable estimation of production profile. For this purpose, MBO PVT 
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model, where gas/condensate viscosity and two-phase Z factor were estimated using 

AI methods, incorporated with pseudopressure integral to calculate well inflow 

performance. Then to relate the results obtained from pseudopressure integral to time, 

volumetric material balance utilized and production profiles of a HTHP gas-condensate 

well were generated. The results show that pseudopressure integral incorporated with 

gas/condensate viscosity and two-phase Z factor using TSK fuzzy and ANFIS 

approach respectively has the best performance and predicts the production rate very 

close to compositional reservoir simulator. Gas phase flow rate at the surface is 

predicted using pseudopressure integral incorporated with TSK fuzzy and ANFIS for 

computation of gas viscosity and two-phase Z factor respectively with RMSE of 0.0224 

and AARD% of 0.856 from compositional simulation results.  Oil (condensate) phase 

flow rate at the surface is also estimated using pseudopressure integral combined with 

TSK fuzzy and ANFIS model in calculation of oil viscosity and two-phase Z factor 

respectively with RMSE of 0.1441 and AARD% of 2.398 in compare to simulator 

results.  

Accurate prediction of PVT properties including viscosity and two-phase Z factor 

ensure accurate prediction of production profile. Using developed AI algorithms in this 

study for estimating governing parameters of PVT properties such as gas/condensate 

viscosity and Z factor is eliminating the uncertainty in prediction and ensure accurate 

gas-condensate reservoir performance modelling.  

The generated production profile in this chapter is a simple analytical three-flow 

regions pseudopressure approach that can be used for quick and reliable estimation 

of gas-condensate wells. The method is an excellent alternative to fully compositional 

simulators, where considerable reservoir and fluid data is required to start the 

simulation.  
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATIONS 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Introduction  

This chapter consists of two parts. In the first section, general conclusions and brief 

discussion of various methods utilized in this study are shown. Furthermore, it has 

been highlighted that the aim and objectives of the study have been achieved.  

In the second part, the possible improvement of the current study is discussed. More 

conclusions that are specific were presented at the end of each chapter.  

  

7.2 Improve accuracies of gas-condensate viscosity  

 
One of the main achievement of this study is in developing several models for 

prediction of gas-condensate fluid viscosities through using numerical approaches. 

The current methodology for estimation of gas-condensate viscosities below the 

saturation pressure is based on empirical and semi-empirical correlations. The 

correlations are embedded in black oil model or compositional model (equation of 

state) for computation of fluid viscosity.  

Primarily in chapter 4, accuracy of the most frequently used methods of Lohrenz – 

Bray – Clark (1964), Lee – Gonzalez – Eakin, (1966), Londono – Archer – Blasingame 

(2002), Sutton, (2005), Elsharkawy, (2006), Beggs and Robinsons, (1975), 

Kartoatmodjo and Schmidt, (1991),  De Ghetto et al., (1994), Elsharkawy and Alikhan 

(1999), Bergman and Sutton, (2007), for estimation of gas-condensate viscosities 

were assessed using experimental data. The results of the statistical error analysis 

show the performance of these models for estimating gas-condensate viscosity below 

the saturation pressure is as minimum as 15% and as high as 99% absolute average 

relative deviation. Both compositional and gas-saturated oil viscosity models were 

failed to predict the condensate viscosity of gas-condensate fluid below the saturation 

pressure. Non-linear regression was performed to optimize the coefficients of the 

existing models to be applicable for estimation of gas-condensate viscosities.  

Several ML based approaches have been utilized for better estimation of condensate 

viscosity below the saturation pressure. Initially two ML based models including a 
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Least Square Support Vector Machine (LSSVM) and an Artificial Neural Network 

(ANN) were developed for estimation of condensate viscosity. The accuracy of the 

developed ML based models are compared with the tuned utilized literature viscosity 

models. The comparison of the results indicate that the developed ANN model predict 

condensate viscosity with coefficient of determination of 84.23 and root mean square 

error of 0.1144, which is superior to all other utilized viscosity models.  

Furthermore, in this context two well-known fuzzy logic inference systems including 

Mamdani and TSK fuzzy logic were manipulated for modelling condensate phase 

viscosity. Mamdani based fuzzy approach performed to develop 15 IF-THEN rules to 

interrelate condensate viscosity to pressure, temperature and solution gas to oil ratio. 

Utilizing TSK fuzzy logic approach, an unique relationship between condensate 

viscosity, pressure, temperature and solution gas to oil ratio was established through 

proposing a linear correlation (equation 4.61). The superiority of the developed 

correlation in 4.61 over other methods was verified by root mean square error of 

0.0194, mean average error of 0.0163 and absolute average relative deviation of 

7.123%. 

The main advantages of the developed viscosity models over existing literature 

models is that they are less data demanding, which make them particularly useful for 

prediction of condensate viscosity when the compositional data are not available. In 

addition, the developed models are computationally efficient and they can be used as 

an effective tool for quick and reliable determination of gas-condensate viscosities.  

 

 Improvement of two-phase gas-condensate Z factor  
 
In the context of PVT modelling improvement of gas-condensate fluids, another major 

achievement of the study is in developing several smart approaches for determination 

of two-phase Z factor below the saturation pressure. Accurate prediction of two-phase 

Z factor is a critical importance for reliable deliverability modelling in gas-condensate 

reservoirs. This important PVT property determines how much gas-condensate 

deviate from ideal gas law and can be used for all engineering calculation of gas-

condensate reservoirs. Comprehensive data bank was used to assess the accuracy 

and reliability of the existing two-phase Z factor models including Hall – Yarborough, 

(1973), Dranchuk – Abu –Kassem, (1975), Beggs and Brill, (1973), Rayes et al., 

(1973) and Azizi et al., (2010). The statistical and graphical error analysis indicate the 
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performance of employed literature models for prediction of gas-condensate two-

phase Z factor below the saturation pressure are not satisfactory for various ranges of 

pseudoreduced pressure and pseudoreduced temperature especially for high 

pressure high temperature (HPHT) conditions.  

Several machine-learning (ML) based approaches was developed for accurate 

estimation of gas-condensate two-phase Z factor. To this end, two types of neural 

networks known as cascade forward neural network (CFNN) and feed-forward neural 

network (FFNN) as well as Adaptive Neuro Fuzzy Inference System (ANFIS) were 

implemented. Performance of the developed machine-learning models are better than 

utilized existing models for prediction of gas-condensate two-phase Z factor, verified 

by statistical indicators of root mean square error (RMSE), mean average error (MAE) 

and average absolute relative deviation percentage (AARD%). ANFIS model 

outperformed all other Z factor models in various range of pseudoreduced pressure 

and pseudoreduced temperature with root mean square error of 0.0025 and absolute 

average relative deviation of 0.2191%. An iterative procedure was developed within 

ANFIS algorithm to ensure faster convergence of the algorithm for computation of two-

phase Z factor. The developed ML based approaches in this study do not limit to 

certain range of Ppr and Tpr like existing literature models. The developed models are 

able to predict the gas-condensate reservoirs in highly critical conditions (HTHP) and 

with variety of non-hydrocarbon contents (e.g., CO2, H2S and N2). Another advantage 

of the developed models is that they are not limited within geographical location of the 

reservoirs (e.g., North Sea, Middle East etc.,) like existing literature models.  

 

Analysing the impact of each input variable used for development of the ML based 

models on two-phase Z factor using Pearson relevancy factor (r), revealed that 

pressure, molecular weight of C7+ and C7+ content, C6 content and temperature have 

the highest positive impact on two-phase Z factor. This means increasing 

aforementioned parameters would directly increase the magnitude of two-phase Z 

factor.  

Moreover, non-hydrocarbon components of H2S, N2 and CO2 have negative impact on 

two-phase Z factor, which indicate increasing these variables resulted in decreasing 

two-phase Z factor.  
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The developed models in this study provide very good improvement in prediction of 

gas-condensate two-phase Z factor over previous correlations with broader 

applications in terms of pressure, temperature and compositional variations. These 

models can be implemented in any reservoir simulation software and provide superior 

accuracy and performance for prediction of two-phase gas-condensate Z factor. The 

limitation of the developed model is that the compositional data of gas-condensate 

reservoir should be available and insert into the models for perdition of Z factor.  

  

 Effectiveness of viscosities and two-phase Z factor models for producing     

accurate production profile 

 

In chapter 6, the effect of the developed viscosity and two-phase Z factor models in 

this study for generating reliable production profile of a gas-condensate reservoir was 

investigated. The common industry approach for establishing production profile of gas-

condensate reservoirs is through either implementing fully compositional reservoir 

simulations or analytical approach using pseudopressure integral.  

The effectiveness of viscosities and two-phase Z factor models on production profile 

of gas-condensate wells have been investigated through implementing three-flow 

regions pseudopressure integral that combined with volumetric material balance. In 

order to calculate the PVT properties within three-flow regions pseudopressure 

integral optimized modified black oil (MBO) model was implemented. The novelty of 

the new approach in this study is to embed the developed viscosities and two-phase 

Z factor using machine – learning approaches for generating PVT table in MBO model. 

For computation of condensate viscosity and two-phase Z factor the developed TSK 

fuzzy model and developed ANFIS model were utilized respectively. The results show 

that the new developed production profile matched with fully compositional model 

using Eclipse 300 with RMSE of 0.0224 and AARD% of 0.856 for gas phase and 

RMSE of 0.1441 and AARD% of 2.398 for condensate (oil) phase.  

The generated production profile is less data demanding and has an advantage over 

fully compositional simulations (Eclipse 300), which normally require extensive data to 

run. The developed analytical method is easy to implement in spreadsheet format and 

does not require knowledge of reservoir simulator. The results of the developed 

production profile indicate the dependency of gas-condensate reservoir performance 

modelling on accurate estimation of viscosities and two-phase Z factor.  
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The results of effective permeabilities of gas and condensate phase is calculated using 

pressure transient test data. The results of permeability indicate severe decline in gas 

permeability for the reservoirs where the condensation occurs from the beginning of 

the production. 

The utilized computational procedure in chapter 6 is well able to predict single well 

production (gas and condensate) at the surface.  

 

7.3 Recommendation for future work 

 
In this study, the critical issues associated for accurate PVT properties of gas-

condensate reservoirs, required for well deliverability modelling, have been 

investigated. Extensive attempt has been made for accurate modelling of gas-

condensate reservoirs PVT properties including development of several smart 

modelling approaches for computation of gas-condensate viscosities and two-phase 

Z factor. The developed approaches in this study can be further improved as follow.  

 The evolved ANN and LSSVM and Mamdani Fuzzy models that were used for 

prediction of condensate viscosity in this study can be further improved with 

other optimization algorithms such as Genetic Algorithm (GA) or Coupled 

Simulated Annealing (CSA).  

 The developed intelligent models in this study for prediction of gas-condensate 

viscosities and two-phase Z factor can be embedded inside PVT packages 

such as Schlumberger PVTi in order to generate reliable fluid properties of such 

reservoirs.  

 The intelligent models such as fuzzy approach can also be utilised for 

categorization of various type of gas-condensate fields around the world (e.g., 

low, medium, high and very high). This is to ensure better recovery planning 

and production optimization of such fields.   

 The developed production profile in chapter 6 is applicable for single vertical 

well. The method can be applied to horizontal and inclined gas-condensate 

wells.  
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APPENDIX A: Sample of collected data for development of 

condensate viscosity models 

 

Table A1: Sample data used for development of condensate viscosity of gas-condensate 

reservoirs. 

Pressure 

(psia) 

Temperature 

(F) 

API 

Gravity 

𝜸𝑮𝒂𝒔 Rs Standing Condensate 

viscosity 

(cp) 

2393 167 60 0.845 2661 0.04 

2537 109 60 1.2514 4312 0.0404 

2730 189 60 1.2514 4510 0.0433 

2320 167 60 0.845 2574 0.045 

2248 167 60 0.845 2488 0.0475 

2175 167 60 0.845 2401 0.05 

2103 167 60 0.845 2315 0.055 

2030 167 60 0.845 2229 0.0575 

1958 167 60 0.845 2143 0.06 

2283 109 60 1.2514 3845 0.0649 

1885 167 60 0.845 2057 0.065 

1813 167 60 0.845 1972 0.0675 

2184 189 65 1.2514 3573 0.0678 

1740 167 60 0.845 1887 0.07 

1667 167 60 0.845 1802 0.0725 

1775 109 65 1.2514 2950 0.0739 

1595 167 60 0.845 1717 0.075 

1522 167 60 0.845 1633 0.0785 

2457 189 60 1.2514 4026 0.0794 

1450.4 167 60 0.845 1549 0.08 

1522.2 109 65 1.2514 2493 0.0821 

1377.88 167 60 0.845 1465 0.0825 

2029.6 109 65 1.2514 3384 0.0849 

1305.36 167 60 0.8451 1382 0.085 

5801 248 62 0.5757 4577 0.086 

1232.84 167 60 0.845 1299 0.0875 

1268.5 109 65 0.7581 2043 0.0899 

 

 

 

 

 



 

266 | P a g e  
 
 

APPENDIX B:  The developed Matlab codes for prediction 

of Two-phase Z factor 

B1. Cascade Forward Neural Network (CFNN) code 
% Calculating Two-phase compressibility factor of gas condensate reservoirs 
% Input data: 
% (Tem,Pres,H2S,CO2,N2,SGgas,C1,C2,C3,IC4,NC4,IC5,NC5,C6,C7+,MWC7+,SGc7+) 
% Target data is 2-Phase compressibility factor 
% One hidden layer /the x and t data should be defined for running the code 
% Created by Foad Faraji on 30-Apr-2020 22:19:05 
% This script assumes these variables are defined: 
% 
%   x - input data. 
%   t - target data. 

  
x = input'; 
t = target'; 

  
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 5; 
net = cascadeforwardnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 

  
% Train the Network 
[net,tr] = train(net,x,t); 

  
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 

  
% View the Network 
view(net) 
view(plotregression) 

  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
 

B2. Feed Forward Neural Network (FFNN) code  
% Solve an Input-Output Fitting problem with a Neural Network 



 

267 | P a g e  
 
 

% Script generated by Neural Fitting app 
% Created by Foad Faraji on 30-Apr-2020 22:01:22 
% 
% This script assumes these variables are defined: 
% 
%   data - input data. 
%   data_1 - target data. 

  
x = input'; 
t = target'; 

  
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  
% Create a Fitting Network 
hiddenLayerSize = 30; 
net = fitnet(hiddenLayerSize,trainFcn); 

  
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 

  
% Train the Network 
[net,tr] = train(net,x,t); 

  
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 

  
% View the Network 
view(net) 

  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 

  

B3. The Developed ANFIS code for prediction of two-phase Z factor 
[Developed by Foad Faraji] 
Name='Gas-condensate two-phase Zfactor' 
Type='ANFIS' 
Version=3.0 

NumInputs=16 

NumOutputs=1 

NumRules=8 

AndMethod='prod' 

OrMethod='probor' 
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ImpMethod='prod' 

AggMethod='sum' 

DefuzzMethod='wtaver' 

  

[Input1] 

Name='in1' 
Range=[86 325] 
NumMFs=8 
MF1='in1cluster1':'gaussmf',[43.939616492805 212.000000668321] 
MF2='in1cluster2':'gaussmf',[43.9396154549174 104.000000079057] 
MF3='in1cluster3':'gaussmf',[43.9396152970173 235.000000099111] 
MF4='in1cluster4':'gaussmf',[43.9396155607974 139.999999943725] 
MF5='in1cluster5':'gaussmf',[43.9396153693023 279.999999687274] 
MF6='in1cluster6':'gaussmf',[43.9396154076292 175.999999970267] 
MF7='in1cluster7':'gaussmf',[43.9396157558023 255.000000125218] 
MF8='in1cluster8':'gaussmf',[43.9396152975791 251.000000132237] 
  
[Input2] 
Name='in2' 
Range=[200 23244] 
NumMFs=8 
MF1='in2cluster1':'gaussmf',[4236.58785306734 10581.9999999971] 
MF2='in2cluster2':'gaussmf',[4236.58785307214 11039] 
MF3='in2cluster3':'gaussmf',[4236.58785307423 2250.00000000649] 
MF4='in2cluster4':'gaussmf',[4236.58785307181 7263.00000000187] 
MF5='in2cluster5':'gaussmf',[4236.58785308286 14342.0000000042] 
MF6='in2cluster6':'gaussmf',[4236.58785307428 15368.9999999975] 
MF7='in2cluster7':'gaussmf',[4236.5878530787 5952.0000000046] 
MF8='in2cluster8':'gaussmf',[4236.58785307252 3014.9999999937] 

  
[Input3] 
Name='in3' 
Range=[0 0.3182] 
NumMFs=8 
MF1='in3cluster1':'gaussmf',[0.0585008072527943 2.93425098980129e-06] 
MF2='in3cluster2':'gaussmf',[0.0585003547682657 -4.35711822099071e-08] 
MF3='in3cluster3':'gaussmf',[0.0585125232360066 3.920654716736e-06] 
MF4='in3cluster4':'gaussmf',[0.0585003585012129 3.57358628042432e-09] 
MF5='in3cluster5':'gaussmf',[0.0585003749078678 2.37195865262904e-08] 
MF6='in3cluster6':'gaussmf',[0.0585003559359281 -3.53122863778846e-08] 
MF7='in3cluster7':'gaussmf',[0.0585003532042919 -4.60732216844032e-08] 
MF8='in3cluster8':'gaussmf',[0.0584877379626363 -6.75724218907177e-06] 

  
[Input4] 
Name='in4' 
Range=[0.0001 0.2084] 
NumMFs=8 
MF1='in4cluster1':'gaussmf',[0.0401613083121935 0.00458163909699585] 
MF2='in4cluster2':'gaussmf',[0.0382700153253149 0.00419517750559465] 
MF3='in4cluster3':'gaussmf',[0.0418651236512032 0.00983790276288075] 
MF4='in4cluster4':'gaussmf',[0.0382976043771252 0.00560357238162204] 
MF5='in4cluster5':'gaussmf',[0.0383076571498975 0.00419856705369914] 
MF6='in4cluster6':'gaussmf',[0.0382724375195043 0.00309742082476367] 
MF7='in4cluster7':'gaussmf',[0.0382677423396701 0.0055808663568813] 
MF8='in4cluster8':'gaussmf',[0.0330126699595674 0.00780999629460519] 
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[Input5] 
Name='in5' 
Range=[0 0.1284] 
NumMFs=8 
MF1='in5cluster1':'gaussmf',[0.0238315335879429 0.00627438049210001] 
MF2='in5cluster2':'gaussmf',[0.0236044365109744 0.00621246344533544] 
MF3='in5cluster3':'gaussmf',[0.0234589814159074 0.000438829119254106] 
MF4='in5cluster4':'gaussmf',[0.023606925598594 0.00610490708916884] 
MF5='in5cluster5':'gaussmf',[0.023617800021654 0.00630146893508594] 
MF6='in5cluster6':'gaussmf',[0.0236032858024176 0.00618305313871095] 
MF7='in5cluster7':'gaussmf',[0.0236003856299571 0.00608143238616504] 
MF8='in5cluster8':'gaussmf',[0.0238839586551994 0.0116440844337897] 

  
[Input6] 
Name='in6' 
Range=[0.0687 0.9668] 
NumMFs=8 
MF1='in6cluster1':'gaussmf',[0.165150553187308 0.884578858736474] 
MF2='in6cluster2':'gaussmf',[0.165111896601757 0.88459081776779] 
MF3='in6cluster3':'gaussmf',[0.165210031746201 0.825402307244853] 
MF4='in6cluster4':'gaussmf',[0.165113507316405 0.964900845674523] 
MF5='in6cluster5':'gaussmf',[0.165107839743975 0.884578157602831] 
MF6='in6cluster6':'gaussmf',[0.165110322343173 0.966804385058771] 
MF7='in6cluster7':'gaussmf',[0.165121263844434 0.964881358891908] 
MF8='in6cluster8':'gaussmf',[0.165066896995706 0.755766146908575] 

  
[Input7] 
Name='in7' 
Range=[0.0164 0.944] 
NumMFs=8 
MF1='in7cluster1':'gaussmf',[0.170537156326957 0.0709951928989352] 
MF2='in7cluster2':'gaussmf',[0.170535976525295 0.0710045817804966] 
MF3='in7cluster3':'gaussmf',[0.170823693963334 0.0901375904915624] 
MF4='in7cluster4':'gaussmf',[0.170537007754508 0.0163991704194279] 
MF5='in7cluster5':'gaussmf',[0.170534925678062 0.0710112470165836] 
MF6='in7cluster6':'gaussmf',[0.170536114129939 0.0174970343925587] 
MF7='in7cluster7':'gaussmf',[0.170541037663105 0.0164129045437485] 
MF8='in7cluster8':'gaussmf',[0.170250455876678 0.0994769386419807] 

  
[Input8] 
Name='in8' 
Range=[0.0022 0.1018] 
NumMFs=8 
MF1='in8cluster1':'gaussmf',[0.0182785732196822 0.0131446902790636] 
MF2='in8cluster2':'gaussmf',[0.0183285883784814 0.0133242186889857] 
MF3='in8cluster3':'gaussmf',[0.0178949230235043 0.0454564001090557] 
MF4='in8cluster4':'gaussmf',[0.0183113629133724 0.00249286416737207] 
MF5='in8cluster5':'gaussmf',[0.0182357688175312 0.0134669529963677] 
MF6='in8cluster6':'gaussmf',[0.0182850669469996 0.0021667899903619] 
MF7='in8cluster7':'gaussmf',[0.0184157915219734 0.00270102537643144] 
MF8='in8cluster8':'gaussmf',[0.0180152760310817 0.0477535134282819] 

  
[Input9] 
Name='in9' 
Range=[0.0005 0.0404] 
NumMFs=8 
MF1='in9cluster1':'gaussmf',[0.00731487820979324 0.00248705844697268] 
MF2='in9cluster2':'gaussmf',[0.007333262442539 0.00273834693161455] 
MF3='in9cluster3':'gaussmf',[0.00604639249004752 0.00766948272983621] 
MF4='in9cluster4':'gaussmf',[0.00733666244176128 0.000595313425476853] 
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MF5='in9cluster5':'gaussmf',[0.00729450032120393 0.00295481243543017] 
MF6='in9cluster6':'gaussmf',[0.00732367459622212 0.000474267243179914] 
MF7='in9cluster7':'gaussmf',[0.00738900334100898 0.00082534739516243] 
MF8='in9cluster8':'gaussmf',[0.0076818000584948 0.0125581351570796] 

  
[Input10] 
Name='in10' 
Range=[0 0.0392] 
NumMFs=8 
MF1='in10cluster1':'gaussmf',[0.00747277691174156 0.00274451654371034] 
MF2='in10cluster2':'gaussmf',[0.00738008536525681 0.0028322815061444] 
MF3='in10cluster3':'gaussmf',[0.00666993738573774 0.0125045152448831] 
MF4='in10cluster4':'gaussmf',[0.00721139358378071 0.000699342876967532] 
MF5='in10cluster5':'gaussmf',[0.00717791263011896 0.00300936669590871] 
MF6='in10cluster6':'gaussmf',[0.00721183693677959 0.000580641875893435] 
MF7='in10cluster7':'gaussmf',[0.00724359398144546 0.000906893188813673] 
MF8='in10cluster8':'gaussmf',[0.00510787308580824 0.020523686456587] 

  
[Input11] 
Name='in11' 
Range=[0.0003 0.06] 
NumMFs=8 
MF1='in11cluster1':'gaussmf',[0.010989628253451 0.00102876181349276] 
MF2='in11cluster2':'gaussmf',[0.0109804851472784 0.00103494165778055] 
MF3='in11cluster3':'gaussmf',[0.0110944296216656 0.00365004369558179] 
MF4='in11cluster4':'gaussmf',[0.0109758926313568 0.000299451581006178] 
MF5='in11cluster5':'gaussmf',[0.010975064190915 0.00106588632379741] 
MF6='in11cluster6':'gaussmf',[0.010975989920257 0.000298791894919426] 
MF7='in11cluster7':'gaussmf',[0.0109769927203072 0.000334011467299146] 
MF8='in11cluster8':'gaussmf',[0.0109001501554013 0.00885089077594512] 

  
[Input12] 
Name='in12' 
Range=[0 0.0216] 
NumMFs=8 
MF1='in12cluster1':'gaussmf',[0.00457778955022597 0.00111196522778592] 
MF2='in12cluster2':'gaussmf',[0.00423289799883626 0.00101248197634151] 
MF3='in12cluster3':'gaussmf',[0.00619416038926742 0.00558639453008147] 
MF4='in12cluster4':'gaussmf',[0.00397464927220307 0.000189386843120908] 
MF5='in12cluster5':'gaussmf',[0.00398812565111719 0.00110093043615154] 
MF6='in12cluster6':'gaussmf',[0.00398861318747511 0.000285119443082563] 
MF7='in12cluster7':'gaussmf',[0.00397097261582544 0.000396707083667242] 
MF8='in12cluster8':'gaussmf',[0.00398179998065765 0.00849152556357554] 

  
[Input13] 
Name='in13' 
Range=[0.0002 0.0592] 
NumMFs=8 
MF1='in13cluster1':'gaussmf',[0.0108684508337383 0.00126140042095949] 
MF2='in13cluster2':'gaussmf',[0.010870902974869 0.00126233616513022] 
MF3='in13cluster3':'gaussmf',[0.0116305743579675 0.00316351153430631] 
MF4='in13cluster4':'gaussmf',[0.0108468687521291 0.000191464708564138] 
MF5='in13cluster5':'gaussmf',[0.0108488403333567 0.0012516185013373] 
MF6='in13cluster6':'gaussmf',[0.0108492287135814 0.000596009458114832] 
MF7='in13cluster7':'gaussmf',[0.0108511139108379 0.000269921606950057] 
MF8='in13cluster8':'gaussmf',[0.0110647815223455 0.0082766796912394] 

  
[Input14] 
Name='in14' 
Range=[0.0019 0.1719] 
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NumMFs=8 
MF1='in14cluster1':'gaussmf',[0.0313895504555309 0.0128126493856118] 
MF2='in14cluster2':'gaussmf',[0.0312690910203329 0.0127399065893526] 
MF3='in14cluster3':'gaussmf',[0.033945335994664 0.00369439822954486] 
MF4='in14cluster4':'gaussmf',[0.0312530103063453 0.00249646567033026] 
MF5='in14cluster5':'gaussmf',[0.0312385040941791 0.0127593524892205] 
MF6='in14cluster6':'gaussmf',[0.0312515251352922 0.00199422853454202] 
MF7='in14cluster7':'gaussmf',[0.0312739158522125 0.00256866844036951] 
MF8='in14cluster8':'gaussmf',[0.0307937319746233 0.0224414354898865] 

  
[Input15] 
Name='in15' 
Range=[102 225] 
NumMFs=8 
MF1='in15cluster1':'gaussmf',[22.6132755686906 224.999999792627] 
MF2='in15cluster2':'gaussmf',[22.6132753096855 224.999999820843] 
MF3='in15cluster3':'gaussmf',[22.6132738389611 137.000002857337] 
MF4='in15cluster4':'gaussmf',[22.6132747363538 225.000000097399] 
MF5='in15cluster5':'gaussmf',[22.6132743305156 225.000000254138] 
MF6='in15cluster6':'gaussmf',[22.6132753260657 195.999999803551] 
MF7='in15cluster7':'gaussmf',[22.6132753149952 224.999999724766] 
MF8='in15cluster8':'gaussmf',[22.613271651713 122.999996497212] 

  
[Input16] 
Name='in16' 
Range=[0.046716897 1.410136517] 
NumMFs=8 
MF1='in16cluster1':'gaussmf',[0.250719711771256 0.175492332239836] 
MF2='in16cluster2':'gaussmf',[0.250661991137857 0.175478576150735] 
MF3='in16cluster3':'gaussmf',[0.25091461673315 0.245266327423517] 
MF4='in16cluster4':'gaussmf',[0.250662064038314 0.0499995769632495] 
MF5='in16cluster5':'gaussmf',[0.250657890609538 0.17548566069849] 
MF6='in16cluster6':'gaussmf',[0.250705369797355 0.0467291163640506] 
MF7='in16cluster7':'gaussmf',[0.250671096084732 0.0500141702177388] 
MF8='in16cluster8':'gaussmf',[0.250615492824929 0.757005180901017] 

  
[Output1] 
Name='out1' 
Range=[0.553 2.1627] 
NumMFs=8 
MF1='out1cluster1':'linear',[-0.00755946821024183 8.86822083638194e-05 -

0.412276537299596 0.745026305035173 9.56344806960528 -2.89047524642926 -

7.5797641664173 2.94441542464119 0.679505589228421 1.86942166050559 

0.560716546924377 0.855813168079827 0.429499405754188 -0.815630074279709 -

0.00965304624602736 1.60498727899211 6.88143509795696] 
MF2='out1cluster2':'linear',[-0.00460409002885835 0.000108459087557863 -

0.0062375138460695 3.74855041077772 2.54470760261085 2.15879531146028 -

16.3324009260478 0.376883823395303 0.015018869404537 1.41208249305524 

0.462287501267406 0.906777719212053 0.882684655316704 2.83452350392611 -

0.00428859761793081 9.55855338304278 -0.708738887464017] 
MF3='out1cluster3':'linear',[0.000654969920065858 3.15514989381458e-06 -

1.38187325019845 -0.484591779456197 -4.59980740406345 -0.961475341734974 

7.79296678187562 -11.8652879601992 -3.10545212298483 -24.2770009386534 -

35.412087739472 22.2766624459308 -34.3371337101806 7.24961947123729 -

0.00383584950248734 -0.388429258351758 2.48328480288172] 
MF4='out1cluster4':'linear',[-0.00184849889883234 9.49185556072603e-05 -

0.00014095174767368 2.25058904103199 -16.1831749939464 5.51839161925737 

11.4546457747793 -4.77166490765641 -1.50880268005852 -2.32377763088734 -

0.909164647778335 -0.927806311399684 -0.225828088770019 4.84780947280657 -

0.00150769455910119 -1.389192049236 -4.30002498392912] 
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MF5='out1cluster5':'linear',[-0.00489848807731454 1.67091758006954e-05 -

0.0887295942773967 1.68487226515761 -12.6858383339192 7.78537683563561 

5.0887221862383 -3.95034999014721 -1.21509477194293 -1.75856087026495 -

0.682572244937583 -0.714591222236499 -0.152713713423265 3.62373006285843 -

0.00246435574546424 3.20612915974109 -4.22263078753113] 
MF6='out1cluster6':'linear',[-0.00180609861597681 9.52588235927679e-05 -

0.00204264406659315 2.84360244172998 -14.8735594657765 8.73949213298495 

3.88166839803435 -4.46950500956205 -1.40535689468844 -1.95793684868143 -

0.813050133643518 -0.846995138006763 -0.361348044746124 3.05368444917823 -

0.00211678625950648 3.62802080920173 -7.50951241023598] 
MF7='out1cluster7':'linear',[-0.00219204652439519 5.10001229244977e-05 -

0.01773153949996 -1.28015744630374 7.72617783348421 -2.11658645471097 -

4.42934013531728 2.19127473716969 0.709237954037057 1.0509957945385 

0.424597447499027 0.44089453206662 0.128646474136584 -2.14285603725373 -

3.37436828469696e-05 0.697452124271445 3.43216202064018] 
MF8='out1cluster8':'linear',[0.00022197675241711 5.66551503828279e-05 -

1.41094164824755 4.63301335859171 -0.102152414135072 -0.0208196609353636 -

0.244315490381672 -0.0203120179125655 0.740931989631539 -2.0461159783671 -

0.242012620863792 -15.5766598399363 4.08841008676089 0.885455014808267 

0.00088095922505857 -0.330946185837141 0.872730470001803] 

  
[Rules] 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1, 1 (1) : 1 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2, 2 (1) : 1 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3, 3 (1) : 1 
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4, 4 (1) : 1 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5, 5 (1) : 1 
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6, 6 (1) : 1 
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7, 7 (1) : 1 
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8, 8 (1) : 1 
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APPENDIX C: Sample calculation of inflow performance 

relationship (IPR) for HTHP gas condensate well 

 
In this appendix the sample calculation of PVT properties for KAL – 05 is provided.  
 

Please refer to the published paper for obtaining sample calculation of the IPR.  
https://www.sciencedirect.com/science/article/abs/pii/S0920410519305819 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.sciencedirect.com/science/article/abs/pii/S0920410519305819
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APPENDIX D: The developed Eclipse – 300 code for 

prediction of well inflow performance of HPHT gas 

condensate well 

 
The details of developed Eclipse 300 code is given in following.   
=========================================================================== 
-- Study         : Gas-condensate HTHP/tight formation (KAL – 5) 
-- Author       : F. Faraji 
-- Simulator   : Eclipse-300 
-- DATE        : 24 March 2020 
=========================================================================== 
 
--RUNSPEC section-------------------------------------------------- 
 
RUNSPEC 
 
--Request the FIELD unit set 
 
FIELD 
 
--Water is present 
 
WATER 
 
--AIM solution method 
 
AIM 
 
--Nine components in study (plus water ) 
 
COMPS 
9 / 
 
--Peng-Robinson equation of state to be used 
 
EOS 
PR / 
 
DIMENS 
9 9 4 / 
 
--ICP NTABSS=2 
TABDIMS 
2 1 40 40 / 
 
--Is a gas condensate study 
ISGAS 
 
MULTSAVE 
0 / 
 
--ICP Debug 
DEBUG3 
 81* 1 / 
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--ICP 
SCFDIMS 
 4 / 
 
FMTOUT 
 
--Grid section-------------------------------------------------------- 
 
GRID 
 
INIT 
 
--Basic grid block sizes 
DX 
324*293.3 / 
 
DY 
324*293.3 / 
 
DZ 
162*30 162*50 / 
 
--Cell top depths - only for first layer specified 
TOPS 
81*7400 / 
 
 
PORO 
324*0.13 / 
 
PERMX 
81*130 81*40 81*20 81*150 / 
 
PERMY 
81*130 81*40 81*20 81*150 / 
 
PERMZ 
81*13 81*4 81*2 81*15 / 
 
CONDFRAC 
 'SCF3' 2 10.0 500.0 / 
 6 6 4 5 1 4 'X'  / 
 6 7 5 5 1 4 'Y'  / 
 7 7 5 6 1 4 'X'  / 
 7 8 6 6 1 4 'Y'  / 
 8 8 6 8 1 4 'X'  / 
 8 9 8 8 1 4 'Y'  / 
 9 9 8 9 1 4 'X'  / <-- Intersects P1 
/ 
 
--ICP 
CONDFRAC 
 'SCF1' 2 10.0 500.0 / 
 4 7 2 2 1 4 'Y'  / 
/ 
 
CONDFRAC 
 'SCF2' 2 10.0 500.0 / 
 2 2 2 5 1 4 'X'  / 
/ 
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--Properties section----------------------------------------------- 
 
PROPS 
 
NCOMPS 
9 / 
 
EOS 
PR / 
 
 
--ICP 
RPTPROPS 
 SWFN SGFN SOF3 / 
 
-- Peng-Robinson correction 
 
PRCORR 
 
-- Standard temperature and pressure in Deg F      and PSIA 
 
STCOND 
60.0 14.7 / 
 
-- Component names 
 
CNAMES 
CO2 N2 C1 C2 C3 C4-6 C7+1 C7+2 C7+3 / 
 
-- Critical temperatures Deg R 
 
TCRIT 
548.46000    227.16000    343.08000    549.77400    665.64000 
806.54054    838.11282   1058.03863   1291.89071              / 
 
-- Critical pressures PSIA 
 
PCRIT 
1071.33111    492.31265    667.78170    708.34238    618.69739 
514.92549    410.74956    247.56341    160.41589              / 
 
-- Critical Z-factors 
 
ZCRIT 
 .27408       .29115       .28473       .28463       .27748 
 .27640       .26120       .22706       .20137              / 
 
-- Acentric factors 
 
ACF 
 .22500       .04000       .01300       .09860       .15240 
 .21575       .31230       .55670       .91692              / 
 
-- Molecular Weights 
 
MW 
 44.01000     28.01300     16.04300     30.07000     44.09700 
 66.86942    107.77943    198.56203    335.19790              / 
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-- Omega_A values 
 
OMEGAA 
 .4572355     .4572355     .5340210     .4572355     .4572355 
 .4572355     .6373344     .6373344     .6373344              / 
 
-- Omega_B values 
 
OMEGAB 
 .0777961     .0777961     .0777961     .0777961     .0777961 
 .0777961     .0872878     .0872878     .0872878              / 
 
-- Default fluid sample composition 
 
ZMFVD 
      1.00000       .01210       .01940       .65990       .08690 
       .05910       .09670       .04745       .01515       .00330 
  10000.00000       .01210       .01940       .65990       .08690 
       .05910       .09670       .04745       .01515       .00330 / 
 
-- Boiling point temperatures Deg R 
 
TBOIL 
    350.46000    139.32000    201.06000    332.10000    415.98000 
    523.33222    689.67140    958.31604   1270.40061              / 
 
-- Reference temperatures Deg R 
 
TREF 
    527.40000    140.58000    201.06000    329.40000    415.80000 
    526.05233    519.67000    519.67000    519.67000              / 
 
-- Reference densities LB/FT3 
 
DREF 
     48.50653     50.19209     26.53189     34.21053     36.33308 
     37.87047     45.60035     50.88507     55.89861              / 
 
-- Parachors (Dynes/cm) 
 
PARACHOR 
     78.00000     41.00000     77.00000    108.00000    150.30000 
    213.52089    331.78241    516.45301    853.48860              / 
 
-- Binary Interaction Coefficients 
 
BIC 
-.0200 
 .1000  .0360 
 .1300  .0500  .000000 
 .1350  .0800  .000000  .000 
 .1277  .1002  .092810  .000 .000 
 .1000  .1000  .130663  .006 .006 .0 
 .1000  .1000  .130663  .006 .006 .0 .0 
 .1000  .1000  .130663  .006 .006 .0 .0 .0 / 
 
-- Reservoir temperature in Deg F 
 
RTEMP 
200.0 / 
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--Water saturation functions 
 
SWFN 
    0.16  0      50 
    0.18  0      40 
    0.20  0.002  32 
    0.24  0.010  21 
    0.28  0.020  15.5 
    0.32  0.033  12.0 
    0.36  0.049  9.2 
    0.40  0.066  7.0 
    0.44  0.090  5.3 
    0.48  0.119  4.2 
    0.52  0.150  3.4 
    0.56  0.186  2.7 
    0.60  0.227  2.1 
    0.64  0.277  1.7 
    0.68  0.330  1.3 
    0.72  0.390  1.0 
    0.76  0.462  0.7 
    0.8   0.540  0.5 
    0.84  0.620  0.4 
    0.88  0.710  0.3 
    0.92  0.800  0.2 
    0.96  0.900  0.1 
    1.00  1.000  0.0 
/ 
    0.2 0 0 
    1.0 1 0 
/ 
 
--Gas saturation functions 
 
SGFN 
    0.00  0.000  0.0 
    0.04  0.005  0.0 
    0.08  0.013  0.0 
    0.12  0.026  0.0 
    0.16  0.040  0.0 
    0.20  0.058  0.0 
    0.24  0.078  0.0 
    0.28  0.100  0.0 
    0.32  0.126  0.0 
    0.36  0.156  0.0 
    0.40  0.187  0.0 
    0.44  0.222  0.0 
    0.48  0.260  0.0 
    0.52  0.300  0.0 
    0.56  0.349  0.0 
    0.60  0.400  0.0 
    0.64  0.450  0.0 
    0.68  0.505  0.0 
    0.72  0.562  0.0 
    0.76  0.620  0.0 
    0.80  0.680  0.0 
    0.84  0.740  0.0 
/ 
/ 
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--Oil saturation functions 
 
SOF3 
    0.00  0.000  0.000 
    0.04  0.000  0.000 
    0.08  0.000  0.000 
    0.12  0.000  0.001 
    0.16  0.000  0.002 
    0.20  0.000  0.003 
    0.24  0.000  0.004 
    0.28  0.005  0.005 
    0.32  0.012  0.012 
    0.36  0.024  0.024 
    0.40  0.040  0.040 
    0.44  0.060  0.060 
    0.48  0.082  0.082 
    0.52  0.112  0.112 
    0.56  0.150  0.150 
    0.60  0.196  0.196 
    0.68  0.315  0.315 
    0.72  0.400  0.400 
    0.76  0.513  0.513 
    0.80  0.650  0.650 
    0.84  0.800  0.800 
/ 
/ 
 
--Rock and water pressure data 
 
ROCK 
3550 0.000004 / 
 
PVTW 
3550 1.0 0.000003 0.31 0.0 / 
 
--Surface density of water 
 
DENSITY 
1* 63.0 1* / 
 
--Solution section------------------------------------------------------ 
 
SOLUTION 
 
--Equilibration data - initial pressure 3500 psi at 7500, which is 
--the oil-water and the oil-gas contact depth 
 
EQUIL 
--Dep Pref Dow Pcow Dgo  Pcog 
 7500 3550 7500 0   5000  0 / --   1 1 0  / 
 
RPTRST 
BASIC=2 PRESSURE SOIL SWAT SGAS / 
 
 
SUMMARY    ============================================================= 
 
ALL 
 
RUNSUM 
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FOPR 
FOPT 
FGOR 
FPR 
 
--Schedule section------------------------------------------------------ 
 
SCHEDULE 
 
WELSPECS 
I FIELD 1 1 7500 WATER / 
P FIELD 9 9 7500 OIL  / 
/ 
 
COMPDAT 
I 1 1 3 4 1* 1 / 
P 9 9 1 2 1* 1 / 
/ 
 
--ICP 
-- Must come after COMPDAT 
-- PI mult only used if NOCUT 
-- <Well name> <CUT/NOCUT> <PI_Mult> <I> <J> <K> <C1> <C2> 
WELLCF 
 P CUT 1.0 5* / 
/ 
 
WCONPROD 
P OPEN ORAT 2000 1* 1* 2* 500 / 
/ 
 
WCONINJE 
I WATER OPEN RATE 2000 / 
/ 
 
TSTEP 
 36*10 / 
 
END 
 


