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ABSTRACT 

Geological capture, utilization and storage (CCUS) of carbon dioxide (CO2) in depleted oil and 

gas reservoirs is one method to reduce greenhouse gas emissions with enhanced oil recovery 

(EOR) and extending the life of the field. Therefore CCUS coupled with EOR is considered to be 

an economic approach to demonstration of commercial-scale injection and storage of 

anthropogenic CO2. Several critical issues should be taken into account prior to injecting large 

volumes of CO2, such as storage capacity, project duration and long-term containment. Reservoir 

characterization and 3D geological modeling are the best way to estimate the theoretical CO2 

storage capacity in mature oil fields.  

The Jacksonburg-Stringtown field, located in northwestern West Virginia, has produced over 22 

million barrels of oil (MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is 

the primary reservoir.  

The Upper Devonian fluvial sandstone reservoirs in Jacksonburg-Stringtown oil field, which has 

produced over 22 million barrels of oil since 1895, are an ideal candidate for CO2 sequestration 

coupled with EOR.   Supercritical depth (>2500 ft.), minimum miscible pressure (941 psi), 

favorable API gravity (46.5°) and good water flood response are indicators that facilitate CO2-

EOR operations. Moreover, Jacksonburg-Stringtown oil field is adjacent to a large concentration 

of CO2 sources located along the Ohio River that could potentially supply enough CO2 for 

sequestration and EOR without constructing new pipeline facilities. 

Permeability evaluation is a critical parameter to understand the subsurface fluid flow and 

reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon 

storage. In this study, a rapid, robust and cost-effective artificial neural network (ANN) model is 

constructed to predict permeability using the model's strong ability to recognize the possible 

interrelationships between input and output variables. Two commonly available conventional 

well logs, gamma ray and bulk density, and three logs derived variables, the slope of GR, the 

slope of bulk density and Vsh were selected as input parameters and permeability was selected as 

desired output parameter to train and test an artificial neural network. The results indicate that 

the ANN model can be applied effectively in permeability prediction.  



 

 

Porosity is another fundamental property that characterizes the storage capability of fluid and gas 

bearing formations in a reservoir. In this study, a support vector machine (SVM) with mixed 

kernels function (MKF) is utilized to construct the relationship between limited conventional 

well log suites and sparse core data. The input parameters for SVM model consist of core 

porosity values and the same log suite as ANN’s input parameters, and porosity is the desired 

output. Compared with results from the SVM model with a single kernel function, mixed kernel 

function based SVM model provide more accurate porosity prediction values.  

Base on the well log analysis, four reservoir subunits within a marine-dominated estuarine 

depositional system are defined: barrier sand, central bay shale, tidal channels and fluvial 

channel subunits. A 3-D geological model, which is used to estimate theoretical CO2 

sequestration capacity, is constructed with the integration of core data, wireline log data and 

geological background knowledge. Depending on the proposed 3-D geological model, the best 

regions for coupled CCUS-EOR are located in southern portions of the field, and the estimated 

CO2 theoretical storage capacity for Jacksonburg-Stringtown oil field vary between 24 to 383 

million metric tons. The estimation results of CO2 sequestration and EOR potential indicate that 

the Jacksonburg-Stringtown oilfield has significant potential for CO2 storage and value-added 

EOR.
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Abstract 

Permeability evaluation is a critical parameter to understanding subsurface fluid flow, and 

reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon 

storage. Accurate permeability values are measured in the laboratory from subsurface core 

samples or estimated from well test data. However these measurements are expensive and time-

consuming and usually limited to a few wells and limited samples in a hydrocarbon field or 

carbon storage site. In order to create a rapid, robust and cost-effective model to predict 

permeability, intelligent techniques are applied that can recognize possible interrelationships 

between input and output variables. In this research, new back-propagation artificial neural 

networks (BPNN) are optimized using two evolutionary algorithms: genetic algorithms (GA’s) 

and particle swarm optimization (PSO), to estimate permeability in potential carbon storage and 

enhanced oil recovery (EOR) operations in the Jacksonburg-Stringtown oil field, West Virginia, 

USA. The two evolutionary algorithms were applied to determine suitable initial connection 

weights and biases of a back-propagation neural network. Two commonly available conventional 

well logs, gamma ray and bulk density; and three logs derived variables, the slope of GR, the 

slope of bulk density and Vsh were selected as BPNN input parameters to better predict 

permeability. The predicted results of BPNN with particle swarm optimization model (PSO-

BPNN) is compared with predicted results from BPNN with genetic algorithm (GA-BPNN). The 

results indicate that the PSO-BPNN model can be applied more effectively in permeability 

prediction with highest correlation coefficient (r of 0.9595), highest coefficient of determination 

(R2 of 0.9208), lowest standard deviation (SD of 26.6584) and root mean square error (RMSE of 

137.5647), mean error value (ME of 19.4389).  
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1.1 Introduction  

Permeability (k) is a measure of how easily hydrocarbons, CO2 and other fluids and gasses with 

a given viscosity flow through a subsurface unit’s pore spaces in the presence of one or multiple 

fluid phases (e.g., oil and formation water). It is a critical parameter in reservoir characterization 

and determination of flow patterns. Reliable estimation of permeability is critical for seal 

evaluation and fluid-migration analysis in a field or reservoir (Helle et al., 2001). There are no 

geophysical well logs that provides a direct permeability measurement, and predicting 

permeability is one of selecting a model expressing k in terms of other measurable rock 

properties.  A theoretical tube-like model of rock pore space known as the Kozeny-Carman 

relationship is applied to calculate the permeability.  However, the result is unreliable due to 

numerous parameters, such as Kozeny constant and porosity value (Mauran et al., 2001). 

Pressure transient formation well testing including; pressure build up, drill stem testing (DST) 

and repeat formation testing (RFT) (Clark and Golf-Racht, 1985; Xu et al., 2008); and laboratory 

core measurements, provide relatively accurate measure of permeability, However, core and 

pressure transient tests are expensive, time-consuming and given limited data in a few wells may 

not be representative of the reservoir.  Production history matching can also be used to estimate 

permeability, but this permeability value reflects the average permeability of the whole reservoir 

and ignores the reservoir’s heterogeneity and complexity (Helle et al., 2001).  

Recently, artificial neural networks (ANN) have been applied in the petroleum industry because 

of their strong ability of generalization and nonlinear approximation (Huang and Williamson, 

1996; Mohaghegh and Ameri, 1995; Mohaghegh et al., 1996; Van der Baan and Jutten, 2000). 

This technology has been used extensively to improve prediction for: porosity and permeability 

(Al Moqbel and Wang, 2011; Helle et al., 2001; Huang et al., 1996; Huang and Williamson, 

1997; Mohaghegh and Ameri (1995); Mohebbi et al., 2012);  water saturation determination 

(Helle and Bhatt, 2002);  lithofacies classification (Al Moqbel and Wang, 2011; Bhatt and Helle, 

2002; Wang and Carr, 2012a; Wang et al., 2013);  hydraulic fracture optimization (Mohaghegh 

and Ameri, 1995);  reservoir pressure estimation (Chen et al., 2014; Sayyad et al., 2014); PVT 

property prediction (Gharbi and Elsharkawy, 1999); and other subsurface applications. 

Evaluation of ANN performance in predicting reservoir permeability using full suites of modern 
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geophysical well log data indicates good estimates even in heterogeneous reservoirs (Aminian 

and Ameri, 2005).  

Artificial neural networks can be applied across almost any field or reservoir to provide a 

nonlinear mapping between inputs and outputs (Rosenblatt, 1961). The characteristics of ANN 

including learning feature from data, fast development, strong generalization and universal 

approximation ability, accurate nonlinear data fitting and regression capabilities, are major 

reasons for the rapid growth in number and diversity of applications (Kordon, 2009). ANN has 

been applied widely, but the process of minimizing convergence rate to zero during network 

training can cause overtraining, also known as overfitting, because of memorization of the 

training dataset (Geman et al., 1992; Moody, 1994; Scales and Snieder, 1998; Tu, 1996). 

Principal component analysis (PCA) and cross-validation methodologies have been applied to 

optimize ANN structure and reduce the overfitting effect (Jin et al., 2005; Zhang et al., 1999). 

However, these approaches significantly reduce the number of samples in the training dataset, 

and in the case of permeability with limited direct laboratory or well measurements can result in 

insufficient data for a robust training process. In order to deal with severely limited modern 

geophysical log data from the greater than 100 year-old Jacksonburg-Stringtown oil field in West 

Virginia, USA, we apply two evolutionary algorithms, namely genetic algorithms (GA’s) and 

particle swarm optimization algorithm (PSO), to optimize the initial connection weights and 

biases of artificial neural networks (ANN), and develop hybrid GA-ANN and PSO-ANN 

regression models to predict the permeability. Five variables are evaluated: gamma ray (GR), 

density, the slope of GR, the slope of density and shale content (Vsh). The result of GA-BPNN is 

compared with the result of PSO-BPNN in order to determine the performance of evolutionary 

algorithms. A general BPNN is constructed and the result of BPNN is compared with the result 

of GA-BPNN and PSO-BPNN in order to illustrate the advantages of evolutionary algorithms’ 

optimization ability.   

The paper introduces the theoretical background of artificial neural network, evolutionary 

algorithms, illustrates the process of developing hybrid GA-BPNN and PSO-BPNN, and 

describes the process of how to evaluate the different BPNNs’ performance. The geological 

background and the challenges of data acquisition of a case study are discussed and used to 
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evaluate the results of evolutionary algorithms in the super-mature reservoir that has been 

developed over more than a century.  

1.2 Methodology 

1.2.1 Principle of Artificial Neural Networks 

Mathematical perceptron is the prototype of a neural network, which mimics biological neuron 

behavior (McCulloch and Pitts, 1943) (Figure 1-1a). Hérault and Jutten describe the process of 

biological neuron transiting signals from one neuron to others by the mathematical method 

(Hérault and Jutten, 1994). The mathematical neuron simplified the transiting process of 

biological neuron’s signal (Figure 1-1b). The result of summing node is the weighted sum of 

input signals (Figure 1-1c). The final output signal is rescaled by various types of activation 

functions (Figure 1-1d). An artificial neural network is the combination of a series of 

mathematical neurons. There are many different types of ANNs, some of which are more popular 

than others (Agatonovic-Kustrin and Beresford, 2000). The most frequently used ANN is a fully 

connected, supervised network with a backpropagation learning rule, which generally is labeled 

as a back-propagation neural network (BPNN). BPNN normally consists of three layer types of 

neurons. The first layer is a single input layer and the last layer is a single output layer. The 

number of input neurons and output neurons is problem dependent. One or more hidden layers 

are located between input and output layers. The number of hidden layers and hidden layer’s 

neurons vary, depending on the complexity of problem and training dataset’ quality and size. A 

small number of neurons in hidden layer may lead the network to fall into a local minimum; 

conversely, many neurons will result in overfitting the network. These challenges can make 

trained networks lose their generalization ability (Jeirani and Mohebbi, 2006). Neurons of input 

layer are connected to the hidden layer by weights and biases in the same fashion as neurons 

between hidden layer and output layer. Individual neurons are connected by weights and biases, 

and selection of suitable weights and biases can avoid or reduce the overfitting effect.  Normally, 

ANN structure is optimized by changing the number hidden layers and the number of hidden 

layers’ neurons. 

Learning processes are the main component of the ANN training process, in which weights and 

biases are adjusted continually until an expected output is produced or anticipated criteria are 
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achieved. The testing process is used to assess the generalization ability of the trained neural 

network (Saemi et al., 2007). Multiple BPNN models are constructed until training process and 

testing process achieves the required accuracy and generalization ability.  

The error of ANN is a high dimensional surface with an extremely complex shape. The vertical 

dimension of each point on this surface corresponds to one error value and each point represents 

a vector of weights and biases. The well-trained BPNN model can be used to undertake 

prediction of unknown values with a defined error. A simplified 3D figure displaying the 

relationship between error, weight, and biases can illustrate how easy it is to fall into local 

minimum far removed from a global minimum (Figure 1-2).  A suboptimum result can easily 

occur if there are numerous local minimums or if the initial weights and biases are far away from 

expected weights and biases.  The convergent rate to a global optimum minimum can be 

extremely slow if the learning efficiency is low, and the neural network may forget the feature of 

the old sample when it is trained by the new sample. In order to deal with these challenges, 

several supervised learning algorithms are introduced to improve convergence and learning 

efficiency. Two evolutionary algorithms (GA and PSO) can be applied to optimize the initial 

weights and biases for each single neuron in well-constructed BPNN in terms of minimizing the 

effect of overfitting.  

In order to evaluate the performance of training and testing process, mean squared error (MSE) is 

chosen as network performance function, which is defined as follows: 

2

1
)(
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n

i ii yy
n

MSE
  ,      Eq. (1) 

where 
iy
 is the predicted value;

iy is the true value and n is the sample size.  

1.2.2 Supervised Learning Algorithm 

The process of training a neural network is a process of tuning the values of the weights and 

biases of the network to minimize the error between target and computed output in the neural 

network. Several algorithms have been developed; including Levenberg-Marquardt (LM), 

gradient descent (GD), gradient descent with momentum (GDM), scaled conjugate gradient 

method (SCG) and Quasi-Newton method (BFGS) (Wang and Carr, 2012b). To avoid the 
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network falling into local-minimums, two stochastic intelligence algorithms are used, genetic 

algorithm (GA) and particle swarm optimization (PSO). These algorithms optimize the weights 

and biases of the neural network by generating new offspring for GA or varying direction of 

movement and velocity for PSO.  

1.2.3 Methods and Steps Combining GA with BPNN 

1.2.3.1 The Description of Genetic Algorithm 

Genetic algorithms (GA’s) were first proposed in the 1970s (Holland, 1975). This global 

heuristic search algorithm is based on Darwinian evolutionary theory and is inspired by 

biological evolution and natural genetics. Over the last several decades, GA’s have attracted 

attention, because of their potential as optimization techniques for complex functions (Dehghani 

et al., 2008; Goldberg and Holland, 1988; Irani and Nasimi, 2011; Ravandi et al., 2014; Velez-

Langs, 2005; Whitley et al., 1990).  

As originally proposed, the formulation of a GA for a specific problem usually is composed of 

three main issues: the designation of chromosomes implying a potential solution to a given 

problem; the reproduction and breeding structures used to generate initial genomes; and the 

genetic operators including selection, cross-over and mutation used to generate new genomes 

(Velez-Langs, 2005). A population is composed of numerous individuals that are represented by 

different chromosomes representing a set of potential solutions to a given problem. The size of 

the population is problem dependent but normally ranges from 50 to 100 individuals.  

GA’s begin with an initial population. The fitness of each individual is calculated using a fitness 

function (usually MSE) in a decoded form in the current population (Saemi et al., 2007). 

Quantitative fitness values in a population are the basis of probability allocation for the purpose 

of selecting the fittest individuals in a probabilistic manner (Ravandi et al., 2014). Individuals’ 

genetic information are recombined by a cross-over operation and modified through a mutation 

operation to give birth to offspring. The offspring is a new population. The fitness of new 

population is calculated using the same criterion, and this process is repeated until achieving 

termination conditions, such as detected convergence, fixed number of generations, allocated  
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budget, or the highest ranking solution’s fitness via manual inspection (Kumar et al., 2010; 

Polushina and Sofronov, 2011; Ravandi et al., 2014; Velez-Langs, 2005).  

1.2.3.2 Development of hybrid GA-BPNN model 

A genetic algorithm is applied to searching the suitable initial weights and biases of BPNN to 

improve prediction performance and generalization. The flowchart for the hybrid GA-BPNN 

construction process is made up five steps based on the basic principle and working mechanisms 

of BPNN and GA (Figure 1-3). The first step is representing the connection weights and biases 

as coding chromosomes (Figure 1-4).  

The second step is establishing the original populations for the corresponding neural network. 

For the initial random population, each gene (weight or bias) takes a random value which is 

subjected to a normal Gaussian distribution. Generally, the population size is 100, which means 

the population is composed of 100 chromosomes (individuals).  

The third step involves the fitness of each chromosome based on the fitness function calculated 

(Eq. 1). The fitness function is used to evaluate the performance of each chromosome (potential 

solution) and represents the misfit between the predicted and the true permeability value.  

The fourth step is applying the genetic operators such as selection, crossover, and mutation 

operators to generate a new population (Irani and Nasimi, 2011). The genetic operators 

determine the process of selection, which is the first step of the genetic evolution process. These 

values help GA to reserve high-grade individuals and eliminate bad individuals in each 

population. In the crossover, the genes of old individuals are exchanged to a gene in the purpose 

of generating new individuals, which have stronger search ability than any of previous 

individual. A roulette wheel selection is a common way to select two ancestor individuals from 

the population to generate two evolving individuals via crossover operators. The genetic 

operator, mutation is the last step of the evolutionary process. For a real number chromosomes, 

numerous mutation operators could be designed. In such a case, mutation operator can be 

randomly changed, which is subjected to a uniform probability distribution (Gholami et al., 

2014; Velez-Langs, 2005). 
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Finally, decoding chromosomes convert the real-coded chromosomes to connection weights and 

biases. The process is repeated until specific criteria are satisfied. Typical parameters and values 

used in GA-BPNN are shown in Table 1-1. 

1.2.4 Methods and Steps Combing PSO with BPNN 

1.2.4.1 The Description of Particle Swarm Optimization Algorithm (PSO) 

Based on stochastic search and optimization processes, the particle swarm optimization 

algorithm (PSO) was developed (Eberhart and Kennedy, 1995). PSO is an evolutionary 

algorithm that imitates human (or insects) social behavior. Individuals interact with one another 

while learning from their own experience, and gradually the population member moves into 

better regions of the problem space (Eberhart and Kennedy, 1995). Particles, indicating the 

potential solution, randomly locate in the architecture space (such as birds or fish randomly 

distributed in a specific open environment), and are utilized to calculate the global optima of the 

fitness function. Assuming D-dimensional architecture space, the population 

},...,,,{ 321 nxxxxx   is composed of n particles ( ). Each },...,,,{ 321 iDiiii xxxxx   indicates its 

position and is also represents a potential solution. A global best value is },...,,,{ 321 Dg ggggp 

and personal best value is },...,,{ 321 iDiiii ppppp  .  The velocity for particle , representing the 

rate of position change, is written as },...,,,{ 321 iDiiii vvvvv  (Poli et al., 2007).  

During the optimizing process, each particle updates its position by velocity adjustment and 

fluctuates between the individual
ip and global gp best values. When the particle swarm 

algorithm is running without restraining velocities, it rapidly increases to unacceptable levels 

within a few iterations. Some form of damping of the dynamics of particles (e.g.,
maxv ) is 

necessary (Cabrerizo et al., 2013). To better allow an elegant and well-explained method for 

limiting the searching range, ensuring convergence, reducing and eliminating the importance of 

maxv ,  an inertial weight algorithm was introduced (Shi and Eberhart, 1998) (Figure 1-5). The 

velocity updating formulae are defined as following: 

)()( 21 igii

old

it

new

i xpxpvv


                         Eq. (2), 

ix

ix



 

10 

 

new

i

old

i

new

i vxx


      Eq. (3), 

maxminmaxmax /*)( ttitet      Eq. (4), 

where ωmax is initial inertia weight, ωmin is the final inertia weight, φ1 is cognitive coefficient and 

φ2 is social coefficient, tite is current iteration number, and tmax is maximum iteration number. 

1.2.4.2 Development of Hybrid PSO-BPNN Model 

In order to ameliorate training process and accelerate convergence rate, the PSO algorithm is 

combined with BPNN to optimize the initial weights and biases of BPNN.  The number of 

weights and biases equals the dimension of each particle. The combination of a series of 

connection weights and biases is a particle and indicates the position of a particle (Sayyad et al., 

2014). A flowchart of proposed the PSO-BPNN model for permeability prediction was 

developed (Figure 1-6).  

The hybrid PSO-BPNN model searching mechanism and hybrid network are made up three 

stages: first, construction of BPNN, initializing the control parameters of PSO and randomly 

initializing all particles with a suitable size of population; second, training the BPNN by using 

each particle (weights and biases), and calculation of the fitness of each particle in the population 

based on the fitness function (Sedki et al., 2009). Unless termination conditions are achieved the 

velocity and position of each particle are updated based on a new variant of PSO to construct 

new generation (Shi and Eberhart, 1998). The fitness value is calculated again for renewed 

generation, then velocity and position for new particles are repeatability updated. This process 

will sustain until the stopping criteria are satisfied (Poli et al., 2007).  Finally, the best particle 

(weights and biases) are applied to BPNN, and the well-trained BPNN model is used to make 

predictions.  

1.2.5 Performance Evaluation 

The well-trained BPNN model is applied to estimate the permeability value in the Jacksonburg-

Stringtown reservoir. The correlation coefficient (r) is an important criterion for evaluating the 

performance of regression, however, it is not sufficient to fully characterize a complex regression 

app:ds:variant
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problem (Zhong and Carr, 2016). Therefore, in order to verify the reliability and accuracy of a 

model, four additional statistical parameters were introduced as evaluation indices of the model 

performance (Jin et al., 2005; Jin et al., 2001). These performance evaluation parameters include; 

the coefficient of determination (R2), root mean error (RMSE), average absolute error (AAE), 

and maximum absolute error (MAE) (Table 1-2). An R2 (Coefficient of Determination) of 1 

indicates a perfect regression model, while an R2 of 0 indicates a completely random model 

(Oyerokum, 2002). Moreover, RMSE is used to evaluate overall performance, while AAE and 

MAE are used to determine the error range of the predicted results. A model with high r and R2 

values, and low RMSE, MAE and AAE values is considered to have good performance. 

1.3 Application Case 

1.3.1 Geological Setting 

Jacksonburg-Stringtown field is situated along the axis of the Burchfield syncline in 

northwestern West Virginia (Figure 1-7b). The primary or secondary producing reservoir unit is 

Late Devonian Gordon Stray interval, which is contained within the middle to late Catskill 

deltaic complex (Catskill delta). During Early to Middle Devonian, crustal uplift in Acadian 

orogeny lead to further subsidence within the Appalachian foreland basin to the west and 

resulted in the deepening of the central Appalachian basin (Faill, 1997a, b). Deposition is 

interpreted to coincide with the heavy rainfall produced by the tropical climate, and sedimentary 

deposition accelerated during the Middle and Late Devonian (Blakey, 2008; McBride, 2004; 

Piotrowski and Harper, 1979). In the Late Devonian, five major delta systems prograded 

westwards and dominated the foreland ramp (Figure 1-7a). In the latest Devonian, maximum 

progradation of the Catskill delta complex was achieved west of the Acadian highlands (Boswell 

and Donaldson, 1988). During this period, Acadian tectonism ceased, and relative sea-level 

changes within the basin were controlled primarily by estuary sea-level fluctuations and 

variations in sedimentation (Coughlin, 2009). Non-marine red shale and most of the low-energy 

alluvial deposits are concentrated in the eastern portions of the Appalachian basin. Non-marine 

sediments increasingly advanced westward to cover marine beds, and near-shore deposits 

continued to prograde into the central Appalachian basin. In the area of Jacksonburg-Stringtown 

field, Gordon Stray/Gordon intervals are interpreted to be shoreline and shore-face sandstone 
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that occupied a broad structural trend at the time of maximum regression of the Acadian clastic 

wedge (Hohn, 2004).  

The estimated original oil in place (OOIP) in Jacksonburg-Stringtown oil field is 88 million 

barrels of oil (MMBO). Since the discovery in 1895, primary production was estimated at 22 

MMBO (Ameri et al., 2002), and the estimated oil recovery factor is 25%. A gas re-injection 

program took place in the field beginning in the mid-1930’s and ended in the 1950’s. A pilot 

waterflood program with a 35 acre dual 5-spot well pattern was conducted in 1981. After 1990, a 

full-scale waterflood was installed in a large portion of the field (Bergerud, 2011). Unlike 

modern oil and gas fields, which have abundant, high quality data, including full-suites of 

conventional and advanced well logs, and seismic data to construct 3D geological model, 

Jacksonburg-Stringtown oil field has predominately low quality well log data (i.e. gamma ray, 

bulk density), and highly limited high quality data (core measured porosity and permeability 

data) for reservoir modeling. The sparse modern subsurface data characteristic of super-mature 

fields such as Jacksonburg-Stringtown can inhibit the development of a robust geological model 

and effective evaluation of CO2 storage capacity. 

1.3.2 Data Acquisition 

A model’s stability and accuracy are largely dependent on the training dataset’s reliability and 

comprehensiveness. In this research, data is extremely sparse with only 93 samples from 6 wells 

in the Jacksonburg-Stringtown field with both core data and conventional well logs (Figure 1- 

7b). To construct a reliable BPNN model, input data was divided into two parts: training data and 

testing data. Data belonging to the first five wells were used to train the BPNN model, while the 

remaining data of the last well was used to evaluate the stability and accuracy of the well-trained 

network. Based on the materials on hand, to construct the model two conventional well logs and 

three log derived variables were selected as BPNN input variables along with digitized 

permeability values. The input variables include two well logs, gamma-ray log (GR), density log, 

and three derived parameters; the slope of GR, the slope of density, and shale content (Vsh). In 

order to demonstrate the heterogeneity of this formation and to display the chaotic status of the 

information that existed, cross-plots of permeability versus each measured parameter were 

constructed.  A simple linear relationship between the six measured parameters and permeability 
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is not apparent (Figure 1-8). The dataset was normalized to improve prediction results and 

improve the calculation and training speed. In this study, absolute scale is used for all input 

parameters. For permeability, a logarithmic scale instead of the absolute scale is used. The 

normalized formula is chosen as following:  

][
minmax
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XX

XX
X new

i



  ,    Eq. (5)                

where 
new

iX is the normalized input vector, 
minX and 

maxX are the minimum and maximum and 

value respectively, X are the original input vector. The normalized input vector ranges from 0 to 

1. When training and testing process are completed, the predicted permeability values by well-

trained BPNN model also ranges from 0 to 1. In order to re-project the predicted permeability 

value into original order, data renormalization is required. The renormalization formula is 

following: 

minminmax )(
10
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X


       ,           Eq. (6) 

where 
edrenormalizX  is the renormalized output, 

predictedX is predicted output by well-trained BPNN 

model. 

1.4. Results and Discussion  

1.4.1 ANN Topology and Supervised Learning Algorithms 

The designation of network architecture is a subjective task and problem-dependent. A priori 

selection of the best architecture of BPNN in a specific problem (e.g., porosity, permeability, and 

minimum miscible pressure) is challenging.  Therefore, in order to obtain a reasonable BPNN 

architecture, several possibilities are considered in this study. The number of nodes in the input 

layer corresponds to the five basic input parameters, whereas the output layer node corresponds 

to the permeability value. Normally, two hidden layers can approximate most non-linear or linear 

regression problems (Kumar et al., 2002). The number of nodes in the hidden layer was varied 

from 20 to 50 for one hidden layer architecture. However, for the two hidden layer architecture 
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fifteen, twenty, twenty-five and thirty nodes were considered in first hidden layer, and ten, 

fifteen, twenty and twenty-five nodes were considered in second hidden layer (Figure 1-9). All 

five supervised learning algorithms and two evolutionary intelligent algorithms were applied to 

train all the BPNNs with varying topology.  

BPNN with different architecture show various performance (Figure 1-9). The BPNN model 

trained by Levenberg-Marquardt algorithm performs best in various BPNN models trained by 

different supervised training algorithms (Figure 1-9, Table 1-3). This BPNN has relative high R2 

and r values, and low RMSE, MAE and AAE values. The BPNN that has one hidden layer with 

25 nodes performed best with the highest R2 (0.9131) and r (0.9555), and lowest RMSE 

(162.8002), MAE (66.1634) and AAE (of 0.7048).  

After multiple runs of BPNN with different hidden layers and a various number of neurons, the 

best performance was achieved by 5-25-1 as final network architecture. Different supervised 

learning algorithms and two evolutionary intelligent algorithms were used to train the selected 

BPNN. Mean square error was used as the cost function to appraise the network’s performance. 

BPNN trained by Levenberg-Marquardt algorithm and two evolutionary algorithm performs best 

(Figure 1-10), so a more detailed comparison was carried out.   

1.4.2 Comparison of Permeability Prediction Base on Various Regression Model 

In order to further evaluate the performance of the BPNN, GA-BPNN, and PSO-BPNN model, 

the predicted results obtained from well-trained models were compared with available core 

measured permeability datasets.  To check and confirm the generalization capability and 

predicting precision in the estimation of permeability for different optimized or non-optimized 

BPNNs, 22 data points from well B-19, which were not used to constructing the BPNN model 

were estimated with the model. Generally, the error distribution fits the normal distribution. 

Therefore, the mean error values and the standard deviations presented here are those of a 

Gaussian model (Helle et al., 2001). 

Histograms and cross-plots display the difference between permeability measured from the core 

and predicted permeability predicted by the input petrophysical parameters using different BP 

neural networks (Figure 1-11). In order to compare the result more concisely, permeability is 
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plotted on a traditional logarithmic scale.  The comparison result between cores measured 

permeability and predicted permeability by non-optimized BPNN shows a mean error is 

approximately 28.5246 md with a standard deviation of 72.4197 md (Figure 1-11a and b).  The 

coefficient of determination (R2) and correlation coefficient (r) is 0.5177 and 0.7195 

respectively. The comparison result between core measured permeability and predicted 

permeability by PSO-BP neural network has a smaller mean error than that from non-optimized 

BP neural network.  Mean error for the PSO-BP is approximately 19.438 md with a standard 

deviation of 26.6584 md (Figure 1-11c and d). The cross-plot of core measured permeability and 

predicted permeability by PSO-BPNN regression model has higher R2 (0.9208) and r (0.9596) 

compared with the standard BP neural network (Figure 1-10 d; Table 1-4). The BPNN optimized 

by PSO performs better than general BPNN.  Also, GA-BPNN has a smaller mean error 

(26.3259), standard deviation (60.825), and higher R2 (0.8328) and r (0.9126) compared with 

non-optimized BPNN (Figure 1-10e and f). Evolutionary algorithm optimized BP neural network 

optimized by GA improves performance compared to non-optimized BPNN.  

The PSO-BPNN regression model provides a strong ability to predict permeability with high 

correlation, and the highest coefficient of determination among all regression models and lower 

mean square error (Figure 1-11 b, d, and f).  The GA-BPNN model has the same R2 value as 

PSO-BPNN model, but the mean error value and standard deviation in permeability of PSO-

BPNN model are lower and provide better prediction of known values (Figure 1-11c and e). The 

predicted permeability by PSO-BPNN and GA-BPNN compared to core derived values plotted 

in depth show good agreement (Figure 1-12).  

Though permeability values cover a wide range, the PSO-BPNN model is able to follow and 

recreate the core permeability values and trend very closely. The input petrophysical parameters 

have a relation to permeability.  The gamma-ray log response provides evidence of clay that has 

an impact on permeability. The bulk density is inverse functions of porosity and shale content. 

The slope of gamma ray and bulk density represent the change rate of clay content. Vsh directly 

represents variations in the rock-clay contents.  
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1.5. Conclusions 

In this paper, two evolutionary algorithms and five supervised learning algorithms were applied 

to optimize the BPNN to estimate permeability, a critical parameter for hydrocarbon and CO2 

storage reservoir characterization.  In the BPNN model, using a highly constrained suite of logs, 

five derived parameters: GR, density, the slope of GR, the slope of density, and Vsh were 

selected as input parameters. BPNN architecture is optimized by adjusting hidden layers and 

number of neurons. By comparing different BPNNs, optimized BPNN performance can be 

determined as evolutionary algorithms search the best solution by different direction and 

converge toward a global minimum value. Through the foregoing analysis and discussion of 

predicted result, several conclusions are drawn: 

(1) The PSO optimized BPNN regression model was successfully applied to predict the 

permeability values. Based on comparisons between two optimized BPNN, PSO–BPNN 

regression model provides more accurate results than GA-BPNN regression model. 

(2) Different architecture of BPNN affects significantly the final performance of BPNN. The best 

ANN topology for permeability prediction is 5-25-1. Among five supervised learning algorithms, 

the Levenberg-Marquardt algorithm performed well in the training process.  

(3) Based on the comparisons between non-optimized BPNN and evolutionary algorithm 

optimized BPNN, optimized BPNN performed well, both in training and testing process.  

The main drawback of those methods is:  

1) The construction of BPNN architecture is largely based on experience. Generally, the more 

inputs and the fewer hidden neurons, the better the prediction performance. Too few inputs or 

too many hidden neurons can lead the network to memorize, which means that it works well 

during the training process, but tests poorly and fails to generalize;  

2) The selection of several key parameters in evolutionary algorithms, such as population size, 

generations, mutation possibility is critical. Normally, large population and generation will 

definitely increase the computing time for training and testing. On the other hand, once the 

network is established, the application requires a minimum of computing time. Higher mutation 
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possibility and crossover possibility can vary the solution, but also can lead to unstable solutions 

and failure to converge. 
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Figure 1-1.The biological and the mathematical neuron. The mathematical neuron (b) mimics the 

behavior of the biological neuron (a). The weighted sum of the inputs is rescaled by an activation 

function (c), of which several examples are shown in (d) (After Hérault and Jutten, 1994).   
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Figure 1-2. The simplified error surface illustrating the relationship between error and 

weight/biases of artificial neural network and the existence of areas of local suboptimum 

minimums. 
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Figure 1-3.Flow chart of the hybrid GA-BPNN model used for permeability prediction. 
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Figure 1-4. An example of an artificial neural network, with the connection weights (wi,j) and the 

bias (bk) of each neuron node (a); genetic chromosome representation of (a), one chromosome 

represents one individual (b)(after Dehghani et al., 2008). 
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Figure 1-5. Graphical illustration of the particle swarm optimization algorithm PSO velocity and 

particle position update for particle xi in a two-dimensional search space. 
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Figure 1-6. Flowchart of BPNN optimized with particle swarm optimization (PSO-BPNN) for 

permeability prediction. 
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Figure 1-7. Late Devonian paleogeography of study area and five major delta systems in 

Appalachian foreland basin, black line indicates geographical state boundary (a); location of 

Jacksonburg-Stringtown field in northwestern West Virginia, black dots mark the location of 

cored wells (b) (Boswell and Donaldson, 1988). 
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Figure 1-8. Permeability vs. different input variables which are used as input parameters in this 

study. It appears that there are not clear linear relationships between permeability and each input 

variables. 
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Figure 1-9.  BPNN performance with various hidden layer(s) and different numbers of neurons. 

For one hidden layer, neurons changed from 20 to 50; while for two hidden layers, neurons in 

first layer changed from 15 to 30 and neuron in second layer changed from 10 t 
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Figure 1-10. MSE decline curves of BPNN with 5-25-1 architecture which are trained by five 

supervised learning algorithms and two evolutionary intelligent algorithms. 
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Figure 1-11. Histogram and cross-plot displaying the difference between the permeability values 

obtained from core measurement and back-propagation neural network. Figures (a) and (b) show 

the difference between the core measured permeability and predicted permeability by standard 

BPNN; (c) and (d) show the difference between the core measured permeability and predicted 

permeability by PSO-BPNN; (e) and (f) show the difference between the core measured 

permeability and predicted permeability by GA-BPNN.  
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Figure 1-12. Predicted permeability by the artificial neural network with particle swarm 

optimization and genetic algorithm compared to permeability values from core data. 
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Table 1-1. Typical parameters used for training BPNN regression model with different learning 

algorithms including genetic algorithm (GA-BPNN) and particle swarm optimization (PSO-

BPNN). 

Parameter Value Parameter Value 

Input layers nodes 5 Hidden layers nodes 4 

Output layers nodes 1 Termination criterion )(e  0.001 

Special parameters for genetic algorithm 

Maximum Generation 150 Population size 100 

Selection probability Rand value 
(0,1) 

Crossover probability 0.4 

Mutation probability  0.1 Chromosome length 176 

Special parameters for particle swarm optimization 

Maximum Generation 150 Population size  50 

Cognitive efficient )( 1  1.5 Social efficient )( 2  1.5 

Initial inertia weights Wstart 0.9 Final inertia weight Wend 0.4 
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Table 1-2. Error measures for accuracy assessment to evaluate model performance. 

Accuracy measure  Mathematical expression 

Coefficient of Determination, R2 
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Table 1-3. Permeability prediction results by BPNN with various hidden layer(s) and different 

numbers of neurons. LM: Levenberg–Marquardt; GD—Gradient descent; GDM—gradient 

descent with momentum; SCG—scaled conjugate gradient; BFGS-- Quasi-Newton method r 

(correlation coefficient) is used to evaluate the performance of BPNN with different architecture. 

The bold color indicates the highest correlation coefficient.  
Architecture 

 

Algorithms 

Back-Propagation Topology Architecture 

One hidden layer Two hidden layers 

20 25 30 35 40 45 50 15-10 20-10 25-10 30-10 20-15 20-20 30-25 

LM 0.927069 0.955522 0.88925 0.902969 0.878167 0.926796 0.832022 0.875672 0.865662 0.822324 0.855567 0.859015 0.808497 0.900868 

GD 0.398776 0.55715 0.882161 0.185025 0.654926 0.634988 0.679796 0.767001 0.612204 0.083334 0.78537 0.007926 0.744505 0.649279 

GDM 0.771949 0.585894 0.172796 0.851726 0.813062 0.681737 0.554836 0.752989 0.097994 0.128824 0.809781 0.820165 0.395699 0.235026 

SCG 0.892977 0.872495 0.900268 0.889572 0.823224 0.896662 0.70027 0.844629 0.775671 0.821716 0.800213 0.849063 0.800546 0.832869 

BFGS 0.873924 0.77756 0.72043 0.848095 0.003734 0.029147 0.821091 0.774067 0.814255 0.825858 0.8586 0.747789 0.87878 0.733683 

 

  



 

40 

 

  

Table 1-4.Statistical parameters of the developed Artificial Neural Networks to determine the 

permeability for well B-18. 

 ME 

(Mean Error) 

STD 

(Standard Deviation Error) 

RMSE 

(Root of Mean Square Error) 

R2 

(Coefficient of Determination) 

BPNN 28.5246 72.4197 166.2519 0.5177 

PSO-BPNN 19.4389 26.6584 137.5647 0.9208 

GA-BPNN 26.3529 60.825 158.9218 0.8328 
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Abstract 

Porosity is a fundamental property that characterizes the storage capability of fluid and gas 

bearing formations in a reservoir. An accurate porosity value can be measured from core sample 

in the laboratory, however, core analysis is expensive and time-consuming. Usually, the 

available core is limited to incomplete vertical sampling in only a few wells in a field. Well logs 

can be used to calculate porosity, but in mature fields availability of log suites are often limited 

in types making control a challenge for the theoretical relationships resulting from natural 

lithologic heterogeneity and to a lesser degree fluid content in the pores. Therefore, robust 

porosity prediction requires integration of core-measured porosity with modern well log suites to 

control for changes in lithology and fluid content.  In this study, a support vector machine (SVM) 

model is used to improve estimates of porosity by constructing the relationship between limited 

conventional well log suites and sparse core data. The kernel function is the key technology in 

SVM, different kernel functions are applied to construct a reasonable SVR model. A new mixed 

kernel function is introduced that is a convex combination of the radial basis function kernel and 

the polynomial kernel function. This mixed kernel function not only preserves a strong 

extrapolating ability extended from radial basis function kernel but also possesses good 

interpolating capacity inherited from polynomial function kernel. Porosity, the desired output, 

uses two conventional well log responses (gamma ray and bulk density) and three well log 

derived parameters (slope of gamma ray, slope of density, and Vsh) as the input training and 

testing parameters. A grid searching method was applied to find the best control parameter 

(gamma and C) for each normal kernel function, which determines the performance of SVM. 

However, the extended computation time to find appropriate values of five control parameters in 

SVR with mixed kernels function restricts applications. Therefore, a global stochastic searching 

algorithm, particle swarm optimization, was applied to improve the efficiency of locating the 

global optimum. The results of SVM with different kernel functions were compared, and the 

SVM model with a mixed kernel function provided an improvement over the SVR with a single 

kernel. To confirm the advantage of the hybrid PSO-MKF-SVM model, results from three 

models: 1) radial basis function based least square support vector machine (RBF-LS-SVM), 2) 

multilayer perceptron artificial neural network (MLP-NN), and 3) radial basis function artificial 

neural network (RBF-NN), are compared with the result of the hybrid PSO-MKF-SVM model 
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and traditional SVM model with radial basis kernel function and polynomial kernel function. The 

results indicate that the hybrid PSO-MKF-SVM model improves porosity prediction with highest 

correlation coefficient (r of 0.9560), highest coefficient of determination (R2 of 0.9140), lowest 

root mean square error (RMSE of1.6505), average absolute error value (AAE of 1.4050) and 

maximum absolute error (MAE of 2.717). 

Key Words: support vector regression; mixed kernel function; radial basis function neural 

network; multilayer perceptron neural network; least squares support vector machine.  

2.1. Introduction 

A petroleum reservoir is a heterogeneous geological system with large intrinsic complexity that 

can be considered as a nonlinear regression problem (Al-Anazi and Gates, 2010c; Saljooghi and 

Hezarkhani, 2014). Porosity is a key parameter for characterizing the storage capacity of liquid 

and gas bearing formations. Accurate porosity values can be measured in the laboratory from 

reservoir core samples, however, acquisition and analysis are expensive and time-consuming. 

The number and density of core measurements in a reservoir or field are normally very limited 

and does not provide an adequate sampling of the reservoir. Therefore, a cheaper and faster 

method to estimate porosity is necessary. Porosity is estimated from well logs, such as bulk 

density, neutron porosity, and sonic, but many of these logs are not widely available in wells of 

mature reservoirs. In addition, wells without a modern suite of well logs can provide erroneous 

porosity because the parameters of theoretical physical models or empirical equations are not 

controlled for natural heterogeneity of lithology and fluid content, and nonlinearity of reservoir 

(Helle et al., 2001; Huang and Williamson, 1997). Without modern log suites, the spatial 

relationships of different reservoir properties affecting porosity determination are difficult to 

quantify (Verma et al., 2012).  

Methods applied to construct reasonable porosity models with high accuracy and strong 

generalization ability vary from ‘hard computation’, such as empirical prediction (“rules of 

thumb”), and multilinear regression (Bloch, 1991; Byrnes and Wilson, 1991; Scherer, 1987; 

Wendt et al., 1986), to computer-based intelligence ‘soft computation’, which include neural 

network and machine learning (Al-Anazi and Gates, 2010b, c; Lim, 2005; Lim and Kim, 2004; 

Ravandi et al., 2014; Verma et al., 2012; Zargari et al., 2013). One drawback of empirical 
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prediction is that it is strongly localized to a region or formation (i.e., the empirical equation 

works well only in a specific region or formation). Multilinear regression constructs a linear 

relationship between dependent variables and independent variable, which facilitate the analysis 

of the cause-and-effect relationships. However one should detect the exact relationship between 

each dependent variable and independent variable first, which is a challenge and experience 

dependence. Moreover, multilinear regression ignores the cross relationship (covariance) 

between each independent variables. Artificial neural network analysis (ANN), including radial 

basis function neural network, multilayer perceptron neural network, is computer-based 

intelligence method that has attracted attention for porosity prediction and shows strong 

generalization ability (Gardner and Dorling, 1998; Jeirani and Mohebbi, 2006). The most serious 

disadvantage of ANN is overfitting due to memorization of the training set (Geman et al., 1992; 

Scales and Snieder, 1998; Zhang et al., 1999). In addition, the training process minimizes 

empirical risk and leads the process to fall into a local minimum and induce large prediction 

errors. Though some global searching algorithms, such as genetic algorithm (Saemi et al., 2007) 

and particle swarm optimization algorithms (Zhong and Carr, 2016) are applied to optimize the 

searching process, the optimization algorithms remain prone to capture by a local minimum.  

Support vector machine (SVM) is based on statistical-learning theory, and has been applied to 

pattern recognitions and function approximation in the petroleum industry, including lithofacies 

classification (Al-Anazi and Gates, 2010a; Al-Anazi et al., 2011; Wang et al., 2014); reservoir 

permeability and porosity prediction (Al-Anazi and Gates, 2010b, c), minimum miscible pressure 

prediction (Zhong and Carr, 2016). SVM was developed at AT&T Bell laboratories by Vapnik 

and co-workers (Boser et al., 1992; Burges, 1998; Cortes and Vapnik, 1995; Drucker et al., 1997; 

Smola, 1996; Vapnik et al., 1997). This algorithm was introduced to solve pattern recognitions 

problems by projecting the original nonlinear data into higher dimensional feature space by 

kernel functions to locate an optimal hyperplane that separates the data in the feature space 

(Vapnik et al., 1997). SVM was extended to regression problems to find an optimal hyperplane 

on which projected targets can be located within ε deviation in feature space (Fu and Cheng, 

2011). To avoid large-scale quadratic programming problems the complexity of optimization 

process was reduced by introducing least-squares SVM (LS-SVM) (Hemmati-Sarapardeh et al., 

2014; Wang and Hu, 2005). LS-SVM avoided the complexity of optimization process, but the 

kernels function’s generalization ability was still not optimized.  
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Separating hyperplane, maximum-margin hyperplane, soft margin and kernel function are four 

basic concepts for understanding SVM (Noble, 2006). Different kernel types will determine the 

various performance of SVM. There are two kernel functions: one is local kernel function, such 

as radial basis function kernel (RBF), which has a strong ability to extrapolate; the other is global 

kernel function, such as the polynomial kernel function, which is good at interpolating (Huang et 

al., 2012; Lian et al., 2013). A mixture of polynomial and RBF kernels will have better 

performance than either single one (Smits and Jordaan, 2002). In this study, two conventional 

well log (gamma ray, bulk density) and three derived-logs (slope of gamma, slope of bulk 

density, Vsh) are used as input data, and porosity as output data to train and test SVM.  

Support vector machine (SVM) with mixed kernels function, a variant of SVM, is constructed 

for reservoir porosity prediction from conventional well logs. Particle swarm optimization 

(PSO), one of the evolutionary algorithms is introduced to optimize the SVM’s structure 

parameters (i.e., mixing coefficient, penalty(C), gamma, epsilon and polynomial degree). More 

specifically, SVM with mixed kernels function is compared to SVM with regular kernel 

function, such as linear, polynomial, radial basis function, and sigmoid kernel function. 

2.2 Methodology 

2.2.1 Artificial Neural Network (ANN) 

Artificial neural networks are a branch of artificial intelligence. Multilayer perceptron neural 

network (MLP-NN) and radial basis function neural network (RBF-NN) are two most wildly 

used artificial neural network. They are both the feed-forward neural network and can be used in 

the similar application with different performing structures.  

2.2.1.1 Multilayer Perceptron Network (MLP-NN) 

Multilayer perceptron neural network (MLP-NN), one type of feed-forward neural network, 

consists of three different kinds of layers. The first layer is a single input layer and the last layer 

is a single output layer. The number of input neurons and output neurons is problem dependent. 

One or more hidden layers are located between input and output layers. The number of hidden 

layers and number of hidden layer’s neurons vary, depending on the complexity of problem and 
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training dataset’ quality and size (Majumdar et al., 2008). A small number of neurons in hidden 

layers may lead the network to fall into a local minimum, in which case the network does not 

have sufficient time to learn the dataset’s feature.  Conversely, a large number of neurons will 

result in overfitting the network, in which case network does learn but memorizes. These 

challenges can result in trained networks losing their generalization ability (Gardner and Dorling, 

1998; Jeirani and Mohebbi, 2006). A fully connected multilayer perceptron with two hidden 

layers is shown in Figure 2-1a, which represents a nonlinear mapping between an input vector 

and output vector (Gardner and Dorling, 1998). 

Learning processes are the main component of the MLP-NN training process, in which weights 

and biases are adjusted continually until expected output is produced or anticipated criteria are 

achieved. The back-propagation training algorithm is the pivotal algorithm for the training 

process. Gradient descent algorithm assisted in finding the best weights and biases at which the 

minimum error between the desired and actual output is achieved. The testing process is used to 

assess the generalization ability of the trained neural network (Saemi et al., 2007). The 

designation of neural network architecture is a subjective task and problem-dependent. Since the 

number input layer (five input parameters) and output layer (porosity) is constant, the hidden 

layer neurons contribute a significant part to the performance of the MLP-NN as they behave as 

feature detectors (Tatar et al., 2016).  

2.2.1.2 Radial Basis Neural Network (RBF-NN) 

Radial basis function neural network (RBF-NN) is a special type of feed-forward neural network 

and is based on localized basis function and iterative function approximation (Tatar et al., 2013). 

RBF-NN consists of only three layers: input, hidden and output layer (Aljarah et al., 2016; 

Gardner and Dorling, 1998). The input layer is composed of an input vector. With only one 

hidden layer between input and output layer, the number of hidden neurons are strongly 

determined based on the specific problem. The activation function for each hidden neuron is 

RBF function, which calculates the similarity between the input and a stored prototype in that 

neuron. In order to increase the accuracy of the model in training and testing process, more 

prototypes should be used in the hidden layer. This process not only increases the complexity of 

decision boundary but also increases the computation time to evaluate the network (Aljarah et 
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al., 2016). The output layer is a linear combination of previous results from hidden layer. 

Compared with MLP-NN, RBF-NN has a simpler structure, and improved generalization, higher 

tolerance of input noises and the ability of online learning (Singh and Rao, 2005). Figure 2-1b 

displays the structure of RBF-NN, in which Xi is the input vector, bi is biases, and 
n  is the 

activation function. The activation function is formed as following: 
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          ,                              Eq. (1), 

where the ci is prototype of center of the ith hidden neuron, σ is the bandwidth of ith kernel node 

and 
icx  denotes the Euclidean norm.  

2.2.2 Support Vector Machine (SVM) 

Support vector machine, based on the statistic-learning theory, was first proposed in Russia 

during the 1960s (Vapnik, 1963; Vapnik and Chervonenkis, 1964; Vapnik and Kotz, 1982). It is 

constructed to deal with pattern recognitions problems, where it uses adaptive margin-based loss 

functions, projects the learning data (non-linearly) into higher dimensional feature space, and 

locates a decision rule with good generalization ability (Zhong and Carr, 2016). The SVM 

decision rule actually consists of classification functions that are expanded on a subset of support 

vectors (Al-Anazi and Gates, 2010c; Boser et al., 1992; Cortes and Vapnik, 1995; Scholkopf et 

al., 1997; Vapnik et al., 1997). The projecting functions are called kernel functions – K(xi, xj), 

which are satisfied with the Mercer’s condition. Support vector regression (SVR) is another 

variant of support vector machines, which involves nonlinear regression and time series 

prediction (Drucker et al., 1997; Müller et al., 1997; Smola, 1996; Smola et al., 1998; Vapnik et 

al., 1997).  

Assume we are given training data  )},(),...,,(),,{( 2211 mm yxyxyx , where  denotes the 

space of the input patterns (e.g. d ). For the case of a nonlinear function f , taking the form:  

,)(,)( bxxf             b,   Eq. (2), 
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where .,. represent dot product; )(x represent the nonlinear function that applies linear 

regression; b and are bias terms and weight vector, respectively. 

The SVR basic concept projects the original nonlinear data into higher n-dimensional feature 

space, and then a linear model- )(xf , is established in this feature space. The linear regression 

hyperplane in high dimensional feature space is in reality a nonlinear regression hypersurface in 

original input space (Asoodeh and Bagheripour, 2013; Na’imi et al., 2012).  As first described, 

the objective of  - SVM regression model is to find a function f(x) by which the deviations 

between estimated values of output and actual training output data equal to or less than   

(Vapnik et al., 1997). The complexity of the regression functions is essentially controlled by . 

In other words, the smaller value it is, the larger portion of the training data will be penalized, 

which will generate a tighter SV regression model; while the larger   is, the smaller portion of 

training data that will be penalized, which will produce a looser SV regression model.  It is like a 

tube, into which errors are accepted while the points will be penalized if any deviation is larger 

than  and falls outside the tube (Smola and Schölkopf, 2004). Slack variables 
i and *

i  have 

been introduced as asymmetric bound to satisfy constraints on the function instead of the ‘hard 

margin’ lose function (Bennett and Mangasarian, 1992). The SVM for regression using a kernel 

function and the  -insensitive loss function is formulated as: 


min   




m

i

iiC
1

*2
)(

2

1
    Eq. (3), 
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 Eq. (3a),  

The first term of Eq. (3) is the Vapnik-Chervonenkis (VC) confidence interval, whereas the 

second one is the empirical risk (Al-Anazi and Gates, 2010c; Maleki et al., 2014). The 

regularization constant C in Eq. (3) not only decides the complexity of the SVM model but also 

makes a compromise between the confidence degree and the empirical risk minimization. An 

improper C value will weaken the generalization capability of an SVM (Yuan and Chu, 2007). 

Vapnik’s ε-insensitivity loss function defines a tube in high dimensional feature space. The 

app:ds:improper
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points outside the ε-tube contribute to the loss, which is equal to the gap between the point 

values and the radius of the tube. However, the points inside the ε-tube contribute nothing to the 

cost, which means the loss (error or cost) is zero (Zhong and Carr, 2016) (Figure 2-2, left).  

In order to solve the mathematical optimization problem given by Eq. (3), it is necessary to 

construct Lagrange function from the primal function and corresponding constraints (Bazaraa et 

al., 2013; Luenberger and Ye, 2008; Smola, 1996). A dual formulation transformed from it 

primal function is generated by introducing a dual set of variables. The saddle point in this 

function represents the solution of primal and dual variables. The new dual objective function is 

defined as following:  


minmax
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 Eq. (4), 

where is L the Lagrange function and α*, α, β* and β are positive Lagrange multipliers, which 

represent the virtual forces resulting from the constraints of primal problem. Based on Karush-

Kuhn-Tucker (KKT) theorem, only active constraints may result in Lagrange multipliers not 

equal to zero, which means only the data points with non-vanishing Lagrange multipliers have to 

be taken into account (Smola, 1996), meanwhile the partial derivatives of L with respect to the 

primal variable ),,,( * b  vanish at the optimum (actually a saddle point).  
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   Eq. (5), 

Substituting equation (4) into equation (3) generates the following dual optimization problem.  

C *,0
max
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i

ii            Eq. (6a), 

After elimination of , the regression model is defined as following: 

bxxxf
m

i

jiii 
1

* )(),()()(     Eq. (7), 

Based on Mercer’s condition, the inner product  )(),( ji xx  can be defined through a kernel

),( ji xxK . So substituting ),( ji xxK into Equation 7 the support vector expansion of regression 

estimation model becomes  

bxxKxf
m

i

jiii 
1

* ),()()(    Eq. (8), 

2.2.2.1 Least Squares Support Vector Machine (LS-SVM) 

As discussed above, resolving a large-scale quadratic programming problem is inevitable. To 

deal with this challenge, Least-Squares SVM (LS-SVM) is introduced, which is modified from 

the traditional SVM (Suykens and Vandewalle, 1999, 2000). Avoiding large-scale quadratic 

programming problems, this technique solves linear equations and reduces the complexity of 

optimization process (Hemmati-Sarapardeh et al., 2014; Wang and Hu, 2005). In this LS-SVM 

technique, Suykens and Vandewalle (Suykens and Vandewalle, 1999, 2000) reformulated the 

SVM as follows:  


min   




m

i

ie
1

22

2

1
    Eq. (9), 

..ts   miebxy iii ,.....2,1,)(,       Eq. (9a),  

Where 0 is a regularization constant; and ie are error variables for thi  output. After the 

primal function is transformed into its dual formulation, the Lagrange for this problem is as 

follows: 
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minmax ),,,( ebwL 
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   Eq. (10), 

where L  is the Lagrange function, and α is positive Lagrange multipliers?  Based on Karush-

Kuhn-Tucker (KKT) theorem, only active constraints may result in Lagrange multipliers not 

equal to zero. Thus the partial derivatives of L with respect to the primal variable ),,,( ii eb   are 

determined as following: 
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   Eq. (11), 

These conditions are similar to traditional SVM optimality conditions in Eq. (5), except for the 

condition ii e 
, for which the sparseness property has been lost in LS-SVM (Figure 2-2 right). 

After elimination of   and e , the inner product 
 )(),( ji xx 

can be defined through a kernel

),( ji xxK
. So the function of LS-SVM model becomes:  

bxxKxf
m

i

jii 
1

),()(    Eq. (12), 

2.2.2.2 Mixed Kernel Function Based Support Vector Machine (MKF-SVM) 

The projection function in SVM model consists of kernel functions- . Kernel function 

maps the original linearly or non-linearly learning data from original space into high dimensional 

feature space, in which all of the data can be presented linearly (Al-Anazi et al., 2011). A kernel 

function must meet Mercer’s condition (Boser et al., 1992; Burges, 1998; Cortes and Vapnik, 

1995; Smola and Schölkopf, 1998; Smola and Schölkopf, 2004), as following: 

),( *xxK
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Suppose  

,  

   Eq. (13), 

Based on this theorem, Table 2-1 listed four kernels, which determined the various 

characteristics of SVM model. According Smola and Schölkopf (1998), there are two types of 

kernels including local kernels and global kernels (Smola and Schölkopf, 1998). As shown in 

Figure 2-3a, data points that are far away from each other have a significant influence on the 

kernel values in a global kernel. One typical example of a global kernel is polynomial kernel in 

Eq. (14) (Smits and Jordaan, 2002; Zheng et al., 2004).  

     Eq. (14), 

Kernel’s interpolation capacity is positively correlated to the degree of polynomial kernel, while 

its extrapolation capacity is negatively correlated to the degree of polynomial kernel. As Figure 

2-3b displays, a local kernel allows data points that are close to each other to have a significant 

influence on the kernel values. The radial basis function kernel (RBF) is the typical local kernel, 

as defined in Eq. (15).  

   Eq. (15), 

Local kernel’s interpolation ability is positively correlated to the gamma ( ) value. The smaller 

value of is, the worse its interpolation ability will be and vice versa. In another word, no single 

value of kernel parameter polynomial degree or  will provide a model with both strong 

interpolation and extrapolation properties (Smits and Jordaan, 2002). 

One corollary can be generated based on the Mercer’s conditions. Assuming ,  are 

admissible support vector kernels and , 
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      Eq. (16),   

is an admissible kernel [55]. Numerous investigators have proposed the mixed kernels 

function , which combines the good characteristics of both  and

(Huang et al., 2012; Lian et al., 2013; Smits and Jordaan, 2002; Smola and Schölkopf, 2004; 

Yang et al., 2013; Zhu et al., 2005).   

The mixtures of the RBF and polynomial kernels can be defined as Eq. (17, 18) 

     Eq. (17), 

       Eq. (18), 

where is a polynomial kernel and is a radial basis function kernel, m is the mixing 

coefficient. If m=1, then the mixed kernels function will become the polynomial kernel, which 

means . If m=0, then the mixed kernels function will equal the RBF kernel, which 

means . The effect of the mixing a polynomial kernel with an RBF kernel is shown in 

Figure 2-3c, where . The mixed kernels function has characteristics of both 

the polynomial kernel and the RBF kernel and improves fitting and generalizing ability. 

2.2.3 The Proposed Hybrid PSO-MKF-SVM Model 

Based on stochastic search and optimization processes, Eberhart and Kennedy (1995) first 

introduced the concept of particle swarm optimization algorithm (PSO) (Eberhart and Kennedy, 

1995). PSO imitated human (or insect) social behavior as a typical evolutionary algorithm. 

Individuals interact with one another while learning from their own experience, and gradually the 

population members’ move into better regions of the problem space (Eberhart and Kennedy, 

1995; Zhong and Carr, 2016). Particles indicate the potential solution and randomly locate in the 

architecture space (like birds randomly distributed in a specific open environment). Global 

optima of fitness function for each generation can be calculated based on the position of 

particles. Because the selection of kernel function parameters determine the performance of 
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SVR, both particle swarm optimization and n-fold cross-validation re-sampling method are 

employed to optimize the parameters, which include mixing coefficient (ρ), penalizing 

coefficient (C), RBF kernel parameter (ϒ), polynomial degree (d) and (ε) in ε-insensitivity 

function. This algorithm starts at the random position, by updating velocity and position 

repeatedly, the particles will search the global extremum in the searching space. In this paper, the 

positions of particles, P (ρ, ϒ, d, C, ε), represent the values of parameters which will be 

optimized. In the actual optimization process, the SVM parameter ρ is limited in [0, 1], ϒ in [2-4, 

24], d in [1, 3], C in [2-5, 25] and ε in [0.001, 0.01], and the PSO searches the optimal values of 

the SVM parameters in these areas. Figure 2-4 illustrate the detailed process of PSO-MKF-SVM 

model for porosity prediction. Fitness function for PSO algorithm is MSE, which is formulated 

as:  





m

i

iiFitness yy
m

F
1

2)ˆ(
1

   Eq. (19), 

where iŷ is predicted value, iy is true value and m is number of samples. Figure 2-4 shows the 

workflow for the optimization of the parameter in mixed kernel function. For more details about 

PSO and workflow, referring (Eberhart and Kennedy, 1995; Poli et al., 2007; Sayyad et al., 

2014). 

2.2.4 Predictive Performance Evaluation Index 

In order to test that the newly hybrid PSO-mixed kernel function based support vector machine 

(MKF-SVM) performs better than other models, five evaluation indices including correlation 

coefficient (r), coefficient of determination (R2), average absolute error (AAE), root mean square 

error (RMSE), and maximum absolute error (MAE) were chosen to evaluate the performance of 

various regression models (Jiao et al., 2016; Zhong and Carr, 2016) (Table 2-2). An R2 

(Coefficient of Determination) of 0 indicates a completely inaccurate model, while an R2 of 1 

indicates a perfect regression model. Moreover, RMSE is used to evaluate overall performance, 

while AAE and MAE are used to determine the error range of the predicted results. When the 

values of R2 is higher and the values of AAE, MAE and RMSE are smaller, the forecast 

performance is better. 
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2.3 Case Study 

2.3.1 Geological Background 

Jacksonburg-Stringtown field is situated along the axis of the Burchfield syncline in 

northwestern West Virginia (Figure 2-5b). The estimated original oil in place (OOIP) in 

Jacksonburg-Stringtown oil field is 88 million barrels of oil (MMBO). Since discovered in 1895, 

estimated about 22 MMBO oil has been produced, and the estimated oil recovery factor is 25%. 

The primary and/or secondary producing reservoir unit is Late Devonian Gordon Stray interval, 

which is contained within the Middle to Late Catskill deltaic complex (Catskill delta). During 

Early to Middle Devonian, crustal uplift in Acadian orogeny lead to further subsidence within 

the Appalachian foreland basin to the west and resulted in the deepening of the central 

Appalachian basin (Faill, 1997a, b). Deposition coincided with the heavy rainfall produced by 

the tropical climate, sedimentary deposition accelerated during the Middle and Late Devonian 

(Blakey, 2008; McBride, 2004; Piotrowski and Harper, 1979). In the Late Devonian, five major 

delta systems prograded westwards and dominated the foreland ramp (Figure 2-5a). In the latest 

Devonian, maximum progradation of the Catskill delta complex was achieved west of the 

Acadian highlands (Boswell and Donaldson, 1988). During this period, Acadian tectonism 

ceased, and relative sea-level changes within the basin were controlled primarily by sea-level 

fluctuations and variations in sedimentation in an estuary (Coughlin, 2009). Non-marine red 

shale and most of the low-energy alluvial deposits are concentrated in the eastern portions of the 

Appalachian basin. Non-marine sediments increasingly advanced westward to cover marine 

beds, and near-shore deposits continued to prograde into the central Appalachian basin. In the 

area of Jacksonburg-Stringtown field, Gordon stray/Gordon interval are interpreted to be 

shoreline/shore-face sandstone that occupied a broad structural trend at the time of maximum 

regression of the Acadian clastic wedge (Hohn, 2004).  

Gas re-injection program took place in the field beginning in the mid-1930’s and ended in the 

1950’s. First pilot waterflood program with a 35 acre dual 5-spot well pattern was conducted in 

1981. After 1990, a full-scale waterflood was installed over a large portion of the field 

(Bergerud, 2011). Unlike modern oil and/or gas fields, which have abundant, high-quality data, 

including conventional and advanced well logs, seismic data to construct 3D geological model, 
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Jacksonburg-Stringtown oil field has plentiful low quality well log data (i.e. gamma-ray, bulk 

density), and limited high quality core data (core measured porosity and permeability data) for 

reservoir modeling. The sparse modern subsurface data can constrain the development of a 

robust geological reservoir volumetric model and effective evaluation of potential of enhanced 

oil recovery and CO2 geologic storage capacity. 

2.3.2 Pre-processing of the Dataset 

A total of 94 samples with both core data and conventional logs were collected from wells T.H8, 

H9, B19, B18, LM13 and H11 in the Jacksonburg-Stringtown field.  The relative locations of 

each well are shown in Figure 2-5b. To establish a reliable PSO-MKF-SVM regression model, 

the dataset is divided into two parts: training and testing data. The procedure used to train and 

test support vector regression technique is summarized as follows:  

(1) Training and testing data generation: there are a total 6 cases as shown in Table 2-3. In 

each case, data combined from five wells were used to train the PSO-MKF-SVM regression 

model, while remaining data of last well were applied to evaluate the accuracy and stability of 

the trained regression model. Based on the materials on hand, two conventional well logs and 

three log-derived variables were chosen as PSO-MKF-SVM input parameters and core-based 

porosity as a scalar output. Two well logs are gamma-ray log (GR), bulk density log, and three 

derived variables include the slope of GR, the slope of density, and Vsh. Figure 2-6 shows the 

heterogeneity of Gordon Stray, there are no clear linear relationships between input parameters 

and output porosity value.  

(2) Data normalization: Dataset normalization is an important process before training and 

testing proposed model in order to improve prediction accuracy and training speed. Absolute 

scale is used for all input parameters which are normalized into range of [0, 1]. Following 

normalized formula were chosen: 
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                 Eq. (20),  

where new

iX is the normalized input vector, minX and 
maxX are the minimum and maximum and 

value respectively, old

iX are the original input vector.  
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2.4 Results  

In this study, improved ε-SVM with normal kernel function and mixed kernel function, listed in 

Table 2-1, are applied for constructing a regression model to predict reservoir porosity (φ) based 

on conventional well log data, including gamma ray, bulk density well log data and three log-

derived data, such as slope of gamma ray, slope of density, and shale volume (Vsh). The LIBsvm 

toolbox (Chang and Lin, 2011) was used to assist in completing this study by Matlab software 

(MATLAB Release 2012b). Grid searching algorithm was used to search best control parameters 

of normal kernel functions as listed in Table 2-1. Table 2-4 displays the typical parameters range 

for training SVR. Based on experiments, 4-fold cross validation is more appropriate. 

For SVR with traditional kernel function, such as linear, polynomial, RBF, sigmoid kernel 

function, finding the global optimum of gamma and C value is really a challenge. Figure 2-7 

shows the process of optimizing penalty C and gamma value by grid searching algorithm for 

well case 1 as described in Table 2-2. The color of the contour lines in the figure indicates the 

mean square error (MSE), the blue color is smaller MSE, and the red color is larger MSE. The 

smaller MSE indicates a more accurate model.  

However, it takes a long time for grid searching algorithm to determine a global optimum of all 

parameters in the mixed kernel function. The particle swarm optimization algorithm is applied to 

optimize the control parameters in mixed kernel function. Figure 2-8 shows optimization process 

of mixing coefficient (ρ), penalizing coefficient (C), RBF kernel parameter (ϒ), polynomial 

degree (d) and ε in ε-insensitivity function in mixed kernel function for well case 1.  

As Figure 2-7 shows, the minimum MSE of SVR models with normal kernel function are greater 

than 4, however, the minimum MSE of SVR model with mixed kernel function is 2.1362 (Figure 

2-8). The SVR model with mixed kernel function performance is improved over the SVR with 

normal kernel function. All ϒ and C values are exponentially 2 in SRV with linear, polynomial, 

sigmoid and RBF kernel. This phenomenon is caused by its optimizing algorithm. Grid searching 

algorithm can just increase searching steps by exponential 2, and cannot search the value 

between those values. But particle swarm optimization is based on stochastic searching, which 

means the parameters can take any value.  
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Figure 2-9 indicates the correlation coefficient of SVR for training and testing stage with five 

kernel functions for six well cases, respectively. High value of correlation coefficient 

demonstrates that the SVR method performed very well as a regression technique in both 

training and testing stage. Comparison results using coefficient of determination (R2), correlation 

coefficient (r), root mean square error (RMSE), average absolute error (AAE) and maximum 

absolute error (MAE) are shown in Table 2-5. Table 2-5 list the RMSE, AAE and MAE for SVR 

with different kernel function for SVR training process for well case 1 through 6. Compared with 

the performance of other kernel functions, the mixed kernel function works better with lower 

errors. Table 2-6 list all the well-trained control parameters, which can be used for further testing 

and future prediction. As in Table 2-6 shown, a little change will influence the final result 

dramatically. Table 2-7 list the RMSE, AAE and MAE for SVR with different kernel function 

with well-trained parameters for well case 1 through 6. Though the errors of testing runs are 

larger than training runs, the performance of mixed kernel is an improvement over other kernel 

function.  

2.5 Comparison and Discussion 

To confirm the model’s forecast ability, the comparison between the proposed model with the 

predicted results calculated from the newly hybrid PSO-MKF-SVM model is necessary. Those 

proposed models include MLP-NN, RBF-NN, RBF-SVM, POLY-SVM and RBF-LS-SVM 

models. Multilayer perceptron neural network is widely used in petroleum industry, especially in 

reservoir characterization problem (e.g. porosity and permeability prediction) because of its 

strong feature learning and generalization ability. The radial basis function neural network (RBF-

NN) is the special improvement of MLP-NN, which just has one hidden layer and the active 

function of hidden neurons are a Gaussian radial basis function. The RBF-NN has strong 

approximation ability and high convergence speed. RBF-SVM and POLY-SVM are both 

standard support vector machine, but using a different kernel function. The RBF kernel function 

uses local kernels that have stronger interpolation ability, while polynomial kernel function 

belongs to a group of global kernels that have stronger extrapolation ability (Zhong and Carr, 

2016). Different kernel function performance varies, so both kernel functions are selected to 

compare with newly developed hybrid PSO-MKF-SVM model. RBF-LS-SVM is further 

improved SVM with RBF kernel function. Because this technique applies last squared technique 



 

59 

 

to reduce complex optimization process, LS-SVM has fast learning speed and good 

generalization ability.  

To evaluate the accuracy and stability of PSO-MKF-SVM model, three evaluation parameters 

(e.g. RMSE, MAE, AAE) serve as the criteria to assess the stability of PSO-MKF-SVM model 

and one parameter (R2) were applied to evaluate the accuracy of this proposed hybrid model. 

Their effects are displayed in Figure 2-10, in this situation case 5 was applied. In training 

process, PSO-MKF-SVM model has highest R2 and smallest RMSE, AAE, and MAE. Those 

indexes indicate that hybrid PSO-MKF-SVM model performs best. In contrast, MLP-NN 

performs worst (Figure 2-10a).  In testing process, PSO-MKF-SVM model still has highest R2 

and smallest RMSE, AAE, and MAE (Figure 2-10b). The hybrid PSO-MKF-SVM is the best 

mode in those models. Other models are not accurate or stable neither because of low R2
 or large 

RMSE, AAE or MAE. The training process learns the feature from the training dataset, and 

testing process verifies the process, which reflects the generalization ability of a model. After 

detailed comparison of the all above-listed regression models, the hybrid PSO-MKF-SVM 

regression model is a reasonable, accurate and stable regression model because all indexes 

(RMSE, MAE, AAE and R2) are lower. A comparison between core measured porosity and the 

predicted porosity by the six proposed models are displayed in Figure 2-11. Figure 2-11a 

displays a good agreement between core measured porosity and PSO-MKF-SVM predicted 

porosity with highest R2 (0.9140) and r (0.9560), and lowest RMSE (1.6505), AAE (1.4050) and 

MAE (2.717).  

2.6 Conclusions  

For reservoir characterization and evaluation of applications such as enhanced oil recovery and 

CO2 geologic storage in mature oil fields, accurate calculation of fluid and gas volumes is 

dependent on accurate porosity estimation from often very limited log and core data. It is 

necessary to develop an effective method to improve prediction with limited subsurface data of 

reservoir porosity across wells in a reservoir. The hybrid PSO-MKF-SVM regression model is 

introduced and is applied to predict the porosity in the Jacksonburg-Stringtown depleted oil field. 

The result demonstrates that this hybrid model is a potentially accurate and robust methodology 

to improve porosity prediction with limited subsurface data. In a comparison, the newly hybrid 
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PSO-MKF-SVM model outperforms the LS-SVM model, SVM model, BRF-NN and MLP-NN 

model. Through the foregoing analysis and discussion the prediction result, several conclusions 

were developed -  

(1) The hybrid PSO-MKF-SVM regression model provides a reliable way of estimating 

porosity from limited conventional well log data. 

(2) Support vector regression model performance varies due to different kernels functions 

and control parameters. Polynomial and RBF kernels are typical global and local kernels. Mixed 

kernel function takes advantages of RBF kernel function and polynomial kernel function to 

increase the applicability of SVM.  

(3) PSO, as an evolutionary algorithm, can improve the efficiency and accuracy of locating 

the optimal value in searching space. However, caution is required since premature convergence 

and suboptimal search results can occur prior to locating the global optimal (Figure 2-8). Further 

investigation is needed.   

(4) The comparison between hybrid PSO-MKF-SVM and other proposed models show that 

this hybrid model has excellent performance and great generalization ability with higher R2 

(0.9140) and r (0.9560), and smaller RMSE (1.6505), AAE (1.4050) and MAE (2.717).  
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Figure 2-1. (a) The structure of fully connected multilayer perceptron with two hidden layers. 

The active function of hidden neurons is sigmoid function. (b) The structure of fully connected 

RBF neural network, the active function of hidden neurons is Gaussian radial basis function 

(modified from Aljarah et al. 2016).  

  



 

70 

 

 

 

Figure 2-2. Comparison of SVM and LS-SVM for linear regression. Standard SVM (left) use ε-

insensitive loss function, in which data points lying on or outside of ε-tube of decision function 

are support vectors, and the gap between data points and the radius of tube are slack variables 

(
(*) ).  LS-SVM (right) involves equality constraints and uses least square loss function, in 

which the ε-tube and slack variables are replaced by error variable (ei) (modified from Wang et 

al. 2005). 
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Figure 2-3. Mapping features of polynomial, radial basis function and mixed kernel function. (a) 

is radial basis function kernel, x = 0.2 is test point. Various values of ϒ was selected, the points 

adjacent to the test point have a great influence on the kernel values; (b) is polynomial kernel, d 

is the operation degree, x = 0.2 is test point. Various values of d were selected, only the points 

that are far enough from test point will have an effective influence on the kernel value; (c) is 

mixed kernel function. m is mixing coefficient, x = 0.2 is the test point, ϒ is 0.1 and d = 1. 

Various values of mixing coefficient (m) were selected, data points that are both far away from 

the test point and adjacent to the test point have a great influence on the kernel values. 
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Figure 2-4. Workflow of PSO to optimize parameters of mixed kernels function. 
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Figure 2-5. (a) Late Devonian paleogeography of study area and five major delta systems in 

Appalachian foreland basin, black lines indicates geographical state boundaries and approximate 

location of Jacksonburg-Stringtown field is highlighted in red. (b) Location of cored wells in the 

Jacksonburg-Stringtown field in northwestern West Virginia that were used in the study.  Figure 

2-5a modified from Bowell, 1988.  
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Figure 2-6. Porosity vs. different log derived variables which are used as input parameters in this 

study. It indicates that there are not strong linear relationships between porosity and each input 

variables. 
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Figure 2-7.The process of searching for best gamma and cost parameters by grid searching 

algorithm for SVR with linear kernel (a), polynomial kernel (b), RBF kernel (c), sigmoid kernel 

(d) and n-fold of 4. The color of the contour lines in the figure indicated the associated cross-

validation mean square error. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Figure 2-8.The process of searching for best gamma, penalty, mixing coefficient, degree and 

epsilon by particle swarm optimization (PSO) for SVR model with mixture of kernels and n-fold 

of 4. 
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Figure 2-9. Correlation coefficient of training (a) and testing (b) for SVR with different kernel 

function.  

a 
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Figure 2-10. Evaluation index bar chart for (a) training process and (b) testing process for 

different kernel functions. 
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Figure 2-11. Single model forecast effect chart showing core porosity compared with predicted 

porosity for (a) PSO-MKF-SVM; (b) RBF-LS-SVM; (c) RBF-SVM; (d) POLY-SVM; (e) RBF-

NN; and (f) MLP-NN models. 
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Table 2-1. Common kernel functions and corresponding mathematical expressions. 

Linear Kernel cxxxxK jiji  ,),(
 

Polynomial Kernel d

jiji cxxxxK ),(),(    

Radial Basis Function Kernel  )exp(),(
2

jiji xxxxK    

Sigmoid Kernel ),tanh(),( cxxxxK jiji  
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Table 2-2. Various error measures used for accuracy assessment on this paper. 

Accuracy measure  Mathematical expression 

Coefficient of Determination, R2 
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Root mean square error, RMSE 
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Table 2-3. Training and testing wells from the Jacksonburg-Stringtown field used in this paper. 

Well case index Training well  Testing well 

1 TH_8,H_9,B_19,LM_13,H_11 B_18 

2 TH_8,H_9,B_19,LM_13,B_18 H_11 

3 TH_8,H_9,B_19, H_11,B_18, LM_13 

4 TH_8,H_9,LM_13,H_11,B_18 B_19 

5 TH_8,B1_9,LM_13,H_11,B_18 H_9 

6 H_9,B_19,LM_13,H_11,B_18 TH_8 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 

 

Table 2-4.Typical parameters used for training SVM regression model with different learning 

algorithms. 

Common parameters for training SVR 

Sample size 94 Termination criterion (e) 0.005 

Gamma bound 2(-4)-2(4) Cost bound 2(-4)-2(6) 

r in polynomial and sigmoid function  1 n-fold  4 

Special parameters for grid searching algorithm 

Gamma searching step 4.0)(2  gammaLog  Cost searching step 4.0)(cos2  tLog  

Special Parameters for particle swarm optimization (PSO) 

Maximum generation 100 Population size 40 

Cognitive efficient (c1) 1.4 Social efficient (c2) 1.7 

Initial inertia weights Wstart 0.9 Final inertia weight Wend 0.4 
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Table 2-5. Error measures, RMSE, AAE and MAE, resulting from SVM regression model 

training with different kernel function. 
Well case 
index 

Linear Kernel Polynomial Kernel RBF Kernel Sigmoid Kernel Mixture of Kernels 

RMSE AAE MAE RMSE AAE MAE RMSE AAE MAE RMSE AAE MAE RMSE AAE MAE 

1 1.9500 1.5689 5.0335 1.9952 1.4936 5.5082 1.9298 1.5388 5.1839 2.1115 1.7313 4.8846 1.5285 1.0287 4.7721 

2 2.3594 1.8171 5.4489 2.1125 1.5191 4.9851 1.6245 0.9765 6.2904 2.4592 1.8277 6.3440 2.1074 1.5662 5.4573 

3 2.3050 1.6346 5.0849 1.9486 1.1962 5.5820 1.5563 0.8826 5.9702 2.4827 1.7704 6.1409 2.0940 1.4381 6.9185 

4 2.2237 1.6400 3.9323 1.4604 0.9056 3.7720 0.7668 0.4246 2.0947 2.3076 1.8031 5.1416 1.5860 0.9915 5.3350 

5 2.3537 1.8076 4.9793 1.9471 1.1606 5.6995 1.9017 1.1960 5.6380 2.6604 1.9417 5.9941 1.8493 1.2238 5.3077 

6 2.3102 1.8108 5.2645 1.9170 1.2368 6.2455 1.7230 1.0277 6.7035 2.4820 1.8991 5.2730 1.9362 1.4222 5.4454 
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Table 2-6. Basic control parameters for SVM regression model training with different kernel 

function. 
Well case 
index 

Linear Kernel Polynomial Kernel RBF Kernel Sigmoid Kernel Mixture of Kernels 

R2 R2 γ C R2 γ C R2 γ C R2 β γ d C ε 

1 0.9085 0.9028 2.2974 0.1436 0.9109 0.0313 97.0059 0.8935 0.3299 16 0.9434 0.4792 96.3658 3 168.1266 0.0794 

2 0.8785 0.8976 3.0314 0.1088 0.9033 2.6390 13.9288 0.8666 1.000 5.2780 0.9086 0.6594 14.0913 1.4169 137.8577 0.0102 

3 0.8562 0.8926 2.2974 1 0.8837 3.4822 13.9289 0.8288 0.1895 16 0.8912 0.5107 54.4831 1.6856 560.1957 0.0543 

4 0.8908 0.9503 9.1896 0.1436 0.9509 2.6399 388.0234 0.8859 0.1088 16 0.9620 0.1107 86.9035 3 762.511 0.0990 

5 0.86500 0.9033 2.2974 1.7411 0.9007 0.0947 2702.3522 0.8221 1 5.2780 0.9158 0.6247 19.9453 2.6327 636.1171 0.0834 

6 0.8830 0.9172 5.2780 0.1436 0.9172 2.6390 10.5561 0.8664 0.3299 16 0.9183 0.6067 40.1341 2.1118 828.9583 0.0457 
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Table 2-7. Error measures, RMSE, AAE and MAE, resulting from SVM regression model 

testing with different kernel function. 

 

  

Wel
l 
case 
ind
ex 

Linear Kernel Polynomial Kernel RBF Kernel Sigmoid Kernel Mixture of Kernels 

RMS
E 

AAE MAE R2 RMSE AAE MAE R2 RMSE AAE MA
E 

R2 RMSE AAE MAE R2 RMSE AAE MAE R2 

1 3.37
34 

2.396
1 

2.200
1 

0.856
1 

4.256
4 

3.351
8 

5.881
7 

0.781
4 

3.1998 2.287
8 

1.9
303 

0.8679 3.4272 2.475
2 

2.5732 0.8432 3.2831 2.562
9 

2.7151 0.8657 

2 2.63
78 

2.177
6 

0.421
9 

0.874
7 

2.295
3 

1.772
4 

0.927
1 

0.874
9 

2.5851 2.164
4 

1.7
099 

0.8199 3.4543 2.878
3 

3.9375 0.5582 2.6321 2.105
3 

0.3312 0.8825 

3 2.64
98 

2.309
4 

4.230
8 

0.857
3 

2.687
6 

2.297
2 

4.300
5 

0.877
8 

1.1813 1.558
0 

2.9
500
0 

0.8976 3.1367 2.777
7 

4.8361 0.8223 4.0314 3.507
4 

60.524 0.8104 

4 2.38
82 

1.979
3 

4.820
6 

0.774
8 

3.597
4 

2.200
32 

13.14
76 

0.550
6 

3.8257 2.680
1 

11.
669
0 

0.6300 2.4114 2.025
0 

4.7866 0.7791 2.5655 2.111
7 

4.8584 0.7510 

5 1.68
80 

1.270
7 

1.898
6 

0.909
9 

2.402
6 

1.760
1 

2.339
9 

0.845
9 

2.2904 1.714
3 

2.4
709 

.08539 2.2604 1.685
9 

2.6461 0.8487 1.6505 1.405
0 

2.7171 0.9140 

6 1.93
45 

1.477
0 

5.264
5 

0.865
6 

2.004
5 

1.739
3 

6.245
5 

0.879
3 

2.2927 1.905
2 

6.7
035 

0.8372 1.9520 1.470
7 

5.2729 0.8665 2.0625 1.619
6 

5.4454 0.8642 
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Abstract 

As concerns around global warming increase, carbon capture, utilization and geological storage 

(CCUS) is a promising way to reduce the emissions of anthropogenic CO2 into the atmosphere. 

Sequestering the CO2 into depleted hydrocarbon reservoirs with associated enhanced oil 

recovery (EOR) is the most achievable approach under current economic constraints since it 

increases recovery of existing oil reserves, and bridges the gap between regional-scale CO2 

capture and geologic sequestration. The Upper Devonian fluvial sandstone reservoirs in the 

Jacksonburg-Stringtown oil field in West Virginia, which have produced over 22 million barrels 

of oil since 1895, are ideal candidates for CO2 sequestration coupled with EOR. Reservoir 

storage capacity and oil recovery factors are keys for the evaluation of coupled CO2 storage and 

CO2-EOR process. In this research, a static 3D reservoir model, which integrates detailed 

geological knowledge and existing legacy geological data from Jacksonburg-Stringtown oil field, 

is constructed to estimate theoretical CO2 storage capacity. Regression relationship between 

wireline logs and core measured data for porosity, permeability are constructed by artificial 

neural network and support vector machine in core-scale; then those regression models are 

extended from core-scale to well-scale, where wells do not have porosity and permeability 

wireline logs. Finally a 3D static geological model is generated based on the Random Gaussian 

Function simulation method and well-established variogram models generated by detailed data 

analysis. Depending on the proposed 3-D geological model, the best regions for coupled CCUS-

EOR are located in southern portions of the field, and the estimated CO2 theoretical storage 

capacity for Jacksonburg-Stringtown oil field ranges from 24 to 383 million metric tons. The 

estimated results of CO2 sequestration indicate that the Jacksonburg-Stringtown oilfield has 

significant potential for CO2 storage and value-added EOR. 

3.1 Introduction 

Svante Arrhenius proposed 100 years ago the basic model in which the variations of Earth’s 

surface temperature are related to the concentration of carbon dioxide (CO2) (Crawford, 1997; 

Rodhe et al., 1997). The greenhouse model was resuscitated in the 1970s due to the concern of 

global warming resulting from the increased greenhouse gasses emissions from industrial 

sources, fossil fuel combustion and land-use change (Falkowski et al., 2000; Quéré et al., 2014; 
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Quéré et al., 2013b). In order to maintain future global warming below 2℃ above pre-industrial 

levels, approximately 9.5 gigatons (Gt) carbon/year or 35 Gt CO2/year will need to be captured 

and stored before entering the atmosphere (Peters et al., 2012; Quéré et al., 2013a).  

The common approaches to mitigate potential global climate change induced by anthropogenic 

emissions of CO2 and other greenhouse gases is to reduce CO2 emissions or to increase storage in 

CO2 sinks (Bachu, 2000). CO2 emissions reduction while satisfying increasing global energy 

demands is not viable on current technological and engineering conditions.  Carbon capture, 

utilization and storage (CCUS) captures the anthropogenic carbon dioxide (CO2) from large 

stationary carbon sources, such as coal and natural gas power plants or resource extraction 

industries. Then the CO2 is either piped or transported to specific sits, and utilized or stored into 

deep geological media, oceans, or settling through surface mineral carbonation, thus achieving a 

long-term isolation of CO2 from the atmosphere (Bachu, 2000; Jiang et al., 2014).  

One of the most effective sites to store CO2 are depleted gas and oil reservoirs because the 

characteristics of hydrocarbon reservoirs are generally better known as a result of the extensive 

history of exploration and production (Zhao and Liao, 2012). In addition, CO2 can also enhance 

oil recovery (EOR) and can cover part of the cost of sequestration. Theoretical storage capacity 

is sensitive to the porosity model, and effective storage capacity is sensitive to the porosity and 

permeability model, thus constructing a reasonable 3D geological reservoir model is critical for 

the evaluation of coupled CO2 storage and CO2-EOR process. Detailed sources to sink matching 

analysis, which is matching storage sites to large emission sources is also an important step for 

accurate estimation of CO2 storage capacity.  

Unlike modern oil and/or gas fields, which have abundant, high quality data, including 

conventional and advanced well logs, seismic data, production data and geological framework to 

construct 3D geological models, a super-mature oil field, such as Jacksonburg-Stringtown oil 

field, has plentiful low quality data, and limited high quality data. The sparse modern subsurface 

data can constrain the development of a robust 3D static geological model when evaluating the 

CO2 storage capacity.  
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The focus of this research is to evaluate the capacity of CO2 sequestration and the potential of 

CO2-EOR in a highly mature and depleted oil reservoir, Jacksonburg-Stringtown oil field in 

West Virginia, USA. This research will ultimately aid in the determination of the technical and 

economic suitability of the field for long-term storage of supercritical CO2. In addition, the 

proposed research will construct and validate a basic workflow for CO2 storage capacity 

evaluation that can be applied to other mature gas and/or oil fields, which have limited high 

quality modern data. Once this detailed assessment has been achieved, it will be possible to 

express capacity at a regional level as a annual sustainable rate of injection, not just as a total 

volume (Bradshaw et al., 2007). 

Specific objectives within the scope of the proposed research include: 

 to predict permeability values with the aid of artificial neural network (ANN), 

 to estimate porosity values by using support vector machine (SVM), and 

 to construct a 3D geologic reservoir model and to calculate theoretical CO2 storage 

capacity. 

3.2 Geologic Background 

The Jacksonburg-Stringtown field, located in northwestern Doddridge, southeastern Wetzel and 

eastern Tyler counties, West Virginia, sits along the western edge of the Burchfield syncline 

(Figure 3-1b). The primary and/or secondary producing reservoir units of Jacksonburg-

Stringtown oil field are in the middle to late Catskill deltaic complex (Catskill Delta), which is a 

thick sediment wedge deposited during the Late Devonian (Ameri et al., 2002; Boswell, 1988; 

Bridege and Willis, 1994). This clastic wedge includes the Early Mississippian Price-Rockwell 

deltaic complex (Price Delta) composed the Acadian clastic wedge, which was deposited as 

various marine and continental beds associated with the Early and Middle Devonian Acadian 

orogeny (Bjerstedt and Kammer, 1987).  

During Early to Middle Devonian, crustal uplift in Acadian orogeny lead to further subsidence 

within the Appalachian foreland basin to the west and resulted in the deepening of the central 
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Appalachian basin (Faill, 1997a, b). Deposition coincided with the heavy rainfall produced by 

the tropical climate, sedimentary deposition accelerated during the Middle and Late Devonian 

(Blakey, 2008; McBride, 2004; Piotrowski and Harper, 1979). A series of river systems aided 

transport of sediment westward into the Appalachian basin (McBride, 2004). 

In the Late Devonian, five major delta systems prograded westwards and dominated the foreland 

ramp (Figure 3-1a). Delta systems are separated by the interdeltaic shale (Coughlin, 2009; 

Dennison, 1985). Two southernmost delta complexes deposited the Bradford and Venango 

groups (Boswell and Donaldson, 1988). In the late Devonian, maximum progradation of the 

Catskill delta complex was achieved west of the Acadian highlands (Boswell, 1988; Tassell, 

1987). During this period, Acadian tectonism ceased, and relative sea-level changes within the 

basin were controlled primarily by eustatic sea-level fluctuations and variations in sedimentation 

(Coughlin, 2009). Non-marine red shale and most of the low-energy alluvial deposits are 

concentrated in the eastern portions of the Appalachian basin. Non-marine sediments 

increasingly advanced westward to cover marine beds, and near-shore deposits continued to 

prograde into the central Appalachian basin (Figure 3-2). Marine shale units are mainly 

deposited in western portions of Appalachian basin in Kentucky and Ohio (Donald L. Woodrow, 

1983; Moore, 2009). The shore zone became the discernable feature of the Catskill delta system, 

which can be used to illustrate the progradation direction and evolutionary history of this delta’s 

structure (Faill, 1997a).   

The Gordon stray and/or Gordon interval, our target CO2 storage formation, is thick part of 

Venango Group in the Catskill delta, as shown in Figure 3-2. In the area of Jacksonburg-

Stringtown field, Gordon stray/Gordon intervals are interpreted to be shoreline/shoreface 

sandstone that occupied a broad structural trend at the time of maximum regression of the 

Acadian clastic wedge (Hohn, 2004). Like many of the oilfields in West Virginia, oil is trapped 

downdip of gas accumulations along the structural highs.  

This field was discovered in 1895, the original oil in place (OOIP) is estimated at 88 million 

barrels of oil (MMBO), and primary production is estimated at 22 MMBO. The estimated oil 

recovery factor is 25%. Total Jacksonburg-Stringtown field covers 15,386 Acres, but the 

effective area is 4,388 acres (Ameri et al., 2002). Average well spacing is 13 acres per well. Gas 
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re-injection program took place in the field beginning in the mid 1930’s and ended in the 1950’s. 

The first pilot waterflood program with a 35 acre dual 5-spot well pattern was conducted in 

1981. After 1990, full-scale waterfloods were installed in a large portion of the field (Bergerud, 

2011).  

The signature of the Gordon Stray intervals follows an idealized estuarine vertical succession 

(Figure 3-3).  By examining the logs from the Jacksonburg-Stringtown field (Ameri et al., 2002; 

Boswell, 1988; Boswell and Donaldson, 1988), the Upper Devonian Gordon stray and the 

Gordon sands are inferred to be shoreline and deltaic deposits ranging between dip trending 

lobes of a fluvial dominated system to the strike-parallel sandstone bodies of a wave-dominated 

estuarine environment (Ameri et al., 2002; Boswell, 1988; Boswell, 1985; Boswell and 

Donaldson, 1988). A detailed comparison between idealized estuarine vertical successions with 

well logs from the Jacksonburg-Stringtown field also support this conclusion (Figure 3-3) 

(Buatois et al., 2002; Buatois et al., 1999; Dalrymple et al., 1992).  As Figure 3-3 shows, the 

depositional sequence is consistent with incised valley estuarine system can be identified from 

well logs. The thinner upper sand is interpreted as the estuary mouth deposit, meanwhile the 

much thicker lower sand can be identified as tidal dominated deltaic deposits, and the inner 

interval is estuarine shale. The lowest subunit is interpreted as a fluvial deposit.  

3.2.1 Carbon Source 

At normal atmospheric conditions, CO2 is a thermodynamically very stable gas with density of 

1.98kg/m3, which is heavier than air. For temperatures greater than 31.1°C and pressures greater 

than 7.38 MPa (critical point), CO2 is in a supercritical state. At supercritical conditions, CO2 has 

totally different properties than in either liquid or gaseous phase. When supercritical CO2 

behaves like a gas by filling all the available volume, but has a “liquid” density that increases 

(Holloway and Savage, 1993; Bachu, 2000, 2008). Since both temperature and pressure increase 

with depth in the subsurface, CO2 can be stored underground either as a compressed gas, liquid 

or in supercritical phase, depending on reservoir temperature and pressure.  Along the Ohio 

River, there are numerous power plants, which emit thousands of tons carbon dioxide per year 

(Figure 3-4a and b). More than 90% of stationary CO2 emissions are from electric power plants 

and industrial manufacturing facilities (Figure 3-4b and c). Location of viable geologic storage 
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sites for CO2 near the sources will provide economic efficiencies and reduce risks associated 

with transporting CO2 long distances from source to sink. 

3.3.2 Available Data 

The database gathered for this project includes core, well log and production data and other well 

information. In many cases data from wells are incomplete or not available. Most of the data 

required for this study was obtained from the “Reservoir Characterization of Upper Devonian 

Gordon Sandstone” project (Gil, 2000; Alla, 2002; Ameri et al., 2002; Oyerokum, 2002; 

Thomas, 2002). The core data includes core samples and a petrophysics analysis (Figure 3-5). 

Ten wells have cores which were described in the study. Moreover, a total of 93 core samples 

collected from six well as listed in Table 3-1, had measured porosity and permeability. Relative 

permeability data was available from the PH-9 core well. In a number of wells, conventional 

well logs were available; including Gamma Ray (GR), Bulk Density (RHOB), Neutron Porosity 

(NPHI) and Induction logs. Of these, GR and RHOB were used in this study because of their 

availability in 179 wells. Well logs used in this study are all raster logs. Raster logs were 

digitized subsequently and auto-corrected to check for accuracy. The slopes of GR and RHOB 

logs were calculated from first derivatives of GR and RHOB with respect to depth using the 

three point method. Production data for oil, gas and water collected by WVGS, was used for 

history matching, well development planning and calculation of ultimate recovery. The data for 

oil API gravity and viscosity, the formation temperature, the water viscosity were collected.  

3.3 Methodology  

In this research, the workflow for the three dimensional geological model for CO2 sequestration 

capacity calculation used in this research includes: (1) constructing models of porosity and 

permeability between conventional well logs and limited core-measured data; (2) extending 

porosity, permeability models to predict porosity and permeability at well-scale; (3) building a 

3D petrophysical model via Random Gaussian Function Simulation method with the geologic 

constrains, and (4) calculating the theoretical CO2 sequestration capacity based on specific 

formulation proposed by Bachu et al., (2007)(Figure 3-6).  
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It was necessary to conduct depth calibration between wireline logs and cored samples before 

establishing the relationships between wireline logs and the core-measured dataset. Two 

conventional well logs with gamma ray and bulk density plus three logs derived logs (slope of 

GR, slope of bulk density, and Vsh) were selected as input training and testing for the model; 

porosity and permeability were the desired output. 

In this project, a new back-propagation artificial neural network (BPNN) optimized by two 

evolutionary algorithms: particle swarm optimization (PSO) and genetic algorithm (GA) were 

proposed to estimate permeability in Jacksonburg-Stringtown oil field, in West Virginia, USA. 

Those two evolutionary algorithms were applied to determine the best initial weights and biases 

for the back-propagation neural network (Zhong and Carr, 2017 a). A support vector machine 

(SVM) was proposed to estimate porosity by constructing the relationship between conventional 

well logs and limited core data. A new mixed kernels function (MKF), which is a convex 

combination of a radial basis function kernel and a polynomial function kernel, was introduced 

to construct SVM regression model. One global stochastic searching algorithm, particle swarm 

optimization, was applied to determine the global optimum of five control parameters of the 

newly developed model (Zhong and Carr, 2017b). The well-trained BPNN is used to predict the 

permeability and SVM model is used to predict the porosity at the well scale.  

Corresponding well tops are determined from the wireline logs of 179 wells and used to 

construct structure maps of units in the Gordon Stray formation. A 3D structural model of target 

formation (Gordon Stray formation) is constructed to cover the Jacksonburg-Stringtown oil field 

(Figure3-1) to provide a framework for 3D facies model. A 3D facies model is established by 

integrating the 3D structure model and various lithofacies. The arithmetic average method is 

used to upscale porosity values and harmonic average method is applied to upscale permeability 

values. Variogram models for upscaled porosity and permeability in each facies are generated by 

geostatistical analysis, which can be used to illustrate the lateral and vertical porosity and 

permeability distribution pattern (Wang and Carr, 2013). 3D porosity and permeability models 

are generated based on a stochastic simulation method called Random Gaussian Function 

Simulation. 



 

95 

 

3.4 Fluid and Rock Properties 

To demonstrate the heterogeneity of this formation and to display the chaotic status of the 

information that existed, cross-plots of permeability and porosity versus each measured 

parameter were constructed (Figure 3-7).  The plots indicate that a simple linear relationship is 

not evident among the six measured parameters and permeability. It shows a complex geologic 

environment and nonlinear relationship between wireline logs and porosity, permeability. 

The RHOmaa/Umaa crossplot derived from bulk density, neutron density and photoelectric 

wireline logs is common method to estimate matrix mineral compositions (Doveton 1994, 

Bergerud, 2012). Three wells that have bulk density, neutron density and photoelectric wireline 

logs, were utilized to analyze the mineral composition of Gordon Stray formation (Figure 3-5). 

Figure 3-8a shows the RHOmaa/Umaa ternary diagram for four Gordon Stray subunits 

including; barrier sand, central bay shale, tidal channel, and lower Gordon Stray (fluvial 

channel), as shown in Figure 3-3, with different colors. The lower Gordon Stray subunit has high 

quartz content consistent with a clean sandstone reservoir (red circle). The tidal channel subunit 

consists of a mixture of quartz-rich and illite-rich content, as well as, small concentration of 

calcite, which could be interpreted as tidally-influenced bay-head delta depositional 

environment. The central bay shale subunit shows low quartz and high illite content, which is 

consistent with model of a low-energy depositional environment. Finally, the barrier sand 

subunit has lower quartz and higher calcite content which indicates a marine influence. Figure 3-

8b shows mineral composition of target formation using the bulk density, neutron density and 

photoelectric wireline logs for well 4710301547. As expected, Lower Gordon Stray (marked as 

red star) shows high quality of quartz and porosity volume, which indicates that this interval has 

high capacity of CO2 storage. 

The minimum miscibility pressure (MMP) of oil within the Jacksonburg-Stringtown oil field was 

determined by slim tube experiment. Figure 3-9a shows the MMP is 941 psi at a reservoir 

temperature of 80 ℉, which means that CO2 and oil will be miscible completely at a pressure 

over 941 psi. In Appalachian region, the general geothermal gradient is 20°C/km, and hydrostatic 

pressure gradient is 10.52 Mpa/km (Johnsson, 1986). This equates to an approximate minimum 

subsurface depth of 700-800m for supercritical conditions which means that CO2 should be 
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injected at depths greater than 800m (Holloway and Savage, 1993) (Figure 3-9b). Based on the 

true measured depth map of lower Gordon Stray top structure, a pressure map (Figure 3-9c) is 

generated with the aid of an average pressure gradient of 10.52 Mpa/km (0.465 psi/ft.). The 

minimum pressure in Jacksonburg-Stringtown oil field is estimated to be 1230 psi, which when 

compared to the empirical MMP value of 941 psi indicates that CO2 is miscible with the 

reservoir oil.  

3.5 Petrophysical Properties Prediction by Support Vector Machine and 

Artificial Neural Network 

Porosity is a fundamental and essential property to characterize the storage capability of 

hydrocarbon bearing formations in reservoirs. Permeability evaluation has a significant impact 

on injection rates, reservoir management, and flow patterns determination. Thus, accurate 

porosity and permeability estimates are the key features for reservoir characterization and 

geological modeling at the field scale.  

As discussed, artificial neural network and support vector machine, which are excellent means of 

dealing with complex nonlinear problems in the petroleum industry, are utilized to construct the 

regression relationship between wireline logs and core data (Zhong and Carr, 2017 a). Hybrid 

particle swarm optimization (PSO) mixed kernels function (MKF) based support vector machine 

(SVM) is used to establish a porosity prediction model. The mixed kernels function has both 

strong extrapolation and interpolation ability, and compensate for the weakness of any single 

kernel function. Moreover, the particle swarm optimization algorithm is utilized to locate global 

optima of training and testing parameters in MKF-SVM. A permeability prediction model is 

established with the aid of artificial neural network, which is very flexible in the design of 

network architecture and selection of training and testing parameters. After comparing the 

performance of different ANN architecture and leaning algorithm, an ANN with one-hidden 

layer and 25 neurons is constructed and two evolutionary algorithms (genetic algorithm and 

particle swarm optimization algorithm) are applied to optimize the weights and biases of ANN. 

There were a variations between core measured data and predicted data set, but the trends of 

porosity and permeability are consistent with those observed in the formation. Those porosity 
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and permeability regression models were extended from core-scale (centimeter or inch) to well-

scale (meter or foot) to the field-scale (kilometer or mile) (Figure 3-10).  

3.6 Three Dimensional Geological Modeling 

The borehole data from Gordon Stray formation reflect the petrophysical properties in one-

dimension, and provide insufficient information to reflect horizontal heterogeneity and 

connectivity of Gordon Stray formation; the interpolated two-dimensional cross-sections show 

the large-scale lateral and vertical distribution of the petrophysical properties, but still cannot 

quantitatively reflect the distribution of heterogeneity in more detail. Therefore, a 3-D 

petrophysical properties model is needed to characterize the internal and external architecture of 

Gordon Stray formation. Deterministic and stochastic method are the two modeling algorithms 

for continuous property simulation. The deterministic method includes moving average and 

kriging algorithms. A deterministic model is a model where no randomness is involved in the 

modeling process, thus the same result will be repeated for every modeling run with the same 

input data. Moving average uses an interpolation technique, which finds an average of the input 

data and weighs according to the distance from the wells. A Kriging algorithm can produce 

repeatable results, which honors local data, and is the preferred approach in areas of abundant 

hard and soft data. However, very few subsurface areas are understood in such sufficient detail. 

Thus a stochastic approach is a more common approach (Gunnarsson, 2011; Norden and 

Frykman, 2013; Schlumberger, 2011).  The stochastic method is pixel-based technique, which 

includes sequence Gaussian simulation (SGS) algorithm and Gaussian random function 

simulation (GRFS). Typically, sequence Gaussian simulation produces a realization of the 

targeted property, which honors the well data and also honors a target histogram for the property, 

usually derived from the well data. The degree of continuity is controlled by the variogram. A 

long range on the variogram will mean that points spatial far apart are related, while a short 

range will mean that points are less spatially related. The type of variogram governs the 

smoothness of the realization. A Gaussian random function simulation (GRFS) performance runs 

on the same principle as sequence Gaussian simulation does, but it is faster to run and has a fast 

on-the-fly tabulator to update the model as the correlation coefficient changes (Qi et al., 2007; 

Wang and Carr, 2013, Schlumberger, 2011). 
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3.6.1 Well Correlation and Map 

Data sets of 179 wells covering the Gordon Stray interval have been correlated across the study 

area.  The Gordon Stray is divided into 4 subunits based on log response.  The depositional 

environments of the units are interpreted to include; barrier sandstone, central bay shale, tidal 

channels and fluvial sandstone. Numerous cross-sections were built to correlate units with the 

response of the commonly available logs (Figure 3-11). Preliminary formation top maps for all 

formations were created (Figure 3-12). Based on the formation tops, an estuarine environment is 

determined to originate from the northeast and cease in a southward direction close to the 

southern parts of the field.  The interpretation spatially coincides with the large syncline that is 

evident in the structural map (Figure 3-1b), which can be explained as the earlier tectonic action 

and later enhanced incision of underlying strata due to rapidly regressing sea. An incised valley 

floor can serve as the depocenter for the transgressing estuarine sequence. 

3.6.2 Stratigraphic Framework 

A three-dimensional static model can improve our understanding of the spatial distribution and 

geometry of porosity and permeability within the Gordon Stray formation. A reasonable 3D 

static geologic model is constrained by a reasonable and robust stratigraphic framework. The 

model can be used to calculate the theoretical CO2 storage capacity and for future reservoir fluid 

simulation to evaluate EOR potential. A 3D geologic model is a grid-based 3D volume, thus 

each grid will just have one value for each reservoir property. The size of the grid will reflect the 

resolution of 3D geologic model. The appropriate selection of the grid size is important to 

represent the vertical and lateral range of the study area. However, high resolution with small 

grid size will increase computation time and computer resources. Therefore keeping the balance 

between computation time and model’s resolution is largely based on the suitable grid size.  

As interpreted in figure 3-12, four original structural surfaces of Gordon Stray formation were 

used to construct the stratigraphic framework reflecting the main reservoir intervals (Figure 3-

13). The grid size of x and y dimensions are equal at 150 ft. (50m), and the grid size of vertical 

direction is 1ft. Thus there are 110 grid blocks in x-direction, 74 grid blocks in y-direction and 

64 layers in vertical direction. The cell layers are parallel to the underlying surface in each 
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reservoir interval, with cells truncating against upper bounding surfaces. The resulting total 

number of cells in the model is 539,904.  

3.6.3 Geostatistical Analysis of Gordon Stray Formation 

Extrapolation of petrophysical properties from wells to areas of limited well control is the 

essential step to construct 3-D gridded petrophysical property model for the study area (i.e., 

porosity model and permeability model). Vertical and lateral distribution of those properties was 

determined based on the knowledge of geological background, depositional environment, and 

geostatistical analysis from conventional well logs (e.g., Brett and Baird, 1996; Lash, 2008; 

Boyce and Carr, 2010; Lash and Engelder, 2011).  The deposition trend of Gordon Stray 

formation is major north-northeast direction. As a result, we set the major direction of 

geostatistical ellipse to 36° for the 3-D geologic modeling the Gordon Stray formation. In the 

vertical direction, the distribution of porosity and permeability is really depended on the wave 

and river energy. 

The semi-variogram is a simplified representation of porosity and permeability distribution 

pattern. I analyzed and created different variogram for each Gordon Stray subunit (Figure 3-13). 

The variogram developed for the vertical distribution of porosity and permeability was applied to 

control the spatial extrapolation of Gordon Stray formation in stochastic method  

Based on the core measurement and conventional well log analysis, the porosity and 

permeability values ranges from 3.4% to 25.4% and 0.11 mD to 257 mD, respectively. For 

Gordon Stray formation, the data distribution was analyzed abd shown as histograms. Comparing 

core and combined core-log evaluated porosity and permeability for Gordon Stray formation, 

Figure 3-14 represent a generally good agreement between core measure data and predicted date 

for porosity and permeability. Based on the histograms (Figure 3-14a and b), predicted 

permeability and core measured permeability have nearly identical trends, and the statistical 

parameters are comparable. The QQ-plots for comparing the distribution of the core and log-

based permeability have a slightly different shape, and data points almost locate on the 450 line 

(Figure 3-14e). Those figures show that core measured porosity distribution values are 

comparable to the log-predicted permeability distribution. In terms of porosity, core measured 

porosity and log-predicted porosity still have same trend (Figure 3-14b and d). As Figure 3-14f 
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shows, data points locate along the diagonal line, reflecting similar shapes of the porosity 

distribution.  

For upscaling of the well-log data, an arithmetic average was applied to the well log derived 

porosity into the grid with 1 feet vertical scale. The effect is illustrated in Figure 3-15(a), and 

shows the original well-log derived porosity and the model-grid upscaled porosity. The process 

of upscaling has a minimal effect on the porosity distribution, which can be seen by comparing 

histograms of the two data sets. 

To model the spatial distribution of permeability, a harmonic average method was utilized to 

upscale the permeability value. Figure 3-15(b) shows the distribution of permeability after and 

before upscaling. The shape of distribution for upscaled and raw well log is comparable, 

indicating that upscaling process has minimal negative impact on the final 3D petrophysical 

model.  

3.6.4 Petrophysical Properties Modeling 

The petrophysical properties model is composed of porosity and permeability model. Porosity is 

predicted based on support vector machine, and permeability is predicted based on the artificial 

neural network. There are four common simulation algorithms that are used to construct models 

of continuous variables including kriging, moving average, sequence Gaussian simulation (SGS), 

Gaussian random function simulation (GRFS). Kriging is the primary deterministic approach 

used for porosity and permeability modeling and works well with high-density data to avoid 

over-interpretation of available data. Kriging generated broad regional trends with sharp 

boundaries among areas of similar porosity and permeability. Kriging is a deterministic method 

and cannot generate local variation, thus the simulation result will identical. Moving average is 

another deterministic approach that can be used for porosity and permeability modeling. This 

algorithm is fast and can create values for individual cells; however it cannot generate values 

larger or smaller than the minimum and maximum values of the input data. SGS and GRFS are 

the common stochastic approaches for constructing models of continuous variables, require 

similar degree of geologic supervision and computational overhead. GRFS can produce local 

variation and generate numerous variations of output models depending on the number of runs.. 

The Gaussian random function simulation approach is beneficial for uncertainty analysis, if the 
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suite of models is reasonable. Another advantage GRFS is that GRFS is faster to run compared 

with SGS, because of parallelized computation. In this study, GRFS is selected as the simulation 

method and the up-scaled porosity, permeability and experimental variogram generated by 

geostatistical analysis are the primary input to generate 3D geological model. 

Based on the stratigraphic framework, the distribution of petrophysics properties in Gordon Stray 

unit were constructed using Random Gaussian Function Simulation method based on well data 

and derived data. Three-dimensional results illustrate the reservoir architecture, porosity, 

permeability and convective of this formation in a high-resolution grid (Figures 4-17 and 4-18). 

In the 3D porosity model the 3D porosity model (Figure 4-17) shows a high porosity reservoir 

located in the southern part of Jacksonburg-Stringtown oil field.  This is the area with the highest 

potential for CO2 storage and EOR in the field.  In addition, the 3D permeability model (Figure 

4-18) shows higher permeability values, which should improve injectivity and assist the CO2-

EOR process.  

3.6.5 Theoretical CO2 Storage Capacity 

Depending on the well-constructed 3-D static geological reservoir model, using CLSF 

calculation method, theoretical CO2 storage capacity can be estimated (Table 3-2). The P90 

confidence storage capacity is 24 million tons, and the most risked storage capacity P10 is 383 

million tons. 

3.7 Summary and Conclusions 

Accurate calculation of theoretical and practical CO2 storage capacity in mature oil fields 

depends on the accurate porosity and permeability estimation and geostatistical distribution of 

petrophysical properties. Reasonable and robust 3D static geological model help to improve the 

understanding of CO2/oil flow patterns during CO2 enhanced oil recovery process, and to 

determine optimal CO2 storage locations.  Artificial neural network and support vector machine, 

used detailed core and well log data to construct the relationship between log data and core 

measured porosity and permeability data. Geostatistical methods were used to generate the 

porosity and permeability distribution pattern across the field. Pixel-based simulation was used 

to assign porosity and permeability to subunits according to the spatial relationship built from 
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semi-variogram analysis. A 3D fluid model can be constructed by up-scaling the well-defined 3D 

static geologic model, and can be used to explore the fluid flow pattern and to calculate the final 

oil recovery factor and practical CO2 storage capacity.  

The following specific conclusion are drawn from this study: 

(1) Porosity and permeability can be predicted based on core and conventional wireline logs 

including gamma ray, bulk density, slope of gamma ray, slope of density and Vsh.  

(2) An artificial neural network was constructed to predict permeability value. Tow 

evolutionary algorithm including particle swarm optimization algorithm and genetic algorithm 

were applied to optimize the weights and biases in order to get best regression performance. 

(3) A support vector machine regression model was trained and tested to estimate porosity 

value. A newly developed mixed kernels function was applied to improve the generalization 

ability of support vector machine. Particle swarm optimization algorithm was also used to locate 

the best training and testing parameters. 

(4) A regional 3D structure and Lithofacies framework were constructed by integrating well 

logs and detailed core description, which can be used to constrain the future 3D petrophysical  

(5) Gaussian random function simulation with a suitable variogram model of porosity and 

permeability was applied to generate 3D petrophysical model in Gordon Stray formation.  

(6) The distribution of porosity and permeability shows that the best regions for CO2 storage 

and CO2-EOR are located in southern regions of Jacksonburg-Stringtown oil field due to the high 

porosity and high permeability. 

(7) Based on the calculation, the most confidence theoretical storage capacity is 24 million 

tons, and most risk theoretical storage capacity is 383 Mt. 
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Figure 3-1. (a) Late Devonian paleography of study area in Appalachian basin, five major delta 

systems prograded westwards and dominated the foreland ramp. Delta systems are separated by 

the interdeltaic shale; (b) Location of Jacksonburg-Stringtown oil fields in northwestern West 

Virginia. Black dots indicate cored well with core measured porosity and permeability.  
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Figure 3-2. Generalized stratigraphic column for the Later Devonian of the Appalachian basin 

showing subsurface (right) and outcrop (left) terminology. From east to west, red color, yellow 

and blue color represents non-marine red shales, fluvial sandstones, and distal marine shales 

respectively (After Ameri et al., 2002). 
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Figure 3-3. Comparison of example Gordon Stray interval gamma log signature from the 

Jacksonburg-Stringtown field with idealized model. 
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Figure 3-4. (a) Large CO2 stationary sources (metric tons) in the Appalachian basin. Location of 

the Jacksonburg-Stringtown field is highlighted. Data from the US DOE Carbon Storage and 

Utilization Atlas; (b) Along the Ohio River, there are numerous power plants, which emit 

thousands of tons carbon dioxide per year. (c) More than 90% of stationary CO2 emissions are 

from electric power plants and industrial manufacturing facilities. Location of viable geologic 

storage sites for CO2 in close proximity to the sources will provide economic efficiencies and 

reduce risks associated with transporting CO2 long distances from source to sink. 
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Figure 3- 5. Well locations in research area. Black dots represent cored well which have detailed 

core description; black circles represent the wells which have photoelectric wireline logs; other 

markers represent the wells which have common wireline logs, including gamma ray and bulk 

density wireline logs (modified from McBride et al., 2004).   
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Figure 3-6. Whole workflow of 3D geological model to calculate the theoretic CO2 storage 

capacity. 
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Figure 3-7. Cross-plot of permeability and porosity versus each measured parameters.  



 

114 

 

 

Figure 3-8. (Left)(a) RHOmaa/Umaa plots of Gordon Stray interval. RHOmaa values are 

measured in g/cm3, and Umaa values are in barnes/electron. a) Sample composition ranges from 

0%-20% calcite, 80%-100% quartz, 0%-20% illite. High content of quartz indicate a clean 

sandstone. Points above the ternary plot indicates the gas in this fluvial sand subunit. (b) Sample 

composition ranges from 10%-70% calcite, 20%-80% quartz, and 5%-45% illite. The change of 

lithology is related to variable concentration of sand and shale in tidal channel subunit. (c) 

Sample composition ranges from 20%-45% calcite, 10%-45% quartz, and 20%-50% illite. High 

content of illite and calcite in central bay shale subunit indicate a low-energy marine depositional 

environment. (d) Sample composition ranges from 10%-50% calcite, 10%-55% quartz, and 20%-

50% illite. High content of quartz indicate the influence of longshore current, and high calcite 

levels are a result of marine influence. (Right) Mineral composition of Gordon stray intervals 

was analyzed with the aid of bulk density, neutron density and photoelectric logs. As expected, 

lower Gordon Stray (marked as red star) shows high quality of quartz and porosity volume, 

which indicates that this intervals has high capacity of CO2 storage. 
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Figure 3-9. (a) Minimum miscibility pressure (MMP) chart with a sample of oil from the 

Jacksonburg-Stringtown oil field. Performed by Special Core Analysis Laboratories, Inc. 

(SCAL). (b) Pressure and temperature vs. depth on regional geothermal and pressure gradient. 

(c) Reservoir pressure map calculated based on statistical pressure gradient for Lower Gordon 

Stray subunit.  

 

  



 

116 

 

 

Figure 3-10. Example of well section from Gordon Stray Formation, which shows the predicted 

porosity and permeability curves by applying laboratory measured core data and conventional 

well logs as training and testing data set. The predicted porosity and permeability are closely to 

true measured core data.   
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Figure 3-11. Example of cross-section of the Gordon Stray interval and the location of the cross-

section (shown as red line). 
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Figure 3-12. (a) Gordon Stray sequence top structure map (10 ft. contour intervals). The white 

color boundary represents the boundary of Jacksonburg-Stringtown oil field; central Bay shale 

top structure map; (c) tidal Channels top structure map and (d) lower Gordon Stray top structure 

map. 

  

(a) (b) 

(d) (c) 



 

119 

 

                 

Direction 

Subunit 

Vertical Major Minor 

 

Barrier Sand 

Subunit 
   

 

Central Bay 

Shale Subunit 
   

 

Tidal Channels 

Subunit 
   

 

Fluvial Sand 

Subunit 
   

 

Figure 3-13. Experimental variogram for different Gordon Stray Subunit in Jacksonburg-

Stringtown oil field, which is developed based on the up-scaled porosity and permeability logs. 
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Figure 3-14. Histograms and quantile–quantile (QQ)-plots of total porosity (PHI) and 

permeability (PERM) for both core and log-evaluated data. 
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Figure 3-15. A histogram shows the distribution of porosity values (a) and permeability values 

(b) for raw logs (red color), upscaled cells (green color) and petrophysical model data (purple 

color). 

(a) 

(b) 



 

122 

 

 

Figure 3-16. (a) Stratigraphic framework of study area and location of Jacksonburg-Stringtown 

oil field.  Each color represents one subunit, which are fluvial subunit, tidal channel subunit, 

central bay shale subunit and barrier sand subunit. (b) detailed stratigraphic framework of 

Jacksonburg-Stringtown oil field.  
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Figure 3-17. (a)Fence diagram shows the distribution of porosity in each subunit; (b) shows a 3-

D porosity model with Gaussian Random Function Simulation. The horizontal scale are various, 

but the vertical scale is 50:1. 

(a) 

(b) 
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Figure 3-18. (a) Fence diagram shows the distribution of permeability in each subunit; b) shows 

a 3-D permeability model with Gaussian Random Function Simulation. The horizontal scale are 

various, but the vertical scale is 50:1. 
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Table 3-1. Summary of Jacksonburg-Stringtown research cores 

Well Cored Interval, ft. Avg. Porosity % Avg. Permeability 

B-18 2988.5-3014 14.7 52 

B-19 3086-3115 14.9 41 

H-9 2980-2908 18.2 106 

H-11 3083.4-3093.4 18.8 72 

T-8 2781-2797 12.4 6.5 

L-13 3032.4-3061.5 8.4 2.5 
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Table 3-2. Theoretical CO2 storage for P10, P50, and P90 in Jacksonburg-Stringtown oil field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volume Statistics 

Parameters Symbol Unit P10 P50 P90 

Total Pore Volume (ft3) Vpv Tft3 1.1 1.3 1.408 

Water Saturation Swi % 0.35 0.25 0.1 

Formation Volume Factor B Bbl/STB 1.4 1.4 1.4 

Average CO2 density  ΡCO2 Lbs/ft3  48.0 48.0 48.0 

Efficiency Factor E % 0.1 0.5 0.9 

Reservoir CO2 storage capacity MCO2 Mt 24.0 163.8 383.2 
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Abstract 

CO2 injection into oil reservoirs is considered a mature enhanced oil recovery (EOR) technique 

for conventional reservoirs. The local displacement efficiency of the CO2-EOR process is highly 

dependent on the minimum miscibility pressure (MMP), estimating this parameter is critical to 

design of the CO2 injection process. Traditional empirical methods to test the CO2-oil MMP are 

time consuming and expensive; derived correlations are fast but not accurate. Therefore, an 

efficient and reliable method to determine MMP is beneficial. In this study, a mixed kernels 

function (MKF) based support vector regression (SVR) model was developed and used to predict 

the MMP for both pure and impure CO2 injection cases. Four parameters were chosen as input 

parameters: 1) reservoir temperature; 2) average critical temperature; 3) molecular weight of C5+ 

fraction of crude oil, and; 4) the ratio of volatile components to intermediate components in 

crude oil. MMP was selected as the desired output parameter to train and test this newly 

developed model. The performance of basic kernels function based SVR model is compared with 

that of this newly developed MKF-SVR model. The well-trained MFK-SVR was compared with 

three well-established published correlations, demonstrated the highest correlation coefficient (R 

of 0.9381), lowest root mean square error (RMSE of 1.9151), smallest average absolute error 

(AAE of 1.1406) and maximum absolute error (MAE of 4.6291). We believe that the proposed 

MFK-SVM model is a more reliable and stable regression model to predict MMP. In addition, a 

sensitivity analysis was conducted to evaluate the physical correctness and indicates that the 

predicted results from the newly developed model are in excellent agreement with previous 

empirical work.  

Keywords: CO2-oil minimum miscibility pressure, CO2 enhanced oil recovery, support vector 

regression, mixed kernels function, particle swarm optimization algorithm 
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4.1 Introduction  

One of the first viable CO2 commercial EOR applications was in 1972 in the Kelly-Snyder oil 

field (Norman, 2001). Today, CO2 injection is an established enhanced oil recovery (EOR) 

technique for recovering residual oil in older and/or mature oil field. In 2014, 136 CO2-EOR 

projects were underway in the U.S. and producing approximately 300,000 barrels of oil per day 

(BOPD) (Kuuskraa and Wallace, 2014).  CO2 injection can facilitate the reduction of greenhouse 

gas emissions by storing the CO2 into geological media, such as depleted oil reservoirs. CO2 -

EOR is a preferred EOR method because CO2 is miscible with crude oil increasing displacement 

efficiency, and less expensive than other similarly miscible fluids (NETL, 2010).   

The displacement efficiency of CO2 is highly dependent on the minimum miscible pressure 

(MMP) (Yuan and Johns, 2005; Yuan et al., 2004). MMP is the minimum pressure at which 

injected gas can develop multi-contact miscibility with the reservoir oil (Al-Wahaibi, 2010; 

Egwuenu, 2004; Hutchinson and Braun, 1961; Stalkup Jr, 1983a, b). Above this pressure, 

interfacial tension between these two phases is zero, and there is no difference between the 

densities of oil and injected gas (Al-Wahaibi, 2010; Fazlali et al., 2013).  In contrast, at pressure 

lower than MMP, CO2 will no longer be miscible with oil and the displacement efficiency 

decreases. Accurate CO2–oil MMP estimation is critical in selecting suitable oil and gas 

reservoirs for CO2–EOR processes.   

Laboratory empirical methods are commonly used to estimate the MMP (Shokrollahi et al., 

2013). The petroleum industry standard for estimating the MMP is slim-tube, because its results 

are most reliable and comparable with established industry data (Wang et al., 2015; Yellig and 

Metcalfe, 1980). In the early 1980s, Christiansen et al. (Christiansen and Haines, 1986) 

developed a new rapid and fast experimental method for MMP estimation using a rising-bubble 

apparatus (RBA) (Christiansen and Haines, 1987). Both slim-tube and rising-bubble methods are 

expensive, time consuming and depend on large amount of data (Huang et al., 2003; Metcalfe, 

1982). Rao et al. (Rao, 1997) proposed a fast and simpler experimental method using 

experimental approach labeled vanishing interfacial tension (VIT) (Hemmati-Sarapardeh et al., 

2013; Orr and Jessen, 2007; Rao, 1997; Rao and Lee, 2002).  The accuracy of the measurement 
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depends on the composition of the mixture created fluid, and may give an higher MMP result 

than actual, because the composition cannot be selected in advance(Orr and Jessen, 2007).  

Numerous empirical correlations have been developed to describe the phase behavior of 

reservoir oil-CO2 and to minimize the difference between the transformed dependent variable 

(CO2-oil MMP) and the sum of the transformed independent variables (Alston et al., 1985; 

Cronquist, 1978; Emera and Sarma, 2005; Glass, 1985; Lee, 1979; Orr Jr and Jensen, 1984; 

Yellig and Metcalfe, 1980; Yuan et al., 2005). However each correlation is restricted for specific 

oil reservoir conditions, such as temperature and oil composition. Where the geological 

conditions are very complex, empirical correlations cannot meet the various requirements for 

different oil reservoirs (Chen et al., 2014). Thus the application of those techniques is limited, 

and more adaptable, reliable correlation methods are required to overcome these limitations.  

Support Vector Regression (SVR) is highly effective in representing a system’s complexity; it 

also has a generalizing ability in function approximation (Al-Anazi and Gates, 2010b; Al-Anazi 

et al., 2011; Wang et al., 2014). Vapnik et al. (Boser et al., 1992a; Burges, 1998; Cortes and 

Vapnik, 1995; Drucker et al., 1997; Smola, 1996; Vapnik et al., 1997) first developed Support 

Vector Machine (SVM) at AT&T Bell laboratories based on statistical-learning theory to solve 

pattern recognitions problems (Vapnik et al., 1997). This algorithm was later extended to solve 

regression problems (Fu and Cheng, 2011). Al-Anazi et al. (Al-Anazi and Gates, 2010a, c) 

applied SVR to predict reservoir permeability and porosity. The principle of SVR is to find an 

optimal hyperplane in which all projected training data from the original data space is located 

within ε deviation in a high dimensional feature space (Vapnik et al., 1997). 

The four basic elements of SVR are the separating hyperplane, maximum-margin hyperplane, 

soft margin and kernel function (Noble, 2006). The most important part of SVR is kernel 

function. There are two different groups of kernels: global kernels and local kernels. Global 

kernels have stronger extrapolation ability and local kernels have stronger interpolation ability. 

Standard kernels that can simultaneously extrapolate and interpolate are to some degree 

inaccurate. In this paper, a process is introduced that uses a mixed kernels function (MKF), 

which combine the local and global kernel function to overcome this drawback mentioned above 

(Smits and Jordaan, 2002; Huang et al., 2012; Lian et al., 2013). Mixing coefficient, gamma, 
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penalty(C), polynomial degree and epsilon are the important parameters in the MKF-SVR model. 

The determination of these parameters is the key step to achieve high performance from MKF-

SVR. A grid searching algorithm (GSA) (Wang et al., 2014) and particle swarm optimization 

(PSO) (Eberhart and Kennedy, 1995) algorithm were applied to optimize these parameters for 

fast convergence in the training process.  

The mixed kernels function (MKF) based support vector regression (SVR) is used to evaluate the 

pure and impure CO2/oil MMP in crude oil. Four variable are evaluated: (a) molecular weight of 

C5+ fraction; (b) reservoir temperature; (c) volatile oil fraction (methane and nitrogen gas); and 

(d) intermediate oil fraction (C2–C4 and CO2, H2S) in crude oil. The results of MKF-SVR are 

compared to the results from SVR based on each basic kernel function. Moreover, the result 

predicted from the MKF-SVM model is compared to calculated values from traditional empirical 

correlations reported in the published literature. Sensitivity analysis is conducted to check out the 

most important input variables.  

4.2 Basic Description of Support Vector Regression and Particle Swarm 

Optimization Algorithm 

4.2.1 Support Vector Regression Principles 

The support vector machine (SVM), based on the statistic-learning theory (SLT), and was first 

introduced in 1960s in Russia (Vapnik, 1963; Vapnik and Chervonenkis, 1964; Vapnik and Kotz, 

1982). Initially it was modified to solve pattern recognitions problems. Later it was extended to 

the case of nonlinear regression and time series prediction problems (Drucker et al., 1997; Müller 

et al., 1997; Smola, 1996; Smola et al., 1998; Vapnik et al., 1997), which is support vector 

regression (SVR). Using adaptive margin-based loss functions and projecting the learning data 

(linearly or non-linearly) into higher dimensional feature space, SVR finds the best decision rule 

that has good generalization ability (Figure 4-1a). The projecting functions satisfied with the 

Mercer’s condition are called Kernels – K(xi, xj) (Zhu et al., 2005).  

For example, assume training data  )},(),...,,(),,{( 2211 mm yxyxyx , where  denotes the 

space of the input parameters (e.g. d ). For the case of linear function f  takes the form:  
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,,)( bxxf             b,   Eq. (1), 

In the high dimensional feature space, the optimization problem for SVR with ε-insensitive loss 

function is:  
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  Eq. (3), 

The first part of Eq. (2) is the Vapnik-Chervonenkis (VC) confidence interval, whereas the 

second part is the empirical risk (Al-Anazi and Gates, 2010c). The regularization constant C in 

Eq. (2) is used to determine the complexity of the SVM model. The constant C also makes a 

compromise between the empirical risk minimization and the confidence degree. The epsilon 

( , essentially controls the complexity of the regression functions mentioned above). 
i and *

i  

are slack variables introduced by Bennett et al. (Bennett and Mangasarian, 1992), as opposed to 

symmetric boundary produced by the ‘hard margin’ loss function.  

Vapnik’s ε-insensitivity loss function as illustrated by Figure 4-1b and 1c defines a multi-

dimensional tube. Only the points outside the ε-tube contribute to the loss, which is equal to the 

gap between the point values and the radius of the tube. The deviations are penalized in a linear 

fashion. However, the points inside the ε-tube contribute nothing to the cost, which means the 

loss (error or cost) is zero.  

4.2.2 Global Kernels, Local Kernels and Mixed Kernels  

Kernels ),( *xxK


actually are a projection function. The function projects the original linearly or 

non-linearly learning data into high dimensional feature space, where all of the data can be 

presented linearly (Burges, 1998). A kernel function must meet Mercer’s conditions (Boser et al., 

1992b; Burges, 1998; Cortes and Vapnik, 1995; Smola and Schölkopf, 1998; Smola and 

Schölkopf, 2004), as following: 
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   Eq. (4), 

Based on this theorem, several different types of kernels, which determine the various 

characteristics of the model, are listed in Table 4-2. These kernels are two types: local kernels 

and global kernels (Smola and Schölkopf, 1998). A global kernel allows data points that are far 

away from each other to have an influence on the kernel values, as shown in Figure 4-2a. The 

polynomial kernel in Eq. (5) is a typical example of a global kernel (Smits and Jordaan, 2002; 

Zheng et al., 2004). The higher the degree of polynomial kernel, the better its interpolation 

ability will be. The lower the degree of polynomial kernel function, the better its extrapolation 

ability will be. In a local kernel only the data that are close to each other have an influence on the 

kernel values (Figure 4-2b). The typical local kernel is the radial basis function kernel (RBF) in 

Eq. (6). The smaller value of is, the worse its interpolation ability will be and vice versa. In 

other word, no single value of kernel parameter or polynomial degree will provide a model 

with both interpolation and extrapolation properties (Smits and Jordaan, 2002). 

d

jijiploy xxxxK )1,(),(       Eq. (5), 

)exp(),(
2

jijirbf xxxxK      Eq. (6), 

Based on the Mercer’s conditions, there is one corollary. Assuming ),( *

1 xxK


, ),( *

2 xxK
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admissible support vector kernels and 0, 21 CC , 
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is an admissible kernel (Smola and Schölkopf, 2004). The mixed kernels function

),( *xxK


, which combine the good characteristics of both ),( *

1 xxK


and ),( *

2 xxK


, has been 
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proposed by numerous investigators (Huang et al., 2012; Lian et al., 2013; Smits and Jordaan, 

2002; Smola and Schölkopf, 2004; Yang et al., 2013; Zhu et al., 2005).  

The mixtures of the RBF and polynomial kernels can be defined as Eq. (8, 9) 

rbfpolymix KmmKK )1(    10  m    Eq. (8), 

)exp()1()1,(),(
2

21 ji

d

jijimix xxmxxmxxK     10  m   Eq. (9), 

Where polyK is a polynomial kernel and rbfK is a radial basis function kernel, m is the mixing 

coefficient. If m=0, then the mixed kernels function will equal the RBF kernel, which means

rbfmix KK  . If m=1, then the mixed kernels function will become the polynomial kernel, which 

means ploymix KK  . The effect of the mixing a polynomial kernel with a RBF kernel is shown in 

Figure 4-3, where 1,1.0,2.0  dxi  . The mixed kernels function has characteristics of both 

the polynomial kernel and the RBF kernel, and improves fitting and generalizing ability. 

4.2.3 PSO (Particle Swarm Optimization) Algorithm 

Based on stochastic search and optimization processes, the particle swarm optimization 

algorithm (PSO) was developed (Eberhart and Kennedy, 1995), which is an evolutionary 

algorithm and imitated human (or insects) social behaviour. Individuals interact with one another 

while learning from their own experience, and gradually the individual population members’ 

move into better regions of the problem space (Eberhart and Kennedy, 1995). Particles, 

indicating the potential solution, randomly locate in the architecture space (like birds or fish 

randomly distributed in a specific open environment), and are utilized to calculate the global 

optima of the fitness function. Assuming D-dimensional architecture space, population 

},...,,,{ 321 nxxxxx   is composed by n particles ( ix ). Each },...,,,{ 321 iDiiii xxxxx   is indicating 

its position, and is also representing a potential solution. A global best value is

},...,,,{ 321 Dg ggggp  and personal best value is },...,,{ 321 iDiiii ppppp  .  The velocity for 

particle ix , representing the rate of position change, is written as },...,,,{ 321 iDiiii vvvvv  .  In PSO, 
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each particle updates its position by velocity adjustment and fluctuates between ip and gp . The 

process for velocity adjustment is presented in Figure 4-4. When the particle swarm algorithm is 

running without restraining velocities, it rapidly increases to unacceptable levels within a few 

iterations. Some form of damping of the dynamics of particles (e.g., maxv ) is necessary. To better 

allow an elegant and well-explained method for preventing explosion, ensuring convergence, 

reducing and eliminating the importance of maxv , Shi et al.,(Shi and Eberhart, 1998) introduced 

the inertial weight.   

)()( 21 igii
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it

new
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                    Eq. (10), 

new
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i

new
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      Eq. (11), 

maxminmaxmax /*)( ttitet      Eq. (12), 

Where ωmax is initial inertia weight, ωmin is the finial inertia weight, φ1 is cognitive coefficient 

and φ2 is social coefficient.  

4.3 Model Development 

SVR is an extended case of SVM, which was modified from the machine-learning community. 

Because of strong interpolation and extrapolation capability, the new MKF-SVR was chosen to 

build the model for CO2-oil MMP prediction. This model was optimized by PSO. The existing 

SVR for comparison was also chosen because of its many advantages over the traditional 

methods and empirical correlations; these include fast convergence to the global optimum, high 

generalization performance, and less probability for over-fitting. The construction of the MKF-

SVR model was undertaken with the LIBSVM toolbox developed by Chang et al. (Chang and 

Lin, 2011); the optimized process was based on the MATLAB software. The design process for 

this model involves three parts: data acquisition, data normalization and model optimization and 

validation.  
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4.3.1 Experimental Dataset 

The accuracy and stability of the developed model is largely dependent on the training data’s 

reliability and comprehensiveness.  Based on a review of recent research, reservoir temperature, 

oil composition, purity of injected gas play an important role in CO2-oil MMP values (Alston et 

al., 1985; Sebastian et al., 1985; Shokir, 2007a; Yuan et al., 2004; Zuo et al., 1993). Thus, input 

data sets used in this model include average critical temperature of the drive gas 

(   ciicm TZT ), reservoir temperature (T), molecular weight of the C5+ fraction (MC5+), and 

the ratio of volatile (C1 and N2) to intermediate (C2-C4, H2S and CO2) components in crude oil, 

Pure and impure CO2-oil MMP is the desired output. In this work, all of the experimental data 

used were collected from existing published literature (Al-Ajmi et al., 2009; Alston et al., 1985; 

Bon et al., 2006; Bon et al., 2005; Cao, 2012; Chaback et al., 1989; Dicharry et al., 1973; Dong, 

1999; Dong et al., 2001; Eakin and Mitch, 1988; Frimodig et al., 1983; Graue and Zana, 1981; 

Harmon and Grigg, 1988; Henry and Metcalfe, 1983; Holm and Josendal, 1974; Jacobson, 1972; 

Khan et al., 1992; Li et al., 2012; Metcalfe, 1982; Rathmell et al., 1971; Sebastian et al., 1985; 

Shelton and Yarborough, 1977; Spence Jr and Watkins, 1980; Srivastava et al., 2000; Sun et al., 

2006; Thakur et al., 1984; Zhang et al., 2015; Zhou, 2008; Zuo et al., 1993). Details of datasets 

are presented in Table 4-1. 

Normally, all data for the training of a supervised machine-learning algorithm are divided into 

three parts: training data, validation data and testing data. This paper combines the validation 

data and training data. The combination is used as training dataset. An N-fold cross-validation 

method was used as resampling method during the training process. The purpose of training and 

validation process is to find the best parameters for MKF-SVR model and to ensure accurate 

prediction performance. The goal of the testing process is to evaluate the accuracy and stability 

of the well-trained MKF-SVR model (Chen et al., 2014). Of the 147 data samples collected, 90% 

(133) were used for training and validation, and the remaining 10% (14) were used for testing.  

4.3.2 Parameters Optimization Based on Improved PSO  

As discussed, the final performance of the MKF-SVR is strongly dependent on the parameters of 

the mixed kernels function. By applying the PSO algorithm and n-fold cross-validation 
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resampling methods, key parameters such as mixing coefficient (m), penalizing coefficient (C), 

RBF kernel parameter (ϒ), polynomial degree (d) and (ε) in ε-insensitivity function are 

optimized. Particles update their positions by changing velocity and converge finally at a global 

optimum within the searching space. In this study, the particles’ positions are the vectors of m, 

ϒ, d, C, ε, which are denominated as P (m, ϒ, d, C, ε). In order to search the global optimum 

reasonably and to convergent quickly, the parameter m is limited in [0, 1], ϒ in [2-4, 24], d in [1, 

3], C in [2-5, 25] and ε in [0.001, 0.01]. To evaluate the performance of training process, mean 

square error (MSE) is chosen as the fitness function, which is formulated as:  





n

i

iiFitness yy
n

F
1

2)ˆ(
1

   Eq. (13), 

where iŷ is the predicted value, iy is the true value and n is the number of samples. Figure 4-5 

shows the workflow to find the optimum values of each parameter in the mixed kernels function. 

4.3.3 Testing of the MKF-SVR Model 

After the training and validation processes were completed, all of the parameters were optimized 

and the expected regression model was established. In order to verify its generalization capability 

and stability, the well-trained model is tested by using the testing data set (10% data), which 

were not used in the training and validation process. 

4.4 Results and Discussion 

Asoodeh et al. (Asoodeh et al., 2014) used the original SVR model to estimate the CO2-oil 

MMP; Shokrollahi et al. (Shokrollahi et al., 2013) applied the adapted LS-SVM model to 

estimate the CO2-oil MMP. Although both models have relatively good prediction performance, 

the generalization ability of these models can be improved by the MKF-SVR model, because of 

the limitation of applied kernel function. In this study, the result of the original SVR is compared 

with different basic kernel functions and that of the adapted SVR with mixed kernels function in 

order to demonstrate improved performance of the MKF-SVR model than the traditional 

correlations. The results are compared to those produced by four other proposed numerical 
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correlations (Alston et al., 1985; Sebastian et al., 1985; Yellig and Metcalfe, 1980; and (Emera 

and Sarma, 2005).  

4.4.1 Results of SVR and MKF-SVR 

There are four different kernel functions as listed in Table 4-2: each has different parameters that 

should be optimized separately. The grid searching algorithm was applied to find the best 

parameters of each basic kernel function. PSO algorithm is applied to optimize the five 

parameters for the mixed kernels function. Table 4-3 shows the range of parameters for PSO 

algorithms.  

The well-trained MKF-SVR model is applied to estimate the MMP value of crude oil, in order to 

verify the reliability and accuracy of the model (Al-Anazi and Gates, 2010a; Jin et al., 2001). 

Five statistical parameters were introduced as evaluation indexes to test the performance of the 

model. These parameters include coefficient of determination (R2), correlation coefficient (r), 

root mean error (RMSE), average absolute error (AAE), and maximum absolute error (MAE), as 

defined in   
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. An R2 (Coefficient of Determination) of 1 indicates a perfect model, while an R2 of 0 indicates 

an inaccurate model (Al-Anazi and Gates, 2010c; Oyerokun et al., 2002). Moreover, R and 

RMSE are used to evaluate overall performance, while AAE and MAE are used to determine the 

error range of the predicted results (Chen et al., 2014). 

The particle swarm optimization algorithm was applied to search for the optimal parameter sets. 

The optimal parameters in the MKF-SVR model were determined to be C=955.0476, 

ϒ=144.3693, m=0.3435, d=3.935, ε=0.0804. 

The training and testing performance of the SVR model with mixed kernels function and other 

basic kernel functions are listed in Table 4-4. The performance of the MKF-SVR model 

improves the accuracy and stability as indicated by the decreased RMSE and AAE, and increases 

in the correlation coefficient and coefficient of determination. The process of searching for best 

gamma and cost value is shown in Figure 4-6, using grid searching algorithm for the SVR with 

linear kernel, polynomial kernel, RBF kernel, sigmoid kernel and n-fold of 4. The cross-

validation mean square errors are 8.4967, 9.2179, 6.1250 and 8.4766 respectively. The process of 

searching for best parameters in MKF-SVR model by particle swarm optimization (PSO) is 

shown in Figure 4-7. A comparison of Figures 4-6 and 4-7 shows that the MKF-SVR model has 

the smallest cross-validation mean square error (4.0012). The MFK-SVR model has the highest 

training and testing coefficient of determination (0.8767) as shown in Figure 4-8. Compared with 

other kernel functions, the MKF-SVR model provides more accurate predictions as demonstrated 

by Figure 4-9 showing the comparison of actual values and forecasted values. 

4.4.2 Comparison of Mixed Kernel Based SVR Model with Correlations from Literatures 

In order to further evaluate the model accuracy and stability, the comparison between some well-

known empirical correlations with the predicted results calculated from the newly MKF-SVR 

model is necessary. The empirical correlations selected for the comparisons include correlations 

by Yelling et al. (Yellig and Metcalfe, 1980)(corrected with Sebastian et al. (Sebastian et al., 

1985)impurity correction factor ), Yelling et al. (Yellig and Metcalfe, 1980)(corrected with 

Alston et al. (Alston et al., 1985) impurity correction factor ), Emera et al. (Emera and Sarma, 

2005)(corrected with Sebastian et al. (Sebastian et al., 1985)impurity correction factor), Emera et 

al. (Emera and Sarma, 2005)(corrected with Alston et al. (Alston et al., 1985) impurity correction 
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factor), Alston et al. (Alston et al., 1985), and Sebastian et al. (Sebastian et al., 1985). Detailed 

descriptions of each correlation are given in Appendix. The correlations consider the pure CO2 

injection case and also investigate the impact of an impure CO2 drive gas stream. The Alston et 

al. (Alston et al., 1985) and Sebastian et al. (Sebastian et al., 1985) correlations were developed 

for both pure and impure CO2-drive stream, while the Yelling et al. (Yellig and Metcalfe, 1980) 

and Emera et al. (Emera and Sarma, 2005) correlations were developed only for a pure CO2-

drive stream; thus they need impurities correction factors to correct for impure CO2 data 

samples. The Alston et al. (Alston et al., 1985) and Sebastian et al. (Sebastian et al., 1985) 

impurity correction factors are summarized in the Appendix.  

A scatter diagram (Figure 4-10) illustrates the comparison between the laboratory experimental 

MMP values and the predicted values. The cross-plots visualize the accuracy of proposed model 

and available correlations. The diagonal line in each figure represents the theoretical equality 

between predicted and experimental values. Tightness of the points to the diagonal line directly 

expresses the agreement level between the simulated and experimental values. The MKF-SVR 

results show a total coefficient of determination of 0.87, and the majority of data points for the 

training and testing process lie on a 45° line, indicating that the newly developed MKF-SVR 

model is robust and stable (Figure 4-10a). There is an excellent agreement between the 

experimental data and the predictions of newly developed MKF-SVR model indicating that this 

model can be successfully applied to predicting MMP for both pure and impure CO2 injection 

cases. As Figure 4-10b-f illustrates, the best fit lines of predicted results of correlations deviate 

from the diagonal line, which indicate that the agreement between the experimental data and 

value predicted by mixed kernel based SVR model is improved among the selected correlations. 

The simulation results of classic correlations and newly developed model (in terms of R, RMSE, 

AAE, MAE) were also compared and presented in Table 4-6. The MFK-SVR model has the 

smallest RMES (of 1.9151), AAE (of 1.1140) and MAE (of 4.6291); and highest R (of 0.9381). 

In terms of results, it is clearly seen that MFK-SVR model have high performance compared 

with other correlations. 
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4.4.3 Sensitivity Analysis 

In order to further investigate the relationship between the influence factor (i.e. reservoir 

temperature, average critical temperature, molecular weight of C5+ fraction and volatile to 

intermediate ratio) and CO2-oil MMP, a sensitivity analysis was conducted. This process is 

executed by changing one studied variable gradually, while holding the other variables constant 

(Chen et al., 2014). As Figure 4-11a shows, the increase of reservoir temperature will increase 

MMP, as the solubility of CO2 into oil is decreases (Dodds et al., 1956; Duan and Sun, 2003; 

Mungan, 1981), which means the CO2 is less miscible with oil, an increase in CO2-oil MMP. 

When reservoir temperature decreases, the interfacial tension between oil and CO2 also declined 

(Rao, 1997; Rao and Lee, 2002), therefore the MMP decreased correspondingly. This model 

results are in agreement with previous work (Shokir, 2007b; Shokrollahi et al., 2013; Yuan and 

Johns, 2005). 

The purity of the injection gas stream has significant and complex impacts on CO2-oil MMP. 

Generally, the presence of H2S or intermediate hydrocarbon components will decrease the CO2-

oil MMP, while the presence of C1 or N2 will increase the CO2-oil MMP (Alston et al., 1985; 

Eakin and Mitch, 1988; Sebastian et al., 1985). In order to describe the impact of purity of 

injection gas stream on CO2-oil MMP simply and concisely, the average critical temperature is 

the best reasonable parameter. As Figure 4-11b shows, the increase of average critical 

temperature will decrease the CO2-oil MMP.  

As Figure 4-11c illustrates, the MMP increases as the average molecular weight of pentane plus 

fraction increases. Pentane plus fraction, the major component of crude oil indicates an increase 

of the average molecular weight of C5+ and the percentage of heavy oil molecules (Clark et al., 

1958; Turek et al., 1984). The increase in average molecular weight of C5+ is less miscible with 

CO2, thus MMP increases.  

The evaporation property of volatile components may increase the gas phase during the multi-

contact of CO2 and oil, decreasing the oil miscibility with CO2 (Al-Wahaibi, 2010; Rathmell et 

al., 1971), while the intermediate components are easy to mix with CO2 due to their inter-
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solubility into each other (Metcalfe, 1982; Rathmell et al., 1971), thus the increase of volatile to 

intermediate ratio will increase the MMP (Alston et al., 1985), as shown in Figure 4-11d.  

4.5 Conclusions 

A hybrid model of mixed kernels function (MKF) based support vector regression (SVR) model 

was developed to predict pure and impure CO2-oil minimum miscibility pressure (MMP) during 

a CO2-EOR process. In this MKF-SVR model, four factors (i.e. reservoir temperature, average 

critical temperature, molecular weight of C5+ fraction of crude oil, and the ration of volatile 

components to intermediate components in crude oil) representing the most comprehensive and 

robust set were selected as the input variables while MMP was considered as output variable. 

Through the foregoing analysis and discussions of the simulation results, several conclusions are 

drawn: 

(1) The mixed kernel function based support vector regression (SVR) model was successfully 

applied to predict the CO2-oil MMP value for both pure and impure CO2 gas. 

(2) Different kernel functions affect the final performance of SVR significantly. Mixed kernel 

function, which combines the advantages of global radial basis function (RBF) and local 

(Polynomial) kernel functions, increases the applicability of SVR dramatically.  

(3) The comparison of traditional correlations with the mixture kernel based SVR model shows 

excellent performance and greater generalization ability with higher correlation coefficient (R = 

0.9381), smaller average absolute error (AAE = 1.1406), maximum absolute error (MAE = 

4.6291) and the reduced root mean square error (RMSE =1.9151).  

(4) Based on the sensitivity analysis, reservoir temperature, molecular weight of C5+ fraction and 

volatile/intermediate ratio of crude oil positively influence the CO2-oil MMP, while average 

critical temperature has a negative impact on CO2-oil MMP. Moreover the impacts of all factors 

towards the CO2-oil MMP is nonlinear. 
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Nomenclature  

AAE average absolute error φ2 social coefficient 

BOPD  Barrels of oil per day 
gp  

global  best value 

C penalizing parameter in SVM 
ip  personal best value 

CO2 carbon dioxide 
bP  bubble pressure 

C5+
 pentane plus fraction 

puremP min,,  MMP value in pure CO2-oil 

systems 

d polynomial degree 
impuremP min,,  MMP value in impure CO2-oil 

systems 

D architecture space Dimension new

iv


 i th particle’s new velocity 

ε insensitivity  loss parameter old

iv


 
i th particle’s old velocity 

ξi   and  

ξi* 

slack variables PSO  particle swarm optimization 

EOR  enhanced oil recovery r  correlation coefficient 

impF  correction factor for impure CO2 

stream 

R  coefficient of determination 
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GSA grid searching algorithm RBF radial basis function 

ϒ RBF kernel parameter RMSE root mean error 

K(xi, xj) kernel function SVR support vector regression 

m  mixing coefficient SVM support vector machine 

MAE maximum absolute error 
ckT  critical temperature of 

component k (k = CO2, C1, 

N2,H2S, and C2–C4), ℃ 

MKF mixed kernels function 
cmT  weight average pseudocritical  

temperature of the drive gas, ℃ 

MKF-

SVR 

mixed kernels function based support 

vector regression 

T  reservoir temperature, ℃ 

MMP  minimum miscibility pressure, MPa 
ix  i

th particle’s position 

MSE  mean squared error, % 
jix ,
 j

th value of i
th particle 

MWC5+  molecular weight of C5+ oil fraction, 

molg /  

old

ix


 i
th particle’s old position 

N sample number new

ix


 i
th particle’s new position 

max  initial inertia weight 
MEDx  mole fraction of intermediate 

oil components including C2–

C4, CO2, and H2S, % 

min  finial inertia weight 
kx  mole fraction of component k 

(k = CO2, C1, N2, H2S, and 

C2–C4), % 
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φ1 cognitive coefficient 
VOLx  mole fraction of volatile oil 

components including N2 and 

CH4, % 

Appendix 4-A 

In this Appendix, totally nine correlations used for MMP prediction in pure CO2-oil systems are 

summarized and presented. All of the correlations are converted to consistent units.  

4-A.1. Correlation Proposed by Yelling et al.  

Yelling (Yellig and Metcalfe, 1980) correlation correlates CO2-oil MMP only with the reservoir 

temperature. This correlation only can be used when T (reservoir temperature) ranges from 35.8 

to 88.9 °C, which is given by:  

)328.1(

9427.716
)328.1(1024192.1)328.1(01553.06472.12 24

min,,


 

T
TTP purem           Eq. (A1) 

If MMP <7 𝑃𝑏 (Pb is the bubble pressure), then 𝑃𝑏 is taken as MMP. 

4-A.2. Correlation Proposed by Emera et al.  

A new correlation modified from the Alston correlation by Emera et al. (Emera and Sarma, 

2005). When MPaPb 345.0 , this correlation is presented as follows: 

1073.02785.1164.15

min,, )()()328.1(100093.5
5
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  ,   Eq. (A2) 

otherwise, when MPaPb 345.0  

2785.1164.15

min,, )()328.1(100093.5
5

 

Cpurem MTP ,     Eq. (A3) 

where T is reservoir temperature, Pb is bubble pressure, MC5+ is the fraction of C5+ molecular 

weight; xvol is the volatile components and xmed is the intermediate components.  
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However, those correlations can be used only when special conditions are satisfied: (i) the test 

temperature should range from 40.8 to 112.2°C; (ii) the MMP ranges between 8.28 and 30.2 

MPa; (3) the C5+ molecular weight ranges from 166.2 g/mol to 267.5 g/mol.  If the calculated 

MMP is smaller than Pb (bubble pressure), then Pb is taken as MMP.  

4-A.3. Correlation Proposed by Alston et al.  

The correlation developed by Alston et al. (Alston et al., 1985) for the pure CO2 injection case is 

represented as a function of reservoir temperature, oil pentane and heavier molecular weight, and 

the ratio of volatile to intermediate mole fractions in the reservoir oil. When the bubble pressure 

of reservoir oil is greater than 50 psia (0.345MPa), the influence of the volatile/intermediate 

ratios is important, and the correlation can be written as: 

136.078.106.15

min,, )()()328.1(100536.6
5

MED

VOL
Cpurem

x

x
MTP


  .    Eq. (A4) 

However, when the bubble pressure of reservoir oil is smaller than 50 psia (0.345MPa), it 

contains relatively small or zero quantities of volatile and intermediate components, and the 

MMP is not affected significantly by these components. Thus the influence of the 

volatile/intermediate ratios is not significant, and the correlation is:  

78.106.15

min,, )()328.1(100536.6
5

 

Cpurem MTP ,     Eq. (A5) 

where T is reservoir temperature, MC5+ is the fraction of C5+ molecular weight; xvol is the volatile 

components and xmed is the intermediate components.  

For the impure CO2 stream injection case, contaminants have the adverse or positive effects on 

MMP. Thus a correction factor Fimp is introduced. It was calculated based on the critical 

temperature of each component in the stream. The pseudo-critical temperature (Tcm) of the 

solvent stream was calculated using a weight-fraction mixing rule as follows: 

cmT

cmimp TF
/8.87935.1

)/8.87(


         Eq. (A6) 
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ckkcm TwT
1

)328.1(         Eq. (A7) 

where Tcm is the weight average critical temperature of the solvent stream, wk is the weight 

fraction of component k (k = CO2, C1, N2, H2S, and C2–C4), and Tck is the critical temperature of 

component k. Then the impure CO2-oil MMP was calculated as: 

imppuremimpuremimm FPP  min,,,, .        Eq. (A8)  

4-A.4. Correlation Proposed by Sebastian et al. 

Based on the Sebastian and co-worker’s research (Sebastian et al., 1985), combined with 

previous study, Sebastian et al. proposed a new correlation to predict the change in MMP value 

resulting from the impurities (i.e. C1, H2, O2, CO2, N2, H2S, and C2–C5 hydrocarbons) in the CO2 

drive gas. The relationship between impure and pure CO2-oil MMP was described as: 

 31)-(1.8T10×2.35-31)-(1.8T10×2.51+31)-T0.0213(1.8-1.0 3

cm

-72

cm

-4

cmimpF ,  Eq. (A9) 

where Tcm is the mole average pseudocritical temperature of the gas stream, and can be 

expressed as:  





n

k

ckkcm TxT
1

                     Eq. (A10) 

where xk is the mole fraction of component k (k = CO2, C1, N2, H2S, and C2–C4), and Tck is the 

supercritical temperature of each component k.  

The MMP pure was calculated use the following formula:  

32+1.8T

716.9427
-32)+(1.8T10×1.24192+32)+8T0.01553(1.+12.6472

R

24-

min,, puremP ,     Eq. (A11) 

and the impure CO2-oil MMP was calculated as: 
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imppuremimpuremimm FPP  min,,,,
.        Eq. (A12) 

References 

Al-Ajmi, M. F., O. A. Alomair, and A. M. Elsharkawy, 2009, Planning miscibility tests and gas 

injection projects for four major Kuwaiti reservoirs: Kuwait International Petroleum Conference 

and Exhibition. 

Al-Anazi, A. F., and I. D. Gates, 2010a, Support-vector regression for permeability prediction in 

a heterogeneous reservoir: A comparative study: SPE Reservoir Evaluation & Engineering, v. 

13, p. 485-495. 

Al-Anazi, A. F., and I. D. Gates, 2010b, A support vector machine algorithm to classify 

lithofacies and model permeability in heterogeneous reservoirs: Engineering Geology, v. 114, p. 

267-277. 

Al-Anazi, A. F., and I. D. Gates, 2010c, Support vector regression for porosity prediction in a 

heterogeneous reservoir: A comparative study: Computers & Geosciences, v. 36, p. 1494-1503. 

Al-Anazi, A. F., I. D. Gates, and J. Azaiez, 2011, Support vector machines for petrophysical 

modelling and lithoclassification. 

Al-Wahaibi, Y. M., 2010, First-contact-miscible and multicontact-miscible gas injection within a 

channeling heterogeneity system: Energy & Fuels, v. 24, p. 1813-1821. 

Alston, R. B., G. P. Kokolis, and C. F. James, 1985, CO2 minimum miscibility pressure: A 

correlation for impure CO2 streams and live oil systems: Society of Petroleum Engineers Journal, 

v. 25, p. 268-274. 

Asoodeh, M., A. Gholami, and P. Bagheripour, 2014, Oil-CO2 MMP determination in 

competition of neural network, support vector regression, and committee machine: Journal of 

Dispersion Science and Technology, v. 35, p. 564-571. 



 

149 

 

Bennett, K. P., and O. L. Mangasarian, 1992, Robust linear programming discrimination of two 

linearly inseparable sets: Optimization methods and software, v. 1, p. 23-34. 

Bon, J., M. K. Emera, and H. K. Sarma, 2006, An experimental study and genetic algorithm 

(GA) correlation to explore the effect of nC5 on impure CO2 minimum miscibility pressure 

(MMP): SPE Asia Pacific Oil & Gas Conference and Exhibition. 

Bon, J., H. K. Sarma, and A. M. Theophilos, 2005, An investigation of minimum miscibility 

pressure for CO2-rich injection gases with pentanes-plus fraction: SPE International Improved 

Oil Recovery Conference in Asia Pacific. 

Boser, B. E., I. M. Guyon, and V. N. Vapnik, 1992a, A training algorithm for optimal margin 

classifiers: Proceedings of the fifth annual workshop on Computational learning theory, p. 144-

152. 

Boser, B. E., I. M. Guyong, and V. N. Vapnik, 1992b, A training algorithm for optimal margin 

classifiers. 

Burges, C. J. C., 1998, A tutorial on support vector machines for pattern recognition: Data 

mining and knowledge discovery, v. 2, p. 121-167. 

Cao, P., 2012, Feasibility assessment on CO2 miscible flooding for enhancing oil recovery in 

Gbeibe oil reservoir, Southwest Petroleum University. 

Chaback, J. J., R. A. Harmon, and R. B. Grigg, 1989, Discussion of vapor-density measurement 

for estimating minimum miscibility pressure: SPE reservoir engineering, v. 4, p. 253-254. 

Chang, C.-C., and C.-J. Lin, 2011, LIBSVM: A library for support vector machines: ACM 

Transactions on Intelligent Systems and Technology (TIST), v. 2, p. 27. 

Chen, G., K. Fu, Z. Liang, T. Sema, C. Li, P. Tontiwachwuthikul, and R. Idem, 2014, The 

genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR 

process: Fuel, v. 126, p. 202-212. 



 

150 

 

Christiansen, R. L., and H. K. Haines, 1986, Apparatus and method for determining the 

minimum miscibility pressure of a gas in a liquid, USA. 

Christiansen, R. L., and H. K. Haines, 1987, Rapid measurement of minimum miscibility 

pressure with the rising-bubble apparatus: SPE Reservoir Engineering, v. 2, p. 523-527. 

Clark, N. J., H. Shearin, W. Schultz, K. Garms, and J. Moore, 1958, Miscible drive-Its theory 

and application: Journal of Petroleum Technology, v. 10, p. 11-20. 

Cortes, C., and V. Vapnik, 1995, Support-vector networks: Machine learning, v. 20, p. 273-297. 

Cronquist, C., 1978, Carbon dioxide dynamic miscibility with light reservoir oils: Proc. Fourth 

Annual US DOE Symposium, Tulsa, p. 28-30. 

Dicharry, R. M., T. L. Perryman, and J. D. Ronquille, 1973, Evaluation and design of a CO2 

miscible flood project-SACROC unit, Kelly-Snyder field: Journal of Petroleum Technology, v. 

25, p. 1,309-1,318. 

Dodds, W. S., L. F. Stutzman, and B. J. Sollami, 1956, Carbon dioxide solubility in water: 

Industrial & Engineering Chemistry Chemical & Engineering Data Series, v. 1, p. 92-95. 

Dong, M., 1999, Task 3- minimum miscibility pressure (MMP) studies, technical report: 

potential of greenhouse storage and utilization through enhanced oil recovery, Petroleum 

Research Center, Saskatchewan Research Council Saskatchewan,, Canada. 

Dong, M., S. Huang, S. B. Dyer, and F. M. Mourits, 2001, A comparison of CO2 minimum 

miscibility pressure determinations for Weyburn crude oil: Journal of Petroleum Science and 

Engineering, v. 31, p. 13-22. 

Drucker, H., C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, 1997, Support vector 

regression machines: Advances in neural information processing systems, v. 9, p. 155-161. 



 

151 

 

Duan, Z., and R. Sun, 2003, An improved model calculating CO2 solubility in pure water and 

aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar: Chemical geology, v. 193, p. 

257-271. 

Eakin, B., and F. Mitch, 1988, Measurement and correlation of miscibility pressures of reservoir 

oils: SPE annual technical conference and exhibition. 

Eberhart, R. C., and J. Kennedy, 1995, A new optimizer using particle swarm theory: Sixth 

international symposium on micro machine and human science, p. 39-43. 

Egwuenu, A. M., 2004, Improved fluid characterization for miscible gas floods, University of 

Texas at Austin. 

Emera, M. K., and H. K. Sarma, 2005, Use of genetic algorithm to estimate CO2–oil minimum 

miscibility pressure-a key parameter in design of CO2 miscible flood: Journal of petroleum 

science and engineering, v. 46, p. 37-52. 

Fazlali, A., M. Nikookar, A. Agha-Aminiha, and A. H. Mohammadi, 2013, Prediction of 

minimum miscibility pressure in oil reservoirs using a modified SAFT equation of state: Fuel, v. 

108, p. 675-681. 

Frimodig, J. P., N. A. Reese, and C. A. Williams, 1983, Carbon dioxide flooding evaluation of 

high pour-point, paraffinic red wash reservoir oil: Society of Petroleum Engineers Journal, v. 23, 

p. 587-594. 

Fu, Y., and Y. Cheng, 2011, Application of an integrated support vector regression method in 

prediction of financial returns: International Journal of Information Engineering and Electronic 

Business (IJIEEB), v. 3, p. 37. 

Glass, O., 1985, Generalized minimum miscibility pressure correlation Society of Petroleum 

Engineers Journal, v. 25, p. 927-934. 

Graue, D. J., and E. T. Zana, 1981, Study of a possible CO2 flood in Rangely Field: Journal of 

Petroleum Technology, v. 33, p. 1,312-1,318. 



 

152 

 

Harmon, R. A., and R. B. Grigg, 1988, Vapor-density measurement for estimating minimum 

miscibility pressure SPE reservoir engineering, v. 3, p. 1,215-1,220. 

Hemmati-Sarapardeh, A., S. Ayatollahi, M.-H. Ghazanfari, and M. Masihi, 2013, Experimental 

determination of interfacial tension and miscibility of the CO2–crude oil system; temperature, 

pressure, and composition effects: Journal of Chemical & Engineering Data, v. 59, p. 61-69. 

Henry, R. L., and R. S. Metcalfe, 1983, Multiple-phase generation during carbon dioxide 

flooding: Society of Petroleum Engineers Journal, v. 23, p. 595-601. 

Holm, L. W., and V. A. Josendal, 1974, Mechanisms of oil displacement by carbon dioxide: 

Journal of petroleum Technology, v. 26, p. 1,427-1,438. 

Huang, H., S. Ding, F. Jin, J. Yu, and Y. Han, 2012, A novel granular support vector machine 

based on mixed kernel function: International Journal of Digital Content Technology and its 

Applications, v. 6, p. 484-492. 

Huang, Y. F., G. H. Huang, M. Z. Dong, and G. M. Feng, 2003, Development of an artificial 

neural network model for predicting minimum miscibility pressure in CO2 flooding: Journal of 

Petroleum science and Engineering, v. 37, p. 83-95. 

Hutchinson, C. A., and P. H. Braun, 1961, Phase relations of miscible displacement in oil 

recovery: AIChE Journal, v. 7, p. 64-72. 

Jacobson, H. A., 1972, Acid gases and their contribution to miscibility: Journal of Canadian 

Petroleum Technology, v. 11. 

Jaubert, J.-N., L. Avaullee, and J.-F. Souvay, 2002, A crude oil data bank containing more than 

5000 PVT and gas injection data: Journal of Petroleum Science and Engineering, v. 34, p. 65-

107. 

Jin, R., W. Chen, and T. W. Simpson, 2001, Comparative studies of metamodelling techniques 

under multiple modeling criteria: Structural and Multidisciplinary Optimization, v. 23, p. 1-13. 



 

153 

 

Khan, S. A., G. A. Pope, and K. Sepehrnoori, 1992, Fluid characterization of three-phase CO2/oil 

mixtures: SPE/DOE Enhanced Oil Recovery Symposium. 

Kuuskraa, V., and M. Wallace, 2014, CO2-EOR set for growth as new CO2 supplies emerge: Oil 

& Gas Journal, v. 112, p. 92-92. 

Lee, J. I., 1979, Effectiveness of carbon dioxide displacement under miscible and immiscible 

conditions, Report RR-40, Petroleum Recovery Inst., Calgary. 

Li, H., J. Qin, and D. Yang, 2012, An improved CO2–oil minimum miscibility pressure 

correlation for live and dead crude oils: Industrial & Engineering Chemistry Research, v. 51, p. 

3516-3523. 

Lian, C., Z. Zeng, W. Yao, and H. Tang, 2013, Displacement prediction of landslide based on 

PSOGSA-ELM with mixed kernel: Advanced Computational Intelligence (ICACI), 2013 Sixth 

International Conference on, p. 52-57. 

Metcalfe, R. S., 1982, Effects of impurities on minimum miscibility pressures and minimum 

enrichment levels for CO2 and rich-gas displacements: Society of Petroleum Engineers Journal, 

v. 22, p. 219-225. 

Müller, K.-R., A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik, 1997, 

Predicting time series with support vector machines, Artificial Neural Networks, Springer, p. 

999-1004. 

Mungan, N., 1981, Carbon dioxide flooding-fundamentals: Journal of Canadian Petroleum 

Technology, v. 20. 

NETL, 2010, Carbon dioxide enhanced oil recovery-untapped domestic energy supply and long 

term carbon storage solution: The Energy Lab. 

Noble, W. S., 2006, What is a support vector machine?: Nature biotechnology, v. 24, p. 1565-

1567. 



 

154 

 

Norman, J. H., 2001, Non technical Guide to Petroleum Geology Exploration: Drilling and 

Production. 2nd edition, printed in USA, p. 1-15. 

Orr, F. M., and K. Jessen, 2007, An analysis of the vanishing interfacial tension technique for 

determination of minimum miscibility pressure: Fluid phase equilibria, v. 255, p. 99-109. 

Orr Jr, F. M., and C. M. Jensen, 1984, Interpretation of pressure-composition phase diagrams for 

CO2/crude-oil systems: Society of Petroleum Engineers Journal, v. 24, p. 485-497. 

Oyerokun, A. A., K. Aminian, S. Ameri, H. I. Bilgesu, and D. Della-Giustina, 2002, A new 

approach for training and testing artificial neural networks for permeability prediction, West 

Virginia University Libraries. 

Rao, D. N., 1997, A new technique of vanishing interfacial tension for miscibility determination: 

Fluid phase equilibria, v. 139, p. 311-324. 

Rao, D. N., and J. I. Lee, 2002, Application of the new vanishing interfacial tension technique to 

evaluate miscibility conditions for the Terra Nova Offshore Project: Journal of Petroleum 

Science and Engineering, v. 35, p. 247-262. 

Rathmell, J. J., F. I. Stalkup, and R. C. Hassinger, 1971, A laboratory investigation of miscible 

displacement by carbon dioxide: Fall meeting of the society of petroleum engineers of AIME. 

Sebastian, H. M., R. S. Wenger, and T. A. Renner, 1985, Correlation of minimum miscibility 

pressure for impure CO2 streams: Journal of Petroleum Technology, v. 37, p. 2,076-2,082. 

Shelton, J. L., and L. Yarborough, 1977, Multiple phase behavior in porous media during CO2 or 

rich-gas flooding: Journal of Petroleum Technology, v. 29, p. 1,171-1,178. 

Shi, Y., and R. Eberhart, 1998, A modified particle swarm optimizer: Evolutionary Computation 

Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE 

International Conference on, p. 69-73. 



 

155 

 

Shokir, E. M. E.-M., 2007a, CO2–oil minimum miscibility pressure model for impure and pure 

CO2 streams: Journal of Petroleum Science and Engineering, v. 58, p. 173-185. 

Shokir, E. M. E.-M., 2007b, Precise model for estimating CO2—oil minimum miscibility 

pressure: Petroleum Chemistry, v. 47, p. 368-376. 

Shokrollahi, A., M. Arabloo, F. Gharagheizi, and A. H. Mohammadi, 2013, Intelligent model for 

prediction of CO2–reservoir oil minimum miscibility pressure: Fuel, v. 112, p. 375-384. 

Smits, G. F., and E. M. Jordaan, 2002, Improved SVM regression using mixtures of kernels: In 

Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint Conference on, p. 

2785-2790. 

Smola, A. J., 1996, Regression estimation with support vector learning machines: Master's 

thesis, Technische Universit at M unchen. 

Smola, A. J., and B. Schölkopf, 1998, Learning with kernels, MIT. 

Smola, A. J., and B. Schölkopf, 2004, A tutorial on support vector regression: Statistics and 

computing, v. 14, p. 199-222. 

Smola, A. J., B. Schölkopf, and K.-R. Müller, 1998, General cost functions for support vector 

regression: In Proceedings of the 8th International Conference on Artificial Neural Networks. 

Spence Jr, A. P., and R. W. Watkins, 1980, The effect of microscopic core heterogeneity on 

miscible flood residual oil saturation: SPE Annual Technical Conference and Exhibition. 

Srivastava, R. K., S. S. Huang, and M. Dong, 2000, Laboratory investigation of Weyburn CO2 

miscible flooding: Journal of Canadian Petroleum Technology, v. 39. 

Stalkup Jr, F. I., 1983a, Miscible displacement, Society of Petroleum Engineers,Richardson, TX. 

Stalkup Jr, F. I., 1983b, Status of miscible displacement: Journal of Petroleum Technology, v. 

35, p. 815-826. 



 

156 

 

Sun, Y. H., G. Z. Lv, Y. F. Wang, and A. Q. Dong, 2006, A method of state equation for 

determining minimum miscible pressure of CO2: Pettroleum Geology and Recovery Efficiency, 

v. 13, p. 82-84. 

Thakur, G. C., C. J. Lin, and Y. R. Patel, 1984, CO2 minitest, little knife field, ND: a case 

history: SPE enhanced oil recovery symposium. 

Turek, E. A., R. S. Metcalfe, L. Yarborough, and R. L. Robinson Jr, 1984, Phase equilibria in 

CO2-multicomponent hydrocarbon systems: experimental data and an improved prediction 

technique: Society of petroleum engineers journal, v. 24, p. 308-324. 

Vapnik, V. N., 1963, Pattern recognition using generalized portrait method: Automation and 

remote control, v. 24, p. 774-780. 

Vapnik, V. N., and A. J. Chervonenkis, 1964, On the one class of the algorithms of pattern 

recognition: Automation and Remote Control, v. 25. 

Vapnik, V. N., S. E. Golowich, and A. Smola, 1997, Support vector method for function 

approximation, regression estimation, and signal processing: Advances in neural information 

processing systems, p. 281-287. 

Vapnik, V. N., and S. Kotz, 1982, Estimation of dependences based on empirical data, v. 40, 

Springer-Verlag New York. 

Wang, G. C., T. R. Carr, Y. W. Ju, and C. F. Li, 2014, Identifying organic-rich Marcellus Shale 

lithofacies by support vector machine classifier in the Appalachian basin: Computers & 

Geosciences, v. 64, p. 52-60. 

Wang, J., M. Dong, Y. Li, and H. Gong, 2015, Prediction of nitrogen diluted CO2 minimum 

miscibility pressure for EOR and storage in depleted oil reservoirs: Fuel, v. 162, p. 55-64. 

Yang, X., H. Peng, and M. Shi, 2013, SVM with multiple kernels based on manifold learning for 

breast cancer diagnosis, Information and Automation (ICIA), 2013 IEEE International 

Conference on, Yinchuang, China, IEEE, p. 396-399. 



 

157 

 

Yellig, W. F., and R. S. Metcalfe, 1980, Determination and prediction of CO2 minimum 

miscibility pressures: Journal of Petroleum Technology, v. 32, p. 160-168. 

Yuan, H., and R. T. Johns, 2005, Simplified method for calculation of minimum miscibility 

pressure or enrichment: SPE Journal, v. 10, p. 416-425. 

Yuan, H., R. T. Johns, A. M. Egwuenu, and B. Dindoruk, 2004, Improved MMP correlations for 

CO2 floods using analytical gas flooding theory: SPE/DOE symposium on improved oil 

recovery. 

Yuan, H., R. T. Johns, A. M. Egwuenu, and B. Dindoruk, 2005, Improved MMP correlation for 

CO2 floods using analytical theory: SPE Reservoir Evaluation & Engineering, v. 8, p. 418-425. 

Zhang, H., D. Hou, and K. Li, 2015, An improved CO2-crude oil minimum miscibility pressure 

correlation: Journal of Chemistry, v. 2015. 

Zheng, S., J. Liu, and J. Tian, 2004, An SVM-based small target segmentation and clustering 

approach: Machine Learning and Cybernetics, 2004. Proceedings of 2004 International 

Conference on, p. 3318-3323. 

Zhou, H., 2008, Experimental study on CO2 miscible flooding in ultralow permeability reservoir 

Ph.D thesis thesis, Daqing Petroleum Institute, Heilongjiang. 

Zhu, Y., L. Tian, Z. Mao, and L. Wei, 2005, Mixtures of kernels for SVM modeling, Advances 

in Natural Computation, Springer, p. 601-607. 

Zuo, Y., J. Chu, S. Ke, and T. Guo, 1993, A study on the minimum miscibility pressure for 

miscible flooding systems: Journal of Petroleum Science and Engineering, v. 8, p. 315-328. 

 

  



 

158 

 

 

Figure 4-1. Transformation process illustration of a SVR model. A nonlinear mapping function 

ψ(x) defined to convert a nonlinear problem in the original (low dimensional) data input space 

(a) to linear problem in a (higher dimensional) feature space (b). The points 
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Figure 4-2.Mapping features of polynomial and RBF kernel. (a) is polynomial kernel, d is the 

operation degree, x=0.2 is test point. Various values of d was selected, only the points which are 

far enough from test point will have an effective influence on the kernel value; (b) is radial basis 

function kernel, x=0.2 is test point. Various values of ϒ was selected, the points adjacent to the 

test point have a great influence on the kernel values. 
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Figure 4-3.Curves of mixed kernel function. x=0.2 is the test point, ϒ is 0.1 and d=1. Various 

value of mixing coefficient (m) was selected, data points which are both far away from the test 

point and adjacent to the test point have a great influence on the kernel.  
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Figure 4-4. Illustration of PSO velocity and particle position update for particle xi in a two-

dimensional search space. 
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Figure 4-5. Workflow of PSO to optimize parameters of mixture kernel function. 
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Figure 4-6. The process of searching best gamma and cost parameters by grid searching 

algorithm for SVR with linear kernel (a), polynomial kernel (b), RBF kernel (c), sigmoid  kernel 

(d) and n-fold of 4. The color of the contour lines in the figure indicated the associated cross-

validation mean square error.  



 

164 

 

 

Figure 4-7. This plot shows the process of searching for best gamma and cost value by particle 

swarm optimization (PSO) for MKF-SVR model and n-fold of 4. 
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Figure 4-8. Determination of the correlation coefficient of training SVR with different Kernel 

function 
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Figure 4-9. Comparison of actual values and forecasted values by mixed kernels function based 

SVR model. 
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Figure 4-10. Comparison between the results of the developed model and other well-known 

correlations. (a) mixed kernels function based SVR (b) Alston et al. (1985) correlation, (c) Yellig 

and Metcalfe (1980) correlation (corrected with Sebastian et al. (1985) impurity correction 

factor), (e) Emera and Sarma (2005) correlation (corrected with Sebastian et al. (1985) impurity 

correction factor), and (f) Emera and Sarma (2005) correlation (corrected with Alston et al. 

(1985) impurity correction factor). MMPexp is the MMP value measured by experiments, and 

MMPpred is the MMP value predicted based on the correlation models. 
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Figure 4- 11. Sensitivity analysis of the proposed model to vary input parameters. (a) reservoir 

temperature; (b) average critical temperature; (c) molecular weight of pentane plus fraction; and 

(d) volatile component to intermediate component ratio. 
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Table 4-1. Literature experimental data that used for MMP prediction. 

Reference Training Dataset Testing Dataset 

 Pure Impure Pure Impure 

Rathmell et al. (1971)  3    

Jacobson, (1972)  1 3   

Dicharry et al. (1973)  1    

Holm et al. (1974)    1  

Shelton et al. (1977)    1  

Spence et al. (1980)  1  1  

Graue et al. (1981)   2   

Gardner et al. (1981) 1    

Metcalfe (1982)  4 20 1 2 

Frimodig (1983)  3 18  2 

Henry et al. (1983)  1    

Thakur et al. (1984)  2    

Alston et al. (1985)  11 12 1 1 

Sebastian et al. (1985)  1 6   

Harmon et al. (1988)  1    

Eakin et al. (1988)  1 7 1 1 

Chaback (1989)  4    

Khan et al. (1992)  2    

Zuo et al. (1993)  1 1   

Dong (1999)   2   

Srivastava et al. (2000)      

Dong et al. (2001)  1 1  1 

Jaubert et al. (2002)  1    

Bon et al. (2005)  3    

Bon et al. (2006)  1    

Sun et al. (2006)  2    

Zhou et al. (2008)  1    

Al-Ajmi, et al. (2009)  1 2   

Li et al. (2012)  4    

Peng (2012)  1    

Zhang et al. (2015)  6  1  

Total 59  74  7  7 
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Table 4-2. Common Kernel function, corresponding mathematical expressions and parameters 

ranges. 

Kernel Function C ϒ d ε m 

Linear Kernel cxxxxK jiji  ,),(
 

20 ~27 × × × × 

Polynomial 

Kernel 

d

jiji cxxxxK ),(),(    2-4 ~ 24 2-3 ~ 23 2 × × 

Radial Basis 

Function Kernel 
)exp(),(

2

jiji xxxxK    
2-3 ~ 23 2-15 ~ 

215 

× × × 

Sigmoid Kernel ),tanh(),( cxxxxK jiji  
 

2-0 ~210 2-6 ~ 21 × × × 

Mixture Kernel 
rbfpolymix KKK )1(    2-2 ~ 25 2-3 ~ 24 1~4.5 10-4 ~10-1 0~1 
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Table 4-3. Typical parameters used for training SVR model with PSO algorithms. 

Parameter Value Parameter Value 

Maximum Generation 150 Population size  50 

Cognitive efficient )( 1  1.5 Social efficient )( 2  1.5 

Initial inertia weights 
max  0.9 Final inertia weight 

min  
0.4 
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Table 4-4. Error measures for accuracy assessment (Al-Anazi and Gates, 2010a) 

Accuracy measure  Mathematical expression 

Coefficient of Determination, R2 

))((

)ˆ(

1

1

12














m
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N
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yavergy
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Correlation coefficient, r 
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i iiii
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i iiii
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1 1
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1
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Root mean square error, RMSE 

 


m

i ii yy
l 1
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1

 
Average absolute error, AAE 
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i ii yy
l 1

ˆ
1

 
Maximum absolute error, MAE miyy ii ,...2,1,ˆmax 
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Table 4-5. The training and testing performance of SVR model with mixture kernel and other 

basic kernel functions.  

Data Set Statistical 

Parameters 

Kernel Function 

Linear Polynomial RBF Sigmoid MKF 

Training Set RMSE 2.9220 3.0128 2.4558 2.9181 2.0111 

AAE 2.1244 2.0668 1.7852 2.2223 1.1659 

MAE 5.8374 6.3763 4.8271 5.9940 5.1228 

r 0.8531 0.8415 0.8989 0.8528 0.9365 

Ne 133 

Test Set RMSE 2.2851 1.9760 1.4670 2.2667 1.204 

AAE 1.7873 1.3221 1.0862 1.8198 0.8814 

MAE 4.7201 3.9290 1.4040 2.5362 2.4607 

r 0.8395 0.8717 0.9274 0.8386 0.9503 

Ne 14 

Total RMSE 2.8675 2.9299 2.3794 2.8625 1.9151 

AAE 2.0923 1.9959 1.7186 2.1840 1.1406 

MAE 5.8374 6.3763 4.8271 5.9940 4.6291 

r 0.8411 0.8695 0.9099 0.8420 0.9381 

Ne 147 
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Table 4- 6. The comparison of five correlations statistical results.  

Model R RMSE AAE MAE N 

MFK-SVR 0.9381 1.9151 1.1140 4.6291 147 

Alston et al., (1985)  0.7826 5.5644 30.9630 309.2128 141 

Yelling et al. [24](Sebastian et al. [83] 

correction) 

0.2145 7.0807 50.1360 599.5285 147 

Yelling et al. (1980), ( Alston et al.,1985 

correction) 

0.3429 7.4034 54.8104 348.8954 143 

Emera et al. (2005), ( Sebastian et al. 

(1985)correction) 

0.5001 6.6600 44.3556 529.8390 146 

Emera et al. (2005), (Alston et al. (1985) 

correction ) 

0.7407 5.7220 32.7420 386.5963 142 
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