68 research outputs found

    Semiautomated 3D liver segmentation using computed tomography and magnetic resonance imaging

    Get PDF
    Le foie est un organe vital ayant une capacité de régénération exceptionnelle et un rôle crucial dans le fonctionnement de l’organisme. L’évaluation du volume du foie est un outil important pouvant être utilisé comme marqueur biologique de sévérité de maladies hépatiques. La volumétrie du foie est indiquée avant les hépatectomies majeures, l’embolisation de la veine porte et la transplantation. La méthode la plus répandue sur la base d'examens de tomodensitométrie (TDM) et d'imagerie par résonance magnétique (IRM) consiste à délimiter le contour du foie sur plusieurs coupes consécutives, un processus appelé la «segmentation». Nous présentons la conception et la stratégie de validation pour une méthode de segmentation semi-automatisée développée à notre institution. Notre méthode représente une approche basée sur un modèle utilisant l’interpolation variationnelle de forme ainsi que l’optimisation de maillages de Laplace. La méthode a été conçue afin d’être compatible avec la TDM ainsi que l' IRM. Nous avons évalué la répétabilité, la fiabilité ainsi que l’efficacité de notre méthode semi-automatisée de segmentation avec deux études transversales conçues rétrospectivement. Les résultats de nos études de validation suggèrent que la méthode de segmentation confère une fiabilité et répétabilité comparables à la segmentation manuelle. De plus, cette méthode diminue de façon significative le temps d’interaction, la rendant ainsi adaptée à la pratique clinique courante. D’autres études pourraient incorporer la volumétrie afin de déterminer des marqueurs biologiques de maladie hépatique basés sur le volume tels que la présence de stéatose, de fer, ou encore la mesure de fibrose par unité de volume.The liver is a vital abdominal organ known for its remarkable regenerative capacity and fundamental role in organism viability. Assessment of liver volume is an important tool which physicians use as a biomarker of disease severity. Liver volumetry is clinically indicated prior to major hepatectomy, portal vein embolization and transplantation. The most popular method to determine liver volume from computed tomography (CT) and magnetic resonance imaging (MRI) examinations involves contouring the liver on consecutive imaging slices, a process called “segmentation”. Segmentation can be performed either manually or in an automated fashion. We present the design concept and validation strategy for an innovative semiautomated liver segmentation method developed at our institution. Our method represents a model-based approach using variational shape interpolation and Laplacian mesh optimization techniques. It is independent of training data, requires limited user interactions and is robust to a variety of pathological cases. Further, it was designed for compatibility with both CT and MRI examinations. We evaluated the repeatability, agreement and efficiency of our semiautomated method in two retrospective cross-sectional studies. The results of our validation studies suggest that semiautomated liver segmentation can provide strong agreement and repeatability when compared to manual segmentation. Further, segmentation automation significantly shortens interaction time, thus making it suitable for daily clinical practice. Future studies may incorporate liver volumetry to determine volume-averaged biomarkers of liver disease, such as such as fat, iron or fibrosis measurements per unit volume. Segmental volumetry could also be assessed based on subsegmentation of vascular anatomy

    Liver Segmentation and its Application to Hepatic Interventions

    Get PDF
    The thesis addresses the development of an intuitive and accurate liver segmentation approach, its integration into software prototypes for the planning of liver interventions, and research on liver regeneration. The developed liver segmentation approach is based on a combination of the live wire paradigm and shape-based interpolation. Extended with two correction modes and integrated into a user-friendly workflow, the method has been applied to more than 5000 data sets. The combination of the liver segmentation with image analysis of hepatic vessels and tumors allows for the computation of anatomical and functional remnant liver volumes. In several projects with clinical partners world-wide, the benefit of the computer-assisted planning was shown. New insights about the postoperative liver function and regeneration could be gained, and most recent investigations into the analysis of MRI data provide the option to further improve hepatic intervention planning

    Exploring Patterns of Dynamic Size Changes of Lesions after Hepatic Microwave Ablation in an In Vivo Porcine Model

    Get PDF
    Microwave ablation (MWA) is a type of minimally invasive cancer therapy that uses heat to induce necrosis in solid tumours. Inter- and post-ablational size changes can influence the accuracy of control imaging, posing a risk of incomplete ablation. The present study aims to explore post-ablation 3D size dynamics in vivo using computed tomography (CT). Ten MWA datasets obtained in nine healthy pigs were used. Lesions were subdivided along the z-axis with an additional planar subdivision into eight subsections. The volume of the subsections was analysed over different time points, subsequently colour-coded and three-dimensionally visualized. A locally weighted polynomial regression model (LOESS) was applied to describe overall size changes, and Student's t-tests were used to assess statistical significance of size changes. The 3D analysis showed heterogeneous volume changes with multiple small changes at the lesion margins over all time points. The changes were pronounced at the upper and lower lesion edges and characterized by initially eccentric, opposite swelling, followed by shrinkage. In the middle parts of the lesion, we observed less dimensional variations over the different time points. LOESS revealed a hyperbolic pattern for the volumetric changes with an initially significant volume increase of 11.6% (111.6% of the original volume) over the first 32 minutes, followed by a continuous decrease to 96% of the original volume (p < 0.05)

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics

    AUTOMATIC LIVER SEGMENTATION FROM CT SCANS USING INTENSITY ANALYSIS AND LEVEL-SET ACTIVE CONTOURS

    Get PDF
    Liver segmentation from CT scans is still a challenging task due to the liver characteristics in terms of shape and intensity variability. In this work, we propose an automatic segmentation method of the liver from CT data sets. The framework consists of three main steps: liver shape model localization, liver intensity range estimation and localized active contouring. We proposed an adaptive multiple thresholding technique to estimate the range of the liver intensities. First, multiple thresholding is used to extract the dense tissue from the whole CT scan. A localization step is then used to find the approximate location of the liver in the CT scan, to localize a constructed mean liver shape model. A liver intensity-range estimation step is then applied within the localized shape model ROI. The localized shape model and the estimated liver intensity range are used to build the initial mask. A level set based active contour algorithm is used to deform the initial mask to the liver boundaries in the CT scan. The proposed method was evaluated on two public data sets: SLIVER07 and 3D-IRCAD. The experiments showed that the proposed method is able to segment to liver in all CT scans in the two data sets accurately

    Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation

    Full text link
    Modeling the liver deformation forms the basis for the development of new clinical applications that improve the diagnosis, planning and guidance in liver surgery. However, the patient-specific modeling of this organ and its validation are still a challenge in Biomechanics. The reason is the difficulty to measure the mechanical response of the in vivo liver tissue. The current approach consist of performing minimally invasive or open surgery aimed at estimating the elastic constant of the proposed biomechanical models. This dissertation presents how the use of medical image analysis and evolutionary computation allows the characterization of the biomechanical behavior of the liver, avoiding the use of these minimally invasive techniques. In particular, the use of similarity coefficients commonly used in medical image analysis has permitted, on one hand, to estimate the patient-specific biomechanical model of the liver avoiding the invasive measurement of its mechanical response. On the other hand, these coefficients have also permitted to validate the proposed biomechanical models. Jaccard coefficient and Hausdorff distance have been used to validate the models proposed to simulate the behavior of ex vivo lamb livers, calculating the error between the volume of the experimentally deformed samples of the livers and the volume from biomechanical simulations of these deformations. These coefficients has provided information, such as the shape of the samples and the error distribution along their volume. For this reason, both coefficients have also been used to formulate a novel function, the Geometric Similarity Function (GSF). This function has permitted to establish a methodology to estimate the elastic constants of the models proposed for the human liver using evolutionary computation. Several optimization strategies, using GSF as cost function, have been developed aimed at estimating the patient-specific elastic constants of the biomechanical models proposed for the human liver. Finally, this methodology has been used to define and validate a biomechanical model proposed for an in vitro human liver.Martínez Martínez, F. (2014). Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39337TESI

    A Computational Image-Based Guidance System for Precision Laparoscopy

    Get PDF
    This dissertation presents our progress toward the goal of building a computational image-based guidance system for precision laparoscopy; in particular, laparoscopic liver resection. As we aim to keep our working goal as simple as possible, we have focused on the most important questions of laparoscopy - predicting the new location of tumors and resection plane after a liver maneuver during surgery. Our approach was to build a mechanical model of the organ based on pre-operative images and register it to intra-operative data. We proposed several practical and cost-effective methods to obtain the intra-operative data in the real procedure. We integrated all of them into a framework on which we could develop new techniques without redoing everything. To test the system, we did an experiment with a porcine liver in a controlled setup: a wooden lever was used to elevate a part of the liver to access the posterior of the liver. We were able to confirm that our model has decent accuracy for tumor location (approximately 2 mm error) and resection plane (1% difference in remaining liver volume after resection). However, the overall shape of the liver and the fiducial markers still left a lot to be desired. For further corrections to the model, we also developed an algorithm to reconstruct the 3D surface of the liver utilizing Smart Trocars, a new surgical instrument recognition system. The algorithm had been verified by an experiment on a plastic model using the laparoscopic camera as a mean to obtain surface images. This method had millimetric accuracy provided the angle between two endoscope views is not too small. In an effort to transit our research from porcine livers to human livers, in-vivo experiments had been conducted on cadavers. From those studies, we found a new method that used a high-frequency ventilator to eliminate respiratory motion. The framework showed the potential to work on real organs in clinical settings. Hence, the studies on cadavers needed to be continued to improve those techniques and complete the guidance system.Computer Science, Department o

    Prospective study for commercial and low-cost hyperspectral imaging systems to evaluate thermal tissue effect on bovine liver samples

    Get PDF
    Thermal ablation modalities, for example radiofrequency ablation (RFA) and microwave ablation, are intended to prompt controlled tumour removal by raising tissue temperature. However, monitoring the size of the resulting tissue damage during the thermal removal procedures is a challenging task. The objective of this study was to evaluate the observation of RFA on an ex vivo liver sample with both a commercial and a low-cost system to distinguish between the normal and the ablated regions as well as the thermally affected regions. RFA trials were conducted on five different ex vivo normal bovine samples and monitored initially by a custom hyperspectral (HS) camera to measure the diffuse reflectance (Rd) utilising a polychromatic light source (tungsten halogen lamp) within the spectral range 348–950 nm. Next, the light source was replaced with monochromatic LEDs (415, 565 and 660 nm) and a commercial charge-coupled device (CCD) camera was used instead of the HS camera. The system algorithm comprises image enhancement (normalisation and moving average filter) and image segmentation with K-means clustering, combining spectral and spatial information to assess the variable responses to polychromatic light and monochromatic LEDs to highlight the differences in the Rd properties of thermally affected/normal tissue regions. The measured spectral signatures of the various regions, besides the calculation of the standard deviations (δ) between the generated six groups, guided us to select three optimal wavelengths (420, 540 and 660 nm) to discriminate between these various regions. Next, we selected six spectral images to apply the image processing to (at 450, 500, 550, 600, 650 and 700 nm). We noticed that the optimum image is the superimposed spectral images at 550, 600, 650 and 700 nm, which are capable of discriminating between the various regions. Later, we measured Rd with the CCD camera and commercially available monochromatic LED light sources at 415, 565 and 660 nm. Compared to the HS camera results, this system was more capable of identifying the ablated and the thermally affected regions of surface RFA than the side-penetration RFA of the investigated ex vivo liver samples. However, we succeeded in developing a low-cost system that provides satisfactory information to highlight the ablated and thermally affected region to improve the outcome of surgical tumour ablation with much shorter time for image capture and processing compared to the HS system

    Three-Dimensional Printed Liver Models for Surgical Planning and Intraoperative Guidance of Liver Cancer Resection: A Systematic Review

    Get PDF
    Successful liver cancer resection requires a comprehensive pre- and intraoperative understanding of the spatial relationships between a patient’s cancer and intrahepatic anatomy. The recent literature has highlighted that patient-specific 3D-printed liver models (3DPLMs) reconstructed from medical imaging data may enhance the comprehension of patients’ liver anatomy and thereby provide a useful preoperative planning and intraoperative guidance tool for liver cancer resection (LCR). The purpose of this systematic review was to critically examine the utility and feasibility of 3DPLMs for LCR surgical planning and intraoperative guidance and explore whether these applications improve patient outcomes. Articles were retrieved from four electronic databases (Scopus, Embase, PubMed, and Curtin University Database) according to predetermined eligibility criteria. In total, 22 eligible articles were identified, including 11 original research articles and 11 case reports. Key concepts were synthesised using an inductive content analysis approach suitable for this heterogeneous body of literature. There is significant descriptive and case-report evidence that 3DPLMs strengthen pre- and intraoperative comprehension of patient liver and liver tumour anatomy and can enhance pre- and intraoperative surgical decision making for LCR. The analysis of these studies presents large variances in the times and costs necessary to produce 3DPLMs, as studies did not provide the full expenses of materials, software, and equipment. Production times were focused on different aspects of the 3D printing process and were not comparable. The review nonetheless demonstrates the potential value of 3DPLMs as preoperative planning and intraoperative guidance tools for LCR. Future studies should detail these economic data points to ensure 3DPLMs’ viability. Further experimental research and randomised controlled trials are also necessary to examine the relationship between 3DPLMs and patient’s intra- and postoperative outcomes
    • …
    corecore