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ABSTRACT

Geological capture, utilization and storage (CCUS) of carbon dioxide (CO-) in depleted oil and
gas reservoirs is one method to reduce greenhouse gas emissions with enhanced oil recovery
(EOR) and extending the life of the field. Therefore CCUS coupled with EOR is considered to be
an economic approach to demonstration of commercial-scale injection and storage of
anthropogenic CO>. Several critical issues should be taken into account prior to injecting large
volumes of CO», such as storage capacity, project duration and long-term containment. Reservoir
characterization and 3D geological modeling are the best way to estimate the theoretical CO>

storage capacity in mature oil fields.

The Jacksonburg-Stringtown field, located in northwestern West Virginia, has produced over 22
million barrels of oil (MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is

the primary reservoir.

The Upper Devonian fluvial sandstone reservoirs in Jacksonburg-Stringtown oil field, which has
produced over 22 million barrels of oil since 1895, are an ideal candidate for CO. sequestration
coupled with EOR. Supercritical depth (>2500 ft.), minimum miscible pressure (941 psi),
favorable API gravity (46.5°) and good water flood response are indicators that facilitate CO»-
EOR operations. Moreover, Jacksonburg-Stringtown oil field is adjacent to a large concentration
of CO- sources located along the Ohio River that could potentially supply enough CO> for
sequestration and EOR without constructing new pipeline facilities.

Permeability evaluation is a critical parameter to understand the subsurface fluid flow and
reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon
storage. In this study, a rapid, robust and cost-effective artificial neural network (ANN) model is
constructed to predict permeability using the model's strong ability to recognize the possible
interrelationships between input and output variables. Two commonly available conventional
well logs, gamma ray and bulk density, and three logs derived variables, the slope of GR, the
slope of bulk density and Vsn were selected as input parameters and permeability was selected as
desired output parameter to train and test an artificial neural network. The results indicate that

the ANN model can be applied effectively in permeability prediction.



Porosity is another fundamental property that characterizes the storage capability of fluid and gas
bearing formations in a reservoir. In this study, a support vector machine (SVM) with mixed
kernels function (MKF) is utilized to construct the relationship between limited conventional
well log suites and sparse core data. The input parameters for SVM model consist of core
porosity values and the same log suite as ANN’s input parameters, and porosity is the desired
output. Compared with results from the SVM model with a single kernel function, mixed kernel

function based SVM model provide more accurate porosity prediction values.

Base on the well log analysis, four reservoir subunits within a marine-dominated estuarine
depositional system are defined: barrier sand, central bay shale, tidal channels and fluvial
channel subunits. A 3-D geological model, which is used to estimate theoretical CO>
sequestration capacity, is constructed with the integration of core data, wireline log data and
geological background knowledge. Depending on the proposed 3-D geological model, the best
regions for coupled CCUS-EOR are located in southern portions of the field, and the estimated
CO. theoretical storage capacity for Jacksonburg-Stringtown oil field vary between 24 to 383
million metric tons. The estimation results of CO> sequestration and EOR potential indicate that
the Jacksonburg-Stringtown oilfield has significant potential for CO> storage and value-added
EOR.
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Abstract

Permeability evaluation is a critical parameter to understanding subsurface fluid flow, and
reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon
storage. Accurate permeability values are measured in the laboratory from subsurface core
samples or estimated from well test data. However these measurements are expensive and time-
consuming and usually limited to a few wells and limited samples in a hydrocarbon field or
carbon storage site. In order to create a rapid, robust and cost-effective model to predict
permeability, intelligent techniques are applied that can recognize possible interrelationships
between input and output variables. In this research, new back-propagation artificial neural
networks (BPNN) are optimized using two evolutionary algorithms: genetic algorithms (GA’s)
and particle swarm optimization (PSO), to estimate permeability in potential carbon storage and
enhanced oil recovery (EOR) operations in the Jacksonburg-Stringtown oil field, West Virginia,
USA. The two evolutionary algorithms were applied to determine suitable initial connection
weights and biases of a back-propagation neural network. Two commonly available conventional
well logs, gamma ray and bulk density; and three logs derived variables, the slope of GR, the
slope of bulk density and Vsh were selected as BPNN input parameters to better predict
permeability. The predicted results of BPNN with particle swarm optimization model (PSO-
BPNN) is compared with predicted results from BPNN with genetic algorithm (GA-BPNN). The
results indicate that the PSO-BPNN model can be applied more effectively in permeability
prediction with highest correlation coefficient (r of 0.9595), highest coefficient of determination
(R? of 0.9208), lowest standard deviation (SD of 26.6584) and root mean square error (RMSE of
137.5647), mean error value (ME of 19.4389).



1.1 Introduction

Permeability (k) is a measure of how easily hydrocarbons, CO> and other fluids and gasses with
a given viscosity flow through a subsurface unit’s pore spaces in the presence of one or multiple
fluid phases (e.g., oil and formation water). It is a critical parameter in reservoir characterization
and determination of flow patterns. Reliable estimation of permeability is critical for seal
evaluation and fluid-migration analysis in a field or reservoir (Helle et al., 2001). There are no
geophysical well logs that provides a direct permeability measurement, and predicting
permeability is one of selecting a model expressing k in terms of other measurable rock
properties. A theoretical tube-like model of rock pore space known as the Kozeny-Carman
relationship is applied to calculate the permeability. However, the result is unreliable due to
numerous parameters, such as Kozeny constant and porosity value (Mauran et al., 2001).
Pressure transient formation well testing including; pressure build up, drill stem testing (DST)
and repeat formation testing (RFT) (Clark and Golf-Racht, 1985; Xu et al., 2008); and laboratory
core measurements, provide relatively accurate measure of permeability, However, core and
pressure transient tests are expensive, time-consuming and given limited data in a few wells may
not be representative of the reservoir. Production history matching can also be used to estimate
permeability, but this permeability value reflects the average permeability of the whole reservoir

and ignores the reservoir’s heterogeneity and complexity (Helle et al., 2001).

Recently, artificial neural networks (ANN) have been applied in the petroleum industry because
of their strong ability of generalization and nonlinear approximation (Huang and Williamson,
1996; Mohaghegh and Ameri, 1995; Mohaghegh et al., 1996; Van der Baan and Jutten, 2000).
This technology has been used extensively to improve prediction for: porosity and permeability
(Al Mogbel and Wang, 2011; Helle et al., 2001; Huang et al., 1996; Huang and Williamson,
1997; Mohaghegh and Ameri (1995); Mohebbi et al., 2012); water saturation determination
(Helle and Bhatt, 2002); lithofacies classification (Al Mogbel and Wang, 2011; Bhatt and Helle,
2002; Wang and Carr, 2012a; Wang et al., 2013); hydraulic fracture optimization (Mohaghegh
and Ameri, 1995); reservoir pressure estimation (Chen et al., 2014; Sayyad et al., 2014); PVT
property prediction (Gharbi and Elsharkawy, 1999); and other subsurface applications.
Evaluation of ANN performance in predicting reservoir permeability using full suites of modern



geophysical well log data indicates good estimates even in heterogeneous reservoirs (Aminian
and Ameri, 2005).

Artificial neural networks can be applied across almost any field or reservoir to provide a
nonlinear mapping between inputs and outputs (Rosenblatt, 1961). The characteristics of ANN
including learning feature from data, fast development, strong generalization and universal
approximation ability, accurate nonlinear data fitting and regression capabilities, are major
reasons for the rapid growth in number and diversity of applications (Kordon, 2009). ANN has
been applied widely, but the process of minimizing convergence rate to zero during network
training can cause overtraining, also known as overfitting, because of memorization of the
training dataset (Geman et al., 1992; Moody, 1994; Scales and Snieder, 1998; Tu, 1996).
Principal component analysis (PCA) and cross-validation methodologies have been applied to
optimize ANN structure and reduce the overfitting effect (Jin et al., 2005; Zhang et al., 1999).
However, these approaches significantly reduce the number of samples in the training dataset,
and in the case of permeability with limited direct laboratory or well measurements can result in
insufficient data for a robust training process. In order to deal with severely limited modern
geophysical log data from the greater than 100 year-old Jacksonburg-Stringtown oil field in West
Virginia, USA, we apply two evolutionary algorithms, namely genetic algorithms (GA’s) and
particle swarm optimization algorithm (PSO), to optimize the initial connection weights and
biases of artificial neural networks (ANN), and develop hybrid GA-ANN and PSO-ANN
regression models to predict the permeability. Five variables are evaluated: gamma ray (GR),
density, the slope of GR, the slope of density and shale content (Vsh). The result of GA-BPNN is
compared with the result of PSO-BPNN in order to determine the performance of evolutionary
algorithms. A general BPNN is constructed and the result of BPNN is compared with the result
of GA-BPNN and PSO-BPNN in order to illustrate the advantages of evolutionary algorithms’

optimization ability.

The paper introduces the theoretical background of artificial neural network, evolutionary
algorithms, illustrates the process of developing hybrid GA-BPNN and PSO-BPNN, and
describes the process of how to evaluate the different BPNNs’ performance. The geological

background and the challenges of data acquisition of a case study are discussed and used to



evaluate the results of evolutionary algorithms in the super-mature reservoir that has been

developed over more than a century.
1.2 Methodology

1.2.1 Principle of Artificial Neural Networks

Mathematical perceptron is the prototype of a neural network, which mimics biological neuron
behavior (McCulloch and Pitts, 1943) (Figure 1-1a). Hérault and Jutten describe the process of
biological neuron transiting signals from one neuron to others by the mathematical method
(Hérault and Jutten, 1994). The mathematical neuron simplified the transiting process of
biological neuron’s signal (Figure 1-1b). The result of summing node is the weighted sum of
input signals (Figure 1-1c). The final output signal is rescaled by various types of activation
functions (Figure 1-1d). An artificial neural network is the combination of a series of
mathematical neurons. There are many different types of ANNSs, some of which are more popular
than others (Agatonovic-Kustrin and Beresford, 2000). The most frequently used ANN is a fully
connected, supervised network with a backpropagation learning rule, which generally is labeled
as a back-propagation neural network (BPNN). BPNN normally consists of three layer types of
neurons. The first layer is a single input layer and the last layer is a single output layer. The
number of input neurons and output neurons is problem dependent. One or more hidden layers
are located between input and output layers. The number of hidden layers and hidden layer’s
neurons vary, depending on the complexity of problem and training dataset’ quality and size. A
small number of neurons in hidden layer may lead the network to fall into a local minimum;
conversely, many neurons will result in overfitting the network. These challenges can make
trained networks lose their generalization ability (Jeirani and Mohebbi, 2006). Neurons of input
layer are connected to the hidden layer by weights and biases in the same fashion as neurons
between hidden layer and output layer. Individual neurons are connected by weights and biases,
and selection of suitable weights and biases can avoid or reduce the overfitting effect. Normally,
ANN structure is optimized by changing the number hidden layers and the number of hidden

layers’ neurons.

Learning processes are the main component of the ANN training process, in which weights and

biases are adjusted continually until an expected output is produced or anticipated criteria are
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achieved. The testing process is used to assess the generalization ability of the trained neural
network (Saemi et al., 2007). Multiple BPNN models are constructed until training process and

testing process achieves the required accuracy and generalization ability.

The error of ANN is a high dimensional surface with an extremely complex shape. The vertical
dimension of each point on this surface corresponds to one error value and each point represents
a vector of weights and biases. The well-trained BPNN model can be used to undertake
prediction of unknown values with a defined error. A simplified 3D figure displaying the
relationship between error, weight, and biases can illustrate how easy it is to fall into local
minimum far removed from a global minimum (Figure 1-2). A suboptimum result can easily
occur if there are numerous local minimums or if the initial weights and biases are far away from
expected weights and biases. The convergent rate to a global optimum minimum can be
extremely slow if the learning efficiency is low, and the neural network may forget the feature of
the old sample when it is trained by the new sample. In order to deal with these challenges,
several supervised learning algorithms are introduced to improve convergence and learning
efficiency. Two evolutionary algorithms (GA and PSO) can be applied to optimize the initial
weights and biases for each single neuron in well-constructed BPNN in terms of minimizing the

effect of overfitting.

In order to evaluate the performance of training and testing process, mean squared error (MSE) is

chosen as network performance function, which is defined as follows:

2

MSE Z%Zin:l(yi - yi) ! Eq' (l)

where y. is the predicted value; y, is the true value and n is the sample size.

1.2.2 Supervised Learning Algorithm

The process of training a neural network is a process of tuning the values of the weights and
biases of the network to minimize the error between target and computed output in the neural
network. Several algorithms have been developed; including Levenberg-Marquardt (LM),
gradient descent (GD), gradient descent with momentum (GDM), scaled conjugate gradient
method (SCG) and Quasi-Newton method (BFGS) (Wang and Carr, 2012b). To avoid the
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network falling into local-minimums, two stochastic intelligence algorithms are used, genetic
algorithm (GA) and particle swarm optimization (PSO). These algorithms optimize the weights
and biases of the neural network by generating new offspring for GA or varying direction of

movement and velocity for PSO.
1.2.3 Methods and Steps Combining GA with BPNN
1.2.3.1 The Description of Genetic Algorithm

Genetic algorithms (GA’s) were first proposed in the 1970s (Holland, 1975). This global
heuristic search algorithm is based on Darwinian evolutionary theory and is inspired by
biological evolution and natural genetics. Over the last several decades, GA’s have attracted
attention, because of their potential as optimization technigques for complex functions (Dehghani
et al., 2008; Goldberg and Holland, 1988; Irani and Nasimi, 2011; Ravandi et al., 2014; Velez-
Langs, 2005; Whitley et al., 1990).

As originally proposed, the formulation of a GA for a specific problem usually is composed of
three main issues: the designation of chromosomes implying a potential solution to a given
problem; the reproduction and breeding structures used to generate initial genomes; and the
genetic operators including selection, cross-over and mutation used to generate new genomes
(Velez-Langs, 2005). A population is composed of numerous individuals that are represented by
different chromosomes representing a set of potential solutions to a given problem. The size of

the population is problem dependent but normally ranges from 50 to 100 individuals.

GA’s begin with an initial population. The fitness of each individual is calculated using a fitness
function (usually MSE) in a decoded form in the current population (Saemi et al., 2007).
Quantitative fitness values in a population are the basis of probability allocation for the purpose
of selecting the fittest individuals in a probabilistic manner (Ravandi et al., 2014). Individuals’
genetic information are recombined by a cross-over operation and modified through a mutation
operation to give birth to offspring. The offspring is a new population. The fitness of new
population is calculated using the same criterion, and this process is repeated until achieving

termination conditions, such as detected convergence, fixed number of generations, allocated



budget, or the highest ranking solution’s fitness via manual inspection (Kumar et al., 2010;
Polushina and Sofronov, 2011; Ravandi et al., 2014; Velez-Langs, 2005).

1.2.3.2 Development of hybrid GA-BPNN model

A genetic algorithm is applied to searching the suitable initial weights and biases of BPNN to
improve prediction performance and generalization. The flowchart for the hybrid GA-BPNN
construction process is made up five steps based on the basic principle and working mechanisms
of BPNN and GA (Figure 1-3). The first step is representing the connection weights and biases
as coding chromosomes (Figure 1-4).

The second step is establishing the original populations for the corresponding neural network.
For the initial random population, each gene (weight or bias) takes a random value which is
subjected to a normal Gaussian distribution. Generally, the population size is 100, which means
the population is composed of 100 chromosomes (individuals).

The third step involves the fitness of each chromosome based on the fitness function calculated
(Eg. 1). The fitness function is used to evaluate the performance of each chromosome (potential

solution) and represents the misfit between the predicted and the true permeability value.

The fourth step is applying the genetic operators such as selection, crossover, and mutation
operators to generate a new population (Irani and Nasimi, 2011). The genetic operators
determine the process of selection, which is the first step of the genetic evolution process. These
values help GA to reserve high-grade individuals and eliminate bad individuals in each
population. In the crossover, the genes of old individuals are exchanged to a gene in the purpose
of generating new individuals, which have stronger search ability than any of previous
individual. A roulette wheel selection is a common way to select two ancestor individuals from
the population to generate two evolving individuals via crossover operators. The genetic
operator, mutation is the last step of the evolutionary process. For a real number chromosomes,
numerous mutation operators could be designed. In such a case, mutation operator can be
randomly changed, which is subjected to a uniform probability distribution (Gholami et al.,
2014; Velez-Langs, 2005).



Finally, decoding chromosomes convert the real-coded chromosomes to connection weights and
biases. The process is repeated until specific criteria are satisfied. Typical parameters and values
used in GA-BPNN are shown in Table 1-1.

1.2.4 Methods and Steps Combing PSO with BPNN
1.2.4.1 The Description of Particle Swarm Optimization Algorithm (PSO)

Based on stochastic search and optimization processes, the particle swarm optimization
algorithm (PSO) was developed (Eberhart and Kennedy, 1995). PSO is an evolutionary
algorithm that imitates human (or insects) social behavior. Individuals interact with one another
while learning from their own experience, and gradually the population member moves into
better regions of the problem space (Eberhart and Kennedy, 1995). Particles, indicating the
potential solution, randomly locate in the architecture space (such as birds or fish randomly
distributed in a specific open environment), and are utilized to calculate the global optima of the

fitness function. Assuming D-dimensional architecture space, the population
X ={X,, X,, X3,..., X, } is composed of n particles (X;). Each X, ={X;, X5, Xi3,---, Xip } indicates its

position and is also represents a potential solution. A global best value is p, ={0,,9,:95.-.9p}

and personal best value is p, ={p;;, Pi,, Pis»---Pio}- The velocity for particle X;, representing the

rate of position change, is written asv, ={V;,V,,,Vis,..., V;p } (Poli et al., 2007).

During the optimizing process, each particle updates its position by velocity adjustment and

fluctuates between the individual p, and global p, best values. When the particle swarm

algorithm is running without restraining velocities, it rapidly increases to unacceptable levels

within a few iterations. Some form of damping of the dynamics of particles (e.g.,v, ) is

necessary (Cabrerizo et al., 2013). To better allow an elegant and well-explained method for
limiting the searching range, ensuring convergence, reducing and eliminating the importance of

% an inertial weight algorithm was introduced (Shi and Eberhart, 1998) (Figure 1-5). The

max !

velocity updating formulae are defined as following:

0" =00 + 4 O(B, — %) +4, (P, - %) Eq. (2),



_ )a(_Old n g new Eq (3)’
O = Oy _(a)max _a)min)*tite /tmax Eq (4)1

where mmax is initial inertia weight, wmin is the final inertia weight, @1 is cognitive coefficient and

@2 IS social coefficient, tie IS current iteration number, and tmax IS maximum iteration number.
1.2.4.2 Development of Hybrid PSO-BPNN Model

In order to ameliorate training process and accelerate convergence rate, the PSO algorithm is
combined with BPNN to optimize the initial weights and biases of BPNN. The number of
weights and biases equals the dimension of each particle. The combination of a series of
connection weights and biases is a particle and indicates the position of a particle (Sayyad et al.,
2014). A flowchart of proposed the PSO-BPNN model for permeability prediction was
developed (Figure 1-6).

The hybrid PSO-BPNN model searching mechanism and hybrid network are made up three
stages: first, construction of BPNN, initializing the control parameters of PSO and randomly
initializing all particles with a suitable size of population; second, training the BPNN by using
each particle (weights and biases), and calculation of the fitness of each particle in the population
based on the fitness function (Sedki et al., 2009). Unless termination conditions are achieved the
velocity and position of each particle are updated based on a new variant of PSO to construct
new generation (Shi and Eberhart, 1998). The fitness value is calculated again for renewed
generation, then velocity and position for new particles are repeatability updated. This process
will sustain until the stopping criteria are satisfied (Poli et al., 2007). Finally, the best particle
(weights and biases) are applied to BPNN, and the well-trained BPNN model is used to make

predictions.
1.2.5 Performance Evaluation

The well-trained BPNN model is applied to estimate the permeability value in the Jacksonburg-
Stringtown reservoir. The correlation coefficient (r) is an important criterion for evaluating the

performance of regression, however, it is not sufficient to fully characterize a complex regression
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problem (Zhong and Carr, 2016). Therefore, in order to verify the reliability and accuracy of a
model, four additional statistical parameters were introduced as evaluation indices of the model
performance (Jin et al., 2005; Jin et al., 2001). These performance evaluation parameters include;
the coefficient of determination (R?), root mean error (RMSE), average absolute error (AAE),
and maximum absolute error (MAE) (Table 1-2). An R? (Coefficient of Determination) of 1
indicates a perfect regression model, while an R? of 0 indicates a completely random model
(Oyerokum, 2002). Moreover, RMSE is used to evaluate overall performance, while AAE and
MAE are used to determine the error range of the predicted results. A model with high r and R?

values, and low RMSE, MAE and AAE values is considered to have good performance.
1.3 Application Case

1.3.1 Geological Setting

Jacksonburg-Stringtown field is situated along the axis of the Burchfield syncline in
northwestern West Virginia (Figure 1-7b). The primary or secondary producing reservoir unit is
Late Devonian Gordon Stray interval, which is contained within the middle to late Catskill
deltaic complex (Catskill delta). During Early to Middle Devonian, crustal uplift in Acadian
orogeny lead to further subsidence within the Appalachian foreland basin to the west and
resulted in the deepening of the central Appalachian basin (Faill, 1997a, b). Deposition is
interpreted to coincide with the heavy rainfall produced by the tropical climate, and sedimentary
deposition accelerated during the Middle and Late Devonian (Blakey, 2008; McBride, 2004;
Piotrowski and Harper, 1979). In the Late Devonian, five major delta systems prograded
westwards and dominated the foreland ramp (Figure 1-7a). In the latest Devonian, maximum
progradation of the Catskill delta complex was achieved west of the Acadian highlands (Boswell
and Donaldson, 1988). During this period, Acadian tectonism ceased, and relative sea-level
changes within the basin were controlled primarily by estuary sea-level fluctuations and
variations in sedimentation (Coughlin, 2009). Non-marine red shale and most of the low-energy
alluvial deposits are concentrated in the eastern portions of the Appalachian basin. Non-marine
sediments increasingly advanced westward to cover marine beds, and near-shore deposits
continued to prograde into the central Appalachian basin. In the area of Jacksonburg-Stringtown

field, Gordon Stray/Gordon intervals are interpreted to be shoreline and shore-face sandstone
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that occupied a broad structural trend at the time of maximum regression of the Acadian clastic
wedge (Hohn, 2004).

The estimated original oil in place (OOIP) in Jacksonburg-Stringtown oil field is 88 million
barrels of oil (MMBO). Since the discovery in 1895, primary production was estimated at 22
MMBO (Ameri et al., 2002), and the estimated oil recovery factor is 25%. A gas re-injection
program took place in the field beginning in the mid-1930’s and ended in the 1950’s. A pilot
waterflood program with a 35 acre dual 5-spot well pattern was conducted in 1981. After 1990, a
full-scale waterflood was installed in a large portion of the field (Bergerud, 2011). Unlike
modern oil and gas fields, which have abundant, high quality data, including full-suites of
conventional and advanced well logs, and seismic data to construct 3D geological model,
Jacksonburg-Stringtown oil field has predominately low quality well log data (i.e. gamma ray,
bulk density), and highly limited high quality data (core measured porosity and permeability
data) for reservoir modeling. The sparse modern subsurface data characteristic of super-mature
fields such as Jacksonburg-Stringtown can inhibit the development of a robust geological model

and effective evaluation of CO> storage capacity.
1.3.2 Data Acquisition

A model’s stability and accuracy are largely dependent on the training dataset’s reliability and
comprehensiveness. In this research, data is extremely sparse with only 93 samples from 6 wells
in the Jacksonburg-Stringtown field with both core data and conventional well logs (Figure 1-
7b). To construct a reliable BPNN model, input data was divided into two parts: training data and
testing data. Data belonging to the first five wells were used to train the BPNN model, while the
remaining data of the last well was used to evaluate the stability and accuracy of the well-trained
network. Based on the materials on hand, to construct the model two conventional well logs and
three log derived variables were selected as BPNN input variables along with digitized
permeability values. The input variables include two well logs, gamma-ray log (GR), density log,
and three derived parameters; the slope of GR, the slope of density, and shale content (Vsh). In
order to demonstrate the heterogeneity of this formation and to display the chaotic status of the
information that existed, cross-plots of permeability versus each measured parameter were

constructed. A simple linear relationship between the six measured parameters and permeability
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is not apparent (Figure 1-8). The dataset was normalized to improve prediction results and
improve the calculation and training speed. In this study, absolute scale is used for all input
parameters. For permeability, a logarithmic scale instead of the absolute scale is used. The

normalized formula is chosen as following:

X — Xmin

X_neW:
il b

1 Ea. (5)

max Xmin

where X;™"is the normalized input vector, X, and X, are the minimum and maximum and

value respectively, X are the original input vector. The normalized input vector ranges from 0 to
1. When training and testing process are completed, the predicted permeability values by well-
trained BPNN model also ranges from 0 to 1. In order to re-project the predicted permeability
value into original order, data renormalization is required. The renormalization formula is

following:

predicted
X +Xmin

¥ renormalied :1O(Xmaxfxm‘”) , Eq. (6)

where X """ s the renormalized output, X "*“*is predicted output by well-trained BPNN

model.
1.4. Results and Discussion

1.4.1 ANN Topology and Supervised Learning Algorithms

The designation of network architecture is a subjective task and problem-dependent. A priori
selection of the best architecture of BPNN in a specific problem (e.g., porosity, permeability, and
minimum miscible pressure) is challenging. Therefore, in order to obtain a reasonable BPNN
architecture, several possibilities are considered in this study. The number of nodes in the input
layer corresponds to the five basic input parameters, whereas the output layer node corresponds
to the permeability value. Normally, two hidden layers can approximate most non-linear or linear
regression problems (Kumar et al., 2002). The number of nodes in the hidden layer was varied
from 20 to 50 for one hidden layer architecture. However, for the two hidden layer architecture
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fifteen, twenty, twenty-five and thirty nodes were considered in first hidden layer, and ten,
fifteen, twenty and twenty-five nodes were considered in second hidden layer (Figure 1-9). All
five supervised learning algorithms and two evolutionary intelligent algorithms were applied to
train all the BPNNs with varying topology.

BPNN with different architecture show various performance (Figure 1-9). The BPNN model
trained by Levenberg-Marquardt algorithm performs best in various BPNN models trained by
different supervised training algorithms (Figure 1-9, Table 1-3). This BPNN has relative high R?
and r values, and low RMSE, MAE and AAE values. The BPNN that has one hidden layer with
25 nodes performed best with the highest R? (0.9131) and r (0.9555), and lowest RMSE
(162.8002), MAE (66.1634) and AAE (of 0.7048).

After multiple runs of BPNN with different hidden layers and a various number of neurons, the
best performance was achieved by 5-25-1 as final network architecture. Different supervised
learning algorithms and two evolutionary intelligent algorithms were used to train the selected
BPNN. Mean square error was used as the cost function to appraise the network’s performance.
BPNN trained by Levenberg-Marquardt algorithm and two evolutionary algorithm performs best
(Figure 1-10), so a more detailed comparison was carried out.

1.4.2 Comparison of Permeability Prediction Base on Various Regression Model

In order to further evaluate the performance of the BPNN, GA-BPNN, and PSO-BPNN model,
the predicted results obtained from well-trained models were compared with available core
measured permeability datasets. To check and confirm the generalization capability and
predicting precision in the estimation of permeability for different optimized or non-optimized
BPNNSs, 22 data points from well B-19, which were not used to constructing the BPNN model
were estimated with the model. Generally, the error distribution fits the normal distribution.
Therefore, the mean error values and the standard deviations presented here are those of a
Gaussian model (Helle et al., 2001).

Histograms and cross-plots display the difference between permeability measured from the core
and predicted permeability predicted by the input petrophysical parameters using different BP
neural networks (Figure 1-11). In order to compare the result more concisely, permeability is
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plotted on a traditional logarithmic scale. The comparison result between cores measured
permeability and predicted permeability by non-optimized BPNN shows a mean error is
approximately 28.5246 md with a standard deviation of 72.4197 md (Figure 1-11a and b). The
coefficient of determination (R?) and correlation coefficient (r) is 0.5177 and 0.7195
respectively. The comparison result between core measured permeability and predicted
permeability by PSO-BP neural network has a smaller mean error than that from non-optimized
BP neural network. Mean error for the PSO-BP is approximately 19.438 md with a standard
deviation of 26.6584 md (Figure 1-11c and d). The cross-plot of core measured permeability and
predicted permeability by PSO-BPNN regression model has higher R? (0.9208) and r (0.9596)
compared with the standard BP neural network (Figure 1-10 d; Table 1-4). The BPNN optimized
by PSO performs better than general BPNN. Also, GA-BPNN has a smaller mean error
(26.3259), standard deviation (60.825), and higher R?(0.8328) and r (0.9126) compared with
non-optimized BPNN (Figure 1-10e and f). Evolutionary algorithm optimized BP neural network

optimized by GA improves performance compared to non-optimized BPNN.

The PSO-BPNN regression model provides a strong ability to predict permeability with high
correlation, and the highest coefficient of determination among all regression models and lower
mean square error (Figure 1-11 b, d, and f). The GA-BPNN model has the same R? value as
PSO-BPNN model, but the mean error value and standard deviation in permeability of PSO-
BPNN model are lower and provide better prediction of known values (Figure 1-11c and e). The
predicted permeability by PSO-BPNN and GA-BPNN compared to core derived values plotted
in depth show good agreement (Figure 1-12).

Though permeability values cover a wide range, the PSO-BPNN model is able to follow and
recreate the core permeability values and trend very closely. The input petrophysical parameters
have a relation to permeability. The gamma-ray log response provides evidence of clay that has
an impact on permeability. The bulk density is inverse functions of porosity and shale content.
The slope of gamma ray and bulk density represent the change rate of clay content. Vs directly

represents variations in the rock-clay contents.
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1.5. Conclusions

In this paper, two evolutionary algorithms and five supervised learning algorithms were applied
to optimize the BPNN to estimate permeability, a critical parameter for hydrocarbon and CO>
storage reservoir characterization. In the BPNN model, using a highly constrained suite of logs,
five derived parameters: GR, density, the slope of GR, the slope of density, and Vs, were
selected as input parameters. BPNN architecture is optimized by adjusting hidden layers and
number of neurons. By comparing different BPNNs, optimized BPNN performance can be
determined as evolutionary algorithms search the best solution by different direction and
converge toward a global minimum value. Through the foregoing analysis and discussion of

predicted result, several conclusions are drawn:

(1) The PSO optimized BPNN regression model was successfully applied to predict the
permeability values. Based on comparisons between two optimized BPNN, PSO-BPNN

regression model provides more accurate results than GA-BPNN regression model.

(2) Different architecture of BPNN affects significantly the final performance of BPNN. The best
ANN topology for permeability prediction is 5-25-1. Among five supervised learning algorithms,

the Levenberg-Marquardt algorithm performed well in the training process.

(3) Based on the comparisons between non-optimized BPNN and evolutionary algorithm
optimized BPNN, optimized BPNN performed well, both in training and testing process.

The main drawback of those methods is:

1) The construction of BPNN architecture is largely based on experience. Generally, the more
inputs and the fewer hidden neurons, the better the prediction performance. Too few inputs or
too many hidden neurons can lead the network to memorize, which means that it works well

during the training process, but tests poorly and fails to generalize;

2) The selection of several key parameters in evolutionary algorithms, such as population size,
generations, mutation possibility is critical. Normally, large population and generation will
definitely increase the computing time for training and testing. On the other hand, once the

network is established, the application requires a minimum of computing time. Higher mutation
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possibility and crossover possibility can vary the solution, but also can lead to unstable solutions

and failure to converge.
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Nomenclature

voa Avector of random numbers uniformly distributed in [0, ¢' ]
® Component-wise multiplication

0] Inertia weight

X Constriction coefficients

K, The number of neighbors for particlei
nbrn i’'s nthneighbor

@in Initial values of the inertia weight

O o Final value of the inertia weight

tite Current iteration number

tmax Maximum number of iteration

m Number of output nodes

YJ_ (k) Expected output from neural network
']'j (k) Actual output from neural network
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Figure 1-1.The biological and the mathematical neuron. The mathematical neuron (b) mimics the
behavior of the biological neuron (a). The weighted sum of the inputs is rescaled by an activation
function (c), of which several examples are shown in (d) (After Hérault and Jutten, 1994).
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Figure 1-5. Graphical illustration of the particle swarm optimization algorithm PSO velocity and
particle position update for particle xi in a two-dimensional search space.
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Figure 1-8. Permeability vs. different input variables which are used as input parameters in this
study. It appears that there are not clear linear relationships between permeability and each input
variables.
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obtained from core measurement and back-propagation neural network. Figures (a) and (b) show
the difference between the core measured permeability and predicted permeability by standard
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permeability by PSO-BPNN; (e) and (f) show the difference between the core measured
permeability and predicted permeability by GA-BPNN.
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Table 1-1. Typical parameters used for training BPNN regression model with different learning
algorithms including genetic algorithm (GA-BPNN) and particle swarm optimization (PSO-
BPNN).

Parameter Value Parameter Value

Input layers nodes 5 Hidden layers nodes 4

Output layers nodes 1 Termination criterion (e) 0.001

Special parameters for genetic algorithm

Maximum Generation 150 Population size 100

Selection probability Rand value Crossover probability 0.4
(0,1)

Mutation probability 0.1 Chromosome length 176

Special parameters for particle swarm optimization

Maximum Generation 150 Population size 50

Cognitive efficient () 1.5 Social efficient (w,) 1.5

Initial inertia weights Witart 0.9 Final inertia weight Wend 0.4
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Table 1-2. Error measures for accuracy assessment to evaluate model performance.

Accu racy measure

Mathematical expression

Coefficient of Determination, R?

S (i)

R®=1-—
ZH(Yi _averg(Yi ))

Correlation coefficient, r

_ 211(yi_yi)(yi_§i)

r=— UL e
Zi:l(yi %) Zi:l(yi -¥)

Root mean square error, RMSE

1 .
RMSE =JNZ?_1(yi -9’

Average error, AE

1 .
AE = WZL(Yi - yi)

Maximum absolute error, MAE

MAE = max|y; - §;|i=12....,N
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Table 1-3. Permeability prediction results by BPNN with various hidden layer(s) and different
numbers of neurons. LM: Levenberg—Marquardt; GD—Gradient descent; GDM—qradient
descent with momentum; SCG—scaled conjugate gradient; BFGS-- Quasi-Newton method r
(correlation coefficient) is used to evaluate the performance of BPNN with different architecture.
The bold color indicates the highest correlation coefficient.

‘Architecture
Back-Propagation Topology Architecture
One hidden layer Two hidden layers
Algorithms 20 25 30 35 40 45 50 1510 20-10 2510 3010 2015 2020 3025
m 0.927069 0.955522 0.88925 0902969 0.878167 0.926796 0832022 0.875672 0.865662 0822324 0855567 0.859015 0.808497 0900868
6D 0.398776 0.55715 0.882161 0185025 0.654926 0.634988 0679796 0.767001 0612204 0083334 078537 0007926 0.744505 0649279
GDM 0.771949 0.585894 0.172796 0.851726 0.813062 0.681737 0.554836 0.752989 0.097994 0.128824 0.809781 0.820165 0.395699 0.235026
scG 0892977 0872495 0900268 0889572 0823224 0896662 070027 0844629 0775671 0821716 0800213 0849063 0800546 0832869
BFGS 0873924 0.77756 0.72043 0.848095 0003734 0029147 0821091 0.774067 0.814255 0825858 08586 0.747789 087878 0733683
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Table 1-4.Statistical parameters of the developed Atrtificial Neural Networks to determine the

permeability for well B-18.

ME STD RMSE R2

(Mean Error) (Standard Deviation Error) (Root of Mean Square Error) (Coefficient of Determination)
BPNN 28.5246 72.4197 166.2519 0.5177
PSO-BPNN 19.4389 26.6584 137.5647 0.9208
GA-BPNN 26.3529 60.825 158.9218 0.8328
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Abstract

Porosity is a fundamental property that characterizes the storage capability of fluid and gas
bearing formations in a reservoir. An accurate porosity value can be measured from core sample
in the laboratory, however, core analysis is expensive and time-consuming. Usually, the
available core is limited to incomplete vertical sampling in only a few wells in a field. Well logs
can be used to calculate porosity, but in mature fields availability of log suites are often limited
in types making control a challenge for the theoretical relationships resulting from natural
lithologic heterogeneity and to a lesser degree fluid content in the pores. Therefore, robust
porosity prediction requires integration of core-measured porosity with modern well log suites to
control for changes in lithology and fluid content. In this study, a support vector machine (SVM)
model is used to improve estimates of porosity by constructing the relationship between limited
conventional well log suites and sparse core data. The kernel function is the key technology in
SV M, different kernel functions are applied to construct a reasonable SVR model. A new mixed
kernel function is introduced that is a convex combination of the radial basis function kernel and
the polynomial kernel function. This mixed kernel function not only preserves a strong
extrapolating ability extended from radial basis function kernel but also possesses good
interpolating capacity inherited from polynomial function kernel. Porosity, the desired output,
uses two conventional well log responses (gamma ray and bulk density) and three well log
derived parameters (slope of gamma ray, slope of density, and Vsn) as the input training and
testing parameters. A grid searching method was applied to find the best control parameter
(gamma and C) for each normal kernel function, which determines the performance of SVM.
However, the extended computation time to find appropriate values of five control parameters in
SVR with mixed kernels function restricts applications. Therefore, a global stochastic searching
algorithm, particle swarm optimization, was applied to improve the efficiency of locating the
global optimum. The results of SVM with different kernel functions were compared, and the
SVM model with a mixed kernel function provided an improvement over the SVR with a single
kernel. To confirm the advantage of the hybrid PSO-MKF-SVM model, results from three
models: 1) radial basis function based least square support vector machine (RBF-LS-SVM), 2)
multilayer perceptron artificial neural network (MLP-NN), and 3) radial basis function artificial
neural network (RBF-NN), are compared with the result of the hybrid PSO-MKF-SVM model
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and traditional SVM model with radial basis kernel function and polynomial kernel function. The
results indicate that the hybrid PSO-MKF-SVM model improves porosity prediction with highest
correlation coefficient (r of 0.9560), highest coefficient of determination (R? of 0.9140), lowest
root mean square error (RMSE 0f1.6505), average absolute error value (AAE of 1.4050) and

maximum absolute error (MAE of 2.717).

Key Words: support vector regression; mixed kernel function; radial basis function neural

network; multilayer perceptron neural network; least squares support vector machine.
2.1. Introduction

A petroleum reservoir is a heterogeneous geological system with large intrinsic complexity that
can be considered as a nonlinear regression problem (Al-Anazi and Gates, 2010c; Saljooghi and
Hezarkhani, 2014). Porosity is a key parameter for characterizing the storage capacity of liquid
and gas bearing formations. Accurate porosity values can be measured in the laboratory from
reservoir core samples, however, acquisition and analysis are expensive and time-consuming.
The number and density of core measurements in a reservoir or field are normally very limited
and does not provide an adequate sampling of the reservoir. Therefore, a cheaper and faster
method to estimate porosity is necessary. Porosity is estimated from well logs, such as bulk
density, neutron porosity, and sonic, but many of these logs are not widely available in wells of
mature reservoirs. In addition, wells without a modern suite of well logs can provide erroneous
porosity because the parameters of theoretical physical models or empirical equations are not
controlled for natural heterogeneity of lithology and fluid content, and nonlinearity of reservoir
(Helle et al., 2001; Huang and Williamson, 1997). Without modern log suites, the spatial
relationships of different reservoir properties affecting porosity determination are difficult to
quantify (Vermaet al., 2012).

Methods applied to construct reasonable porosity models with high accuracy and strong
generalization ability vary from ‘hard computation’, such as empirical prediction (“rules of
thumb”), and multilinear regression (Bloch, 1991; Byrnes and Wilson, 1991; Scherer, 1987;
Wendt et al., 1986), to computer-based intelligence ‘soft computation’, which include neural
network and machine learning (Al-Anazi and Gates, 2010b, c; Lim, 2005; Lim and Kim, 2004;
Ravandi et al., 2014; Verma et al., 2012; Zargari et al., 2013). One drawback of empirical
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prediction is that it is strongly localized to a region or formation (i.e., the empirical equation
works well only in a specific region or formation). Multilinear regression constructs a linear
relationship between dependent variables and independent variable, which facilitate the analysis
of the cause-and-effect relationships. However one should detect the exact relationship between
each dependent variable and independent variable first, which is a challenge and experience
dependence. Moreover, multilinear regression ignores the cross relationship (covariance)
between each independent variables. Artificial neural network analysis (ANN), including radial
basis function neural network, multilayer perceptron neural network, is computer-based
intelligence method that has attracted attention for porosity prediction and shows strong
generalization ability (Gardner and Dorling, 1998; Jeirani and Mohebbi, 2006). The most serious
disadvantage of ANN is overfitting due to memorization of the training set (Geman et al., 1992,
Scales and Snieder, 1998; Zhang et al., 1999). In addition, the training process minimizes
empirical risk and leads the process to fall into a local minimum and induce large prediction
errors. Though some global searching algorithms, such as genetic algorithm (Saemi et al., 2007)
and particle swarm optimization algorithms (Zhong and Carr, 2016) are applied to optimize the

searching process, the optimization algorithms remain prone to capture by a local minimum.

Support vector machine (SVM) is based on statistical-learning theory, and has been applied to
pattern recognitions and function approximation in the petroleum industry, including lithofacies
classification (Al-Anazi and Gates, 2010a; Al-Anazi et al., 2011; Wang et al., 2014); reservoir
permeability and porosity prediction (Al-Anazi and Gates, 2010b, c), minimum miscible pressure
prediction (Zhong and Carr, 2016). SVM was developed at AT&T Bell laboratories by Vapnik
and co-workers (Boser et al., 1992; Burges, 1998; Cortes and Vapnik, 1995; Drucker et al., 1997,
Smola, 1996; Vapnik et al., 1997). This algorithm was introduced to solve pattern recognitions
problems by projecting the original nonlinear data into higher dimensional feature space by
kernel functions to locate an optimal hyperplane that separates the data in the feature space
(Vapnik et al., 1997). SVM was extended to regression problems to find an optimal hyperplane
on which projected targets can be located within ¢ deviation in feature space (Fu and Cheng,
2011). To avoid large-scale quadratic programming problems the complexity of optimization
process was reduced by introducing least-squares SVM (LS-SVM) (Hemmati-Sarapardeh et al.,
2014; Wang and Hu, 2005). LS-SVM avoided the complexity of optimization process, but the

kernels function’s generalization ability was still not optimized.

44



Separating hyperplane, maximum-margin hyperplane, soft margin and kernel function are four
basic concepts for understanding SVM (Noble, 2006). Different kernel types will determine the
various performance of SVM. There are two kernel functions: one is local kernel function, such
as radial basis function kernel (RBF), which has a strong ability to extrapolate; the other is global
kernel function, such as the polynomial kernel function, which is good at interpolating (Huang et
al., 2012; Lian et al., 2013). A mixture of polynomial and RBF kernels will have better
performance than either single one (Smits and Jordaan, 2002). In this study, two conventional
well log (gamma ray, bulk density) and three derived-logs (slope of gamma, slope of bulk

density, Vsh) are used as input data, and porosity as output data to train and test SVM.

Support vector machine (SVM) with mixed kernels function, a variant of SVM, is constructed
for reservoir porosity prediction from conventional well logs. Particle swarm optimization
(PSO), one of the evolutionary algorithms is introduced to optimize the SVM’s structure
parameters (i.e., mixing coefficient, penalty(C), gamma, epsilon and polynomial degree). More
specifically, SVM with mixed kernels function is compared to SVM with regular kernel

function, such as linear, polynomial, radial basis function, and sigmoid kernel function.

2.2 Methodology

2.2.1 Artificial Neural Network (ANN)

Artificial neural networks are a branch of artificial intelligence. Multilayer perceptron neural
network (MLP-NN) and radial basis function neural network (RBF-NN) are two most wildly
used artificial neural network. They are both the feed-forward neural network and can be used in

the similar application with different performing structures.
2.2.1.1 Multilayer Perceptron Network (MLP-NN)

Multilayer perceptron neural network (MLP-NN), one type of feed-forward neural network,
consists of three different kinds of layers. The first layer is a single input layer and the last layer
is a single output layer. The number of input neurons and output neurons is problem dependent.
One or more hidden layers are located between input and output layers. The number of hidden

layers and number of hidden layer’s neurons vary, depending on the complexity of problem and
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training dataset’ quality and size (Majumdar et al., 2008). A small number of neurons in hidden
layers may lead the network to fall into a local minimum, in which case the network does not
have sufficient time to learn the dataset’s feature. Conversely, a large number of neurons will
result in overfitting the network, in which case network does learn but memorizes. These
challenges can result in trained networks losing their generalization ability (Gardner and Dorling,
1998; Jeirani and Mohebbi, 2006). A fully connected multilayer perceptron with two hidden
layers is shown in Figure 2-1a, which represents a nonlinear mapping between an input vector
and output vector (Gardner and Dorling, 1998).

Learning processes are the main component of the MLP-NN training process, in which weights
and biases are adjusted continually until expected output is produced or anticipated criteria are
achieved. The back-propagation training algorithm is the pivotal algorithm for the training
process. Gradient descent algorithm assisted in finding the best weights and biases at which the
minimum error between the desired and actual output is achieved. The testing process is used to
assess the generalization ability of the trained neural network (Saemi et al., 2007). The
designation of neural network architecture is a subjective task and problem-dependent. Since the
number input layer (five input parameters) and output layer (porosity) is constant, the hidden
layer neurons contribute a significant part to the performance of the MLP-NN as they behave as
feature detectors (Tatar et al., 2016).

2.2.1.2 Radial Basis Neural Network (RBF-NN)

Radial basis function neural network (RBF-NN) is a special type of feed-forward neural network
and is based on localized basis function and iterative function approximation (Tatar et al., 2013).
RBF-NN consists of only three layers: input, hidden and output layer (Aljarah et al., 2016;
Gardner and Dorling, 1998). The input layer is composed of an input vector. With only one
hidden layer between input and output layer, the number of hidden neurons are strongly
determined based on the specific problem. The activation function for each hidden neuron is
RBF function, which calculates the similarity between the input and a stored prototype in that
neuron. In order to increase the accuracy of the model in training and testing process, more
prototypes should be used in the hidden layer. This process not only increases the complexity of

decision boundary but also increases the computation time to evaluate the network (Aljarah et
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al., 2016). The output layer is a linear combination of previous results from hidden layer.
Compared with MLP-NN, RBF-NN has a simpler structure, and improved generalization, higher
tolerance of input noises and the ability of online learning (Singh and Rao, 2005). Figure 2-1b

displays the structure of RBF-NN, in which X is the input vector, biis biases, and ¢, is the

activation function. The activation function is formed as following:

hlx-ch om0 0. (1)
Oj

where the ciis prototype of center of the i hidden neuron, c is the bandwidth of i kernel node

and ||x —c; | denotes the Euclidean norm.

2.2.2 Support Vector Machine (SVM)

Support vector machine, based on the statistic-learning theory, was first proposed in Russia
during the 1960s (Vapnik, 1963; Vapnik and Chervonenkis, 1964; Vapnik and Kotz, 1982). It is
constructed to deal with pattern recognitions problems, where it uses adaptive margin-based loss
functions, projects the learning data (non-linearly) into higher dimensional feature space, and
locates a decision rule with good generalization ability (Zhong and Carr, 2016). The SVM
decision rule actually consists of classification functions that are expanded on a subset of support
vectors (Al-Anazi and Gates, 2010c; Boser et al., 1992; Cortes and Vapnik, 1995; Scholkopf et
al., 1997; Vapnik et al., 1997). The projecting functions are called kernel functions — K(xi, X;),
which are satisfied with the Mercer’s condition. Support vector regression (SVR) is another
variant of support vector machines, which involves nonlinear regression and time series
prediction (Drucker et al., 1997; Miller et al., 1997; Smola, 1996; Smola et al., 1998; Vapnik et
al., 1997).

Assume we are given training data{(x", y*), (x*, y?),.... (X", y™)}< y xR, where y denotes the

space of the input patterns (e.g. y =R"). For the case of a nonlinear function f , taking the form:

f (X) ={(w, (X)) +D, we y,beR Eqg. (2),
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where (.,.) represent dot product; ¢(x) represent the nonlinear function that applies linear

regression; b and @ are bias terms and weight vector, respectively.

The SVR basic concept projects the original nonlinear data into higher n-dimensional feature
space, and then a linear model- f (x), is established in this feature space. The linear regression
hyperplane in high dimensional feature space is in reality a nonlinear regression hypersurface in
original input space (Asoodeh and Bagheripour, 2013; Na’imi et al., 2012). As first described,
the objective of & - SVM regression model is to find a function f(x) by which the deviations
between estimated values of output and actual training output data equal to or less than &
(Vapnik et al., 1997). The complexity of the regression functions is essentially controlled by &£ .
In other words, the smaller value it is, the larger portion of the training data will be penalized,
which will generate a tighter SV regression model; while the larger & is, the smaller portion of
training data that will be penalized, which will produce a looser SV regression model. It is like a
tube, into which errors are accepted while the points will be penalized if any deviation is larger
than & and falls outside the tube (Smola and Scholkopf, 2004). Slack variables & and &£ have
been introduced as asymmetric bound to satisfy constraints on the function instead of the ‘hard
margin’ lose function (Bennett and Mangasarian, 1992). The SVM for regression using a kernel

function and the & -insensitive loss function is formulated as:

mi el +C3 (6 +4) £ (3),
s.t. Y, —(0,0(%))-b<e+&,i=12,.m

(0,0(%))+b-y, <e+&,i=12,...m Eq. (3a),
E,E 20,i=12,...m

The first term of Eq. (3) is the Vapnik-Chervonenkis (VC) confidence interval, whereas the
second one is the empirical risk (Al-Anazi and Gates, 2010c; Maleki et al., 2014). The
regularization constant C in Eq. (3) not only decides the complexity of the SVM model but also
makes a compromise between the confidence degree and the empirical risk minimization. An
improper C value will weaken the generalization capability of an SVM (Yuan and Chu, 2007).

Vapnik’s e-insensitivity loss function defines a tube in high dimensional feature space. The
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points outside the e-tube contribute to the loss, which is equal to the gap between the point
values and the radius of the tube. However, the points inside the e-tube contribute nothing to the

cost, which means the loss (error or cost) is zero (Zhong and Carr, 2016) (Figure 2-2, left).

In order to solve the mathematical optimization problem given by Eq. (3), it is necessary to
construct Lagrange function from the primal function and corresponding constraints (Bazaraa et
al., 2013; Luenberger and Ye, 2008; Smola, 1996). A dual formulation transformed from it
primal function is generated by introducing a dual set of variables. The saddle point in this
function represents the solution of primal and dual variables. The new dual objective function is

defined as following:

Maxmin | b 2.8 a.a’ f ) = —HwH +CZ(§. +&) i(ﬂisﬁ +5&)
) i=1 Eq~ (4)1

=Y o (e +E - yH<o,0(%) > +) =Y o] (6 + & - y+<w,0(%) > +b)
i=1 i=1

where is L the Lagrange function and a*, a, B* and B are positive Lagrange multipliers, which
represent the virtual forces resulting from the constraints of primal problem. Based on Karush-
Kuhn-Tucker (KKT) theorem, only active constraints may result in Lagrange multipliers not
equal to zero, which means only the data points with non-vanishing Lagrange multipliers have to

be taken into account (Smola, 1996), meanwhile the partial derivatives of L with respect to the

primal variable (o,b, &, &) vanish at the optimum (actually a saddle point).

oL
_0 —_— . g
ab %Z(a «)
oL
6__0—)0) Z(a —a;)p(%) =0 Eq. (5),
LRSI
aé()

Substituting equation (4) into equation (3) generates the following dual optimization problem.

Jmax 2 (e - a) ey —a o) px ) - e @ ) + Y yila —a)  Ea. (6)

i=1l j=1
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s.t. D (o —)=0 Eq. (6a),
i=1
After elimination of @, the regression model is defined as following:

(0= (@~ Yo(x)p(x, ) +b £q. (7,

Based on Mercer’s condition, the inner product (e(x;), (x;)ycan be defined through a kernel
K(x,x;). S0 substituting K(x,,x,)into Equation 7 the support vector expansion of regression

estimation model becomes
f(x) = (o — )K(x;, %) +b Eq. (8),
i=1

2.2.2.1 Least Squares Support Vector Machine (LS-SVM)

As discussed above, resolving a large-scale quadratic programming problem is inevitable. To
deal with this challenge, Least-Squares SVM (LS-SVM) is introduced, which is modified from
the traditional SVM (Suykens and Vandewalle, 1999, 2000). Avoiding large-scale quadratic
programming problems, this technique solves linear equations and reduces the complexity of
optimization process (Hemmati-Sarapardeh et al., 2014; Wang and Hu, 2005). In this LS-SVM
technique, Suykens and Vandewalle (Suykens and Vandewalle, 1999, 2000) reformulated the
SVM as follows:

1 m
min E”a)”2 + yZef Eq. (9),
© i=1
st. y; =(@,0(x))+b+e,i=12,...m Eq. (%),

Where y > 0is a regularization constant; and e, are error variables for i" output. After the

primal function is transformed into its dual formulation, the Lagrange for this problem is as

follows:
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max min L(b,6,0) = Joff + 7Y ef > a (6 + <.p(4) > +b-y,) Ea. (10)
i=1

i=1

where L is the Lagrange function, and a is positive Lagrange multipliers? Based on Karush-
Kuhn-Tucker (KKT) theorem, only active constraints may result in Lagrange multipliers not

equal to zero. Thus the partial derivatives of L with respect to the primal variable (@,b, «;,€,) are

determined as following:

aLLS SVM =
—=—=0->)> ;=0

o 2
oL m
M:O—>a)—Z:05i(o(Xi):O

ow i1

Eg. (11),

aI-LS_SVM ~0>a % =0

6e| I I
oL
%:O—>ei+<w,¢(xi)>+b—yi =0

Q;

These conditions are similar to traditional SVM optimality conditions in Eqg. (5), except for the

condition % = 7€ , for which the sparseness property has been lost in LS-SVM (Figure 2-2 right).
(@(%), (X))

After elimination of @ ande, the inner product

K(x;, XJ). So the function of LS-SVM model becomes:

can be defined through a kernel

f(x)=iaiK(xi,xj)+b Eqg. (12),

2.2.2.2 Mixed Kernel Function Based Support Vector Machine (MKF-SVM)

The projection function in SVM model consists of kernel functions- K(%,x") . Kernel function
maps the original linearly or non-linearly learning data from original space into high dimensional
feature space, in which all of the data can be presented linearly (Al-Anazi et al., 2011). A kernel
function must meet Mercer’s condition (Boser et al., 1992; Burges, 1998; Cortes and Vapnik,
1995; Smola and Schélkopf, 1998; Smola and Schélkopf, 2004), as following:
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Suppose K(X,X") e L,(R") ®L,(R")
3vg(x) € L(R"),
) L@Z K(X,X)g(X)g(X")dxdx" >0 Eq. (13),

Based on this theorem, Table 2-1 listed four kernels, which determined the various
characteristics of SVM model. According Smola and Schélkopf (1998), there are two types of
kernels including local kernels and global kernels (Smola and Schélkopf, 1998). As shown in
Figure 2-3a, data points that are far away from each other have a significant influence on the
kernel values in a global kernel. One typical example of a global kernel is polynomial kernel in
Eq. (14) (Smits and Jordaan, 2002; Zheng et al., 2004).

Kploy(xiixj)=(<Xiixj>+1)d Eq. (14),

Kernel’s interpolation capacity is positively correlated to the degree of polynomial kernel, while
its extrapolation capacity is negatively correlated to the degree of polynomial kernel. As Figure
2-3b displays, a local kernel allows data points that are close to each other to have a significant
influence on the kernel values. The radial basis function kernel (RBF) is the typical local kernel,
as defined in Eq. (15).

Ko (%)) =@ (=7 = ;) Eq. (15),

Local kernel’s interpolation ability is positively correlated to the gamma (7) value. The smaller
value of /' is, the worse its interpolation ability will be and vice versa. In another word, no single

value of kernel parameter polynomial degree or” will provide a model with both strong
interpolation and extrapolation properties (Smits and Jordaan, 2002).

One corollary can be generated based on the Mercer’s conditions. AssumingK,(%,X), K,(X,X") are

admissible support vector kernels andC;,C, 20,
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K(%,X") =CK,(X,X)+C,K,(X,X) Eq. (16),

K(X,X")is an admissible kernel [55]. Numerous investigators have proposed the mixed kernels

function K(X,X "), which combines the good characteristics of both K, (X,X) and K, (X,X )

(Huang et al., 2012; Lian et al., 2013; Smits and Jordaan, 2002; Smola and Schoélkopf, 2004;
Yang et al., 2013; Zhu et al., 2005).

The mixtures of the RBF and polynomial kernels can be defined as Eq. (17, 18)

Kix = MK g, + @ =m)K ¢ 0<m<1 Eq. (17),

Ko (%1 %;) =M% %) +D)° + @-m)exp (7% —x;[) 0<m<l Eq. (18),

where K, is a polynomial kernel and K ; is a radial basis function kernel, m is the mixing
coefficient. If m=1, then the mixed kernels function will become the polynomial kernel, which

means K ;, = Kploy. If m=0, then the mixed kernels function will equal the RBF kernel, which
means K, = K,s . The effect of the mixing a polynomial kernel with an RBF kernel is shown in

Figure 2-3c, where X, =0.2,7 =0.1,d =1. The mixed kernels function has characteristics of both

the polynomial kernel and the RBF kernel and improves fitting and generalizing ability.
2.2.3 The Proposed Hybrid PSO-MKF-SVM Model

Based on stochastic search and optimization processes, Eberhart and Kennedy (1995) first
introduced the concept of particle swarm optimization algorithm (PSO) (Eberhart and Kennedy,
1995). PSO imitated human (or insect) social behavior as a typical evolutionary algorithm.
Individuals interact with one another while learning from their own experience, and gradually the
population members’ move into better regions of the problem space (Eberhart and Kennedy,
1995; Zhong and Carr, 2016). Particles indicate the potential solution and randomly locate in the
architecture space (like birds randomly distributed in a specific open environment). Global
optima of fitness function for each generation can be calculated based on the position of

particles. Because the selection of kernel function parameters determine the performance of

53



SVR, both particle swarm optimization and n-fold cross-validation re-sampling method are
employed to optimize the parameters, which include mixing coefficient (p), penalizing
coefficient (C), RBF kernel parameter (Y°), polynomial degree (d) and (¢) in e-insensitivity
function. This algorithm starts at the random position, by updating velocity and position
repeatedly, the particles will search the global extremum in the searching space. In this paper, the
positions of particles, P (p, Y, d, C, €), represent the values of parameters which will be
optimized. In the actual optimization process, the SVM parameter p is limited in [0, 1], Y in [2,
24],din[1, 3], Cin[2% 2°] and £ in [0.001, 0.01], and the PSO searches the optimal values of
the SVM parameters in these areas. Figure 2-4 illustrate the detailed process of PSO-MKF-SVM
model for porosity prediction. Fitness function for PSO algorithm is MSE, which is formulated

as:
1 -
I:Fitness = EZ(M - yi)2 Eq- (19)1

where ¥ is predicted value, y; is true value and m is number of samples. Figure 2-4 shows the

workflow for the optimization of the parameter in mixed kernel function. For more details about
PSO and workflow, referring (Eberhart and Kennedy, 1995; Poli et al., 2007; Sayyad et al.,
2014).

2.2.4 Predictive Performance Evaluation Index

In order to test that the newly hybrid PSO-mixed kernel function based support vector machine
(MKF-SVM) performs better than other models, five evaluation indices including correlation
coefficient (r), coefficient of determination (R?), average absolute error (AAE), root mean square
error (RMSE), and maximum absolute error (MAE) were chosen to evaluate the performance of
various regression models (Jiao et al., 2016; Zhong and Carr, 2016) (Table 2-2). An R?
(Coefficient of Determination) of 0 indicates a completely inaccurate model, while an R? of 1
indicates a perfect regression model. Moreover, RMSE is used to evaluate overall performance,
while AAE and MAE are used to determine the error range of the predicted results. When the
values of R? is higher and the values of AAE, MAE and RMSE are smaller, the forecast

performance is better.
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2.3 Case Study

2.3.1 Geological Background

Jacksonburg-Stringtown field is situated along the axis of the Burchfield syncline in
northwestern West Virginia (Figure 2-5b). The estimated original oil in place (OOIP) in
Jacksonburg-Stringtown oil field is 88 million barrels of oil (MMBO). Since discovered in 1895,
estimated about 22 MMBO oil has been produced, and the estimated oil recovery factor is 25%.
The primary and/or secondary producing reservoir unit is Late Devonian Gordon Stray interval,
which is contained within the Middle to Late Catskill deltaic complex (Catskill delta). During
Early to Middle Devonian, crustal uplift in Acadian orogeny lead to further subsidence within
the Appalachian foreland basin to the west and resulted in the deepening of the central
Appalachian basin (Faill, 1997a, b). Deposition coincided with the heavy rainfall produced by
the tropical climate, sedimentary deposition accelerated during the Middle and Late Devonian
(Blakey, 2008; McBride, 2004; Piotrowski and Harper, 1979). In the Late Devonian, five major
delta systems prograded westwards and dominated the foreland ramp (Figure 2-5a). In the latest
Devonian, maximum progradation of the Catskill delta complex was achieved west of the
Acadian highlands (Boswell and Donaldson, 1988). During this period, Acadian tectonism
ceased, and relative sea-level changes within the basin were controlled primarily by sea-level
fluctuations and variations in sedimentation in an estuary (Coughlin, 2009). Non-marine red
shale and most of the low-energy alluvial deposits are concentrated in the eastern portions of the
Appalachian basin. Non-marine sediments increasingly advanced westward to cover marine
beds, and near-shore deposits continued to prograde into the central Appalachian basin. In the
area of Jacksonburg-Stringtown field, Gordon stray/Gordon interval are interpreted to be
shoreline/shore-face sandstone that occupied a broad structural trend at the time of maximum

regression of the Acadian clastic wedge (Hohn, 2004).

Gas re-injection program took place in the field beginning in the mid-1930’s and ended in the
1950’s. First pilot waterflood program with a 35 acre dual 5-spot well pattern was conducted in
1981. After 1990, a full-scale waterflood was installed over a large portion of the field
(Bergerud, 2011). Unlike modern oil and/or gas fields, which have abundant, high-quality data,

including conventional and advanced well logs, seismic data to construct 3D geological model,
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Jacksonburg-Stringtown oil field has plentiful low quality well log data (i.e. gamma-ray, bulk
density), and limited high quality core data (core measured porosity and permeability data) for
reservoir modeling. The sparse modern subsurface data can constrain the development of a

robust geological reservoir volumetric model and effective evaluation of potential of enhanced

oil recovery and CO; geologic storage capacity.
2.3.2 Pre-processing of the Dataset

A total of 94 samples with both core data and conventional logs were collected from wells T.H8,
H9, B19, B18, LM13 and H11 in the Jacksonburg-Stringtown field. The relative locations of
each well are shown in Figure 2-5b. To establish a reliable PSO-MKF-SVM regression model,
the dataset is divided into two parts: training and testing data. The procedure used to train and

test support vector regression technique is summarized as follows:

1) Training and testing data generation: there are a total 6 cases as shown in Table 2-3. In
each case, data combined from five wells were used to train the PSO-MKF-SVM regression
model, while remaining data of last well were applied to evaluate the accuracy and stability of
the trained regression model. Based on the materials on hand, two conventional well logs and
three log-derived variables were chosen as PSO-MKF-SVM input parameters and core-based
porosity as a scalar output. Two well logs are gamma-ray log (GR), bulk density log, and three
derived variables include the slope of GR, the slope of density, and Vsh. Figure 2-6 shows the
heterogeneity of Gordon Stray, there are no clear linear relationships between input parameters
and output porosity value.

2 Data normalization: Dataset normalization is an important process before training and
testing proposed model in order to improve prediction accuracy and training speed. Absolute
scale is used for all input parameters which are normalized into range of [0, 1]. Following

normalized formula were chosen:

X old - X
[ xm'" | Eq. (20),

where X is the normalized input vector, X, and X . are the minimum and maximum and

value respectively, x°"“are the original input vector.
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2.4 Results

In this study, improved e-SVM with normal kernel function and mixed kernel function, listed in
Table 2-1, are applied for constructing a regression model to predict reservoir porosity (¢) based
on conventional well log data, including gamma ray, bulk density well log data and three log-
derived data, such as slope of gamma ray, slope of density, and shale volume (Vsn). The LIBsvm
toolbox (Chang and Lin, 2011) was used to assist in completing this study by Matlab software
(MATLAB Release 2012b). Grid searching algorithm was used to search best control parameters
of normal kernel functions as listed in Table 2-1. Table 2-4 displays the typical parameters range

for training SVR. Based on experiments, 4-fold cross validation is more appropriate.

For SVR with traditional kernel function, such as linear, polynomial, RBF, sigmoid kernel
function, finding the global optimum of gamma and C value is really a challenge. Figure 2-7
shows the process of optimizing penalty C and gamma value by grid searching algorithm for
well case 1 as described in Table 2-2. The color of the contour lines in the figure indicates the
mean square error (MSE), the blue color is smaller MSE, and the red color is larger MSE. The

smaller MSE indicates a more accurate model.

However, it takes a long time for grid searching algorithm to determine a global optimum of all
parameters in the mixed kernel function. The particle swarm optimization algorithm is applied to
optimize the control parameters in mixed kernel function. Figure 2-8 shows optimization process
of mixing coefficient (p), penalizing coefficient (C), RBF kernel parameter (Y°), polynomial

degree (d) and ¢ in g-insensitivity function in mixed kernel function for well case 1.

As Figure 2-7 shows, the minimum MSE of SVR models with normal kernel function are greater
than 4, however, the minimum MSE of SVR model with mixed kernel function is 2.1362 (Figure
2-8). The SVR model with mixed kernel function performance is improved over the SVR with
normal kernel function. All Y and C values are exponentially 2 in SRV with linear, polynomial,
sigmoid and RBF kernel. This phenomenon is caused by its optimizing algorithm. Grid searching
algorithm can just increase searching steps by exponential 2, and cannot search the value
between those values. But particle swarm optimization is based on stochastic searching, which

means the parameters can take any value.
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Figure 2-9 indicates the correlation coefficient of SVR for training and testing stage with five
kernel functions for six well cases, respectively. High value of correlation coefficient
demonstrates that the SVR method performed very well as a regression technique in both
training and testing stage. Comparison results using coefficient of determination (R?), correlation
coefficient (r), root mean square error (RMSE), average absolute error (AAE) and maximum
absolute error (MAE) are shown in Table 2-5. Table 2-5 list the RMSE, AAE and MAE for SVR
with different kernel function for SVR training process for well case 1 through 6. Compared with
the performance of other kernel functions, the mixed kernel function works better with lower
errors. Table 2-6 list all the well-trained control parameters, which can be used for further testing
and future prediction. As in Table 2-6 shown, a little change will influence the final result
dramatically. Table 2-7 list the RMSE, AAE and MAE for SVR with different kernel function
with well-trained parameters for well case 1 through 6. Though the errors of testing runs are
larger than training runs, the performance of mixed kernel is an improvement over other kernel

function.
2.5 Comparison and Discussion

To confirm the model’s forecast ability, the comparison between the proposed model with the
predicted results calculated from the newly hybrid PSO-MKF-SVM model is necessary. Those
proposed models include MLP-NN, RBF-NN, RBF-SVM, POLY-SVM and RBF-LS-SVM
models. Multilayer perceptron neural network is widely used in petroleum industry, especially in
reservoir characterization problem (e.g. porosity and permeability prediction) because of its
strong feature learning and generalization ability. The radial basis function neural network (RBF-
NN) is the special improvement of MLP-NN, which just has one hidden layer and the active
function of hidden neurons are a Gaussian radial basis function. The RBF-NN has strong
approximation ability and high convergence speed. RBF-SVM and POLY-SVM are both
standard support vector machine, but using a different kernel function. The RBF kernel function
uses local kernels that have stronger interpolation ability, while polynomial kernel function
belongs to a group of global kernels that have stronger extrapolation ability (Zhong and Carr,
2016). Different kernel function performance varies, so both kernel functions are selected to
compare with newly developed hybrid PSO-MKF-SVM model. RBF-LS-SVM is further

improved SVM with RBF kernel function. Because this technique applies last squared technique
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to reduce complex optimization process, LS-SVM has fast learning speed and good

generalization ability.

To evaluate the accuracy and stability of PSO-MKF-SVM model, three evaluation parameters
(e.g. RMSE, MAE, AAE) serve as the criteria to assess the stability of PSO-MKF-SVM model
and one parameter (R?) were applied to evaluate the accuracy of this proposed hybrid model.
Their effects are displayed in Figure 2-10, in this situation case 5 was applied. In training
process, PSO-MKF-SVM model has highest R? and smallest RMSE, AAE, and MAE. Those
indexes indicate that hybrid PSO-MKF-SVM model performs best. In contrast, MLP-NN
performs worst (Figure 2-10a). In testing process, PSO-MKF-SVM model still has highest R?
and smallest RMSE, AAE, and MAE (Figure 2-10b). The hybrid PSO-MKF-SVM is the best
mode in those models. Other models are not accurate or stable neither because of low R?or large
RMSE, AAE or MAE. The training process learns the feature from the training dataset, and
testing process verifies the process, which reflects the generalization ability of a model. After
detailed comparison of the all above-listed regression models, the hybrid PSO-MKF-SVM
regression model is a reasonable, accurate and stable regression model because all indexes
(RMSE, MAE, AAE and R?) are lower. A comparison between core measured porosity and the
predicted porosity by the six proposed models are displayed in Figure 2-11. Figure 2-11a
displays a good agreement between core measured porosity and PSO-MKF-SVM predicted
porosity with highest R? (0.9140) and r (0.9560), and lowest RMSE (1.6505), AAE (1.4050) and
MAE (2.717).

2.6 Conclusions

For reservoir characterization and evaluation of applications such as enhanced oil recovery and
CO2 geologic storage in mature oil fields, accurate calculation of fluid and gas volumes is
dependent on accurate porosity estimation from often very limited log and core data. It is
necessary to develop an effective method to improve prediction with limited subsurface data of
reservoir porosity across wells in a reservoir. The hybrid PSO-MKF-SVM regression model is
introduced and is applied to predict the porosity in the Jacksonburg-Stringtown depleted oil field.
The result demonstrates that this hybrid model is a potentially accurate and robust methodology

to improve porosity prediction with limited subsurface data. In a comparison, the newly hybrid
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PSO-MKF-SVM model outperforms the LS-SVM model, SVM model, BRF-NN and MLP-NN
model. Through the foregoing analysis and discussion the prediction result, several conclusions

were developed -

1) The hybrid PSO-MKF-SVM regression model provides a reliable way of estimating
porosity from limited conventional well log data.

2 Support vector regression model performance varies due to different kernels functions
and control parameters. Polynomial and RBF kernels are typical global and local kernels. Mixed
kernel function takes advantages of RBF kernel function and polynomial kernel function to
increase the applicability of SVM.

3) PSO, as an evolutionary algorithm, can improve the efficiency and accuracy of locating
the optimal value in searching space. However, caution is required since premature convergence
and suboptimal search results can occur prior to locating the global optimal (Figure 2-8). Further
investigation is needed.

4) The comparison between hybrid PSO-MKF-SVM and other proposed models show that
this hybrid model has excellent performance and great generalization ability with higher R?
(0.9140) and r (0.9560), and smaller RMSE (1.6505), AAE (1.4050) and MAE (2.717).
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Hidden Layers of Hidden Layer of Gaussian
a) Sigmoid function nodes b) Radial Basis Function nodes

Figure 2-1. (a) The structure of fully connected multilayer perceptron with two hidden layers.
The active function of hidden neurons is sigmoid function. (b) The structure of fully connected
RBF neural network, the active function of hidden neurons is Gaussian radial basis function
(modified from Aljarah et al. 2016).
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Figure 2-2. Comparison of SVM and LS-SVM for linear regression. Standard SVM (left) use &-
insensitive loss function, in which data points lying on or outside of e-tube of decision function
are support vectors, and the gap between data points and the radius of tube are slack variables
(¢ (*)). LS-SVM (right) involves equality constraints and uses least square loss function, in
which the e-tube and slack variables are replaced by error variable (ei) (modified from Wang et
al. 2005).
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Figure 2-3. Mapping features of polynomial, radial basis function and mixed kernel function. (a)
is radial basis function kernel, x = 0.2 is test point. Various values of Y was selected, the points
adjacent to the test point have a great influence on the kernel values; (b) is polynomial kernel, d
is the operation degree, x = 0.2 is test point. VVarious values of d were selected, only the points
that are far enough from test point will have an effective influence on the kernel value; (c) is
mixed kernel function. m is mixing coefficient, x = 0.2 is the test point, Y'is 0.1 and d = 1.
Various values of mixing coefficient (m) were selected, data points that are both far away from
the test point and adjacent to the test point have a great influence on the kernel values.
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Figure 2-4. Workflow of PSO to optimize parameters of mixed kernels function.
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Figure 2-5. (a) Late Devonian paleogeography of study area and five major delta systems in
Appalachian foreland basin, black lines indicates geographical state boundaries and approximate
location of Jacksonburg-Stringtown field is highlighted in red. (b) Location of cored wells in the
Jacksonburg-Stringtown field in northwestern West Virginia that were used in the study. Figure
2-5a modified from Bowell, 1988.
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Figure 2-6. Porosity vs. different log derived variables which are used as input parameters in this
study. It indicates that there are not strong linear relationships between porosity and each input
variables.
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Figure 2-7.The process of searching for best gamma and cost parameters by grid searching
algorithm for SVR with linear kernel (a), polynomial kernel (b), RBF kernel (c), sigmoid kernel
(d) and n-fold of 4. The color of the contour lines in the figure indicated the associated cross-
validation mean square error. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Figure 2-8.The process of searching for best gamma, penalty, mixing coefficient, degree and
epsilon by particle swarm optimization (PSO) for SVR model with mixture of kernels and n-fold
of 4.
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Table 2-1. Common kernel functions and corresponding mathematical expressions.

Linear Kernel KX, X;) = (%, X;) +¢C
Polynomial Kernel K(Xi,Xj)=(7<Xi,X,->+C)d

. . . 2
Radial Basis Function Kernel K(%,X;) = eXp(‘?’HXi _ Xi” )
Sigmoid Kernel K(X,X;) = tanh(y{x;, X;) +¢)
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Table 2-2. VVarious error measures used for accuracy assessment on this paper.

Accuracy measure Mathematical expression
. . . . 2 N ~
Coefficient of Determination, R e Zi:l(yi -9.)
N
>y, —averg(y,))
. .. N _ A ~
Correlation coefficient, r Zi:l(yi )= )

r= N N A N2
Zi:l(yi - y.) Zi:l(yi - yi)

Root mean square error, RMSE

1 N
RMSE =Jﬁzi“_1(yi —9,)?

Average absolute error, AAE 1 <

AAE = Nzizl()/i - )7,)

Maximum absolute error, MAE MAE = max‘y_ - y‘ i=12...N
| 1! (b I |
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Table 2-3. Training and testing wells from the Jacksonburg-Stringtown field used in this paper.

Well case index Training well Testing well
1 TH_8,H 9,B 19,LM_13,H 11 |B_18

2 TH_8,H 9,B 19,LM_ 13,8 18 | H_11

3 TH_8H 9B 19,H 11,8 18, |LM_13

4 TH 8H 9LM_13,H 11,B 18 |B_19

5 TH 8,81 9,LM 13,H 11,B 18 | H_9

6 H 9B 19,LM _13,H 11,B 18 |TH_8
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Table 2-4.Typical parameters used for training SVM regression model with different learning
algorithms.

Common parameters for training SVR

Sample size 94 Termination criterion (e) 0.005
Gamma bound 204)-2(4) Cost bound 204)-2(6)
rin polynomial and sigmoid function 1 n-fold 4

Special parameters for grid searching algorithm

Gamma searching step

| ALog2(gamma) =04 |

Cost searching step

| ALog2(cost) =04

Special Parameters for particle swarm optimization (PSO)

Maximum generation 100 Population size 40
Cognitive efficient (c1) 14 Social efficient (c,) 1.7
Initial inertia weights Witart 0.9 Final inertia weight Weng 0.4
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Table 2-5. Error measures, RMSE, AAE and MAE, resulting from SVM regression model
training with different kernel function.

Well case Linear Kernel Polynomial Kernel RBF Kernel Sigmoid Kernel Mixture of Kernels
index
RMSE AAE MAE RMSE AAE MAE RMSE AAE MAE RMSE AAE MAE RMSE AAE MAE

1 1.9500 1.5689 5.0335 1.9952 1.4936 5.5082 1.9298 1.5388 5.1839 21115 17313 4.8846 1.5285 1.0287 47721
2 2.3594 18171 5.4489 2.1125 1.5191 4.9851 1.6245 0.9765 6.2904 2.4592 1.8277 6.3440 2.1074 1.5662 5.4573
3 23050 1.6346 5.0849 1.9486 1.1962 5.5820 1.5563 0.8826 59702 24827 17704 6.1409 2.0940 1.4381 6.9185
4 2.2237 1.6400 3.9323 1.4604 0.9056 3.7720 0.7668 0.4246 2.0947 23076 1.8031 5.1416 1.5860 0.9915 5.3350
5 2.3537 1.8076 4.9793 1.9471 1.1606 5.6995 1.9017 1.1960 5.6380 2.6604 1.9417 59941 1.8493 1.2238 53077
6 23102 1.8108 5.2645 1.9170 1.2368 6.2455 1.7230 1.0277 6.7035 2.4820 1.8991 5.2730 1.9362 1.4222 5.4454
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Table 2-6. Basic control parameters for SVM regression model training with different kernel
function.

Well case Linear Kernel Polynomial Kernel RBF Kernel Sigmoid Kernel Mixture of Kernels
index
R R? Y C R? Y C R? Y C R? B Y d C 3

1 0.9085 09028 22974 01436 09109 00313 97.0059 08935 03299 16 09434 04792 96.3658 3 168.1266 0.0794
2 08785 08976 30314 01088 09033 26390 139288 08666 1.000 52780 09086 06594 14.0913 14169 137.8577 00102
3 08562 08926 22974 1 08837 34822 139289 08288 01895 16 08912 05107 544831 16856 560.1957 00543
4 0.8908 09503 91896 01436 09509 26399 388.0234 08859 01088 16 09620 01107 86.9035 3 762.511 0.0990
5 0.86500 09033 22974 17411 09007 00947 27023522 08221 1 52780 09158 06247 19.9453 26327 636.1171 0.0834
6 08830 09172 52780 01436 09172 26390 105561 08664 03299 16 09183 0.6067 401341 21118 8289583 0.0457
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Table 2-7. Error measures, RMSE, AAE and MAE, resulting from SVM regression model
testing with different kernel function.

Wel Linear Kernel Polynomial Kernel RBF Kernel Sigmoid Kernel Mixture of Kernels
1
case
ind RMS AAE MAE R RMSE AAE MAE R RMSE AAE MA R RMSE AAE MAE R RMSE AAE MAE R
ex E B
1 337 2396 2.200 0.856 4.256 3351 5.881 0.781 31998 2.287 19 0.8679 34272 2475 25732 08432 3.2831 2562 27151 0.8657
34 1 1 1 4 8 7 4 8 303 2 9
2 2.63 2177 0421 0874 2.295 1772 0927 0874 2.5851 2164 17 08199 34543 2878 39375 05582 26321 2.105 03312 0.8825
78 6 9 7 3 4 1 9 4 099 3 3
3 264 2309 4230 0.857 2.687 2297 4300 0877 11813 1558 29 08976 31367 2777 4.8361 08223 40314 3507 | 60.524 08104
98 4 8 3 6 2 5 8 0 500 7 4
0
T 2.38 1979 4820 0.774 3597 2.200 1314 0550 38257 2.680 11 0.6300 24114 2.025 4.7866 0.7791 25655 2111 48584 0.7510
82 3 6 8 4 32 76 6 1 669 0 7
0
5 168 1270 1.898 0909 2402 1.760 2339 0845 2.2904 1714 24 08539 22604 1685 2.6461 0.8487 16505 1405 27171 09140
80 7 6 9 6 1 9 9 3 709 9 0
6 193 1477 5264 0.865 2,004 1739 6.245 0879 2.2927 1.905 67 08372 1.9520 1470 52729 0.8665 20625 1619 54454 08642
45 0 5 6 5 3 5 3 2 035 7 6
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Abstract

As concerns around global warming increase, carbon capture, utilization and geological storage
(CCUS) is a promising way to reduce the emissions of anthropogenic CO> into the atmosphere.
Sequestering the CO> into depleted hydrocarbon reservoirs with associated enhanced oil
recovery (EOR) is the most achievable approach under current economic constraints since it
increases recovery of existing oil reserves, and bridges the gap between regional-scale CO>
capture and geologic sequestration. The Upper Devonian fluvial sandstone reservoirs in the
Jacksonburg-Stringtown oil field in West Virginia, which have produced over 22 million barrels
of oil since 1895, are ideal candidates for CO; sequestration coupled with EOR. Reservoir
storage capacity and oil recovery factors are keys for the evaluation of coupled CO. storage and
CO»-EOR process. In this research, a static 3D reservoir model, which integrates detailed
geological knowledge and existing legacy geological data from Jacksonburg-Stringtown oil field,
is constructed to estimate theoretical CO> storage capacity. Regression relationship between
wireline logs and core measured data for porosity, permeability are constructed by artificial
neural network and support vector machine in core-scale; then those regression models are
extended from core-scale to well-scale, where wells do not have porosity and permeability
wireline logs. Finally a 3D static geological model is generated based on the Random Gaussian
Function simulation method and well-established variogram models generated by detailed data
analysis. Depending on the proposed 3-D geological model, the best regions for coupled CCUS-
EOR are located in southern portions of the field, and the estimated CO. theoretical storage
capacity for Jacksonburg-Stringtown oil field ranges from 24 to 383 million metric tons. The
estimated results of CO. sequestration indicate that the Jacksonburg-Stringtown oilfield has
significant potential for CO; storage and value-added EOR.

3.1 Introduction

Svante Arrhenius proposed 100 years ago the basic model in which the variations of Earth’s
surface temperature are related to the concentration of carbon dioxide (CO2) (Crawford, 1997;
Rodhe et al., 1997). The greenhouse model was resuscitated in the 1970s due to the concern of
global warming resulting from the increased greenhouse gasses emissions from industrial

sources, fossil fuel combustion and land-use change (Falkowski et al., 2000; Quéré et al., 2014;
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Queéré et al., 2013b). In order to maintain future global warming below 2°C above pre-industrial
levels, approximately 9.5 gigatons (Gt) carbon/year or 35 Gt CO>/year will need to be captured

and stored before entering the atmosphere (Peters et al., 2012; Quéré et al., 2013a).

The common approaches to mitigate potential global climate change induced by anthropogenic
emissions of CO; and other greenhouse gases is to reduce CO2 emissions or to increase storage in
COz2 sinks (Bachu, 2000). CO2 emissions reduction while satisfying increasing global energy
demands is not viable on current technological and engineering conditions. Carbon capture,
utilization and storage (CCUS) captures the anthropogenic carbon dioxide (CO.) from large
stationary carbon sources, such as coal and natural gas power plants or resource extraction
industries. Then the CO- is either piped or transported to specific sits, and utilized or stored into
deep geological media, oceans, or settling through surface mineral carbonation, thus achieving a
long-term isolation of CO> from the atmosphere (Bachu, 2000; Jiang et al., 2014).

One of the most effective sites to store CO; are depleted gas and oil reservoirs because the
characteristics of hydrocarbon reservoirs are generally better known as a result of the extensive
history of exploration and production (Zhao and Liao, 2012). In addition, CO> can also enhance
oil recovery (EOR) and can cover part of the cost of sequestration. Theoretical storage capacity
is sensitive to the porosity model, and effective storage capacity is sensitive to the porosity and
permeability model, thus constructing a reasonable 3D geological reservoir model is critical for
the evaluation of coupled CO: storage and CO2-EOR process. Detailed sources to sink matching
analysis, which is matching storage sites to large emission sources is also an important step for

accurate estimation of CO; storage capacity.

Unlike modern oil and/or gas fields, which have abundant, high quality data, including
conventional and advanced well logs, seismic data, production data and geological framework to
construct 3D geological models, a super-mature oil field, such as Jacksonburg-Stringtown oil
field, has plentiful low quality data, and limited high quality data. The sparse modern subsurface
data can constrain the development of a robust 3D static geological model when evaluating the

CO; storage capacity.
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The focus of this research is to evaluate the capacity of CO. sequestration and the potential of
CO»-EOR in a highly mature and depleted oil reservoir, Jacksonburg-Stringtown oil field in
West Virginia, USA. This research will ultimately aid in the determination of the technical and
economic suitability of the field for long-term storage of supercritical CO.. In addition, the
proposed research will construct and validate a basic workflow for CO; storage capacity
evaluation that can be applied to other mature gas and/or oil fields, which have limited high
quality modern data. Once this detailed assessment has been achieved, it will be possible to
express capacity at a regional level as a annual sustainable rate of injection, not just as a total
volume (Bradshaw et al., 2007).

Specific objectives within the scope of the proposed research include:

e to predict permeability values with the aid of artificial neural network (ANN),
e to estimate porosity values by using support vector machine (SVM), and

e to construct a 3D geologic reservoir model and to calculate theoretical CO> storage

capacity.
3.2 Geologic Background

The Jacksonburg-Stringtown field, located in northwestern Doddridge, southeastern Wetzel and
eastern Tyler counties, West Virginia, sits along the western edge of the Burchfield syncline
(Figure 3-1Db). The primary and/or secondary producing reservoir units of Jacksonburg-
Stringtown oil field are in the middle to late Catskill deltaic complex (Catskill Delta), which is a
thick sediment wedge deposited during the Late Devonian (Ameri et al., 2002; Boswell, 1988;
Bridege and Willis, 1994). This clastic wedge includes the Early Mississippian Price-Rockwell
deltaic complex (Price Delta) composed the Acadian clastic wedge, which was deposited as
various marine and continental beds associated with the Early and Middle Devonian Acadian
orogeny (Bjerstedt and Kammer, 1987).

During Early to Middle Devonian, crustal uplift in Acadian orogeny lead to further subsidence
within the Appalachian foreland basin to the west and resulted in the deepening of the central
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Appalachian basin (Faill, 1997a, b). Deposition coincided with the heavy rainfall produced by
the tropical climate, sedimentary deposition accelerated during the Middle and Late Devonian
(Blakey, 2008; McBride, 2004; Piotrowski and Harper, 1979). A series of river systems aided
transport of sediment westward into the Appalachian basin (McBride, 2004).

In the Late Devonian, five major delta systems prograded westwards and dominated the foreland
ramp (Figure 3-1a). Delta systems are separated by the interdeltaic shale (Coughlin, 2009;
Dennison, 1985). Two southernmost delta complexes deposited the Bradford and Venango
groups (Boswell and Donaldson, 1988). In the late Devonian, maximum progradation of the
Catskill delta complex was achieved west of the Acadian highlands (Boswell, 1988; Tassell,
1987). During this period, Acadian tectonism ceased, and relative sea-level changes within the
basin were controlled primarily by eustatic sea-level fluctuations and variations in sedimentation
(Coughlin, 2009). Non-marine red shale and most of the low-energy alluvial deposits are
concentrated in the eastern portions of the Appalachian basin. Non-marine sediments
increasingly advanced westward to cover marine beds, and near-shore deposits continued to
prograde into the central Appalachian basin (Figure 3-2). Marine shale units are mainly
deposited in western portions of Appalachian basin in Kentucky and Ohio (Donald L. Woodrow,
1983; Moore, 2009). The shore zone became the discernable feature of the Catskill delta system,
which can be used to illustrate the progradation direction and evolutionary history of this delta’s
structure (Faill, 1997a).

The Gordon stray and/or Gordon interval, our target CO> storage formation, is thick part of
Venango Group in the Catskill delta, as shown in Figure 3-2. In the area of Jacksonburg-
Stringtown field, Gordon stray/Gordon intervals are interpreted to be shoreline/shoreface
sandstone that occupied a broad structural trend at the time of maximum regression of the
Acadian clastic wedge (Hohn, 2004). Like many of the oilfields in West Virginia, oil is trapped
downdip of gas accumulations along the structural highs.

This field was discovered in 1895, the original oil in place (OOIP) is estimated at 88 million
barrels of oil (MMBO), and primary production is estimated at 22 MMBO. The estimated oil
recovery factor is 25%. Total Jacksonburg-Stringtown field covers 15,386 Acres, but the

effective area is 4,388 acres (Ameri et al., 2002). Average well spacing is 13 acres per well. Gas
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re-injection program took place in the field beginning in the mid 1930’s and ended in the 1950’s.
The first pilot waterflood program with a 35 acre dual 5-spot well pattern was conducted in
1981. After 1990, full-scale waterfloods were installed in a large portion of the field (Bergerud,
2011).

The signature of the Gordon Stray intervals follows an idealized estuarine vertical succession
(Figure 3-3). By examining the logs from the Jacksonburg-Stringtown field (Ameri et al., 2002;
Boswell, 1988; Boswell and Donaldson, 1988), the Upper Devonian Gordon stray and the
Gordon sands are inferred to be shoreline and deltaic deposits ranging between dip trending
lobes of a fluvial dominated system to the strike-parallel sandstone bodies of a wave-dominated
estuarine environment (Ameri et al., 2002; Boswell, 1988; Boswell, 1985; Boswell and
Donaldson, 1988). A detailed comparison between idealized estuarine vertical successions with
well logs from the Jacksonburg-Stringtown field also support this conclusion (Figure 3-3)
(Buatois et al., 2002; Buatois et al., 1999; Dalrymple et al., 1992). As Figure 3-3 shows, the
depositional sequence is consistent with incised valley estuarine system can be identified from
well logs. The thinner upper sand is interpreted as the estuary mouth deposit, meanwhile the
much thicker lower sand can be identified as tidal dominated deltaic deposits, and the inner

interval is estuarine shale. The lowest subunit is interpreted as a fluvial deposit.

3.2.1 Carbon Source

At normal atmospheric conditions, CO> is a thermodynamically very stable gas with density of
1.98kg/m?3, which is heavier than air. For temperatures greater than 31.1°C and pressures greater
than 7.38 MPa (critical point), COzis in a supercritical state. At supercritical conditions, CO2 has
totally different properties than in either liquid or gaseous phase. When supercritical CO2
behaves like a gas by filling all the available volume, but has a “liquid” density that increases
(Holloway and Savage, 1993; Bachu, 2000, 2008). Since both temperature and pressure increase
with depth in the subsurface, CO> can be stored underground either as a compressed gas, liquid
or in supercritical phase, depending on reservoir temperature and pressure. Along the Ohio
River, there are numerous power plants, which emit thousands of tons carbon dioxide per year
(Figure 3-4a and b). More than 90% of stationary CO2 emissions are from electric power plants

and industrial manufacturing facilities (Figure 3-4b and c). Location of viable geologic storage
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sites for CO2 near the sources will provide economic efficiencies and reduce risks associated

with transporting CO> long distances from source to sink.

3.3.2 Available Data

The database gathered for this project includes core, well log and production data and other well
information. In many cases data from wells are incomplete or not available. Most of the data
required for this study was obtained from the “Reservoir Characterization of Upper Devonian
Gordon Sandstone” project (Gil, 2000; Alla, 2002; Ameri et al., 2002; Oyerokum, 2002;
Thomas, 2002). The core data includes core samples and a petrophysics analysis (Figure 3-5).
Ten wells have cores which were described in the study. Moreover, a total of 93 core samples
collected from six well as listed in Table 3-1, had measured porosity and permeability. Relative
permeability data was available from the PH-9 core well. In a number of wells, conventional
well logs were available; including Gamma Ray (GR), Bulk Density (RHOB), Neutron Porosity
(NPHI) and Induction logs. Of these, GR and RHOB were used in this study because of their
availability in 179 wells. Well logs used in this study are all raster logs. Raster logs were
digitized subsequently and auto-corrected to check for accuracy. The slopes of GR and RHOB
logs were calculated from first derivatives of GR and RHOB with respect to depth using the
three point method. Production data for oil, gas and water collected by WVGS, was used for
history matching, well development planning and calculation of ultimate recovery. The data for
oil API gravity and viscosity, the formation temperature, the water viscosity were collected.

3.3 Methodology

In this research, the workflow for the three dimensional geological model for CO2 sequestration
capacity calculation used in this research includes: (1) constructing models of porosity and
permeability between conventional well logs and limited core-measured data; (2) extending
porosity, permeability models to predict porosity and permeability at well-scale; (3) building a
3D petrophysical model via Random Gaussian Function Simulation method with the geologic
constrains, and (4) calculating the theoretical CO, sequestration capacity based on specific

formulation proposed by Bachu et al., (2007)(Figure 3-6).
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It was necessary to conduct depth calibration between wireline logs and cored samples before
establishing the relationships between wireline logs and the core-measured dataset. Two
conventional well logs with gamma ray and bulk density plus three logs derived logs (slope of
GR, slope of bulk density, and Vsn) were selected as input training and testing for the model;

porosity and permeability were the desired output.

In this project, a new back-propagation artificial neural network (BPNN) optimized by two
evolutionary algorithms: particle swarm optimization (PSO) and genetic algorithm (GA) were
proposed to estimate permeability in Jacksonburg-Stringtown oil field, in West Virginia, USA.
Those two evolutionary algorithms were applied to determine the best initial weights and biases
for the back-propagation neural network (Zhong and Carr, 2017 a). A support vector machine
(SVM) was proposed to estimate porosity by constructing the relationship between conventional
well logs and limited core data. A new mixed kernels function (MKF), which is a convex
combination of a radial basis function kernel and a polynomial function kernel, was introduced
to construct SVM regression model. One global stochastic searching algorithm, particle swarm
optimization, was applied to determine the global optimum of five control parameters of the
newly developed model (Zhong and Carr, 2017b). The well-trained BPNN is used to predict the

permeability and SVM model is used to predict the porosity at the well scale.

Corresponding well tops are determined from the wireline logs of 179 wells and used to
construct structure maps of units in the Gordon Stray formation. A 3D structural model of target
formation (Gordon Stray formation) is constructed to cover the Jacksonburg-Stringtown oil field
(Figure3-1) to provide a framework for 3D facies model. A 3D facies model is established by
integrating the 3D structure model and various lithofacies. The arithmetic average method is
used to upscale porosity values and harmonic average method is applied to upscale permeability
values. Variogram models for upscaled porosity and permeability in each facies are generated by
geostatistical analysis, which can be used to illustrate the lateral and vertical porosity and
permeability distribution pattern (Wang and Carr, 2013). 3D porosity and permeability models
are generated based on a stochastic simulation method called Random Gaussian Function

Simulation.
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3.4 Fluid and Rock Properties

To demonstrate the heterogeneity of this formation and to display the chaotic status of the
information that existed, cross-plots of permeability and porosity versus each measured
parameter were constructed (Figure 3-7). The plots indicate that a simple linear relationship is
not evident among the six measured parameters and permeability. It shows a complex geologic

environment and nonlinear relationship between wireline logs and porosity, permeability.

The RHOmaa/Umaa crossplot derived from bulk density, neutron density and photoelectric
wireline logs is common method to estimate matrix mineral compositions (Doveton 1994,
Bergerud, 2012). Three wells that have bulk density, neutron density and photoelectric wireline
logs, were utilized to analyze the mineral composition of Gordon Stray formation (Figure 3-5).
Figure 3-8a shows the RHOmaa/Umaa ternary diagram for four Gordon Stray subunits
including; barrier sand, central bay shale, tidal channel, and lower Gordon Stray (fluvial
channel), as shown in Figure 3-3, with different colors. The lower Gordon Stray subunit has high
quartz content consistent with a clean sandstone reservoir (red circle). The tidal channel subunit
consists of a mixture of quartz-rich and illite-rich content, as well as, small concentration of
calcite, which could be interpreted as tidally-influenced bay-head delta depositional
environment. The central bay shale subunit shows low quartz and high illite content, which is
consistent with model of a low-energy depositional environment. Finally, the barrier sand
subunit has lower quartz and higher calcite content which indicates a marine influence. Figure 3-
8b shows mineral composition of target formation using the bulk density, neutron density and
photoelectric wireline logs for well 4710301547. As expected, Lower Gordon Stray (marked as
red star) shows high quality of quartz and porosity volume, which indicates that this interval has

high capacity of CO; storage.

The minimum miscibility pressure (MMP) of oil within the Jacksonburg-Stringtown oil field was
determined by slim tube experiment. Figure 3-9a shows the MMP is 941 psi at a reservoir
temperature of 80 °F, which means that CO> and oil will be miscible completely at a pressure
over 941 psi. In Appalachian region, the general geothermal gradient is 20°C/km, and hydrostatic
pressure gradient is 10.52 Mpa/km (Johnsson, 1986). This equates to an approximate minimum

subsurface depth of 700-800m for supercritical conditions which means that CO should be
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injected at depths greater than 800m (Holloway and Savage, 1993) (Figure 3-9b). Based on the
true measured depth map of lower Gordon Stray top structure, a pressure map (Figure 3-9c) is
generated with the aid of an average pressure gradient of 10.52 Mpa/km (0.465 psi/ft.). The
minimum pressure in Jacksonburg-Stringtown oil field is estimated to be 1230 psi, which when
compared to the empirical MMP value of 941 psi indicates that CO> is miscible with the

reservoir oil.

3.5 Petrophysical Properties Prediction by Support Vector Machine and

Artificial Neural Network

Porosity is a fundamental and essential property to characterize the storage capability of
hydrocarbon bearing formations in reservoirs. Permeability evaluation has a significant impact
on injection rates, reservoir management, and flow patterns determination. Thus, accurate
porosity and permeability estimates are the key features for reservoir characterization and

geological modeling at the field scale.

As discussed, artificial neural network and support vector machine, which are excellent means of
dealing with complex nonlinear problems in the petroleum industry, are utilized to construct the
regression relationship between wireline logs and core data (Zhong and Carr, 2017 a). Hybrid
particle swarm optimization (PSO) mixed kernels function (MKF) based support vector machine
(SVM) is used to establish a porosity prediction model. The mixed kernels function has both
strong extrapolation and interpolation ability, and compensate for the weakness of any single
kernel function. Moreover, the particle swarm optimization algorithm is utilized to locate global
optima of training and testing parameters in MKF-SVM. A permeability prediction model is
established with the aid of artificial neural network, which is very flexible in the design of
network architecture and selection of training and testing parameters. After comparing the
performance of different ANN architecture and leaning algorithm, an ANN with one-hidden
layer and 25 neurons is constructed and two evolutionary algorithms (genetic algorithm and
particle swarm optimization algorithm) are applied to optimize the weights and biases of ANN.
There were a variations between core measured data and predicted data set, but the trends of

porosity and permeability are consistent with those observed in the formation. Those porosity
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and permeability regression models were extended from core-scale (centimeter or inch) to well-

scale (meter or foot) to the field-scale (kilometer or mile) (Figure 3-10).
3.6 Three Dimensional Geological Modeling

The borehole data from Gordon Stray formation reflect the petrophysical properties in one-
dimension, and provide insufficient information to reflect horizontal heterogeneity and
connectivity of Gordon Stray formation; the interpolated two-dimensional cross-sections show
the large-scale lateral and vertical distribution of the petrophysical properties, but still cannot
quantitatively reflect the distribution of heterogeneity in more detail. Therefore, a 3-D
petrophysical properties model is needed to characterize the internal and external architecture of
Gordon Stray formation. Deterministic and stochastic method are the two modeling algorithms
for continuous property simulation. The deterministic method includes moving average and
kriging algorithms. A deterministic model is a model where no randomness is involved in the
modeling process, thus the same result will be repeated for every modeling run with the same
input data. Moving average uses an interpolation technique, which finds an average of the input
data and weighs according to the distance from the wells. A Kriging algorithm can produce
repeatable results, which honors local data, and is the preferred approach in areas of abundant
hard and soft data. However, very few subsurface areas are understood in such sufficient detail.
Thus a stochastic approach is a more common approach (Gunnarsson, 2011; Norden and
Frykman, 2013; Schlumberger, 2011). The stochastic method is pixel-based technique, which
includes sequence Gaussian simulation (SGS) algorithm and Gaussian random function
simulation (GRFS). Typically, sequence Gaussian simulation produces a realization of the
targeted property, which honors the well data and also honors a target histogram for the property,
usually derived from the well data. The degree of continuity is controlled by the variogram. A
long range on the variogram will mean that points spatial far apart are related, while a short
range will mean that points are less spatially related. The type of variogram governs the
smoothness of the realization. A Gaussian random function simulation (GRFS) performance runs
on the same principle as sequence Gaussian simulation does, but it is faster to run and has a fast
on-the-fly tabulator to update the model as the correlation coefficient changes (Qi et al., 2007;
Wang and Carr, 2013, Schlumberger, 2011).
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3.6.1 Well Correlation and Map

Data sets of 179 wells covering the Gordon Stray interval have been correlated across the study
area. The Gordon Stray is divided into 4 subunits based on log response. The depositional
environments of the units are interpreted to include; barrier sandstone, central bay shale, tidal
channels and fluvial sandstone. Numerous cross-sections were built to correlate units with the
response of the commonly available logs (Figure 3-11). Preliminary formation top maps for all
formations were created (Figure 3-12). Based on the formation tops, an estuarine environment is
determined to originate from the northeast and cease in a southward direction close to the
southern parts of the field. The interpretation spatially coincides with the large syncline that is
evident in the structural map (Figure 3-1b), which can be explained as the earlier tectonic action
and later enhanced incision of underlying strata due to rapidly regressing sea. An incised valley

floor can serve as the depocenter for the transgressing estuarine sequence.

3.6.2 Stratigraphic Framework

A three-dimensional static model can improve our understanding of the spatial distribution and
geometry of porosity and permeability within the Gordon Stray formation. A reasonable 3D
static geologic model is constrained by a reasonable and robust stratigraphic framework. The
model can be used to calculate the theoretical CO. storage capacity and for future reservoir fluid
simulation to evaluate EOR potential. A 3D geologic model is a grid-based 3D volume, thus
each grid will just have one value for each reservoir property. The size of the grid will reflect the
resolution of 3D geologic model. The appropriate selection of the grid size is important to
represent the vertical and lateral range of the study area. However, high resolution with small
grid size will increase computation time and computer resources. Therefore keeping the balance

between computation time and model’s resolution is largely based on the suitable grid size.

As interpreted in figure 3-12, four original structural surfaces of Gordon Stray formation were
used to construct the stratigraphic framework reflecting the main reservoir intervals (Figure 3-
13). The grid size of x and y dimensions are equal at 150 ft. (50m), and the grid size of vertical
direction is 1ft. Thus there are 110 grid blocks in x-direction, 74 grid blocks in y-direction and

64 layers in vertical direction. The cell layers are parallel to the underlying surface in each
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reservoir interval, with cells truncating against upper bounding surfaces. The resulting total

number of cells in the model is 539,904.

3.6.3 Geostatistical Analysis of Gordon Stray Formation

Extrapolation of petrophysical properties from wells to areas of limited well control is the
essential step to construct 3-D gridded petrophysical property model for the study area (i.e.,
porosity model and permeability model). Vertical and lateral distribution of those properties was
determined based on the knowledge of geological background, depositional environment, and
geostatistical analysis from conventional well logs (e.g., Brett and Baird, 1996; Lash, 2008;
Boyce and Carr, 2010; Lash and Engelder, 2011). The deposition trend of Gordon Stray
formation is major north-northeast direction. As a result, we set the major direction of
geostatistical ellipse to 36° for the 3-D geologic modeling the Gordon Stray formation. In the
vertical direction, the distribution of porosity and permeability is really depended on the wave

and river energy.

The semi-variogram is a simplified representation of porosity and permeability distribution
pattern. | analyzed and created different variogram for each Gordon Stray subunit (Figure 3-13).
The variogram developed for the vertical distribution of porosity and permeability was applied to
control the spatial extrapolation of Gordon Stray formation in stochastic method

Based on the core measurement and conventional well log analysis, the porosity and
permeability values ranges from 3.4% to 25.4% and 0.11 mD to 257 mD, respectively. For
Gordon Stray formation, the data distribution was analyzed abd shown as histograms. Comparing
core and combined core-log evaluated porosity and permeability for Gordon Stray formation,
Figure 3-14 represent a generally good agreement between core measure data and predicted date
for porosity and permeability. Based on the histograms (Figure 3-14a and b), predicted
permeability and core measured permeability have nearly identical trends, and the statistical
parameters are comparable. The QQ-plots for comparing the distribution of the core and log-
based permeability have a slightly different shape, and data points almost locate on the 45° line
(Figure 3-14e). Those figures show that core measured porosity distribution values are
comparable to the log-predicted permeability distribution. In terms of porosity, core measured

porosity and log-predicted porosity still have same trend (Figure 3-14b and d). As Figure 3-14f
99



shows, data points locate along the diagonal line, reflecting similar shapes of the porosity

distribution.

For upscaling of the well-log data, an arithmetic average was applied to the well log derived
porosity into the grid with 1 feet vertical scale. The effect is illustrated in Figure 3-15(a), and
shows the original well-log derived porosity and the model-grid upscaled porosity. The process
of upscaling has a minimal effect on the porosity distribution, which can be seen by comparing

histograms of the two data sets.

To model the spatial distribution of permeability, a harmonic average method was utilized to
upscale the permeability value. Figure 3-15(b) shows the distribution of permeability after and
before upscaling. The shape of distribution for upscaled and raw well log is comparable,
indicating that upscaling process has minimal negative impact on the final 3D petrophysical

model.

3.6.4 Petrophysical Properties Modeling

The petrophysical properties model is composed of porosity and permeability model. Porosity is
predicted based on support vector machine, and permeability is predicted based on the artificial
neural network. There are four common simulation algorithms that are used to construct models
of continuous variables including kriging, moving average, sequence Gaussian simulation (SGS),
Gaussian random function simulation (GRFS). Kriging is the primary deterministic approach
used for porosity and permeability modeling and works well with high-density data to avoid
over-interpretation of available data. Kriging generated broad regional trends with sharp
boundaries among areas of similar porosity and permeability. Kriging is a deterministic method
and cannot generate local variation, thus the simulation result will identical. Moving average is
another deterministic approach that can be used for porosity and permeability modeling. This
algorithm is fast and can create values for individual cells; however it cannot generate values
larger or smaller than the minimum and maximum values of the input data. SGS and GRFS are
the common stochastic approaches for constructing models of continuous variables, require
similar degree of geologic supervision and computational overhead. GRFS can produce local
variation and generate numerous variations of output models depending on the number of runs..

The Gaussian random function simulation approach is beneficial for uncertainty analysis, if the
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suite of models is reasonable. Another advantage GRFS is that GRFS is faster to run compared
with SGS, because of parallelized computation. In this study, GRFS is selected as the simulation
method and the up-scaled porosity, permeability and experimental variogram generated by
geostatistical analysis are the primary input to generate 3D geological model.

Based on the stratigraphic framework, the distribution of petrophysics properties in Gordon Stray
unit were constructed using Random Gaussian Function Simulation method based on well data
and derived data. Three-dimensional results illustrate the reservoir architecture, porosity,
permeability and convective of this formation in a high-resolution grid (Figures 4-17 and 4-18).
In the 3D porosity model the 3D porosity model (Figure 4-17) shows a high porosity reservoir
located in the southern part of Jacksonburg-Stringtown oil field. This is the area with the highest
potential for CO- storage and EOR in the field. In addition, the 3D permeability model (Figure
4-18) shows higher permeability values, which should improve injectivity and assist the CO»-

EOR process.

3.6.5 Theoretical CO> Storage Capacity

Depending on the well-constructed 3-D static geological reservoir model, using CLSF
calculation method, theoretical CO> storage capacity can be estimated (Table 3-2). The Pgo
confidence storage capacity is 24 million tons, and the most risked storage capacity P1ois 383

million tons.

3.7 Summary and Conclusions

Accurate calculation of theoretical and practical CO> storage capacity in mature oil fields
depends on the accurate porosity and permeability estimation and geostatistical distribution of
petrophysical properties. Reasonable and robust 3D static geological model help to improve the
understanding of CO2/oil flow patterns during CO2 enhanced oil recovery process, and to
determine optimal CO> storage locations. Artificial neural network and support vector machine,
used detailed core and well log data to construct the relationship between log data and core
measured porosity and permeability data. Geostatistical methods were used to generate the
porosity and permeability distribution pattern across the field. Pixel-based simulation was used

to assign porosity and permeability to subunits according to the spatial relationship built from
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semi-variogram analysis. A 3D fluid model can be constructed by up-scaling the well-defined 3D
static geologic model, and can be used to explore the fluid flow pattern and to calculate the final

oil recovery factor and practical CO storage capacity.
The following specific conclusion are drawn from this study:

1) Porosity and permeability can be predicted based on core and conventional wireline logs
including gamma ray, bulk density, slope of gamma ray, slope of density and V.

2 An artificial neural network was constructed to predict permeability value. Tow
evolutionary algorithm including particle swarm optimization algorithm and genetic algorithm
were applied to optimize the weights and biases in order to get best regression performance.

3) A support vector machine regression model was trained and tested to estimate porosity
value. A newly developed mixed kernels function was applied to improve the generalization
ability of support vector machine. Particle swarm optimization algorithm was also used to locate
the best training and testing parameters.

4) A regional 3D structure and Lithofacies framework were constructed by integrating well
logs and detailed core description, which can be used to constrain the future 3D petrophysical
(5) Gaussian random function simulation with a suitable variogram model of porosity and
permeability was applied to generate 3D petrophysical model in Gordon Stray formation.

(6) The distribution of porosity and permeability shows that the best regions for CO; storage
and CO,-EOR are located in southern regions of Jacksonburg-Stringtown oil field due to the high
porosity and high permeability.

(7) Based on the calculation, the most confidence theoretical storage capacity is 24 million

tons, and most risk theoretical storage capacity is 383 Mt.
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Figure 3-1. (a) Late Devonian paleography of study area in Appalachian basin, five major delta
systems prograded westwards and dominated the foreland ramp. Delta systems are separated by
the interdeltaic shale; (b) Location of Jacksonburg-Stringtown oil fields in northwestern West
Virginia. Black dots indicate cored well with core measured porosity and permeability.
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Figure 3-4. (a) Large CO2 stationary sources (metric tons) in the Appalachian basin. Location of
the Jacksonburg-Stringtown field is highlighted. Data from the US DOE Carbon Storage and
Utilization Atlas; (b) Along the Ohio River, there are numerous power plants, which emit
thousands of tons carbon dioxide per year. (¢) More than 90% of stationary CO2 emissions are
from electric power plants and industrial manufacturing facilities. Location of viable geologic
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reduce risks associated with transporting CO> long distances from source to sink.
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Figure 3-7. Cross-plot of permeability and porosity versus each measured parameters.
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Figure 3-8. (Left)(a) RHOmaa/Umaa plots of Gordon Stray interval. RHOmaa values are
measured in g/cm3, and Umaa values are in barnes/electron. a) Sample composition ranges from
0%-20% calcite, 80%-100% quartz, 0%-20% illite. High content of quartz indicate a clean
sandstone. Points above the ternary plot indicates the gas in this fluvial sand subunit. (b) Sample
composition ranges from 10%-70% calcite, 20%-80% quartz, and 5%-45% illite. The change of
lithology is related to variable concentration of sand and shale in tidal channel subunit. (c)
Sample composition ranges from 20%-45% calcite, 10%-45% quartz, and 20%-50% illite. High
content of illite and calcite in central bay shale subunit indicate a low-energy marine depositional
environment. (d) Sample composition ranges from 10%-50% calcite, 10%-55% quartz, and 20%-
50% illite. High content of quartz indicate the influence of longshore current, and high calcite
levels are a result of marine influence. (Right) Mineral composition of Gordon stray intervals
was analyzed with the aid of bulk density, neutron density and photoelectric logs. As expected,
lower Gordon Stray (marked as red star) shows high quality of quartz and porosity volume,
which indicates that this intervals has high capacity of CO> storage.
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Figure 3-9. (a) Minimum miscibility pressure (MMP) chart with a sample of oil from the
Jacksonburg-Stringtown oil field. Performed by Special Core Analysis Laboratories, Inc.
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Figure 3-10. Example of well section from Gordon Stray Formation, which shows the predicted
porosity and permeability curves by applying laboratory measured core data and conventional
well logs as training and testing data set. The predicted porosity and permeability are closely to

true measured core data.
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Figure 3-11. Example of cross-section of the Gordon Stray interval and the location of the cross-
section (shown as red line).
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Figure 3-12. (a) Gordon Stray sequence top structure map (10 ft. contour intervals). The white
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map.
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Figure 3-13. Experimental variogram for different Gordon Stray Subunit in Jacksonburg-
Stringtown oil field, which is developed based on the up-scaled porosity and permeability logs.
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Figure 3-14. Histograms and quantile—quantile (QQ)-plots of total porosity (PHI) and
permeability (PERM) for both core and log-evaluated data.
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Figure 3-15. A histogram shows the distribution of porosity values (a) and permeability values
(b) for raw logs (red color), upscaled cells (green color) and petrophysical model data (purple
color).
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Figure 3-16. (a) Stratigraphic framework of study area and location of Jacksonburg-Stringtown

oil field. Each color represents one subunit, which are fluvial subunit, tidal channel

subunit,

central bay shale subunit and barrier sand subunit. (b) detailed stratigraphic framework of

Jacksonburg-Stringtown oil field.
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Figure 3-17. (a)Fence diagram shows the distribution of porosity in each subunit; (b) shows a 3-
D porosity model with Gaussian Random Function Simulation. The horizontal scale are various,

but the vertical scale is 50:1.
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Figure 3-18. (a) Fence diagram shows the distribution of permeability in each subunit; b) shows
a 3-D permeability model with Gaussian Random Function Simulation. The horizontal scale are
various, but the vertical scale is 50:1.
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Table 3-1. Summary of Jacksonburg-Stringtown research cores

Well Cored Interval, ft. Avg. Porosity % Avg. Permeability
B-18 2988.5-3014 14.7 52

B-19 3086-3115 14.9 41

H-9 2980-2908 18.2 106

H-11 3083.4-3093.4 18.8 72

T-8 2781-2797 12.4 6.5

L-13 3032.4-3061.5 8.4 2.5

125




Table 3-2. Theoretical CO2 storage for P10, P50, and P90 in Jacksonburg-Stringtown oil field

Volume Statistics

Parameters Symbol Unit P1o Pso Pgo
Total Pore Volume (ft°) Vv THt3 1.1 1.3 1.408
Water Saturation Swi % 0.35 0.25 0.1
Formation Volume Factor B Bbl/STB |14 1.4 1.4
Average CO> density Pco? Lbs/ft3 48.0 48.0 48.0
Efficiency Factor E % 0.1 0.5 0.9
Reservoir CO- storage capacity | Mco Mt 24.0 163.8 383.2

126



CHAPTER 4

Application of Mixed Kernels Function (MKF) Based Support Vector
Regression Model (SVR) for CO; — Reservoir Oil Minimum Miscibility

Pressure Prediction.

Zhi Zhong and Timothy R Carr?

I Department of Geology and Geography
West Virginia University, Morgantown
WV-26505, USA

(304)-282-9243

Email: zizhong1990@gmail.com; tim.carr@mail.wvu.edu

127


mailto:tim.carr@mail.wvu.edu

Abstract

CO:z injection into oil reservoirs is considered a mature enhanced oil recovery (EOR) technique
for conventional reservoirs. The local displacement efficiency of the CO2-EOR process is highly
dependent on the minimum miscibility pressure (MMP), estimating this parameter is critical to
design of the CO: injection process. Traditional empirical methods to test the CO2-0il MMP are
time consuming and expensive; derived correlations are fast but not accurate. Therefore, an
efficient and reliable method to determine MMP is beneficial. In this study, a mixed kernels
function (MKF) based support vector regression (SVR) model was developed and used to predict
the MMP for both pure and impure COz injection cases. Four parameters were chosen as input
parameters: 1) reservoir temperature; 2) average critical temperature; 3) molecular weight of Cs.
fraction of crude oil, and; 4) the ratio of volatile components to intermediate components in
crude oil. MMP was selected as the desired output parameter to train and test this newly
developed model. The performance of basic kernels function based SVR model is compared with
that of this newly developed MKF-SVR model. The well-trained MFK-SVR was compared with
three well-established published correlations, demonstrated the highest correlation coefficient (R
of 0.9381), lowest root mean square error (RMSE of 1.9151), smallest average absolute error
(AAE of 1.1406) and maximum absolute error (MAE of 4.6291). We believe that the proposed
MFK-SVM model is a more reliable and stable regression model to predict MMP. In addition, a
sensitivity analysis was conducted to evaluate the physical correctness and indicates that the
predicted results from the newly developed model are in excellent agreement with previous

empirical work.

Keywords: CO2-oil minimum miscibility pressure, CO2 enhanced oil recovery, support vector

regression, mixed kernels function, particle swarm optimization algorithm
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4.1 Introduction

One of the first viable CO2 commercial EOR applications was in 1972 in the Kelly-Snyder oil
field (Norman, 2001). Today, CO: injection is an established enhanced oil recovery (EOR)
technique for recovering residual oil in older and/or mature oil field. In 2014, 136 CO,-EOR
projects were underway in the U.S. and producing approximately 300,000 barrels of oil per day
(BOPD) (Kuuskraa and Wallace, 2014). CO: injection can facilitate the reduction of greenhouse
gas emissions by storing the CO: into geological media, such as depleted oil reservoirs. CO -
EOR is a preferred EOR method because CO: is miscible with crude oil increasing displacement

efficiency, and less expensive than other similarly miscible fluids (NETL, 2010).

The displacement efficiency of CO2 is highly dependent on the minimum miscible pressure
(MMP) (Yuan and Johns, 2005; Yuan et al., 2004). MMP is the minimum pressure at which
injected gas can develop multi-contact miscibility with the reservoir oil (Al-Wahaibi, 2010;
Egwuenu, 2004; Hutchinson and Braun, 1961; Stalkup Jr, 1983a, b). Above this pressure,
interfacial tension between these two phases is zero, and there is no difference between the
densities of oil and injected gas (Al-Wahaibi, 2010; Fazlali et al., 2013). In contrast, at pressure
lower than MMP, CO, will no longer be miscible with oil and the displacement efficiency
decreases. Accurate CO2>—oil MMP estimation is critical in selecting suitable oil and gas

reservoirs for CO>—EOR processes.

Laboratory empirical methods are commonly used to estimate the MMP (Shokrollahi et al.,
2013). The petroleum industry standard for estimating the MMP is slim-tube, because its results
are most reliable and comparable with established industry data (Wang et al., 2015; Yellig and
Metcalfe, 1980). In the early 1980s, Christiansen et al. (Christiansen and Haines, 1986)
developed a new rapid and fast experimental method for MMP estimation using a rising-bubble
apparatus (RBA) (Christiansen and Haines, 1987). Both slim-tube and rising-bubble methods are
expensive, time consuming and depend on large amount of data (Huang et al., 2003; Metcalfe,
1982). Rao et al. (Rao, 1997) proposed a fast and simpler experimental method using
experimental approach labeled vanishing interfacial tension (VIT) (Hemmati-Sarapardeh et al.,
2013; Orr and Jessen, 2007; Rao, 1997; Rao and Lee, 2002). The accuracy of the measurement
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depends on the composition of the mixture created fluid, and may give an higher MMP result

than actual, because the composition cannot be selected in advance(Orr and Jessen, 2007).

Numerous empirical correlations have been developed to describe the phase behavior of
reservoir 0il-CO; and to minimize the difference between the transformed dependent variable
(CO2-0il MMP) and the sum of the transformed independent variables (Alston et al., 1985;
Cronquist, 1978; Emera and Sarma, 2005; Glass, 1985; Lee, 1979; Orr Jr and Jensen, 1984;
Yellig and Metcalfe, 1980; Yuan et al., 2005). However each correlation is restricted for specific
oil reservoir conditions, such as temperature and oil composition. Where the geological
conditions are very complex, empirical correlations cannot meet the various requirements for
different oil reservoirs (Chen et al., 2014). Thus the application of those techniques is limited,

and more adaptable, reliable correlation methods are required to overcome these limitations.

Support Vector Regression (SVR) is highly effective in representing a system’s complexity; it
also has a generalizing ability in function approximation (Al-Anazi and Gates, 2010b; Al-Anazi
etal., 2011; Wang et al., 2014). Vapnik et al. (Boser et al., 1992a; Burges, 1998; Cortes and
Vapnik, 1995; Drucker et al., 1997; Smola, 1996; Vapnik et al., 1997) first developed Support
Vector Machine (SVM) at AT&T Bell laboratories based on statistical-learning theory to solve
pattern recognitions problems (Vapnik et al., 1997). This algorithm was later extended to solve
regression problems (Fu and Cheng, 2011). Al-Anazi et al. (Al-Anazi and Gates, 2010a, c)
applied SVR to predict reservoir permeability and porosity. The principle of SVR is to find an
optimal hyperplane in which all projected training data from the original data space is located

within € deviation in a high dimensional feature space (Vapnik et al., 1997).

The four basic elements of SVR are the separating hyperplane, maximum-margin hyperplane,
soft margin and kernel function (Noble, 2006). The most important part of SVR is kernel
function. There are two different groups of kernels: global kernels and local kernels. Global
kernels have stronger extrapolation ability and local kernels have stronger interpolation ability.
Standard kernels that can simultaneously extrapolate and interpolate are to some degree
inaccurate. In this paper, a process is introduced that uses a mixed kernels function (MKF),
which combine the local and global kernel function to overcome this drawback mentioned above
(Smits and Jordaan, 2002; Huang et al., 2012; Lian et al., 2013). Mixing coefficient, gamma,
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penalty(C), polynomial degree and epsilon are the important parameters in the MKF-SVR model.
The determination of these parameters is the key step to achieve high performance from MKF-
SVR. A grid searching algorithm (GSA) (Wang et al., 2014) and particle swarm optimization
(PSO) (Eberhart and Kennedy, 1995) algorithm were applied to optimize these parameters for

fast convergence in the training process.

The mixed kernels function (MKF) based support vector regression (SVR) is used to evaluate the
pure and impure CO2/oil MMP in crude oil. Four variable are evaluated: (a) molecular weight of
Cs- fraction; (b) reservoir temperature; (c) volatile oil fraction (methane and nitrogen gas); and
(d) intermediate oil fraction (Co—Cs and COz, H.S) in crude oil. The results of MKF-SVR are
compared to the results from SVR based on each basic kernel function. Moreover, the result
predicted from the MKF-SVM model is compared to calculated values from traditional empirical
correlations reported in the published literature. Sensitivity analysis is conducted to check out the

most important input variables.

4.2 Basic Description of Support Vector Regression and Particle Swarm

Optimization Algorithm
4.2.1 Support Vector Regression Principles

The support vector machine (SVM), based on the statistic-learning theory (SLT), and was first
introduced in 1960s in Russia (Vapnik, 1963; Vapnik and Chervonenkis, 1964; Vapnik and Kotz,
1982). Initially it was modified to solve pattern recognitions problems. Later it was extended to
the case of nonlinear regression and time series prediction problems (Drucker et al., 1997; Muller
etal., 1997; Smola, 1996; Smola et al., 1998; Vapnik et al., 1997), which is support vector
regression (SVR). Using adaptive margin-based loss functions and projecting the learning data
(linearly or non-linearly) into higher dimensional feature space, SVR finds the best decision rule
that has good generalization ability (Figure 4-1a). The projecting functions satisfied with the

Mercer’s condition are called Kernels — K(xi, X;j) (Zhu et al., 2005).

For example, assume training data{(x", y*), (x*, y*),...,(x", y™)}< x xR, where y denotes the

space of the input parameters (e.g. y = R®). For the case of linear function f takes the form:
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f(X)=(w,x)+Db, we y,beR Eq. (1),

In the high dimensional feature space, the optimization problem for SVR with g-insensitive loss

function is:
1 0 .
mi Sleff +CX G +&) Eq. (2).
i=1
sit. yi —(o,%)-b<e+&,i=12,.m

(0, %)+b—y, <e+&,i=12,...m Eq. (3),
£,&20,i=12,..m

The first part of Eq. (2) is the Vapnik-Chervonenkis (VC) confidence interval, whereas the
second part is the empirical risk (Al-Anazi and Gates, 2010c). The regularization constant C in
Eq. (2) is used to determine the complexity of the SVM model. The constant C also makes a
compromise between the empirical risk minimization and the confidence degree. The epsilon

(&, essentially controls the complexity of the regression functions mentioned above). & and &

are slack variables introduced by Bennett et al. (Bennett and Mangasarian, 1992), as opposed to

symmetric boundary produced by the ‘hard margin’ loss function.

Vapnik’s e-insensitivity loss function as illustrated by Figure 4-1b and 1c defines a multi-
dimensional tube. Only the points outside the e-tube contribute to the loss, which is equal to the
gap between the point values and the radius of the tube. The deviations are penalized in a linear
fashion. However, the points inside the e-tube contribute nothing to the cost, which means the

loss (error or cost) is zero.

4.2.2 Global Kernels, Local Kernels and Mixed Kernels

Kernels K (x,x") actually are a projection function. The function projects the original linearly or
non-linearly learning data into high dimensional feature space, where all of the data can be
presented linearly (Burges, 1998). A kernel function must meet Mercer’s conditions (Boser et al.,
1992b; Burges, 1998; Cortes and Vapnik, 1995; Smola and Scholkopf, 1998; Smola and
Scholkopf, 2004), as following:
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Suppose K(X,X") € L,(R") ® L, (R")

Avg(x) e L,(R"),
[ L®L2 K(%,X)g(X)g(X")dxdx" >0 Eq. (4),

Based on this theorem, several different types of kernels, which determine the various
characteristics of the model, are listed in Table 4-2. These kernels are two types: local kernels
and global kernels (Smola and Schélkopf, 1998). A global kernel allows data points that are far
away from each other to have an influence on the kernel values, as shown in Figure 4-2a. The
polynomial kernel in Eq. (5) is a typical example of a global kernel (Smits and Jordaan, 2002;
Zheng et al., 2004). The higher the degree of polynomial kernel, the better its interpolation
ability will be. The lower the degree of polynomial kernel function, the better its extrapolation
ability will be. In a local kernel only the data that are close to each other have an influence on the
kernel values (Figure 4-2b). The typical local kernel is the radial basis function kernel (RBF) in

Eq. (6). The smaller value of 7" is, the worse its interpolation ability will be and vice versa. In

other word, no single value of kernel parameter 7 or polynomial degree will provide a model

with both interpolation and extrapolation properties (Smits and Jordaan, 2002).
Kploy(xi’xj) :(<Xi’Xj>+1)d Eq (5)!

Koo (X %;) =0 (=% =) Eq. (6),

Based on the Mercer’s conditions, there is one corollary. Assuming K,(X,X ), K,(X,X’) are

admissible support vector kernels andC;,C, >0,
KX X)= CK, (X, X)) +C,K, (X, X)) Eq. (7),

K(X,X")is an admissible kernel (Smola and Scholkopf, 2004). The mixed kernels function

K(X,X"), which combine the good characteristics of both K, (X,X )and K,(X,X) , has been
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proposed by numerous investigators (Huang et al., 2012; Lian et al., 2013; Smits and Jordaan,
2002; Smola and Schélkopf, 2004; Yang et al., 2013; Zhu et al., 2005).

The mixtures of the RBF and polynomial kernels can be defined as Eq. (8, 9)

K i = MK oy + (L= M)K g 0<m<1 Eq. (8),

K (% X;) =M%, %) +D)° + @-m)exp(—7,|x —x,[) 0<m<1 Eq. (9),

Where K, is a polynomial kernel and K, is a radial basis function kernel, m is the mixing

poly
coefficient. If m=0, then the mixed kernels function will equal the RBF kernel, which means

Kuix = Ky - If m=1, then the mixed kernels function will become the polynomial kernel, which

means K, = K ,,. The effect of the mixing a polynomial kernel with a RBF kernel is shown in

Figure 4-3, where X; =0.2, =0.1,d =1. The mixed kernels function has characteristics of both

the polynomial kernel and the RBF kernel, and improves fitting and generalizing ability.

4.2.3 PSO (Particle Swarm Optimization) Algorithm

Based on stochastic search and optimization processes, the particle swarm optimization
algorithm (PSO) was developed (Eberhart and Kennedy, 1995), which is an evolutionary
algorithm and imitated human (or insects) social behaviour. Individuals interact with one another
while learning from their own experience, and gradually the individual population members’
move into better regions of the problem space (Eberhart and Kennedy, 1995). Particles,
indicating the potential solution, randomly locate in the architecture space (like birds or fish
randomly distributed in a specific open environment), and are utilized to calculate the global

optima of the fitness function. Assuming D-dimensional architecture space, population
X ={X., X,, Xs,..., X, } is composed by n particles (X;). Each X; ={X;,X.,, Xi3,.., X, } is indicating
its position, and is also representing a potential solution. A global best value is

P, =191,9,,03..-, Op yand personal best value is P; ={P;;, Piss Pizs---Pip}. The velocity for

particle X; , representing the rate of position change, is written asV, ={Vi;,V,,,Vi3,...,Vip}. In PSO,
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each particle updates its position by velocity adjustment and fluctuates between p;and p, . The

process for velocity adjustment is presented in Figure 4-4. When the particle swarm algorithm is

running without restraining velocities, it rapidly increases to unacceptable levels within a few
iterations. Some form of damping of the dynamics of particles (e.g., V. ) iS necessary. To better
allow an elegant and well-explained method for preventing explosion, ensuring convergence,
reducing and eliminating the importance of vV, , Shi et al.,(Shi and Eberhart, 1998) introduced

the inertial weight.

V" = 00" + 4, ® (P, - %)+, ®(P, —X) Eq. (10),
)—(—inew _ Xiold +\—/-inew Eq (11)’
a)t = a)max _(a)max _a)min)*tite /tmax EQ- (12)’

Where mmax is initial inertia weight, omin is the finial inertia weight, @1 is cognitive coefficient

and oz is social coefficient.
4.3 Model Development

SVR is an extended case of SVM, which was modified from the machine-learning community.
Because of strong interpolation and extrapolation capability, the new MKF-SVR was chosen to
build the model for CO-oil MMP prediction. This model was optimized by PSO. The existing
SVR for comparison was also chosen because of its many advantages over the traditional
methods and empirical correlations; these include fast convergence to the global optimum, high
generalization performance, and less probability for over-fitting. The construction of the MKF-
SVR model was undertaken with the LIBSVM toolbox developed by Chang et al. (Chang and
Lin, 2011); the optimized process was based on the MATLAB software. The design process for
this model involves three parts: data acquisition, data normalization and model optimization and

validation.
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4.3.1 Experimental Dataset

The accuracy and stability of the developed model is largely dependent on the training data’s
reliability and comprehensiveness. Based on a review of recent research, reservoir temperature,
oil composition, purity of injected gas play an important role in CO2-o0il MMP values (Alston et
al., 1985; Sebastian et al., 1985; Shokir, 2007a; Yuan et al., 2004; Zuo et al., 1993). Thus, input
data sets used in this model include average critical temperature of the drive gas

(Ty = ZZi xT, ), reservoir temperature (T), molecular weight of the Cs. fraction (MCs.), and

the ratio of volatile (C. and N2) to intermediate (C2-Cs, H2S and CO2) components in crude oil,
Pure and impure CO»-oil MMP is the desired output. In this work, all of the experimental data
used were collected from existing published literature (Al-Ajmi et al., 2009; Alston et al., 1985;
Bon et al., 2006; Bon et al., 2005; Cao, 2012; Chaback et al., 1989; Dicharry et al., 1973; Dong,
1999; Dong et al., 2001; Eakin and Mitch, 1988; Frimodig et al., 1983; Graue and Zana, 1981;
Harmon and Grigg, 1988; Henry and Metcalfe, 1983; Holm and Josendal, 1974; Jacobson, 1972;
Khan et al., 1992; Li et al., 2012; Metcalfe, 1982; Rathmell et al., 1971; Sebastian et al., 1985;
Shelton and Yarborough, 1977; Spence Jr and Watkins, 1980; Srivastava et al., 2000; Sun et al.,
2006; Thakur et al., 1984; Zhang et al., 2015; Zhou, 2008; Zuo et al., 1993). Details of datasets

are presented in Table 4-1.

Normally, all data for the training of a supervised machine-learning algorithm are divided into
three parts: training data, validation data and testing data. This paper combines the validation
data and training data. The combination is used as training dataset. An N-fold cross-validation
method was used as resampling method during the training process. The purpose of training and
validation process is to find the best parameters for MKF-SVR model and to ensure accurate
prediction performance. The goal of the testing process is to evaluate the accuracy and stability
of the well-trained MKF-SVR model (Chen et al., 2014). Of the 147 data samples collected, 90%

(133) were used for training and validation, and the remaining 10% (14) were used for testing.

4.3.2 Parameters Optimization Based on Improved PSO

As discussed, the final performance of the MKF-SVR is strongly dependent on the parameters of

the mixed kernels function. By applying the PSO algorithm and n-fold cross-validation
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resampling methods, key parameters such as mixing coefficient (m), penalizing coefficient (C),
RBF kernel parameter (Y'), polynomial degree (d) and (¢) in e-insensitivity function are
optimized. Particles update their positions by changing velocity and converge finally at a global
optimum within the searching space. In this study, the particles’ positions are the vectors of m,
Y, d, C, &, which are denominated as P (m, Y, d, C, €). In order to search the global optimum
reasonably and to convergent quickly, the parameter m is limited in [0, 1], Y in [27%, 24, d in [1,
3], Cin[27% 2°] and £ in [0.001, 0.01]. To evaluate the performance of training process, mean

square error (MSE) is chosen as the fitness function, which is formulated as:
1G,. )
I:Fitness = HZ(M - y|) Eq (13),
i=1

where Y, is the predicted value, Y; is the true value and n is the number of samples. Figure 4-5

shows the workflow to find the optimum values of each parameter in the mixed kernels function.
4.3.3 Testing of the MKF-SVR Model

After the training and validation processes were completed, all of the parameters were optimized
and the expected regression model was established. In order to verify its generalization capability
and stability, the well-trained model is tested by using the testing data set (10% data), which

were not used in the training and validation process.
4.4 Results and Discussion

Asoodeh et al. (Asoodeh et al., 2014) used the original SVR model to estimate the CO2-oil
MMP; Shokrollahi et al. (Shokrollahi et al., 2013) applied the adapted LS-SVM model to
estimate the CO2-0il MMP. Although both models have relatively good prediction performance,
the generalization ability of these models can be improved by the MKF-SVR model, because of
the limitation of applied kernel function. In this study, the result of the original SVR is compared
with different basic kernel functions and that of the adapted SVR with mixed kernels function in
order to demonstrate improved performance of the MKF-SVR model than the traditional

correlations. The results are compared to those produced by four other proposed numerical
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correlations (Alston et al., 1985; Sebastian et al., 1985; Yellig and Metcalfe, 1980; and (Emera
and Sarma, 2005).

4.4.1 Results of SVR and MKF-SVR

There are four different kernel functions as listed in Table 4-2: each has different parameters that
should be optimized separately. The grid searching algorithm was applied to find the best
parameters of each basic kernel function. PSO algorithm is applied to optimize the five
parameters for the mixed kernels function. Table 4-3 shows the range of parameters for PSO

algorithms.

The well-trained MKF-SVR model is applied to estimate the MMP value of crude oil, in order to
verify the reliability and accuracy of the model (Al-Anazi and Gates, 2010a; Jin et al., 2001).
Five statistical parameters were introduced as evaluation indexes to test the performance of the
model. These parameters include coefficient of determination (R?), correlation coefficient (r),
root mean error (RMSE), average absolute error (AAE), and maximum absolute error (MAE), as

defined in
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. An R? (Coefficient of Determination) of 1 indicates a perfect model, while an R? of 0 indicates
an inaccurate model (Al-Anazi and Gates, 2010c; Oyerokun et al., 2002). Moreover, R and
RMSE are used to evaluate overall performance, while AAE and MAE are used to determine the
error range of the predicted results (Chen et al., 2014).

The particle swarm optimization algorithm was applied to search for the optimal parameter sets.
The optimal parameters in the MKF-SVR model were determined to be C=955.0476,
Y=144.3693, m=0.3435, d=3.935, ¢=0.0804.

The training and testing performance of the SVR model with mixed kernels function and other
basic kernel functions are listed in Table 4-4. The performance of the MKF-SVR model
improves the accuracy and stability as indicated by the decreased RMSE and AAE, and increases
in the correlation coefficient and coefficient of determination. The process of searching for best
gamma and cost value is shown in Figure 4-6, using grid searching algorithm for the SVR with
linear kernel, polynomial kernel, RBF kernel, sigmoid kernel and n-fold of 4. The cross-
validation mean square errors are 8.4967, 9.2179, 6.1250 and 8.4766 respectively. The process of
searching for best parameters in MKF-SVR model by particle swarm optimization (PSO) is
shown in Figure 4-7. A comparison of Figures 4-6 and 4-7 shows that the MKF-SVR model has
the smallest cross-validation mean square error (4.0012). The MFK-SVR model has the highest
training and testing coefficient of determination (0.8767) as shown in Figure 4-8. Compared with
other kernel functions, the MKF-SVR model provides more accurate predictions as demonstrated

by Figure 4-9 showing the comparison of actual values and forecasted values.

4.4.2 Comparison of Mixed Kernel Based SVR Model with Correlations from Literatures

In order to further evaluate the model accuracy and stability, the comparison between some well-
known empirical correlations with the predicted results calculated from the newly MKF-SVR
model is necessary. The empirical correlations selected for the comparisons include correlations
by Yelling et al. (Yellig and Metcalfe, 1980)(corrected with Sebastian et al. (Sebastian et al.,
1985)impurity correction factor ), Yelling et al. (Yellig and Metcalfe, 1980)(corrected with
Alston et al. (Alston et al., 1985) impurity correction factor ), Emera et al. (Emera and Sarma,
2005)(corrected with Sebastian et al. (Sebastian et al., 1985)impurity correction factor), Emera et

al. (Emera and Sarma, 2005)(corrected with Alston et al. (Alston et al., 1985) impurity correction
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factor), Alston et al. (Alston et al., 1985), and Sebastian et al. (Sebastian et al., 1985). Detailed
descriptions of each correlation are given in Appendix. The correlations consider the pure CO>
injection case and also investigate the impact of an impure CO- drive gas stream. The Alston et
al. (Alston et al., 1985) and Sebastian et al. (Sebastian et al., 1985) correlations were developed
for both pure and impure CO.-drive stream, while the Yelling et al. (Yellig and Metcalfe, 1980)
and Emera et al. (Emera and Sarma, 2005) correlations were developed only for a pure CO»-
drive stream; thus they need impurities correction factors to correct for impure CO> data
samples. The Alston et al. (Alston et al., 1985) and Sebastian et al. (Sebastian et al., 1985)

impurity correction factors are summarized in the Appendix.

A scatter diagram (Figure 4-10) illustrates the comparison between the laboratory experimental
MMP values and the predicted values. The cross-plots visualize the accuracy of proposed model
and available correlations. The diagonal line in each figure represents the theoretical equality
between predicted and experimental values. Tightness of the points to the diagonal line directly
expresses the agreement level between the simulated and experimental values. The MKF-SVR
results show a total coefficient of determination of 0.87, and the majority of data points for the
training and testing process lie on a 45° line, indicating that the newly developed MKF-SVR
model is robust and stable (Figure 4-10a). There is an excellent agreement between the
experimental data and the predictions of newly developed MKF-SVR model indicating that this
model can be successfully applied to predicting MMP for both pure and impure COz injection
cases. As Figure 4-10b-f illustrates, the best fit lines of predicted results of correlations deviate
from the diagonal line, which indicate that the agreement between the experimental data and
value predicted by mixed kernel based SVR model is improved among the selected correlations.
The simulation results of classic correlations and newly developed model (in terms of R, RMSE,
AAE, MAE) were also compared and presented in Table 4-6. The MFK-SVR model has the
smallest RMES (of 1.9151), AAE (of 1.1140) and MAE (of 4.6291); and highest R (of 0.9381).
In terms of results, it is clearly seen that MFK-SVR model have high performance compared

with other correlations.
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4.4.3 Sensitivity Analysis

In order to further investigate the relationship between the influence factor (i.e. reservoir
temperature, average critical temperature, molecular weight of Cs. fraction and volatile to
intermediate ratio) and CO2-oil MMP, a sensitivity analysis was conducted. This process is
executed by changing one studied variable gradually, while holding the other variables constant
(Chen et al., 2014). As Figure 4-11a shows, the increase of reservoir temperature will increase
MMP, as the solubility of CO- into oil is decreases (Dodds et al., 1956; Duan and Sun, 2003;
Mungan, 1981), which means the COz is less miscible with oil, an increase in CO2-o0il MMP.
When reservoir temperature decreases, the interfacial tension between oil and CO also declined
(Rao, 1997; Rao and Lee, 2002), therefore the MMP decreased correspondingly. This model
results are in agreement with previous work (Shokir, 2007b; Shokrollahi et al., 2013; Yuan and
Johns, 2005).

The purity of the injection gas stream has significant and complex impacts on CO-o0il MMP.
Generally, the presence of H.S or intermediate hydrocarbon components will decrease the CO»-
oil MMP, while the presence of C1 or N2 will increase the CO.-o0il MMP (Alston et al., 1985;
Eakin and Mitch, 1988; Sebastian et al., 1985). In order to describe the impact of purity of
injection gas stream on CO2-oil MMP simply and concisely, the average critical temperature is
the best reasonable parameter. As Figure 4-11b shows, the increase of average critical

temperature will decrease the CO2-o0il MMP.

As Figure 4-11c illustrates, the MMP increases as the average molecular weight of pentane plus
fraction increases. Pentane plus fraction, the major component of crude oil indicates an increase
of the average molecular weight of Cs+ and the percentage of heavy oil molecules (Clark et al.,
1958; Turek et al., 1984). The increase in average molecular weight of Cs. is less miscible with
COgo, thus MMP increases.

The evaporation property of volatile components may increase the gas phase during the multi-
contact of CO- and oil, decreasing the oil miscibility with CO> (Al-Wahaibi, 2010; Rathmell et
al., 1971), while the intermediate components are easy to mix with COz due to their inter-
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solubility into each other (Metcalfe, 1982; Rathmell et al., 1971), thus the increase of volatile to

intermediate ratio will increase the MMP (Alston et al., 1985), as shown in Figure 4-11d.

4.5 Conclusions

A hybrid model of mixed kernels function (MKF) based support vector regression (SVR) model
was developed to predict pure and impure CO2-oil minimum miscibility pressure (MMP) during
a CO2-EOR process. In this MKF-SVR model, four factors (i.e. reservoir temperature, average
critical temperature, molecular weight of Cs+ fraction of crude oil, and the ration of volatile
components to intermediate components in crude oil) representing the most comprehensive and
robust set were selected as the input variables while MMP was considered as output variable.
Through the foregoing analysis and discussions of the simulation results, several conclusions are

drawn:

(1) The mixed kernel function based support vector regression (SVR) model was successfully

applied to predict the CO2-o0il MMP value for both pure and impure CO> gas.

(2) Different kernel functions affect the final performance of SVR significantly. Mixed kernel
function, which combines the advantages of global radial basis function (RBF) and local

(Polynomial) kernel functions, increases the applicability of SVR dramatically.

(3) The comparison of traditional correlations with the mixture kernel based SVR model shows
excellent performance and greater generalization ability with higher correlation coefficient (R =
0.9381), smaller average absolute error (AAE = 1.1406), maximum absolute error (MAE =
4.6291) and the reduced root mean square error (RMSE =1.9151).

(4) Based on the sensitivity analysis, reservoir temperature, molecular weight of Cs. fraction and
volatile/intermediate ratio of crude oil positively influence the CO2-oil MMP, while average
critical temperature has a negative impact on CO2-oil MMP. Moreover the impacts of all factors
towards the CO2-o0il MMP is nonlinear.

142



Acknowledgements

We are grateful to Dr. Kathy Bruner for their helpful comments in improving the early version of
the manuscript. This work was funded by the US-China Clean Energy Research Center,
Advanced Coal Technology Consortium, under grant DE-PI0000017 from the National Energy
Technology Laboratory of the US Department of Energy.

Nomenclature

AAE average absolute error 02 social coefficient
BOPD | Barrels of oil per day P, global best value
C penalizing parameter in SVM D, personal best value
CO2 carbon dioxide P, bubble pressure
Css+ pentane plus fraction P MMP value in pure CO2.0il
m,min, pure
systems
d polynomial degree Pm,min,impure MMP value in impure CO..oil
systems
D architecture space Dimension VAR i " particle’s new velocity
I
€ insensitivity loss parameter \7i0'd i " particle’s old velocity
& and | slack variables PSO particle swarm optimization
&i*
EOR enhanced oil recovery r correlation coefficient
|:imp correction factor for impure CO, R coefficient of determination
stream
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GSA grid searching algorithm RBF radial basis function

Y RBF kernel parameter RMSE root mean error

K(xi, Xj) | kernel function SVR support vector regression

m mixing coefficient SVM support vector machine

MAE maximum absolute error T, critical temperature of
component k (k = CO2, C1,
N2,H2S, and C2-C4), °C

MKF mixed kernels function T, weight average pseudocritical
temperature of the drive gas, °C

MKF- mixed kernels function based support | T reservoir temperature, °C

SVR vector regression

MMP minimum miscibility pressure, MPa X, i " particle’s position

MSE mean squared error, % X | j ™ value of i™ particle

MWes. | molecular weight of C5+ oil fraction, | o i " particle’s old position

1
g/mol
N sample number 5 new i " particle’s new position
1

. initial inertia weight Xuen mole fraction of intermediate
oil components including C2—
C4, CO2, and H2S, %

@i finial inertia weight X, mole fraction of component k

(k = CO2, C1, N2, H2S, and
C2-C4), %
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01 cognitive coefficient XyoL mole fraction of volatile oil
components including N2 and
CH4, %
Appendix 4-A

In this Appendix, totally nine correlations used for MMP prediction in pure CO,-0il systems are
summarized and presented. All of the correlations are converted to consistent units.

4-A.1. Correlation Proposed by Yelling et al.

Yelling (Yellig and Metcalfe, 1980) correlation correlates CO2-o0il MMP only with the reservoir
temperature. This correlation only can be used when T (reservoir temperature) ranges from 35.8

to 88.9 °C, which is given by:

P vin pure = 12.6472 + 0.01553(1.8T +32) +1.24192x10* (1.8T +32)? _ 1169421 Eq. (Al)
mn (1.8T +32)

If MMP <7 Pj (Py is the bubble pressure), then Py is taken as MMP.
4-A.2. Correlation Proposed by Emera et al.
A new correlation modified from the Alston correlation by Emera et al. (Emera and Sarma,

2005). When B, >0.345MPa., this correlation is presented as follows:

P

m,min, pure

—5.0093x10 (18T +32) %M )*785(2voL )00, Eq. (A2)

XMED

otherwise, when P, <0.345MPa

P

m,min, pure

=5.0093x107°(L.8T +32)"*(M_)**"™, Eq. (A3)

where T is reservoir temperature, Py is bubble pressure, MCs is the fraction of Cs+ molecular

weight; Xvor is the volatile components and Xmeq is the intermediate components.
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However, those correlations can be used only when special conditions are satisfied: (i) the test
temperature should range from 40.8 to 112.2°C; (ii) the MMP ranges between 8.28 and 30.2
MPa; (3) the Cs+ molecular weight ranges from 166.2 g/mol to 267.5 g/mol. If the calculated
MMP is smaller than Py (bubble pressure), then Py, is taken as MMP.

4-A.3. Correlation Proposed by Alston et al.

The correlation developed by Alston et al. (Alston et al., 1985) for the pure CO- injection case is
represented as a function of reservoir temperature, oil pentane and heavier molecular weight, and
the ratio of volatile to intermediate mole fractions in the reservoir oil. When the bubble pressure

of reservoir oil is greater than 50 psia (0.345MPa), the influence of the volatile/intermediate

ratios is important, and the correlation can be written as:

P

m,min, pure

— 6.0536x10° (L8T +32)' (M, )-8 (2oL )0, Eq. (A4)

MED

However, when the bubble pressure of reservoir oil is smaller than 50 psia (0.345MPa), it
contains relatively small or zero quantities of volatile and intermediate components, and the
MMP is not affected significantly by these components. Thus the influence of the
volatile/intermediate ratios is not significant, and the correlation is:

P

m,min, pure

=6.0536x10°(L8T +32)"°(M_)*", Eq. (A5)

where T is reservoir temperature, Mcs: is the fraction of Cs+ molecular weight; xvor is the volatile

components and Xmed IS the intermediate components.

For the impure CO> stream injection case, contaminants have the adverse or positive effects on
MMP. Thus a correction factor Fimp is introduced. It was calculated based on the critical
temperature of each component in the stream. The pseudo-critical temperature (Tcm) of the

solvent stream was calculated using a weight-fraction mixing rule as follows:

1.93587.8/T,,
Fip =(87.8/T,) Eq. (A6)
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Ton = O W, (18T, +32) Eq. (A7)
k=1

where Tcm is the weight average critical temperature of the solvent stream, wk is the weight
fraction of component k (k = COz, C1, N2, H2S, and C,—Ca), and Tck is the critical temperature of

component k. Then the impure CO2-o0il MMP was calculated as:

P

m,mim,impure —

Pm,min,pure>< I:imp . Eq. (A8)

4-A.4. Correlation Proposed by Sebastian et al.

Based on the Sebastian and co-worker’s research (Sebastian et al., 1985), combined with
previous study, Sebastian et al. proposed a new correlation to predict the change in MMP value
resulting from the impurities (i.e. C1, Hz, O2, COz2, N2, H2S, and C>—Cs hydrocarbons) in the CO>
drive gas. The relationship between impure and pure CO2-oil MMP was described as:

Fp =1.0-0.0213(1.8T,,, -31) +2.51x10* (18T, -31)? - 2.35x107 (18T, -31)° , Eq. (A9)

where Tem is the mole average pseudocritical temperature of the gas stream, and can be

expressed as:
Tcm = Z Xchk Eq (AlO)
k=1

where X is the mole fraction of component k (k = CO», C1, N2, H2S, and C>—C4), and Tek is the
supercritical temperature of each component k.

The MMP pure was calculated use the following formula:

P =12.6472+0.01553(1.8T +32) +1.24192x10*(1.8T +32)2 - 169427 - gq (A11)
m,min, pure 1'8TR +32

and the impure CO»-oil MMP was calculated as:
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P

m,mim,impure —

P xF . Eq. (A12)

m,min,pure imp

References

Al-Ajmi, M. F., O. A. Alomair, and A. M. Elsharkawy, 2009, Planning miscibility tests and gas
injection projects for four major Kuwaiti reservoirs: Kuwait International Petroleum Conference
and Exhibition.

Al-Anazi, A. F., and I. D. Gates, 2010a, Support-vector regression for permeability prediction in
a heterogeneous reservoir: A comparative study: SPE Reservoir Evaluation & Engineering, V.
13, p. 485-495.

Al-Anazi, A. F., and I. D. Gates, 2010b, A support vector machine algorithm to classify
lithofacies and model permeability in heterogeneous reservoirs: Engineering Geology, v. 114, p.
267-277.

Al-Anazi, A. F., and I. D. Gates, 2010c, Support vector regression for porosity prediction in a
heterogeneous reservoir: A comparative study: Computers & Geosciences, v. 36, p. 1494-1503.

Al-Anazi, A. F., I. D. Gates, and J. Azaiez, 2011, Support vector machines for petrophysical
modelling and lithoclassification.

Al-Wahaibi, Y. M., 2010, First-contact-miscible and multicontact-miscible gas injection within a

channeling heterogeneity system: Energy & Fuels, v. 24, p. 1813-1821.

Alston, R. B., G. P. Kokolis, and C. F. James, 1985, CO2 minimum miscibility pressure: A
correlation for impure CO: streams and live oil systems: Society of Petroleum Engineers Journal,
v. 25, p. 268-274.

Asoodeh, M., A. Gholami, and P. Bagheripour, 2014, Oil-CO2, MMP determination in
competition of neural network, support vector regression, and committee machine: Journal of

Dispersion Science and Technology, v. 35, p. 564-571.

148



Bennett, K. P., and O. L. Mangasarian, 1992, Robust linear programming discrimination of two

linearly inseparable sets: Optimization methods and software, v. 1, p. 23-34.

Bon, J., M. K. Emera, and H. K. Sarma, 2006, An experimental study and genetic algorithm
(GA) correlation to explore the effect of nCs on impure CO2 minimum miscibility pressure
(MMP): SPE Asia Pacific Oil & Gas Conference and Exhibition.

Bon, J., H. K. Sarma, and A. M. Theophilos, 2005, An investigation of minimum miscibility
pressure for COz-rich injection gases with pentanes-plus fraction: SPE International Improved

Oil Recovery Conference in Asia Pacific.

Boser, B. E., I. M. Guyon, and V. N. Vapnik, 1992a, A training algorithm for optimal margin
classifiers: Proceedings of the fifth annual workshop on Computational learning theory, p. 144-
152.

Boser, B. E., I. M. Guyong, and V. N. Vapnik, 1992b, A training algorithm for optimal margin

classifiers.

Burges, C. J. C., 1998, A tutorial on support vector machines for pattern recognition: Data

mining and knowledge discovery, v. 2, p. 121-167.

Cao, P., 2012, Feasibility assessment on CO2 miscible flooding for enhancing oil recovery in

Gbeibe oil reservoir, Southwest Petroleum University.

Chaback, J. J., R. A. Harmon, and R. B. Grigg, 1989, Discussion of vapor-density measurement
for estimating minimum miscibility pressure: SPE reservoir engineering, v. 4, p. 253-254.

Chang, C.-C., and C.-J. Lin, 2011, LIBSVM: A library for support vector machines: ACM
Transactions on Intelligent Systems and Technology (TIST), v. 2, p. 27.

Chen, G., K. Fu, Z. Liang, T. Sema, C. Li, P. Tontiwachwuthikul, and R. Idem, 2014, The
genetic algorithm based back propagation neural network for MMP prediction in CO,-EOR
process: Fuel, v. 126, p. 202-212.

149



Christiansen, R. L., and H. K. Haines, 1986, Apparatus and method for determining the

minimum miscibility pressure of a gas in a liquid, USA.

Christiansen, R. L., and H. K. Haines, 1987, Rapid measurement of minimum miscibility

pressure with the rising-bubble apparatus: SPE Reservoir Engineering, v. 2, p. 523-527.

Clark, N. J., H. Shearin, W. Schultz, K. Garms, and J. Moore, 1958, Miscible drive-Its theory

and application: Journal of Petroleum Technology, v. 10, p. 11-20.
Cortes, C., and V. Vapnik, 1995, Support-vector networks: Machine learning, v. 20, p. 273-297.

Cronquist, C., 1978, Carbon dioxide dynamic miscibility with light reservoir oils: Proc. Fourth
Annual US DOE Symposium, Tulsa, p. 28-30.

Dicharry, R. M., T. L. Perryman, and J. D. Ronquille, 1973, Evaluation and design of a CO-
miscible flood project-SACROC unit, Kelly-Snyder field: Journal of Petroleum Technology, v.
25, p. 1,309-1,318.

Dodds, W. S., L. F. Stutzman, and B. J. Sollami, 1956, Carbon dioxide solubility in water:
Industrial & Engineering Chemistry Chemical & Engineering Data Series, v. 1, p. 92-95.

Dong, M., 1999, Task 3- minimum miscibility pressure (MMP) studies, technical report:
potential of greenhouse storage and utilization through enhanced oil recovery, Petroleum

Research Center, Saskatchewan Research Council Saskatchewan,, Canada.

Dong, M., S. Huang, S. B. Dyer, and F. M. Mourits, 2001, A comparison of CO2 minimum
miscibility pressure determinations for Weyburn crude oil: Journal of Petroleum Science and

Engineering, v. 31, p. 13-22.

Drucker, H., C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, 1997, Support vector

regression machines: Advances in neural information processing systems, v. 9, p. 155-161.

150



Duan, Z., and R. Sun, 2003, An improved model calculating CO> solubility in pure water and
aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar: Chemical geology, v. 193, p.
257-271.

Eakin, B., and F. Mitch, 1988, Measurement and correlation of miscibility pressures of reservoir

oils: SPE annual technical conference and exhibition.

Eberhart, R. C., and J. Kennedy, 1995, A new optimizer using particle swarm theory: Sixth

international symposium on micro machine and human science, p. 39-43.

Egwuenu, A. M., 2004, Improved fluid characterization for miscible gas floods, University of

Texas at Austin.

Emera, M. K., and H. K. Sarma, 2005, Use of genetic algorithm to estimate CO2—oil minimum
miscibility pressure-a key parameter in design of CO> miscible flood: Journal of petroleum

science and engineering, v. 46, p. 37-52.

Fazlali, A., M. Nikookar, A. Agha-Aminiha, and A. H. Mohammadi, 2013, Prediction of
minimum miscibility pressure in oil reservoirs using a modified SAFT equation of state: Fuel, v.
108, p. 675-681.

Frimodig, J. P., N. A. Reese, and C. A. Williams, 1983, Carbon dioxide flooding evaluation of
high pour-point, paraffinic red wash reservoir oil: Society of Petroleum Engineers Journal, v. 23,
p. 587-594.

Fu, Y., and Y. Cheng, 2011, Application of an integrated support vector regression method in
prediction of financial returns: International Journal of Information Engineering and Electronic
Business (1JIEEB), v. 3, p. 37.

Glass, O., 1985, Generalized minimum miscibility pressure correlation Society of Petroleum

Engineers Journal, v. 25, p. 927-934.

Graue, D. J., and E. T. Zana, 1981, Study of a possible CO: flood in Rangely Field: Journal of
Petroleum Technology, v. 33, p. 1,312-1,318.

151



Harmon, R. A,, and R. B. Grigg, 1988, Vapor-density measurement for estimating minimum

miscibility pressure SPE reservoir engineering, v. 3, p. 1,215-1,220.

Hemmati-Sarapardeh, A., S. Ayatollahi, M.-H. Ghazanfari, and M. Masihi, 2013, Experimental
determination of interfacial tension and miscibility of the CO2—crude oil system; temperature,

pressure, and composition effects: Journal of Chemical & Engineering Data, v. 59, p. 61-609.

Henry, R. L., and R. S. Metcalfe, 1983, Multiple-phase generation during carbon dioxide
flooding: Society of Petroleum Engineers Journal, v. 23, p. 595-601.

Holm, L. W., and V. A. Josendal, 1974, Mechanisms of oil displacement by carbon dioxide:
Journal of petroleum Technology, v. 26, p. 1,427-1,438.

Huang, H., S. Ding, F. Jin, J. Yu, and Y. Han, 2012, A novel granular support vector machine
based on mixed kernel function: International Journal of Digital Content Technology and its
Applications, v. 6, p. 484-492.

Huang, Y. F., G. H. Huang, M. Z. Dong, and G. M. Feng, 2003, Development of an artificial
neural network model for predicting minimum miscibility pressure in CO2 flooding: Journal of

Petroleum science and Engineering, v. 37, p. 83-95.

Hutchinson, C. A., and P. H. Braun, 1961, Phase relations of miscible displacement in oil

recovery: AIChE Journal, v. 7, p. 64-72.

Jacobson, H. A., 1972, Acid gases and their contribution to miscibility: Journal of Canadian
Petroleum Technology, v. 11.

Jaubert, J.-N., L. Avaullee, and J.-F. Souvay, 2002, A crude oil data bank containing more than
5000 PVT and gas injection data: Journal of Petroleum Science and Engineering, v. 34, p. 65-
107.

Jin, R., W. Chen, and T. W. Simpson, 2001, Comparative studies of metamodelling techniques
under multiple modeling criteria: Structural and Multidisciplinary Optimization, v. 23, p. 1-13.

152



Khan, S. A., G. A. Pope, and K. Sepehrnoori, 1992, Fluid characterization of three-phase CO/oil
mixtures: SPE/DOE Enhanced Oil Recovery Symposium.

Kuuskraa, V., and M. Wallace, 2014, CO,-EOR set for growth as new CO_ supplies emerge: Oil
& Gas Journal, v. 112, p. 92-92.

Lee, J. I., 1979, Effectiveness of carbon dioxide displacement under miscible and immiscible

conditions, Report RR-40, Petroleum Recovery Inst., Calgary.

Li, H., J. Qin, and D. Yang, 2012, An improved CO2—oil minimum miscibility pressure
correlation for live and dead crude oils: Industrial & Engineering Chemistry Research, v. 51, p.
3516-3523.

Lian, C., Z. Zeng, W. Yao, and H. Tang, 2013, Displacement prediction of landslide based on
PSOGSA-ELM with mixed kernel: Advanced Computational Intelligence (ICACI), 2013 Sixth

International Conference on, p. 52-57.

Metcalfe, R. S., 1982, Effects of impurities on minimum miscibility pressures and minimum
enrichment levels for CO> and rich-gas displacements: Society of Petroleum Engineers Journal,
V. 22, p. 219-225.

Miller, K.-R., A. J. Smola, G. Rétsch, B. Schélkopf, J. Kohlmorgen, and V. Vapnik, 1997,
Predicting time series with support vector machines, Artificial Neural Networks, Springer, p.
999-1004.

Mungan, N., 1981, Carbon dioxide flooding-fundamentals: Journal of Canadian Petroleum

Technology, v. 20.

NETL, 2010, Carbon dioxide enhanced oil recovery-untapped domestic energy supply and long

term carbon storage solution: The Energy Lab.

Noble, W. S., 2006, What is a support vector machine?: Nature biotechnology, v. 24, p. 1565-
1567.

153



Norman, J. H., 2001, Non technical Guide to Petroleum Geology Exploration: Drilling and
Production. 2nd edition, printed in USA, p. 1-15.

Orr, F. M., and K. Jessen, 2007, An analysis of the vanishing interfacial tension technique for

determination of minimum miscibility pressure: Fluid phase equilibria, v. 255, p. 99-109.

Orr Jr, F. M., and C. M. Jensen, 1984, Interpretation of pressure-composition phase diagrams for

CO2/crude-oil systems: Society of Petroleum Engineers Journal, v. 24, p. 485-497.

Oyerokun, A. A., K. Aminian, S. Ameri, H. I. Bilgesu, and D. Della-Giustina, 2002, A new
approach for training and testing artificial neural networks for permeability prediction, West

Virginia University Libraries.

Rao, D. N., 1997, A new technique of vanishing interfacial tension for miscibility determination:
Fluid phase equilibria, v. 139, p. 311-324.

Rao, D. N., and J. I. Lee, 2002, Application of the new vanishing interfacial tension technique to
evaluate miscibility conditions for the Terra Nova Offshore Project: Journal of Petroleum

Science and Engineering, v. 35, p. 247-262.

Rathmell, J. J., F. I. Stalkup, and R. C. Hassinger, 1971, A laboratory investigation of miscible
displacement by carbon dioxide: Fall meeting of the society of petroleum engineers of AIME.

Sebastian, H. M., R. S. Wenger, and T. A. Renner, 1985, Correlation of minimum miscibility
pressure for impure CO- streams: Journal of Petroleum Technology, v. 37, p. 2,076-2,082.

Shelton, J. L., and L. Yarborough, 1977, Multiple phase behavior in porous media during CO2 or
rich-gas flooding: Journal of Petroleum Technology, v. 29, p. 1,171-1,178.

Shi, Y., and R. Eberhart, 1998, A modified particle swarm optimizer: Evolutionary Computation
Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE
International Conference on, p. 69-73.

154



Shokir, E. M. E.-M., 2007a, CO2—oil minimum miscibility pressure model for impure and pure

CO. streams: Journal of Petroleum Science and Engineering, v. 58, p. 173-185.

Shokir, E. M. E.-M., 2007b, Precise model for estimating CO>—oil minimum miscibility
pressure: Petroleum Chemistry, v. 47, p. 368-376.

Shokrollahi, A., M. Arabloo, F. Gharagheizi, and A. H. Mohammadi, 2013, Intelligent model for

prediction of COz—reservoir oil minimum miscibility pressure: Fuel, v. 112, p. 375-384.

Smits, G. F., and E. M. Jordaan, 2002, Improved SVM regression using mixtures of kernels: In
Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint Conference on, p.
2785-2790.

Smola, A. J., 1996, Regression estimation with support vector learning machines: Master's

thesis, Technische Universit at M unchen.

Smola, A. J., and B. Schélkopf, 1998, Learning with kernels, MIT.

Smola, A. J., and B. Schélkopf, 2004, A tutorial on support vector regression: Statistics and

computing, v. 14, p. 199-222.

Smola, A. J., B. Scholkopf, and K.-R. Miiller, 1998, General cost functions for support vector

regression: In Proceedings of the 8th International Conference on Artificial Neural Networks.

Spence Jr, A. P., and R. W. Watkins, 1980, The effect of microscopic core heterogeneity on

miscible flood residual oil saturation: SPE Annual Technical Conference and Exhibition.

Srivastava, R. K., S. S. Huang, and M. Dong, 2000, Laboratory investigation of Weyburn CO>
miscible flooding: Journal of Canadian Petroleum Technology, v. 39.

Stalkup Jr, F. 1., 1983a, Miscible displacement, Society of Petroleum Engineers,Richardson, TX.

Stalkup Jr, F. 1., 1983b, Status of miscible displacement: Journal of Petroleum Technology, v.
35, p. 815-826.

155



Sun, Y. H., G.Z. Lv, Y. F. Wang, and A. Q. Dong, 2006, A method of state equation for
determining minimum miscible pressure of CO.: Pettroleum Geology and Recovery Efficiency,
v. 13, p. 82-84.

Thakur, G. C., C. J. Lin, and Y. R. Patel, 1984, CO, minitest, little knife field, ND: a case
history: SPE enhanced oil recovery symposium.

Turek, E. A., R. S. Metcalfe, L. Yarborough, and R. L. Robinson Jr, 1984, Phase equilibria in
CO2-multicomponent hydrocarbon systems: experimental data and an improved prediction

technique: Society of petroleum engineers journal, v. 24, p. 308-324.

Vapnik, V. N., 1963, Pattern recognition using generalized portrait method: Automation and
remote control, v. 24, p. 774-780.

Vapnik, V. N., and A. J. Chervonenkis, 1964, On the one class of the algorithms of pattern

recognition: Automation and Remote Control, v. 25.

Vapnik, V. N., S. E. Golowich, and A. Smola, 1997, Support vector method for function
approximation, regression estimation, and signal processing: Advances in neural information

processing systems, p. 281-287.

Vapnik, V. N., and S. Kotz, 1982, Estimation of dependences based on empirical data, v. 40,
Springer-Verlag New York.

Wang, G. C., T. R. Carr, Y. W. Ju, and C. F. Li, 2014, Identifying organic-rich Marcellus Shale
lithofacies by support vector machine classifier in the Appalachian basin: Computers &

Geosciences, V. 64, p. 52-60.

Wang, J., M. Dong, Y. Li, and H. Gong, 2015, Prediction of nitrogen diluted CO> minimum

miscibility pressure for EOR and storage in depleted oil reservoirs: Fuel, v. 162, p. 55-64.

Yang, X., H. Peng, and M. Shi, 2013, SVM with multiple kernels based on manifold learning for
breast cancer diagnosis, Information and Automation (ICIA), 2013 IEEE International
Conference on, Yinchuang, China, IEEE, p. 396-399.

156



Yellig, W. F., and R. S. Metcalfe, 1980, Determination and prediction of CO2 minimum

miscibility pressures: Journal of Petroleum Technology, v. 32, p. 160-168.

Yuan, H., and R. T. Johns, 2005, Simplified method for calculation of minimum miscibility

pressure or enrichment: SPE Journal, v. 10, p. 416-425.

Yuan, H., R. T. Johns, A. M. Egwuenu, and B. Dindoruk, 2004, Improved MMP correlations for
CO:- floods using analytical gas flooding theory: SPE/DOE symposium on improved oil

recovery.

Yuan, H., R. T. Johns, A. M. Egwuenu, and B. Dindoruk, 2005, Improved MMP correlation for
CO:- floods using analytical theory: SPE Reservoir Evaluation & Engineering, v. 8, p. 418-425.

Zhang, H., D. Hou, and K. Li, 2015, An improved CO>-crude oil minimum miscibility pressure

correlation: Journal of Chemistry, v. 2015.

Zheng, S., J. Liu, and J. Tian, 2004, An SVM-based small target segmentation and clustering
approach: Machine Learning and Cybernetics, 2004. Proceedings of 2004 International
Conference on, p. 3318-3323.

Zhou, H., 2008, Experimental study on CO2 miscible flooding in ultralow permeability reservoir
Ph.D thesis thesis, Daging Petroleum Institute, Heilongjiang.

Zhu, Y., L. Tian, Z. Mao, and L. Wei, 2005, Mixtures of kernels for SVM modeling, Advances
in Natural Computation, Springer, p. 601-607.

Zuo, Y., J. Chu, S. Ke, and T. Guo, 1993, A study on the minimum miscibility pressure for

miscible flooding systems: Journal of Petroleum Science and Engineering, v. 8, p. 315-328.

157



Input Space

Figure 4-1. Transformation process illustration of a SVR model. A nonlinear mapping function
y(x) defined to convert a nonlinear problem in the original (low dimensional) data input space

P(x)

Feature Space
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(@) to linear problem in a (higher dimensional) feature space (b). The points
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Figure 4-2.Mapping features of polynomial and RBF kernel. (a) is polynomial kernel, d is the
operation degree, x=0.2 is test point. VVarious values of d was selected, only the points which are
far enough from test point will have an effective influence on the kernel value; (b) is radial basis
function kernel, x=0.2 is test point. Various values of Y" was selected, the points adjacent to the
test point have a great influence on the kernel values.
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Figure 4-3.Curves of mixed kernel function. x=0.2 is the test point, Y" is 0.1 and d=1. Various
value of mixing coefficient (m) was selected, data points which are both far away from the test
point and adjacent to the test point have a great influence on the kernel.
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Figure 4-4. lllustration of PSO velocity and particle position update for particle xi in a two-
dimensional search space.
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Figure 4-5. Workflow of PSO to optimize parameters of mixture kernel function.
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Figure 4-6. The process of searching best gamma and cost parameters by grid searching
algorithm for SVR with linear kernel (a), polynomial kernel (b), RBF kernel (c), sigmoid kernel
(d) and n-fold of 4. The color of the contour lines in the figure indicated the associated cross-
validation mean square error.
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Figure 4-7. This plot shows the process of searching for best gamma and cost value by particle
swarm optimization (PSO) for MKF-SVR model and n-fold of 4.
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Figure 4-8. Determination of the correlation coefficient of training SVR with different Kernel
function
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Figure 4-9. Comparison of actual values and forecasted values by mixed kernels function based
SVR model.
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Figure 4-10. Comparison between the results of the developed model and other well-known
correlations. (a) mixed kernels function based SVR (b) Alston et al. (1985) correlation, (c) Yellig
and Metcalfe (1980) correlation (corrected with Sebastian et al. (1985) impurity correction
factor), (¢) Emera and Sarma (2005) correlation (corrected with Sebastian et al. (1985) impurity
correction factor), and (f) Emera and Sarma (2005) correlation (corrected with Alston et al.
(1985) impurity correction factor). MMP®® is the MMP value measured by experiments, and
MMPPe s the MMP value predicted based on the correlation models.
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Figure 4- 11. Sensitivity analysis of the proposed model to vary input parameters. (a) reservoir
temperature; (b) average critical temperature; (c) molecular weight of pentane plus fraction; and
(d) volatile component to intermediate component ratio.
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Table 4-1. Literature experimental data that used for MMP prediction.

Reference

Training Dataset

Testing Dataset

Pure Impure

Pure

Impure

Rathmell et al. (1971)

3

Jacobson, (1972)

1 3

Dicharry et al. (1973)

1

Holm et al. (1974)

Shelton et al. (1977)

[

Spence et al. (1980)

[EEN

Graue et al. (1981)

Gardner et al. (1981)

Metcalfe (1982)

20

Frimodig (1983)

18

Henry et al. (1983)

Thakur et al. (1984)

Alston et al. (1985)

Sebastian et al. (1985)

Harmon et al. (1988)

Eakin et al. (1988)

Chaback (1989)

Khan et al. (1992)

Zuo et al. (1993)

HNbl—\Hl—\:\l\Jl—\wbl—\
[EEN
N

Dong (1999)

Srivastava et al. (2000)

Dong et al. (2001)

Jaubert et al. (2002)

Bon et al. (2005)

Bon et al. (2006)

Sun et al. (2006)

Zhou et al. (2008)

Al-Ajmi, et al. (2009)

Lietal. (2012)

Peng (2012)

Zhang et al. (2015)

Total

golRr|dlR|R|N R Wk
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Table 4-2. Common Kernel function, corresponding mathematical expressions and parameters

ranges.
Kernel Function C Y d € m
Linear Kernel K(x;, J) (X, J>+C 2027 X X X X
Polynomial K (x X ic 24~2% | 23~2%8 |2 X X
Polyne (% %5) = (0%, X;) +)°
Radial Basis 28~2% | 215~ X X X
Function Kernel K J) exp( 7“)( X H ) 215
Sigmoid Kernel K(x,X;) = tanh(»{(x,, X;) +¢) 20~210 | 26~21 | x x x
Mixture Kernel 22~25 | 28~2411~45 | 10*~10" | 0~1

Kmix pron+(l p)K
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Table 4-3. Typical parameters used for training SVR model with PSO algorithms.

wmin

Parameter Value Parameter Value
Maximum Generation 150 Population size 50
Cognitive efficient («,) 15 Social efficient (w,) 15
Initial inertia weights 4, | 0.9 Final inertia weight 0.4
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Table 4-4. Error measures for accuracy assessment (Al-Anazi and Gates, 2010a)

Accuracy measure Mathematical expression
Coefficient of Determination, R? N N
Z(yi - yi)
RZ =1— i=1
Z(Yi —averg(y;))
i=1
Correlation coefficient, r Zim:l(yi 9§ — §i)

- (- 9

Root mean square error, RMSE

s

Average absolute error, AAE 1 .
Tzi:l|yi —Yi

Maximum absolute error, MAE max|yi - 9i|,i =12..m
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Table 4-5. The training and testing performance of SVR model with mixture kernel and other
basic kernel functions.

Data Set Statistical Kernel Function
Parameters | Linear Polynomial RBF Sigmoid | MKF

Training Set | RMSE 2.9220 3.0128 2.4558 2.9181 2.0111
AAE 2.1244 2.0668 1.7852 2.2223 1.1659
MAE 5.8374 6.3763 4.8271 5.9940 |5.1228
r 0.8531 0.8415 0.8989 0.8528 0.9365
N€ 133

Test Set RMSE 2.2851 1.9760 1.4670 2.2667 1.204
AAE 1.7873 1.3221 1.0862 1.8198 0.8814
MAE 4.7201 3.9290 1.4040 2.5362 2.4607
r 0.8395 0.8717 0.9274 0.8386 0.9503
Ne 14

Total RMSE 2.8675 2.9299 2.3794 2.8625 1.9151
AAE 2.0923 1.9959 1.7186 2.1840 1.1406
MAE 5.8374 6.3763 48271 5.9940 | 4.6291
r 0.8411 0.8695 0.9099 0.8420 | 0.9381
Ne 147
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Table 4- 6. The comparison of five correlations statistical results.

correction )

Model R RMSE | AAE MAE N
MFK-SVR 0.9381 | 1.9151 | 1.1140 |4.6291 147
Alston et al., (1985) 0.7826 | 5.5644 | 30.9630 | 309.2128 | 141
Yelling et al. [24](Sebastian et al. [83] 0.2145 | 7.0807 | 50.1360 | 599.5285 | 147
correction)

Yelling et al. (1980), ( Alston et al.,1985 0.3429 | 7.4034 | 54.8104 | 348.8954 | 143
correction)

Emera et al. (2005), ( Sebastian et al. 0.5001 | 6.6600 | 44.3556 | 529.8390 | 146
(1985)correction)

Emera et al. (2005), (Alston et al. (1985) 0.7407 | 5.7220 | 32.7420 | 386.5963 | 142
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