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Abstract –In this paper, a stochastic method for active distribution networks planning within a distribution market 

environment considering multi-configuration of wind turbines is proposed. Multi-configuration multi-scenario market-

based optimal power flow is used to maximize the social welfare considering uncertainties related to wind speed and load 

demand and different operational status of wind turbines (multiple-wind turbine configurations). Scenario-based 

approach is used to model the abovementioned uncertainties. The method evaluates the impact of multiple-wind turbine 

configurations and active network management schemes on the amount of wind power that can be injected into the grid, 

the distribution locational marginal prices throughout the network and on the social welfare. The effectiveness of the 

proposed method is demonstrated with 16-bus UK generic distribution system. It was shown that multi-wind turbine 

configurations under active network management schemes, including coordinated voltage control and adaptive power 

factor control, can increase the amount of wind power that can be injected into the grid; therefore, the distribution 

locational marginal prices reduce throughout the network significantly.  

 

Index Terms — Wind power, active network management, social welfare, market-based optimal power flow, distribution 

network operators, distribution locational marginal prices. 

 

Nomenclature 

A. Sets and Indices 

i,j Index of system buses running from 1 to NB 

w Index of wind turbine  

G Index of substation 
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D Index of loads 

t Index of energy block offered by wind turbines 

running from 1 to NT 

q Index of energy bids submitted by loads 

running from 1 to NQ 

s Index of scenarios running from 1 to NS 

c Index of configurations running from 1 to NC 

y Index of years running from 1 to NY 

 

B. Variables 

w
ycstiQP ,,,,)/(  Active/reactive power generated by wind 

turbines at bus i, block t, scenario s, 

configuration c and year y in MW/MVAr 

G
yctiQP ,,,)/(  Active/reactive power at substation, block t, 

configuration c and year y in MW/MVAr 

ycsiycsiV ,,,,,, /  Voltage/voltage angle at bus i, scenario s, 

configuration c and year y in Volt/Radian 

w
ycsi ,,,  Power factor angle of WTs at bus i, scenario s, 

configuration c and year y in radian  

ijT  Tap magnitude of OLTC 

 

C. Parameters  

α Load growth rate  

β Operational status of each WT 
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βi,c Operational status of WTs at bus i and 

configuration c 

c Scale coefficient  

v Wind speed in m/s 

vm Mean value of wind speed in m/s 

vci/vco Cut-in/cut-off wind speed in m/s 

vr Rated wind speed in m/s 

πs Probability of state s 

D
ysqiQP ,,,)/(  Active/reactive consumption of loads at bus i, 

block q, scenario s, configuration c and year y 

in MW/MVAr 

maxmin / ii VV  Min/max voltage at each bus in Volt 

maxmin / ii   Min/max voltage angle at each bus 

max,min, / w
i

w
i QQ  Min/max reactive of WTs at bus in MVAr 

w
ratediP,  WTs rated active power in MW 

w
csi ,,  Percentage of active power generated by WTs 

at scenario s and configuration c 

max,min, / G
i

G
i PP   Min/max active power at substation in MW 

max,min, / G
i

G
i QQ  Min/max reactive power at substation in MVAr 

D
qiC ,  Price for the energy bid q at bus i submitted by 

load D in £/MWh 

w
tiC ,  Price for the energy selling t at bus i by WT w 
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in £/MWh 

G
tiC ,  Price for the energy selling t at substation in 

£/MWh 

ijij BG /  Real/imaginary part of the element in the 

admittance matrix corresponding to the ith row 

and jth column in mho 

max
ijI  Maximum current flow of wires in A 

I. Introduction 

A. Motivation and Approach 

The connection of large amounts of renewable energy sources (RES) to distribution networks introduces many 

technical and economic challenges to distribution network operators (DNOs). Therefore, DNOs have to develop a 

rational operating strategy taking into account dispatching distributed generators (DGs), interrupting loads, and 

purchasing power from the wholesale market while keeping the system security.  DNOs, in some cases, play the 

retailers role which buy power on the wholesale market at volatile prices and sell it again at fixed tariffs to small 

consumers. DNOs and retailers are separate market entities with different purposes, networks, and sizes [1]. 

However, assuming that the objective of DNOs is to maximize their benefits, two different regulatory cases can be 

taken into account: 1) DG-owning DNO – allowed to own DG and can exploit the financial benefits brought by 

considering new generation as an option for the investment in distribution network, 2) Unbundled DNO – forbidden 

from DG ownership but can maximize benefits based on a number of incentives. European Directive 2003/54/EC 

defines the technical and legal existing restrictions among different market actors of European electricity markets. In 

particular, it forms the unbundling regulations that DNOs have to be unbundled from generation interests, thus, 

forbidding DNOs from DG ownership. It splits the electricity distribution from retail supply where distribution 

utilities are not responsible to sell power to customers [2-3]. By introducing DGs in distribution systems, the 

planning for investment in distribution networks to meet the future load growth and its related infrastructures can be 

deferred [4]. On the other hand, emerging active network management (ANM) schemes have proved to be 

advantageous for DNOs, compared to passive network management [5]. ANM schemes can increase the operation 
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of the assets of network that allow the distribution networks to accommodate more DGs within the existing 

infrastructure and therefore, defer or avoid expensive network upgrades. The main ANM schemes include 

coordinated voltage control (CVC) of on load tap changers (OLTCs) and voltage regulators, adaptive power factor 

control (PFC) of DGs and energy curtailment [5-7].  

This paper provides a novel approach for DNOs to evaluate the amount of wind power that can be injected into the 

distribution network over the planning horizon considering: 1) capability curve of doubly fed induction generator 

(DFIG)-based wind turbines (WTs), 2) uncertainties related to the stochastic variations of wind power generation 

and load demand, 3) multiple-WT configurations and 4) ANM schemes including CVC and PFC. The method also 

characterizes the impact of the abovementioned factors on the distribution-locational marginal prices (D-LMPs). 

Multi-configuration multi-scenario market-based optimal power flow (MMMOPF) is utilized to maximize the social 

welfare (SW) considering abovementioned uncertainties. A distribution market model, called the DNO acquisition 

market, is presented here under a distribution market structure based on pool and bilateral contracts within DNO’s 

control area. It is assumed that WTs and loads are owned or managed by the DG-owning DNO [8]. Here, the DNO 

is defined as the market operator of the DNO acquisition market, which determines the price estimation and the 

optimization process for the hourly acquisition of active power [9].  

B. Literature Review 

Lots of studies have been reported on the benefits of ANM and its applications. Some of them revealed 

implementations, and experiences of ANM [10-11], online ANM application [12-13], and ANM challenges for 

network operators [14]. The cost-benefit analysis of investments and operation costs for various combinations of 

ANM schemes and techno-economic evaluation are studied in [15-17] and compared with passive network 

management scheme. Generally, it is found that as the DG penetration increases, the investment costs of ANM 

schemes become more viable and justifiable. Also, several works have been carried out about the planning and 

operation of distribution networks with integration of DGs [18-19]. In [18], the authors proposed a cost based model 

to allocate DGs in distribution networks to minimize DG investment and total operation costs. In [19], a method for 

optimal placement of WTs in distribution networks to minimize annual energy losses has been proposed. However, 

these studies also did not consider the distribution market environment as well as the effect of multi DG-

configurations which considerably impact the allocations and amount of connected DG capacity.  



6 

 

C. Contributions 

The gap that this paper tries to fill is how the combination of multi-WT configurations and ANM schemes can 

impact on the total dispatched energy of WTs and D-LMPs within a distribution market environment. To the best of 

the authors’ knowledge, no stochastic method for the planning of active distribution networks within a distribution 

market environment considering multiple-WT configurations and capability curve of DFIG-based WTs and ANM 

schemes has been reported in the literature. The dynamic nature of the power system operation has not been taken 

into account in the conventional planning studies with integration of DGs. For example, in [5-7] and [20-22], the 

authors have not addressed the impact on the overall DG penetration level when one or more existing DGs are 

absent. Moreover, the presence of a distribution market environment has not been addressed in the abovementioned 

studies. One of the innovative contributions of this paper is proposing a novel MMMOPF-based planning approach 

which considers the operational status of WTs at the planning stage, and assesses the dispatched energy of WTs 

considering various multi-configurations within the DNO market environment which has not been addressed so far. 

It also provides detailed analysis and results on how multiple-WT configurations and ANM schemes could impact 

the amount of wind power that can be injected into the grid as well as the D-LMPs throughout the network. Another 

novel contribution of the proposed method is that it can be used as a tool for DG-owning DNOs to better allocate 

WTs in terms of consumers’ benefits and cost reduction and network constraints. It also can evaluate the 

contribution of DG-owning DNOs in a distribution market, including both a day-ahead and a real-time intraday 

schedule of WTs and load demand according to the market price. 

D. Paper Organization 

The rest of the paper is organized as follows. Section II explains the structure of the proposed method. Multi-WT 

configurations and uncertainty modeling are discussed in Sections III and IV, respectively. Problem formulation is 

described in Section V. Section VI presents the 16-bus UK generic distribution system (UKGDS) and simulation 

results. Conclusions are presented in Section VII. 

 

II. The Structure of the Proposed Method 

The stochastic variations of wind speed and load demand are modelled by Weibull and Normal probability density 

functions (PDFs), respectively. Then, each obtained PDF, is divided into several intervals and the probability of 
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falling into each interval is calculated. It is assumed that the wind speed and load demand scenarios are independent, 

so the scenarios are combined by multiplication of the probability of load and wind scenarios to construct the whole 

set of scenarios. For each combination of wind speed and load demand, different MMMOPFs are carried out to 

maximize the SW considering multiple-configuration of WTs and their capability curve and ANM schemes. The 

products of the proposed method are: the injected wind power into the network, the SW, and the D-LMPs. The 

following steps are carried out by the proposed method as shown in Fig.1: 

1) Set the candidate buses according to wind speed historical data.  

2) Define the size and speed-power curve of WTs.  

3) Model wind speed by using Weibull PDF [23]. Divide the PDF into several intervals and calculate the 

probability of falling into each interval.  

4) Model load demand by using Gaussian PDF [24] and divide the obtained PDF into different intervals then 

calculate the probability of each interval. The probability of the scenarios is multiplied by the bid quantities 

which are considered as bid quantity in the DNO acquisition market. 

5) Calculate the probability of each scenario from the PDF of wind speed as described above then derive the PDF 

of WTs active power output based on Weibull PDF of wind speed and power curves of WTs. The multiplication 

of active power generated by WTs and the probability of the wind scenarios is considered as the offer quantity in 

the DNO acquisition market. 

6) Calculate the combined generation-load scenarios as explained in Section IV. 

7) Calculate the WTs’ offer price as explained in Section VI.  

8) For each scenario and configuration, maximize the SW by using MMMOPF over the planning horizon subject to 

network constraints. The DNO acquisition market formulation and the optimization problem are described in 

Section V.  

9) The products of the proposed method provide injected wind power, the SW, and the D-LMPs.  
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Fig.1.The structure of the proposed method 
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III. Multi-WT Configurations 

In this paper, the MMMOPF method aims to incorporate multi-WT configurations which are defined as the 

operational status of WTs, and are chosen based on the DNO’s decisions. The total number of all possible multi-

configurations for any number of WTs can be expressed as follows: 

)12(1  NWNC              (1) 

The total configurations are referred as the number of multi-WT configurations. For example, if a system has five 

WTs, there will be up to 31 possible multi-WT configurations for the DNOs to choose. A binary parameter is 

defined to represent the operational status of WTs at i
th

 bus for configuration c. The operational status of each WT 

and all WTs are described in (2) and (3), respectively.  
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In the proposed method, there is capacity constraint for WTs according to its operational status for each 

configuration which is described as follows: 
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IV. Uncertainty Modelling 

A. Wind Speed Modelling 

A good expression often used to model the wind speed behavior is the Rayleigh PDF. It is a special case of 

Weibull PDF where the shape index is equal to 2. The Weibull PDF equation is as follows:  
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where v and c are respectively the wind speed and the scale coefficient. If the mean value of the wind speed for a 

site is known, then the scaling index c is calculated as follows in (6) and (7). 
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In order to incorporate the output power of WTs as a multi-state variable, the continuous PDF has been divided 

into states, in each state the wind speed is within specific limits. The probability of each state is calculated as 

follows: 


s

s

v

v
s dvvf

,2

,1

)(               (8) 

2

,2,1 ss
s

vv
v


                (9) 

where 
s

v
,1

and
s

v
,2

 are are the starting and ending points of the interval of wind speed defined in scenario s, 

respectively. 

A typical WT output power versus rotor angular speed is shown in Fig. 2 [25]. The WT’s operating strategy is to 

match the rotor speed to generate power continuously close to the maxP  points. This can be carried out with the 

design and operation of a variable-speed system that is utilized in the DFIG-based WFs. In order to extract the 

maximum possible power, the WT must operate at the peak power point for all wind speeds. This occurs at 

points 1max,P , 2max,P , 3max,P in wind speeds 1,WV , 2,WV , 3,WV , respectively as shown in Fig.2. The common factor 

among the peak power production points 1max,P , 2max,P , 3max,P is the constant high value of tip speed ratio. Therefore, 

the control of speed and power in wind power systems have three different regions as shown in Fig. 3, where the 

solid curve is the power and the dotted curves, and the rotor power coefficient (Cp) [26]. 
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Fig.2. WT power versus rotor angular speed characteristics at different wind speeds [26] 

 

W
in

d
 p

o
w

er
 o

u
tp

u
t 

(W
) 

an
d

 C
p

Constant Cp

Wind speed (m/s)

DFIG’s maximum power limit

vci vr vco  

                                                                             Fig.3. Three different rotor speed control regions of the system [26] 

 

 



12 

 

Hence, the generated power of WTs is determined using its power curve as follows:  
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where vci, vr and vco are the cut-in speed, rated speed and cut-off speed of the wind turbine, respectively. Therefore, 

the wind power at bus i, scenario s and configuration c is calculated as follows: 

w
ratedi

w
csi

w
csi PP ,,,,,0                (11) 

where  w
csi ,, is the percentage of active power generated by WTs at scenario s and configuration c. Therefore, the 

maximum WTs’ output power is limited by the multiplication of percentage of active power generated by WTs and 

WTs rated power.  

 

B. Load Modelling 

Load demands are also modelled using a Normal PDF. The load demand will be divided into 6 states using the 

technique developed in [19], which verifies that choosing six states with different probabilities provides a reasonable 

trade-off between accuracy and fast numerical evaluation. Assuming peak load of D
siP ,  in each state and load growth 

rate of , the load demand D
ysiP ,,  at bus i, state s and year y, is calculated as: 

yD
si

D
ysi PP )1(,,,                (12) 

C. Combined Generation-Load Model 

In this paper, the wind speed and the load states are assumed to be independent. So the scenarios are combined to 

construct the whole set of scenarios as follows: 

wDs                 (13) 
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where D  and w are the probabilities of D
th

 load and w
th

 wind states, respectively. Hence, total numbers of states 

are wD nn  , where Dn  and wn  are the number of individual load and wind states. 

V. Problem Formulation 

A. DNO Acquisition Market Formulation  

Usually, electrical energy is purchased from the wholesale market and delivered to final customers by DNO. 

Nonetheless, due to the power system reconstructing and emerging DGs such as WTs, the business of traditional 

DNO is unbundled into technical and economic tasks. A DNO energy acquisition market model, called the DNO 

acquisition market is presented here under a distribution market structure based on pool and bilateral contracts. The 

DNO is defined as the market operator of the acquisition market, which determines the price estimation and the 

optimization process for the acquisition of active power. Loads and WTs send active power offers and bids to the 

DNO acquisition market in form of blocks for each hour [9, 27].  

The DNO’s aim is the maximization of the SW, (i.e. the maximization of the consumers’ benefit function and the 

minimization of the costs of energy). The MMMOPF is formulated as follows:  
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subject to 

a) Equality Constraints: Active and Reactive Power Balance at Each Bus    

 , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

1 1 1 1 1 1 1

cos( ) sin( )
NQNT NG NT NB NB NB

G w D

i t c y i t s c y i q s y i s c y j s c y ij ij i s c y j s c y ij i s c y i s c y

t i t i q i j

P P P V V T G B   
      

                      (15) 

 , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

1 1 1 1 1 1 1

sin( ) cos( )
NQNT NG NT NB NB NB

G w D

i t c y i t s c y i q s y i s c y j s c y ij ij i s c y j s c y ij i s c y i s c y

t i t i q i j

Q Q Q V V T G B   
      

                       (16)          

b) Inequality Constraints 

-Branch flow constraints 

2

, , , , , , , , , , , , , , ,2 2 2 max

, , , 2

2 cos( )
( )( )

j s c y i s c y j s c y i s c y i s c y

ij ij i s c y ij

ijij

V V V
G B V I

TT

 
         (17) 
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-Voltage limits at each bus 

max
,,,

min
iycsii VVV     (18) 

max
,,,

min
iycsii      (19)  

-WTs generation constraint  

w
ratedi

w
csi

w
ycsti PP ,,,,,,,0        (20) 

max,
,,,,

min, w
i

w
ycsti

w
i QQQ   (21) 

-Capacity constraints at substation  

max,
,,,

min, G
i

G
ycti

G
i PPP                                                         (22)                   

max,
,,,

min, G
i

G
ycti

G
i QQQ     (23) 

B. ANM Schemes Incorporation 

DNOs will be able to optimize using their assets with incorporation of ANM schemes by dispatching generation, 

controlling OLTCs and voltage regulators, controlling reactive power, and reconfiguring the system [5]. ANM 

implementations will need advanced control techniques while the actual actuation of devices (e.g., tap changers) will 

depend on their respective response time-scales. 

 

1) Coordinated Voltage Control 

By dynamically controlling the OLTC at the substation and the corresponding distribution secondary voltage, 

more DG capacity might be connected [28]. Thus, at each phase, the secondary voltage of the OLTC will be treated 

as a variable, rather than a fixed parameter, while keeping its value within the statutory range as follows: 

maxmin
ijijij TTT            (24) 
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2) Adaptive Power Factor Control  

Power factor of WTs can be controlled to maximize the dispatched energy of WTs. In practice, WTs require to 

meet the particular requirement depending on the regulation of the country. For instance, in the UK, the power factor 

of a WT should remain between 0.95 leading and 0.95 lagging [29-30]. Therefore, the following constraint applies: 

max,
,,,

min, w
i

w
ycsi

w
i                      (25) 

C. Capability Curve of DFIG-based WTs 

In steady state, the DFIG capability limits are obtained by considering the stator- and rotor-rated currents as well 

as calculating the total capacity limits of WT. These currents are related to stator and rotor heating because of 

Joule’s losses. The capability curve of DFIG-based WTs is shown in Fig.4. More details about it can be found in 

[31].  
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Fig.4. DFIG capability limits  

 

VI. Case Study and Simulation Results 

In this section, the distribution system used to test the proposed method is described. The following analyses are 

based on 33 kV 16-bus rural weakly meshed UKGDS whose data are available in [32]. The single-line diagram of 

the distribution system is shown in Fig. 5.  
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Fig.5. 16-bus UKGDS with candidate locations for WTs 

 

The feeders are supplied by two identical 30-MVA 132/33 kV transformers. Two OLTCs, allocated between 

buses 1 and 2, has a target voltage of 1.05 p.u. at the secondary. A voltage regulator (VR) is located between buses 8 

and 9, with the latter having a target voltage of 1.03 p.u..Voltage limits are taken to be ±6% of nominal value, i.e. 

Vmin= 0.94 and Vmax= 1.06 p.u. and the power factor of WTs ranges from 0.95 leading to 0.95 lagging. In this paper, 

it is assumed that buses 5, 7 and 9 are three possible WTs locations but it is notable that the selection of possible 

WTs locations relies on non-technical factors such as legal requirements, space/land availability and other amenities. 

Four states for loads and six states for wind power generation are considered respectively by using Normal and 

Weibull PDFs. The probabilities of load and wind states are presented in Tables I and II, respectively. By 

incorporating these scenarios, as explained in Section IV, 24 combined wind-load states are obtained as given in 

Table III. 

 

Table I. Load states and corresponding probabilities 

State # Load (%) πD 

D1 100.00 0.10 

D2 75.00  0.15 

D3 55.00     0.45 

D4 35.00 0.30 
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Table II. Wind states and corresponding probabilities 

State # Wind (%) πw 

w1 100.00 0.05 

w2 85.30  0.03 

w3 58.50     0.60 

w4 40.60 0.25 

w5 35.10 0.01 

w6 00.00 0.06 
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Table III. Combined wind and load states and corresponding probabilities 

State # Load (%) Wind (%) πs 

s1 100.00 100.00 0.0050 

s2 100.00 85.30 0.0030 

s3 100.00 58.50     0.0600 

s4 100.00 40.60     0.0250 

s5 100.00 35.10 0.0010 

s6 100.00 00.00 0.0060 

s7 75.00  100.00 0.0075 

s8 75.00 85.30 0.0045 

s9 75.00 58.50     0.0900 

s10 75.00 40.60     0.0375 

s11 75.00 35.10 0.0015 

s12 75.00 00.00 0.0090 

s13 55.00     100.00 0.0225 

s14 55.00 85.30 0.0135 

s15 55.00 58.50     0.2700 

s16 55.00 40.60     0.1125 

s17 55.00 35.10 0.0045 

s18 55.00 00.00 0.0270 

s19 35.00    100.00 0.0150 

s20 35.00 85.30 0.0090 

s21 35.00 58.50     0.1800 

s22 35.00 40.60     0.0750 

s23 35.00 35.10 0.0030 

s24 35.00 00.00 0.0180 
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Three 15 MW wind farms (WFs) are installed at buses 5, 7 and 9. Each of them is composed of MW35 WTs. It is 

assumed that maximum four WFs can be allocated at each candidate bus. For each scenario and configuration, this is 

represented by four equal blocks in the WF’s offer with the same price. The planning horizon is assumed to be 5 

years. The offer price at substation is assumed to be 160 £/MWh. Moreover, it is assumed that the offer price at the 

substation increases by 5% every year. Regarding the bids of loads, it is assumed that there are two blocks for each 

load as presented in Table IV at maximum load and the first year of the planning horizon. Also, it is assumed that 

the load growth is 5% for each year of the planning horizon. Table V presents all the possible multi-WT 

configurations for the three WFs locations using (1). 

Table IV. Bid Quantity and Price in Planning Year 1 

Bus No. Quantity (MW) Price (£/MWh) 

Block 1 Block 2 Block 1 Block 2 

2 3.00 2.50 350 300 

3 1.10 0.93 350 300 

4 0.06 0.06 300 300 

5 11.00 8.20 250 250 

6 1.06 0.90 400 300 

7 0.30 0.25 450 250 

9 0.95 0.95 400 300 

10 1.70 1.00 325 275 

11 2.15 0.70 250 250 

12 0.42 0.39 250 225 

13 0.51 0.50 200 200 

14 0.38 0.20 300 300 
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Table V. Description of Multi-WT Configurations 

Multi-

configurations 

WT status/location 

Bus 5 Bus 7 Bus 9 

1 1   0 0 

2 0 1 0 

3 0 0 1 

4 1 1 0 

5 1 0 1 

6 0 1 1 

7 1 1 1 

 

A. Calculation of the WTs Offer Price From the Point of View of DNOs 

In order to calculate the price of WTs’ offers, financial data, i.e. WTs’ life time, installation cost, depreciation 

time, interest rate, are considered as summarized in Table VI. The annual cost for WTs is calculated as follows [33-

38]:  

CostInst
r

rr
CostAnn

n

n

_
1)1(

)1(
_ 




                  (26) 

where r is the interest rate, n is the depreciation period in years, Inst_Cost is the installation cost, and Ann_Cost is 

the annual cost for depreciation. The capacity factor (CF) is evaluated according to the wind generation data and the 

WTs’ capability curves. The offer price of WTs is calculated by dividing the annual costs by the number of 

equivalent hours as presented in Table VI. In order to investigate the impact of multi-WT configurations and ANM 

schemes on the SW, dispatched energy of WTs and D-LMP over the planning horizon, two scenarios are taken into 

account as presented in Table VII.  
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TABLE VI. Financial data for Calculating the offer price of 3-MW WT for the planning year 1  

WTs size 3 MW 

Installation cost (£/kW) 950 

Depreciation time (years) 10 

Interest rate (%) 3 

Number of equivalent hours (h) 4000 

Capacity factor (%) 46 

Annual cost (£/kW-year) 334.10 

WTs Offer Price (£/MWh) 27.84 

 

TABLE VII. Scenarios 

Scenarios CVC PFC PF= 0.95 lagging 

A - -      

B   - 

 

Fig.6 shows the total dispatched energy of WFs over the planning horizon for each configuration and both 

scenarios. Configuration 2 (i.e. one WF at bus 7) has the lowest dispatched energy in all scenarios compared to other 

configurations while configurations 1 and 3 (i.e. one WF at buses 5 and 9, respectively) have the higher dispatched 

energy compared to that at bus 7. This is mainly due to the higher bid price and lower bid quantity (see Table IV) 

and voltage constraints at bus 7 compared to those at buses 5 and 9 as well as the thermal limits of the lines 

connecting the buses. Configuration 5 (i.e. two WFs at buses 5 and 9) has the higher dispatched energy compared to 

that in configurations 4 and 6. This is because of the higher bid quantity and lower bid price at buses 5 and 9 

compared to those in configurations 4 and 6. It is seen that the dispatched energy in scenario A and configuration 4 

(i.e. two WFs at buses 5 and 7) is almost equal to that in configuration 3 (i.e. one WF at bus 9). It is evident that 
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configuration 7 with three WFs installed at candidate buses has the highest dispatched energy compared to that in 

other configurations. It is seen from Fig. 6 that in scenarios B considering ANM schemes, higher active power can 

be dispatched by WFs compared to that in scenario A. The total dispatched energy for all configurations over the 

planning horizon at candidate buses in scenario A is shown in Fig.7. Assuming 5% load growth for each year over 

the planning horizon, the dispatched energy proportionally increases to the load growth at all candidate buses. For 

instance, at bus 9, the total dispatched energy for all configurations at the first year of the planning horizon is about 

1700 MWh while it is 1900 MWh in the last year which increases about 13% compared to the first year. 
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Fig.6. Total dispatched energy for each configuration and over the planning horizon 
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Fig.7. Dispatched energy at each bus in Scenario A over the planning horizon 

 

Fig.8. shows the total SW for each configuration over the planning horizon. It is seen that configurations 2 and 7 

respectively have the lowest and highest values of SW compared to others. This is mainly because of the lowest and 

highest dispatched energy at these configurations respectively as WTs allocation allows increasing the SW. The D-

LMPs at candidate buses for each configuration in scenario A over the planning horizon is shown in Fig.9 (a). It is 
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observed that at bus 7 and configuration 2, the D-LMP has the highest value. This is mainly because of the lowest 

dispatched energy at this bus and configuration. It is seen that in scenario A, the D-LMP in configuration 3 at bus 9 

is about 1500 £/MWh while this value in configuration 4 is about 1300 £/MWh. This is due to the almost equal 

dispatched energy at these configurations (see Fig.6 scenario A). Therefore, configurations 1, 3 and 5 are more 

economical than configurations 2, 4 and 6. Fig. 9 (b) shows the D-LMPs at candidate buses in scenario A over the 

planning horizon for each configuration. It is seen that bus 5 has the lowest D-LMP while bus 7 has the highest one 

which is because of the highest and lowest dispatched energy at buses 5 and 9, respectively. It can also be seen that 

the D-LMP proportionally decreases to load growth over the planning horizon due to the increment in the dispatched 

energy over the planning horizon. 

As a result, the method can be used as a useful tool for DNOs to install WTs at more advantageous locations in 

terms of consumers’ benefits and cost reduction considering network constraints and reliability. Also, by adopting 

ANM schemes, more wind power can be integrated into the grid compared to that in passive networks. This is 

achieved through D-LMPs to provide a real-time price to the end-user customers. 
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Fig.8. Total social welfare for each configuration over the planning horizon 
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Fig.9. (a) D-LMP for each configuration at each bus in Scenario A and first year of planning horizon, (b) D-LMP at each bus in Scenario A 

over the planning horizon  

 

B. Computational Issues 

The proposed method has been implemented in GAMS and the non-linear program (NLP) solved using IPOPT 

solver [39] on a PC with Core i7 CPU and 16 GB of RAM. The computational burden of the proposed method is 

characterized in Table VIII.  

To validate the results, the proposed method was also coded in the MATLAB environment and solved with 

IPOPT solver. The results obtained by MATLAB are very close (i.e. 2% error) to those obtained in GAMS.   
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    Table VIII. Problem characterization  

Variables 42458 

Constraints 31782 

Time (sec) 2442.7 

 

VII. Conclusions 

In this paper, a stochastic method for the planning of active distribution networks within a distribution market 

environment is proposed. The method considers capability curve of WTs, ANM schemes and multi-WT 

configurations. MMMOPF is used to maximize SW considering uncertainties related to wind speed and load 

demand. ANM is considered as an important means of increasing the capability of distribution networks to install 

renewable DGs. It is revealed that the multi-WT configurations under ANM schemes could increase the potential of 

wind power penetration at certain locations and consequently decreases D-LMPs throughout the network. It can be 

used as a tool for DNOs to evaluate the impact of wind power penetration on a given network in terms of technical 

and economic effects.  

 

Acknowledgment 

This work was supported in part by the SITARA project funded by British Council and the Department for 

Business, Innovation and Skills, UK and in part by the University of Bradford, UK under the CCIP grant 

66052/000000. 

 

 

REFERENCES 

[1] M. Gandomkar, M. Vakilian, and M. Ehsan, “Optimal distributed generation allocation in distribution network using Hereford Ranch 

algorithm,” in Proc. Int. Conf. Electr. Mech. Syst., 2005, vol. 2, pp.916–918. 

[2] P. Siano, L. F. Ochoa, G. P. Harrison, A. Piccolo, “Assessing the strategic benefits of distributed generation ownership for DNOs,” IET 

Gener. Transm. Distrib., vol.3, no.3, pp. 225-236, 2009.  

[3] G. Mokryani, P. Siano, “Strategic placement of DNO owned wind turbines by using market-based optimal power flow”, IET Gener, Transm 

Distrib., vol.8, no.2, pp.281-289, 2014.  



26 

 

[4] R. C. Dugan, T. E. McDermott, and G. J. Ball, “Planning for distributed generation,” IEEE Ind. App. Mag., vol. 7, no. 2, pp. 80–88, 2001. 

[5] P. Djapic, C. Ramsay, D. Pudjianto, G. Strbac, J. Mutale, N. Jenkins, and R. Allan, “Taking an active approach,” IEEE Power Energy Mag., 

vol. 5, no. 4, pp. 68–77, 2007. 

[6] S. N. Liew and G. Strbac, “Maximising penetration of wind generation in existing distribution networks,” IEE Gener. Transm. Distrib., 

vol.149, no. 3, pp. 256–262, 2002.  

[7] P. Siano, P. Chen, Z. Chen, and A. Piccolo, “Evaluating maximum wind energy exploitation in active distribution networks,” IET Gener. 

Transm. Distrib., vol. 4, no. 5, pp. 598–608, 2010. 

[8] G. Mokryani, P. Siano, A. Piccolo, “Optimal allocation of wind turbines in microgrids by using genetic algorithm,” Journal of Ambient 

Intelligence and Humanized Computing, vol. 4, no. 6, pp. 613-619, 2013. 

[9] R. Palma-Behnke, J. L. A. Cerda, L. Vargas, and A. Jofre, “A distribution company energy acquisition market model with the integration of 

distribution generation and load curtailment options,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1718–1727, 2005. 

[10] R. A. F. Currie, G. W. Ault, R. W. Fordyce, D. F. MacLeman, M. Smith, and J. R. McDonald, “Actively managing wind farm power 

output,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1523–1524, 2008.  

[11] O. Samuelsson, S. Repo, R. Jessler, J. Aho, M. Karenlampi, and A. Malmquist, “Active distribution network—Demonstration project 

ADINE,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Oct. 2010. 

[12] M. J. Dolan et al., “Distribution power flow management utilizing an online optimal power flow technique,” IEEE Trans. Power Syst., vol. 

27, no. 2, pp. 790–799, 2012. 

[13] F. Pilo, G. Pisano, and G. G. Soma, “Optimal coordination of energy resources with a two-stage online active management,” IEEE Trans. 

Ind. Electron., vol. 58, no. 10, pp. 4526–4537, 2011. 

[14] S. L. Hay, G.W. Ault, K. R.W. Bell, and J. R. McDonald, “System operator interfaces to active network management schemes in future 

distribution networks,” in Proc. 43rd Int. Universities Power Eng. Conf. (UPEC), Sep. 2008. 

[15] A. Shafiu, T. Bopp, I. Chilvers, and G. Strbac, “Active management and protection of distribution networks with distributed generation”, in 

Proc. IEEE Power Eng. Soc. General Meeting, 2004. 

[16] R. Hidalgo, C. Abbey, and G. Joos, “Technical and economic assessment of active distribution network technologies,” in Proc. IEEE Power 

Energy Soc. General Meeting, 2011. 

[17] Z. Hu and F. Li, “Cost-benefit analyses of active distribution network management, part I: Annual benefit analysis,” IEEE Trans. Smart 

Grid, vol. 3, no. 3, pp. 1067–1074, Sep. 2012. 

[18] H. Falaghi andM. R. Haghifam, “ACO based algorithm for distributed generation sources allocation and sizing in distribution systems,” in 

Proc. IEEE Power Tech, 2007, pp. 555–560. 

[19] Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for optimal allocation of wind-based distributed generation in distribution 

systems” IET Renew. Power Gener., vol. 5, no. 1, pp. 79–88, 2011. 

[20] H. M. Ayres, W. Freitas, M. C. De Almeida, and L. C. P. Da Silva, “Method for determining the maximum allowable penetration level of 

distributed generation without steady-state voltage violations,” IET Gener. Transm. Distrib., vol. 4, no. 4, pp. 495–508, 2010. 



27 

 

[21] A. A. Tamimi, A. Pahwa, and S. Starrett, “Effective wind farm sizing method for weak power systems using critical modes of voltage 

instability,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1610–1617, 2012.  

[22] D. J. Burke and M. J. O’Malley, “Maximizing firm wind connection to security constrained transmission networks,” IEEE Trans. Power 

Syst., vol. 25, no. 2, pp. 749–759, 2010. 

[23] T. H. M. El-Fouly, H. H. Zeineldin, E. F. El-Saadany, and M. M. A. Salama, “Impact of wind generation control strategies, penetration 

level and installation location on electricity market prices,” IET Renew. Power Gener., vol. 2, no. 3, pp. 162–169, 2008. 

[24] M. Zhao, Z. Chen, and F. Blaabjerg, “Probabilistic capacity of a grid connected wind farm,” in Proc. 31st IEEE Annu. Conf. Industrial 

Electronics Society (IECON), 2005, pp. 774–779. 

[25] A.Rabiee, A.Soroudi, B. Mohammadi-Ivatloo, M. Parniani, “Corrective voltage control scheme considering demand response and stochastic 

wind power”,  IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2965 - 2973, 2014. 

[26] A.Rabiee, A.Soroudi, “Stochastic multiperiod OPF model of power systems with HVDC-connected intermittent wind power generation”, 

IEEE Trans. Power Syst., vol. 29, no. 1, pp. 336–344, 2014.  

[27] P. Siano, G. Mokryani, "Evaluating the benefits of optimal allocation of wind turbines for distribution network operators", IEEE Syst. 

J., vol.9, no.2, pp.629-638, 2015. 

[28] G. Mokryani, A. Majumdar, B.C. Pal, "Probabilistic Method for the Operation of Three-Phase Unbalanced Active Distribution Networks", 

IET Renew. Power Gener., vol.10, no.7, pp.944-954, 2016. 

[29] M. Tsili, S. Papthanssiou, “A review of grid code technical requirements for wind farms, IET Renew. Power Gener., vol.3, no.3, pp. 308-

332, 2009. 

[30] P.N. Vovos, A.E. Kiprakis, A.R. Wallace, and G.P. Harrison, “Centralised and distributed voltage control: impact on distributed generation 

penetration”, IEEE Trans. Power Syst., vol.22, no.1, pp. 476-483, 2007. 

[31] G. Mokryani, P. Siano, A. Piccolo, Zhe Chen," Improving fault ride-through capability of variable speed wind turbines in distribution 

networks", IEEE Syst. J., vol.7, no.4, pp.713-722, 2013. 

[32] Distributed Generation and Sustainable Electrical Energy Centre. United Kingdom Generic Distribution System (UKGDS). [Online]. 

Available: http://www.sedg.ac.uk. 

[33] A. G. Tsikalakis and N. D. Hatziargyriou, “Centralized control for optimizing microgrids operation,” IEEE Trans. Energy Convers., vol. 23, 

no. 1, pp. 241–248, 2008. 

[34] P. Siano, G. Mokryani, "Evaluating the Benefits of Optimal Allocation of Wind Turbines for Distribution Network Operators", IEEE Syst. 

J., vol.9, no.2, pp.629-638, 2015. 

[35] G. Mokryani, P. Siano,  "Evaluating the Integration of Wind Power into Distribution Networks by using Monte Carlo Simulation", Int. J. 

Electrical Power and Energy Syst., vol. 53, pp.244-255, 2013. 

[36] P. Siano, G. Mokryani, "Assessing Wind Turbines Placement in a Distribution Market Environment by Using Particle Swarm 

Optimization", IEEE Trans. Power Syst., vol.28, no.4, pp.3852-3864, 2013. 

[37] G. Mokryani, P. Siano, "Combined Monte Carlo Simulation and OPF for Wind Turbines Integration into Distribution Networks", Electr. 

Power Syst. Res., vol.103, pp.37-48, 2013. 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6803089
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6803089
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6514702
http://www.sedg.ac.uk/


28 

 

[38] G. Mokryani, P. Siano, "Optimal Wind Turbines Placement within a Distribution Market Environment", Applied Soft Computing, vol.13, 

no.10, pp. 4038-4046, 2013. 

[39] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, “GAMS A User’s Guide”, GAMS Development Corporation, Washington DC, 1998. 


