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1.1 Clinical background

1 Introduction

The liver is a large organ that is located in the right part of the abdomen and plays
important role in the digestive system. It has some characteristics which make it unique
among other abdominal organs. Its function is vital and cannot be substituted with any
machine. Furthermore, it has exceptional regenerative capability. The last property is
mainly due to its modular structure which makes it possible to consider the organ as a set
of functionally independent units. The liver is threatened by several diseases. Besides the
poisoning, various infections can affect this organ. The most serious liver diseases can
turn into primary liver cancer. Furthermore, metastases of other cancers can frequently
occur in the liver. Due to its special properties the clinical analysis of the liver requires
organ specific functions.

Computerized medical image processing plays important role in various fields of
medicine such as diagnosis, therapy planning, or monitoring. There are 3-dimensional
(3D) imaging techniques which allow in-vivo visualization of the internal structure of the
human body. Due to the aging society and the widespread of modern imaging
technologies the number of medical images to be processed is increasing in the clinical
practice. There is significant need for software tools which accelerate the medical image
analysis and make it objective and reproducible. The most important functions of this area
are visualization, segmentation, and registration. This thesis focuses on the second main
area, the segmentation of medical images.

This chapter gives an overview about the medical and technical background of this thesis.
In Section 1.1 one can read about the clinical motivations of the presented works.
Section 1.2 describes the main concepts of image segmentation, which demonstrates the
theoretical background of the proposed algorithms. Section 1.3 summarizes the problems
addressed by this thesis and outlines the chapters of the thesis.

1.1 Clinical background

This section presents basic information about the liver, its internal structure, and one of its
major diseases: the liver cancer. Furthermore, a short description is provided about the 3D
medical imaging of the organ, which is followed by a high-level overview of the main
cancer treatment options. Finally, the clinical needs related to liver cancer diagnosis and
therapy are demonstrated.

The liver is the largest organ in the human body (its volume is around 1.5 litres). The
organ is located in the right abdomen below the right lung lobe and the heart (Fig. 1.1/a).
It is surrounded by the stomach, the spleen and the pancreas (from left), the small
intestine, the colon and the right kidney (from below) and the chest wall and the ribcage
(from right and front).

The healthy liver consists of one type of tissue called parenchyma that processes nutrients
in the blood. The organ plays important role in the metabolism. Its function is vital
(unlike the spleen) which cannot be substituted by artificial organ or medical device
(unlike the heart or the kidney). That is why the malfunction of the liver can cause death
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in short time (within days). The most common diseases, which can lead to liver disorders,
are: infections (e.g. variants of hepatitis virus), alcohol damage, fatty liver (due to
obesity), cancer, poisoning, or drug damage.

&
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e

Figure 1.1 Location of the liver in the human body (a) [14] and the segmental structure of the organ (b) [15].

The liver has four vessel structures: the hepatic arteries supply the liver with Oxygen; the
portal vein carries nutrient-rich blood from the intestines and the colon; the processed
blood leaves the organ through the hepatic vein; and the bile produced by liver cells
drains through the biliary tree into the gallbladder. The special arrangement of vessels
allows dividing the liver into eight segments (Fig 1.1/b) which can be considered as
functionally independent parts.

Thanks to its segmental structure the liver is able to regenerate after a serious disease that
affects only a part of the liver. Since segments are functionally independent, the one(s)
affected by the pathology can be completely removed or killed (by injecting poison into
the vessels supplying the corresponding part). In such cases the other segments can grow
significantly, which can compensate the loss of liver volume due to the operation or
intervention. This way, the disabled segments are not regenerated rather their function is
restored by the other parts.

Cancer is a generic term for diseases when abnormal cells are rapidly formed inside an
organ (primary tumour) which can grow beyond the boundary of the organ and spread to
the other parts of the body (metastasis). According to the World Health Organization
(WHO) cancer is one of the leading causes of death worldwide [16]. It was responsible
for 7.6 million deaths in 2008 and the number of cancer deaths is estimated to rise over 11
million by 2030. The mortality leading cancer types develop in the lung, the stomach, the
liver, the colon, and the breast.

The malignant liver lesions (in other word tumours) are the third cause of cancer deaths.
Although primary liver cancer (e.g. hepatocellular carcinoma) is relatively rare (only 3-
5% of all liver tumours), most of the liver tumours (95-97%) are metastases which
usually originate from the colon, the breast, or the lung. The special properties of the
liver, such as the homogeneous parenchyma and the significant amount of blood filtered
by the organ make it the second most frequent target for metastases (after lymph nodes).
The liver metastases can lead to earlier death than the primary tumour due to the essential
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function of the organ, which makes the early detection and the treatment of liver tumours
very important.

The lack of symptoms in the early stage of the disease makes it very difficult to diagnose
liver cancer before it is advanced. The result of routinely performed blood tests or
ultrasound examinations can indicate liver cancer, but there is no widely used and
efficient screening method available in the clinical practice. When liver tumour is
suspected 3D imaging modalities are used to localize (with respect to segments, vessel
structures, or surrounding organs), to characterize (with respect to size, or type), and to
monitor (assess its change of size in time).

Figure 1.2 The non-contrast (a), the arterial (arteries enhanced — b), the portal-venous (liver veins enhanced — c),
and the late (parenchyma enhanced — d) phases of a multi-phase liver CT examination.

The most common 3D modality used for liver tumour assessment is computed
tomography (CT). CT is a technique for reconstructing cross-sections of the human body
based on its X-ray projections acquired from multiple directions using inverse Radon
transformation. Contrast agents are frequently used in connection with CT imaging. In
such examinations iodine containing medicine, which increases the X-ray attenuation of
the blood, is injected into the patient before the scan. Due to the presence of the contrast
agent, hyper-vascularized tissue (structures surrounded by many small vessels, such as
tumours) is enhanced in the reconstructed image, making pathologic tissue more visible
compared to healthy parenchyma. The speed of contrast uptake varies significantly
among different tissue types, which allows further characterization of the soft tissue. This
property can be exploited when multiple images (i.e. phases) are acquired after contrast
injection according to a predefined timing protocol. Multi-phase imaging can provide
native (pre-contrast), arterial (arterial enhancement, 30 sec), portal (portal-venous
enhancement, 60 sec), and late (parenchymal enhancement, 180 sec) phases (Fig. 1.2). In
the clinical practice, portal-phase image is always acquired, the arterial image is also very
common, while the native or the late phases are created less frequently.

Another 3D imaging modality, which is frequently used for liver analysis, is magnetic
resonance imaging (MR). In the MR device the patient is placed into a strong magnetic
field that induces a homogeneous alignment of Hydrogen protons found in the patient.
The protons are excited with high-energy radio-frequency (RF) signal, which makes them
align in heterogeneous way according to the type of molecule there are located in. When
excitation is over, all protons return to the homogeneous alignment while they release RF
signal that is characteristic to the proton’s chemical environment. The signals are received
by antennas (referred as coils) attached to the patient and the image is reconstructed using
inverse Fourier transform. MR modality allows significantly better soft tissue
differentiation compared to CT, thus provides additional information for tumour
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characterization. However, it is very sensitive to noise, so the images are usually affected
by various artefacts, which makes the computerized processing of MR images very
challenging. MR images can also be enhanced using (e.g. gadolinium-based) contrast
agents which change the magnetic properties of the blood making the hyper-vascularized
tissue more visible. Figure 1.3 shows the CT and the MR acquisition of the same patient.

Figure 1.3 Contrast-enhanced CT (a) and MR (b) image of the same liver. Different modalities provide different
information and are affected by different type of artefacts.

Several treatment options are available for liver cancer. The applied therapy depends on
many conditions, such as tumour properties (e.g. size and location), the number of
tumours and their distribution (e.g. tumour is solitary or spread throughout the liver), the
stage of the disease (e.g. initial treatment or reoccurrence), and the overall condition of
the liver (e.g. cirrhosis). The therapeutic options involve (minimally invasive) surgery,
interventional radiology, chemotherapy, radiation therapy, and the combination of these
techniques.

Surgical tumour resection is considered as gold-standard for liver tumour treatment
because the reoccurrence rate of this treatment type is the lowest and the long term
survival rate is the highest for this type of therapy. Unfortunately, it cannot be applied in
most of the cases (e.g. there are multiple lesions, or lesion is located close to some critical
anatomical structure, or anaesthesia has serious risk). There are minimally invasive
surgical operations, too, such as CT or ultrasound guided laparoscopic surgery, which
allows direct access to a liver tumour (through a thin tube) without dissection of the
patient. This therapy is safe and efficient and reduces patient recovery time, but its
application has even more limitations than the traditional surgery.

When the cancer is advanced (i.e. multiple tumours of various sizes are found in the
liver), the techniques of the interventional radiology are frequently applied. This group of
treatments involves trans-arterial chemo-embolization (i.e. tumour feeding vessels are
injected with drugs and subsequently blocked through a catheter); radio-frequency
ablation (i.e. probes are inserted into the tumour and high frequency alternating current is
used to heat up the tumour); cryo-ablation (i.e. probes are inserted into the tumour that is
frozen by a liquid circulated in the probes). The primary advantages of these techniques
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are the localized treatment (i.e. other part of the liver or the body is not affected) and the
short hospital stay of the patient.

Another, less common, localized cancer treatment technique for patients whose liver
tumours cannot be surgically removed is radiation therapy. In this process cancerous
cells are damaged using ionizing radiation directed toward the tumour. The most
important disadvantage of this technique is that the radiation beams can pass through
significant amount of healthy tissue, which can cause damage in surrounding organs.
When the cancer is spread overall the body, chemo therapy is usually applied. During this
type of treatment the patient takes drugs which destroy the tumorous cells (and also
significant amount of healthy cells). Since drugs are very expensive it is important to
precisely quantify the change in tumour size during the treatment. This therapy can be
applied alone or in combination with other techniques.

The main activities related to clinical tumour assessment are screening, diagnosis,
therapy- planning, and monitoring. Screening, per definition, is performed involving large
number of patients, so cost-efficient (e.g. blood test or ultrasound) examinations are
mostly applied instead of the expensive 3D imaging techniques (CT, MR). That is why
the benefit of computerized image processing is limited at this area.

When liver tumour is suspected, CT or MR (or both) image is acquired in order to
diagnose (i.e. detect, characterize and quantify) the lesion. The computer aided detection
(CAD) of lesions has extensive history [17]. Various software applications are available
to detect lung nodules or colon polyps for more than 10 years, but liver specific CAD
applications have only recently released, so they are not wide-spread in clinical practice.
The liver lesion assessment could be facilitated by automated enhancement and detection
of lesions based on automated liver segmentation.

Another important diagnostic task is lesion characterization which involves defining the
pathology of the lesion (e.g. benign or malignant). The gold standard for lesion
characterization is biopsy (i.e. analyse small tissue sample taken from the interior of the
lesion), but certain image features, such as density in CT image, contrast-enhancement
pattern in multiphase CT or MR images, hyper-vascularization (presence of many small
arteries), or necrosis (i.e. dead tissue in the centre of the lesion) can indicate lesion type.
Lesion characterization can be facilitated by fused visualization of different phases which
requires precise inter-phase registration (to compensate respiratory motion between the
different phases).

The most important diagnostic tasks is lesion quantification which involves measuring
the tumour size (e.g. largest axial diameter in 2D, or volume in 3D), its volume relative to
the segment or lobe it is located in, or the total tumour burden (i.e. the ratio of pathologic
and healthy tissue within the liver). These functions can be facilitated with automated
lesion segmentation.

When the lesion is classified as malignant, the next step is the therapy planning. For
surgical resection the tumour size and location (e.g. relative to organ/segment/lobe
boundary), the distance of the tumour from vessels or other critical anatomical structures,
and the quantification of the resected and remaining liver volume are very important. The
interventional radiology focuses on the tumour feeding vessels (e.g. embolization) or
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proximity of large vessels which serve as heat sink (e.g. RF ablation). Radiation therapy
requires the precise tumour contour (to define gross target volume), while chemo therapy
needs the number, the size, and location of all liver tumours. The above mentioned
functions can be facilitated by segmentation and visualization of the tumours, the liver
vessels, and the segments or lobes.

The last, but very important task related to tumour assessment is monitoring treatment
efficiency. This activity primarily involves the quantification of the change in tumour size
or volume (to differentiate regression and progression), and the detection of recurrent or
new lesions. These functions can be facilitated by the registration of the images belonging
to different dates, the automated propagation of tumour contour to the follow-up exams,
and the detection of new lesions.

The implementation of all the above-mentioned functions would have serious impact to
the clinical liver tumour assessment. The automation of some functions (e.g. liver
segmentation) could speed-up various workflows, which allows the physician spending
more time with the challenging cases and less time with the routine work. The automated
segmentation of anatomical structures (e.g. lesion detection) could make quantification
tasks more objective and reproducible. It could also reduce the inter-operator variability,
which makes clinical decisions more reliable. Furthermore, the development of new
functions (e.g. anatomical segment or lobe separation) could make complex functions
available for the clinical routine.

1.2 Segmentation of medical images

The goal of this section is to introduce the theoretical background of medical image
segmentation. In Subsection 1.2.1 the basic concepts related to grayscale images,
histograms, and image segmentation are presented. Subsection 1.2.2 gives an overview
about the main types of grayscale image segmentation techniques which are used or
referred in the latter chapters.

1.2.1 Basic concepts of image segmentation

The input of the segmentation methods presented in this thesis is a 3D grayscale image
that maps each element of a finite 3D grid into an integer value referred as gray-level.
More formally, assume that that X,Y,Z € Z* denote the image size and G =
{min» Gmin + L, -, Gmax — 1, Gmax} € Z denotes a finite set of gray-levels. A grayscale
image can be represented by the following function:

7:{0,.., X =1} x{0,..,Y =1} x{0,..,Z =1} > G

such that forany 0 <x <X, 0<y<Y,and 0 <z < Z, I(x,v,z) represents the gray-
level of the image at index position (x,y, z) that is also referred as voxel of the image.
Index positions are usually represented with vectors, where 7(i) denotes 7(x, y, z) for an
i = (x,y,z). In medical image processing, grayscale images are usually associated with a
geometry that assigns a 3D spatial position (R3) to each voxel. Assume that o=
(0x,0y,0,) € R? denotes the origin and s = (s, sy,s,) € (R*)? the voxel spacing of the
image, the position of the voxel (x, y, z) is equal to (o, + xsy, 0y + ¥y, 0, + 2s,).

10
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In X-ray computed tomography (introduced in Section 1.1) multiple 2-dimensional cross-
sections of the human body are reconstructed, which results in a 3D grayscale image. In
case of CT examinations o is usually set to an anatomical point located in the region of
interest, s is set according to the desired resolution, X and Y are equal to 512, Z depends
on the size of the acquired body part and the value of s,, and the gray-levels are in the
range of -1024 and 1024. For example, in case of a typical liver CT examination the
length of the acquired region is usually 200 mm. Assuming 400 mm field of view (FOV),
0.7 mm in-plane resolution (s, = s, = 0.7), and 1 mm slice thickness (s, = 1), the size
of the image is 512 x 512 x 200. The gray-levels are represented by 12 bit (technically 16
bit) integers, so the memory needed to represent such an image is equal to 100 MB.

Figure 1.4 Axial (a), coronal (b) and sagittal (c) section of a contrast-enhanced liver CT examination.

Figure 1.4 demonstrates a typical liver CT examination. The 3D image is visualized by
three orthogonal sections: an axial (z is constant), coronal (y is constant), and sagittal (x
is constant). Note that the whole (or a sub) set of gray-levels is transformed to the range
supported by the display device when a grayscale image is visualized. A mean computer
monitor can visualize 256 gray-levels, while advanced medical devices can support 512
or 1024 gray-levels.
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Figure 1.5 Histogram of a contrast-enhanced liver CT examination.

The distribution of gray-levels plays important role in image processing. The graphical
representation of this distribution is referred as histogram. The histogram of an image
assigns the number of occurrence to each gray-level in the image. Formally, the
histogram of image 7 can be represented by the function H : G — N, where

H@)={xy2):( 0sx<XHANO<y<NA0=<z<Z)A0(xy2) =g}

11
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The histogram is usually normalized with the total number of voxels (X - Y - Z). In such
case H (g) represents the probability of a voxel to be equal to g. Figure 1.5 demonstrates
the histogram of the liver CT examination presented in Fig. 1.4. According to the chart
many voxels have gray-level between -1024 and -900 (representing the air) and there are
three separate peaks in the range of -200 to 300 (representing the fat, the soft tissue, and
the contrast-enhanced soft tissue).

Segmentation is the process of partitioning an image into multiple set of voxels which
represent some meaningful parts of the image. In medical image processing the
segmentation includes contouring organs within a body region as well as separating an
organ into its internal structures such as parenchyma, vessels, or pathology. By means of
segmentation medical image analysis can be specialized to organs, the size or the volume
of anatomical structures can be measured precisely, and the level of abnormality can be
quantified objectively. These functions are vital when the progression or the regression of
a disease shall be determined.

More formally, the segmentation of an image is a function that assigns a discrete label to
each voxel of the image. Assume that L = {0,1, ..., l,,ax} © N denotes a set of discrete
labels, where label 0 belongs to the background and the positive labels belong to the
different parts of the image. The segmentation (or labelling) of an image can be
represented with the following function:

£:{0,..,.X—1}x{0,..,Y =1} x{0,..,Z =1} > L

A segmentation is referred as binary segmentation when the set of labels consists of two
elements (L = {0,1}). For example, liver segmentation refers to the binary segmentation
where 1 is assigned to voxels which belong to the liver and 0 is assigned to the other
voxels. Figure 1.6 demonstrates the liver segmentation belonging to the already presented
liver CT examination. The liver voxels can be overlaid on the 2D sections of the
grayscale image using colours (Fig. 1.6/a-b). Binary segmentations can be also visualized
in 3D view using surface or volume rendering. The surface rendering of the segmented
liver can be seen on Fig. 1.6/c.

Figure 1.6 Liver segmentation overlaid on axial (a) and coronal (b) slices of a contrast-enhanced liver CT
examination and visualized in 3D view (c).

There are various techniques for segmenting grayscale images. Most of the methods are
based on intensity J(x,y,z), gradient VJ = (d7/0x,d7/0dy,07/0z), or gradient
magnitude ||V7]||. Intensity-based methods rely on the fact that the gray-level is uniform
inside each structure to be segmented, while gradient-based methods exploit that the

12
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object to be segmented is encompassed by sharp edges. The first approach is useful for
CT images, where the gray-level represents a physical quantity (X-ray attenuation
coefficient) that does not alter among examinations. The second approach can be used for
magnetic resonance (MR) images, where the intensity differences play bigger role than
the actual intensity.

The next subsection gives an overview about the frequently used segmentation techniques
including simple and more sophisticated ones. The goal is to present the basic approaches
which are the building blocks of sophisticated algorithms. Problem specific segmentation
methods (e.g. for liver or lesions) will be presented in the introduction of latter chapters.

1.2.2 Overview of segmentation techniques

The simplest segmentation method is to separate the set of voxels into two disjoint sets
based on a pre-defined threshold. The first set involves voxels whose gray-level is below
threshold and the other one involves all remaining voxels. It is possible to define more
than one threshold (in increasing order). In this case the first set involves voxels whose
gray-level is below the first threshold, the second involves voxels of the remaining set,
whose gray-level is below the first threshold, and so on. The thresholds can be defined
dynamically by locating peaks and valleys on the histogram of the image. Another data
driven approach is the adaptive thresholding, when a global threshold is adjusted based on
the local environment of each voxel.

Clustering methods separate the voxels of an image into a fixed number of clusters based
on gray-level similarity. These methods are iterative. They start with some initial clusters,
and continue modifying the clusters until they change. K-means [18] is a basic algorithm
that minimizes the variance in a fixed number of clusters, where cluster is represented by
its mean value. The cluster means can be initialized randomly or according to various
heuristics. In each iteration two steps are performed. In the first step (expectation) each
voxel is assigned to the cluster that minimizes the distance between the voxel and the
cluster mean. In the second step (maximization) cluster means are recomputed based on
the actual assignments. The iterations stop, when cluster centres don’t change
significantly. The distance of the voxel and the cluster centre can incorporate the gray-
level, the spatial location, or any other feature, or the weighted sum of more features.

Region-growing [19] is an iterative approach that is started form an initial set of voxels
(referred as seed). At the beginning the initial voxels are stored in a list of candidates. In
each iteration, the method removes an unprocessed voxel form the list of candidates and
adds it to the result if it satisfies some constraint (e.g. its gray-level lies in a predefined
range). When the voxel is added to the results, its neighbours are added to the list of
candidates. The iterations stop, when the list of candidates is empty. The method provides
3-dimensionally connected result if the seed was 3D connected. One variant of this
technique, the neighbourhood-connected region-growing evaluates the intensity
constraint in the local environment of each voxel. If all items in the local environment
satisfy the condition, the voxel is added to the result.

13
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Active contour or surface methods [20, 21] focus rather on the boundary of the region to
be segmented instead of its internal voxels. Similar to region-growing, this method is
iterative, but it starts from an initial contour (or surface) that evolves through the
iterations. The surface is represented by a finite number of points and the geometric
connections between them (e.g. triangular surface). In each iteration, the position of each
surface point is subject to change according to various factors (referred as forces). The
typical forces affecting the surface evolution are inflation (i.e. surface points move away
from initial shape to reach the boundary of the object), gradient (i.e. surface points shall
stop moving when reaching a sharp edge in the image), and smoothness (i.e. neighbouring
surface point shall be located close to each other). These forces are combined in a total
energy that is minimized through iterations.

Level-set methods [22] can very efficiently solve the problem of iteratively evolving
surfaces. According to this technique the contour is represented using a signed (so called
level-set) function, the zero-level of which corresponds to the actual contour. The level-
set function is computed from an initial contour incorporating the contour propagation
speed that is defined at each voxel. This way the contour belonging to time point t is
represented by voxels where the level set function is equal to t. The fast marching
algorithm [23] is an efficient way to compute the level-set function. The idea of fast
marching derives from finding the shortest path from the initial contour. The method
starts form the voxels of the initial contour. In each iteration, it takes the neighbours,
computes the cost of reach for each neighbour voxel, and the neighbour with smallest cost
is accepted. The method terminates if there is no neighbour whose cost to reach can be
lowered.

Graph partitioning methods [24, 25] consider the image to be segmented as a graph,
where (group of) voxels represent the nodes, and edges connecting the neighbouring
(group of) voxels are weighted by the dissimilarity of the corresponding (group of)
voxels. The graph is partitioned into connected components according to criteria
describing the properties of the expected segments. The result set of partitions define the
complete segmentation of the image. The criteria can incorporate gradient (i.e. graph is
likely cut at edges where gradient magnitude is high), intensity, texture or any other
images features. In case of binary segmentation the samples from both the fore- and the
background objects can be incorporated.

According to the watershed approach [26] the gradient magnitude of a grayscale image is
considered as a topographic surface. VVoxels located on segment boundaries, where the
gradient magnitude has local maximum, correspond to watershed lines. The method
virtually places water drops to each voxel position. From each voxel the water flows
downhill to a local minimum. Voxels draining into the same local minimum form one
basin and represent one segment of in the image. The simplest implementation of this
approach uses priority queue to encounter all voxels of the gradient magnitude image
starting from those located in a local maximum. Watershed segmentation usually divides
images into large number of partitions. There are various strategies to merge smaller
basins into larger ones based on different similarity criteria.
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The application of the machine learning techniques in image segmentation is an emerging
field. These approaches classify smaller parts (or voxels) of the image based on their local
statistical features (e.g. intensity, gradient, Hessian, texture, etc.) into segments. The basis
of the classification is a machine-learning model that is trained using manually labelled
examples (supervised learning). Markov Random Fields [27] are getting more frequently
involved in image segmentation methods. According to its concept, a hidden node
representing a label (e.g. object of interest, background, etc.) is assigned to each
observation node (e.g. set of features extracted form voxel or a connected set of voxels).
The method computes the hidden node configuration with the highest probability given
the observation nodes and the built-in model.

In summary, there are various algorithms for segmenting grayscale images, but there is no
universal method that can be used for any structure in any type of images. Each approach
has its own advantages and disadvantages which limit its practical usability. Some of the
methods are efficient but cannot address 3D connectivity (e.g. threshold, intensity-based
clustering). Others are challenged with incorporating high level structural information
about large objects to be segmented (e.g. active surface). Yet other techniques require
(e.g. graph cuts, watershed) large memory to represent the underlying abstract model or
much time to converge (MRF) in case of a large (e.g. 512x512x1024) image. In medical
image segmentation, majority of the problems cannot be solved by applying one basic
approach. That is why most algorithms are the combination of some basic techniques, like
the methods presented in latter chapters.

1.3 The scope of the dissertation

Section 1.1 presented various functions which could facilitate the clinical analysis of liver
tumours. The implementation of all these functions would result in a competitive
application, but it is a very extensive scope. This thesis focuses on three main areas
emphasized in connection with the clinical needs.

The first one is the basis of all computer assisted liver analysis: the liver segmentation.
Chapter 2 presents three algorithms for liver segmentation which were developed for
single- (Section 2.1) and multi-phase (Section 2.2) CT images and single-phase MR
images (Section 2.3). The different approaches were evaluated using a large image dataset
and the results are presented in Section 2.4. The second focus area of the thesis is liver
lesion assessment. Chapter 3 presents an automated technique for liver lesion detection
(Section 3.1) and its evaluation on a set of 30 CT examinations involving nearly 60
lesions (Section 3.2). The third area discussed in this thesis is related to treatment
planning. Chapter 4 presents a technique for virtual volume resection (Section 4.1) and its
evaluation for liver segment separation and tumour resection simulation (Section 4.2).

The evaluation of the presented techniques required test images of human subjects. It is
important to declare that all medical images showed or referred in this thesis were
acquired according to standard clinical protocols and used for research purposes with the
acknowledgement of the patient. All images were acquired in the daily clinical routine
(for diagnostic or treatment purposes), they were collected retrospectively (after the
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patient has left the hospital) and processed after anonymisation (no patient information
was associated with the images).

In this thesis special attention was paid to the efficiency of the proposed algorithms in
addition to their accuracy. According to clinical feedbacks a software workflow is
considered useful when the computation time between starting a function and visualizing
its result does not significantly exceed half a minute. Based on this practical constraint the
methods, which require minutes to run on an average computer, have limited clinical
usability. The algorithms presented in this thesis were designed to solve complex clinical
problems in short time. Another important requirement, which is satisfied by the proposed
techniques, derives from the target software environment. Today (or in the near future)
most clinical applications (will) run on servers, which execute multiple instances of a
function at the same time (i.e. distributed in a cloud). Such software environment limits
the usability of methods which have some special hardware requirement (e.g. graphical
processing unit, large memory). The algorithms presented in this thesis were designed to
be easy to integrate into any computer system, since they do not rely on a special
hardware.

16



2 Liver segmentation

2 Liver segmentation

The basis of all computer assisted liver analysis is the liver segmentation. Since the
manual segmentation of the organ is very time consuming, it is important to solve this
problem in more efficient way. This section presents three techniques for automated liver
segmentation which represent the different phases of a research work.

The first two methods were developed for single- and multi-phase contrast-enhanced CT
images. The first algorithm (Section 2.1) applies standard image processing concepts to
segment the liver on portal-phase CT images. It is based on some straightforward rules
which describe the separation of the liver from the surrounding organs. The second
approach (Section 2.2) is an extension of the first one. It can incorporate the information
of more contrast-enhanced phases (e.g. arterial or late) to improve segmentation. The
results related to the first two methods were published in a journal paper [1]. The third
algorithm (Section 2.3) was developed for contrast-enhanced MR images. It incorporates
a probabilistic liver model as additional information about the organ. This technique was
published in another journal paper [2]. Each method was originally evaluated using
different test images, which makes their comparison difficult. Section 2.4 presents the
evaluation of all methods using a large test dataset, which allows the quantitative
comparison of the three approaches.

Before going in the details of the algorithms it is demonstrated how the performance of a
segmentation method can be assessed. The performance of a method can be characterized
by its accuracy and efficiency. Only those methods can be successful in clinical practice,
which demonstrate good measures considering both factors. A very accurate
segmentation method has limited practical usability if it takes long time to run on an
average case. The objective quantification of segmentation accuracy is also necessary for
comparing different approaches. The next part of the introduction presents the error
measures which are used in this thesis to assess segmentation accuracy. Then, it is
demonstrated what level of accuracy can be achieved by manual contouring within
reasonable time. The goal of the study presented in the last part of the introduction was to
provide a baseline for automated liver segmentation techniques.

The accuracy represents the difference of a segmentation result () from a reference (R)
that is defined manually by one or more medical experts. Assume that S and R are binary
images. Let (SNR)() =S({A)AR({) and (SUR)(Q) =S8(i) vR(i) for any index
position i. Furthermore, let | S| denote the number of non-zero voxels in the image . The
accuracy can be demonstrated by various volume- and surface-based measures. Each
measure can reflect under-segmentation (i.e. |§ NR| < |R]|) or over-segmentation
(i.e. | N R| < |S]) or both.

The workshop “3D Segmentation in the Clinic: a Grand Challenge” [28] of MICCAI
2007 conference introduced some error measures which have become standard for
evaluating liver segmentation accuracy since 2007. These measures are listed in the
following paragraphs.
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e Volumetric Overlap Error (%):

VOE =100-( 1 5N R|
B |S U R|

This measure is equal to 0% if and only if the segmentation is perfect (§ = R) and
100% when the segmentation and the reference have no intersection (§ N R = 0).

e Relative Volume Difference (%):

S| = IRI
1R

This measure is equal to 0% if the segmentation is perfect, -100% in case of empty
segmentation (S = @), and arbitrarily large positive number when |§| > |R|. It is
important to note that this metric can be equal to 0% when the volume of the over-
segmentation (|S \ (S N R)|) is equal to the volume of the under-segmentation
(IR \ (8§ nR)|). When the average RVD is computed for a set of test exams the
absolute relative volume difference ARVD = |RVD| is used, so that the positive and
negative differences don’t eliminate each other.

RVD =100 -

e Average Symmetric Surface Distance (mm): assume Cs = {sq,..,Sy} and
Cr ={ry, .., vy} represent the set of voxels located on the contour of the
automatically segmented and the reference liver, respectively.

Ziey min [|si = 7]l + X min [lr; = s

|Cs| + |Cr| '

ASSD =

where ||s; — ;|| represents the Euclidean distance of the spatial position of voxels
s; and 7; in millimeter. This measure is equal to O mm in case of perfect

segmentation and arbitrarily large positive number otherwise. Similarly, the Root
Mean Square Symmetric Surface Distance (mm) is defined in the following way:

. 2 ) 2
Ziey min [|si =] + X7, min [|r; - si]

RMSD =
|Cs| + 1Crl

e Maximum Symmetric Surface Distance (mm): using the same notation introduced
in the definition of ASSD

MSSD = max;<j<n a 1sj5m||3i - rj||~
This metric has the same properties as ASSD.

The above-mentioned measures can characterize well both the under- and the over-
segmentation of the result. However, there are other measures which are also frequently
used in the literature. In order to make the results presented in this thesis comparable with
most of the publications the following accuracy measures are also used:
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e True Positive Volume Fraction (%):
S N R|
|RI

This measure demonstrates only the under-segmentation. It is equal to 100% if there
is no under-segmentation, and 0% if the intersection of § and R is empty.

TPVF =100 -

e False Positive Volume Fraction (%):

|\ R|
|R]

This measure demonstrates only the over-segmentation. It is equal to 0% if there is
no over-segmentation, and arbitrary large number depending of the size of the over-
segmentation. Note that neither TPVF nor FPVF can characterize segmentation
accuracy alone, both metrics shall be always considered.

FPVF =

e Dice Similarity Coefficient (%):
2|18 NR|
S|+ |R]

This measure is equal to 100 if and only if the segmentation is perfect (§ = R), and
0% when the segmentation and the reference have no intersection (§ N R = @).

DSC =100 -

The duration is also a very important factor in medical image segmentation. Since time is
money in healthcare, physicians tend to omit computation-demanding software functions
when the given function is not vital for solving the clinical problem. For example, in
surgery planning the precise quantification of the (resected and remaining) liver volume is
very important, so even the very time consuming (10-15 minute long) semi-automated
contouring is worth doing in the daily practice. However, in case of lesion assessment,
liver segmentation could facilitate the detection of tumours (e.g. by automated
enhancement of abnormal regions inside the liver), but no user would make efforts to
segment the liver instead of adjusting the visualization parameters manually. Since users
shall process several cases per hour, the majority of them would skip the liver
segmentation if took significantly longer than half minute. The fully manual (slice by
slice) liver segmentation can take 45-150 minutes per case, which means it is rarely
performed in the daily clinical practice.

As mentioned before, there is a trade-off between segmentation accuracy and processing
time, so accuracy and duration cannot be considered separately. The simplest approach
for liver segmentation (that is available in most medical image processing applications) is
the manual contouring. In order to assess accuracy of manual contouring versus
contouring time two experiments were performed. The first study assessed the accuracy
of a non-expert operator. The second study focused on the effect of using interpolation
tools during manual contouring. Interpolation refers to a technique that is able to
smoothly define the contour in one slice based on the contours of the preceding and the
following slices. The latter work involved clinicians of the Department of Oncotherapy at
the University of Szeged and its results were published in a Hungarian conference [7].
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In the first experiment 20 liver exams (for more information about the data refer to
Subsection 2.1.5) were manually contoured by a non-expert operator (software developer
intern) using a publicly available software (MITK [29]). The operator was allowed to
draw contour in any slice, to use interpolation between manually contoured slices, and to
adjust the contour when interpolation was incorrect. The contouring process stopped
when the result was visually acceptable for the operator. The total time needed for
contouring was recorded and the manual segmentation results were compared with
ground-truth (defined by experts) using the error measure VOE.

The results of the evaluation are presented in Table 2.1. The average contouring time was
5.8 minutes (min = 1.5, max = 11, stdev = 2.4), and the average VOE was 6.3%
(min =4.9%, max = 10.2%, stdev = 1.3%). The trade-off between accuracy and time can
be defined as the ratio of 100 — VOE and the duration (i.e. the volumetric overlap that
can be achieved in 1 minute). The average of this trade-off was 16.2, which can be
roughly interpreted such a way that a non-expert operator can achieve an average 16.2%
volumetric overlap with 1 minute of contouring. Assuming linear increase in this trade-
off a VOE equal to 20%, 15%, 10%, 5% could be achieved in 4.9, 5.2, 5.6, and
5.9 minutes, respectively. Based on the result of this experiment one can conclude that a
non-expert operator can provide a reasonably accurate manual segmentation (VOE =
10) in 5.6 minutes.

Exam | Time (s) | VOE (%) | Exam | Time (s) | VOE (%)
01 6.00 10.2 11 8.00 5.6
02 3.50 7.3 12 6.00 59
03 4.50 6.4 13 4.50 6.9
04 4.50 7 14 3.00 5.2
05 5.50 5.2 15 6.00 5
06 5.50 53 16 9.00 4.9
07 10.00 6.1 17 2.50 53
08 11.00 8.1 18 7.00 5.9
09 4.50 5 19 7.00 55
10 6.00 7.9 20 1.50 6.7

Table 2.1 The evaluation of a non-expert manual liver contouring using ground-truth segmentation. The
contouring time (minutes) and the accuracy (VOE, %) are listed for 20 test exams.

The goal of the second experiment was to understand how the number of manually
contoured slices affects the segmentation accuracy, when the contour on the remaining
slices is automatically generated by interpolation method. This study involved 83 liver
exams (for more information refer to Section 2.4), where the slice thickness varied
between 0.5 mm and 5 mm. The manual liver contour was defined by one expert slice by
slice for each exam. Then, the following workflow (demonstrated by Alg. 2.1) was
performed. At the beginning all liver contours were resliced using 1 mm slice thickness in
order to make the data uniform (Fig.2.1/a). Then, the contouring at different slice
thickness was simulated using interpolation methods (Fig. 2.1/b-c). The simulated
contours were compared with the reference using various error measures.
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Figure 2.1 Simulation of manual contouring with various slice thickness: reference contour (a) and simulated
contour with larger slice thickness (b, c).

1. Re-slice all test exams using 1 mm slice thickness
2. For each slice thickness in {2, 4, 6, ..., 60} mm
2.1 For each exam in the set of test exams
2.1.1 Compute the interpolated contour by re-slicing the original contour to the
actual slice thickness using nearest neighbour interpolation
2.1.2 Compute VOE, ARVD, ASSD, and MSSD to compare the interpolated
contour with original one.
2.2 Compute average of VOE, ARVD, ASSD, and MSSD incorporating all exams.

Algorithm 2.1 Simulation of manual contouring with various slice thickness

The average error measures are plot in Figure 2.2. The x-axis represents the slice
thickness and the y-axis represents the error when the contouring was simulated using the
corresponding slice thickness. The larger is the slice thickness the larger error
characterizes the contouring result. The line of the linear ascending is also plot for each
chart. According to the diagrams the contouring error is approximately a linear function
of slice thickness. Since the contouring slice thickness is the inverse of the time needed
for contouring, there is nearly linear correlation between contouring time and accuracy.
Based on the top left chart of Fig. 2.2 VOE = 10% can be achieved by contouring slices
using 12 mm thickness. Considering that the average vertical height of the liver is
175 mm (based on the test dataset) and contouring one slide takes approximately half a
minute (feedback from physicians), the average time needed for manually contouring the
liver at VOE = 10% is equal to 6.26 minutes.

Note that ARVD is very low (less than 5%) even when 44 mm slice thickness is used for
contouring. This means a relatively short time (175/44-0.5 = 1.95 minutes) is enough,
when only the liver volume is required by the physician. This estimation was confirmed
by another study [10] where 86 second was reported as average contouring time for
manual liver volume estimation. Similar to VOE, ASSD is very (and MSSD is even more)
sensitive to the distance between interpolated slices. As low as 10 mm distance between
interpolated slices can imply that ASSD is greater than 1 mm. In order to achieve this
accuracy 8.75 (=175/10-0.5) minutes are needed to contour the liver, in such case MSSD
=12.9 mm. If very accurate (MSSD < 5 mm) segmentation is required, one shall use less
than 2 mm slice distance, which would take 43.75 minutes per case.
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Figure 2.2 Average error (y axis) introduced by manual contouring using different slice thickness (x axis). Trend
lines are also plot (that is fully overlapped by the curve in case of ASSD).

The results imply the time needed for automated liver segmentation shall not exceed
6 minutes because a human operator can make a liver contour with VOE = 10% within
this time using a simple contouring tool and interpolation between slices. A method that
cannot provide this level of accuracy within this time, would probably have limited
practical usability. The goal of the works presented in the following chapter was to
develop a method that is significantly more efficient than a human operator, which means
it can provide liver segmentation with VOE = 10% within half a minute.
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2.1 Single-phase method for CT images

This section presents an automated method for liver segmentation in portal-phase CT
contrast-enhanced images. The method is based on neighbourhood-connected region-
growing that is facilitated by various pre- and post-processing steps. These steps are the
detection of the liver, the separation of liver and heart, the compensation of under-
segmentation due to respiratory motion at the right lung lobe, the removal of inferior vena
cava (IVC), and the filling of cavities due to vessels or lesions. According to its
evaluation the method can efficiently segment the liver parenchyma in most cases,
however, in tumorous cases the result can exclude large lesions located on the boundary
of the organ. This method was published in a journal paper [1].

There were several methods published on the segmentation of CT images before this
work. Most of them are some variants of intensity based thresholding or classification,
region-growing, active contour or surface, or level-set techniques. There are generalized
algorithms, but most of the approaches are specialized to an organ. The fundamental
segmentation concept is usually extended with various pre- and post-processing
operations, statistical, anatomical, or geometric models, so that the method is adapted to
an organ or an anatomical structure. The following paragraphs summarize the major types
of liver segmentation techniques which were available when this work was started.

Soler [30] proposed a fully automatic method to segment the liver from contrast-enhanced
CT scans. This method delineates the skin, bones, lungs, kidneys and spleen, by
combining the use of thresholding, mathematical morphology, and distance maps in order
to extract the liver. Subsequently, a 3D reference model, which was previously generated
from manually contoured liver cases, is positioned in the image using the combination of
rigid and affine registration. The model is then deformed based on the image data in order
to get the final segmentation. The weakness of this method is that it was specialized to
images acquired with a special contrast protocol that is not widespread in clinical
practice.

Another automated approach for liver segmentation, which is based on 3D statistical
shape model, was presented by Lamecker [31]. This iterative technique uses statistical
model built from a set of manually contoured liver shapes. Each shape was defined by
specific anatomical points located on the liver surface. The main steps of the method are
the positioning of the mean shape into the image, and the adjustment of the shape
according to the image data. Unfortunately, there was no clinical evaluation presented in
the paper, and the selection of the anatomical landmarks is very difficult due to the big
variation in liver size and shape.

Level-set methods ([23, 32]) were successfully applied in medical image segmentation.
The advantage of this approach is that it can handle topological changes of the contour,
but these methods can be time-consuming and it is difficult to handle over-segmentation.
The active contour method presented by Bekes [33] was successfully used to segment
various abdominal organs (liver, kidney, spleen). This algorithm works well for non-
contrast images where the organs are homogeneous inside. In case of contrast-enhanced
images the distribution of the contrast agent can be heterogeneous in the liver (e.g. vessels
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2.1 Single-phase method for CT images

and tumours are enhanced), which forms sharp edges inside the organ. These edges can
block the evolution of the surface, which can cause under-segmentation.

The region-growing approach [34] can provide good segmentation in contrast-enhanced
images. This method is very efficient and it can close around the vessels and tumours, but
it can easily leak into neighbouring organs which have similar intensity as the liver.

The goal of this research was to develop a method that can combine the efficiently of the
intensity-based techniques with the accuracy of approaches which incorporate anatomical
knowledge. The proposed algorithm is based on the following assumptions:

e the liver is the largest organs in the abdomen,

e most of its volume is located in the right half of the abdomen,

e the contrast-enhancement makes the liver brighter than its surrounding organs,
e the liver parenchyma is nearly homogeneous in CT images.

The proposed method also incorporates information about the anatomical structures
surrounding the liver such as the lung, the heart, and the I\VVC. The core of the algorithm is
a region-growing method that is facilitated by various pre- and port-processing steps.
More specifically, the main steps of the method are the following. First the liver is
localized in the abdomen and an initial region is created for the segmentation
(Subsection 2.1.1). Then, the liver is separated from the heart (Subsection 2.1.2) to
prevent over-segmentation at this area. Subsequently, a neighbourhood connected region-
growing is performed to segment the liver parenchyma (Subsection 2.1.3), which is
followed by additional steps correcting various under- and over-segmented areas
(Subsection 2.1.4). The evaluation of the algorithm and its comparison with other
techniques is presented in Subsection 2.1.5.

2.1.1 Localization of the liver

When the CT image is enhanced using contrast agent, the abdominal organs can be easier
separated due to the different contrast uptake of the organs. In addition to the
characteristic intensity, the expected volume (ca. 1500 cm®) and the location (right
abdomen) of the liver can be exploit to localize significant part of the organ
automatically.

The image to be segmented is acquired in the portal-phase of the multi-phase CT
examination. In this image the mean liver intensity (that varies among different cases) is
in the range of [-50,250] Hounsfield Unit (HU). Eliminating voxels having intensity out
of this range excludes air, fat, and bones from the analysis, which makes the localization
of the liver more robust. In order to determine the mean liver intensity for a particular
exam, the histogram of the image is computed incorporating voxels located only in the
right half of the body (second assumption). The histogram always has two significant
peaks (in the above defined range) which represent the muscles and the liver (first
assumption). Since the liver is better perfused (i.e. absorbs more contrast) than the
muscles, the intensity of the liver is always higher than that of the muscles (third
assumption). Based on experiments with several portal-phase images the histogram peak
above 80 HU represents the mean liver intensity in all cases.
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2.1 Single-phase method for CT images

Figure 2.3 displays the histogram of a typical liver exam and the average histogram of
multiple cases in the range [-50,250] which represents the soft tissue. The histogram of a
single case (solid line) has 2 peaks at 50 HU and 140 HU, which represent the muscles
and the liver, respectively. This observation is true for all liver exams because both tissue
types represent significant volume in the abdomen. The contrast uptake of the liver
depends on many factors (e.g. timing protocol, patient condition, pathology, etc.), which
makes the mean liver density vary among cases. That is why liver peak is hardly visible
on the average histogram (Fig. 2.3 — dashed line). Due to the relatively low perfusion of
the muscles the intensity of this tissue is very stable considering many cases. The peak
representing the muscles is clearly visible on the average histogram, which makes it
possible to separate it from the liver peak using a simple threshold (80 HU).
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Figure 2.3 Histogram of a typical portal-venous liver exam (solid line) and the average histogram of several
exams (dashed line). The liver intensity range is defined by lyin, Imod» @and liax-

Assume that the liver intensity mode (1,,,,4) is defined by the largest peak in the range
[80,250] HU (Fig. 2.3). The minimal (1,,,;,) and maximal (1,,,4,) intensity of liver voxels
are computed in the following way. Let L,,;, denote the highest intensity g in the range
[m — 50,m] such that g is a local minimum or H(g) < 0.25 - H (l,;,04) and H(g) <
H(f) forall g< f < lpq- Similarly, let 1., denote the lowest intensity g in the range
[m, m + 50] such that g is a local minimum or H(g) < 0.25 - H (l,;,04) and H(g) <
H(f) forall L,a <f <g.

Using thresholds [,,;, and L,,,4, @ binary image is created where voxels having intensity in
the range [Lnin, limax] are set to 1 and all other voxels are set to 0. This image involves
voxels from the liver parenchyma as well as from other regions, which have similar
intensity as the liver (Fig. 2.4/a). In order to find a compact region inside the liver, the
binary image is eroded with a large kernel (with radius equal to 15 mm) and the largest
3D connected region is located in the eroded image (Fig. 2.4/c). For sake of efficiency the
erosion is implemented by computing a distance map with respect to the contour of the
binary image (Fig. 2.4/b). The distance map is thresholded at 15 mm, which results in a
volume that is equivalent with the erosion of the original volume using the large kernel.
Since the liver has a large compact volume (first assumption), the above defined region is
always located inside the organ. According to experiments with several CT exams, this
method provides a reliable set of liver voxels, which represent approximately 15% of the
total liver volume.
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Figure 2.4 The main steps of the initial region detection: The image is thresholded (a), eroded using distance map
(b), and the largest 3D connected region is located (c).

2.1.2 Separation of liver and heart

The liver and the heart can have similar intensity in the portal-phase image. In order to
prevent the liver segmentation from leaking into the heart, the two organs are separated.
This step is based on the spatial relation of the lung, the heart, and the liver. According to
the human anatomy the bottom surface of the lung (on both left and right side) fits the top
surface of the liver. The boundary between the liver and heart can be defined by means of
connecting the bottom surface of the left and right lung lobes (Fig. 2.5/c).

Figure 2.5 Liver-heart separation: Body and lung lobes are segmented on the topmost slice (a), the lung lobes are
segmented in 3D (b), separating curves defined for each coronal slice (c), and separating surface is created from
the set of curves (d).

In case of liver CT examinations the bottom part of the lung is also acquired, which
allows segmenting the lung lobes. The lung consists of air whose intensity is significantly
different from the soft-tissue, so it can be segmented based on its intensity. In order to
find seed-points for the left and the right lung lobes, the uppermost slice is processed.
First, the air voxels are separated using a threshold equal to -400 HU. Then, the largest
connected non-air region (i.e. the body) is located (Fig. 2.5/a — red region). Subsequently,
the largest connected air region is identified in the left and the right side of the body
(Fig. 2.5/a — green and blue contours). Starting from these regions, the left and right lobes
are segmented using 3D region-growing technique (Fig. 2.5/b).

After the lung lobes are segmented, each coronal slice of the CT image is processed. The
goal is to detect the curves representing the bottom contour of the right and the left lung
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lobes and connect them with a curve that lies on the edge of the liver and heart. First, the
leftmost point of the right curve (R) and the rightmost point of the left curve (L) are
located (Fig. 2.5/c). Then, the following iterative approach is applied to connect these two
points. Moving from L to R on a slice along increasing x coordinates, in each column the
largest image gradient is located in the 5 mm local environment of the previously visited
point. When the iteration reaches the column of R, the actual point is connected with R
using a discrete line, and the method stops.

When the LR curve is computed for each coronal slice, the surface separating the liver
and heart is created by averaging the curves located on the neighbouring slices. For any
coronal slice the z coordinate at each column is defined by the average of positions
belonging to the corresponding column in the preceding, the actual, and the following
coronal slices. The set of coronal curves define a smooth surface that is used to separate
the liver and the heart in the following way. All voxels located above the surface are set
to a high value (3000), so that the latter intensity-based segmentation does not leak into
the heart (Fig. 2.5/d).

2.1.3 Neighbourhood-connected region-growing

The liver parenchyma is nearly homogeneous in CT images (fourth assumption), so an
intensity-based technique can used to segment most of it. This method requires an initial
region and an intensity range of the voxels to be segmented. The initial region is defined
according to Subsection 2.1.1 and the intensity range is defined in the following way.
Using [l,,,q (computed in Subsection 2.1.1) the voxels of the initial region are split into
two subsets based on their intensity. Let gy, (Or 04;45) denote the standard deviation of
voxels which are lower (or higher) than [,,,4. The intensity range used by the
segmentation is defined by [l0q — COiow, lmoa + COnignl, Where ¢ = 3 is an empirical
constant that was defined based on segmenting several CT examinations.

In this work the neighbourhood-connected variant of the region-growing approach is
used. The standard region-growing method can leak into organs which have similar
intensity similar as the liver (e.g. stomach, small bowels, pancreas, or spleen). Unlike the
heart, these anatomical structures cannot be easily separated from the liver because their
location, size, or shape is varies significantly. Such over-segmentations can be eliminated
using the neighbourhood-connected version of the algorithm. The main difference
between the two techniques is found in the way of adding a new voxel to the
segmentation. According to the modified method a voxel is added to the segmentation if
all voxels in its local environment satisfies the intensity condition.

Using large environment can eliminate significant amount of over-segmentation, but in
the same time the result can be under-segmented when the image to be segmented is
affected by pixel noise (that is characteristic for CT images). The effect of the noise is
reduced in two different ways. On one hand the image is convolved with a Gaussian
kernel (having 1.5 mm radius) before starting the segmentation. On the other hand a small
(2%) tolerance is applied when the local environment of a voxel is analysed in each
iteration of the region-growing.
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According to experiments with several liver cases the over-segmentation can be
significantly reduced when the radius of the environment is set to 3 mm. Using such a big
environment significantly increases the number of voxels to be processed in each
iteration, which can make the segmentation slow. In order to preserve the efficiency of
the method, the CT image is re-sliced, such that the slice spacing is between 2 and 3 mm.
This way, the size of the environment can be reduced to a few hundreds of voxels in case
of typical liver exam. Another drawback of using large environment is that the method
stops before reaching the boundary of the liver (Fig. 2.6/b). This can be corrected by
applying an additional dilation to the result of the region-growing (Fig. 2.6/c). The kernel
of the dilation has the same radius as the local environment.

Figure 2.6 Segmentation using neighbour-connected region-growing: initial region (a), result of the segmentation
(b) and the subsequent dilation (c).

The homogeneous part of the organ can be segmented using the presented technique, but
the liver also involves regions whose intensity significantly differs from the normal
parenchyma. The following subsections present, how the under-segmentation of such
areas (low density region at the lung, contrast enhancement in vessels, hypo- or hyper-
dense lesions) can be eliminated.

2.1.4 Correction of under- and over-segmented regions

The liver can be under-segmented near the right lung lobe, where many voxels have
lower intensity due to respiratory motion during the acquisitions (Fig.2.7/a). This
problem is corrected by an additional segmentation that allows lower intensity range in
the region located between the segmented liver and the right lung lobe.

In order to find the target region, the surface of the segmented liver and the right lung is
analysed. First, the surface voxels for the right lung are located and the surface normal is
calculated for each of them. If the normal vector of a surface voxel points toward a liver
voxel that is closer than 20 mm (the liver surface can shift this much due to respiration),
the surface voxel is labelled. Each labelled lung surface point is then connected with the
corresponding liver voxel with a discrete line. Then, the discrete lines are dilated using a
sphere with 5 mm radius. As result of that a closed connected region is formed between
the liver and the right lung (Fig. 2.7/b — blue region).

Based on this region a new intensity interval is calculated, which is used by the additional
region-growing. This segmentation is started from the liver surface points and it is limited
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to the target region, so it does not cause over-segmentation in other parts of the liver. The
result of the additional segmentation (Fig. 2.7/c — red area) is added to the liver.

Figure 2.7 Additional segmentation at the right lung: The liver can be under-segmented due to lower intensities
near the lung (a), region of interest between the liver and lung surface is localized (blue — b), result of the
additional segmentation (red — c).

The result of the region growing usually does not involve most part of the portal vein
because it has significantly higher intensity. In the clinical practice, a vessel is considered
as part of the liver as long as it is completely surrounded by liver parenchyma. In order to
reduce this type of under-segmentation, opened cavities having diameter nearly equal to
the average diameter of the portal vein are detected and filled.

First, the 3D contour of the segmented liver is determined (Fig. 2.8/a — white), and the
surface normal vector for each contour voxel is calculated. Then, each surface voxel is
labelled, when its distance from another liver voxel in the direction of the normal vector
is nearly equal to the average diameter of the portal vein (10 mm). Finally, the liver is
dilated at each labelled surface voxel (Fig. 2.8/b) using a sphere having radius equal to
the average radius of the portal vein (5 mm). This approach fills only the holes due to
under-segmented vessels without smoothing the other parts of the liver surface (in
contrast to the standard morphological opening).

Figure 2.8 Filling cavities in the result of the segmentation: Liver surface points are detected (white — a), vessel
walls are identified and dilated (red — b), and cavities are filled (c).

Similar to hyper-dense vessels lesions can be under-segmented due to their low or high
intensity. This problem is reduced using standard 3D cavity filling method. In this step of
the algorithm, each 3D-connected zero valued (i.e. background) region is identified in the
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segmented image, and all of them is added to the liver except for the largest one which
represent the real background. This process fills all lesions except for those located on the
boundary of the organ (i.e. not fully surrounded by liver).

Figure 2.9 IVC removal: Circular Hough transform is used to detect circles on axial slices (a). Probability map
highlights voxels, which are likely to be located inside a vertical tubular structure (b). Detection of large 3D-
connected tubular structure (c). Red regions are candidate for removal, and the green region (IVC) is really
deleted (d).

Unlike the portal-vein (that is hyper-dense in most cases) the intensity of the IVC can be
similar to the liver in many cases. Since the radius of this vessel is about 10-15 mm, the
neighbourhood connected region-growing leaks out through the IVC in nearly half of
these cases. The idea behind the IVC removal is to detect those parts of the segmented
liver which are similar to a vertical cylinder that has a specified diameter.

The axial cross section of the IVC is a circular region (Fig. 2.9/a — red area). Such regions
can be detected using circular Hough transform. Since the radius of this vessel varies,
circles with different radius shall be detected. That is why instead of a discrete circle a
discrete ring is used in the computation of the Hough transform. The inner radius of the
ring is smaller (5 mm) and the outer is larger (20 mm) than the average radius of the IVC.
Figure 2.9 demonstrates the concept of detecting of circles with variable diameter. First,
an IVC probability map is computed in the following way. A discretized binary ring (Fig.
2.9/a — solid circles) is placed into each contour point (Fig. 2.9/a — black dot) of the
segmented image, and the value of the IVC map is increased by one in such voxels where
both the ring (Fig. 2.9/a — bright region between the solid rings) and the segmented image
(Fig. 2.9/a — red region) have non-zero value. When all contour points are processed, the
probability map has large value at the centre of circles (Fig. 2.9/a — bright region in the
centre of the red region) the diameter of which is nearly equal to the average diameter of
the IVC (Fig. 2.9/a — dashed circle). An example for IVC probability map can be seen on
Fig. 2.9/b. In order to make IVC detection more robust, the ring is prolonged in vertical
direction by 2 slices.

The IVC map is thresholded to reduce the possibility of false detection. The threshold
value is equal to 0.3 times the largest value of the IVC map, which was defined based on
empirical tests. Then, the map is processed slice by slice. In each slice all local maxima
are located. For each maximum it is checked, whether a closed contour is found around it
within a small environment. In order to do that, a 2-dimensional region-growing is started
from the maximum visiting only the nonzero voxels of the segmented image. When the

30



2.1 Single-phase method for CT images

2D region-growing cannot reach any voxel located farther than 20 mm from the starting
point, the corresponding maximum is considered to be encircled by closed contour. When
closed contour is found, the 2D region around the given maximum is labelled as
candidate for removal (Fig. 2.9/c — red areas).

After processing all slices, all 3D-connected regions in the set of unlabelled liver voxels
are determined. Except for the largest one (that represents the liver) these regions are
labelled as candidate for removal. Such regions can be found along the IVC, where the
vein has a branching point or in the bottom or top of the liver. Finally, each labelled
region, whose vertical length is greater than 25 mm is deleted from the segmentation
result (Fig. 2.9/d — green area). Due to the size constraint the bottom peaks of the right
and left liver lobes are not removed (Fig. 2.9/d — red area).

2.1.5 Evaluation of the single-phase method

The proposed algorithm was tested on a set of 20 portal-venous CT examinations. This
set of cases was introduced by the workshops “3D Segmentation in the Clinic — The Great
Challenge” of MICCAI 2007 conference [28]. The goal of this event was to compare the
existing techniques for liver segmentation. The organizers of the workshop provided 20
cases with ground-truth liver contour, which was used by the research teams for preparing
their segmentation algorithm for a live competition.

The examinations were acquired using different CT scanners. The image resolution was
512 x 512 in all cases. The slice number, the slice thickness, and the pixel size varied
between 64-502 (average 214), 0.5-5.0 mm (average 1.6) and 0.54-0.87 mm (average
0.7), respectively. The cases involved a few healthy cases, but most of them were
pathologic involving tumours, metastasis and cysts of different sizes. This dataset will be
referred as MICCAI training set in the rest of the thesis.

Table 2.2 shows the accuracy of the proposed method using error measures introduced at
the beginning of this chapter. According to the results the average relative volume
difference (RVD) was negative (-1.7%), which indicates the results were a bit under-
segmented. The average of VOE was 8.2%, and it was above 10% in only 2 of the cases.
Based on visual assessment, these cases involve large hypo-dense lesions, which were
under-segmented by the method (Fig. 2.10/b). The relatively larger surface-based errors
in a few cases (ASSD and MSSD) were due to under-segmentation of large lesions or the
main trunk of the portal vein.

In addition to standard error measures, the precision of the algorithms was measured
according to a complex scoring system [28] which makes it possible to compare the result
of an automated segmentation with that made by a non-expert human operator. According
to the scoring system a perfect result (i.e. all error measure is equal to 0) is worth 100
score per each metric, while a non-expert manual segmentation (with VOE = 6.4%,
ARVD =4.7%, ASSD =1 mm, RMSD = 1.8 mm, MSSD =19 mm) is worth 75 score per
each metric. The score is interpolated between 0 and 75 and extrapolated above 75, and
negative scores are replaced with 0.

Using this scoring system exam 01 (with metrics equal to 10.8%, 4.3%, 1.9 mm, 3.8 mm
and 31.3 mm) merits scores of 58, 77, 53, 48, and 59, respectively, so the average score is
59. According to the numbers of the last column (Table 2.2) the average score (71) of the
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proposed method was nearly as good as the score of a non-expert manual segmentation
(75). In the majority (90%) of the cases the score was greater or equal to 70, and only in
two cases was it lower than 70 (exams 01 and 16). The latter cases involve large tumours,
one of them (exam 16) is displayed in Fig. 2.10/b.

Exam | VOE | RVD | ASSD | MSSD | Score
01 10.8 | -4.3 1.9 31.3 59
02 6.6 | -1.6 1.0 17.7 78
03 8.5 1.0 1.4 27.3 71
04 5.9 0.7 0.9 19.9 81
05 73 | -1.2 1.1 17.1 77
06 71 | -04 1.0 21.9 78
07 78 | -2.1 1.2 21.9 73
08 7.2 2.9 1.3 23.5 73
09 8.1 | -3.8 1.3 22.7 70
10 7.7 | -0.8 1.3 20.8 75
11 7.4 2.7 1.3 25.4 70
12 7.0 4.4 1.1 31.0 70
13 9.7 0.6 15 154 74
14 8.8 | -2.6 1.6 20.3 70
15 46 | -0.7 0.7 20.2 83
16 242 | -219| 3.8 55.5 8
17 70 | -05 1.1 16.4 79
18 56 | -1.1 0.9 24.3 78
19 46 | -0.8 0.7 13.7 85
20 74 | -44 1.3 19.8 71

AVG | 82 | -1.7 1.3 23.3 71

STD | 41 5.3 0.6 8.9 16

Table 2.2 Accuracy of the single-phase method on the MICCAI 2007 training dataset.

Figure 2.10 Result of the portal-phase segmentation for an average case (a) and a case with large tumour (b).

Table 2.3 demonstrates the ranking of the methods based on the scores achieved at the
live competition. This evaluation used a separate set of 10 exams which were not
published before the event. It is slightly visible that interactive methods performed the
best. Considering the automated approaches the method of Kaimuller et al. [35]
outperformed the others. The difference was mainly due to the fact, that this method can
provide good results when liver involves large lesions. A group of other methods
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(including the proposed one) [1], [37], [39], [36] performed at nearly the same accuracy.
The common point of these methods was that they under-segmented large lesions. The
methods [48] and [40] failed in some cases, while method [42] failed in most of the cases.

Method Type Score | Time
Dawant [45] Interactive | 75 20
Beck [44] Interactive 73 7
Lee [46] Interactive | 70 7
Wimmer [47] Interactive | 68 4-7
Kaimuller [35] | Automated | 68 15
Rusko [1] Automated | 57 0.5

Schmidt [37] Automated | 53 | 6-20
Seghers [39] Automated | 51 30
Saddi [36] Automated | 51 55
Slagmolen [48] | Automated | 42 60
Furukawa [40] Automated | 42 36
Susomboon [42] | Automated 5 25

Table 2.3 Scores and running time (in minutes) of the liver segmentation methods based on the evaluation
performed at the live contest of MICCAI 2007 workshop.

The evaluation at the live competition demonstrated that the proposed method was the
second best based on accuracy among automated approaches. This result was very good,
especially if the running time is also taken into account. The proposed algorithm can
segment the liver within half a minute in average, while other techniques (including the
best automatic one in precision) required at least 15-30 minutes to run per case. Only one
automated approach [36] had similar efficiency as the proposed one.

It is important to note that the accuracy of all methods was significantly lower at the live
evaluation compared to the evaluation using the training set (e.g. proposed method scored
57 and 71 respectively). One possible reason for the difference can be the size of the
dataset used for evaluation. In the live evaluation, one extreme case (out of 10 exams)
could decrease the average accuracy significantly (due to its relative weight). The 20
training exams, however, involved relatively less extreme cases. Another possible
explanation is that in the live evaluation all exams were unknown for the teams, so there
was no opportunity to fine tune the algorithms for this set of cases.

The results of this workshop were summarized in a prestigious journal paper [6] that has
over 200 citations. This publication involved the following statement about the proposed
method: “Rusko et al. demonstrate that it is possible to produce competitive results with
low-level image processing techniques, too. One of the major strengths of their approach
is the speed of segmentation, which is with approximately half a minute a magnitude
faster than all other methods.” It is important to note, that in addition to presenting the
state-of-art in liver segmentation, the workshop published the test datasets at a website
[49], which allows researchers to compare their new method with the existing ones. The
metrics used at this workshop became standard in the last few years for evaluating liver
segmentation methods.
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2.2 Multi-phase method for CT images

This section presents an automated liver segmentation technique for multi-phase CT
images. The goal of this research was to investigate whether the accuracy of the liver
segmentation can be improved if more phases of the contrast-enhanced CT examination
are incorporated. The proposed approach is based on similar image processing concepts
presented in the previous section, but it can combine the information of two or three
images. According to the qualitative evaluation and the quantitative comparison with the
single-phase approach, this method can more accurately segment the liver parenchyma in
cases, when large tumours are found in the liver. The results of this research was
published in a journal paper [1] and the proposed approach was patented [11, 12].

The paper [6] gave an overview about the automated liver segmentation techniques for
portal-phase CT images. According to the evaluation of these methods the average
clinical case can be handled by most algorithms with good accuracy, however, in the
challenging cases (e.g. presence of large hypo- or hyper-dense lesions, or low contrast
enhancement) most of the methods can fail.

The presented approaches had different theoretical background. Rikxoort [41] et al.
presented a method that is based on statistical voxel classification using probability liver
model. The algorithm of Kainmuller et al. [35] uses statistical shape model that is
combined with a constrained free-form model. Chi’s segmentation approach [38]
integrates a rotational template matching and K-means clustering with a gradient vector
flow geometric snake. Schmidt et al. [37] presented a system that allows defining a set of
rules based on which the abdominal organs are segmented using simple functions (like
region-growing and morphological operators). The method of Furukawa et al. [40] uses
maximum a-posterior probability estimation for rough liver extraction whose result is
subsequently refined with level-set technique. Seghers et al. [39] presented an active
shape model approach wherein multiple local shape models are incorporated. The
algorithm of Susomboon et al. [42] uses intensity-based partition, texture-based
classification, and probability model to segment the liver. Slagmolen’s et al. [48]
presented a method that incorporates atlas using non-rigid registration. The algorithm of
Saddi et al. [36] incorporates statistical shape model with global-to-local shape matching
in order to segment the liver.

Similar to the methods presented in [6] the majority of the published approaches use only
the portal-phase of the contrast-enhanced CT examination because this image allows the
best separation of the liver parenchyma from the surrounding organs. In the clinical
practice usually 2-4 phases are acquired in a contrast-enhanced examination. In addition
to the portal, the non-contrast, the arterial, and the delayed images are also available in
most of the cases. The contrast uptake of the liver depends on many circumstances, such
as the acquisition timing, the applied contrast agent, or the patient’s blood circulation.
Since the first two factors depend on hospital protocols and the last one cannot be
controlled, the quality of the portal venous image varies significantly among patients. A
method, which incorporates more phases, is less dependent on these external
circumstances, so it can be widely used in clinical practice.
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Using more phases to segment anatomical structures has been already introduced in a few
publications. Saitoh et al. [50] presented a liver segmentation approach that automatically
delineates the portal vein using the portal and the non-contrast images, and segments the
liver volume starting from the vessels. The paper of Duda et al. [51] described an
algorithm for automatic liver lesion detection and classification from multiphase CT
images. The method of Shimizu et al. [52] extracts a rough liver region from triple-phase
images that is subsequently refined with level-set technique to get precise segmentation.
Papers [53, 54] discussed automated liver volume and lesion segmentation approaches
which are based on the subtraction of the portal and the non-contrast images. All the
above referred approaches require the input phases to be registered, so their result
significantly depends on the quality of the registration. The precise registration of the
different phases is a very complex problem for the following reason. Although the patient
remains in the same position during the multiphase abdominal CT examination (i.e. spine
does not move considerably), the organs cans shift, rotate, or deform significantly due to
respiration. In order to compensate this motion a deformable registration is required,
which is very time consuming for an average liver case (of resolution 512 x 512 x 200).

The idea behind the proposed approach is to exploit the characteristic contrast uptake of
the liver as well as the other organs. The intensity of a surrounding organ can be similar
to the liver when only a particular phase (does not matter which) is considered. However,
it is very unlikely that an organ has the same intensity in all phases. That is why the liver
parenchyma can be more accurately localized when the joint information of multiple
phases is incorporated. This approach requires the phases to be precisely registered,
which is very time-consuming when it is performed to the whole image. In order to do
that efficiently the registration is performed in two steps. In the beginning of the proposed
method a rough registration is performed for the whole image based on the geometry of
(i.e. origin, voxel spacing) the images. As result of this alignment the liver significantly
overlaps on the different phases, which allows detecting a large region inside the organ.
Then, each phase is separately segmented from the initial region. Finally, the results are
precisely registered and combined. This precise registration can be done efficiently
because it is performed incorporating only the local environment of the liver.

More specifically, Algorithm 2.2 demonstrates the main steps of the multi-phase
approach. First, an initial region is located using the joint information of all phases
(Step 1 — Subsection 2.2.1). Starting from the initial region each input image is separately
segmented (Step 2) using the single-phase method presented in Section 2.1. The
segmentation involves the separation of liver and heart (Step 2.1 — see prior Subsection
2.1.2), the region-growing (Step 2.2 — see prior Subsection 2.1.3), and the correction of
the under- or over-segmented areas (Step2.3 — see prior Subsection 2.1.4). The
segmentation does not involve the I\VC removal because it is very specific for the portal-
phase image. The result of each phase involves the liver as well as the other structures
which have similar intensity. In order to get the liver the results are precisely registered
using affine transformation and the final segmentation is defined as the combination of
the results belonging to the different phases (Step 3 — Subsection 2.2.2).
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1 Localize liver based on the joint information of the input phases
2 For each phase
2.1 Separate liver and heart
2.2 Segment liver using neighbourhood-connected region-growing
2.3 Correct under-segmented hypo- or hyper-dense regions
3 Register the segmentations using affine transform and combine the results

Algorithm 2.2 The multi-phase approach

The qualitative evaluation of the proposed algorithm was performed on a set of multi-
phase examinations involving physicians. The results of the visual evaluation as well as
the gquantitative comparison with the single-phase approach are presented in Subsection
2.2.3. The presented method was evaluated on large number of multi-phase cases for
automated liver volume measurement. This study was performed by physicians of a
hospital in France. The results of these experiments are presented in Subsection 2.2.4.

2.2.1 Compute seed region based on multi-phase information

The localization of the liver is based on histogram analysis like in case of the single-phase
method, but here the joint histogram of all phases is analysed. Before doing that, the input
phases are normalized using a common format. This is necessary because the input
images have different geometry in many cases. The origin, the slice number, and the
voxel spacing vary according to the acquisition parameters of the different phases. For
example, the arterial phase is usually made with smaller slice thickness, and the portal-
phase covers the pelvis (in addition to the abdomen) in many cases. The goal of the
normalization is to create a multi-scalar image that shows the intensity of each voxel in
all phases. Using the geometry of the images, the position of each voxel in each phase can
be represented in a common coordinate system, which allows computing the extent of the
largest region that is covered by all images. The input phases are resampled within the
common region using the same voxel spacing, which results an image that represents the
contrast uptake of the same anatomical point in each phase.

Figure 2.11 demonstrates the challenges of the histogram analysis when the phases are
separately considered. For the sake of easier presentation assume the input consists of two
phases: arterial and portal. The two phases as well as the histogram of each phase is
displayed on Fig. 2.11. According to the images it is very difficult to visually separate the
liver from the muscles in the arterial image (arrows in Fig. 2.11/a), while in the portal
phase the spleen has similar intensity as the liver (arrows in Fig. 2.11/b). The histogram
of the arterial phase (solid curve in Fig. 2.11 — bottom) has one large peak that represent
both liver and muscle voxels, while the largest peak of the portal-phase histogram (dashed
curve in Fig. 2.11 — bottom) represents the voxels of both liver and spleen. In conclusion,
muscles and spleen cannot be separated from the liver based on the single-phase
histograms, which can lead to over-segmentation into muscles or the spleen because the
liver surface is connected to both of these regions.
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Figure 2.11 Dual-phase liver examination: in arterial phase (a) the muscles, in portal-venous phase (b) the spleen
has similar intensity as the liver (see arrows). It is not possible to separate the liver from these tissue types based
on the histogram (bottom) of any of the phases.

The separation of similar tissue types becomes feasible when the joint information of two
phases is considered. Figure 2.12 shows the fusion of the arterial and the portal phases of
a multi-phase CT examination. The arterial and the portal enhancement is visualized
using the red (Fig. 2.12/a) and the green (Fig. 2.12/b) channels, respectively (blue channel
is set to 0). According to the fused image (Fig. 2.12/c) the liver is green (due to high
portal contrast), muscles are dark brown (due to low contrast in both phases), spleen is
light brown (due to high contrast in both phases), aorta is orange (due to its very high
contrast in arterial phase), bones are yellow (due to the very high contrast in both phases).

Figure 2.12 Fusion of two phases: When red (a) and green (b) channels are used to represent the arterial and the
portal density, respectively, the result RGB image (c) shows the joint information of two phases, which allows
better separation of the liver from surrounding organs.
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Figure 2.13 Joint histogram of a dual-phase liver examination (bottom): the peaks represent contrast
enhancements which are characteristic for the different organs (see arrows).

The joint histogram (Fig. 2.13/c) of a dual-phase image shows the distribution of intensity
pairs associated with the voxels of the image. This function assigns high probability to a
gray-level pair (g4, 9g,) if there are many voxels whose intensity is equal to g, at the
arterial and g, at the portal phase. Even though the phases are not perfectly registered,
there are some clearly separable peak on the on the joint histogram. Each of these maxima
represents a specific tissue type (i.e. set of voxels having similar contrast uptake).

All of the large anatomical structures (e.g. liver, spleen, stomach, kidney, muscles, bones,
heart, and aorta) could be identified based on the joint histogram, but this work focuses
on the liver only. Two main properties are exploited to find the peak representing the
liver. First is that it is always located in the intensity range [(50,80), (250,250)]. Second
is that it is the largest peak within this range. Note that the muscles can form a larger peak
when the chest or the pelvis is also covered by the CT exam, but the muscles do not have
as high intensity as 80 HU in the portal phase.

In order to improve the robustness of the liver localization, the joint histogram is
computed incorporating only voxels located in the right half of the body (which makes
the liver peak more significant). Assume the intensity pair (1, ;) denotes the liver peak.
The intensity pair (g4, 92) € [({; — 20,1, — 20), (I; + 20,1, + 20) is considered similar
to the liver, if 0.2-#H(l,1,) < H(g1,9,), Where function H represents the joint
histogram. Note that the intensity similarity is not separately defined for each phase,
rather those intensity pairs are selected which belong to the local environment of the liver
peak and their probability greater than 20% of the liver mode. The latter percentage was
defined empirically.
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In the next step the image is thresholded such that one is assigned to each voxel whose
contrast uptake is similar to (I;,1,) and zero is assigned to the other voxels. Finally, the
largest 3D-connected component of the thresholded image is computed and eroded with a
kernel having 5 mm radius. The result set of voxels (Fig. 2.14/b) represent a connected
area inside the liver, which can be used to initialize the subsequent segmentation.

Figure 2.14 Initial region based on dual-phase information: the fusion of arterial and portal phases (a) and the
initial region detected based on the joint histogram of two phases (b).

The proposed technique can be also applied for three-phase images (note that the native
or the late phase is also acquired in many cases). In such case the distribution of contrast
uptake can be represented by 3D joint histogram and the liver mode can be described by
an intensity triplet. Tests with a small set of images showed that using three phases
provides smaller initial region due to the misalignment of the different phases. In
conclusion, two contrast-enhanced phases are enough to determine significant amount of
seed points for the segmentation in all cases.

After the detection of the initial region the neighbourhood-connected region-growing
(presented in Subsection 2.1.3) is used to segment the liver in each phase. The initial
region is resampled according to a voxel spacing of the given phase and the intensity
range of liver voxels is computed in the same way as presented in Subsection 2.1.3. The
neighbourhood radius used by the segmentation is set to 5 mm, the applied tolerance is
equal to 98%, and the subsequent dilation is performed using spherical kernel with 5 mm
radius. In order to improve efficiency the input phases are re-sliced (by omitting slices),
so that the slice spacing is between 2 and 3 mm.

The segmentation is facilitated by most of the pre-and post-processing functions
presented in Subsections 2.1.2 and 2.1.4. The liver-heart separation is applied to reduce
the large over-segmentation into the heart. Additional segmentation at the right lung lobe
is also performed to reduce under-segmentation. The IVC removal and the vessel filling
algorithms are not used because these steps are specific for the portal phase only, but the
cavity filling is applied to the result of the segmentation.

2.2.2 Registration and combination of the results of different phases

The initial region is significantly larger than that used by the single-phase approach,
which makes the standard deviation of intensities (o0, and ay;4p, in Subsection 2.1.3)
greater. That is why the segmentation results rather over-segmented in each phase. The
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over-segmentation can affect different parts of the liver. Most of these areas (muscles
between ribs, pancreas, stomach, and small bowels) cannot be handled with simple rules
due to the large variety of their location, size, and shape. However, a neighbouring organ
is very unlikely to have similar intensity in all phases, so a specific over-segmentation
occurs in one phase only. That is why probability of over-segmentation can be
significantly reduced by combining the result of the different phases.

Due to the patient’s respiration the organs located near the lung move and deform
considerably between two phases (Fig.2.15). It is clearly visible (especially on the
coronal slice) that the liver is shifted down significantly due to respiration. This
phenomenon is characteristic for all multi-phase abdominal CT images, so registration is
needed before the segmentations of the different phases are combined.

Figure 2.15 Inter-phase registration problem: axial (a), sagittal (b), and coronal (c) slices of a portal-phase
image. The green region represents the segmented liver belonging to the portal phase and the red contour shows
the segmentation of the arterial phase.

For sake of efficiency the inter-phase registration is reduced to the environment of the
liver. Since the fine registration is very time-consuming for a high resolution CT image,
only the segmented liver volumes (i.e. binary images) are registered. For further
optimization, the liver volumes are resampled using isotropic voxel size (5 X 5 x 5 mm).
The registration transform is computed in two steps. First, a translation transform is
computed. This step is initialized such that the weight centre of the moving liver is shifted
to that of the fixed liver (that belongs to the portal phase). Then, an affine transform is
computed. The matrix (representing the rotation, scale, and shear) of the transform is
initially set to the identity, the centre of rotation is set to the weight centre of the moving
liver, and the translation vector is set to the result of the previous step. In both step of the
registration the squared difference is used as similarity metric, and gradient descent
optimizer is applied to find the best transformation. The registration was implemented
using ITK [55]. Figure 2.16 demonstrates an example for inter-phase registration.

Figure 2.16 Inter-phase registration result: axial (a), sagittal (b), and coronal (c) slices of a portal-phase image.
The green region represents the segmented liver belonging to the portal phase and the blue contour shows the
registered segmentation of the arterial phase.
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When the segmentation results are registered the result can be defined as an arbitrary
function of the segmented as well as the original grayscale images. Before doing that, all
images must be resampled using the registration transform and the geometry of the
reference image. The reference image can be any of the phases depending on the clinical
application, in most of the cases it is the portal-phase image. The resampling of large CT
images is very time consuming, so in this work the final result is defined based on the
segmented liver belonging to the different phases. This way, only binary volumes need to
be resampled.

The number of voxels belonging to the reference image can be very large
(e.g. 512x512x500) when it covers large part of the pelvis or the chest or the slice
thickness is below 1 mm (both are very common in clinical practice). Applying the
registration transform to all of these voxels is very computation demanding. In order to
make an efficient resampling that results a smooth liver surface, the binary liver volume
is converted into a triangle mesh before transformation. This approach allows applying
the inverse of the registration transform to the surface points only and computing the liver
voxels only in slices which intersect the triangle mesh. Moreover, this surface-based
approach allows smoother interpolation between the down-sampled slices (note that the
segmentation is performed on a down-sampled image in case of small slice thickness)
than the linear, the nearest neighbour, or the spline-based interpolation of the binary liver
volumes. This way, the result is closer to the expectation of the physicians.

The combination of the results can be defined in various ways. It can be majority vote
(e.g. a voxel is considered as part of the liver if it is involved in the majority of
segmentation results) or some weighting of images can be used (e.g. portal phase has
higher weight compared to the arterial). The exact type of the input phases is, however,
unknown for all examinations. Based on the timestamp of each phase one can compute
the chronological order of input images and the delay between the injection of the
contrast agent and the acquisition of each phase, but cannot define the exact phase. Even
though a standardized protocol is used for contrast injection, no one can guarantee that
the contrast will arrive to the portal vein of at a given time (because it depends on patient
condition). That’s why, when two contrast-enhanced phases are available, there are many
possible configurations (e.g. arterial/portal, pre-portal/post-portal, portal/late, etc.).

Figure 2.17 The combination of result belonging to two different phases: the segmentation of the arterial (a) and
the portal (b) phase can be over-segmented, taking their intersection after affine registration can significantly
reduce the over-segmentation (c).
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Due to the above mentioned issues the intersection is used to combine the segmentation
results of the different phases. Even this simple approach can significantly reduce the
over-segmentation in all anatomical regions involving the muscles between ribs, the
inferior vena cava, the stomach, the pancreas and the small bowels. Figure 2.17 shows an
example for combining the result of two phases. As it is demonstrated by the figure the
over-segmentation into the muscles (a) and IVC (b) can be eliminated when the
intersection is taken (c).

2.2.3 Evaluation of the multi-phase liver segmentation

This section presents the preliminary qualitative evaluation of the proposed multi-phase
algorithm and the quantitative comparison with the single-phase method (more extensive
evaluation and comparison with other methods can be found in Section 2.4). The test
dataset involved 19 multiphase examinations (3 dual-phase, 16 with three-phase). The
dual-phase cases involved the arterial and the portal images, and the three-phase images
involved the non-contrast or the late phase in addition. Since manual segmentation was
not available for the images, the segmentation accuracy was assessed using a
questionnaire. The questions were answered by 5 radiologists for each segmentation
result. The questions were related to specific segmentation errors (Table 2.4) and the
overall accuracy of the results (Table 2.5).

Question good | acceptable bad
Rate separation from chest wall between ribs | 88.75 11.25 0.00
Rate separation from heart 86.25 12.50 1.25
Rate detection of caudal part of the left lobe | 72.50 22.50 5.00
Rate detection of hepatic portal vein 82.50 13.75 3.75
Rate detection of bottom part of liver 73.75 26.25 0.00
Rate detection of upper part of liver 45.00 51.25 3.75
Rate correction of breathing artefacts 92.50 7.50 0.00
Question asitis | after edit | not at all
Can the segmented liver be used 55.00 38.75 6.25

Table 2.4 Evaluation using questionnaire: Possible answers for the questions are shown in the columns. Each
row demonstrates the distribution of answers given by 5 radiologists for all test cases.

Question 1 2 3 4 5
Rate under-segmentation | 1.25 | 6.25 | 18.75 | 63.75 | 10.00
Rate over-segmentation | 0.00 | 0.00 | 1.25 | 27.50 | 71.25

Table 2.5 Evaluation using questionnaire: Each value represents the average of answers made by 5 radiologists
for all test cases. The possible answers for the two questions are: 1 = the result is useless; 2 = the result is largely
over- or under-segmented, so it requires significant manual correction; 3 = the result is slightly over/under-
segmented, so it requires some manual correction; 4 = the result is rarely over/under-segmented, so it requires a
minor manual correction; 5 = the result is not over/under-segmented.

Tables 2.4 and 2.5 summarize the average rating of segmentation quality provided by the
radiologists. According to Table 2.4, the separation from the chest wall and the heart, the
detection of hepatic portal vein, and the correction of breathing artefacts was successful in
more than 82% of the cases. The detection of the caudal part of the left lobe and the
bottom part of liver was good in more than 72% of the cases. The detection of the upper
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part of the liver was successful only in 45% of the cases, and it failed only in 3.75% of
the cases. The answer for the question concerning the overall usability of the results
shows the segmented liver was useful for clinical purposes in nearly 94% of the cases as
it was or after some editing. The clinical application was liver surgery planning including
living related liver transplantation and oncological resection.

The overall under- and over-segmentation was also rated by the radiologists. According
to Table 2.5 the average over-segmentation rate was (3-1.25+4-27.50+5-71.25)/100=4.7,
the under-segmentation rate was (1-1.25+2-6.25+3-18.75+4-63.75+5-10.00)/100=3.75.
The latter result was due to under-segmented lesions, whose intensity was significantly
different from the normal liver in one phase. Based on the results, FPVF was probably
good because in 71% of the cases the result was not over-segmented and in further 27%
the result was a bit over-segmented. However, TPVF was probably lower because under-
segmentation was characteristic for 90% of the cases, although it was acceptable in more
than 73%. The hypothesis about TPVF and FPVF is confirmed by the next test, wherein
the single- and multi-phase methods are evaluated using manually segmented liver.
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Figure 2.18 Axial (left), sagittal (centre), and coronal (right) slices of segmentation results rated good (top),
acceptable (middle), and bad (bottom) by radiologists.

Figure 2.18 demonstrates the result of the multi-phase method for three representative
cases. The top row (Fig. 2.18/a-c) displays a good solution that can be used without
manual correction (based on the physician’s feedbacks). The middle row (Fig. 2.18/d-f)
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shows an acceptable segmentation that can be used after minor corrections. The bottom
row (Fig. 2.18/g-i) demonstrates a bad solution that could be used only after time
consuming editing. In the last case a large lesion (in the left part of the liver) was not
involved by the result.

The goal of the other test was to demonstrate the multi-phase method can efficiently
separate liver from organs which have similar intensity in a particular phase. The two
methods were qualitatively compared using a small set of 5 challenging exams (selected
from the 19 cases used in the preliminary evaluation). These exams involved the arterial
and the portal phases. The images were segmented by both methods, such that the single-
phase method used only the portal-phase image, while the multi-phase incorporated both
arterial and portal images.

Figure 2.19 The result of the single-phase (red area) and the multi-phase method (green contour): over-
segmented regions at the pancreas (a, b), the stomach (c), the bowels (d), and the IVC (e) can be reduced by
combining more phases.

Figure 2.19 shows the result of the single- and the multi-phase methods for the 5
challenging exams. The small dataset involved cases with good (a, b), bad (c), and
moderate (d, e) contrast enhancement. There were healthy as well as tumorous exams
involved. Based on the visual assessment one can see the single-phase method can leak
into the pancreas (a, b, d), the stomach (c), the IVC (b, e), or the muscles between ribs
(b), but the multi-phase approach provided better result in all of these cases.

In order to make quantitative comparison, the liver was manually contoured on the portal-
venous phase of the elected cases. The contour was defined by a non-expert operator and
acknowledged by a physician. The result of both methods was compared with the manual
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segmentation and various error measures were computed, which are reported in
Tables 2.6 and 2.7.

According to the tables the average row shows better accuracy for the multi-phase
method. The VOE as well as the surface errors (ASSD, MSSD) were lower for the multi-
phase method thanks to the lack of extensive over-segmentation. However, the average
TPVF was 3.3% lower in comparison with the single-phase method, which indicates the
multi-phase method is more specific to the healthy liver parenchyma. The lower
sensitivity of the multi-phase method is also confirmed by the negative average RVD.
The loss of TPVF was smaller compared to the improvement in FPVF that was 9.7%
lower for the multi-phase method.

In more details, subject of exam (a) had a large lesion that was under- segmented by both
methods. In this case, the result of the single-phase method was over-segmented in the
bowels, which compensated for the loss of volume (identical VOE and different RVD). In
case of exams (b) and (c) the single-phase method over-segmented the stomach and some
bowels, which increased the MSD and FPVF significantly. For these exams as well as for
exams (4) and (5), the multi- phase method provided better results.

Exam | VOE | RVD | ASSD | MSSD | Score | TPVF | FPVF
a 1856 | 051 | 261 | 48.61 | 43 90.0 | 10.5
b 19.74 | 2251 | 5.18 | 78.93 5 99.1 | 234
c 20.06 | 11.24 | 479 | 7358 | 13 938 | 174
d 11.07| 543 | 154 | 3453 | 59 96.7 8.7
e 10.16 | 0.61 | 154 | 2521 | 69 94.9 5.7
Average | 1592 | 8.06 | 3.13 | 52.17 | 38 949 | 13.1
Std.Dev. | 4.88 | 9.2 1.75 | 2359 | 28 3.4 7.2

Table 2.6 Quantitative evaluation of the single-phase method.

Exam | VOE | RVD | ASSD | MSSD | Score | TPVF | FPVF
a 18.56 | -12.65 | 2.83 | 4941 | 32 84.1 3.3
b 940 | 184 1.68 | 2259 | 69 95.9 5.9
c 10.36 | -552 | 152 | 2111 | 66 91.9 2.6
d 948 | -4.10 | 114 | 2226 | 72 92.9 2.8
e 930 | 429 | 118 | 2521 | 70 93.1 2.6
Average | 1142 | -494 | 170 | 28.12 | 62 91.6 3.4
Std.Dev. | 401 | 517 | 0.69 12 17 4.4 1.4
p-value | 0.118 | 0.009* | 0.139 | 0.129 | 0.177 | 0.011* | 0.024*

Table 2.7 Quantitative evaluation of the multi-phase method, and comparison with the single-phase method
(* demonstrates significant difference p < 0.05).

In order to assess the significance of the differences, two-tailed paired T-test was
performed for each error measure (see bottom row of Table 2.7). According to the p-
values three metrics (RVD, TPFV, FPVF) showed significant difference, while the other
differences (VOE, ASSD, MSSD) were not statistically significant. As reported earlier, 6
of the 7 error measures had better average and smaller deviation for the multi-phase
method. Since the deviation was still high, the number of cases was too low to
demonstrate statistically significant difference for 4 of the 7 error measures.
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In summary, the multi-phase method provided more accurate result because the
possibility of over-segmentation was significantly lower. This was due to the more
reliable initial segmentation and the intersection of the results belonging to the different
phases. However, both methods can under-segment large (hyper- or hypodense) lesions.
The lesions are the most visible in the portal phase (due to the high contrast uptake of the
liver), so they are very likely under-segmented if this phase is incorporated.

It is important to note that the multi-phase method can use any contrast-enhanced phases
(unlike the single phase method that works only for the portal image only). It is possible
to combine the arterial phase with another less contrast-enhanced phase, when the exam
involves large hypo-dense lesions. According to experiments with three-phase images, the
under- segmentation of large lesions was eliminated, when the late phase was used
instead of the portal venous. An example for such result can be seen on Fig. 2.20. In this
particular case the arterial, the portal, and the late phases were available. Incorporating
the portal phase only (Fig. 2.20/a) or combining it with the arterial phase (Fig. 2.20/b) did
not result in good segmentation. However, when the arterial phase was combined with the
late phase (Fig. 2.20/c) the segmentation was significantly better.

Figure 2.20 The main advantage of the multi-phase method: using of the portal venous phase only (a) or
combined with the arterial phase (b) may result in under-segmented image. When the arterial image is combined
with another less contrast-enhanced phase, the multi-phase method provides good result (c).

The comparison of the single- and multi-phase phase methods showed the single-phase
method can provide similar level of precision as the multi-phase method in case of ideally
acquired portal-venous images. In clinical practice, however, the quality of the portal-
venous image varies. Since the multi-phase method can incorporate more images, it
provides better results in cases when the liver is not easily separable from the surrounding
organs in the portal-venous phase. The single-phase method involves various pre- and
post-processing steps to eliminate over-segmentation at different organs which can be
described with simple rules (heart, 1IVC, vessels). The multi-phase method can also
separate the other organs which cannot be described with such rules.

In the clinical routine the running time is very important, and the proposed multi-phase
approach meets this requirement. The fully automated segmentation of a contrast-
enhanced liver CT exam (having two phases) took 25.6 (+7.2) seconds in average using
Intel Core2 Duo 2.2 GHz CPU with 2 GB RAM. The running time of the single-phase
method (without optimization) was 40.7 (£9.4) seconds using the same hardware. The
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running time of the presented approaches was significantly less than 5-30 minutes
reported for other methods in the MICCAI 2007 liver contest (see Table 2.3).

In summary, the preliminary evaluation demonstrated that the overall precision of both
methods is good. The results were rarely over-segmented, but the under-segmentation of
large lesions (10-20% of the total volume) shall be considered. The latter issue can be
solved in various ways. Two directions (incorporating probabilistic liver model in the
segmentation — Section 2.4, and automated detection of lesions in the environment of the
healthy liver — Section 3.2) were explored and presented latter part of this thesis.

2.2.4 Clinical study on liver volume measurement

This subsection presents another evaluation of the multi-phase method, which was
performed in cooperation with the clinicians of the Henry Mondor Clinic in France. The
goal of this study was to investigate, whether the proposed method can be used to solve a
real clinical problem: the quantification of the liver volume based on CT images. The
results of the study were published in a medical journal [10].

The quantification of the liver volume is very important before transplantation. The
hospital provided 40 cases belonging to patients who underwent liver transplantation
prior the study. The hospital also provided the ground-truth liver volume which was
calculated from the weight measured after the liver was removed by the surgeon. The
volume computed from the manually segmented liver was also available for each case.
The dataset involved various exams. The common property of the cases was that all
patients had chronic liver disease. In this condition the organ absorbs small amount of
contrast agent, which makes these cases difficult to segment automatically. Moreover,
many cases were affected by ascites (when the abdomen is filled with water-like liquid
that can take large volume of the total abdomen). For more information about the images
refer to Tables A.2 — A.5 in the appendix.

The proposed multi-phase method was executed for all cases using the arterial and the
phases as input and the result volumes were compared with ground truth using statistical
correlation. The volume computed from the manual segmentation was also compared
with the ground-truth liver volume (using RVD measure).

According to the results presented in Table A.1, the mean ground-truth liver volume was
1401 cm® (range 708-2350 cm®; SD = 401 cm®). The mean liver volume computed from
the manual segmentations was 1425 cm® (range 713-2772 cm®; SD = 474 cm®). The mean
liver volume computed from the result of the automated segmentation was 1404 cm?®
(range 493-2769 cm3; SD = 514 cm3), which was closer to the ground truth. The mean
difference of the manual and the automated method from the ground-truth liver volume
was 23 cm® (RVD = 1.4%) and 2.9 cm® (RVD = -0.5%), respectively, which also shows
the proposed algorithm was more accurate than the manual segmentation. Both automated
and manual liver volume measurements were strongly correlated to the ground-truth with
respective Pearson coefficients of 0.87 (p<0.0001) and 0.91 (p<0.0001).

According to the visual assessment of the results the overall accuracy of the proposed
automated approach was good (see images in Appendix A). The largest errors in multi-
phase volume measurement were due to some over-segmentation into the stomach (exams
24, 29) or the spleen (exam 22).
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These results showed the proposed algorithm can efficiently combine the information of
the portal and the arterial phases to provide accurate segmentation. This feature of the
method becomes important when the portal-venous image have low contrast. The mean
liver density in the portal-phase images involved in this study was equal to 90 HU (min =
66 HU, max = 106 HU, stdev = 10 HU), which is significantly lower than the mean
hepatic enhancement (128 HU) reported by Li [56] for routine contrast-enhanced
abdominal CT cases. In such cases the liver is more difficult to separate from
neighbouring organs when only one phase is considered, which makes it beneficial to
incorporate more phases in the automated liver segmentation.

The mean time required by the manual segmentation was significantly longer than that of
the automated method. The respective values were 86+3s and 17s+5s. In conclusion, the
study showed that automated liver volume measurement based on multi-phase CT
examinations is feasible with reduced computation time when the proposed multi-phase
method is used.

2.3 Model-based method for MR images

The intensity-based liver segmentation has its limitations, as it was demonstrated in the
last two sections. The intensity distribution is not homogeneous inside the liver, which
can results in under-segmentation. The under-segmentation of vessels can be relatively
easily corrected (as presented in Section 2.1). However, the problem of missing lesions
and other pathologic areas, which are the primary targets of a medical examination, shall
be also addressed. This problem has more significance in case of MR images where even
the normal liver parenchyma can be inhomogeneous. The main motivation of this work
was to find a solution for this problem.

This section presents an automated liver segmentation method that uses probabilistic liver
model to increase the accuracy of the intensity-based segmentation technique presented in
prior sections. The novelty of the proposed model is that it is partitioned into 8 segments
according to the anatomy of the liver. The partitioning allows using different intensity
statistics in different parts of the organ, which makes the segmentation less sensitive to
local intensity differences caused by pathology or MR artefacts. The method was
evaluated using eight representative contrast-enhanced MR exams. The results showed
the proposed algorithm can accurately segment the liver in short time despite the
significant intensity variation that is characteristic for MR images. The results of this
work were published in a journal paper [2] and the proposed approach was patented [13].

Several methods were published for liver segmentation on CT images, and many of them
were referred in prior sections. In this introduction only those publications are mentioned,
which are related to the presented approach. The literature of MR-based liver
segmentation is significantly smaller compared to CT modality, but methods from this
area are also referred.

There are algorithms [35, 39, 59] which use shape models extended with local intensity or
shape characteristics. These methods can handle intensity variations of the liver in
efficient way, but most of them relies on CT characteristics (e.g. liver intensity lies in a
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well-defined range), which makes them challenging to adapt to MR modality.
Furthermore, using complex shape models can increase significantly the running time.
Furukawa et al. [40] and Rikxoort et al. [41] applied probabilistic model to facilitate liver
segmentation that is based on level-set or voxel classification methods, respectively.
Although their probabilistic model is modality independent, these techniques cannot
handle significant intensity variation characteristic to MR images. A low-computation
demanding approach was presented in Section 2.1. This method uses region-growing and
incorporates anatomical rules to eliminate under- and over-segmentation. The
disadvantage of this algorithm is that it uses global intensity statistics, therefore it cannot
be applied to MR images. Li et al. [60] described an approach which combines level-set
with watershed technique. According to their results the algorithm provides good
segmentation, but there are no statistics presented about accuracy and running time.

Farraher et al. presented an approach [61] that segments the liver on MR images using
clustering. This technique is semi-automated (the user is required to inspect the
segmentation results and modify parameters if needed) and moderately time-consuming
(the running time was above 5 min). Hermoye et al. [62] compared manual contouring
with 2D semiautomatic deformable model technique for liver segmentation. In this work
the semi-automatic segmentation is performed slice-by-slice started from a user-
positioned circle which is deformed to the organ’s boundary. It requires about 5 min and
multiple user interactions which can introduce significant inter-operator variability.

In the clinical practice the number of MR liver examinations is increasing thanks to the
very good soft tissue differentiating capability of this modality and the widespread of MR
scanners. Computer assisted liver analysis shall also follow this trend, so there is a need
for an automated method that can accurately segment the liver volume in MR images in
efficient way. These facts motivated the development of a new method that integrates the
advantages of the intensity-based, model-based and local statistics-based approaches.
More specifically, Subsection 2.3.1 demonstrates the main challenges of segmenting
abdominal MR images. Subsection 2.3.2 describes how the partitioned probability liver
model was created. Subsection 2.3.3 shows how the liver model is incorporated in
segmentation using region-growing technique. Finally, Subsection 2.2.4 presents the
evaluation of the proposed method on a small set of representative MR liver cases.

2.3.1 Challenges of the automated MR image segmentation

The automated segmentation of contrast-enhanced MR images is very challenging due to
various reasons. The first problem is that the intensity values in the MR images cannot be
associated with any material or tissue type, which is due to the physics of MR image
acquisition (i.e. the measured signal is related to the molecular environment of hydrogen
protons they are embedded in). In case of CT modality the intensity values represent X-
ray absorption coefficients, which allows segmenting the main tissue types (e.g. air, fat,
soft tissue, bone) by simple thresholding using pre-defined intensity ranges.

Figure 2.21 shows the histogram of 8 abdominal CT images (thin lines) and the average
histogram of all 8 exams (thick line). It is slightly visible, that the each histogram has
some significant peaks at nearly the same intensity level. These peaks represent the
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different material or tissue types. This property of abdominal CT image allows locating
soft-tissue regions (including the liver) in a very easy way, which can be exploited when
the liver is automatically segmented.

0.10

0.08
0.06 f
0.04 | A

0.02 -

0.00 . '

S 8 N N AN A QO S O8I O VSO O OIS S N SN ARSI S
\QQ 9Q SOQ f\Q ,bQ bQ ,bg :«,)Q ”Q ,\Q \ ,-\,Q %Q N ‘)Q S O qQ \QQ

Figure 2.21 Histogram of 8 contrast-enhanced abdominal CT images (thin) and the average histogram (thick).
The main material types (air, lung, fat, soft-tissue, bones) are represented by a well-defined intensity range.

In case of MR modality the intensity range belonging to the different material types (as
well as the whole image) varies significantly among cases. Figure 2.22 shows the
histogram of 8 abdominal MR images (thin lines) and the average histogram of the 8
exams (thick line). It is visible that the intensity range of the whole image varies between
[0,1800] and [0,4800]. Each histogram has some well separable peaks, but they belong to
different intensity levels. That is why the average MR histogram has no characteristics
peaks, which does not allow segmenting different material types (e.g. soft tissue) using
pre-defined intensity ranges.
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Figure 2.22 Histograms of 8 contrast-enhanced abdominal MR images (thin). The intensity range representing
the same tissue type does not overlap among cases, which makes the average histogram (thick) have no well-
separable peaks.

The pathologic regions are more visible in MR images thanks to the better soft-tissue
differentiation of this modality, which makes the liver more heterogeneous compared to
CT modality. The second main problem from automated segmentation’s point of view is
that even the healthy liver parenchyma can be heterogeneous in MR images due to
various artefacts. The intensity range covering all liver voxels can be so wide that it
usually overlaps with other tissues like fat, bones, or even air. Moreover, the
heterogeneity of the normal liver can be different in different contrast phases, which
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makes it very difficult to detect the normal liver based on the joint information of more
phases according to our preliminary experiences. Examples for the above mentioned
issues are visualized in Fig. 2.23.

Figure 2.23 Challenges of MR image segmentation: the healthy liver parenchyma has different intensity at
different locations due to signal inhomogeneity (a — arrow in left lobe) or near the boundary of the acquired field
of view (c — arrow in the top of the liver). Pathologies can have similar intensity as the air (b — top arrow), and
motion artefact can introduce artificial contours (b - bottom arrow).

Besides many properties which make their automated processing difficult, MR images
have some advantages from technical point of view. Due to the special image acquisition
arrangement (i.e. coils are attached to the body region to be examined) MR images cover
small part (20-40 cm) of the body. This property is true for abdominal images, which
makes the automated localization of the organ easier.

The MR images used in this work are portal-phase gadolinium-enhanced LAVA (Liver
Acquisition with VVolume Acceleration) exams. The LAVA protocol was developed for
liver imaging, so the image to be segmented involves only the upper part of the abdomen,
where the liver is located (i.e. chest or pelvis is never involved in such images). Thanks to
the contrast enhancement the liver parenchyma is brighter than the surrounding organs.

2.3.2 Construction of the partitioned probability liver model

In order to incorporate the mean shape of the liver during segmentation, a probabilistic
model was created. The probabilistic model in general represents the spatial distribution
voxels belonging to an organ. The proposed model is extended with the segmental
structure of the liver. Combining these two kinds of knowledge allows diverging from
mean liver intensity in voxels where the probability is high and segmenting different parts
of the liver using local intensity statistics. The model was constructed in two steps. First,
the probability map of liver voxels was computed based on a set of training examples.
Then, the anatomical segmentation of the liver was applied to the model.

The probabilistic model was built from 60 non-contrast CT liver exams which were
manually contoured by radiologists as part of a research project on abdominal organ
segmentation [33]. Since the model represents the spatial distribution of liver voxels, the
modality of the images used for manual contouring does not have any effect to it. It is
also important to note that these liver cases were not involved in any test database used
for evaluation in this thesis (which requires contrast-enhanced CT images, anyway).
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2.3 Model-based method for MR images

In the first step the binary liver volumes were normalized by resampling to an isotropic
voxel spacing (2.5 mm) and cutting to the smallest extent. Then, each liver was registered
to a reference case using 3D similarity transformation. The reference exam was selected
based on its volume that was the closest to the average (1525cm?®) of the training
database. The registration transformation involves translation, scaling, and rotation, so it
can describe the inter-patient variation of liver position and size in the abdomen. The
transformation was initialized by translating the weight centre of the moving image into
that of the reference image, setting the centre of rotation to the common weight centre,
and setting the rotation matrix to the identity. In order to find the best transformation
between two liver volumes the square difference of the binary images was minimized
using gradient descent method. After registration a probability map was created by taking
the sum of all registered liver binary volumes and normalizing it to the range [0,1].

The novelty of the model construction was to extend the liver model with information
about the segmental structure of the organ. According to the Couinaud definition [63] the
liver can be divided into eight segments. The practical definition of Couinaud
segmentation uses five planes to separate the eight segments. These planes are fit to the
three main branches of the hepatic vein and to the two main branches of the portal vein.
In order to incorporate the segmental structure in the model the cutting planes were
defined for the reference liver based the corresponding CT image (to visualize the internal
structure of the liver) and subsequently applied to the average liver shape. The average
liver shape was created by thresholding the probability map at 30%. This threshold level
was selected such that the volume of the average liver shape was the closest to 1525 cm®.

Figure 2.24 Partitioned liver model: The probability map was thresholded at 30% to get the average liver shape
that was partitioned using 5 planes defined for the reference liver (left). An axial (centre) and a coronal (right)
slice of the liver model that assigns two values to each voxel: the liver probability (brightness) and the segment
label (colours)

As result of the model construction a 3D multi-scalar image was created that assigns two
values to each voxel: the probability of the voxel to belong to the liver and the label of the
segment that involves the given voxel. The latter value is set for voxels involved by the
average liver shape. Figure 2.24 shows the partitioned average liver shape (a), an axial (b)
and a coronal (c) slice of the partitioned probability map of the liver.
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2.3 Model-based method for MR images

2.3.3 Segmentation using the liver model

The segmentation method comprises of three main steps. In the first step the intensity
range representing the contrast-enhanced soft-tissue (involving normal liver intensity) is
computed. Then, the liver model is registered to the image. Finally, the liver is segmented
using neighbourhood-connected region-growing incorporating the partitioned liver model.

As demonstrated in Subsection 2.3.1 the intensity of a given tissue type varies among MR
images. In the test dataset used for the latter evaluation the mean liver intensity varied
between 729 and 2954. That is why the intensity mode representing the contrast-enhanced
tissue shall be determined in each case, separately. Algorithm 2.3 demonstrates how this
intensity mode (gmoq) and range [gmin, 9max] 1S determined.

1 Compute histogram H and let 9,00 = 9min = Imax = 0
2 For each local maximum (m) of the histogram
2.1 Compute left (I,,,) and right (1;,,) edge of maximum (m)
2.2 Compute area(m) = ¥ <g<r,, H(9)
2.3 1If gmoa < mA0.05 < area(m)

let Imod = My Gmin = Lns and Imax = Tm

Algorithm 2.3 Compute contrast-enhanced soft tissue intensity range

The algorithm exploits that the histogram always has a well separable maximum that
represents the contrast-enhanced soft tissue and there is only a few voxels (e.g. lesions or
vessels) which are brighter than that. These two properties are the consequence of the
liver specific contrast enhancement and the localized acquisition (i.e. the liver allocates
significant part of the image).

In the first step of Alg. 2.3 the histogram of the image computed and variables g4,
Imin, aNd gma, are initialized. In the subsequent loop (Step 2) the environment of each
local maximum (m) is analysed so that the left (I,,) and right (;,,) edges of the
histogram peak are computed (Step 2.1). [,,, is defined by the highest intensity (g < m)
that represents a local minimum in the histogram or whose probability H (g) is less than
H(m)/10. Similarly, 7, is defined by the lowest intensity (g > m) that represents a
local minimum in the histogram or whose probability # (g) is less than ' (m)/10.

When [,,, and r;,, are available for a maximum, the area under the histogram is computed
in the range [L,,, 1;,] (Step 2.2.). If the area represents at least 5% of the total image, m is
considered as a candidate for g,,,4. The highest m among all candidates is selected as
Imod» While g,in and g4, 1S Set to L, and rn,, respectively (Step 2.3). Using the 5%
constraint prevents the method to select an intensity range that represent hyper-dense
lesions or contrast filled vessels.

Figure 2.25 shows the histogram of two MR liver cases. It is slightly visible, that each
histogram has only a few maxima. The peak belonging to the contrast-enhanced soft
tissue (Gmog) can be defined using the proposed rules, even though its position varies
significantly among cases (see solid and dashed curves and corresponding values).
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Figure 2.25 Histogram of 2 contrast-enhanced abdominal MR images (solid and dashed curves). The liver
intensity mode (Gpoqg) and range (Gnin Gmax) is located at different intensity values.

Figure 2.26 Model registration: The input image is thresholded (a), distance map is computed (b — red colour
represents large distance), registered probability map (¢ — red colour represents high probability), dilated
average liver shape with anatomical segment information using different colours (d).

In the second step of the segmentation the liver model is registered to the image. This
process consists of the following activities:

¢ In the first step the image is resampled using 2.5 mm isotropic voxel spacing so that
its size is significantly reduced and its spacing is compatible with the model.

e Then, the image is thresholded using [gmin, 9max] @nd the left-posterior quarter of
the image (where the spleen is located) is deleted (Fig. 2.26/a — right bottom).

e For all nonzero voxels of the thresholded image the 3D distance from the nearest
contour voxel is computed, which results in a 3-dimensional distance map

54



2.3 Model-based method for MR images

(Fig. 2.26/b). Since the liver has the largest compact volume in the abdomen, the
largest values in the distance map always represent the central part of the liver. The
distance map is normalized to the range [0,1].

In the next step, the liver probability map is registered to the distance map. Note that
the liver model has the same characteristics as the distance map (Fig. 2.26/c), which
is exploited in this step. The registration computes a 3D similarity transform by
minimizing the square difference between the probabilistic model and the distance
map using gradient descent method. The registration transform is initialized, such
that the rotation matrix is set to the identity, the initial translation is set to the
difference of the weight centres of the distance map and the liver model, and the
centre of rotation is set to the weight centre of the liver probability map.

After the registration, the liver probability map, the average liver shape as well as
the segmental structure is aligned with the image. In order to make the segmental
information available for voxels located outside the average liver, 3D dilation is
applied to the image representing the anatomical segments (Fig. 2.26/d).

The third main step of the algorithm is to segment the liver parenchyma using
neighbourhood-connected region-growing method. The segmentation, which incorporates
the liver model and the segmental structure, works in the following way:

First, the initial region is located inside the liver. This region is extracted from the
soft-tissue image (created in the model registration) by performing 3D erosion.
Large radius (15 mm) is used for the erosion so that small regions are eliminated.
The largest 3D connected region of the eroded image is used as initial region
(Fig. 2.27/a). This region is always located in the liver because this organ has the
largest compact volume in the abdomen.

Then, intensity statistics are computed for the initial region and for each segment,
separately. The intensity range of the initial region [L,in, Linax] 1S defined based on
the histogram of the seed region in the way as presented for the single-phase method
(in Subsection 2.1.3). Note that this intensity range is narrower than [gmin, 9max]
because it does not involve vessels and hypo- or hyper-dense lesions. The segment
specific intensity ranges [s,! .., Smax] for each 1 < q < 8 are computed in the same
way as [lmin, lmax], SUch that only the corresponding segment of the average liver
shape is taken into account. In summary, the following intensity statistics are
incorporated during the segmentation:

o Liver intensity range [lLnin Linax] 1S @ Subset of the global soft-tissue range
[Gmin» 9max] @nd represents liver parenchyma without vessels and lesions.

o Segment specific range (sglin,s;:lax) that represents local intensity of segment
q, including liver parenchyma, vessels and lesions. It can be either narrower
than [Lyin, linax] OF wider than [gpmin, 9max] due to artefacts or pathology.

Starting from the initial region the liver is segmented using neighbourhood-
connected region-growing technique. Let i denote an index position in the image.
Furthermore, let P (i) and Q(i) denote the value of the registered probability model
and the segment label at voxel (i), respectively. In each iteration of the
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segmentation a voxel (i) is examined, and it is added to the result, if the intensity of
all voxels in its 3D environment is in the intensity range [t,,in (1), tmax (D], Where:

tmin(i) = STQn(llyz + (lmin 7%52) (1 :P(i))
tmax (D) = Soar + (Lnax — Spy) - (1= P(D))

This definition makes it possible to balance between local (segment specific) and
global (initial region) intensity ranges. The higher the value of P (i) is, the accepted
intensity range is closer to the local intensity range. This approach allows
segmenting regions, where the probability of liver is high, but the intensity is very
different from normal liver parenchyma (e.g. inside a lesion). Furthermore, large
over-segmentation can be also eliminated by using the model because the result can
involve voxels having low probability only if their intensity is very close to the
normal liver parenchyma.

The result of the segmentation requires some morphological processing. Since large
environment (with 2.5 mm radius) is used the segmentation, the result of the region-
growing is under-segmented (Fig. 2.27/b). This problem is eliminated by
performing a dilation using the same kernel (Fig. 2.27/c). Furthermore, a 2D cavity
filling is performed for each axial slice, so that vessels or lesions, which can be
under-segmented, are included in the final result (Fig. 2.27/d).

Figure 2.27 The main steps of the segmentation: initial region (a), the result of the region-growing (b), the result
of dilation (c), and the result of the cavity filling (d).
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2.3.4 Evaluation of the model based liver segmentation

The proposed method was evaluated on a set of 8 portal-phase contrast-enhanced MR
images. The test cases were acquired with LAVA protocol where gadolinium-based
contrast agent (that highlights liver parenchyma and liver veins) was applied. The slice
resolution was 512x512 for all cases and the average the slice number was 134 (min 91,
max 176). The average pixel size was 0.82 mm (min 0.7 mm, max 0.86 mm) and the
average slice thickness was 1.7 mm (min 1.3 mm, max 2.2 mm). The exams were selected
and by application specialist, so they represent typical clinical cases. The liver was
manually contoured for each exam. The test exams (see Fig. 2.28) involved:

e healthy liver with moderate inhomogeneity (A),

¢ healthy liver with significant heterogeneity at its left lobe and inferior part (B),

e liver with large hypo-dense lesion (C),

e liver with large heterogeneous lesion in the posterior part of the right lobe (D),

e liver with a lot of hypo-dense cysts (E),

¢ liver with some hyper-dense lesions in the left lobe (F),

e liver with hyper-dense lesions and acquisition artefacts — the border of the organ is
blurred near the kidney and the stomach (G),

e liver with large heterogeneous diffuse disease (H).

Figure 2.28 Axial (ax) and coronal (co) slices of the segmentation result for 8 test cases (A-H): red contour
represents the manual segmentation and white contour represents the result of the automatic segmentation.
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2.3 Model-based method for MR images

Figure 2.28 shows the results of the segmentation using segment specific intensity
statistics. According to the images, the majority of the liver parenchyma is well
segmented even when the image is affected by artefacts (A, Fico) OF hypo-dense lesions
(Clax» Diax, and Eyax). One can see that the results are rarely over-segmented except for
(Frco) at the heart or (Asco, Grax) at the stomach, and most of the hypo-dense lesions are not
under-segmented. In some cases, the liver is under-segmented near the boundary of the
organ (Gyo), especially in the left lobe (Ajx, Bieo, and Cyeo), Where the probability model
has lower values and the intensity differs significantly from the normal liver.

Exam | TPVF | FPVF | DSC | VOE | RVD | ASSD | MSSD
A 93.9 19] 959 | 79| 4.2 1.6 47.6
B 86.5 06| 925| 14.0|-12.9 2.6 46.4
C 90.1 1.0 943| 109 | -89 2.1 26.1
D 95.3 3.7 97| 82| —1.0 1.5 27.8
E 85.0 341902 | 178 | -11.6 3.1 24.6
F 94.1 471947 101| 11 2.8 43.0
G 89.2 46| 920 147| 6.2 3.2 32.7
H 95.3 1.1 971| 57| —36 0.9 23.9

AVG | 912 26| 941 | 112| 6.2 2.2 34.0
SD 4.1 1.7 23| 41 4.6 0.8 10.1

Table 2.8 The accuracy of the results when the segmentation uses local (segment specific) intensity statistics.

Exam | TPVF | FPVF | DSC | VOE | RVD | ASSD | MSSD
A 84.6 3.7 89.9 18.4 | —11.7 3.0 331
B 66.6 0.1 79.9 334 | 333 5.9 45.9
C 67.1 0.2 80.2 33.1 | —32.7 6.5 48.8
D 88.8 2.2 93.0 13.1 -9.0 2.5 39.7
E 77.2 1.2 86.6 23.7| 216 4.1 27.6
F 82.3 0.6 90.0 18.1| -17.1 3.8 40.3
G 72.7 2.7 82.9 29.2 | 246 6.1 30.7
H 87.7 0.5 93.2 12.7 | -11.9 2.1 29.2

AVG 78.4 1.4 87.0 22.7 | —20.2 4.2 36.9
SD 8.9 1.3 5.4 8.4 9.5 1.7 7.9

Diff | -12.8 -1.2 —7.1 116 | -14.1 2.0 2.9
p |0.0007 | 0.0795 | 0.0024 | 0.0015 | 0.0004 | 0.0032 | 0.4793

Table 2.9 The accuracy of the results when the segmentation uses global intensity statistics. Last two rows:
average difference compared to method using local statistics (Diff), and P-value of the Student’s t-test (p).

The segmentation results were compared with the manual contour using the error
measures presented earlier. The quantitative evaluation was performed for the result of
two different variants of the method. In the first case, local intensity statistics were used
by the method (as proposed in Subsection 2.3.3). In the second case, only the global
intensity statistics ([{min, lnax] @0 [Gmin,» Imax]) Were used by the algorithm.
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Tables 2.8 and 2.9 present the accuracy of the two variants, respectively. In case of using
local statistics (Table 2.8), TPVF and FPVF reflect moderate under- and insignificant
over-segmentation. The average TPVF is 91.2% and the average FPVF is 2.6%. DSC is
above 90% in all cases and the average VOE is 11.2%. The negative RVD indicates that
the results are under-segmented, especially in cases B and E. The average ASSD =
2.2mm and the average MSSD = 34 mm indicate large surface distance at some
locations, as it can be seen in cases A, B (under-segmentation in the left lobe), and F
(over-segmentation at the heart).

In case of using global statistics (Table 2.9) the metrics are slightly different. Both VOE
and (absolute) RVD are significantly higher, and DSC and TPVF are much lower, only
FPVF is nearly the same in average. According to the surface metrics the average ASSD
as well as the average MSSD are higher. The difference between the average metrics (that
was statistically significant for 5 of the 7 metrics — see bottom row of Table 2.9) show
that better segmentation quality can be achieved by using local intensity statistics.
Figure 2.29 allows comparing the results of the segmentation using local and global
intensity statistics on two exams (A and B) with typical inhomogeneity. The right lobe of
exam A is brighter (a), while the left lobe of exam B is darker (b) than the normal liver.
These regions are remarkably under-segmented, when global intensity statistics are used.

Figure 2.29 Result of the segmentation for exams A (a) and B (b) with method using local (white contour) and
global (blue contour) statistics.

The segmentation accuracy was quantified using various error measures, which allows
comparing the results with other techniques. Heimann et al. [6] presented a comparison of
automated liver segmentation methods developed for CT modality. The average error
measures for the first 10 automated methods presented in this paper were: VOE = 11.3%,
absolute RVD = 4.5%, ASSD = 2.5 mm, and MSSD = 35.5 mm. Comparing these values
with those of the proposed method (VOE = 11.2%, absolute RVD = 6.2%, ASSD =
2.2 mm, MSSD = 34.0 mm) one can see that the proposed algorithm was competitive
with the existing CT approaches. The literature of the automated liver segmentation for
MR images is much smaller. The paper of Gloger et al. [64] was published short before
this work. They reported better absolute RVD = 8.3% (on a small dataset).

In summary, the proposed model-based liver segmentation proved to be accurate when
segment specific statistics were used. In this case the result involves the heterogeneous
regions due to pathology or artefacts. Although the presented model is modality
independent, the model registration exploits some characteristics of the LAVA images
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(such as liver has high intensity due to contrast enhancement), which shall be eliminated
to adapt the segmentation method for wide range of MR protocols. The average running
time of the proposed method methods was 30 s + 8.7 using Intel Core2Duo 2.1GHz, and
2 GB RAM, which proves the efficiency of the method.

2.3.5 Adaptation of the model based liver segmentation to CT images

The evaluation in the previous subsection showed the proposed algorithm can accurately
segment the liver on a small set of contrast-enhanced MR images, but more extensive
evaluation was required to demonstrate the wide-range clinical usability of the method. In
the next section the accuracy of the model-based algorithm (as well as the other
approaches presented in Sections 2.1 and 2.2) is demonstrated on a large CT dataset. In
order evaluate the model-based approach on CT exams, the method was adapted to CT
modality. The adaption involved following modifications in the segmentation part of the
method (Section 2.3.3):

e In the first step the intensity range representing the contrast-enhanced soft-tissue is
computed in different way. Since the gray-level values in CT images are always in a
well-defined range, the computation of the global liver intensity range [gmin 9max]
was restricted to the interval [0,250] HU in Alg. 2.3.

e In the second step the anatomical segmentation of the model is not applied to the
image in the last phase of the model registration.

e In the third step of the segmentation local (segment specific) intensity statistics are
not incorporated by the region-growing. Since large intensity heterogeneity of the
normal liver is not characteristic for CT images, the following, simplified voxel
specific intensity range was used by the region-growing:

tmin (D) = Imin T (min — gmin) : (1 - :P(i))
tmax(i) = Imax T (lmax - gmax) : (1 - :P(i))

2.4 Quantitative comparison of liver segmentation methods

The preceding sections presented three approaches for automated liver segmentation. All
of them are based on neighbourhood-connected region-growing and use additional
information to eliminate over- or under-segmentation. The single-phase approach
incorporates information about the organs surrounding the liver. The multi-phase
algorithm takes benefit of another contrast-enhanced phase. The model-based technique
involves a liver model in the segmentation. Each method was originally evaluated using
different datasets (e.g. 20 MICCAI training, 19 multi-phase, 8 MR LAVA). Although the
same error measures were used for evaluation, which allows comparing the methods to
some extent, the direct comparison was not possible. The goal of this section was to
evaluate and quantitatively compare the three algorithms using the same dataset that
involves large number of clinical cases.

The test dataset consists of 83 contrast-enhanced liver CT exams. 37 exams included the
portal-phase image, and 46 exams involved both arterial and portal-venous phases. The
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exams were acquired in different hospitals using different CT scanners. The examinations
involved a few healthy cases, but majority of them was pathologic (including lesions,
cirrhosis, or ascites). For each case the liver contour was manually defined by physician
for the portal-phase image. In addition to the abdomen the exams covered the pelvis in 43
cases (52%), the chest in 22 cases (27%), and both in 17 cases (21%). The slice number
ranged between 37 and 1076, the average slice number was 292. The minimum, average,
and maximum slice thickness was 0.6, 2.15, and 5 mm, respectively.

The first two approaches were evaluated as presented in earlier sections, while the model-
based technique was adapted to CT images (as described in the end of Section 2.3). The
single-phase and the model-based methods were executed for all cases using the portal-
phase image as input. The multi-phase algorithm was executed for all cases which
involved both phases (referred as multi-phase dataset), and the liver contour was
computed for the portal-phase image. The test runs were performed on the same hardware
(3 GHz dual core processor, 4GB RAM) and the segmentation time was measured. The
following error measures RVD, ARDV, ASSD, RMSD, MSSD, VOE as well as the Score
(referred in Subsection 2.1.5) was computed for each result. In order to compare the
results, the average, the standard deviation, the minimum, and the maximum of the error
metrics were also computed. Furthermore, paired T-test was performed to see whether the
difference between two methods was statistically significant.

2.4.1 Comparison of single-phase and model-based methods on the whole dataset

This subsection presents the comparison of the single-phase and the model-based using
the whole dataset. Each exam was segmented with both methods and the result was
compared with the reference liver. Tables B.1 and B.2 (in Appendix B) demonstrate the
segmentation accuracy for each case using the single-phase and the model-based
methods, respectively.

The average RVD (35+£195%) and ARVD (45+193%) was very high for the single-phase
method, which was mainly due to some completely failed segmentations (e.g. exams 45
and 50). Based on these two metrics this method can provide very over-segmented
results. The average RVD (-0.2+13%) and ARVD (7.9£11%) was much better for the
model-based method. The paired T-test did not show significant difference in ARVD
(p=0.0878), but this is primarily due to the extremely high standard deviation of these
error measures in case of the single-phase method.

The surface based measures also showed the model-based method outperforms the single-
phase one. The average ASSD (9425 mm), RMSD (14431 mm), and MSSD (56+£74 mm)
of the single-phase method were much worse than those measured for the model-based
method, where ASSD (2.6+2.7 mm), RMSD (5.3£5.2 mm), and MSSD (38+£26 mm).
Considering these metrics the differences were statistically significant, where the p value
was equal to 0.0197, 0.0173, and 0.0295, respectively.

The VOE and the Score provide information about the overall quality of the segmentation
result. In case of the single-phase method the average VOE (19+21%) was much worse,
while the average Score (504+28) was little worse than in case of the model-based method,
where the average VOE was (13+8%) and the average Score was (52423). The difference
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was statistically significant for the VOE (p=0.0107) and not significant (p=0.4806) for the
Score.

Although, the difference was statistically significant in most metrics (except for RVD,
ARVD, where p < 0.1) the difference in Score was not. This phenomenon was due to the
way the Score is computed. According to the definition each negative Score is replaced
with zero, which means the Score cannot be arbitrary bad for any metric. If negative
Scores had been taken into account the average Score would have been (-9+184) for the
single-phase and (44+49) for the model-based method, which had been significant
difference (p=0.0105). Using thresholded Score was motivated by practical
considerations. When a result has 0 or less Score its clinical usability is questionable, so it
makes no sense to distinguish between useless (Score=0) and very useless (Score=-100)
segmentation from the physician’s point of view.

The model-based method performed better based on the average errors (including the
Score). Furthermore, considering the extremities of all metrics the model-based was also
more robust. The worst ARVD, ASSD, MSSD, and VOE were equal to 81.4%, 20.8 mm,
179.3 mm, and 47.5% in case of the model-based method, while the worst metrics were
1626.6%, 131.7%, 380.5%, and 100% in case of the single-phase method. Furthermore,
the model-based method provided zero-Score result in 2 cases (exams 21 and 47), while
the single-phase method resulted 10 zero-Score segmentation.
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Figure 2.30 Scatter plots demonstrating the VOE (left) and the Score (right) of the segmentation result provided
by the single-phase (y axle) and the model-based (x axle) methods. Each mark represents one exam.

Figure 2.30 shows the scatter-plot of the two methods according to metrics VOE (left)
and Score (right). In the diagrams each mark represents one exam, such that the position
along x and y axles correspond to the error metric achieved by the model-based and the
single-phase methods, respectively. The left diagram shows the distribution of VOE. It is
slightly visible that the model-based method does never provide segmentation, whose
VOE is greater than 50%, while in case of the single-phase method VOE is above 50%
for several (9) exams. The diagram on the right, which plots the Score, shows the same
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phenomenon. In contrast to the model-based method, which results below 20 of Score for
10 exams only, the single-phase method provides such bad result for 22 exams.

In summary, the model-based method performed significantly better than the single-
phase. The average of all error metrics as well as their standard deviation was lower. The
number of results having very limited usability was much lower for the model-based
method, which demonstrates its robustness that is very important in clinical applications.
The running time is the only measure that was better for the single-phase method. The
average running time 19.3+14.3 s of the single-phase method was significantly shorter
than that (30.8+12.6 s) of the model-based. However, the model-based method was better
considering the extremities because its longest running time (58.1 s) was much less than
that of the single-phase method (91.7 s).

2.4.2 Comparison of all methods on the multi-phase dataset

This subsection presents the comparison of all methods using the dual-phase subset of the
dataset. Each exam was segmented with all methods and the result was compared with the
reference liver. Tables B.3, B.4, B.5 (in Appendix B) demonstrate the segmentation
accuracy for each case using the single-phase, the multi-phase, and the model-based
methods, respectively.

According to Table B.3 the average RVD (67+257%) and ARVD (77+£254%) was
extremely high for the single-phase method, which implies the segmentation failed in
several cases (e.g. exams 31, 34, 36, 37, 40, 43, 45, 50). The large positive RVD implies
these exams are extremely over-segmented. The average RVD (-9.8+9.6%) and ARVD
(10.2+9.2%) was much better for the multi-phase method as well as the model-based
method — RVD (-0.5+16.8%) and ARVD (9.9+13.6%). The negative RVD of the multi-
phase method implies the results were under-segmented, while the results of the model-
based method were accurate from this point of view. The average ARVD of the model-
based method was a bit better than that of the multi-phase method, but the difference was
not significant. The paired tests did not show statistically significant difference between
the single-phase and the other methods considering RVD and ARVD, but this was due to
the extremely high standard deviation of the metrics in belonging to the single-phase
method (similar to results presented in the previous subsection).

The surface based metrics showed the multi-phase and model-based methods definitely
outperformed the single-phase one. The average ASSD (15+33 mm), RMSD
(22440 mm), and MSSD (80+92 mm) of the single-phase method are much worse than
those measured for the multi-phase method — ASSD (2.4+1.6 mm), RMSD (4.5+3 mm),
MSSD (35+13 mm), or the model-based method — ASSD (2.9+3.2 mm), RMSD
(5.9+6 mm), MSSD (42+30 mm). Considering the last three measures the difference
between the single-phase and the other two methods was significant, while the difference
between the multi-phase and model-based methods was not statistically significant.

The average VOE (26+26%) of the single-phase method was much worse than VOE
measured for the multi-phase (14.8+8.4%) and the model-based methods (15+9.4%). The
average Score was also much worse for the single phase method (404+30) compared to the
multi-phase (49+22) and the model-based (48+24) methods. Considering these two
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metrics the differences between the single-phase and the other 2 methods were, but the
difference between the multi-phase and model-based methods was not statistically
significant.

Considering extremities, the single-phase method provided the worst results in terms of
ARVD (1626%), ASSD (132 mm), MSSD (381 mm), VOE (100%), and Score (0 in 10
cases). The worst metrics for the multi-phase method were ARVD (49%), ASSD
(9.2 mm), MSSD (75 mm), VOE (49.5%), and Score (1) were slightly better than those
ARVD (81%), ASSD (21 mm), MSSD (179 mm), VOE (48%), and Score (0 in 2 cases)
belonging to the model-based method.
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Figure 2.31 Scatter plots demonstrating the Score of the segmentation results provided by the single-phase
(y axle) and the multi-phase (x axle) methods (on the left), and the Score of the segmentation results provided by
the multi-phase (y axle) and the model-based (x axle) methods (on the right).

Figure 2.31 allows pairwise comparison of the Score belonging to segmentation results
provided by the different methods. The left side shows the scatter-plot of the single-phase
and multi-phase methods, and the right side shows the scatter-plot of the multi-phase and
the model-based methods. Each mark represents one exam, such that the position along x
and y axle corresponds to the error metric achieved by the one and the other method. The
diagram on the left shows the multi-phase method provided much less (8) results with
Score below 20 compared to the single-phase method (17). According to the right
diagram, the accuracy of the multi-phase and the model-based method was similar. Both
methods achieved a Score below 20 for 8 exams.

In connection with Fig. 2.31 it is interesting to analyse distribution of marks. There are
exams, for which one approach provided very good result while the other method failed.
For exam 56 the single-phase Score was high (71), but the multi-phase Score was low
(18). However, for exam 31 the single-phase Score (0) was much less than the multi-
phase (79). For exam 31 the model-based method had very low Score (12) in contrast to
the multi-phase (79), but for exam 19 the model-based Score (78) was much better than
the multi-phase (10). In conclusion, the average performance of the multi-phase and the
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model-bases method was better than the single phase, but in some cases the single-phase
method provided much better result than any of the other two methods. This is
observation was also true for the comparison of the multi-phase and the model-based
methods, which implies in most of the cases one of the methods provided a good result.
When the best Score was taken for each test exam, the average Score was as high as 60.
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Figure 2.32 Histogram of Scores achieved by the single-phase (light gray), multi-phase (middle gray), the model-
based (black) methods, and the best result of all methods (dashed).

Figure 2.32 displays how the Score distributes among the results of the different methods.
According to the diagram the single-phase method scored below 10 for 13 exams (28%),
while the other two methods had only a few scores in this range. The majority of the
multi-phase (29, that is 63%) and the model-based (27, that is 59%) scores were found in
the range 50-80, which demonstrate the two methods provide better result in general.
When the best result was taken for each exam, most of the scores (30, that is 65%) was
above 60.

In summary, the multi-phase and the model-based methods performed significantly better
than the single-phase (average Score was 40). The multi-phase method has the least zero-
Score result, and its average Score (49) was a bit better than those of the model-based
method (48), but there was no significant difference between the last two methods. The
average running time was 23.7+17.6 s for the single-phase, 18.8+11.5 s for the multi-
phase, and 36.6+13.3 s for the model-based method, which means the multi-phase method
proved to be the most efficient tool for liver segmentation on the reduced dataset.

The top row of Fig. 2.33 demonstrates the best (Score 80), an average (Score 39), and a
bad (Score 0) segmentation provided by the single-phase method. According to the
images the result with Score 80 (a) is correct, the result with the average score (b) needs
some correction because a large heterogeneous lesion is under-segmented, and the worst
segmentation (c) is completely useless because other anatomical structure was segmented
instead of the liver. The latter failure was due to the fact that exam 50 involves the entire
chest and the pelvis in addition to the abdomen. In this case the assumption that liver
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parenchyma has the largest peak in histogram of the right half of the body was not true
because the muscles represented larger volume than the liver. That is why the
initialization of the single-phase method failed.

exam 31,score79 ___— ' exam 62,score 48

exam 38, score 80 _ ‘ exam 14, score 51

Figure 2.33 Good (a, d, g), average (b, e, h), and bad (c, f, i) segmentation provided by the single-phase (top row),
the multi-phase (middle row) and the model-based (bottom row) method.

The middle row of Fig. 2.33 demonstrates the best (Score 79), an average (Score 48), and
a bad (Score 1) segmentation provided by the multi-phase method. The best result (d) is
correct, the average result (e) needs some correction (but less than the average result of
the single-phase method), and the worst result (f) is very under-segmented. In contrast to
the single-phase method, here the liver was segmented, but due to its extreme shape and
pathology the left lobe was not segmented. The main advantage of using the arterial
image is demonstrated here by the more robust initialization, which eliminates complete
failures committed by the single-phase method.

The bottom row of Fig. 2.33 demonstrates the best (Score 80), an average (Score 51), and
a bad (Score 0) segmentation provided by the model-based method. The best result (g) is
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correct, the average result (h) needs some correction (but less than the average result of
the single-phase method), and the worst result (i) is very over-segmented. The imperfect
registration of the liver model can cause under-segmentation in the left lobe (h) or over
segmentation in the stomach or the spleen (i), but the initialization of this method is still
much more robust compared to the single phase approach.
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Figure 2.34 Pairwise comparison of segmentation results, when one method is successful, but the other fails.
Successful and failed segmentations are displayed with white contour and red region, respectively.

Figure 2.34 shows the result of cases, when one method provided good while other
method provided bad result. Exam 56 (a) was segmented well by the single-phase method
(Score 71) unlike the multi-phase method (Score 18). In this case the right lobe has a
large lesion that shows different enhancement in the arterial image than the normal
parenchyma, so the lesion is under-segmented in this phase as well as in the final result.
The multi-phase method gave good result (Score 79) for exam 31 (d), while the single-
phase method over-segmented the whole heart. In this case the heart had very similar
intensity to the liver in the portal phase, so the single-phase segmentation leaked into the
heart. The multi-phase method did not involve the heart at all because its intensity is very
different from the liver in the arterial phase.
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For exam 31 the multi-phase (Score 79) method outperformed the model-based (Score
12), which over-segmented the heart (b). This over-segmentation was much smaller
compared to the single-phase result (d) because the liver-model does not allow leaking far
into the neighbouring structure that has similar intensity. In case of exam 19 (e) the result
of the model-based method (Score 78) was much better than that of the multi-phase
(Score 10). In this case the respiratory movement of the liver was so big between the 2
phases, that the inter-phase registration did not compensate it. Since the segmented liver
was significantly displaced in one phase, the intersection of 2 phases was very under-
segmented.

The advantage of using liver model is clearly visible in case of exam 13 (c), where large
heterogeneous lesion is found in the liver. In such case the single-phase method provided
bad result (Score 10), but the model-based method gave good result (Score 72) because
the model allows involving structures with extreme intensity where the probability of the
liver is very high. On the other hand incorporating the liver model can result over-
segmentation into the small bowels or the pancreas when these organs have very similar
intensity. In the presented case (f) the single-phase method gave better result (Score 59)
than the model-based (Score 7).

In summary, the model-based method performed the best for 20 (that is 43%) of the
exams, the multi-phase method proved to be the best for 16 (35%) exams, and single-
phase method provided the best result for the remaining 10 (22%) exams. According to
the visual assessment, a result with more than 50 of Score can be used (without or with
some manual correction) for clinical purposes. The number of results above this score
was equal to 28 for the model-based, 29 for the multi-phase method, and 23 for the
single-phase method.

All in all, the model-based and the multi-phase methods were superior to the single phase
algorithm, but there was no significant difference between the first two approaches. Since
the model-based method requires only the portal-phase image to segment the liver, it has
the widest clinical usability. Considering its low running time it could significantly
reduce the time spent by clinicians for liver segmentation.

2.5 Summary

This chapter addressed the problem of automated liver segmentation that is the basis of all
computer assisted liver analysis. The author developed three algorithms which apply
standard image segmentation techniques and incorporate anatomical information about
the liver and its neighbourhood.

The first algorithm was developed for portal-phase CT image that is available in most
cases when the liver is examined with medical imaging techniques. The method is based
on neighbourhood-connected region-growing that is facilitated by various pre- and post-
processing steps to reduce under- and over-segmentation. The proposed approach
involves the localization of the organ, the separation of liver and heart, the correction of
under-segmentation at the right lung and inside vessels, and the removal of IVC. The
evaluation using a public dataset showed the method is competitive (VOE=8%) especially
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if the short running time (30 s) is also taken into account. The results related to this
approach were published in journal paper [1].

The second algorithm is based on the first one but it can incorporate the information of
more phases. This approach makes sense because a contrast-enhanced liver examination
usually results in multi-phase images. According to this technique, the liver is localized
based on the joint histogram of the input images, the liver is segmented on each phase
separately, and all results are registered and combined to get the final segmentation. The
qualitative evaluation using a set of multi-phase images demonstrated the results can be
used for clinical purposes in majority of the cases after some minor or no correction. The
quantitative comparison with the single-phase method on a set of challenging cases
showed the multi-phase method performs better (VOE=11%) than the other one
(VOE=16%). These results were published in journal paper [1].

The third algorithm is also based on region-growing and it incorporates a probabilistic
liver model to eliminate under- and over-segmentation. The applied liver model was built
from manually contoured cases and it was partitioned according to the segmental anatomy
of the liver in order to handle the intensity heterogeneity that is characteristic for contrast-
enhanced MR exams. The evaluation using a representative set of images showed the
accuracy of the proposed approach (VOE=11%) is comparable with the multi-phase
method despite the inhomogeneous liver parenchyma and the various MR acquisition
artefacts. In addition, the author demonstrated the results are significantly less accurate
(VOE=23%), when the liver model is not partitioned. These results were published in
journal paper [2].

The author performed an extensive comparison of the three techniques using a large set of
liver CT exams including normal as well as extreme (in terms of size or disease) cases.
The single-phase and model-based algorithms were compared on the whole dataset,
which showed the latter has better overall accuracy (VOE=13%) compared to the first one
(VOE=19%). Using a subset of multi-phase test examinations all methods were
compared. This test demonstrated the multi-phase (VOE=15%) and the model-based
(VOE=15%) approaches perform at the same level of accuracy, while the single-phase
method proved to be significantly less accurate (VOE=26%). The average running time of
the multi-phase and the model-based method was around half minute, which indicates
that these methods are efficient enough for clinical application. Considering the fact that
the model-based method requires the portal-phase image only, it has the widest usability.
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3 Liver lesion detection

Liver lesion assessment is one of the most important functions of computer assisted liver
analysis. The diagnosis of malignant liver lesions (i.e. tumours) is usually based on 3D
images in (CT, PET, and MR). The number of liver cancer cases is increasing in the
clinical practice, which increases the number of images to be processes. There is
significant need for tools which make liver lesion analysis more efficient. This chapter
presents a novel technique for automated liver lesion detection in portal-phase contrast-
enhanced CT images. The related work of the author was published in a journal paper [3].

The introduction gives an overview about the existing techniques and the motivations of
this work. Furthermore, it presents a study on manual liver lesion contouring, which
demonstrates the challenges of computer assisted lesion segmentation.

In the field of computer aided diagnosis (CAD) several applications are available for the
detecting pulmonary nodules and colon polyps [17]. The main cancer types (lung,
colorectal, breast) can frequently develop liver metastases. Due to the vital function of the
liver the treatment of such metastases became as important as the therapy of the primary
tumour. The liver usually involves several lesions of different size and shape, which
makes it difficult to estimate their total volume inside the organ. This process can be
facilitated by automated techniques. The automated detection and segmentation of liver
lesions is very challenging due to the large variety in size, shape, density distribution of
lesions [65] and the large number of slices to be processed. Thus, there is significant need
for software tools which can increase the sensitivity of liver lesion detection without
forcing the user to review large numbers of false positives.

Automated lesion detection and segmentation has extensive literature. Most of the
published methods are related to detection of pulmonary nodules, colon polyps on CT
images, or malignant lesions on mammography images [17]. In addition to the main
cancer types the detection and segmentation of brain pathologies [66] in MR images [67],
lymph nodes in CT images [68], and liver tumours in CT or MR images were also
focused on in many publications. The three main motivations for liver lesion detection are
lesion classification [51, 69-73, 88, 90], lesion segmentation and quantification [75-85,
89], and follow-up [86]. The following paragraphs summarize the recent methods and
results related to liver lesion detection.

Bilello et al. [69] presented an approach for liver lesion detection and classification,
which is based on intensity and texture analysis. The results demonstrate the proposed
technique can efficiently detect hypo-dense lesions in portal-phase liver CT images. The
algorithm of Duda et al. [51] also extracts basic texture features from multi-phase
contrast-enhanced CT images and uses decision tree and a support vector machine
classifier to separate different types of pathology from normal liver tissue. According to
the results, this method is efficient for recognizing normal liver and two types of primary
tumours. Huang et al. [70] presented an approach that uses a support vector machine to
classify manually selected circular regions of interest based on covariance texture
features. This technique proved to be efficient in separating benign and malignant liver
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lesions. The algorithm of Mougiakakou et al. [71] combines various texture features and
classifiers for differential diagnosis of focal liver lesions. This approach achieved high
accuracy in classification of various types of pathologic liver tissue. Tajima et al. [72]
presented a method that can detect a specific type of liver lesions (hepatocellular
carcinoma) based on subtraction of different phases of a contrast-enhanced CT
examination. Kumar et al. [73] presented an algorithm that extracts curvelet and texture
features from the image, which serve as input of a neural network. The evaluation showed
the method can efficiently distinguish between two particular types of liver lesions. The
approach proposed by Quatrenomme et al. [90] uses support vector machines to separate
5 types of liver lesion in multi-phase CT images based on texture and other statistical
features.

Automated liver lesion segmentation (that is strongly related to lesion detection) has also
extensive literature. The workshop “3D Segmentation in the Clinic: A Grand Challenge
11" at MICCAI 2008 [74] gave an overview of methods developed until 2008. The most
accurate automated method at this workshop was presented by Shimizu et al. [75], which
used AdaBoost technique to separate liver tumours from normal liver based on several
local image features. There were several other approaches published independently from
this workshop. The method presented by Pescia et al. [76] uses texture features to
segment different types of liver lesions. Massoptier et al. [77] introduced a statistical
model-based technique that proved to be efficient in the detection of various types of
hypo-dense lesions. The algorithm of Moltz et al. [78], which combines a threshold-based
approach with model-based morphological processing adapted to liver metastases, can
segment liver tumours with a 31% volumetric overlap error (VOE). Abdel-Massieh et al.
[79] published a method that can automatically segment liver lesions incorporating
intensity and shape information, and demonstrated 21% VOE on a small set of (7) test
exams. The approach of Militzer et al. [80] utilizes a probabilistic boosting tree to classify
points in the liver as lesion or liver parenchyma. Masuda et al. [81] proposed an algorithm
that classifies voxels into normal and abnormal classes using the expectation-
maximization method, and performs a morphological filter that incorporates circularity
and proximity to boundary to eliminate false positives. The method presented by Casciaro
et al. [82] is based on graph-cut and gradient flow active contour, which has a relatively
high computation cost (10+ seconds per slice). Linguraru et al. [83] published a technique
that uses graph cuts to segment the hepatic tumours using shape and enhancement
constraints. This method takes a couple of minutes to run. The approach of Wu et al. [84]
combines gradient based locally adaptive segmentation with intensity and geometric
features based classification, which takes 20-30 seconds to process one case. Chi et al.
[85] proposed a hybrid generative-discriminative framework for liver lesion detection that
needs more than 4 minutes to run. Safdari et al. [88] introduced an algorithm that applies
techniques of computer vision in order to detect and classify liver lesions. The method
proposed by Schwier et al. [89] performs object-based image analysis on the result of a
watershed segmentation. The execution time of this method ranged between 15-
20 minutes.
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Method Detection| False Precision Specialization
Bilello et al. [69], 2004 80% 0.8 / slice n.a. Hypo-dense
Tajima et al. [72], 2007 98% 2.1/ case n.a. HCC
Massoptier et al. [77], 2008 83% 0.1/ case 93% Hypo-dense
Militzer et al. [80], 2010 71% 14 | case 17%
Masuda et al. [81], 2010 73% 1.7 / case 30% 2 test cases
Casciaro et al. [82], 2012 92% n.a. n.a. Hypo-dense
Linguraru et al. [83], 2012 100% | 2.3/ case 71% Metastases
Wu et al. [84], 2012 90% 2.6 /case n.a.
Chi et al. [85], 2012 90% 1.0 /case n.a.
Safdari et al. [88], 2013 84% n.a. 73%
Schwier et al. [89], 2013 78% n.a. 53% Hypo-dense

Table 3.1 Performance characteristics of recent liver lesion detection methods.

Table 3.1 summarizes the performance characteristics (including accuracy and processing
time) of some recently published methods for liver lesion detection. According to the
table the most efficient methods can achieve 90% or better detection rate with a few (1-2)
false positives per case. The precision (see exact definition in Section 3.2) demonstrates
bigger variation, but achieving 50% in this measure is required for an efficient method.
The last column of the table shows that significant number of the existing methods was
specialized for hypo-dense lesions.

From the above list of existing methods one can see there are only a few methods which
can efficiently solve the problem of liver lesion detection in general. Some of the
algorithms are specialized for certain lesion types (hypo-dense in most cases) or have
special input requirement (e.g. multi-phase). Other approaches require a long time (5-
20 minutes) to process one case. Furthermore, some of the available techniques were
evaluated on a small dataset, which gives less information about their robustness.
Considering the clinical needs as well as the performance characteristics of the existing
methods our goal was to develop a method that:

e isautomated,

e can detect at least 90% of liver lesions with a few (1-2) false positives per case,
o works for all lesion types, irrespective of size, shape, density, and heterogeneity,
e terminates within 1 minute.

The algorithm is described in Section 3.1. The method involves the characterization of the
normal liver parenchyma (Subsection 3.1.1), the segmentation of abnormal regions inside
the liver using (Subsection 3.1.2), and the classification of these regions using a multi-
level shape characterization (Subsection 3.1.3). The parameters of the proposed approach
were set using a training dataset (Subsection 3.1.4), while the accuracy of the algorithm
was measured on another set of test images. The details of the evaluation are presented in
Section 3.2 that describes the test data and methodology (Subsection 3.2.1), the results
(Subsection 3.2.2) and the discussion (Subsection 3.2.3).

The rest part of the introduction demonstrates the challenges of tumour segmentation in
CT images. The boundary of tumours can be ambiguous in medical images, which
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introduces significant inter-operator variation in manual contouring. The goal of the
following study was to quantitatively assess the difference in tumour contouring among
physicians. The study was performed in cooperation of the physicians of the Department
of Oncotherapy at University of Szeged, and the experiences were published [8].

The test CT exams were selected by oncotherapists form the database of the hospital,
such that they represent cases of the everyday clinical practice. The test exams involved
tumours from different anatomical regions (neck, lung, liver, and rectum). Most exams
were contrast-enhanced. Each tumour was manually contoured by 4 operators who had
different level of experience (resident, doctor with few years of experience, and doctor
with much experience). The contouring was performed at clinical site with the software
that is used by the physicians in the daily routine. The study was retrospective, which
means that no therapeutic decisions were made based on the tumour contours.

Table 3.2 shows the inter-operator differences for the 17 test cases. The following
measures were used to compare the contours made by the different operators:

e The tumour volume (cm®) for each operator (O1, Oy, O3, O4)

e The mean (M) and the standard deviation (SD) of tumour volumes (cm?)

e The coefficient of variation (CV) that is the ratio of the standard deviation and the
mean of tumour volumes (%), this measure is equal to 0% in case of perfect match

e The volume of the union (U) and the intersection (n) of all contours (cm?®)

e The overlap (OVR) that is the ratio of the intersection and the union volume (%),
this measure is equal to 100% in case of perfect match

Exam | Region | O, 0O, 03 Oy M SD | CV U N | OVR

1 liver 156 | 153 | 153 | 112 | 143 | 21| 15% | 194 | 99| 51%
2 liver 21 23 23| 19 22 2| 8% 26 | 17 | 65%
3 liver 273 | 197 | 207 | 162 | 210 | 47| 22% | 281 | 152 | 54%
4 liver | 1146 | 1034 | 1088 | 974 | 1061 | 73 | 7% | 1193 | 936 | 78%
5 liver 11 15 7 8 10 3| 32% 16 7| 43%
AVG 321 | 284 | 296 | 255 17% 58%
8 lung 30 36 39| 26 33 6| 17% 53| 21| 40%

13 lung 11 15 11 9 12 2| 20% 20 6| 32%
22 lung 184 | 192 | 231 |165| 193 | 28| 14% | 270 | 137 | 51%
AVG 75 81 94 | 67 17% 41%
10 rectum | 136 | 227 97| 138 150 | 55| 37% | 279 | 70| 25%
11 rectum | 118 | 116 971100 | 108 | 11| 10% | 147 | 73 | 50%
16 rectum | 180 | 249 | 192|186 | 202 | 32| 16% | 264 | 155 | 59%
17 rectum 66 83 58 | 57 66 | 12| 19% 92 | 49| 54%
AVG 125 | 169 | 111 | 120 20% 47%
9 neck 16 | 124 | 110 | 119 92| 51| 55% | 154 8 5%
12 neck 25 41 32| 24 31 8| 26% 59| 14| 24%
15 neck 54 96 86 | 51 72| 23| 32% | 110 | 42| 38%
18 neck 380 | 343 | 326 | 344 | 348 | 22| 6% | 459 | 252 | 55%
23 neck 143 | 154 | 141|128 141 | 11| 7% | 214 | 86| 40%
AVG 123 | 152 | 139 | 133 25% 32%

AVG 20% 45%

Table 3.2 Inter operator variability of tumour contouring in different anatomy regions.
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Considering the tumour volume, the largest variability was observed in case of neck
tumours (average CV=25%). It was also remarkable that the contouring of rectum
tumours was less operator dependent (average CV=20%), and the variability was the
smallest for liver and lung tumours (CV=17%). According to the average CV of all cases,
the inter-operator variation was equal to 20% of the tumour volume.

Y-B

Figure 3.1 Inter-operator variability of tumour contouring for liver (exam 3 — a, b), lung (exam 8 — ¢, d), rectum
(exam 11 — e, f ), and neck (exam 9 — g, h) tumours: The axial (a, c, e, g) and coronal (b, d, f, h) views are
displayed. The colours (red, yellow, blue, green) represent the different operators (O, O,, O3, O,), respectively.

The value of the OVR shows the overlap of contoured tumours. This measure can be
small even if the tumour volume shows small variation. For example, in case 23 CV was
equal to 7% (small volume difference) while OVR = 40% which means moderate overlap
of the four contours. The lowest average overlap (32%) was characteristic for neck cases
(which was mainly due to case 9). Better overlap belonged to lung (41%) and rectum
(47%) tumours, and the best overlap was measured for liver tumours (58%). Based on the
average overlap of all cases one can see the volume that was considered as tumour by all
operators was only 45% of the volume that was considered as tumour by any of the
operators.

Figure 3.1 demonstrates 4 contoured cases, where different colours represent the different
operators (red — Os, yellow — O, blue — O3, green — Oy). In case of the liver tumour (case
3 — a, b) the contour had small variation. The contours belonging to the lung (case 8 — c,
d) and the rectum (case 11 — e, f) tumours showed more variation. In the case of neck
tumour (case 9 — g, h) the variation was slightly visible (see the lack of red contour).

From the presented difference measures and screenshots one can see that it is very
challenging to define ground-truth for tumour contour which can be used to evaluate
automated segmentation methods. Rather such approaches are welcomed in the clinical
the practice, which allows easy adjustment of the result according to the physician’s
expectations. The design of the following lesion detection method addressed this issue (to
some extent) because it allows the user to adjust parameters, which affect the sensitivity
of the method.
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3.1 Automated liver lesion detection for contrast-enhanced CT images

The idea behind the proposed method is to compute a map that represents the level of
abnormality with respect to the healthy liver, and perform a multi-level morphological
analysis for all local maxima of this map in order to separate lesion from other abnormal
regions. The morphological analysis incorporates various geometric features. These
features are considered as probability factors, the product of which is used to classify
abnormal regions and define the contour of them.

More specifically, the proposed algorithm consists of the following main steps. First, the
CT image and the liver mask are pre-processed in order to facilitate further operations,
and the intensity as well as other features of the normal liver is computed (Subsection
3.1.1). Then, hyper- and the hypo-dense abnormal regions are (separately) segmented
using level-set technique (Subsection 3.1.2). In the next step, a multi-level morphological
analysis is performed to the abnormal regions (Subsection 3.1.3), as result of which
lesions are segmented and separated from the other abnormal regions. The algorithm has
some parameters. Subsection (3.1.4) presents how these parameters were set based on a
set of training examinations.

3.1.1 Preprocessing and computing global liver features

The input of the proposed method consists of a portal-phase abdominal CT image and the
segmented liver that serves as volume of interest (VOI). Since many steps of the proposed
algorithm are related to morphology, the input images are first resampled to isotropic
voxel spacing. This way, several functions (e.g. morphology operators, computing
compactness) shall not incorporate voxel asymmetry, which makes them more efficient.
The resampling uses the x (that is equal to the y) voxel spacing of the input CT (or
0.65 mm, when it is smaller). In order to reduce pixel noise, the input CT image is
convolved using Gaussian kernel having 1 mm radius.

An automatically segmented liver may exclude lesions at the organ boundary. In order to
reduce false negative detections due to under-segmentation of the liver, morphological
closing is applied to the input VOI. In this works the CT adaptation of the model-based
liver segmentation approach (presented in Section 2.3) was used to generate the VOI.
This method can exclude lesions located on the boundary of the organ when the intensity
of the lesion differs from the liver significantly. In case of such under-segmentation open
cavities are found on the surface of the organ (Fig. 3.2/a-b). The lesion detection would
miss these boundary lesions if the analysis was restricted only to the segmented liver.
This problem is corrected by morphological closing (Fig. 3.2/c-d). The radius of the
kernel used by the morphological operator is equal to 30 mm, which ensures that cavities
belonging to under-segmented lesions of various sizes (up to 60 mm of diameter) are
filled without changing other parts of the liver significantly. The result of this operation
can involve a small area at the edge of the right and left liver lobe, where the portal vein
enters the liver. This area can include contrast-enhanced vessels, visceral fat, or the
gallbladder. The majority of these regions can be separated from lesions by the latter
processing steps, so they don’t increase the number of false positives considerably. Using
the morphologically closed VOI the false negative detection of boundary lesions can be
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prevented. Note that cavities fully surrounded by liver parenchyma can be also eliminated
in this way. From this point all steps of the proposed method incorporate only voxels
located inside the closed VOI.

Figure 3.2 Morphological closing of the VOI: the result of the automated liver segmentation excludes lesions on
the boundary of the liver (a, b). The morphological closing fills these cavities (c, d) without modifying the organ
boundary significantly.

In the next step the intensity of the normal liver is computed. In case of a contrast-
enhanced CT examination the intensity of the normal liver parenchyma depends on many
circumstances. The type and the amount of contrast agent as well as the applied timing
protocol can introduce significant variation. Furthermore, the blood circulation of the
subject can significantly impact the intensity of the liver in the portal- phase image.
Although the effect of the first two factors can be decreased by using clinical standards,
the latter issue cannot be eliminated.
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Figure 3.3 The histogram of three typical liver cases. Normal liver (solid), liver with large hypo-dense tumours
(dotted), liver with large hyper-dense regions (dashed).

Figure 3.3 shows the histogram of three typical contrast-enhanced liver cases. The solid
curve represents a case, when the mean liver intensity (82 HU) is equal to the histogram
mode. The dotted curve represents a case when the liver involves large hypo-dense
tumours and the mean (94 HU) is significantly lower than the mode (105 HU). The
dashed curve represents a case when the liver involves large hyper-dense regions around
tumours and the mean intensity (141 HU) is significantly higher than the mode (136 HU).
The latter increase of the mean can happen, when the hepatic vein is filled with contrast
in addition to the portal vein. Considering the above issues with the average intensity the
normal liver is defined by the mode of the histogram.
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In the last step of the preprocessing some basic geometric features of the liver are
computed. These features involve the number of liver voxels, the bounding box of the
liver, and the set of voxels belonging to the organ’s contour.

3.1.2 Segmentation of abnormal regions

In the next step, the abnormality map is computed. For each voxel the level of
abnormality is based on two factors: the intensity difference with respect to the normal
liver and the proximity of the nearest normal liver voxel. The fast-marching technique
[23] is applied to compute the distance map that incorporates intensity differences. This
approach requires an initial region and a function that defines the speed of contour
propagation in each voxel. The fast-marching results an image, where the value of each
voxel represents the shortest distance from the initial region, such that the distance is
weighted by intensity differences along the shortest path. A voxel in the abnormality map
can have a high value for two reasons: whether its intensity differs from the normal liver
significantly, or it is located far from the normal parenchyma. Figure 3.4 shows two
examples for CT image (a, ¢) and the corresponding abnormality map (b, d). In the first
case (a, b) two small (8 mm) hypo-dense lesions are clearly visible in the abnormality
map due to their significant intensity difference. In the second case (c, d) a nearly iso-
dense lesion is enhanced due to its large (30 mm) size.

Figure 3.4 The abnormality map enhances pathologic regions: Small hypo-dense lesions (a, b) are highlighted
due to significant intensity difference, while the large, nearly iso-dense lesion (c, d) is highlighted due to its size.

The abnormality map is defined for hypo- and hyper-dense regions in different way. In
the hyper-dense case the initial region primarily consists of the liver voxels, whose
intensity is lower than or equal to the normal liver. Involving these voxels in the initial
region enables the enhancement of lesions which are fully surrounded by normal liver
parenchyma. As mentioned before many lesion is located on the boundary of the liver. In
order to enhance these lesions too, the voxels located on the contour of the liver are also
added to the initial region.

Assume that i represents a voxel index (3D coordinate) in the input CT image as well as
the VOI. Let 7(i) represent the intensity of the CT image at index position i, and let [,,,,4
represent the liver mode. The hyper-dense speed function Sy, (i) is defined in the
following way:

i ‘Shyper(i) =1, if3(i) < Lnoa
° ‘Shyper(i) =1-0.8"(I() — Lnoa) /30, if Lnoa < I(D)
° Shyper(i) = 0.2, if l,,0q +30 < 7(i)
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According to the above formula, the speed is maximal (1) in voxels having intensity
lower or equal to the normal liver, and the slowest (0.2) in voxels having intensity
significantly (that is 30 HU) higher than the normal liver. The latter constant was
empirically defined based on the analysis of liver cases with hyper-dense lesions. The
lowest speed is set to 0.2, which prevents the fast marching from getting stuck in voxels
which have extremely high density (e.g. calcified necrosis).

In case of hypo-dense abnormality the definition of the initial region is more complex.
Here, the voxels having intensity greater than or equal to the liver mode are involved into
the initial region in addition to the voxels located on the contour of the liver. In order to
eliminate low density fat regions (located in the vicinity of the liver) from the abnormality
map, voxels having lower intensity than -70 HU are also included in the initial region.
Involving the liver contour in the initial region has two advantages. First, the abnormality
map has the highest values in the centre (not the edge) of abnormal regions which are
located on the boundary of the organ (that is important for the multi-level morphological
characterization described in the next subsection). On the other hand, in hypo-dense case
it eliminates a large number of normal regions at the organ boundary where lower
intensities can be found due to partial volume effect (especially near the lung).

The definition of the speed function incorporates the liver mode, the intensity of the fat
(-70 HU), and the intensity of the hypo-dense tumours (i.e. non-enhancing soft tissue,
70 HU). The latter two values were defined based on the analysis of liver exams with
hypo-dense lesions). Using the notation introduced in prior paragraph the speed function
Shypo (1) is defined in the following way:

o Shypo() =1, if 7(i) < —70
o Shypo(i) =1—-08-(3(i) + 70)/140, if =70 < 7(i) <70
o Shypo(D) =1=08" (Lynoa — I(®))/Umoa — 70),  if 70 <I(Q) < Lnoa
* Spypo(D) =1, if Loa < J(0)

According to the formula the speed is equal to 1 where the intensity is lower than the fat
intensity (-70 HU) or higher than the liver mode, and it is the minimal (0.2) where the
intensity is equal to the expected intensity of hypo-dense lesions (70 HU). Since hypo-
dense lesions do not absorb (significant) contrast, their intensity is very similar to the
unenhanced liver parenchyma. That is why their expected intensity is defined in absolute
way rather than relative to the normal liver (as in case of the hyper-dense abnormality).
When the normal liver intensity is low (close to hypo-dense tumours) small intensity
difference can result in a large difference of speed. As result of that, the method is more
sensitive as opposed to the case when the normal liver has higher intensity.

After computing the initial region and the speed function the fast marching technique is
separately executed for hypo- and hyper-dense lesions. The number of iterations
performed by the method is limited to 25 for two reasons. On one hand, it makes the
method quick. On the other hand, there is no need to differentiate the high abnormality
levels (from the point of view of the morphological analysis presented in the next
section). This way, the result of the fast marching can involve voxels with infinity
abnormality (inside a large abnormal region), but these values are replaced with 25. The
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continuous value of the result is rounded to the nearest integer number, which results in a
discrete abnormality map. Figure 3.5 shows two examples. The CT image (a, €), the
initial region (b, f), the speed function (c, g), and the abnormality map (d, h) are displayed
for a hyper- (top row) and a hypo-dense (bottom row) case. The bright regions in the
abnormality map represent contrast-enhanced lesions and vessels in the first case (top
row), and hypo-dense lesions in the other case (bottom row).

Figure 3.5 Construction of a hyper- (top row) and hypo-dense (bottom row) abnormality map. The CT image (a,
e), the initial region (b, f), speed function (c, g), and the abnormality map (d, h). The high values of the
abnormality map (d, h) represent liver lesions, contrast-enhanced vessels, fatty tissue.

In the last step of the segmentation the discrete abnormality map is partitioned into a set
of disjoint regions, where each region has the following properties:

e itis 3D-connected

e it consists of voxels having the same abnormality value

e itis maximal (i.e. cannot be extended with other voxels)

e itis neighboured by voxels having a different abnormality value

According to this definition, the partitioning is unique for any discrete abnormality map.
Two regions are considered neighbours if the one region has at least one voxel that is a
26-neighbour of any voxel in the other region. A region is considered a maximum region
if all of its neighbours have lower abnormality value. After partitioning, the following
features are computed for each region: the value in the abnormality map, the set voxels
belonging to the region, the volume and the bounding box of the region, the set of
neighbours, and the region type (maximum or other).

3.1.3 Multi-level morphological analysis

The partitioned abnormality map consists of regions with a zero (representing normal
liver, organ contour, fat) or positive (abnormal areas) values, and its maximum regions
represent the centres of abnormal areas. The goal of this step is to analyse the
neighbourhood of each abnormal region, starting from the maximum region and
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iteratively adding its neighbours in order of decreasing abnormality. In each iteration (i.e.
at each abnormality level), various geometric features are computed for the actual set of
regions. Based on these features a probability value is computed, which shows the
likelihood of the given set of regions to represent a lesion. If the probability belonging to
an abnormality level is above a predefined threshold the corresponding maximum region
is classified as a lesion centre, and the level, which maximizes the probability, defines the
boundary of the detected lesion.

More specifically, assume that R = {ry, 1y, ..., 1;,} represents the set of (non-zero) regions
in the partitioned abnormality map. For any region r; € R let a(r;) denote the abnormality
value of the region. For any subset of regions Q € R let a(Q) = miny¢q a(q) denote the
minimal abnormality value of regions involved in Q. For any Q € R and any r; € R\Q
the relation nb(Q, ;) is true if and only if r; is the neighbour of at least one region in Q.
For any Q € R let nb(Q) = {p € R\Q | nb(Q,p)} denote the set of regions, which are
the neighbour of any region in Q. Let nb_,(Q) = {p € nb(Q) | a(p) = a(Q) — 1} denote
the subset of the neighbourhood, which involves only regions, the abnormality value of
which is equal to the abnormality value of Q subtracted by 1.

Region r; € R is a maximum region if and only if a(p) < a(r;) for all p € nb({r;}). The
abnormality level [ surrounding maximum region r; is defined in the following way:

1 {Ti} ,l =0
%= { Ftunb (@Y ,1<l<a(m) -1

Figure 3.6 Lesion in CT (left) and the discrete abnormality map (right) belonging to the area found in the black
rectangle. In the abnormality map black voxels represent the normal liver, the brightest region represents the
maximum region (r;), and labels (Q) represent different abnormality levels surrounding r;.

Figure 3.6 demonstrates a small hypo-dense lesion (left) and the corresponding
abnormality map (right). The brightest voxels of the abnormality map (right) represent the
maximum region r;, where a(r;) = 9. The first abnormality level surrounding r; (that is
Q}) involves r; and all regions which neighbour r; and the abnormality value of which is
equal to 8. Continuing the iteration (I = 2,3, ...,8), one can achieve the last level of
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abnormality QF that involves all regions of Q/ and all regions which neighbour Q; and
whose abnormality value is equal to 1.

The morphological analysis of a maximum region (r;) starts with computing the
following features for each level of abnormality (Qf |0<l<a(n) - 1) surrounding the
given maximum:
e A(Q) = min(b,, by, b;)/max(by, by, b;), Where b,, by, and b, represents the
size of the bounding box belonging to Q} along x, y, and z axles, respectively.
This function demonstrates the asymmetry of the region, such that 0 < A < 1.
e B(Q})=1—(by-by-b,)/(vy,vy,v,), Where v, v,, and v, represents the size
of the bounding box belonging to the VOI along x, y, and z axles, respectively.
This function demonstrates size of the region compared to the VOI, such that
0<B<1.
o C(Q) =10{|/(byx by -b,), where |Q}| represents the volume of Q;. This
function demonstrates the compactness of the region, such that 0 < ¢ < 1.
o V(QH =min(1,|Q}|/Vimin), Where Vi, represents the minimal volume of
lesions to be detected. This function demonstrates the volume of the region, such
that 0 < V.

These functions are used to assign to each abnormality level a probability value which
shows the likelihood of Q} to represent a lesion. The larger the value of A(Q)), B(Q)),
C(Q)H), and V(Q)) is, the more likely that Q! represents lesion. More specifically, the
following probability function is defined by

P(Q) =A(Q) - B(Q)) - c(@) - V().

Assume that P(Q}) is computed for all levels 0 < I < a(r;) — 1, the abnormality level
maximizing P (Q}) is demoted by I,,,,,, = arg max; P(Q}).

Using the above presented concept the set of maximum regions is processed in the
following way. Let R = {ry, 74, ..., 15} S R denote the subset of maximal regions such
that a0 = a(ry) = a(ry) ... = a(hy) = amin, Where a,,q, = max,cg a(r) and a,,;y, is
a predefined abnormality minimum. The process iterates through R’ and for each 7;,
which satisfies the condition a,,;, < a(r;), the P(Q}) is computed for all level 0 <[ <
a(r;) — 1. When maxl?(Q}) is greater than a predefined probability threshold (denoted

by Ppnin), 7; is classified as lesion and the region Q]l.’”‘“‘ is added to the set of findings.

The rest of this subchapter demonstrates how the different features affect the probability
function. Function V is usually small for lower levels, it grows monotonically as further
levels are added, and reaches the maximum (1) when the volume of the region Q} reaches
the minimal lesion volume (V,,;,). Function B starts from a greater value (since B is
large for small regions), it decreases monotonically, and it drops when the extent of the
region becomes large compared to the bounding box of the liver. Function A varies
according to the shape of the region such that it has a greater value for spherical and a
smaller value for elongated regions, while function C varies according to the compactness
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of the region. The product of all functions () has great value, if all of the features has
great value, and it is small when any of the features has a small value. This way, the
maximum of P represents the level at which the abnormal region is the most likely a
lesion (considering its volume, size, asymmetry, and compactness).

Figure 3.7 The CT image (left), the abnormality map (centre), and functions A, B, C, V , and 2 (right) for four
regions (a, b, ¢, d). Each plot starts from the centre of the region (I = 0) and shows values for all surrounding
abnormality levels. When the maximum of function 2 is above a predefined threshold (horizontal lines show the
maximum in case of a and b), the region is classified as lesion and its contour (green — in the images of a and b) is
defined by the level belonging to the corresponding maximum.

Note that asymmetry and compactness are computed based on the bounding box of the
regions. This simplification was primarily motivated by computational efficiency. These
features are computed for tens of thousands of regions when a liver exam is processed. It
was very time consuming to compute the exact asymmetry and compactness using
sophisticated algorithms (like Principal Component Analysis), but it is possible to
compute an estimation of these features within a reasonable time. Using the product of
different features for regions classification was also motivated by efficiency. The low
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value of any feature indicates that the given region does less likely represent a lesion.
Since the low value of one function makes the entire product close to zero, it is an
efficient way to aggregate all features.

Figure 3.7 shows the functions A, B, C, and V as well as the probability P for four
abnormal regions. The first value of each plot (I = 0) represents the value belonging to
the maximum region QP = {r;} and the subsequent values belong to regions
Q}#, Q7 ..., Q#* which represent the surrounding abnormality levels.

In the case of a small lesion (Fig. 3.7/a) V starts with a low value and increases until
1 = 12. The value of B starts with the largest possible value (1) and it decreases above
level 1 = 20. The asymmetry (A) shows big variations at different abnormality levels,
while the compactness (C) starts with a large value (0.75) and decreases as the level
increases. The product of all features (P) starts with a low value and it reaches its
maximum at level 1 = 11.

In case of a medium sized lesion (Fig. 3.7/b), V is maximal for all levels (since QY is large
enough), functions B and C have a nearly constant value until level 1 = 18, but feature A
shows a significant drop beyond the level 1 = 15 where the maximum of 2 can be found.

In case of vessel branches (Fig. 3.7/c-d), function C is low for all levels, and the values of
A is low for several levels. Since there is no such level at which all metrics have a high
value, 2 has low value for all levels, which means its maximum is also low.

The maximum of the function 2 is equal to 0.31 and 0.23 for lesions (Fig. 3.7/a-b), and it
is equal to 0.02 and 0.08 for vessel regions (Fig. 3.7/c-d), respectively. This difference in
the maximum of P allows the separation of lesions from other regions.

The analysis of abnormal regions is separately performed for hypo- as well as hyper-
dense regions. In the last step of the algorithm the two sets of findings are merged into a
label-map where different integer numbers represent the different findings. Using 3x3x3
(voxel) kernel the label-map is dilated, and the result is resampled to the voxel size of the
original input CT. As result of the dilation, small lesions are not erased by the resampling
when the original slice thickness is significantly larger than the pixel size (that was used
to resample the input in the pre-processing step).

3.1.4 Setting the parameters of the method

The description of the method involved some constants that affect the result of the lesion
detection. This subsection presents the justification of the value assigned to each constant.
The parameter values were defined based on experiments with a set of contrast-enhanced
abdominal CT exams. This set of images was not involved in the evaluation (presented in
Section 3.2). The training dataset involved 55 portal-phase liver CT exams. The slice
resolution was 512x512 in all cases, the slice number ranged between 53 and 1076
(average 428), the pixel size varied between 0.65 mm and 0.98 mm (average 0.77 mm),
and the slice thickness was in the range of 0.6 mm to 5 mm (average 1.7 mm). The exams
were acquired with different types of CT scanner. Most of the cases belong to patients
who underwent liver cancer treatment. For each training exam all lesions were identified,
but no contour was provided for them. The definition of the lesions was based on the
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image only (i.e. diagnostic information was not available). The total number of liver
lesions identified in the dataset was 120 such that 15 cases had no lesion, 10 cases had 1
lesion, 13 cases had 2 lesions, 7 cases had 3 lesions, and 10 cases had more than 3 lesions
in them. The maximal number of lesions per case was 11 (the average was 2.2).

In the preprocessing, the minimal pixel size used for isotropic voxel resampling
(0.65 mm) and the radius used for Gaussian smoothing (1 mm) were derived from the
minimum and maximal pixel size of the training images. The kernel radius (30 mm) used
for morphological closing of the VOI was set high enough to correct all open cavities on
the liver surface due to under-segmentation of boundary lesions by the automated liver
segmentation method. Few parameters of the abnormality map computation, such as the
density difference of normal liver and hyper-dense tumours (30 HU), the intensity of fat
(-70 HU) and hypo-dense lesions (70 HU) were set based on manual measurements
performed on the training dataset, while the maximal number of iterations (25) used by
the fast marching as well as the morphological analysis was set based on the largest
lesions found in the training set.

There are three parameters which directly influence the sensitivity of the proposed
method. The abnormality minimum (a,,;,,), Which allows the pre filtering of false positive
regions, was separately set for hypo- (8) and hyper-dense (20) lesions. The significantly
lower value for hypo-dense lesions was due to the low contrast difference observed
between the normal liver and hypo-dense lesions in some training cases. Using 0.25 cm®
as minimal lesion volume (V,,;,) was motivated by other publications (which exclude
lesions below 5 mm diameter). This way, the value of function V is equal to 1, 0.5, 0.25
for a region whose volume is equal to a sphere having 4, 3, 2.5 mm radius, respectively.
The probability threshold (P,,;,,) takes the largest effect on the sensitivity of the method.
The value of this parameter was set based on test runs with different parameter values in
the range [0.05,0.5]. For each value the method was executed for all cases (such that the
VOI was defined using automated liver segmentation method) and the result was visually
assessed considering the following two simple metrics:

e True Positive Rate (TPR): the total number of detected lesions divided by the total
number of known lesions (that was equal to 120).

e False Positive Per Case (FPPC): the total number of false detections divided by
the number of cases (that was equal to 55).

Based on the preliminary tests using the training dataset 0.1 was found to be the optimal
value for P,,;,,. Using this value, 102 lesions were detected (TPR=0.85) in addition to 131
false findings (FPPC=2.4). In the next section, an extended analysis using ground-truth
data will show how the selection of parameter P,,;,, affects the number of true and false
positives.

3.2 Evaluation of automated liver lesion detection

This section presents the evaluation of the proposed algorithm. Subsection 3.2.1 describes
the test data and the evaluation methodology. Subsection 3.2.2 demonstrates the results,
and Subsection 3.2.3 involves the discussion and the comparison with other approaches.
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3.2.1 Test data and methodology

The evaluation was based on a ground-truth lesion database that was created using 30
portal-phase contrast-enhanced liver CT exams published by a liver segmentation
workshop [28]. The test images were acquired using different CT scanners. The image
resolution was 512x512 in all cases. The slice number, the slice thickness, and the pixel
size was between 64-502 (average 214), 0.5-5.0 mm (average 1.6), and 0.54-0.87 mm
(average 0.7), respectively. The exams involved a few healthy cases, but most of them
were pathologic including lesions of different sizes.

Figure 3.8 Definition of ground-truth for one exam in axial (left) and 3D (right) views, the liver contour is white
and lesion contours are red.

The ground-truth liver contour was provided by the workshop for 20 cases and the
remaining 10 cases were manually contoured by physician. In all cases the lesions were
manually contoured by a radiologist who had three years of experience in radiology
including gastrointestinal imaging. Similar to other publications on liver lesion detection,
lesions below 5 mm diameter were not included in the ground truth because they consist
of such small number of voxels that they represent insignificant volume. The 30 test cases
involved 59 lesions, 10 of which were hyper-dense (contrast-enhancing) and 49 were
hypo-dense. The (largest axial) diameter of the lesions ranged between 8 and 120 mm.
Figure 3.8 demonstrates the reference liver and lesion segmentation for one test exam.

The evaluation using manually defined liver contour as VOI demonstrates the accuracy of
the proposed method in ideal circumstances. However, the liver is rarely contoured
manually in clinical practice to enable automated lesion detection. In order to simulate the
real scenario, all exams were automatically segmented using the CT adaptation of the
model-based approach presented in Section 2.3. Although the liver segmentation
incorporates a probabilistic liver model, the result can exclude a lesion located on the
boundary of the organ when its intensity significantly differs from the normal liver.
Figure 3.13 demonstrates a few cases where the automated liver segmentation does not
fully involve all lesions. This problem was corrected by the morphological closing in the
preprocessing step of the algorithm, which was disabled when manually segmented liver
was used to define the VOI.

The proposed algorithm was executed for all test exams using the manually as well as the
automatically segmented liver. The result of each run was an image where different labels
represent the different findings detected by the algorithm. Each result was compared with
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the corresponding reference lesion segmentation and the number of true positives (TP),
false positives (FP), and false negatives (FN) were computed in the following way:

e For each reference lesion, it was checked whether it has intersection with any
finding in the result. If there was intersection TP was increased, otherwise FN was
increased.

e For each finding in the result, it was checked whether it intersected any lesion in the
reference. If there was no intersection or the intersected reference lesion had been
already associated with another finding in the result, FP was increased (i.e. when a
large lesion was intersected by multiple regions, only one of them was considered as
TP, all others were counted as FP).

Assume STP, SFP, SFN denote the sum of TP, FP, and FN for all test cases. The
following three metrics were computed to characterize the accuracy of the lesion
detection:

e True Positive Rate (TPR): STP/(STP + SFN), which demonstrates the sensitivity
(in other words detection rate or recall) of the method.

e False Positive per Case (FPC): SFP/number of test cases, which demonstrates
the number of false positives per case and reflects the amount of false positives.

e Precision (PRE): STP/(STP + SFP), which demonstrates the rate of true positives
among all positive findings.

The pair (TPR,FPC) is commonly used to characterize the accuracy of a binary
classifier. In order to demonstrate its overall accuracy, the algorithm was executed for all
test cases using 32 different probability threshold (P, = 0.01, 0.02, ..., 0.19, 0.20, 0.22,
..., 0.38, 0.40, 0.45, 0.50). For each threshold the pair (TPR, FPC) was computed and the
number of true and false positives was displayed for the different thresholds according to
the Free-Response Operating Characteristic (FROC) analysis [87]. The FROC curve
demonstrates well the trade-off between the two measures: TPR (rate of the detected
lesions) and FPC (unnecessarily detected other regions). This way it represents well
accuracy of the detection from the physician’s point of view.

3.2.2 Results

The FROC analysis of the proposed algorithm for manually and automatically segmented
liver is displayed in Fig. 3.9 and Fig. 3.10, respectively. The diagrams are zoomed in the
clinically relevant range and the (TPR,FPC) pairs belonging to a few probability
thresholds are highlighted with solid marks (see magnified diagram on the right).

Figure 3.9 shows the FROC curve belonging to the case when manually contoured liver
was used as VOI. On the left side the entire curve is plot, which shows the method can
achieve high TPR with low FPC in general. On the right side a magnified view of the
curve is visible, which is focused on the practically relevant range of TPR (75%—-100%)
and FPC (0-10). The plot shows that

e TPR=91.5% and FPC=1.7 (PRE=51.4%) when P,,;,, = 0.12
e TPR=93.2% and FPC=4.6 (PRE=28.6%) when P,,;, = 0.08
e TPR=94.9% and FPC=6.3 (PRE=22.9%) when P,,;,, = 0.07.
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Figure 3.9 FROC analysis of lesion detection from manual liver segmentation: (TPR, FPC) pairs are plot for all
probability thresholds (left), the plot is magnified to the practically relevant TPR and FPC range (right).

Figure 3.10 demonstrates the FROC curve belonging to the case when automatically
contoured liver was used as VOI. The left plot (based on the same values of P,,;,,) shows
the method can achieve 90% TPR with somewhat higher FPC. According to the
magnified view:

e TPR=84.7%and FPC = 1.6 (PRE =51%) when P,,;,, = 0.12

e TPR=91.5% and FPC = 4.7 (PRE = 27.6%) when P,,,;,, = 0.08.
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Figure 3.10 FROC analysis of lesion detection from automated liver segmentation: (TPR, FPC) pairs are plot for
all probability thresholds (left), the plot is magnified to the practically relevant TPR and FPC range (right).

The detailed accuracy statistics (TP, FP) belonging to the probability threshold P,,;,=0.12
is displayed in Table 3.3. According to the numbers the result is perfect (i.e. all lesions
were detected with no false positive) in 7 or 6 cases when the VOI was defined manually
or automatically. The maximal number of false negatives per case was 2 (for both VOI
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types), while the maximal number of false positives per case was 8 and 7 for the manual
and the automated VOI, respectively. The proposed method detected all lesions in 26 (or
22) of 30 cases when it was started from manually (or automatically) contoured VOI. The
sensitivity was 91.5%, the precision was 51.4% and the number of false positives was 1.7
per case when the method was started from manually contoured liver. The sensitivity was
84.7% the precision was 51%, and the number of false positives was 1.6 per case when
the input VOI was segmented by automated method.

Exam Nur_n. of Manual liver Auto liver

lesions TP FP TP FP

1 0 0 5 0 5
2 2 2 0 2 0
3 0 0 4 0 4
4 3 3 0 3 0
5 0 0 0 0 2
6 0 0 1 0 2
7 5 5 1 4 2
8 3 3 0 3 0
9 0 0 1 0 2
10 5 5 2 5 2
11 5 5 8 4 7
12 0 0 0 0 0
13 1 1 1 1 1
14 2 2 6 2 3
15 2 1 0 1 0
16 8 8 1 7 2
17 2 0 0 0 0
18 2 2 0 2 0
19 0 0 1 0 1
20 0 0 1 0 1
21 2 2 1 1 0
22 0 0 1 0 2
23 2 2 2 2 2
24 5 5 0 5 0
25 1 0 1 0 1
26 0 0 3 0 3
27 1 0 4 0 2
28 0 0 1 0 1
29 0 0 2 0 1
30 8 8 4 8 2
SUM 59 54 51 50 48

Table 3.3 The number of lesions and the number of true positives (TP) and false positives (FP) achieved with
probability threshold 0.12. The results are displayed for each case where the detection was started from
manually and automatically segmented liver.
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3.2 Evaluation of automated liver lesion detection

Figure 3.11 allows visual comparison of the ground-truth (a) and the result when the
detection was started from manually defined (b) as well as automatically segmented (c)
liver. The presented images belong to probability threshold P,,;, = 0.12 and represent
exam 16 (in Table 3.3).

Figure 3.11 Reference lesion segmentation (a) and the result of the detection from manually (b) and
automatically (c) defined liver contour displayed in axial (top) 3D (bottom) views.

3.2.3 Discussion

This subsection presents the visual analysis of false positive and false negative findings
generated from manually as well as automatically segmented liver when the probability
threshold P,,;, was set to 0.12. Furthermore, at the end of the subsection the accuracy of
the proposed algorithm is compared with some recently published techniques.

Figure 3.12 displays all (5) false negatives when the method was started from manually
segmented liver. The first three lesions (a, b, and c) are small, while the other two (d and
e) are in the range of 20 — 30 mm. Lesions a and b are small hypo-dense tumours which
are located on the boundary of the organ. They were missed due to their low compactness
and small volume. The abnormality maximum inside lesion “c” (7) was below the
minimally required value (a,;,,) for hypo-dense lesions (that was 8), so it was rejected
without morphological analysis. The hardly visible, nearly iso-dense lesion “d” fades into
the low density liver boundary that is also affected by bean-hardening artefact in the
vicinity of a rib. The hyper-dense lesion “e” looks like a network of contrast-enhanced
vessels. The common property of these lesions is that the compactness is very low for all
abnormality levels, at which the corresponding region has significant volume. That is why
the probability is low for all levels.
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Figure 3.12 False negatives (red contour) when the method was started from manually defined VOI (white
contour): the CT image (left), the abnormality map (centre), and morphological features (right). There was no
morphological analysis performed for lesion “c” because the maximal abnormality level inside this lesion (7) was
below the minimum required for hypo-dense lesions (an, = 8).

In addition to the previously presented 5 lesions, the proposed method did not detect 4
lesions when it was started from an automatically segmented liver volume. Figure 3.13
shows these false negatives. It is clearly visible that lesions “f” and “i” are not fully
involved in the VOI, so they cannot be detected. The other lesions (g, h) have the same
characteristics (low compactness) as the earlier mentioned false negatives.
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Figure 3.13 Additional 4 false negatives (red contour) when the method was started from automatically
segmented VOI (white contour): the CT image (f, g, h, i) and the corresponding abnormality maps (j, k, I, m).

The number of false positives was equal to 51 when the detection was started from
manually defined liver. Figure 3.14 shows the typical false positive findings including:
17 local intensity deviations (a); 11 multiple detections of one lesion, which were also
considered as false positives (b); 6 thick parts of hepatic vein or inferior vena cava (c); 4
cysts or lesions, which were too small to be involved in ground-truth (d); 4 visceral fat
regions (e); 4 vessel branching points (f); 3 artefacts due to ribs or contrast filled bowels
(9); and 2 calcifications (h). In addition to these region types, the gallbladder (for example
see Fig. 3.11/c) or gallstones were typical false positives when the detection was started
from automatically segmented liver.

Figure 3.14 Typical false positives (red contour): hyper-vascularized region (a), lesion detected by 2 separate
findings (b) where red area represents the hyper-dense part, big vein branch (c), tiny lesion not involved in the
ground-truth (d), visceral fat(d), vein junction (e), artefact (g), and calcification (h).
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It is very challenging to compare the presented approach with other recent techniques due
to the large variety of methodologies and error metrics used for their evaluation.
Considering TPR and FPC, which characterize well the overall accuracy of a lesion
detection method, the actual state of the art can be characterized in the following way:

e Massoptier et al. [77] presented a method that detects liver lesions with TPR=82.6%
with very low FPC=0.14

e The detection rate of the method proposed by Militzer et al. [80] was TPR=71%
with very high FPC=14 (precision 17%).

e Casciaro et al. [82] published a method that could achieve TPR=92.3% (no
information about FPC).

e The evaluation of the method presented by Linguraru et al. [83] demonstrated
TPR=100% with FPC=2.3.

e The paper of Wu et al. [84] demonstrated TPR=90% with FPC=2.6.

e The publication of Chi et al. [85] reported TPR=90% with FPC=1.

e The detection rate of the method published by Safdari’s et al. [88] was TPR=84%
with precision equal to 73%.

e Schwier et al. [89] proposed an approach that could achieve TPR=78% with 54%
precision.

Based on the above summary one can see the accuracy of the proposed approach is
competitive with the most efficient methods when the liver is manually defined because
high TPR=91.5% was achieved with low FPC = 1.7 (precision 51.4%). When the VOI
was created by automated liver segmentation method, the same TPR=91.5% was
achieved with somewhat higher FPC=4.7 (precision 28%). The larger number of false
positives does not significantly limit the usability of the method because false positive
findings can be very easily eliminated in any clinical software application.

The proposed algorithm processed one case in an average of 28.2 (£7.7) seconds when
started from manually defined liver. When the liver was segmented automatically, the
running time was 30.1 (£9.8) seconds on average due to the additional morphological
opening of the preprocessing step. The liver segmentation took 20.2 (+4.5) seconds on
average, which means the whole process was done in less than 1 minute for one case.
Considering running time, the proposed method is absolutely competitive. Only the
method of Wu et al. [84] can demonstrate such a low time for automated liver lesion
detection.

Although the test dataset originates from a liver segmentation contest [28], it was
appropriate to give an overall picture about the efficiency of the proposed legion
detection method because it involved various types of lesions. The evaluation showed the
method can detect the majority of lesions, but its clinical usability shall be confirmed by
extensive evaluation involving all types of liver lesions. It is important to note that lesions
below 5mm diameter were not involved in the test dataset (similar to recent
publications). The automated detection of such lesions is very challenging because they
appear only in one or two slices of the CT image (assuming 2-3 mm slice thickness),
which does not allow real 3D analysis.
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3.3 Summary

Due to the increasing number of liver oncology cases in the clinical practice there is
significant need for efficient tools in computer assisted liver lesion analysis. A wide range
of clinical applications, such as lesion characterization, quantification, and follow-up
could be facilitated by automated liver lesion detection method. Liver lesions vary
significantly in size, shape, density, and heterogeneity, which make them very difficult to
detect automatically. In this chapter the author presented an automated approach that can
detect all types of liver lesions with high sensitivity and low false positive rate within a
short run time. The related results were published in a journal paper [3].

The author developed a novel technique for automated liver lesion detection in contrast-
enhanced CT images. The proposed algorithm is based on the segmentation of abnormal
regions inside the volume of interest and the classification of these regions based on a
multi-level shape characterization. The shape description incorporates standard geometric
features like asymmetry, size, compactness, and volume. Based on these features a
probability is defined for each level of an abnormal region, which shows the likelihood of
the given level to represent a lesion. Using this probability the abnormal regions are
classified as lesion or other region and the contour of each detected finding is defined.
The proposed analysis is separately performed for hypo- and hyper-dense lesions and the
result is defined by the union of the two set of findings.

The method was trained on a set of 55 cases involving 120 lesions and evaluated using
another set of 30 contrast-enhanced liver CT cases, where all (59) lesions were manually
contoured by one physician. Manually defined as well as automatically segmented liver
was used as VOI. The algorithm was executed for all case using various sensitivity
threshold values, which allowed the FROC analysis of the method’s accuracy. The results
showed the method can achieve 92% detection rate with 1.7 false positive per case when
the VOI is manually segmented. The same level of false positives was reached at lower
detection rate (85%) when the VOI is segmented using automated liver segmentation
technique. The detailed analysis of the false negatives demonstrated the method can miss
small lesions which fade into the low density boundary of the organ. In addition to the
other false findings, the false positives involved multiple detection of some lesion, and
lesions or calcifications not involved in the reference (due to their size).

In conclusion, the proposed algorithm can efficiently detect liver lesions irrespective of
their size, shape, density, and heterogeneity within short running time (half a minute).
According to the comparison with recent publications, its accuracy is competitive with
the state-of-the-art approaches. Combined with automated liver segmentation it can be
good basis of complex clinical workflows, such as liver lesion classification or
quantification.
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4 Virtual volume resection

The liver can be partitioned into anatomical segments. This information was leveraged by
the automated liver segmentation algorithm presented in Section 2.3. The separation of
liver segments can also facilitate cancer therapy. In surgical treatment planning it is
important to precisely quantify the resected (involving tumour) and the remnant (healthy)
segments of the liver before the operation. The automated partitioning of liver segments is
very challenging because the segment boundaries are not visible in medical images. There
are vessel based approaches, but these techniques require very precise vessel
segmentation, which can be time consuming. There is significant need for tools which
allow efficient separation of the liver segments based on the physician’s anatomical
knowledge. In this chapter the author presents a novel technique for interactive
partitioning of 3D binary objects using smooth surfaces. The related results of the author
were published in a journal paper [4].

The introduction gives an overview about the existing techniques and the main
motivations of this work. Furthermore, it presents the theory of B-spline curve and
surface interpolation that is applied by the proposed algorithm.

The automated organ partitioning is feasible when the boundary of the segments (or
lobes) is visible in the medical image. This is true for lung lobe separation. In case of the
liver, the boundary of the segments is not visible in medical images, so the automated
separation is very challenging. One possible approach for liver partitioning is to compute
the vascular territories belonging to the main branches of the organ’s vascular system (i.e.
the portal- or hepatic vein, or hepatic artery). In the paper of Saito [91] such a software
package is presented for surgical liver resection simulation. Another approach is to
manually define the boundary of organ sections on 2D slices of a 3D volume, interpolate
the contour for all other slices, and cut the organ using the interpolated surface. Lang [92]
presented the clinical usability of such software for surgical liver tumour and lobe
resection planning. A simplified implementation of this technique is to use planes to
separate different sections of an organ as presented in the work of Reitinger [93]. It is also
possible to combine the different approaches as introduced by Bourquain [94]. Bernhard
et al. [95] published a method that allows using smooth surfaces, which can be flexibly
deformed, in virtual liver resection for surgery planning.

Computing the intersection of a smooth surface and a 3D object is a very complex
mathematical problem even if the object is a simple line. Rockwood [96] presented a
method that can compute the intersection of a line with a B-spline surface that is
represented by a set of planar faces. The algorithm of Dokken [97] computes the
intersection of a line with a surface by recursively subdividing the surface into sub-
patches. The method of Nishita [98] iteratively cuts those regions of the B-Spline surface
which are not intersected with the line using the convex hull property of the surface. Jean
[99] published a method for computing the intersection of 2 spline surfaces based on the
hierarchical triangulation of the surfaces.
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In this work a semi-automated technique is proposed for partitioning the liver into its
anatomical lobes and segments. The presented algorithm integrates the advantages of the
existing approaches: allow cutting a 3D object with smooth surface, use triangular
representation of the surface, and apply multi-resolution approach to compute the
intersection. The input of the tool involves a 3D binary image representing the segmented
organ to be partitioned and the corresponding 3D medical image that depicts the internal
structure of the organ. The output of the tool is a 3D label image, in which the different
segments/lobes have different discrete labels.

According to the proposed approach the set of user-defined traces is interpolated with a
B-Spline surface and the voxels of the 3D object are separated in two classes based on
voxel coordinates located on the different side of the surface. The algorithm was
integrated into the open-source MITK [29] framework which allows iterating the method
on different objects several times. The presented technique was evaluated for virtual liver
segment separation and tumour resection.

The proposed method is described in Section 4.1. The presented algorithm starts with
computing the orientation of the surface (Subsection 4.1.1) and creating the multi
resolution triangular representation of B-spline surfaces (Subsection 4.1.2). The volume
cut is based on an efficient way to compute the intersection of the surface with a scan line
(Subsection 4.1.3). The input volume is partitioned in two parts based on the intersection
of the surface with several scan lines (Subsection 4.1.4). The evaluation of the proposed
approach is demonstrated in the Section 4.2. This section discusses liver segment
separation primarily, and it also involves two case studies for virtual tumour resection.

The rest part of the introduction presents the mathematical background of B-Spline curve
and surface interpolation. The goal of this part was to introduce the annotations used in
the following subsections. Given m € N, and degree p € N, the B-Spline [100] curve is
defined by the following function:

P(u) = ¥iZo Nip(WP; (< [0,1] X R?), (4.1)

where P = (P, Py, ..., B,,)T represents a set of control points, such that P. € R3 for all
0 < ¢ < m, and the basis function N;,, is defined by the following recurrent formula:

— fu; S U< Uy
Nio(w) = {O otherwise '
u—u; Uitp+1~U
N;p(u) = Nippe l(u)p_+Nl+1p 1(u )m (4.2)

where u = (ug, uq, ..., Umsp+1), referred as knot vector, is defined in this paper in the
following way:

0, 0<k<p
k-p
Uk =\ pr1’ p+1l1<k<m : (4.3)

1, m+1<k<m+p+1
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Given a vector of data points D = (D, Dy, ..., D,,,)T, where D, € R2 for each 0 < ¢ < m,
the B-Spline curve interpolation means computing the vector P of control points that
satisfies the following equation for all 0 < ¢ < m:

D, = P(Sc) = ?io Ni,p(sc)Pi’ (4-4)

where s = (5,51, ..., Sy) IS @ parameter vector such that 0 =55 <s; <+ <s,,, = 1.
Vector s is defined in this work incorporating the distance between data points:

0, c=0
_ Yi—1|Di=Di_4|
Se = ST DDyl 0<c<m. (4.5)
1, c=m
Using the following notation
[NO,p(SO) Nl,p(SO) Nm,p(so)]
N = | No,p(51) N1,p(51) Nm,p(sl) | (4.6)
No,p (sm) Nl,p (sm) Nm,p (Sm)

the B-spline interpolation is equivalent to solving the following system of linear
equations:

D = NP. 4.7)

In summary, the input of the curve interpolation involves the degree p, the vector D of
data points with size m + 1, and the parameter vector s. The output is the P vector of
control points, which define the B-spline curve P(u) with degree p, such that D, = P(s,)
for all 0 < ¢ <m. The process starts with computing the knot vector # and matrix N
based on the input parameters. Then, the system of linear equations (Equation 4.7) is
solved using the Gauss elimination.

Given m € N, n € N the 2D B-spline surface of degrees (p,q) € N? is defined by the
following function:

P(u,v) = X% X7 Nip(w) N; (V)P; ; € R? X R, (4.8)

where P = [P, ;] is a grid of control points, furthermore, basis functions N;, and N; , are
defined using Equation 4.2, such that vectors u = (ug, Uy, ..., Umip+1) aNd v =
(Vo, V1, -.-, Vn1g+1) are defined according to Equation 4.3.

Given a grid of (m+1)X (n+1) data points D= [D.4] the B-spline surface
interpolation means computing the grid of control points P, such that P(u, v) satisfies the
following equation for all pairs of (¢,d), where0 < c <mand 0 <d < n:

Dc,d = P(Sc: td) = ?;0 Z?:O Ni,p(sc) Nj,q(td)Pi,j = ﬁo Ni,p(sc)Qi,da (4-9)
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where
Qia = Xj=oNjq(ta)Pij, (4.10)

and parameter vectors s = (sg, Sy, .., Sm) and t = (t,, ty, ..., t,) are defined according to
the following equations:

0, c=0
_won Scj ) ZEalpiy—Dioy
S¢ = Lj=o - Where s ; = S Dy Diss]” 0<c<m, (4.11)
1, c=m
0, d=0
d
_ m td,i o Zj:llDinj_Di-j_ll
ta = Xizo o where t;; = —2?=1|Di,j—Di,j_1|’ 0<d<n, (4.12)
1, d=n

Assume that D and (p, q) are defined by the user, the grid P of control points belonging
to the surface that fits the data points can be computed using Algorithm 4.1. The input of
the method includes: degrees p,q and grid D = [Dc_d] of data points with size (m + 1) X
(n + 1). The output of the method is the grid P = [P, ;] of control points, which define
the surface P(u, v) with degrees p and q such that D, ; = P(s,,tg) forall 0 < ¢ < m and
0 <d < n. The algorithm starts (Step 1) with computing vectors s and ¢, which is
followed by two main steps. In the first one (Step 2) n+ 1 B-spline curves are
interpolated based on the column vectors of the input data points, which results in a grid
of intermediate control points. In the second one (Step 3) m + 1 B-spline curves are

interpolated using the row vectors of the intermediate control points, which results in the
final grid of control points.

1 Compute sand t based on D
2Foreach0<d <n

2.1 Perform B-spline curve interpolation to the column d of the input data points
(Do.a» D1dy -+ Dma), Using degree p, and parameter vector s
2.2 Let (Qo,d, Ql,d:--me,d) denote the vector of intermediate control points

belonging to the interpolated curve
3Foreach0<c<m

3.1 Perform B-spline curve interpolation to the row c of the intermediate control
points (QC,O, Qc1 ...,Qc,n), using degree g, and parameter vector ¢

3.2 Let (PC,O,PC’l, ...,Pc’n) denote vector of control points control points belonging
to the interpolated curve

Algorithm 4.1 B-spline surface interpolation
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4.1 Volume partitioning using B-spline surfaces

The problem of cutting a binary volume with a spline surface is solved by separating its
voxels located on the different side of the surface. Since this problem is very complex to
solve for an arbitrary surface, the following three constraints are required for the input
grid of data points:

e Due to the quadratic interpolation in both directions (p = q = 2) at least 3 traces
shall be defined by the user and each trace shall involve at least 3 points.

¢ No trace can be self-intersecting (which makes sense from the application’s point of
view).

e Each trace shall be defined on the same type of 2D view (axial, coronal, or sagittal).
This way, the surface has an orientation that shows, which plane (axial, coronal, or
sagittal) is the surface aligned with. Based on the orientation, the direction of lines
nearly perpendicular to the surface can be defined.

The above defined constraints don’t limit the practical usability of the tool, but makes the
problem easier to solve. This way, the original problem can be reduced to computing the
intersection of the surface with a set of scan lines, which are nearly perpendicular to the
surface. In order to compute the intersection of the surface with several lines efficiently,
the B-Spline surface is triangularized by sampling the surface at high resolution. This
way, the problem is further reduced to finding the triangle intersected by each scan-line
and computing the position of the intersection. Since the number of triangles can be very
large (due to the high resolution) the process is further optimized by using multi-
resolution triangularization of the B-Spline surface.

Algorithm 4.2 presents the process of the volume cut. The input of the algorithm involves
atriplet (X,Y,Z) € N3 that represents the domain

ID={01,..,X-1}x{01,..,Y —1}x{0,1,..,Z — 1}

of the 3D binary image, where X, Y, Z denotes the size of the image. In addition, the input
involves a set of traces T = {T,, Ty, ..., T;n}, Where m € N, and for each 0 <c<m
T, = {iy, iy, ...,i;} € ID for some t € N (i.e. each trace is an ordered set of voxel
positions). The output of the algorithm is a binary image O : ID — {0,1} that assigns O
and 1 to voxels located on the different side of the B-spline surface that fits input traces.

1 Compute grid of normalized data points and perform surface interpolation

2 Compute surface and scan line orientation

3 Create multi-resolution triangular representation of the surface

4 Compute intersection for all possible scan lines which intersect the surface

5 Propagate surface boundary for the remaining scan lines and compute output mask

Algorithm 4.2 Cut volume with B-spline surface.

The algorithm starts with the normalization of input traces (Step 1), as result of which
each trace consists of the same number of data points. This step makes it possible to
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define a (m + 1) X (n+ 1) grid, where (m + 1) represents the number of traces and
n = 20 represents the number of data points within each trace (this resolution proved to
be large enough based on empirical tests). For each 0 <c¢ <m B-spline curve
interpolation is performed using T, = {i,, iy, ..., i} as data points and the result curve
P.(u) is used to define the c-th row of the grid of the normalized data points D = [D, 4],
such that D, 4 = P.(d/n) for any 0 < d <n. When D is computed, B-spline surface
interpolation is performed using Alg. 4.1, which results in P(u, v). The following (2-5)
steps of Alg. 4.2 are discussed in Subsections 4.1.1-4.1.4.

4.1.1 Surface and scan line orientation

In the second step of Alg. 4.2 the orientation of the surface is determined based on the set
of normalized input traces. The orientation denotes one the three axles (x, y, z) of the 3D
Cartesian coordinate system. Using the notation introduced earlier, let D = [Dc,d] denote
the grid of normalized data points, where 0 < ¢ <m and 0 < d < n. Furthermore, let
(DZ4, D4, DZ ) denote the coordinates of the data point D, 4, and let a(D¥), (D), and
o(Df) denote the standard deviation of x, y, and z coordinates of all data points
belonging to the trace indexed by c. The x-orientation of the trace ¢, S*(c) is equal to 1,
if the deviation is the smallest for the x coordinate of its data points. Otherwise it is equal
to 0 according to the formal definition:

1, o(D¥) < (D)) Ao (D¥) < o(DE)
0, otherwise '

S*(c) = { (4.13)
Furthermore, the x-orientation of the grid D, S*(D) represents the number of traces, for

which the x coordinate has the smallest deviation:
S*(D) = XeLoS*(0). (4.14)

Assume that SY(c) and S%(c) are defined similar to Equation 4.13 and 4.14. The surface
orientation of the grid D, S(D) shows which coordinate of the data points has the smallest
deviation considering all traces:

S(D) = argmaXxgegyy,73 S“(D). (4.15)

For example, when the traces are defined on axial slices (z-plane), the z coordinate is
constant for all points of each trace. In this case S#(D) is equal to m + 1, which means
S(D) = z. Note that S*(D) can be equal to m + 1 for more than one a € {x,y, z}. That
can happen in the very unlikely case when the user specifies strait horizontal (or vertical)
lines on each slice. In such a case the orientation is selected according to inverse
lexicographic order (e.g. SY(D) = S?(D) =m+ 1 - S(D) = z).

The surface orientation shows, which plane (i.e. type of slice) is the surface nearly
perpendicular to. The two side of the surface is computed in each of these planes (i.e.
axial slices) using scan-lines which are parallel with one of the two axles of the given
plane (i.e. x or y). The orientation of the scan lines, L(D) is selected such that the
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4.1 Volume partitioning using B-spline surfaces

intersection of the surface and a given plane is nearly perpendicular to the scan lines. The
selection is based on the value of $¢(D) according to the following definition:

L(D) = arg maxae{x’y'z}\s(])) Sa(D) (416)

Figure 4.1 demonstrates a case when the traces are defined on axial slices and the y
coordinates of the data points have greater deviation than the x coordinates. In this case
the z coordinates of the input traces have the smallest deviation because the traces are
defined on axial slices, so the surface orientation S(D) is equal to z. Moreover the x
coordinates show smaller variation compared to the y coordinates, so the scan-line
orientation L(D) is equal to x.

A

<min

Figure 4.1 Definition of surface and scan-line orientation: Since the traces are defined on z-planes (z coordinate
is constant for each trace) and the x coordinate has smaller deviation than y coordinates, the surface orientation
S(D) = z and the scan line orientation L(D) = x.

When L(D) is computed, the scan lines are defined in the following way. As earlier
introduced, ID ={0,1,..,X—-1}x{0,1,...,Y =1} x{0,1,...,Z — 1} represents the
image domain. Assume that L(D) = x, in this case the total number of scan lines is equal
toY - Z. For each (y, z) pair the corresponding scan line is defined by the subset of voxels
{{0,1, ..., X — 1} x {y} X {z}} in which the y and z coordinates are fixed. The scan lines
can be similarly defined, when L(D) = y or L(D) = z by fixing the x and z or the x and y
coordinates, respectively.

4.1.2 Multi-resolution triangular representation

In the third step of Alg. 4.2 the surface P(u, v) is sampled according to a multi-level grid.
Let A € N denote the top level and p € N denote the resolution of the grid. For each level
0 <[ < Athe grid is defined by the following function:

G, < {{0, ..., p'} x {0, ..., p'}} X R® c {N x N} x R3,
such that

G,(i,)) =P (#pi) (4.17)
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4.1 Volume partitioning using B-spline surfaces

For any set M c R3 of 3D points let
min(M) = (minyey N*, minyey N¥, minyey N?) € R3, and
max(M) = (maxyey N¥, maxyey NY, maxyey N?) € R3

denote the minimum and maximum coordinates of the point set M along each axles (i.e.
the bounding box of the point set). Furthermore, let

91(1,J1 1) = Uy <isiy+mnGa<jsiy+r) G J) (4.18)

denote the subset of grid belonging to the index range [(iy,j1), (i + 7,j; + 1)].

G,(0,1)=P(0.1) G,(0,4)=P(0.1)

P~ Gi24)=P(05.1) Gi(44)
: ) : r 1\a.49)
Go(1,1)=P(1,1) 7T

-0
GI[S.D:I G1[4.D:|
Gy(1,0)=P(1,0) ~ G1(2,0)=P(0.5,0)
G4(1,0)
Gy(0,0)=P(0,0) G4(0,0)=P(0,0)

Figure 4.2 Multi-resolution representation of a cutting surface: White curves represent the normalized input
traces, blue lines represent the grid of normalized input data points, and red lines demonstrate the triangular
surface. Zero-level representation (Gg) — left, first-level representation (G,) — right. Round dots represent some
highlighted grid points (both levels), and squared dots represent the points of the first-level sub-grid g(1,1,2).

Assume that 1 = 2, p = 4, and the user defines 3 traces (m = 2) which have 21 data
points (n = 20) after normalization. Figure 4.2 demonstrates the multi-resolution
representation of such a surface, where white, blue, and red lines represent the normalized
input traces, the grid of normalized input data points, and the triangular surface,
respectively. The left side of the figure shows the zero-level (I = 0) representation that
consist of 4 surface points {P(0,0), P(0,1), P(1,0), P(1,1)} and 2 triangles, while the
right side of the figure shows the first-level (I = 1) representation that consist of 25
surface points {P(0,0), P(0.25,0), ..., P(1,0), P(0,0.25), P(0.25,0.25), ..., P(0.25,1),
P(0,1), P(0.25,1), ... , P(1,1)} and 32 triangles. The squared dots of the right grid
represent the first-level sub-grid g,(1,1,2) that involves 9 grid points {G;(1,1), G,(2,1),
G,(3,1), G,(1,2), G,(2,2), G,(3,2), G,(1,3), G,(2,3), G,(3,3)} which represent the
following surface points {P(0.25,0.25), P(0.5,0.25), P(0.75,0.25), P(0.25,0.5),
P(0.5,0.5), P(0.75,0.5), P(0.75,0.25), P(0.75,0.5), P(0.75,0.75)}.
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4.1 Volume partitioning using B-spline surfaces

For each level 0 <[ < A the bounding box of the surface points is defined by the
following function:

H, c {{0,...,p'} x {0, ..., p'}} x {R® x R3} c {N x N} x {R® x R3},

where
(min(gl(i,j, 1)),max(gl(i,j, 1))) , =2

ML) =
&0 {(min(gm(i-p,j-p,p)),maX(gm(i-p,j'p,p))). 1<

4.1.3 Intersection of scan lines with the triangular surface

In the fourth step of Alg. 4.2 the intersection of the surface with all scan lines
{(y,2)|0<y<YAO0<2z<Y}is computed. The intersection with a single scan line
(v, z) is computed in the following way. First, the intersected triangle is located based on
a hierarchical search, then the point of the intersection is computed using the concept of
barycentric coordinates.

Assume that relation (y,z) < H,(i,j) = (Hmin, Hmayx) 18 true, if H) . <y < H3,,, and
zm <z < Hf,., and false otherwise. Furthermore, assume that h = (hy, h,, ..., hy)
represents a queue of H,(i,j) structures, such that top(h) = hy, pop(h) = (h,, ..., hy),
and push(h, hy 1) = (hy, ..., hy, hi,1) per definition.
Algorithm 4.3 demonstrates the computation of the intersection of a scan line with the
surface P(u, v). The input of the algorithm is the scan line position (y, z) and the multi-
resolution triangular representation of the surface (G; and H;) for all levels 0 < [ < A. The
method returns the x coordinate of the point of intersection, where x € {0,1, ..., X}.
At the beginning of the method (Step 1) x is set to the default value (—1), which means
the scan line has no intersection with P(u, v), and h is initialized with empty queue. If the
scan line crosses the bounding box of the lowest-level triangular representation, then
H,(0,0) is added to the queue (Step 2).
The following loop (Step 3) encounters all levels in increasing order in order to find
H, (i, j) that is crossed by the scan line. When [ < A (Step 3.3) the actual H,(i, j) is further
analyzed at the next level of resolution (Step 3.3.1.1.1).
When the finest resolution is reached (Step 3.4) all smallest subset {G,(i,j), G,(i,j + 1),
Gy(i+1,j), Gy(i+1,j+ 1)} of grid G, is identified, whose bounding box H;(i,j) is
crossed by the scan line. For each of these bounding boxes two triangles are created form
the corresponding grid points (Step 3.4.2, and Step 3.4.6) and the intersection of these
triangles and the scan line is checked based on the following criteria.
The scan line (y, z) with orientation L(D) = x intersects the triangle ABD (Step 3.4.2) if
the projection of the triangle into the plane x = 0 includes the point (0, y, z). The latter
condition is decided using the concept of barycentric coordinates (Step 3.4.3 and Step
3.4.4) which can be also used to compute the x coordinate of the intersection (Step
3.4.4.1). When one triangle is not intersected the other is also tested (Steps 3.4.6-3.4.8).
The function terminates, when the first intersection is found (Step 3.4.4.2 or Step 3.4.8.2)
or no intersection is found (Step 4).
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4.1 Volume partitioning using B-spline surfaces

lx=-1,h=¢
2if (y,z) < Hy(0,0) push(h, Hy(0,0))
3 while 0 < |h| do
3.1 let H,(i, j) denote top(h)
3.2h = pop(h)
3.3if L < Athen
33.1foreachiyin{i-p,i-p+1,..,(i+1):p}
33.11foreachjin{j-p,j-p+1,...,G+1):p}
3.3.1.1.1if (y,2) < Hy41 (i, j1) then push(h, Hy41(iy,j1))
3.4 else
341A4=6,(,)),B=G(,j+1),C=G({+1)),D=G>G+1j+1)
3.4.2V, = (DY — AY,D% — A%),V; = (BY — AY,B% — A%),V, = (y — AY,z — A%)

5 AL% 5 — (V1 xV1)- (Vo x V) — (Vo XV1)- (V1 XV5) [)) — (Vo xVp)- (V1 xVp)— (Vo xV71)- (Vo XV3)
o (VoxVo)-(Va xVy)—(VoxV1)-(Vox V)’ (VoxVg)- (V1 xV1)—(VoxV1)-(Vox V1)

344 fFO0<a)ANO<PA(e+B<1)
3441 x=A"+a - (D*—-—A*)+ B - (B*¥ — AY)
3.4.4.2 return
3.4.6 Vy = (CY —AY,C% — A%),V, = (DY — AY,D? — A%),V, = (y — AY,z — A%)

347 q = (V1 xV7)- (Vo xV3)— (Vo XV7)- (V1 XV5) — (Vo xVo)- (V1 xVp) = (Vo xV1)- (Vo XV3)
T (VoxVo)-(Vy xVy)—(VoxV1)-(Vox V)’ (Vo xVo)- (V1 xV1)— (Vo xV71)-(VoxV71)

348IfF(0<a)AO<PBA(a+B<1)
348lx=A"+a - (C*—A*)+ B - (D* — A%)
3.4.8.2 return

4 return

Algorithm 4.3 Computation of the intersection of a scan-line with the surface, when S(D) = z and
L(D) =y.
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Figure 4.3 Hierarchical localization of the intersection of the surface with a scan line: the process starts with first
level (1 = 0) — left, and proceeds with the next level — centre, until the maximal level (I = A) is reached - right.

Figure 4.3 demonstrates how the algorithm works for the example surface introduced in
Fig. 4.2. Assume the scan line intersects the bounding box H,(0,0) — Fig.4.3/a. In that
case the bounding boxes H,(i,j) for all 0 <i,j < 4 are checked. Furthermore, assume
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4.2 Evaluation of virtual volume resection

the scan line intersects bounding box H, (1,2) — Fig.4.3/b. In that case the bounding boxes
H,(i,j) for all 4 <i<8 and 8 <j <12 are checked. Finally, assume the scan line
intersects bounding box H,(6,10) — Fig.4.3/c. At this point the method reaches the
maximal level (1), and the point of intersection can be computed.

4.1.4 Propagation of the boundary to non-intersecting scan-lines

In the fifth step of Alg. 4.2 the edge of the surface is extended to the entire 3D image.
Using Alg. 4.3 the boundary can be computed for all scan lines (y, z) which intersect the
surface P(u, v) within its domain (0 <u < 1,0 <wv < 1). In order to cut the whole 3D
image, the boundary shall be propagated to the remaining scan lines in both y and z
directions.

Assume that S(D) =z, L(D) = x. Forany y € {0,...,Y —1} and z € {0, ...,Z — 1} let
the relation (y,z) L P be true, if and only if the scan line (y,z) intersects the surface
P(u,v). The propagation in y direction works in the following way. For any z €
{0,...,Z — 1} let y,,;, and y,,,, denote the smallest and the largest y € {0, ...,Y — 1}
such that (y,z) L P, and let (Xpmin, Ymin, 2) and (Xpmax Ymax, Z2) denote the point of
intersection for scan lines (Y;min, 2) and (Vimax 2), respectively. For all 0 < y < y,,.;, the
point of intersection is set to (xin, ¥, 2), and for all y,,, <y <Y —1 the point of
intersection is set to (X4, V) Z)-

The propagation in z direction works in similar way. Assume that z,,;, and z,,,, denote
the smallest and the largest z € {0, ..., Z — 1} for which the point of intersection is already
defined for all y € {0, ...,Y — 1}. For each 0 < z < z,,;,, the points of intersection are
defined for all y €{0,...,Y — 1} as in case of z,,;,. For each z,,, <z<Z—1 the
points of intersection are defined for all y € {0, ...,Y — 1} as in case of z,,,,. This way,
the point of intersection is defined for all scan lines (y, z), where y € {0, ...,Y — 1} and
z€{0,..,Z —1}.

Assume that x(y, z) represents the x coordinate of the surface boundary in the scan line
(y,z). The output image representing the two sides of the surface is defined in the
following way:

0, x <x(y,2)

0(x,y,2) = {1, x2x(y,z)

The above defined function defines a binary volume where 0 and 1 represent the two
sides of the surface. This volume can be used to partition any binary volume (e.g. a
segmented liver or a vessel tree). Note that the whole concept (Subsection 4.1.1-4.1.4)
can be applied for other surface and scan-line orientations.

4.2 Evaluation of virtual volume resection

This section presents the evaluation of the proposed algorithm. Subsection 4.2.1 describes
the test data and the evaluation methodology. Subsection 4.2.2 demonstrates the results
for virtual liver segment and lobe separation and tumour resection. In the last subsection
(4.2.3) the results of the liver segment separation are compared with that of another
technique and the results of another publication.
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4.2 Evaluation of virtual volume resection

4.2.1 Test data and methodology

One clinical application of virtual volume resection is liver segment separation [101]. For
evaluation purposes the proposed algorithm was integrated into MITK [29]. This open-
source software framework allows displaying medical images with segmentation results,
handling user interactions such as drawing traces into axial, coronal, or sagittal slices,
executing the algorithm for partitioning the liver, and visualizing the partitions in 3D
view or superimposed on 2D slices using different colours (see screenshot in Fig. 4.4).
The presented algorithm was evaluated for liver segment separation using a set of 20
publicly available portal-phase liver CT examinations with gold standard liver contour.
The test cases were originally provided for a liver volume segmentation contest [28]. The
slice resolution was 512x512 for all cases, the number of slices varied between 64 and
394 (average 208), the pixel size was in the range 0.58 mm to 0.81 mm (average
0.68 mm), and the slice thickness varied between 0.7 mm and 5 mm (average 1.6 mm).
The dataset represents average clinical cases involving healthy as well as tumorous
exams. The evaluation was performed involving radiologist. Six of the 20 cases were
excluded by the physician because the hepatic vein was not visible in these images.
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Figure 4.4 User interface of the prototype implemented in MITK.
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4.2 Evaluation of virtual volume resection

According to the Couinaud definition [102, 103] the liver can be cut into anatomical
segments using surfaces which are fit to the main branches of the hepatic and the portal
vein. The hepatic vein has 3 main branches (left, middle, and right) and the portal vein
bifurcates into two (right and left) branches. Applying 5 cuts in a predefined order results
in a set of 7 sections including segments 2, 3, 4 (that involves segment 1), 5, 6, 7, and 8.
The five cuts can be performed in the way presented in Fig.4.5.

Figure 4.5 The workflow of the liver segment separation.

The first surface is defined by traces, which are drawn on axial slices and connect the
inferior vena cava (IVC) with the middle hepatic vein branch (Fig. 4.5/b). Using a surface
fit to these traces the liver is cut into left and right lobes. Based on the relative position of
the resulted partitions, left (green) and right (red) liver can be automatically labelled
(Fig. 4.5/c). The second surface is fit to the right portal vein branch. The corresponding
traces are drawn on coronal slice (Fig. 4.5/d), and the interpolated surface is used to cut
the right section into right inferior and right superior lobes. Similar to the first step, the
superior (red) and inferior (blue) lobes can be automatically labelled (Fig. 4.5/e). The
third surface is defined similar to the first one, but here the right branch of the hepatic
vein is incorporated (Fig. 4.5/f). This surface is used to perform 2 cuts: the right inferior
lobe is separated into segment 5 and 6, while the right superior lobe is separated into
segments 7 and 8. The resulted segments (5, 6, 7, and 8) can be automatically labelled
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4.2 Evaluation of virtual volume resection

based on their relative superior/inferior and anterior/posterior position (yellow, cyan,
gold, and orange, respectively — (Fig. 4.5/h).

The fourth surface is defined similar to the first one, but here the left branch of the hepatic
vein is incorporated (Fig. 4.5/i). Using this surface the left lobe is partitioned into the left
lateral lobe and the left medial lobe that represents segments 4 and 1. Based on its
position segment 4 (purple) can be automatically labelled (Fig. 4.5/j). The fifth surface is
defined on axial slice. The input trace starts from the left portal vein and goes between the
sub-branches feeding segment 2 and 3 (Fig. 4.5/k). This surface separates segments 2
(anterior) and 3 (posterior) which can be automatically labelled using green and blue
according to their position (Fig. 4.5/1).

Based on preliminary technical experiences the workflow was further optimized to make
it easier to use. As mentioned earlier the quadratic surface interpolation needs at least 3
traces. When a surface was defined with only one trace, the input was tripled, such that
the same input trace was used on the preceding and the succeeding slices.

For each test exam the physician defined the input traces for all 5 surfaces such that each
surface was defined by one trace. The liver was partitioned into 7 segments (2, 3, 4(+1),
5, 6, 7, 8) according to the workflow presented in Fig. 4.5, and the volume of each
segment was measured. The test was repeated 3 times by the operator with a few weeks
of delay. The variation of segment volumes was also computed as the standard deviation
of the volumes measured in the different tests. This way, the average volume of liver
segments and the intra-operator variability of segment separation were assessed.

Another clinical application for volume partitioning is liver tumour resection. In this case
the part involving the tumour is virtually cut out from the liver and the removed and the
remnant liver is quantified. Two test exams were selected to simulate this scenario. The
liver contour was available and the tumours were manually contoured using the
interactive segmentation tool of the MITK framework for both exams. In each case
multiple (3 or 4) traces were drawn to define the cutting surface. The liver was cut with
the surface and the resected and remnant volumes were visualized and quantified.

4.2.2 Results

Tables C.1 and C.2 (in Appendix C) presents the volumetric analysis of the liver segment
separation. For each exam the volume of each segment is reported (in cm®) according to
each test. Furthermore, the average volume of the 3 test runs and the standard deviation is
reported (in % of the total liver).

Based on the presented numbers the largest average variation (2.8%) was observed in
case 14 (with segment specific variations equal to 0.3%, 0.4%, 0.6%, 5.5%, 4.0%, 3.2%,
5.7%), which was due to large variation in the right liver (i.e. last four values). The lowest
average variation (1.1%) belonged to exam 5 (0.6%, 1.3%, 1.4%, 1.1%, 0.8%, 2.2%,
0.2%), while the mean average variation was 1.9%, which was close to that (2.1%) of
exam 7 (2.0%, 1.3%, 2.3%, 1.1%, 2.3%, 2.3%, 3.2%).

Figure 4.6 shows the result of the liver segment separation for case 14. The result of all 3
runs are shown from anterior as well as posterior view, where segments 2, 3, 4(+1), 5, 6,
7, and 8 are displayed with green, blue, purple, yellow, cyan, gold, and orange colours,
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respectively. In case of this exam the large intra-operator variability of segment volumes
was due to the different definition of the surface that divides the right liver into superior
and inferior parts. As result of that, the size of segment 8 increased, and that of segment 5
was significantly smaller in the third test (see white arrow on Fig. 4.6/3). Figure 4.7
demonstrates the exam (5) with the smallest variation (1.1%). In this case there is no
significant difference among the three results.

Figure 4.6 Result of the liver segmentation for exam 14 in 3 different times (in columns): each result is shown
from anterior (top) and posterior (bottom) views. The large intra-operator variation was due to the different
definition of the surface fit to the right portal vein, as result of which segment 8 (orange) had increased volume
in contrast to segment 5 (yellow) — demonstrated by the white arrow.

Figure 4.7 The result of the liver segmentation for exam 5 in 3 different times (in columns): each result is shown
from anterior (top) and posterior (bottom) views. This case demonstrated the smallest intra-operator variability.
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4.2 Evaluation of virtual volume resection

The diagram of Fig. 4.8 and Fig. 4.9 show the average volume and the intra-operator
variation segment-by-segment. Segment 2 had the smallest variation (1%), while segment
8 had the largest variation. The variation correlated with the average segment volumes,
only segment 6 had a bit larger variation compared to its average volume, which means
the liver segment separation was reproducible with the proposed tool.
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Figure 4.8 The average segment volume (in % of the total liver).
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Figure 4.9 The average (AVG) and the standard deviation (STD) of segment volumes (in % of the total liver).

Figure 4.10 demonstrates the first case study for tumour resection. In this case three
tumours were found at the superior part of the right lobe and the partial resection of the
right lobe was simulated. In order to define the cutting surface 4 traces were manually
drawn on axial slices. The first trace (a) was placed at the top of the liver at the boundary
of the left and right liver, the second (b) and third traces (c) were placed approximately
20 mm far from the lesions, and the fourth one (d) was placed outside the liver below the
bottommost lesion. The result of the virtual cut is displayed in an axial view (e) and in 3D
(posterior) views. When the resected part is not visible (h) one can see the cutting surface
is smooth and the location of the input traces is not remarkable. In addition to the
visualization the volume parts were quantified: the remnant liver (red) was 1461 cm®, and
the resected part (green) was 716 cm®.
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Figure 4.10 Virtual tumour resection, case study 1: definition of cutting surface on axial slices (a-d), and the
result in axial (e) and 3D (f, g, h) views. Green - resected liver, red - remnant liver, black - resected tumours.
Figure 4.11 shows the second case study for tumour resection. In this case the tumours
are located in the left lobe and the resection of the entire left lobe is simulated. In order to
define the cutting surface three traces were manually drawn on axial slices. The first trace
(a) was placed at the bottom of the left lobe, the second trace (b) was defined at the first
lesion on the visible boundary of the left lobe, and the third trace (c) was placed
approximately 20 mm far from the second lesion. The results are shown on Fig. 4.11 in
axial (d) and 3D (posterior) views (e, f). Although the traces have significant curvature,
the cutting surface is smooth and the location of the input traces is not remarkable (f —
when the resected part is not visible). The volume parts were quantified: the remnant liver
(red) was 991 cm?®, and the resected part (green) was 189 cm?®.

Figure 4.11 Virtual tumour resection, case study 2: definition of cutting surface on axial slices (a-c), and the
result in axial (d) and 3D (e, f) views. Green - resected liver, red - remnant liver, black - resected tumours.
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4.2.3 Discussion

The boundary of liver segments is not visible in CT images, so it is very challenging to
define ground truth for liver segment separation. In order to assess the accuracy of the
results achieved with the proposed tool, the results were compared with two types of
reference segmentation.

The first reference was published in the paper of Leeluudomlipi [104] who presented the
average volume (in % of the total liver) of certain liver lobes based on an extensive study
involving liver 155 exams. Instead of the volume of the anatomical segments this paper
reports the volume of some lobes which can be considered as unions of certain segments.
Computing the corresponding unions made it possible to compare our results with these
reference volumes.

The other reference was created using vessel-based liver segment separation. According
to another definition the anatomical liver segments can be defined as vascular territories
of the eight main branches of the portal vein. Kriston [105] presented a tool that allows
the separation of liver segments based on its portal tree. Using this tool the following
workflow was performed. First, the portal vein was segmented from a user defined root
point (Fig. 4.12/a). Then, the 8 main branches of the portal vein were manually labelled
(Fig. 4.12/b). Finally, the vascular territory belonging to each branch was computed and
quantified (Fig. 4.12/c). The vessel-based segment separator was performed for all test
cases by the physician three times. The average volume was computed for the above
mentioned anatomical liver sections and compared with the partitioning using virtual
volume resection (Fig. 4.12/d).

Figure 4.12 Vessel-based liver segment separation: portal vein segmentation (a), manual labelling of 8 main
segmental branches (b), and vascular territories (c) that can be compared with the partitioning using virtual
volume resection.

Table 4.1 shows the average volume of the anatomical liver sections (in percentage of the
total liver) for the proposed method and the two references. According to the results of
the proposed method, the left lateral lobe (segment 2+3) was equal to 12.2%, the left
medial (4+1) lobe was equal to 20%, the right anterior lobe (5+8) was equal to 40.2%,
and the right posterior lobe (6+7) was equal to 27.6% of the total liver volume. The
corresponding volumes reported in the paper of Leeluudomlipi [104] are 17.0%, 16.0%,
37.0%, and 30.0% (correlation=0.94), while the vessel-based segment separation resulted
in lobes having volume equal to 19.2%, 13.6%, 37.2%, and 30.0% (correlation=0.87),
respectively.
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Lobe left lateral Igﬂcgl];d;fel right anterior | right posterior
Segment 2+3 4+1 5+8 6+7
Proposed 12.2% 20.0% 40.2% 27.6%
Leelaudomlipi 17.0% 16.0% 37.0% 30.0%
Vessel-based 19.2% 13.6% 37.%2 30.0%

Table 4.1 Comparison of liver lobe volumes (in % of the total liver) achieved with the proposed tool with
reference values reported in literature and provided by a vessel-based approach.

In conclusion, the algorithm presented for cutting a 3D object with a B-spline surface
proved to be efficient for liver lobe and segment separation and tumour resection
simulation. The tool based on the proposed algorithm provides the level of freedom that is
required for such a complex task as complete anatomical segment separation that can be
automated to some extent as presented. The constraints of the surface interpolation (e.g.
user shall draw all traces on the same type of slices) do not limit its clinical usability,
however, they allow very quick processing. Since the algorithm can be applied to any
type of segmented object, additional structures (e.g. vessel tree) can be also considered
when an organ is cut. Very complex cuts, which are not supported by the proposed
algorithm, can be put in place by iterating the proposed tool. The experiences with tumour
resection simulation indicate that the tool provides the level of freedom that is enough to
solve real clinical problems.

The average processing time of the segment separation using the presented technique was
201 seconds per case considering all tests (min 128, max 319), which means about 40
second to perform one cut. It is important to note that this time is primarily accounted for
selecting the right slice and drawing the right trace manually, while the time needed for
surface interpolation and volume cut was always below 1 second.

4.3 Summary

The computer assisted analysis of organs has important role in clinical diagnosis and
therapy planning. As well as the visualization, the manipulation of 3-dimensional (3D)
objects are key features of medical image processing tools. This section presented an
efficient and easy-to use technique that allows the physician to partition a segmented
organ into its segments or lobes. The related results were published in a journal paper [4].
The author proposed a new technique for partitioning 3D binary objects using smooth
surfaces. The method applies B-Spline curve and surface interpolation to fit a smooth
surface on user-defined traces which specify the cutting edge. The proposed volume
cutting algorithm creates the multi-resolution triangular representation of B-spline
surfaces which allows computing the intersection of the surface with a scan line very
efficiently. The partitioning is based on computing the intersection of the surface with
several scan lines (according to image resolution), such that the direction of the scan lines
is defined based on the orientation of the surface. The boundary of the two sections is
propagated to all scan lines which do not intersect the surface.

112



4.3 Summary

The author with a physician performed the evaluation of the proposed tool for liver
segment separation using a public set of 14 CT liver cases having gold standard liver
contour. According to the Couinaud definition the liver was partitioned into its
anatomical segments using 5 surfaces which were fit to the main branches of the hepatic
and the portal vein. For each test exam the physician defined the input traces for each cut.
The liver was then partitioned into segments according to a predefined order of cuts and
the volume of each segment was measured. The test was repeated 3 times by the operator
with a few weeks of delay, and the variation of segment volumes was also computed.
Having no ground-truth the segment volumes were compared with the results of another
technique and published reference values. The comparison demonstrated the segment
volumes were in good agreement with the result of the vessel based technique as well as
the volumes reported in the literature. The intra-operator variability was low, which
indicates the liver segment separation was repeatable using the proposed technique.

The proposed method was evaluated on another clinical application of volume
partitioning, the liver tumour resection planning. In this scenario the tumour was virtually
cut from the liver and the removed and the remnant liver were quantified. Two test exams
were selected for this study. The liver contour was available and the tumours were
manually contoured. In both cases, multiple traces were drawn to specify the cutting
surface. The liver was cut with the surface and the resected and remnant volumes were
visualized and quantified. These experiments confirmed that the proposed tool provides
the level of freedom that is required to solve this clinical problem.

According to the time statistics of the liver segment separation study, the operator needed
40 seconds to perform one cut. Most of the time was spent for defining the input traces,
and less than a second was spent for surface interpolation and performing the volume cut.
This means the proposed approach is efficient enough to be involved in clinical
applications.
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Summary in English
1 Motivations

The liver has important role in the digestive system. Its function is vital, which cannot be
substituted by machine, and it has exceptional regenerative capability. The last property is
a consequence of its modular structure that allows separating the organ into functionally
independent parts. Several diseases threaten the liver. Besides poisoning and infections,
the number of cancer cases is increasing in the clinical practice. In addition to primary
liver tumours, the metastases of other cancer types can frequently occur in the organ. In
the last decade the treatment of liver cancer became a very important filed in oncology.
The computerized medical image processing plays important role in clinical diagnosis
and therapy. The 3-dimensional (3D) imaging techniques, such as Computed
Tomography (CT) and Magnetic Resonance Imaging (MR) allow in vivo visualization of
the liver. The CT and MR examinations can be enhanced using contrast agents. In such
case more images are acquired in different times, which result multi-phase images. Due to
the widespread of modern imaging techniques the number of medical images to be
processed is rapidly increasing. There is significant need for software tools which make
the analysis of medical images more efficient. This thesis focuses one of the most
important fields of image processing: the segmentation.

There are various options for liver cancer treatment. The applied therapy depends on
many conditions, like the tumour size, the number of tumours and their distribution, the
stage of the disease. The treatment options involve surgery, interventional radiology,
chemotherapy, radiation therapy, and the combination of these techniques. All of them
can be facilitated with software tools which make the liver analysis more precise and less
dependent on the operator. This thesis focuses on the segmentation of the liver, the
detection of livers lesions, and the virtual liver resection.

In this work the author paid special attention to the efficiency of the proposed algorithms
in addition to their accuracy. According to clinical feedbacks a software workflow is
useful when the computation time between starting a function and visualizing its result
does not exceed half minute. The algorithms presented in this thesis were designed to
solve complex clinical problems efficiently. Another important requirement was implied
by the properties of the clinical systems. Today, most applications run on servers which
can execute multiple instances of a function in the same time. This software environment
limits the usability of methods which need some special hardware. The algorithms
presented in this thesis do not have such requirement, so they are easy to integrate in any
system.

2 Liver segmentation

The basis of all computer assisted liver analysis is the liver segmentation. The author
presented three approaches which represent the different phases of a long research. The
first and the second algorithms were developed for single- and multi-phase contrast-
enhanced CT images. These techniques were published in a journal paper [1]. The third
method was developed for contrast-enhanced MR images. This technique was published
in a journal paper [2]. Each method was evaluated on different datasets, which makes
their comparison difficult. In order to enable their quantitative comparison, the author
performed an extensive evaluation of all methods using a large CT dataset.

The accuracy of the segmentation methods was measured using various error metrics in
this thesis. This summary refers only to Volumetric Overlap Error (VOE). Assume that
Volumetric Overlap (VO) is equal to the intersection of the result and the reference liver
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divided by their union, VOE is defined by 100-(1-VO). This measure demonstrates both
under- and over-segmentation and it is equal to 0% in case of perfect segmentation.

2.1 Single-phase method for CT images

The author developed an automated liver segmentation algorithm for portal-phase CT
images. This method is based on basic assumptions such as the liver is the largest organ
in the abdomen, the contrast-enhancement makes the liver brighter than its surrounding
organs, and the liver parenchyma is nearly homogeneous in CT images. The method also
incorporates information about the surrounding anatomical structures such as the lung, the
heart, and the inferior vena cava (IVC). The core of the algorithm is a neighbourhood-
connected region-growing technique that is facilitated by various pre- and post-processing
steps. More specifically, the algorithm consists of the following steps:

» First, the liver is localized based on its volume and intensity. This is done by
computing the contrast-enhanced soft-tissue intensity range based on the histogram of
the image. Using this range, the image is thresholded and subsequently eroded, and
the largest connected region of the result is used to initialize the segmentation.

» The second step separates the liver from the heart. It starts with segmenting the lung
and identifying the bottom edge of the left and right lung lobes. Then, the bottom of
the two lung lobes are connected in each coronal slice of the image, which result in a
3D surface that defines the edge between the liver and the heart.

* In the third step, the liver parenchyma is segmented using neighbourhood-connected
region-growing. The initial region is used to compute the intensity of the normal liver
and to start the segmentation. Due to the large radius used for connectedness the result
of the region-growing is dilated after the segmentation finished.

« The fourth step corrects various types of over- and under-segmentations. An
additional segmentation is performed between the liver and the lung using lower
intensity statistics. Furthermore, liver veins are filled based on their characteristic
geometric features, and missing lesions are added using standard cavity filling
technique. The IVC is also detected based its characteristic shape and removed.

The author evaluated the proposed method using a set of 20 portal-phase CT
examinations having ground-truth liver contour. The test cases were published by a liver
segmentation contest, which makes the presented results comparable with other
publications. The images involved a few healthy cases, but most of them were pathologic
including lesions of different sizes. According to the evaluation the method can
accurately (VOE=8%) segment the liver parenchyma within short time (30s per case).
The visual assessment of the results showed the results excluded some lesions which were
located on the boundary of the organ.

2.2 Multi-phase method for CT images

The author developed an automated approach for liver segmentation in multi-phase CT
images. This algorithm is based on the previous one, but it can incorporate the
information of more contrast-enhanced phases. The goal was to make the liver
segmentation less dependent on the quality of the portal-phase image. The proposed
approach exploits the characteristic contrast uptake of the liver. The intensity of a
neighbouring organ can be similar to the liver in one particular phase, but it is very
unlikely that it has the same intensity in all phases. Thus, the liver parenchyma can be
localized more accurately, when the joint information of multiple phases is incorporated.
More specifically, the multi-phase approach consists of the following steps:
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+ First, the input phases are normalized, so latter steps shall not deal with differences in
slice number, voxel spacing, and image origin. As result of this step a multi-scalar
image is created that represents the intensity of each voxel in all phases.

« The distribution of the contrast uptake is demonstrated by the joint histogram of the
normalized images. Since the liver has the largest volume the largest peak in the joint
histogram represents the liver parenchyma. All voxels are detected which have similar
uptake as the liver, and the largest connected region of them is used as initial region.

» In the next step, the input phases are segmented one-by-one using the single-phase
approach, which results in a set of binary volumes. The segmentation involves the
separation of liver and heart, the region-growing, and the correction of under- and
over-segmented areas (except for the I'VC removal that is specific to the portal-phase).

« The segmentation belonging to the different phases involves the liver as well as some
other regions which have similar intensity in the given phase. In the last step, the
results are precisely registered and the final segmentation is defined as the
combination of the results belonging to the different phases.

The author qualitatively evaluated the multi-phase algorithm on a set of 19 multi-phase
examinations using a questionnaire filled by 5 physicians. According to the results the
segmentation was useful for clinical purposes in 94% of the cases after some minor or no
manual correction. The quantitative comparison with the single-phase method on a small
set of challenging cases showed the multi-phase method performed better (VOE=11%)
than the single-phase one (VOE=16%) without increasing the running time (25s per case).

2.3 Model-based method for MR images

The intensity distribution can be heterogeneous inside the liver due to pathology, which
can result in under-segmentation of these areas. Addressing this problem is even more
important in case of MR images which have better soft-tissue contrast. The author
developed an automated approach that incorporates probabilistic liver model to increase
the accuracy of the intensity based liver segmentation techniques. The model was created
by registering 60 manually contoured liver exams. The novelty of the model is that it was
partitioned into 8 segments according to the anatomical structure of the liver. The
partitioning allows using local intensity statistics in different parts of the organ, which
makes the segmentation less sensitive to local intensity differences caused by pathology
or artefacts. More specifically, the algorithm consists of the following steps:

» The intensity range of the contrast-enhanced soft-tissue varies significantly among the
examinations, so it is dynamically computed. In the first step, the histogram peak with
the greatest mode is selected among those which represent at least 5% of the image.

« In the second step, the liver model is registered to the image to be segmented. The
input image is thresholded using the contrast-enhanced soft-tissue range. Then,
distance map is computed for the threshold image, which results in an image that has
the large value inside the liver. The probabilistic model is registered to the distance
map and the partitioning is also applied to the image.

* In the third step, the liver is segmented using neighbourhood-connected region-
growing that incorporates the partitioned liver model. The initial region is created
from the soft-tissue image using erosion and taking the largest connected region.
Intensity statistics are computed for the initial region as well as each segment,
separately. The segmentation uses voxel specific intensity condition that incorporates
the statistics of the contrast-enhanced soft-tissue, the initial region, and the
corresponding segment. Similar to the CT approaches, dilation and cavity filling is
applied to the result of the region-growing.

116



Summary in English

The author evaluated the algorithm on a set of 8 representative contrast-enhanced MR
liver exams having manually defined liver contour. The results showed the proposed
approach can accurately (VOE=11%) segment the liver within short time (30s per case)
despite the significant intensity heterogeneity that was characteristic for MR images.

2.4 Quantitative comparison of liver segmentation methods

The goal of this section was to present the quantitative comparison of the proposed
algorithms on a large set of clinical cases. The first two approaches were tested as they
were proposed, while the model-based technique was adapted to CT images. The test
cases involved 83 contrast-enhanced liver CT examinations (37 portal-phase, and 46 dual-
phase). The images involved healthy, tumorous, as well as some extreme (considering
size or pathology) cases. The reference liver contour was defined by physician for the
portal-phase image of each exam. The single-phase and the model-based methods were
tested for all cases, while the multi-phase algorithm was executed for the dual-phase cases
only. The test runs were performed on the same hardware, and the segmentation time was
measured. In order to compare the results, the average, and the standard deviation of
various error metrics were computed. Furthermore, paired T-test was performed to see
whether the difference between two methods is statistically significant.

The comparison of the single-phase and the model-based algorithms on the whole dataset
showed the latter has significantly better overall accuracy (VOE=13%) compared to the
first one (VOE=19%). The tests with the dual-phase images demonstrated the multi-phase
(VOE=15%) and the model-based (VOE=15%) approaches perform at the same level of
accuracy, while the single-phase method proved to be significantly less accurate
(VOE=26%). The average segmentation time was 24s, 19s, and 37s for the three methods,
which indicated that both multi-phase and the model-based methods are efficient enough
to be used in clinical practice. Considering the fact that the model-based method requires
the portal-phase image only it has the widest usability.

3 Liver lesion detection

The liver lesion assessment is one of the most important functions of computer assisted
liver analysis. The number of liver cancer cases is increasing in the clinical practice,
which increases the number of images to be processes. Liver lesion classification and
quantification can be facilitated by automated lesion detection. This is very challenging
task due to the large variety of lesion size, shape, and density distribution. There is
significant need for software tools which can increase the sensitivity of liver lesion
detection without forcing the user to review large numbers of false positives. The author
proposed an automated approach to solve this problem. The related results were published
in a journal paper [3].

3.1 Automated liver lesion detection for contrast-enhanced CT images

The author developed a new technique for automated liver lesion detection in contrast-
enhanced CT images. The proposed algorithm is based on the segmentation of abnormal
regions inside the liver and the classification of these regions based on a novel multi-level
shape characterization. More specifically, the algorithm consists of the following steps:

» The pre-processing step involves the morphological closing of the volume of interest
(VOI) to reduce false negatives due to under-segmented lesions on the liver boundary,
the resampling of the image using isotropic voxel size, the reduction of CT image
noise, and the computation various features of the normal liver.

117



Summary in English

* In the second step, staring form the normal liver the abnormal regions are segmented
(in an outside-in manner) and the list of candidate regions is created. This step is
performed for hypo- and hyper-dense lesions, separately.

» In the last step a multi-level (inside-out) shape characterization is performed for each
candidate region using standard geometric features (asymmetry, size, compactness,
and volume). Based on these features a probability is defined for each level of a
region, which shows the likelihood of the given level to represent a lesion. If the
maximal probability level of a candidate region is above the sensitivity threshold, the
region is classified as lesion and the corresponding level is used as contour.

3.2 Evaluation of automated liver lesion detection

The author evaluated the proposed method on a set of 30 contrast-enhanced liver CT
exams. For each case all lesions were manually contoured by physician. Manually defined
as well as automatically segmented liver was used as VOI. The algorithm was executed
for all case using various sensitivity values, which allowed the Free-Response Operating
Characteristic (FROC) analysis of the method. The results showed the method can
achieve 92% detection rate with 1.7 false positive per case when the VOI is manually
segmented. The same level of false positives was reached at lower detection rate (85%),
when the VOI is segmented using automated liver segmentation technique. The detailed
analysis of the false negatives demonstrated the method can miss small lesions which
fade into the low density boundary of the organ. The false positives involved multiple
detections of some lesion and small lesions or calcifications which were not involved in
the reference in addition to other false findings. The average running time of the method
was 30s per case, which demonstrates the efficiency of the method.

4 Virtual volume resection

The separation of liver segments can facilitate cancer therapy. In surgical treatment
planning it is very important to precisely quantify the resected and the remnant part of the
liver before operation. The automated partitioning of liver segments is very challenging
because the segment boundaries are not visible in medical images. There is a need for
tools which allow efficient separation of liver segments based on the user’s anatomical
knowledge. The author proposed a novel technique to solve this problem. The related
results were published in a journal paper [4].

4.1 Volume partitioning using B-spline surfaces

The author developed a new technique for interactive partitioning 3D binary objects using
a smooth surface specified by the user. The presented volume-cutting algorithm is based
on a multi-resolution triangular representation of B-spline surfaces. This representation
allows computing the intersection of the surface with a scan line very efficiently. The
partitioning is performed by computing the intersection of the surface with several scan
lines. More specifically the algorithm consists of the following steps:

« In the first step, a normalized grid of input points is created from the user defined
input traces using B-Spline curve interpolation, and a B-spline surface is interpolated
that fits the normalized grid of input points.

» In the second step, the orientation of the surface and the scan lines are computed. The
scan line orientation represents the axis of the 3D coordinate system which is nearly
perpendicular to the surface.

 In the third step, the multi-resolution triangular representation of the surface is created
by sampling the B-spline surface according to a multi-resolution grid.
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» In the fourth step, the intersection of the surface with all scan lines are computed,
which define the cutting edge. The intersection points are localized using a
hierarchical search that is based on the multi-resolution triangular representation.

« In the last step, the cutting edge is propagated to all scan lines which do not intersect
the surface.

4.2 Evaluation of virtual volume resection

The author with a radiologist performed the evaluation of the proposed tool for liver
segment separation on a set of 14 CT liver exams having gold standard liver contour.
Based on the Couinaud definition the liver was cut into anatomical segments using 5
surfaces which were fit to the main branches of the hepatic and the portal vein. For each
test exam the physician defined the input traces for each cut. The liver was partitioned
into segments according to a predefined order of cuts and the volume of each segment
was quantified. The test was repeated 3 times by the operator with a few weeks of delay,
and the variation of segment volumes was also computed. Having no ground-truth the
segment volumes were compared with the results of another technique and the literature.
The comparison demonstrated the segment volumes correlated with the result of the
vessel based technique as well as the volumes reported in the literature. The intra-operator
variability was low, which indicate the liver segment separation was repeatable using the
proposed technique.

Another clinical application of volume partitioning is the liver tumour resection planning.
In this case the tumour is virtually cut from the liver and the removed and the remnant
parts are quantified. Two test exams were selected to simulate this scenario. The liver
contour was available and the tumours were contoured manually using an interactive tool.
In each case, multiple traces were drawn to specify the cutting surface. Then, the liver
was cut with the surface and the resected and remnant volumes were visualized and
quantified. These experiments confirmed that the proposed tool provides the level of
freedom that is required by this clinical problem. According to the time statistics less than
a second was spent for surface interpolation and performing the volume cut, which
demonstrates the efficiency of the proposed approach.

Key thesis points
I. Liver segmentation

Liver segmentation is the basis of computer assisted liver analysis. Since the manual
segmentation of the liver is very time consuming, there is a big need for automated
techniques. The author developed three algorithms for automated liver segmentation. The
related results were published in journal papers [1] and [2].

I.1 Single-phase method for CT images (Section 2.1): The author developed a fully
automated liver segmentation technique for portal-phase CT images. The algorithm
uses standard image processing concepts and incorporates basic anatomical
information about the liver and the surrounding organs. The core of the method is a
neighbourhood-connected region-growing that is facilitated by various pre- and post-
processing steps, such as the localization of the liver, the separation of liver and heart,
the correction of breathing artefact, the removal of IVVC, and filling the cavities due to
liver veins or lesions. The author evaluated the method using a set of 20 portal-phase
CT examinations having ground-truth liver contour. According to the evaluation the
proposed approach can accurately segment the liver within short time.

1.2 Multi-phase method for CT images (Section 2.2): The author developed an automated
approach for liver segmentation in multi-phase CT images. The algorithm is based on
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the single-phase one, but it can incorporate the information of more contrast-enhanced
phases. The main idea of this technique is to exploit the characteristic contrast uptake
of the liver for more precise localization of the organ and to combine the
segmentation results belonging to different contrast enhanced phases. The author
qualitatively evaluated the algorithm on a set of 19 multi-phase examinations using a
questionnaire filled by 5 physicians. The results showed the segmentation was
acceptable for clinical use in majority of the cases. The quantitative comparison with
the single-phase method demonstrated the multi-phase method performs better than
the single-phase one without increasing the running time.

1.3 Model-based method for MR images (Section 2.3): The author developed an
automated liver segmentation approach that incorporates probabilistic liver model to
increase the accuracy of the intensity-based segmentation techniques presented in
prior sections. The model was created by registering 60 manually contoured liver
exams. The novelty of the model is that it was partitioned into 8 segments according
to the anatomical structure of the liver. The partitioning allows using local intensity
statistics in different parts of the liver, which makes the segmentation less sensitive to
local intensity differences caused by pathology or artefacts. The author evaluated the
algorithm on a set of 8 representative contrast-enhanced MR cases. The results
showed the proposed approach can accurately segment the liver in short time despite
the significant intensity variation that is characteristic for MR images.

1.4 Quantitative comparison of liver segmentation methods (Section 2.4): The author
performed the evaluation of the three algorithms on a large CT dataset including
single and dual-phase images. The first two approaches were tested as they were
proposed, while the model-based technique was adapted to CT images. The single-
phase and the model-based methods were tested for all cases, while the multi-phase
algorithm was executed for the dual-phase images only. The comparison of the single-
phase and model-based algorithms showed the latter has significantly better overall
accuracy. The tests with the dual-phase images demonstrated that the multi-phase and
the model-based approaches perform at the same level of accuracy, while the single-
phase method proved to be significantly less accurate. The average segmentation time
was low for both multi-phase and model-based methods, which indicate these
techniques are efficient enough to be used in clinical practice. Since the model-based
method requires the portal-phase image only, it has the widest usability.

I. Liver lesion detection

The number of liver cancer cases is increasing in the clinical practice, so the computer
assisted detection of liver lesions has recently become an important area. The detection of
liver lesions is very challenging task due to the large variety in size, shape, density
distribution of liver lesions and the large number of slices to be processed. There is a need
for tools that can increase the sensitivity of liver lesion detection without forcing the
physician to review many false positives. The author proposed a solution for this
problem, which published in a journal paper [3].

I1.1. Automated liver lesion detection for contrast-enhanced CT images (Section 3.1): The
author developed a novel technique for automated liver lesion detection in contrast-
enhanced CT images. The proposed algorithm is based on the segmentation of
abnormal regions inside the volume of interest (VOI) and the classification of these
regions based on a multi-level shape characterization. The shape description
incorporates standard geometric features like asymmetry, size, compactness, and
volume. Based on these features a probability is defined for each level of a region
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that shows the likelihood of the given level to represent a lesion. Using this
probability the abnormal regions are classified as lesion or other region, and the
contour of each finding is defined.

I1.2. Evaluation of automated liver lesion detection (Section 3.2): The author evaluated
the method on a set of 30 contrast-enhanced liver CT cases, where all lesions were
manually contoured by physician. Manually defined and automatically segmented
liver was used as VOI. The algorithm was executed with different sensitivity
settings, which allowed FROC analysis of the method. The results showed the
algorithm can achieve high detection rate at low false positive per case when the VOI
is manually defined. The same level of false positives was achieved at lower
detection rate, when the VOI is segmented using automated technique. The detailed
analysis of false negatives demonstrated the method can miss small lesions which
fade into the lower density boundary of the organ. The average running time of the
method was 30s per case, which demonstrates the efficiency of the method.

1. Virtual volume resection

The separation of the anatomical liver segments can facilitate for surgical treatment
planning. The automated partitioning of the liver is very challenging because the
boundary of the segments is not visible in medical images. There is a need for interactive
tools which allow efficient separation of the anatomical liver segments. The author
proposed a solution for this problem, which was published in a journal paper [4].

[11.1. Volume partitioning using B-spline surfaces (Section 4.1): The author developed a
new technique for partitioning of 3D binary objects using smooth surfaces. The
method applies B-Spline curve and surface interpolation to fit a smooth surface on
the user-defined traces which specify the cutting edge. The proposed volume cutting
algorithm creates the multi-resolution triangular representation of B-spline surfaces,
which allows computing the intersection of the surface with a scan line very
efficiently. The partitioning is based on computing the intersection of the surface
with several scan lines, where the direction of the scan lines is defined based on the
global orientation of the surface. The cutting edge is propagated to all scan lines
which do not intersect the surface.

I11.2. Evaluation of virtual volume resection (Section 4.2): The author with a physician
performed the evaluation of the proposed tool for liver segment separation. The test
set involved 14 CT exams and manually defined liver contour was available for
each of them. The liver was partitioned according to a predefined sequence of five
cuts and the volume of each segment was measured. The test was repeated three
times by the physician with a few weeks of delay, and the variation of segment
volumes was computed. The results were compared with a vessel-based segment
separation approach. The segment volumes correlated with the other technique as
well as the literature, and the intra-operator variability was proved to be low. In
addition to these experiments, two case studies on virtual tumour resection
confirmed that the tool provides the level of freedom that is required by the clinical
application. Less than a second was spent to perform the volume cut, which
demonstrates the efficiency of the proposed approach.
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1 Motivacio

A ma4j fontos szerepet tolt be az emészt6 rendszerben. A funkcidja 1étfontossagu, amely
nem helyettesithetd géppel, tovabba kiilonleges regeneralo-képessége van. Az utobbi
tulajdonsdga a modularis szerkezetére vezethetd vissza, amely Szerint funkcionalisan
fliggetlen részekre bonthat6. Szamos betegség fenyegeti a méjat. A mérgezések és
fert6zések mellet a rakos megbetegedések szama is egyre né a klinikai gyakorlatban. A
primer daganatok mellett mas daganatok attétei is gyakran megjelennek a majban, ezért a
majrak kezelése az elmult évtizedben az onkoldgia egyik fontos teriiletéveé valt.

A szamitogépes orvosi képfeldolgozas fontos szerepet jatszik a klinikai diagnézis és
terapia teriiletén. A 3-dimenzids (3D) képalkotd technikak, mint komputeres tomografia
(CT) és magneses rezonancia (MR) lehetévé teszik a maj in-vivo megjelenitését. A CT és
MR felvételek informéacid tartalma kiilonboz6 kontraszt-anyagok hasznalataval novelhetd.
Az ilyen esetekben rendszerint tobb felvétel késziil, amelyek tobb-fazist képet alkotnak.
A modern képalkotd berendezések elterjedése révén a feldolgozand6 képek szama gyors
iitemben nd. Jelentds igény van tehat olyan szoftveres eszkdzokre, amelyek hatékonyabba
teszik a felvételek feldolgozasat. Az értekezés az orvosi képfeldolgozas egyik
legfontosabb teriiletére, a szegmentéciora fokuszal.

A mij rdkos megbetegedésének kezelésére szamos lehetdség all rendelkezésre. Az
alkalmazott terapia olyan kiilonb6z6 tényezok fliggvénye, mint a tumorok mérete, szama,
elhelyezkedése, vagy a betegség eldérehaladottsaga. A leggyakoribb kezelési mdodok a
sebészet, az intervencids radiologia, a kemoterapia, a sugarterapia, illetve ezek kiilonb6zo
kombinacidja. Ezen technikdk mindegyike segitheté szoftveres eszkozokkel, amelyek
pontosabba ¢és objektivabba teszik a méj szamitogépes vizsgalatat. Az értekezés a maj
sebészi vagas teriiletére fokuszal.

A bemutatott modszerek pontossaga mellett az értekezésben kiemelt figyelmet kap az
egyes algoritmusok hatékonysdga. Klinikai visszajelzések alapjan egy szoftveres
munkafolyamat akkor tekintheté hatékonynak, ha a funkci6 inditasa és az eredmény
megjelenitése kozott eltelt id6 nem haladja meg a fél percet. A bemutatott algoritmusok
tervezésénél nagy hangsulyt keriilt arra, hogy azok komplex klinikai problémakat révid
idén belil oldjanak meg. Egy masik fontos kovetelmény a klinikai rendszerek
tulajdonsagéabdl ered. A mai alkalmazasok tobbsége szervereken fut, ahol egy folyamat
tobb példanyban is miikodhet egyszerre. Eben a szoftveres kornyezetben a specialis
hardver-igényli modszereknek limitalt a hasznalhatéosaga. Az értekezésben bemutatott
modszereknek nincs ilyen igényiik, igy egyszeriien integralhatok barmilyen rendszerbe.

2 Maj-szegmentacio

A szamitogépes maj-analizis alapja a maj-szegmentacid. A szerz6 harom modszert mutat
be, amelyek egy hosszabb kutatas kiilonb6z6 allomasai voltak. Az elsé két algoritmus
egy- ¢és tobb-fazisu kontrasztos CT képekhez késziilt, és a hozzajuk kapcsolddo
eredmények egy folyoiratcikkben [1] jelentek meg. A harmadik eljaras kontrasztos MR
felvételekhez késziilt, és egy masik folyodiratcikkben [2] lett publikalva. Mindharom
megkdzelités mas adathalmazon volt kiértékelve, ami megneheziti az 6sszehasonlitasukat.
Hogy lehetévé valjon a szamszerii Gsszevetésiik, az értekezés keretében megtortént a
modszerek kiértékelése egy kozos esethalmazon.

A bemutatott szegmentacidés technikak pontossagat szamos hiba mértékkel lehet
jellemezni. Ebben az Gsszefoglaloban csak a térfogati atfedés hibajat (VOE) emlitjiik.
Feltéve, hogy a térfogati atfedés (VO) egyenld az eredménye és a referencia metszetének

122



Magyar nyelvii 6sszefoglalo

¢€s unidjanak térfogati hanyadosaval, az emlitett hiba a kdvetkez0 modon definialhato:
VOE=100+(1-VO). Ez a mérészam egyszerre mutatja az alul- és a tilszegmentalast,
értéke 0% tokéletes szegmentacid esetén.

2.1 Médszer egy-fazisu CT képekhez

A szerz6 kidolgozott egy automatikus modszert portalis-fazisu kontrasztos CT képekre.
Az algoritmus olyan feltevéseken alapul, mint a ma;j a legnagyobb szerv a hasi régidban, a
kontrasztanyag kiemeli a majszovetet a kornyezd szervektdl, valamint a majszévet kozel
homogén a CT képeken. A modszer kihaszndlja a kornyezé anatomiai struktarak
tulajdonsagait (mint a tiido, a sziv, vagy az inferior vena cava - IVC). Az eljards magja
egy szomszédsagi dsszefiiggéségen alapulo régido-ndveld algoritmus, melyhez tébb eld- és
utofeldolgozd 1épés kapcesolodik. A mddszer az alabbi 1épésekbdl all:

* Az elsd 1épésben megtorténik a méj lokalizéldsa a mérete és intenzitasa alapjan. A kép
hisztogramja alapjan meghatarozzuk a kontrasztos lagyszovetet reprezentdlo
intenzitds tartomanyt. Ezt haszndlva a képet kiiszoboljik, majd erodalas utan
kivalasztjuk a legnagyobb 0sszefliggd komponensét. Az igy kapott régiot hasznaljuk a
szegmentalas inicializaldsahoz.

* A maésodik 1épésben szeparaljuk a majat a szivtdl. Ez a tiido szegmentalasaval
kezdddik, majd a jobb ¢és bal tiid6 lebenyek also feliilete keriil meghatarozasra. Ezutan
fliggbleges metszeteken Osszekatjiik a bal és jobb tiid6 aljat, amely egy 3D elvalasztd
feliiletet eredményez a m4j és a sziv kozott.

* A harmadik 1épésben a majszdvetet szegmentaljuk Osszefiiggéségen alapuld régiod-
noveld6 modszerrel. Kezdd régioként az elsd lépésben meghatirozott teriiletet
hasznaljuk, valamint ebbdl szamitjuk az intenzitas tartomanyt. Mivel nagy
Osszefliggdséget hasznalunk, a szegmentaci6 eredményét a végén dilatalni kell.

* A negyedik Iépés kiillonboz6 alul- és tulszegmentalt teriileteket korrigdl. Egy tovabbi
szegmentaciot haszndlunk a mdj és a tiidé kozotti sotétebb rész hozzd vételére.
Tovabba, az erek feltoltésre keriilnek geometriai tulajdonsagaik alapjan, valamint a
hidnyz6 1éziokat standard tiregfeltolté technikakkal korrigaljuk. Az IVC-t jellegzetes
alakjat kihasznalva detektaljuk és toroljiik az eredménybdl.

A szerzd elvégezte a fenti modszer kiértekelését egy 20 CT esetbdl 4ll6 képhalmazon,
amelyre referencia majkontir is adott volt. A teszteseteket egy nyilvanos maj-
szegmentacids versenyen publikaltak, igy a kapott eredmények kozvetleniil 6sszeverhetok
mas publikacidkkal. A tesztképek néhany egészséges esett mellett szdmos tumoros esetet
tartalmaztak. Az eredmények alapjan a bemutatott algoritmus pontosan szegmentalta a
majat (VOE=8%) rovid id6 alatt (30 mp). Az eredmények vizualis értékelése soran
kidertilt, hogy a modszer kihagyhat a maj hataran talalhat6 1éziokat.

2.2 Moédszer tobb-fazisu CT képekhez

A szerz6 kidolgozott egy automatikus maj-szegmentaciés modszert tobbfazisi,
kontrasztos CT képekre. Az algoritmus az el6zOn alapul azzal a kiilonbséggel, hogy ez
szegmentacid kevésbé fiiggjon a portalis fazis mindségétél. Az javasolt moddszer a
majszovet jellegzetes kontraszt-halmozasat hasznalja ki. Egy kdrnyezd szerv intenzitésa
ugyanis lehet hasonlé a majéhoz egy adott fazisban, de valdsziniitlen, hogy minden
fazisban az lesz. Igy a majszovet pontosabban behatarolhaté a kiilonbozd fazisok
egyesitett informacioja alapjan. A modszer az aldbbi 1épésekbdl all:

* FEl6szor a kiilonbozé fazisokhoz tarozd képeket normalizaljuk, igy a késdbbi
1épésekben nem kell az eltérd kép- és voxel-méretet figyelembe venni. A 1étrejovo
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tobb-értékli kép minden pontjaban az adott pozicid, kiilonbozd fazisban felvett
intenzitasat mutatja.

* A kontraszt halmozéas eloszlasat jol mutatja a kiilonb6zo fazisok egyesitett
hisztogramja. Mivel a m4j a legnagyobb térfogati szerv, a hisztogram legmagasabb
csticsa mindig a majat reprezentalja. Ebben a 1épésben meghatarozzuk azokat a
pontokat, amelyek kontraszt felvétele hasonld a majéhoz, majd az igy kapott
ponthalmaz legnagyobb dsszefiiggd komponense alkotja a kezd6 régiot.

A kovetkezd Iépésben minden fazis kiilon szegmentalasra keriill az egy-fazist
modszert hasznélva, amely eredményeként tobb binaris kép jon 1étre. A szegmentacio
magaba foglalja a maj-sziv elvalasztast, a régido-novelést, €s az alul- és tulszegmentalt
részek korrekciojat (kivéve az IVC eltavolitast, ami specifikus a portalis fazisra).

* A kiilonbozd fazisok szegmentacidja tartalmazza a méjat és a hasonld intenzitdsu
szomszédos régiokat. Az egyes eredményeket ezért pontosan dsszeregisztraljuk, majd
a végeredményt a kiilonb6z6 fazisok eredményének kombindldsaval szamitjuk.

A szerzd a bemutatott algoritmust egy 19 tobb-fazisu esetet tartalmazd képhalmazon
értékelte ki, amely egy kérddiv 6t orvos altali kitoltésével tortént. Az eredmények alapjan
a szegmentacio alkalmas volt klinikai hasznalatra az esetek 94%-ban minimalis vagy
semmilyen korrekcioval. A moddszer szamszer(i Osszehasonlitisa az egy-fazish
algoritmussal néhdny nehezen szegmentilhatd eseten megmutatta, hogy a tobb-fazist
megkozelités 1ényegesen pontosabb eredményt ad (VOE=11%) mint az egy-fazisa
(VOE=16%) anélkiil, hogy a futasi id6 névekedne (25 mp).

2.3 Modell alapi modszer MR képekhez

A majon beliili intenzitas eloszlas heterogén lehet a kiilonb6z6 elvaltozasok miatt, amely
alul-szegmentalashoz vezethet. E problémanak a megoldasa kiilonosen fontos MR képek
esetén, amelyeknek jobb a lagyszdvet kontrasztja. A szerzd kidolgozott egy automatikus
maj-szegmentacios eljarast, amely egy valoszinliségi modellt alkalmazva javitja a
kordbban bemutatott intenzitds alapi technikdk pontossagat. A modell 60 manualisan
konttrozott CT sorozat regisztralasaval késziilt, és az Gjdonsaga abban rejlik, hogy fel lett
osztva 8 szegmentumra a maj anatomiai szerkezetének megfelelden. A részekre osztas
lehetdvé teszi lokalis intenzitds statisztikdk hasznalatat a majon beliil, igy az eljaras
kevésbe érzékeny a patologia vagy mitermékek okozta intenzitds inhomogenitasra. A
modszer az alabbi 1épésekbdl all:

* Mivel a kontrasztos lagyszovet intenzitds tartomdnya képrdl képre valtozik MR
modalitas esetén, dinamikusan kell kiszdmolni minden esetre. Az elsé 1épésben
meghatdrozzuk a legnagyobb intenzitds-tartomanyhoz tartoz6 olyan hisztogram
csucsot, amely a képpontok legalabb 5%-at lefedi.

* A masodik 1épésben regisztraljuk a modellt a szegmentaland6 képhez. Ehhez a képet
kiiszoboljiik a kontrasztos lagyszovet intenzitds tartomannyal. Majd egy tévolsag
térképet szamitunk a kiiszobolt képre. Ez egy olyan képet eredményez, amelyen a
nagy objektumok belsejében nagy értékek vannak. A valoszinliségi modellt (és azzal
egylitt a szegmentum felosztast) ehhez a képhez regisztraljuk.

* A harmadik 1épésben a majat Osszefliggdségen alapuld régio-ndveld modszerrel
szegmentaljuk figyelembe véve az osztott valdszinliségi modellt. A kezdd régidként a
kontrasztos lagyszovet kép legnagyobb 6sszefliggd komponensét hasznaljuk erodalas
utan. Majd intenzitas statisztikat szamitunk mind a kezdd régiora, mind az egyes
szegmensekre. A szegmentacié voxel specifikus intenzitas tartomanyt hasznal
figyelembe véve a globalis ¢és lokalis intenzitds statisztikdkat ¢és a modell
valoszinliséget. A régio-novelés eredményét a korabbiakhoz hasonléan dilataljuk, és
tiregfeltoltd algoritmust alkalmazunk ra.
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A szerz0 a bemutatott algoritmust egy 8 reprezentativ esetbdl all6 kontrasztos MR
képhalmazon értékelte ki, amelyekhez rendelkezésre allt a manualisan definialt referencia
majkontir. Az eredmények megmutattak, hogy a fenti eljarassal pontosan (VOE=11%) ¢és
hatékonyan (30 mp) ki lehet szegmentalni a majat akkor is, ha a majszovet patologia vagy
mitermékek miatt jelentds intenzitds inhomogenitast mutat.

2.4 Maj-szegmentacios modszerek szamszeri osszehasonlitasa

A kiilonboz6é algoritmusok szédmszerli Osszehasonlitdsa egy nagy esetszamu CT
képhalmazon tortént. A szerz6 az elsé két modszert modositas nélkiil, mig a modell-alapt
modszert CT képekre valo adaptalas utan tesztelte. A teszthalmaz 83 (37 portalis és 46
két-fazisu) kontrasztos CT vizsgalatot tartalmazott, amely magaba foglalt egészséges,
tumoros, valamint néhany széls6séges (méretii és patologiaju) esetet is. A referencia
majat minden esetben orvos konturozta a portalis fazisi képen. Az egy-fazisu és a
modell-alapi médszer minden képre lefutott, a tobb-fazisu modszer viszont csak a két-
fazisu képekre lehetett tesztelni. A tesztek ugyanazon a szamitégépen torténtek, igy a
futdsi 1d6 kozvetleniil 6sszemérhetd volt. Az eredmények Osszehasonlitdsa céljabol a
szerzd meghatarozta a kiilonbozo hiba-mértékek atlagat és szorasat. Tovabba, paros T-
probat alkalmazott a kiilonbségek statisztikai jelentéségének vizsgalatara.

Az egy-fazisi és a modell-alapti algoritmusok Osszehasonlitasa a teljes adathalmazon
megmutatta, hogy a modell-alapi megkdozelités Iényegesen pontosabb (VOE=13%) az
elébbihez viszonyitva (VOE=19%). A két-fazisu képekkel tortént tesztek azt mutattak,
hogy a tobb-fazisu (VOE=15%) és a modell-alapi (VOE=15%) eljardsok ugyanolyan
pontossaggal mukodnek, mig az egy-fazisu modszer Iényegesen pontatlanabb
(VOE=26%). Az atlagos futasi id6 24, 19 illetve 37 mp volt (a moddszerek
prezentaldsanak sorrendjében), amely az mutatja, hogy mind a tobb-fazisu, mind a
modell-alapi modszerek elég hatékonyak ahhoz, hogy klinikai gyakorlatban
hasznalhatoak legyenek. Tekintve, hogy a modell-alapt modszerhez csak a portalis kép
sziikséges, ez a megkdzelités alkalmazhato a legszélesebb korben.

3 Maj-lézi6 detektalas

A maj-1¢éziok vizsgalata a szamitdgépes m4j analizis egyik legfontosabb feladata. A maj-
tumoros esetek szama emelkedd tendencidt mutat, igy egyre n6 a feldolgozand6 képek
szdma is. A 1éziok osztalyozdsa €s méretének meghatdrozasa jelentésen gyorsithato
automatikus médszerekkel. A maj-1éziok detektaldsa nehéz feladat, mivel nagyon eltérd
méretliek, alaktak, intenzitasuak lehetnek. Komoly igény van tehéat olyan automatikus
modszerekre, amelyek javitjdk a detektdlds szenzitivitdsdt nagyszamu hibas talalat
detektalasa nélkiil. A szerz6 a probléma megoldasara bemutat egy automatikus modszert,
amelyet egy folyoiratcikkben [3] publikalt.

3.1 M3j-léziok automatikus detektalasa kontrasztos CT képeken
A szerzd egy Uj eljarast dolgozott ki maj-1éziok automatikus detektalasara kontrasztos CT

szegmentalt régiok tobbszintli alakleirason alapuld osztalyozéasara épiil. A modszer az

alabbi 1épésekbdl all:

» Az elé-feldolgozo 1épés magaba foglalja a vizsgalt teriilet morfologiai zarasat (az
automatikusan szegmentalt maj felszinén hidnyzo 1éziok korrigalasara), a CT kép
zajszlrését és atméretezését uniform voxel méretre, valamint a normal egyes maj
jellemzoinek meghatarozasat.

* A madsodik 1épésben a normal méjszdvetbdl kiindulva (kiviilrél befelé¢) megtorténik az
abnormalis régiok szegmentalasa, majd létrejon a lehetséges régiok listaja. Ez a 1épés
kiilon hajtodik végre sotét és vilagos régiokra.
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* Ezt kovetden, minden lehetséges régidra meghatarozunk egy tobbszintii (beliilrdl
kifelé halado) alak-leirast, amely olyan geometriai tulajdonsagokra épiil, mint az
aszimmetria, kompaktsag, méret, és térfogat. Ezekbdl tulajdonsagokbdl kiszamitunk
egy valdsziniliséget, ami megmutatja, hogy az adott régidé egyes szintjei milyen
valdsziniiséggel reprezentalnak 1¢éziot. Ha a valoszinliség meghalad egy kiiszobot, az
adott régio 1ézidként keriil megjeldlésre, €s a kontlrjat a legnagyobb valoszinliséghez
tartozd szint definialja.

3.2 Automatikus maj-1ézié detektalas kiértékelése

A szerz0 a bemutatott eljarast egy 30 kontrasztos CT esetet tartalmazd képhalmazon
értékelte ki, ahol minden esetre egy orvos manualisan Kikonturozta az Osszes 1éziot. A
vizsgalt régié manualis és automatikus modszerrel is meg lett hatarozva. A szerz6 az
algoritmust szamos szenzitivitas kiiszobbel futtatta, amely lehetové tette a modszer
pontossaganak komplex analizisét. Az eredmények alapjan az algoritmus a 1éziok 92%-at
képes volt detektalni atlagosan 1.7 hibas talalat mellett manualisan konturozott majban.
Ugyanolyan hibas talalati szam mellett, valamivel kevesebb volt a detektalasi rata (85%)
az automatikus modszerrel szegmentalt majban. A nem detektalt 1éziok részletes
elemzése megmutatta, hogy a modszer hajlamos kihagyni olyan kisebb, kevésbé
kontrasztos régiokat, amelyek a maj hataran 1évo sotétebb régioban talalhatok. A hibas
talalatok kozott szerepeltek tobbszorosen detektalt tumorok, valamint a referenciaban
nem szerepld Kis 1ézidk és meszes elvaltozasok. A modszer atlagos futasi ideje 30 mp
volt, amely demonstralta a mdodszer hatékonysagat.

4 Virtualis reszekcio

A maj szegmentumainak elkiilonitése hasznos lehet tumorok diagndzisanal és
kezelésénél. A sebészi beavatkozas tervezésénél példaul fontos az eltavolitandd és a
marado részek pontos méretének meghatarozasa. A maj-szegmentumok automatikus
meghatarozasa nehéz feladat mivel az egyes részek hatara nem latszik az orvosi képeken.
Sziikség van tehat olyan eszkozokre, amelyek lehetévé teszik a méj szegmentumainak
hatékony meghatarozasat a felhaszndl6 anatomiai tudasa alapjan. A probléma
megoldasara a szerz6 bemutat egy modszert, amelyet egy folyoiratcikkben [4] publikalt.

4.1 Virtualis vagas B-Spline feliiletekkel

A szerz6 egy 1j technikat dolgozott Ki binaris 3D objektumok a felhasznal¢ altal definialt
gorbe feliilettel torténd interaktiv vagéasara. A bemutatott objektum-vagod algoritmus
B-spline feliiletek kiilonbozé felbontdst, haromszog-haldval torténd reprezentalasan
alapul. Ez a reprezentacid lehetévé teszi a feliilet ¢€és egy pasztazd egyenes

metszéspontjanak nagyon hatékony szamitasat. Az objektum két részre osztdsa ugyanis a

feliilet szamos pasztazd egyenessel torténd metszése révén torténik. A mddszer az aldbbi

1épésekbdl all:

* Az els6 1épésben egy normalizalt ponthaldt hozunk létre a felhasznalo altal kézzel
megrajzolt hatarvonalakbdl B-Spline gorbe interpolaciét hasznélva, majd egy feliiletet
illesztiink a normalizalt ponthaléra.

Az utdébbi a koordinata rendszer azon tengelyét jeloli, amelyre a feliilet
megkozelitdleg merdleges.

* A harmadik 1épésben a feliiletet mintavételezziik kiilonbozd felbontasti ponthalok
szerint, amellyel létre jon a felilet kiilonboz6-felbontasu, haromszog-halos
reprezentacioja.

126



Magyar nyelvii 6sszefoglalo

* A negyedik 1épésben minden lehetséges pasztazo egyenesre egy hierarchikus kereso
modszerrel kiszamitjuk a legfinomabb felbontdsi haromszog feliilettel valo
metszéspontot. Ezek a pontok reprezentaljak két particio hatarat.

* Az utolsé 1épésben a particiok hatarat propagaljuk azokra a pasztazd egyenesekre,
amelyek nem metszik a feliiletet.

4.2 Virtualis reszekcio kiértékelése

A szerz6 orvos kozremitkodésével kiértékelte a bemutatott modszert maj-szegmentumok
szeparalasara. A tesztekhez 14 CT esetet hasznaltunk, amelyekre adott volt a maj kontarja
is. A Couinaud felbontas szerint a maj feloszthato 5 feliilet hasznalataval, amelyek a
majban 1évé véndk fobb agaira illeszkednek. Minden esetre az orvos kézzel rajzolt
gorbékkel definialta az 6t vago feliiletet. Majd megtortént a maj szegmentumokra bontasa
a vagasok egy elére meghatarozott sorrendben torténd végrehajtasaval, majd az igy
keletkezett részek térfogatat kiszdmoltuk. A teszteket az operator hdromszor hajtotta
végre par hét eltéréssel, igy az alkalmazott moddszer variabilitdsa is mérhetd volt.
Referencia szegmentacié hidnydban a szegmentum térfogatokat egy masik technikaval
kapott felosztds eredményével, valamint irodalomban talalhato értékekkel hasonlitottuk
Ossze. Az 0Osszehasonlitdis megmutatta, hogy a kapott szegmentum térfogatok kozel
megegyeznek az ér alapu megkozelitéssel kapott, valamint a masok altal publikalt
értékekkel. Az intra-operator variabilitas alacsony volt, azaz a bemutatott modszerrel a
szegmentum szeparalas jol reprodukalhatot.

A virtudlis vagés egy masik klinikai alkalmazasa a m4j-tumor reszekcio tervezés. Ehhez a
tumor virtualis eltdvolitasat szimulaltuk, és az eltavolitott valamint a maradd részek
térfogatat vizsgaltuk. A folyamat végrehajtdsara két esetet valasztottunk ki a kordbbi
halmazbdl. A mgjkontir adott volt mindkét esetre, a tumorokat pedig kikontaroztuk
interaktiv eszkozokkel. Mindkét esetben tobb gorbét rajzoltunk a vagofeliilet
definidldsara, majd vagas utdn az egyes részeket megjelenitettiik és térfogatukat
megmértiik. Ezek a kisérletek a korabbiakkal egyiitt alatimasztottak, hogy a bemutatott
technika jol hasznalhatdé komplex klinikai feladatok megoldasara. Az egyes vagéasok
elvégzéséhez kevesebb, mint 1 mp kellett, ami jol mutatja a modszer hatékonysagat.

Tézispontok

I. M4j-szegmentacio

A mjj szegmentdldsa a szamitogépes majanalizis alapja. A szerv manudlis kontirozéasa

nagyon idodigényes folyamat, ezért nagy sziikkség van automatikus modszerekre. A szerzo

harom megkozelitést dolgozott ki a mdj automatikus szegmentalasara. Az eredményeket
két folyoiratcikkben [1, 2] publikalta.

I.1 Modszer egy-fazisu CT képekre (2.1 Szekcid): A szerzo kifejlesztett egy automatikus
maj-szegmentaciés modszert portalis-fazisu CT képekre. Az algoritmus standard
képfeldolgozo technikakon alapul és alapvetd anatomiai Osszefliggéseket hasznal ki a
majrol és a kornyez6 szervekrdl. Az eljaras alapja az 6sszefliggdségen alapuld régio-
noveld technika, amelyhez olyan eld- és utdfeldolgozo 1épések kapcsolddnak, mint a
majdetektalds, a méj-sziv elvalasztas, a 1€gzésbdl eredé miitermékek kikiiszobolése,
egy nagy €r-szakasz eltavolitdsa, valamint a 1éziok €s kontrasztos erek altal okozott
tiregek kitoltése. A szerzd a bemutatott modszert egy 20 esetbdl allo teszthalmazon
értékelte ki, amelyhez adott volt a referencia majkontir. Az eredmények alapjan az
algoritmus a legtobb esetben pontosan ki tudta szegmentalni a majat rovid i1do6 alatt.

.2 Moddszer tobb-fazist CT képekre (2.2 Szekcio): A szerzo kifejlesztett egy automatikus
maj-szegmentaciés modszert tobb-fazisi CT képekre. Az algoritmus az egy-fazisu
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1.4

cres

crer

kombinalva jobb eredmény érhetd el. A szerzé a mddszer kiértékelését egy 19 tobb-
fazisi képet tartalmazd teszthalmazon demonstralta, amelyet orvosok végeztek
kérddiv segitségével. Az eredmények azt mutattdk, hogy a szegmentacié hasznalhato
volt klinikailag célokra az esetek dontd tobbségében. Tovabba, a szamszerd
Osszehasonlitds az egy-fazisi modszerrel megmutatta, hogy a tobb-fazisu
megkozelités jobb eredményt ad a nehéz esetekre a futdsi idé novelése nélkiil.

Modell-alapi modszer MR képekre (2.3 Szekcid): A szerzé kifejlesztett egy
automatikus  maj-szegmentaciés modszert, amely valoszinliségi méjmodell
felhaszndlasaval javitja a kordbban bemutatott, intenzitds alapi szegmentacids
technikdk pontossdgat. A modell 60 manualisan konturozott maj regisztralasaval
késziilt. A modell ujdonsagtartalma az, hogy fel van osztva 8 részre a maj anatomiai
szerkezetének megfelelden. A részekre osztds lehetdvé teszi lokalis intenzitas-
statisztikdk hasznalatat a maéj kiilonboz6 részeiben, melynek koszonhetden a
szegmentacid kevésbé érzékeny a patologia és miitermékek altal okozott lokalis
intenzitas-valtozasokra. A szerzd az algoritmus kiértékelését egy 8 esetbdl allo,
reprezentativ adathalmazon végezte el, amelyre referencia majkontiar rendelkezésre
allt. Az eredmények megmutattdk, hogy a bemutatott eljards pontosan képes
szegmentalni a majat rovid idon beliil az MR képekre jellemzd jelentds intenzits
inhomogenitas ellenére.

Maj-szegmentacios modszerek szamszeri Osszehasonlitdsa (2.4 Szekcio): A szerzo
elvégezte mindhdrom algoritmus kiértékelését egy nagy CT adathalmazon, amely
egyarant tartalmazott egy- €s két-fazist képeket. Az egy- €s tobbfazisu modszerek a
bemutatott modon, mig a modell-alapti modszert CT képekre vald adaptalas utan
tesztelte. Az egy-fazist és a modell-alapti modszerek minden teszteseten futottak, mig
a tobb-fazisi modszer csak a két-fazisu eseteken lett tesztelve. Az egy-fazist és
modell-alapi médszerek Osszehasonlitisa megmutatta, hogy az utobbi jelentsen
pontosabb eredményt ad. A két-fazisu esetekkel tortént tesztek kimutattak, hogy a
tobb-fazisu és a modell-alapti modszerek pontossaga megegyez0, mig az egy-fazisu
moddszer eredménye jelentdsen pontatlanabb. Az 4tlagos futdsi id6 alapjan mind a
tobb-fazisu, mind a modell-alapti modszerek elég hatékonynak bizonyultak ahhoz,
hogy klinikai gyakorlatban hasznéalhatdak legyenek. Mivel a modell-alapti modszer
csak a portalis képet hasznalja, ez a legszélesebb korben alkalmazhatéo modszer.

I1. M4j-1€zi6 detektalas

A mijrakos esetek szama folyamatosan emelkedik, igy a madj-1ézidk szamitogépes
detektalasa az hangsulyos kutatasi teriiletté valt. A maj-1éziok detektalasa nehéz
probléma, mivel a 1ézidk mérete, alakja, intenzitdsa nagy variabilitast mutat. Sziikség van
tehat olyan szoftveres eszkozokre, amelyek javitjdk a detektalas érzékenységét anélkiil,

hog

y jelentés szamu hibas talalatot kellene atnézni. A szerz egy uj modszert dolgozott Ki

a probléma megoldasara, amelyet egy folyoiratcikkben [3] publikalt.

1.1

128

. Automatikus maj-1ézi6 detektalas kontrasztos CT képekre (3.1 Szekcio): A szerzd
kidolgozott egy uj eljarast maj-1éziok automatikus detektalasara kontrasztos CT
képeken. Az algoritmus alapja a vizsgalt teriileten beliili abnormalis régiok
szegmentalasa, valamit e régidk osztdlyozasa tobbszintli alakleiré moddszer
hasznalataval. Az alak leirasa olyan standard geometriai jellemzOkon alapul, mint az
aszimmetria, kompaktsag, méret, és térfogat. E jellemzdket hasznalva az eljarés
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amely megmutatja, hogy az adott szint milyen valdszintiséggel reprezental 1éziot. A
valoszinliség nagysaga alapjan torténik a régidk osztalyozasa és a detektalt 1éziok
konturjanak meghatarozasa.

Automatikus maj-1€zi6 detektalas kiértékelése (3.2 Szekcid): A szerzd a bemutatott
eljarast 30 kontrasztos CT eseten értékelte Ki. Minden esetre egy orvos kikonturozta
az Osszes 1€ziot. A vizsgalt teriiletként manudlisan illetve automatikus médszerrel
szegmentalt majat hasznaltunk. A tesztek soran az algoritmus, kiilonb6z6
érzékenységi kiiszobot hasznalva, tobbszor feldolgozta a teljes adathalmazt, igy
lehetévé valt modszer pontossagdnak komplex analizise. Az eredmények
megmutattak, hogy az eljaras magas talalati aranyt tudott elérni alacsony hibas
talalati szammal manualisan definidlt majban. Ugyanazt a hibas talalati szdmot
valamivel alacsonyabb talalati arannyal érte el a modszer automatikusan
szegmentalt majban. A nem detektalt 1éziok részletes analizise megmutatta, hogy a
moddszer kihagyhat olyan 1ézidkat, amelyek halvanyan latszanak a m4j elsotétedd
hatar-régioiban. Az modszer atlagos futasi ideje 30 mp volt, amely jol mutatja a
modszer hatékonysagat.

II1. Virtualis reszekcid

A maj szegmentumainak szeparalasa hasznos informaciot jelent miitéti tervezésnél. A
szegmentumok automatikus szeparalasa nagyon nehéz probléma, mert a szegmentum
hatarok nem latszanak az orvosi képeken. Ezért igény van olyan interaktiv eszkdzre,
amely lehetové teszi a probléma hatékony megoldasat. A szerzé egy j modszert javasol a
probléma megoldésara, amelyet egy folyoiratcikkben [4] publikalt.

.1,

1.2,

3D objektumok véagasa B-Spline feliiletekkel (4.1 Szekcid): A szerzd kidolgozott
egy 0j technikdt 3D objektumok sima feliilettel torténd véagasara. A modszer
B-Spline gorbe és feliilet interpolacidt hasznal ahhoz, hogy egy sima feliiletet
illesszen a felhasznal6 altal rajzolt gorbékre, amelyek a vagas hatarat definialjak. A
bemutatott objektum-vago algoritmus a B-Spline feliilet tobb kiilonboz6 felbontasu
pasztazd egyenes metszéspontjanak hatékony szamitdsat. A vagas folyamata a
fellilet szdmos pasztazo egyenessel vald metszés-pontjanak meghatarozéasan alapul,
ahol az egyenesek iranya a feliilet orientacigjatol fligg. A vagasi feliilet propagalasa
keriil olyan pasztazo egyenesekre, amelyek nem metszik a feliiletet.

Virtualis reszekcid kiértékelése (4.2 Szekcid): A szerzé orvos bevonasaval
elvégezte a bemutatott objektum-vagdé modszer kiértékelését maj-szegmentumok
meghatarozasara. A felhasznalt 14 tesztesetre adott volt a manualisan definialt
majkontir. A méj szegmentumokra osztisat az orvos végezte Ot vagas adott
sorrendben torténd végrehajtasaval, majd a keletkezett szegmentumok térfogatat
feljegyezte. Az orvos a teljes tesztet haromszor hajtotta végre par hét eltéréssel, igy
a szegmentum térfogatok variabilitdsa is mérhetd volt. Az eredményeket
Osszehasonlitottuk egy méas modszerrel torténd szeparalas eredményével valamint az
irodalomban talalhat6 értékekkel. A szegmentum térfogatok jo egyezést mutattak az
ér alapu technikaval kapott valamint a masok altal publikalt értékekkel, emellett az
intra-operator variabilitas is alacsonyak bizonyult. Tovabbi, két eseten végzett
tumor reszekcids kisérletek eredményei is aldtdmasztottdk, hogy a bemutatott
technika jol hasznalhat6 komplex klinikai feladatok megoldasara. A vagasok
elvégzéséhez kevesebb, mint 1 mp kellett, ami jol mutatja a mdodszer hatékonysagat.
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Appendix

A — Clinical study on liver volume measurement

Patient | Calculated Manual Ms\r}lsal Automated Auth\TSted Automated
ID (cm?) (cm?) (%) (cm’) (%) time (s)
1 708 732 3.4% 717 1.3% 15
2 1513 1629 1.7% 1437 -5.0% 13
3 927 962 3.8% 859 -7.3% 3
4 878 713 -18.8% 493 -43.8% 11
5 1952 1713 -12.2% 1583 -18.9% 14
6 1696 1598 -5.8% 1368 -19.3% 24
7 1049 981 -6.5% 986 -6.0% 24
8 1189 1263 6.2% 1230 3.4% 19
9 1110 1191 7.3% 1160 4.5% 17
10 1744 1926 10.4% 1862 6.8% 23
11 1769 1641 -7.2% 1417 -19.9% 26
12 1586 1824 15.0% 1759 10.9% 18
13 1464 877 -40.1% 816 -44.3% 20
14 1708 1505 -11.9% 1442 -15.6% 18
15 1616 1509 -6.6% 1396 -13.6% 18
16 1249 1199 -4.0% 1100 -11.9% 18
17 1464 1214 -17.1% 1065 -27.3% 19
18 1464 1425 -2.7% 1385 -5.4% 17
19 1842 1713 -7.0% 1560 -15.3% 21
20 988 1254 26.9% 1278 29.4% 14
21 1580 1590 0.6% 1567 -0.8% 19
22 1256 1119 -10.9% 1549 23.3% 17
23 1816 2306 27.0% 2284 25.8% 19
24 1864 2024 8.6% 2354 26.3% 15
25 1130 1037 -8.2% 1078 -4.6% 11
26 1055 1157 9.7% 1144 8.4% 13
27 998 1010 1.2% 961 -3.7% 13
28 1948 2190 12.4% 2178 11.8% 17
29 1570 1576 0.4% 1753 11.7% 15
30 1026 935 -8.9% 925 -9.8% 13
31 1016 1134 11.6% 1170 15.2% 14
32 790 811 2.7% 729 -1.7% 4
33 900 818 -9.1% 819 -9.0% 14
34 980 1037 5.8% 1026 4.7% 19
35 1570 1687 7.5% 1765 12.4% 21
36 1964 1913 -2.6% 2312 17.7% 14
37 1480 1671 12.9% 1640 10.8% 13
38 2350 2772 18.0% 2769 17.8% 15
39 1836 2097 14.2% 2103 14.5% 16
40 992 1230 24.0% 1114 12.3% 30
CORR - 0.91 - 0.87 - -
AVG 1401 1425 1.4% 1404 -0.5% 17
MIN 708 713 -40.1% 493 -44.3% 3
MAX 2350 2772 27.0% 2769 29.4% 30
STDEV 401 474 13.2% 514 17.4% 5

Table A.1 The clinical evaluation of the multi-phase method for automated liver volume measurement.
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Table A.2 The result of the multi-phase liver segmentation method (red contour) for cases 1-10: each row
presents 2 exams, where an axial (left) and a coronal (right) slice are displayed.
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Table A.3 The result of the multi-phase liver segmentation method (red contour) for cases 11-20: each row
presents 2 exams, where an axial (left) and a coronal (right) slice are displayed.
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Table A.4 The result of the multi-phase liver segmentation method (red contour) for cases 21-30: each row
presents 2 exams, where an axial (left) and a coronal (right) slice are displayed.
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Table A.5 The result of the multi-phase liver segmentation method (red contour) for cases 31-40: each row
presents 2 exams, where an axial (left) and a coronal (right) slice are displayed.
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B — Evaluation and comparison of liver segmentation methods

Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time
1 -3.8 3.8 1.5 2.8 27.8 8.2 67 | 145
2 -4.0 4.0 2.0 4.4 40.3 9.7 55| 114
3 -5.7 5.7 2.1 3.6 245 | 121 57 8.7
4 -5.4 5.4 1.4 2.3 15.8 9.1 70 9.6
5 -3.7 3.7 1.2 2.0 15.3 8.6 74| 1438
6 -15.8 15.8 4.8 10.7 755 | 18.2 9 8.6
7 -12.8 12.8 2.5 4.0 244 | 14.9 45| 11.0
8 -3.8 3.8 1.5 2.5 17.4 9.3 70 | 10.2
9 -14.1 14.1 5.4 10.9 57.3 | 29.0 10 | 16.6
10 -4.2 4.2 14 2.7 26.6 8.8 67 | 11.2
11 -4.2 4.2 1.9 3.4 22.7 | 10.0 63| 195
12 -0.4 0.4 1.2 2.6 27.5 7.1 74| 185
13 -23.0 23.0 3.7 8.0 455 | 255 10 | 129
14 -1.5 15 1.3 2.5 27.0 8.6 71| 18.2
15 -2.5 2.5 1.9 3.1 21.2 | 135 63 8.9
16 -8.2 8.2 2.2 3.6 35.7 | 13.0 51 9.1
17 -1.1 1.1 1.1 1.9 13.1 8.5 78 9.3
18 -0.3 0.3 1.6 2.8 31.7 | 10.1 67 | 145
19 -5.4 54 1.7 3.3 25.0 | 10.9 62 9.0
20 -8.7 8.7 1.8 3.0 189 | 117 59 | 114
21 37.8 37.8 8.0 20.5| 102.1 | 4038 0] 121
22 -25.3 25.3 5.8 11.2 59.9 | 293 41 103
23 -8.7 8.7 4.8 9.1 56.1 | 20.1 20 9.9
24 -11.1 11.1 2.5 4.6 253 | 139 45| 114
25 -2.3 2.3 15 3.0 26.3 | 11.0 66 | 10.9
26 -5.1 51 1.7 3.4 257 | 116 61| 12.2
27 -3.6 3.6 7.1 15.0 723 | 29.9 17 9.3
28 -1.7 7.7 1.8 2.9 215 | 118 60 9.0
29 114 11.4 4.9 13.5 75.0 | 18.2 14 | 20.7
30 -7.2 7.2 1.2 2.1 13.2 9.4 70| 241
31 95.1 95.1 20.1 388 | 278.6 | 52.9 0] 29.0
32 -11.2 11.2 2.5 4.4 332 | 147 43| 175
33 -26.8 26.8 | 103.3 | 109.3 | 179.9 | 100.0 0] 219
34 87.2 87.2 24.6 436 | 1415 ]| 618 0] 224
35 -10.6 10.6 2.0 3.3 222 | 122 54 | 16.0
36 1131 | 1131 26.3 46.1 | 150.8 | 57.0 0] 411
37 1270 | 1270 20.9 378 | 1242 | 56.8 0] 578
38 -4.0 4.0 0.9 1.7 17.6 6.9 76 | 20.7
39 -5.6 5.6 11 1.9 12.6 8.8 73| 16.0
40 | 1626.6 | 1626.6 | 118.0 | 148.7 | 353.4 | 94.2 0] 48.2
41 -1.5 15 1.0 2.0 18.9 7.4 77| 23.0
42 -6.5 6.5 1.7 3.1 31.1 9.7 60 | 26.8
43 612.0 | 612.0| 1168 | 1550 | 380.7 | 86.1 0] 89.0
44 -2.5 2.5 1.8 3.3 406 | 110 60 | 241
45 129.7 | 129.7 40.6 66.3 | 2025 | 573 0] 917
46 1.1 1.1 0.9 1.6 22.1 5.7 80 | 157
47 -9.6 9.6 2.6 4.8 36.1 | 157 42 | 20.9
48 10.8 10.8 4.3 10.8 59.8 | 204 17| 225
49 29.9 29.9 6.0 145 725 ] 239 2| 2038
50 3976 | 3976 | 131.7| 1541 | 330.0 | 99.2 0] 515

Table B.1 The evaluation of the single-phase method on the whole dataset (test cases 1-50).
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Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time
51 4.7 4.7 1.6 3.1 288 | 10.5 63 | 18.1
52 -2.7 2.7 1.1 23| 1731 7.1 60 | 223
53 0.1 0.1 1.6 4.0 40.2 8.9 63 | 23.6
54 -0.8 0.8 1.3 2.6 28.3 7.8 72| 211
55 -18.0 18.0 5.0 10.5 53.0 | 244 8| 16.0
56 -0.9 0.9 1.4 2.6 27.3 8.2 71| 216
57 -2.2 2.2 2.1 3.3 256 | 133 61| 108
58 -10.3 10.3 1.9 3.0 344 | 127 52| 213
59 17.3 17.3 5.3 14.3 710 ] 16.9 10 | 23.6
60 -55 5.5 1.2 24 250 | 104 67 | 16.6
61 -8.1 8.1 1.5 2.8 26.8 | 10.2 61| 191
62 -8.2 8.2 2.3 4.6 302 | 129 49 | 16.6
63 -11.4 114 2.3 5.7 365 | 14.8 39| 156
64 -4.4 4.4 2.0 3.8 308 | 113 58 | 131
65 -1.6 1.6 1.0 2.0 17.7 6.6 78 | 143
66 2.3 2.3 1.0 2.3 26.0 6.9 74| 108
67 0.6 0.6 0.9 15 19.7 5.9 81| 122
68 0.1 0.1 1.1 2.2 18.1 7.7 77| 27.0
69 -0.4 0.4 1.0 1.9 21.9 7.0 78 | 15.2
70 -35 3.5 1.2 24 214 7.8 72| 10.6
71 2.8 2.8 1.3 2.2 23.7 7.1 73| 147
72 -3.8 3.8 1.3 2.5 22.7 8.0 70| 119
73 0.4 0.4 1.3 2.6 24.0 8.2 73| 164
74 2.9 2.9 1.3 3.0 24.6 7.5 69 | 209
75 55 55 1.2 2.5 315 7.7 67 | 12.6
76 0.5 0.5 15 2.4 15.5 9.7 74| 11.2
77 -2.1 2.1 1.0 2.2 20.6 6.6 76 | 11.6
78 0.4 0.4 0.7 15 19.8 5.0 83 | 20.0
79 -21.9 21.9 3.8 9.0 555 | 242 8| 125
80 -0.5 0.5 11 2.0 16.5 6.9 79 | 184
81 -1.3 1.3 1.0 2.0 24.0 5.7 78 | 11.0
82 -0.7 0.7 0.7 1.3 13.7 4.6 85| 16.8
83 -4.4 4.4 1.6 2.6 18.9 8.8 68 | 16.4

AVG 35.3 44.7 9.2 13.6 56.0 | 189 50 | 193

STD 194.7 | 192.7 25.2 311 741 | 212 28 | 143

MIN -26.8 0.1 0.7 1.3 12.6 4.6 0 8.6

MAX | 1626.6 | 1626.6 | 131.7 | 155.0 | 380.7 | 100.0 85| 91.7

Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time

Table B.1 (continued) The evaluation of the single-phase method on the whole dataset (test cases 51-83).
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Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time
1 -4.2 4.2 1.5 2.9 22.7 8.1 68 | 20.8

2 -3.7 3.7 1.9 4.3 41.8 8.5 57| 205
3 -1.4 7.4 1.9 3.0 17.0 | 108 62 | 21.6
4 -7.8 7.8 1.9 3.9 332 | 114 54 | 19.2
5 6.2 6.2 1.7 4.5 35.6 9.4 56 | 25.0
6 -3.1 3.1 2.6 6.3 44.7 | 12.3 45| 16.7
7 20.5 20.5 10.1 24.0 | 103.8 | 20.9 4| 20.0
8 -1.6 1.6 1.1 2.0 17.2 7.3 77| 176
9 -1.0 1.0 5.3 9.6 444 | 23.2 29 | 229

10 -3.6 3.6 1.9 3.6 311 11.2 60 | 21.2
11 3.9 3.9 2.6 7.8 63.3 9.3 39 | 41.2
12 -3.9 3.9 14 3.1 30.5 8.2 66 | 32.0
13 1.6 1.6 1.3 2.6 18.5 9.9 72| 191
14 -8.3 8.3 2.1 4.3 32.7 | 119 51| 313
15 7.1 7.1 2.9 7.3 55.0 | 16.0 31| 12.6
16 -1.8 1.8 1.5 3.1 37.9 9.1 65| 154
17 -1.7 1.7 1.2 2.7 | 1793 9.0 58 | 13.0
18 -2.1 2.1 2.0 3.5 314 | 117 61 | 234
19 -0.3 0.3 1.1 2.1 17.5 7.7 78 | 16.9

20 16.6 16.6 4.6 10.1 66.6 | 22.8 71 159
21 44.9 44.9 9.3 21.0 | 1016 | 459 0] 123
22 | -23.0 23.0 5.8 12.2 59.7 | 275 4] 155

23 -5.3 5.3 3.0 6.9 532 | 15.0 34| 16.8
24 -5.1 5.1 2.0 3.9 259 | 117 58 | 13.9
25 -2.9 2.9 1.3 2.9 21.7 | 105 68 | 15.2
26 6.6 6.6 14 3.1 25.1 9.2 63 | 36.2
27 -9.9 9.9 3.4 7.3 445 | 22.2 24| 16.1
28 -7.8 7.8 1.6 3.4 36.0 | 10.9 56 | 14.9
29 -6.4 6.4 1.7 3.1 26.4 9.9 61| 515
30 -5.5 5.5 1.0 2.1 19.8 8.3 71| 349
31 14.7 14.7 4.1 10.1 579 | 22.1 12 | 524
32 -9.6 9.6 2.6 5.0 33.1 | 137 44 | 37.1
33 -6.5 6.5 1.6 3.1 30.1 | 12.0 59 | 55.8
34 | -10.6 10.6 5.7 10.5 53.7 | 356 15| 4938
35 -9.6 9.6 1.8 3.4 29.7 | 111 55| 41.4
36 | -205 205 6.0 12.5 74.1| 26.0 1| 529
37 4.2 4.2 1.4 2.7 22.0 | 105 67 | 52.2
38 -1.4 14 0.9 1.7 16.8 6.6 80 | 44.8
39 0.6 0.6 0.9 1.6 20.4 7.7 79 ] 394
40 6.0 6.0 3.3 7.7 426 | 19.0 31| 52.6
41 -1.6 1.6 1.1 2.1 23.8 7.8 751 371
42 | -19.7 19.7 4.2 7.0 36.1 | 22.1 14 | 51.1
43 -8.5 8.5 3.1 8.2 63.4 | 145 27 | 53.0
44 | -10.2 10.2 3.0 6.3 50.0 | 153 31| 42.0
45 19.1 19.1 2.6 52 384 | 178 28 | 551
46 5.2 5.2 1.3 2.3 21.5 8.2 69 | 37.2
47 81.4 81.4 20.8 37.9 | 136.7 | 475 0] 4538
48 -5.6 5.6 2.0 4.4 324 | 132 53 | 44.2
49 1.8 1.8 2.2 3.7 22.2 | 15.2 59 | 43.1
50 7.6 7.6 1.6 2.8 223 | 117 61| 47.0

Table B.2 The evaluation of the model-based method on the whole dataset (test cases 1-50).
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Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time
51 -0.7 0.7 2.2 4.3 43.6 13.4 55 37.4
52 -4.9 4.9 14 3.1 36.6 8.3 63 58.1
53 1.4 1.4 1.9 4.1 344 10.2 61 36.7
54 -2.8 2.8 14 2.6 24.7 7.7 70 34.8
55 -30.5 30.5 7.5 11.7 41.5 32.7 9 33.1
56 -4.8 4.8 1.5 3.1 29.1 9.1 64 30.1
57 -10.6 10.6 2.3 5.1 33.4 15.6 42 17.7
58 -2.5 2.5 1.0 2.0 34.3 7.0 73 28.7
59 5.9 5.9 1.3 2.6 27.7 7.4 67 335
60 14.9 14.9 3.3 7.8 40.1 19.0 22 30.3
61 -2.1 2.1 1.1 24 23.7 8.5 73 274
62 -11.5 11.5 2.8 5.6 36.8 14.7 37 354
63 -7.6 7.6 2.2 5.3 35.0 12.8 47 49.2
64 -6.9 6.9 2.5 4.7 30.8 13.1 49 26.9
65 -0.6 0.6 0.8 1.6 14.0 5.3 83 15.0
66 1.9 1.9 0.7 1.7 19.4 4.9 81 17.0
67 -4.3 4.3 1.3 2.4 18.3 8.5 71 241
68 1.3 1.3 1.2 2.4 25.3 7.5 74 35.8
69 15.0 15.0 2.6 5.9 42.0 14.4 32 23.8
70 -6.3 6.3 1.9 3.5 24.1 114 59 30.1
71 -1.2 1.2 1.5 2.6 22.5 8.3 72 28.2
72 0.3 0.3 1.0 1.9 21.1 6.3 79 25.3
73 4.2 4.2 2.1 3.9 29.5 12.3 57 24.0
74 6.6 6.6 2.6 6.2 45.7 12.3 41 31.7
75 3.7 3.7 1.8 2.8 18.2 114 65 25.3
76 10.6 10.6 1.9 3.0 21.6 12.0 56 21.7
77 -1.4 7.4 1.5 3.0 214 9.3 63 16.9
78 1.0 1.0 0.9 1.7 18.4 6.1 80 31.9
79 -9.1 9.1 2.9 6.8 514 12.1 34 23.9
80 3.0 3.0 0.9 2.2 20.6 6.0 76 25.6
81 0.3 0.3 11 1.9 16.1 6.5 80 30.0
82 0.7 0.7 1.3 3.8 40.7 6.7 66 36.4
83 -0.5 0.5 0.8 15 13.5 4.9 84 25.6

AVG -0.2 7.9 2.6 5.3 37.6 13.2 52 30.8

STD 13.4 10.8 2.7 5.2 25.7 8.0 23 12.6

P-single 0.0878 | 0.0197 | 0.0173 | 0.0295 | 0.0107 | 0.4806 | 0.0000

MIN -30.5 0.3 0.7 15 13.5 4.9 0 12.3

MAX 81.4 81.4 20.8 37.9 | 1793 47.5 84 58.1

Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time

Table B.2 (continued) The evaluation of the model-based method on the whole dataset (test cases 51-83). The row
“P-single” shows the p-value of the T-test, when model-based method was compared with single-phase method.
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Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time
12 -0.4 0.4 1.2 2.6 275 7.1 74 | 185
13 -23.0 23.0 3.7 8.0 455 | 255 10 | 129
14 -1.5 1.5 1.3 2.5 27.0 8.6 71| 18.2
16 -8.2 8.2 2.2 3.6 35.7 | 13.0 51 9.1
17 -1.1 1.1 1.1 1.9 13.1 8.5 78 9.3
18 -0.3 0.3 1.6 2.8 31.7] 10.1 67 | 145
19 -5.4 54 1.7 3.3 250 | 10.9 62 9.0
21 37.8 37.8 8.0 20.5| 102.1 | 40.8 0] 121
22 -25.3 25.3 5.8 11.2 59.9 | 293 41 103
23 -8.7 8.7 4.8 9.1 56.1 | 20.1 20 9.9
24 -11.1 11.1 2.5 4.6 253 | 139 45| 114
26 5.1 51 1.7 3.4 25.7 | 116 61| 12.2
29 114 114 4.9 13.5 750 | 182 14 | 20.7
31 95.1 95.1 20.1 388 | 278.6 | 529 0] 29.0
32 -11.2 11.2 2.5 4.4 332 | 147 43| 175
33 -26.8 26.8 | 103.3 | 109.3 | 179.9 | 100.0 0] 219
34 87.2 87.2 24.6 436 | 1415]| 618 0] 224
35 -10.6 10.6 2.0 3.3 222 | 122 54 | 16.0
36 1131 | 1131 26.3 46.1 | 1508 | 57.0 0] 411
37 127.0 | 127.0 20.9 37.8 | 1242 | 56.8 0] 578
38 -4.0 4.0 0.9 1.7 17.6 6.9 76 | 20.7
39 -5.6 5.6 11 1.9 12.6 8.8 73| 16.0
40 1626.6 | 1626.6 | 118.0 | 148.7 | 3534 | 94.2 0] 48.2
41 -15 1.5 1.0 2.0 18.9 7.4 77| 23.0
42 -6.5 6.5 1.7 3.1 31.1 9.7 60 | 26.8
43 6120 | 6120 | 116.8 | 155.0 | 380.7 | 86.1 0] 89.0
44 -2.5 2.5 1.8 3.3 406 | 11.0 60 | 241
45 129.7 | 129.7 40.6 66.3 | 2025 | 57.3 0] 917
46 1.1 1.1 0.9 1.6 22.1 5.7 80 | 157
47 -9.6 9.6 2.6 4.8 36.1 | 157 42 | 20.9
48 10.8 10.8 4.3 10.8 59.8 | 204 17| 225
49 29.9 29.9 6.0 145 725 ] 239 2| 208
50 3976 | 397.6 | 131.7 | 1541 | 330.0 | 99.2 0] 515
51 4.7 4.7 1.6 3.1 288 | 10.5 63 | 18.1
52 -2.7 2.7 1.1 23| 1731 7.1 60 | 223
53 0.1 0.1 1.6 4.0 40.2 8.9 63 | 23.6
54 -0.8 0.8 1.3 2.6 28.3 7.8 72| 211
55 -18.0 18.0 5.0 10.5 530 | 244 8| 16.0
56 -0.9 0.9 14 2.6 27.3 8.2 71| 21.6
57 -2.2 2.2 2.1 3.3 256 | 133 61| 10.8
58 -10.3 10.3 1.9 3.0 344 | 127 52| 213
59 17.3 17.3 53 14.3 710 ] 169 10 | 23.6
60 -5.5 55 1.2 2.4 250 | 104 67 | 16.6
61 -8.1 8.1 15 2.8 268 | 10.2 61| 191
62 -8.2 8.2 2.3 4.6 302 | 129 49 | 16.6
63 -11.4 114 2.3 5.7 365 | 148 39| 156

AVG 66.6 76.9 15.1 21.7 795 | 256 40 | 237

STD 2572 | 2543 32.7 39.9 921 26.1 30| 17.6

MIN -26.8 0.1 0.9 1.6 12.6 5.7 0 9.0

MAX | 1626.6 | 1626.6 | 131.7 | 155.0 | 380.7 | 100.0 80| 91.7

Exam | RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time

Table B.3 The evaluation of the single-phase method on the dual-phase dataset.
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Exam RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time
12 -5.0 5.0 1.3 2.3 19.0 8.2 71 9.6
13 -30.1 30.1 4.5 8.5 44.9 31.0 8 8.3
14 -5.3 5.3 1.1 2.2 27.0 7.8 70 17.3
16 -8.0 8.0 1.6 2.8 31.6 11.0 59 6.3
17 -11.0 11.0 2.0 3.1 20.3 12.8 54 5.5
18 -9.4 9.4 2.1 3.3 32.1 12.9 52 6.9
19 -30.5 30.5 5.1 7.9 36.7 30.9 10 5.7
21 -3.8 3.8 4.8 10.4 74.8 30.5 16 5.0
22 -28.0 28.0 5.5 10.5 52.6 28.9 6 5.0
23 -16.2 16.2 3.1 5.2 31.1 17.0 31 4.6
24 -17.4 174 4.0 6.3 345 18.5 21 4.1
26 -6.9 6.9 1.9 4.2 35.7 11.3 54 10.3
29 -9.4 9.4 1.9 3.0 25.0 11.3 57 21.0
31 -2.3 2.3 0.8 1.6 14.7 7.3 79 31.3
32 -16.2 16.2 3.1 5.3 34.9 18.3 29 15.0
33 -10.5 10.5 1.6 3.1 24.9 12.4 56 19.5
34 -49.2 49.2 9.2 16.2 72.7 49.5 1 19.9
35 -11.6 11.6 2.0 3.4 22.9 12.7 52 18.5
36 -1.5 1.5 2.6 5.6 43.3 16.0 46 26.5
37 0.5 0.5 1.6 4.2 40.8 10.3 61 25.3
38 -5.8 5.8 11 2.2 24.8 7.7 70 27.1
39 -7.3 7.3 1.0 1.9 14.0 8.5 72 22.9
40 8.0 8.0 5.1 10.5 57.6 26.8 16 24.2
41 -6.9 6.9 1.3 2.6 22.2 9.5 66 24.8
42 -55 55 15 2.7 28.0 8.6 65 65.3
43 -10.2 10.2 1.9 3.3 35.0 13.4 51 46.9
44 -1.7 7.7 2.2 3.8 26.7 13.0 53 26.6
45 -3.6 3.6 1.3 2.4 21.9 10.1 69 26.7
46 -0.1 0.1 1.1 1.9 20.9 7.1 78 21.0
47 -10.0 10.0 2.5 4.0 33.7 16.8 44 26.1
48 -8.6 8.6 1.8 4.0 32.3 11.9 53 30.3
49 0.0 0.0 11 1.8 19.8 8.2 78 18.9
50 -12.5 12.5 2.0 4.1 26.6 14.5 47 26.6
51 -1.1 1.1 15 2.4 22.0 10.7 71 20.1
52 -5.9 5.9 1.7 3.9 46.1 9.9 54 29.8
53 -4.6 4.6 1.2 2.0 17.0 8.1 73 14.6
54 -2.2 2.2 1.1 2.3 25.1 6.7 74 23.1
55 -16.7 16.7 45 9.4 52.8 21.2 12 16.3
56 -16.3 16.3 3.4 7.0 433 21.0 18 14.3
57 -6.9 6.9 15 3.0 30.0 114 60 54
58 -10.2 10.2 1.8 3.0 321 12.3 54 11.8
59 -0.1 0.1 1.1 1.9 224 6.9 78 20.8
60 -5.0 5.0 0.9 1.9 20.0 9.0 72 10.5
61 -14.4 14.4 2.4 4.1 34.9 15.5 40 10.3
62 -9.4 9.4 2.3 45 26.8 13.7 48 15.5
63 -17.0 17.0 3.0 6.3 37.6 17.7 26 18.7

AVG -9.8 10.2 2.4 45 325 14.8 49 18.8

STD 9.6 9.2 1.6 3.0 13.3 8.4 22 11.5

P-single | 0.0501 | 0.0857 | 0.0119 | 0.0053 | 0.0011 | 0.0057 | 0.0350 | 0.0288

MIN -49.2 0.0 0.8 1.6 14.0 6.7 1 4.1

MAX 8.0 49.2 9.2 16.2 74.8 49.5 79 65.3

Exam RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time

Table B.4 The evaluation of the multi-phase method on the dual-phase dataset. The row “P-single” reports the p-
value of the T-test, when multi-phase method was compared with single-phase method.
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Exam RVD | ARVD | ASSD | RMSD | MSSD | VOE | Score | Time
12 -3.9 3.9 14 3.1 30.5 8.2 66 32.0
13 1.6 1.6 1.3 2.6 18.5 9.9 72 19.1
14 -8.3 8.3 2.1 4.3 32.7 11.9 51 31.3
16 -1.8 1.8 15 3.1 37.9 9.1 65 15.4
17 -1.7 1.7 1.2 2.7 | 179.3 9.0 58 13.0
18 2.1 2.1 2.0 3.5 31.4 11.7 61 23.4
19 -0.3 0.3 1.1 2.1 175 7.7 78 16.9
21 449 449 9.3 21.0 | 101.6 45.9 0 12.3
22 -23.0 23.0 5.8 12.2 59.7 27.5 4 15.5
23 -5.3 5.3 3.0 6.9 53.2 15.0 34 16.8
24 -5.1 5.1 2.0 3.9 25.9 11.7 58 13.9
26 6.6 6.6 14 3.1 25.1 9.2 63 36.2
29 -6.4 6.4 1.7 3.1 26.4 9.9 61 51.5
31 14.7 14.7 4.1 10.1 57.9 22.1 12 52.4
32 -9.6 9.6 2.6 5.0 33.1 13.7 44 37.1
33 -6.5 6.5 1.6 3.1 30.1 12.0 59 55.8
34 -10.6 10.6 5.7 10.5 53.7 35.6 15 49.8
35 -9.6 9.6 1.8 3.4 29.7 11.1 55 41.4
36 -20.5 20.5 6.0 12,5 74.1 26.0 1 52.9
37 4.2 4.2 14 2.7 22.0 10.5 67 52.2
38 -1.4 1.4 0.9 1.7 16.8 6.6 80 44.8
39 0.6 0.6 0.9 1.6 20.4 7.7 79 39.4
40 6.0 6.0 3.3 7.7 42.6 19.0 31 52.6
41 -1.6 1.6 1.1 2.1 23.8 7.8 75 37.1
42 -19.7 19.7 4.2 7.0 36.1 22.1 14 51.1
43 -8.5 8.5 3.1 8.2 63.4 145 27 53.0
44 -10.2 10.2 3.0 6.3 50.0 15.3 31 42.0
45 19.1 19.1 2.6 5.2 38.4 17.8 28 55.1
46 5.2 5.2 1.3 2.3 21.5 8.2 69 37.2
47 81.4 81.4 20.8 379 | 136.7 475 0 45.8
48 -5.6 5.6 2.0 4.4 32.4 13.2 53 44.2
49 1.8 1.8 2.2 3.7 22.2 15.2 59 43.1
50 7.6 7.6 1.6 2.8 22.3 11.7 61 47.0
51 -0.7 0.7 2.2 4.3 43.6 13.4 55 37.4
52 -4.9 4.9 14 3.1 36.6 8.3 63 58.1
53 1.4 1.4 1.9 4.1 34.4 10.2 61 36.7
54 -2.8 2.8 14 2.6 24.7 7.7 70 34.8
55 -30.5 30.5 7.5 11.7 415 32.7 9 33.1
56 -4.8 4.8 15 3.1 29.1 9.1 64 30.1
57 -10.6 10.6 2.3 5.1 33.4 15.6 42 17.7
58 -2.5 2.5 1.0 2.0 34.3 7.0 73 28.7
59 5.9 5.9 1.3 2.6 27.7 7.4 67 335
60 14.9 14.9 3.3 7.8 40.1 19.0 22 30.3
61 2.1 2.1 1.1 2.4 23.7 8.5 73 27.4
62 -11.5 115 2.8 5.6 36.8 14.7 37 35.4
63 -7.6 7.6 2.2 5.3 35.0 12.8 47 49.2

AVG -0.5 9.9 2.9 5.9 415 15.0 48 36.6
STD 16.8 13.6 3.2 6.0 29.8 9.4 24 13.3

P-single | 0.0860 | 0.0848 | 0.0164 | 0.0108 | 0.0099 | 0.0073 | 0.0423 | 0.0000

P-multi | 0.0008 | 0.9068 | 0.2786 | 0.1168 | 0.0527 | 0.8528 | 0.7470 | 0.0000

MIN -30.5 0.3 0.9 1.6 16.8 6.6 0 12.3

MAX 81.4 81.4 20.8 379 | 179.3 475 80 58.1

Exam RVD | ARVD | ASSD | RMSD | MSSD VOE | Score Time

Table B.5 The evaluation of the model-based method on the reduced (dual-phase) dataset. The row “P-single”
and “P-multi” reports the p-value of the T-test, when model-based method was compared with single- and multi-
phase methods.
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C — Study on liver segment separation

Exam 1 11 IV+I1 \Y VI Vil Vil
1 155 217 413 314 228 250 403

2 141 145 451 345 187 229 479

1 3 145 203 335 346 188 258 504
AVG 7.4% 9.5% 20.2% | 16.9% | 10.2% | 124% | 23.3%

STD 0.4% 1.9% 3.0% 0.9% 1.2% 0.8% 2.7%

1 178 171 381 482 199 248 457

2 127 73 364 374 127 347 704

2 3 125 133 379 394 131 329 625
AVG 6.8% 5.9% 17.7% | 19.7% 7.2% 145% | 28.1%

STD 1.4% 2.3% 0.4% 2.7% 1.9% 2.5% 6.0%

1 118 118 385 272 66 162 362

2 148 181 273 258 106 210 306

3 3 112 93 387 248 104 201 336
AVG 8.5% 8.8% 23.5% | 17.5% 6.2% 12.9% | 22.6%

STD 1.3% 3.1% 4.4% 0.8% 1.5% 1.7% 1.9%

1 68 81 318 232 186 85 240

2 58 60 299 222 132 135 305

4 3 83 129 230 231 93 150 296
AVG 5.7% 7.4% 23.3% | 188% | 11.3% | 10.2% | 23.1%

STD 1.0% 2.9% 3.8% 0.5% 3.9% 2.8% 2.9%

1 45 93 240 200 139 225 300

2 60 67 217 174 152 275 297

5 3 54 96 206 181 133 270 303
AVG 4.3% 6.9% 17.8% | 149% | 11.4% | 20.7% | 24.2%

STD 0.6% 1.3% 1.4% 1.1% 0.8% 2.2% 0.2%

1 241 216 454 339 162 218 219

2 138 108 517 378 188 225 295

6 3 184 93 468 290 244 284 287
AVG 10.1% 7.5% 259% | 18.1% | 10.7% | 13.1% | 14.4%

STD 2.8% 3.6% 1.8% 2.4% 2.3% 2.0% 2.3%

1 121 77 162 302 191 390 524

2 55 92 243 311 167 376 523

7 3 63 123 193 339 112 314 622
AVG 4.5% 5.5% 11.3% | 18.0% 8.9% 204% | 31.5%

STD 2.0% 1.3% 2.3% 1.1% 2.3% 2.3% 3.2%

1 74 66 348 271 166 282 291

2 65 69 248 301 210 285 319

8 3 63 55 258 280 163 319 360
AVG 4.5% 4.2% 19.0% | 18.9% | 12.0% | 19.7% | 21.6%

STD 0.4% 0.5% 3.7% 1.0% 1.8% 1.4% 2.3%

1 35 44 282 184 117 201 308

2 23 47 221 171 199 242 267

9 3 33 49 212 127 149 304 296
AVG 2.6% 4.0% 204% | 13.7% | 132% | 21.3% | 24.8%

STD 0.5% 0.2% 3.3% 2.6% 3.5% 4.4% 1.8%

Table C.1 Volumetric analysis of the anatomical liver segments for test cases 1-9. The volume (cm®) of each
segment is displayed for each test runs. The average segment volume and the standard deviation of the segment
volumes are also reported (in % of the total liver volume) for each case.
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1 95 91 253 135 178 233 193

2 92 83 241 141 183 235 204

10 3 100 105 218 178 157 181 239
AVG 8.1% 7.9% 20.1% | 12.8% | 14.6% | 18.3% | 18.0%

STD 0.3% 0.9% 1.5% 2.0% 1.2% 2.6% 2.0%

1 126 113 543 546 431 540 717

2 135 79 655 528 477 529 612

11 3 141 114 445 523 455 602 735
AVG 4.4% 3.4% 18.2% | 17.6% | 15.1% | 18.5% | 22.8%

STD 0.3% 0.7% 3.5% 0.4% 0.8% 1.3% 2.2%

1 56 29 388 186 160 283 359

2 56 29 384 155 109 312 416

12 3 43 39 383 200 95 252 449
AVG 3.5% 2.2% 26.3% | 12.3% 8.3% 19.3% | 27.9%

STD 0.5% 0.4% 0.2% 1.6% 2.3% 2.1% 3.1%

1 158 125 211 318 185 340 462

2 111 195 263 251 185 347 447

13 3 114 190 199 290 198 363 445
AVG 7.1% 9.4% 12.5% | 159% | 10.5% | 19.4% | 25.1%

STD 1.5% 2.2% 1.9% 1.9% 0.4% 0.7% 0.5%

1 75 84 388 188 108 233 468

2 67 97 373 258 219 175 355

14 3 77 89 372 88 114 274 530
AVG 4.7% 5.8% 244% | 11.5% 9.5% 14.7% | 29.2%

STD 0.3% 0.4% 0.6% 5.5% 4.0% 3.2% 5.7%
AVG 5.9% 6.3% 20.0% | 16.2% | 10.6% | 16.8% | 24.0%
STD 1.0% 1.6% 2.3% 1.7% 2.0% 2.1% 2.6%

Table C.1 (continued) Volumetric analysis of the anatomical liver segments for test cases 10-14. The volume
(cm® of each segment is displayed for each (3) test runs. The average segment volume and the standard
deviation of the segment volumes are also reported (in % of the total liver volume) for each case. The last two
rows show the average and the standard deviation of segment volumes considering all cases.
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