111 research outputs found

    Active Voltage Control in Distribution Networks Including Distributed Energy Resources

    Get PDF
    The structure and control methods of existing distribution networks are planned assuming unidirectional power flows. The amount of generation connected to distribution networks is, however, constantly increasing which changes the operational and planning principles of distribution networks radically. Distributed generation (DG) affects power flows and fault currents in the distribution network and its effect on network operation can be positive or negative depending on the size, type, location and time variation of the generator. In weak distribution networks, voltage rise is usually the factor that limits the network’s hosting capacity for DG. At present, voltage rise is usually mitigated either by increasing the conductor size or by connecting the generator to a dedicated feeder. These passive approaches maintain the current network operational principles but can lead to high DG connection costs. The voltage rise can be mitigated also using active voltage control methods that change the operational principles of the network radically but can, in many cases, lead to significantly smaller total costs of the distribution network than the passive approach. The active voltage control methods can utilize active resources such as DG in their control and also the control principles of existing voltage control equipment such as the main transformer tap changer can be altered. Although active voltage control can often decrease the distribution network total costs and its effect on voltage quality can also be positive, the number of real distribution network implementations is still very low and the distribution network operators (DNOs) do not consider active voltage control as a real option in distribution network planning. Some work is, hence, still needed to enable widespread utilization of active voltage control. This thesis aims at overcoming some of the barriers that are, at present, preventing active voltage control from becoming business as usual for the DNOs. In this thesis, active voltage control methods that can be easily implemented to real distribution networks are developed. The developed methods are, at first, tested using time domain simulations. Operation of one coordinated voltage control (CVC) method is tested also using real time simulations and finally a real distribution network demonstration is conducted. The conducted simulations and demonstrations verify that the developed voltage control methods can be implemented relatively easily and that they are able to keep all network voltages between acceptable limits as long as an adequate amount of controllable resources is available. The developed methods control the substation voltage based on voltages in the whole distribution network and also reactive and real powers of distributed energy resources (DERs) are utilized in some of the developed CVC methods. All types of DERs capable of reactive or real power control can be utilized in the control. The distribution network planning tools and procedures used currently are not capable of taking active voltage control into account. DG interconnection planning is based only on two extreme loading conditions (maximum generation/minimum load and minimum generation/maximum load) and network effects and costs of alternative voltage control methods cannot be compared. In this thesis, the distribution network planning procedure is developed to enable comparison of different voltage control strategies. The statistical distribution network planning method is introduced and its usage is demonstrated in example cases. In statistical distribution network planning, load flow is calculated for every hour of the year using statistical-based hourly load and production curves. When the outputs of hourly load flows (e.g. annual losses, transmission charges and curtailed generation) are combined with investment costs the total costs of alternative voltage control strategies can be compared and the most cost-effective approach can be selected. The example calculations show that the most suitable voltage control strategy varies depending on the network and DG characteristics. The studies of this thesis aim at making the introduction of active voltage control as easy as possible to the DNOs. The developed CVC methods are such that they can be implemented as a part of the existing distribution management systems and they can utilize the already existing data transfer infrastructure of SCADA. The developed planning procedure can be implemented as a part of the existing network information systems. Hence, the currently used network planning and operational tools do not need to be replaced but only enhanced

    Optimal Day-Ahead Operation Considering Power Quality for Active Distribution Networks

    Get PDF

    Active Voltage Control in Distribution Networks Including Distributed Energy Resources

    Get PDF
    The structure and control methods of existing distribution networks are planned assuming unidirectional power flows. The amount of generation connected to distribution networks is, however, constantly increasing which changes the operational and planning principles of distribution networks radically. Distributed generation (DG) affects power flows and fault currents in the distribution network and its effect on network operation can be positive or negative depending on the size, type, location and time variation of the generator. In weak distribution networks, voltage rise is usually the factor that limits the network’s hosting capacity for DG. At present, voltage rise is usually mitigated either by increasing the conductor size or by connecting the generator to a dedicated feeder. These passive approaches maintain the current network operational principles but can lead to high DG connection costs. The voltage rise can be mitigated also using active voltage control methods that change the operational principles of the network radically but can, in many cases, lead to significantly smaller total costs of the distribution network than the passive approach. The active voltage control methods can utilize active resources such as DG in their control and also the control principles of existing voltage control equipment such as the main transformer tap changer can be altered. Although active voltage control can often decrease the distribution network total costs and its effect on voltage quality can also be positive, the number of real distribution network implementations is still very low and the distribution network operators (DNOs) do not consider active voltage control as a real option in distribution network planning. Some work is, hence, still needed to enable widespread utilization of active voltage control. This thesis aims at overcoming some of the barriers that are, at present, preventing active voltage control from becoming business as usual for the DNOs. In this thesis, active voltage control methods that can be easily implemented to real distribution networks are developed. The developed methods are, at first, tested using time domain simulations. Operation of one coordinated voltage control (CVC) method is tested also using real time simulations and finally a real distribution network demonstration is conducted. The conducted simulations and demonstrations verify that the developed voltage control methods can be implemented relatively easily and that they are able to keep all network voltages between acceptable limits as long as an adequate amount of controllable resources is available. The developed methods control the substation voltage based on voltages in the whole distribution network and also reactive and real powers of distributed energy resources (DERs) are utilized in some of the developed CVC methods. All types of DERs capable of reactive or real power control can be utilized in the control. The distribution network planning tools and procedures used currently are not capable of taking active voltage control into account. DG interconnection planning is based only on two extreme loading conditions (maximum generation/minimum load and minimum generation/maximum load) and network effects and costs of alternative voltage control methods cannot be compared. In this thesis, the distribution network planning procedure is developed to enable comparison of different voltage control strategies. The statistical distribution network planning method is introduced and its usage is demonstrated in example cases. In statistical distribution network planning, load flow is calculated for every hour of the year using statistical-based hourly load and production curves. When the outputs of hourly load flows (e.g. annual losses, transmission charges and curtailed generation) are combined with investment costs the total costs of alternative voltage control strategies can be compared and the most cost-effective approach can be selected. The example calculations show that the most suitable voltage control strategy varies depending on the network and DG characteristics. The studies of this thesis aim at making the introduction of active voltage control as easy as possible to the DNOs. The developed CVC methods are such that they can be implemented as a part of the existing distribution management systems and they can utilize the already existing data transfer infrastructure of SCADA. The developed planning procedure can be implemented as a part of the existing network information systems. Hence, the currently used network planning and operational tools do not need to be replaced but only enhanced

    Active distribution networks planning with high penetration of wind power

    Get PDF
    YesIn this paper, a stochastic method for active distribution networks planning within a distribution market environment considering multi-configuration of wind turbines is proposed. Multi-configuration multi-scenario market-based optimal power flow is used to maximize the social welfare considering uncertainties related to wind speed and load demand and different operational status of wind turbines (multiple-wind turbine configurations). Scenario-based approach is used to model the abovementioned uncertainties. The method evaluates the impact of multiple-wind turbine configurations and active network management schemes on the amount of wind power that can be injected into the grid, the distribution locational marginal prices throughout the network and on the social welfare. The effectiveness of the proposed method is demonstrated with 16-bus UK generic distribution system. It was shown that multi-wind turbine configurations under active network management schemes, including coordinated voltage control and adaptive power factor control, can increase the amount of wind power that can be injected into the grid; therefore, the distribution locational marginal prices reduce throughout the network significantly

    Agent-based coordinated operation strategy for active distribution network with distributed energy resources

    Get PDF
    With the development of distributed energy resources (DERs) and the increasing flexibility in active distribution networks (ADNs), the economic operation of ADN coordinating both generation and demand sides is required to be studied. In this paper, considering the electricity price response of DER, a coordinated operation strategy for ADN is presented based on a bi-level agent framework. The DER agent makes their own response based on the technical operability and economic consideration, while the ADN agent will finally coordinate each participant by using the interactive benefit prioritization (IBP) principle. The simulation results indicate that the proposed strategy cannot only reduce the power imbalance but also improve the economic operation of ADN. Moreover, consumption of renewable energy is ameliorated as well.</p

    Agent-based Operation Strategy for Active Distribution Network Considering Energy Storage and Flexible Load

    Get PDF
    With the development of distributed energy resources (DERs) and the increasing flexibility in active distribution networks (ADNs), the economic operation of ADN components on both generation and demand sides to improve power self-consumption capability are required to be studied. In this paper, by considering the electricity price response of energy storage (ES) and flexible load (FL), an interactive and coordinated operation strategy for ADNs is presented based on a bi-level multi-agent system (MAS) structure. In the situation of power imbalance, each active component agent will be informed by higher level ADN agent and make their own response based on the technical operability and economical consideration. ADN agent will finally coordinate each participant and develop operation strategy by using the interactive benefit prioritization principle. The simulation results indicate that the proposed interactive coordination strategy can not only maximize the consumption of renewable energy, but also reduce the power imbalance and improve the economic operation of ADN.</p

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain

    Three-Phase State Estimation for Distribution-Grid Analytics

    Get PDF
    Power-distribution grids consist of assets such as transformers, cables, and switches, of which the proper utilization is essential for the provision of a secure and reliable power supply to end customers. Distribution-system operators (DSOs) are responsible for the operation and maintenance of these assets. Due to the increased use of renewable sources such as wind and solar, grid assets are prone to operation conditions outside safe boundaries, such as overloading, large voltage unbalance, and a rise in voltage. At present, distribution grids are poorly monitored by DSOs, and the above-mentioned problems may thereby go unnoticed until the failure of a critical asset occurs. The deployment of smart meters in distribution grids has enabled measurements of grid variables such as power, current, and voltage. However, their measurements are used only for billing purposes, and not for monitoring and improving the operating condition of distribution grids. In this paper, a state-estimation algorithm is proposed that utilizes smart-meter data for offline analysis, and estimates the loading of grid assets and power losses. Single- and three-phase state-estimation algorithms are compared through simulation studies on a real-life low-voltage distribution grid using measured smart-meter data. The three-phase state-estimation algorithm based on the nonlinear weighted least-squares method was found to be more accurate in estimating cable loading and line power losses. The proposed method is useful for DSOs to analyze power flows in their distribution grids and take necessary actions such as grid upgrades or the rerouting of power flows

    A survey on smart grid communication infrastructures: Motivations, requirements and challenges

    Get PDF
    A communication infrastructure is an essential part to the success of the emerging smart grid. A scalable and pervasive communication infrastructure is crucial in both construction and operation of a smart grid. In this paper, we present the background and motivation of communication infrastructures in smart grid systems. We also summarize major requirements that smart grid communications must meet. From the experience of several industrial trials on smart grid with communication infrastructures, we expect that the traditional carbon fuel based power plants can cooperate with emerging distributed renewable energy such as wind, solar, etc, to reduce the carbon fuel consumption and consequent green house gas such as carbon dioxide emission. The consumers can minimize their expense on energy by adjusting their intelligent home appliance operations to avoid the peak hours and utilize the renewable energy instead. We further explore the challenges for a communication infrastructure as the part of a complex smart grid system. Since a smart grid system might have over millions of consumers and devices, the demand of its reliability and security is extremely critical. Through a communication infrastructure, a smart grid can improve power reliability and quality to eliminate electricity blackout. Security is a challenging issue since the on-going smart grid systems facing increasing vulnerabilities as more and more automation, remote monitoring/controlling and supervision entities are interconnected. © 1998-2012 IEEE

    A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges

    Full text link
    corecore