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1 Introduction 

The liver is a large organ that is located in the right part of the abdomen and plays 

important role in the digestive system. It has some characteristics which make it unique 

among other abdominal organs. Its function is vital and cannot be substituted with any 

machine. Furthermore, it has exceptional regenerative capability. The last property is 

mainly due to its modular structure which makes it possible to consider the organ as a set 

of functionally independent units. The liver is threatened by several diseases. Besides the 

poisoning, various infections can affect this organ. The most serious liver diseases can 

turn into primary liver cancer. Furthermore, metastases of other cancers can frequently 

occur in the liver. Due to its special properties the clinical analysis of the liver requires 

organ specific functions. 

Computerized medical image processing plays important role in various fields of 

medicine such as diagnosis, therapy planning, or monitoring. There are 3-dimensional 

(3D) imaging techniques which allow in-vivo visualization of the internal structure of the 

human body. Due to the aging society and the widespread of modern imaging 

technologies the number of medical images to be processed is increasing in the clinical 

practice. There is significant need for software tools which accelerate the medical image 

analysis and make it objective and reproducible. The most important functions of this area 

are visualization, segmentation, and registration. This thesis focuses on the second main 

area, the segmentation of medical images. 

This chapter gives an overview about the medical and technical background of this thesis. 

In Section 1.1 one can read about the clinical motivations of the presented works. 

Section 1.2 describes the main concepts of image segmentation, which demonstrates the 

theoretical background of the proposed algorithms. Section 1.3 summarizes the problems 

addressed by this thesis and outlines the chapters of the thesis. 

1.1 Clinical background 

This section presents basic information about the liver, its internal structure, and one of its 

major diseases: the liver cancer. Furthermore, a short description is provided about the 3D 

medical imaging of the organ, which is followed by a high-level overview of the main 

cancer treatment options. Finally, the clinical needs related to liver cancer diagnosis and 

therapy are demonstrated. 

The liver is the largest organ in the human body (its volume is around 1.5 litres). The 

organ is located in the right abdomen below the right lung lobe and the heart (Fig. 1.1/a). 

It is surrounded by the stomach, the spleen and the pancreas (from left), the small 

intestine, the colon and the right kidney (from below) and the chest wall and the ribcage 

(from right and front). 

The healthy liver consists of one type of tissue called parenchyma that processes nutrients 

in the blood. The organ plays important role in the metabolism. Its function is vital 

(unlike the spleen) which cannot be substituted by artificial organ or medical device 

(unlike the heart or the kidney). That is why the malfunction of the liver can cause death 
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in short time (within days). The most common diseases, which can lead to liver disorders, 

are: infections (e.g. variants of hepatitis virus), alcohol damage, fatty liver (due to 

obesity), cancer, poisoning, or drug damage. 

 

Figure 1.1 Location of the liver in the human body (a) [14] and the segmental structure of the organ (b) [15]. 

The liver has four vessel structures: the hepatic arteries supply the liver with Oxygen; the 

portal vein carries nutrient-rich blood from the intestines and the colon; the processed 

blood leaves the organ through the hepatic vein; and the bile produced by liver cells 

drains through the biliary tree into the gallbladder. The special arrangement of vessels 

allows dividing the liver into eight segments (Fig 1.1/b) which can be considered as 

functionally independent parts. 

Thanks to its segmental structure the liver is able to regenerate after a serious disease that 

affects only a part of the liver. Since segments are functionally independent, the one(s) 

affected by the pathology can be completely removed or killed (by injecting poison into 

the vessels supplying the corresponding part). In such cases the other segments can grow 

significantly, which can compensate the loss of liver volume due to the operation or 

intervention. This way, the disabled segments are not regenerated rather their function is 

restored by the other parts. 

Cancer is a generic term for diseases when abnormal cells are rapidly formed inside an 

organ (primary tumour) which can grow beyond the boundary of the organ and spread to 

the other parts of the body (metastasis). According to the World Health Organization 

(WHO) cancer is one of the leading causes of death worldwide [16]. It was responsible 

for 7.6 million deaths in 2008 and the number of cancer deaths is estimated to rise over 11 

million by 2030. The mortality leading cancer types develop in the lung, the stomach, the 

liver, the colon, and the breast. 

The malignant liver lesions (in other word tumours) are the third cause of cancer deaths. 

Although primary liver cancer (e.g. hepatocellular carcinoma) is relatively rare (only 3-

5% of all liver tumours), most of the liver tumours (95-97%) are metastases which 

usually originate from the colon, the breast, or the lung. The special properties of the 

liver, such as the homogeneous parenchyma and the significant amount of blood filtered 

by the organ make it the second most frequent target for metastases (after lymph nodes). 

The liver metastases can lead to earlier death than the primary tumour due to the essential 
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function of the organ, which makes the early detection and the treatment of liver tumours 

very important. 

The lack of symptoms in the early stage of the disease makes it very difficult to diagnose 

liver cancer before it is advanced. The result of routinely performed blood tests or 

ultrasound examinations can indicate liver cancer, but there is no widely used and 

efficient screening method available in the clinical practice. When liver tumour is 

suspected 3D imaging modalities are used to localize (with respect to segments, vessel 

structures, or surrounding organs), to characterize (with respect to size, or type), and to 

monitor (assess its change of size in time). 

 

Figure 1.2 The non-contrast (a), the arterial (arteries enhanced – b), the portal-venous (liver veins enhanced – c), 

and the late (parenchyma enhanced – d) phases of a multi-phase liver CT examination. 

The most common 3D modality used for liver tumour assessment is computed 

tomography (CT). CT is a technique for reconstructing cross-sections of the human body 

based on its X-ray projections acquired from multiple directions using inverse Radon 

transformation. Contrast agents are frequently used in connection with CT imaging. In 

such examinations iodine containing medicine, which increases the X-ray attenuation of 

the blood, is injected into the patient before the scan. Due to the presence of the contrast 

agent, hyper-vascularized tissue (structures surrounded by many small vessels, such as 

tumours) is enhanced in the reconstructed image, making pathologic tissue more visible 

compared to healthy parenchyma. The speed of contrast uptake varies significantly 

among different tissue types, which allows further characterization of the soft tissue. This 

property can be exploited when multiple images (i.e. phases) are acquired after contrast 

injection according to a predefined timing protocol. Multi-phase imaging can provide 

native (pre-contrast), arterial (arterial enhancement, 30 sec), portal (portal-venous 

enhancement, 60 sec), and late (parenchymal enhancement, 180 sec) phases (Fig. 1.2). In 

the clinical practice, portal-phase image is always acquired, the arterial image is also very 

common, while the native or the late phases are created less frequently. 

Another 3D imaging modality, which is frequently used for liver analysis, is magnetic 

resonance imaging (MR). In the MR device the patient is placed into a strong magnetic 

field that induces a homogeneous alignment of Hydrogen protons found in the patient. 

The protons are excited with high-energy radio-frequency (RF) signal, which makes them 

align in heterogeneous way according to the type of molecule there are located in. When 

excitation is over, all protons return to the homogeneous alignment while they release RF 

signal that is characteristic to the proton’s chemical environment. The signals are received 

by antennas (referred as coils) attached to the patient and the image is reconstructed using 

inverse Fourier transform. MR modality allows significantly better soft tissue 

differentiation compared to CT, thus provides additional information for tumour 
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characterization. However, it is very sensitive to noise, so the images are usually affected 

by various artefacts, which makes the computerized processing of MR images very 

challenging. MR images can also be enhanced using (e.g. gadolinium-based) contrast 

agents which change the magnetic properties of the blood making the hyper-vascularized 

tissue more visible. Figure 1.3 shows the CT and the MR acquisition of the same patient. 

 

Figure 1.3 Contrast-enhanced CT (a) and MR (b) image of the same liver. Different modalities provide different 

information and are affected by different type of artefacts. 

Several treatment options are available for liver cancer. The applied therapy depends on 

many conditions, such as tumour properties (e.g. size and location), the number of 

tumours and their distribution (e.g. tumour is solitary or spread throughout the liver), the 

stage of the disease (e.g. initial treatment or reoccurrence), and the overall condition of 

the liver (e.g. cirrhosis). The therapeutic options involve (minimally invasive) surgery, 

interventional radiology, chemotherapy, radiation therapy, and the combination of these 

techniques. 

Surgical tumour resection is considered as gold-standard for liver tumour treatment 

because the reoccurrence rate of this treatment type is the lowest and the long term 

survival rate is the highest for this type of therapy. Unfortunately, it cannot be applied in 

most of the cases (e.g. there are multiple lesions, or lesion is located close to some critical 

anatomical structure, or anaesthesia has serious risk). There are minimally invasive 

surgical operations, too, such as CT or ultrasound guided laparoscopic surgery, which 

allows direct access to a liver tumour (through a thin tube) without dissection of the 

patient. This therapy is safe and efficient and reduces patient recovery time, but its 

application has even more limitations than the traditional surgery. 

When the cancer is advanced (i.e. multiple tumours of various sizes are found in the 

liver), the techniques of the interventional radiology are frequently applied. This group of 

treatments involves trans-arterial chemo-embolization (i.e. tumour feeding vessels are 

injected with drugs and subsequently blocked through a catheter); radio-frequency 

ablation (i.e. probes are inserted into the tumour and high frequency alternating current is 

used to heat up the tumour); cryo-ablation (i.e. probes are inserted into the tumour that is 

frozen by a liquid circulated in the probes). The primary advantages of these techniques 
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are the localized treatment (i.e. other part of the liver or the body is not affected) and the 

short hospital stay of the patient. 

Another, less common, localized cancer treatment technique for patients whose liver 

tumours cannot be surgically removed is radiation therapy. In this process cancerous 

cells are damaged using ionizing radiation directed toward the tumour. The most 

important disadvantage of this technique is that the radiation beams can pass through 

significant amount of healthy tissue, which can cause damage in surrounding organs. 

When the cancer is spread overall the body, chemo therapy is usually applied. During this 

type of treatment the patient takes drugs which destroy the tumorous cells (and also 

significant amount of healthy cells). Since drugs are very expensive it is important to 

precisely quantify the change in tumour size during the treatment. This therapy can be 

applied alone or in combination with other techniques. 

The main activities related to clinical tumour assessment are screening, diagnosis, 

therapy- planning, and monitoring. Screening, per definition, is performed involving large 

number of patients, so cost-efficient (e.g. blood test or ultrasound) examinations are 

mostly applied instead of the expensive 3D imaging techniques (CT, MR). That is why 

the benefit of computerized image processing is limited at this area. 

When liver tumour is suspected, CT or MR (or both) image is acquired in order to 

diagnose (i.e. detect, characterize and quantify) the lesion. The computer aided detection 

(CAD) of lesions has extensive history [17]. Various software applications are available 

to detect lung nodules or colon polyps for more than 10 years, but liver specific CAD 

applications have only recently released, so they are not wide-spread in clinical practice. 

The liver lesion assessment could be facilitated by automated enhancement and detection 

of lesions based on automated liver segmentation. 

Another important diagnostic task is lesion characterization which involves defining the 

pathology of the lesion (e.g. benign or malignant). The gold standard for lesion 

characterization is biopsy (i.e. analyse small tissue sample taken from the interior of the 

lesion), but certain image features, such as density in CT image, contrast-enhancement 

pattern in multiphase CT or MR images, hyper-vascularization (presence of many small 

arteries), or necrosis (i.e. dead tissue in the centre of the lesion) can indicate lesion type. 

Lesion characterization can be facilitated by fused visualization of different phases which 

requires precise inter-phase registration (to compensate respiratory motion between the 

different phases). 

The most important diagnostic tasks is lesion quantification which involves measuring 

the tumour size (e.g. largest axial diameter in 2D, or volume in 3D), its volume relative to 

the segment or lobe it is located in, or the total tumour burden (i.e. the ratio of pathologic 

and healthy tissue within the liver). These functions can be facilitated with automated 

lesion segmentation. 

When the lesion is classified as malignant, the next step is the therapy planning. For 

surgical resection the tumour size and location (e.g. relative to organ/segment/lobe 

boundary), the distance of the tumour from vessels or other critical anatomical structures, 

and the quantification of the resected and remaining liver volume are very important. The 

interventional radiology focuses on the tumour feeding vessels (e.g. embolization) or 
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proximity of large vessels which serve as heat sink (e.g. RF ablation). Radiation therapy 

requires the precise tumour contour (to define gross target volume), while chemo therapy 

needs the number, the size, and location of all liver tumours. The above mentioned 

functions can be facilitated by segmentation and visualization of the tumours, the liver 

vessels, and the segments or lobes. 

The last, but very important task related to tumour assessment is monitoring treatment 

efficiency. This activity primarily involves the quantification of the change in tumour size 

or volume (to differentiate regression and progression), and the detection of recurrent or 

new lesions. These functions can be facilitated by the registration of the images belonging 

to different dates, the automated propagation of tumour contour to the follow-up exams, 

and the detection of new lesions. 

The implementation of all the above-mentioned functions would have serious impact to 

the clinical liver tumour assessment. The automation of some functions (e.g. liver 

segmentation) could speed-up various workflows, which allows the physician spending 

more time with the challenging cases and less time with the routine work. The automated 

segmentation of anatomical structures (e.g. lesion detection) could make quantification 

tasks more objective and reproducible. It could also reduce the inter-operator variability, 

which makes clinical decisions more reliable. Furthermore, the development of new 

functions (e.g. anatomical segment or lobe separation) could make complex functions 

available for the clinical routine. 

1.2 Segmentation of medical images 

The goal of this section is to introduce the theoretical background of medical image 

segmentation. In Subsection 1.2.1 the basic concepts related to grayscale images, 

histograms, and image segmentation are presented. Subsection 1.2.2 gives an overview 

about the main types of grayscale image segmentation techniques which are used or 

referred in the latter chapters. 

1.2.1 Basic concepts of image segmentation 

The input of the segmentation methods presented in this thesis is a 3D grayscale image 

that maps each element of a finite 3D grid into an integer value referred as gray-level. 

More formally, assume that that          denote the image size and   

                              denotes a finite set of gray-levels. A grayscale 

image can be represented by the following function: 

                                  

such that for any      ,      , and      ,  (     ) represents the gray-

level of the image at index position (     ) that is also referred as voxel of the image. 

Index positions are usually represented with vectors, where  ( ) denotes  (     ) for an 

  (     ). In medical image processing, grayscale images are usually associated with a 

geometry that assigns a 3D spatial position (  ) to each voxel. Assume that   

(        )     denotes the origin and   (        )  (  )  the voxel spacing of the 

image, the position of the voxel (     ) is equal to (                    ). 
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In X-ray computed tomography (introduced in Section 1.1) multiple 2-dimensional cross-

sections of the human body are reconstructed, which results in a 3D grayscale image. In 

case of CT examinations    is usually set to an anatomical point located in the region of 

interest,   is set according to the desired resolution,   and   are equal to 512,   depends 

on the size of the acquired body part and the value of   , and the gray-levels are in the 

range of -1024 and 1024. For example, in case of a typical liver CT examination the 

length of the acquired region is usually 200 mm. Assuming 400 mm field of view (FOV), 

0.7 mm in-plane resolution (         ), and 1 mm slice thickness (    ), the size 

of the image is 512 × 512 × 200. The gray-levels are represented by 12 bit (technically 16 

bit) integers, so the memory needed to represent such an image is equal to 100 MB. 

 

Figure 1.4 Axial (a), coronal (b) and sagittal (c) section of a contrast-enhanced liver CT examination. 

Figure 1.4 demonstrates a typical liver CT examination. The 3D image is visualized by 

three orthogonal sections: an axial (  is constant), coronal (  is constant), and sagittal (  

is constant). Note that the whole (or a sub) set of gray-levels is transformed to the range 

supported by the display device when a grayscale image is visualized. A mean computer 

monitor can visualize 256 gray-levels, while advanced medical devices can support 512 

or 1024 gray-levels. 

 

Figure 1.5 Histogram of a contrast-enhanced liver CT examination. 

The distribution of gray-levels plays important role in image processing. The graphical 

representation of this distribution is referred as histogram. The histogram of an image 

assigns the number of occurrence to each gray-level in the image. Formally, the 

histogram of image   can be represented by the function      , where 

 ( )  | (     )  (     )  (     )  (     )  ( (     )   ) | 
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The histogram is usually normalized with the total number of voxels (     ). In such 

case  ( ) represents the probability of a voxel to be equal to  . Figure 1.5 demonstrates 

the histogram of the liver CT examination presented in Fig. 1.4. According to the chart 

many voxels have gray-level between -1024 and -900 (representing the air) and there are 

three separate peaks in the range of -200 to 300 (representing the fat, the soft tissue, and 

the contrast-enhanced soft tissue). 

Segmentation is the process of partitioning an image into multiple set of voxels which 

represent some meaningful parts of the image. In medical image processing the 

segmentation includes contouring organs within a body region as well as separating an 

organ into its internal structures such as parenchyma, vessels, or pathology. By means of 

segmentation medical image analysis can be specialized to organs, the size or the volume 

of anatomical structures can be measured precisely, and the level of abnormality can be 

quantified objectively. These functions are vital when the progression or the regression of 

a disease shall be determined. 

More formally, the segmentation of an image is a function that assigns a discrete label to 

each voxel of the image. Assume that                  denotes a set of discrete 

labels, where label 0 belongs to the background and the positive labels belong to the 

different parts of the image. The segmentation (or labelling) of an image can be 

represented with the following function: 

                                  

A segmentation is referred as binary segmentation when the set of labels consists of two 

elements (       ). For example, liver segmentation refers to the binary segmentation 

where 1 is assigned to voxels which belong to the liver and 0 is assigned to the other 

voxels. Figure 1.6 demonstrates the liver segmentation belonging to the already presented 

liver CT examination. The liver voxels can be overlaid on the 2D sections of the 

grayscale image using colours (Fig. 1.6/a-b). Binary segmentations can be also visualized 

in 3D view using surface or volume rendering. The surface rendering of the segmented 

liver can be seen on Fig. 1.6/c. 

 

Figure 1.6 Liver segmentation overlaid on axial (a) and coronal (b) slices of a contrast-enhanced liver CT 

examination and visualized in 3D view (c). 

There are various techniques for segmenting grayscale images. Most of the methods are 

based on intensity  (     ), gradient    (    ⁄      ⁄      ⁄ ), or gradient 

magnitude ‖  ‖. Intensity-based methods rely on the fact that the gray-level is uniform 

inside each structure to be segmented, while gradient-based methods exploit that the 
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object to be segmented is encompassed by sharp edges. The first approach is useful for 

CT images, where the gray-level represents a physical quantity (X-ray attenuation 

coefficient) that does not alter among examinations. The second approach can be used for 

magnetic resonance (MR) images, where the intensity differences play bigger role than 

the actual intensity. 

The next subsection gives an overview about the frequently used segmentation techniques 

including simple and more sophisticated ones. The goal is to present the basic approaches 

which are the building blocks of sophisticated algorithms. Problem specific segmentation 

methods (e.g. for liver or lesions) will be presented in the introduction of latter chapters. 

1.2.2 Overview of segmentation techniques 

The simplest segmentation method is to separate the set of voxels into two disjoint sets 

based on a pre-defined threshold. The first set involves voxels whose gray-level is below 

threshold and the other one involves all remaining voxels. It is possible to define more 

than one threshold (in increasing order). In this case the first set involves voxels whose 

gray-level is below the first threshold, the second involves voxels of the remaining set, 

whose gray-level is below the first threshold, and so on. The thresholds can be defined 

dynamically by locating peaks and valleys on the histogram of the image. Another data 

driven approach is the adaptive thresholding, when a global threshold is adjusted based on 

the local environment of each voxel. 

Clustering methods separate the voxels of an image into a fixed number of clusters based 

on gray-level similarity. These methods are iterative. They start with some initial clusters, 

and continue modifying the clusters until they change. K-means [18] is a basic algorithm 

that minimizes the variance in a fixed number of clusters, where cluster is represented by 

its mean value. The cluster means can be initialized randomly or according to various 

heuristics. In each iteration two steps are performed. In the first step (expectation) each 

voxel is assigned to the cluster that minimizes the distance between the voxel and the 

cluster mean. In the second step (maximization) cluster means are recomputed based on 

the actual assignments. The iterations stop, when cluster centres don’t change 

significantly. The distance of the voxel and the cluster centre can incorporate the gray-

level, the spatial location, or any other feature, or the weighted sum of more features. 

Region-growing [19] is an iterative approach that is started form an initial set of voxels 

(referred as seed). At the beginning the initial voxels are stored in a list of candidates. In 

each iteration, the method removes an unprocessed voxel form the list of candidates and 

adds it to the result if it satisfies some constraint (e.g. its gray-level lies in a predefined 

range). When the voxel is added to the results, its neighbours are added to the list of 

candidates. The iterations stop, when the list of candidates is empty. The method provides 

3-dimensionally connected result if the seed was 3D connected. One variant of this 

technique, the neighbourhood-connected region-growing evaluates the intensity 

constraint in the local environment of each voxel. If all items in the local environment 

satisfy the condition, the voxel is added to the result. 
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Active contour or surface methods [20, 21] focus rather on the boundary of the region to 

be segmented instead of its internal voxels. Similar to region-growing, this method is 

iterative, but it starts from an initial contour (or surface) that evolves through the 

iterations. The surface is represented by a finite number of points and the geometric 

connections between them (e.g. triangular surface). In each iteration, the position of each 

surface point is subject to change according to various factors (referred as forces). The 

typical forces affecting the surface evolution are inflation (i.e. surface points move away 

from initial shape to reach the boundary of the object), gradient (i.e. surface points shall 

stop moving when reaching a sharp edge in the image), and smoothness (i.e. neighbouring 

surface point shall be located close to each other). These forces are combined in a total 

energy that is minimized through iterations. 

Level-set methods [22] can very efficiently solve the problem of iteratively evolving 

surfaces. According to this technique the contour is represented using a signed (so called 

level-set) function, the zero-level of which corresponds to the actual contour. The level-

set function is computed from an initial contour incorporating the contour propagation 

speed that is defined at each voxel. This way the contour belonging to time point t is 

represented by voxels where the level set function is equal to t. The fast marching 

algorithm [23] is an efficient way to compute the level-set function. The idea of fast 

marching derives from finding the shortest path from the initial contour. The method 

starts form the voxels of the initial contour. In each iteration, it takes the neighbours, 

computes the cost of reach for each neighbour voxel, and the neighbour with smallest cost 

is accepted. The method terminates if there is no neighbour whose cost to reach can be 

lowered. 

Graph partitioning methods [24, 25] consider the image to be segmented as a graph, 

where (group of) voxels represent the nodes, and edges connecting the neighbouring 

(group of) voxels are weighted by the dissimilarity of the corresponding (group of) 

voxels. The graph is partitioned into connected components according to criteria 

describing the properties of the expected segments. The result set of partitions define the 

complete segmentation of the image. The criteria can incorporate gradient (i.e. graph is 

likely cut at edges where gradient magnitude is high), intensity, texture or any other 

images features. In case of binary segmentation the samples from both the fore- and the 

background objects can be incorporated. 

According to the watershed approach [26] the gradient magnitude of a grayscale image is 

considered as a topographic surface. Voxels located on segment boundaries, where the 

gradient magnitude has local maximum, correspond to watershed lines. The method 

virtually places water drops to each voxel position. From each voxel the water flows 

downhill to a local minimum. Voxels draining into the same local minimum form one 

basin and represent one segment of in the image. The simplest implementation of this 

approach uses priority queue to encounter all voxels of the gradient magnitude image 

starting from those located in a local maximum. Watershed segmentation usually divides 

images into large number of partitions. There are various strategies to merge smaller 

basins into larger ones based on different similarity criteria. 
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The application of the machine learning techniques in image segmentation is an emerging 

field. These approaches classify smaller parts (or voxels) of the image based on their local 

statistical features (e.g. intensity, gradient, Hessian, texture, etc.) into segments. The basis 

of the classification is a machine-learning model that is trained using manually labelled 

examples (supervised learning). Markov Random Fields [27] are getting more frequently 

involved in image segmentation methods. According to its concept, a hidden node 

representing a label (e.g. object of interest, background, etc.) is assigned to each 

observation node (e.g. set of features extracted form voxel or a connected set of voxels). 

The method computes the hidden node configuration with the highest probability given 

the observation nodes and the built-in model. 

In summary, there are various algorithms for segmenting grayscale images, but there is no 

universal method that can be used for any structure in any type of images. Each approach 

has its own advantages and disadvantages which limit its practical usability. Some of the 

methods are efficient but cannot address 3D connectivity (e.g. threshold, intensity-based 

clustering). Others are challenged with incorporating high level structural information 

about large objects to be segmented (e.g. active surface). Yet other techniques require 

(e.g. graph cuts, watershed) large memory to represent the underlying abstract model or 

much time to converge (MRF) in case of a large (e.g. 512x512x1024) image. In medical 

image segmentation, majority of the problems cannot be solved by applying one basic 

approach. That is why most algorithms are the combination of some basic techniques, like 

the methods presented in latter chapters. 

1.3 The scope of the dissertation 

Section 1.1 presented various functions which could facilitate the clinical analysis of liver 

tumours. The implementation of all these functions would result in a competitive 

application, but it is a very extensive scope. This thesis focuses on three main areas 

emphasized in connection with the clinical needs. 

The first one is the basis of all computer assisted liver analysis: the liver segmentation. 

Chapter 2 presents three algorithms for liver segmentation which were developed for 

single- (Section 2.1) and multi-phase (Section 2.2) CT images and single-phase MR 

images (Section 2.3). The different approaches were evaluated using a large image dataset 

and the results are presented in Section 2.4. The second focus area of the thesis is liver 

lesion assessment. Chapter 3 presents an automated technique for liver lesion detection 

(Section 3.1) and its evaluation on a set of 30 CT examinations involving nearly 60 

lesions (Section 3.2). The third area discussed in this thesis is related to treatment 

planning. Chapter 4 presents a technique for virtual volume resection (Section 4.1) and its 

evaluation for liver segment separation and tumour resection simulation (Section 4.2). 

The evaluation of the presented techniques required test images of human subjects. It is 

important to declare that all medical images showed or referred in this thesis were 

acquired according to standard clinical protocols and used for research purposes with the 

acknowledgement of the patient. All images were acquired in the daily clinical routine 

(for diagnostic or treatment purposes), they were collected retrospectively (after the 
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patient has left the hospital) and processed after anonymisation (no patient information 

was associated with the images). 

In this thesis special attention was paid to the efficiency of the proposed algorithms in 

addition to their accuracy. According to clinical feedbacks a software workflow is 

considered useful when the computation time between starting a function and visualizing 

its result does not significantly exceed half a minute. Based on this practical constraint the 

methods, which require minutes to run on an average computer, have limited clinical 

usability. The algorithms presented in this thesis were designed to solve complex clinical 

problems in short time. Another important requirement, which is satisfied by the proposed 

techniques, derives from the target software environment. Today (or in the near future) 

most clinical applications (will) run on servers, which execute multiple instances of a 

function at the same time (i.e. distributed in a cloud). Such software environment limits 

the usability of methods which have some special hardware requirement (e.g. graphical 

processing unit, large memory). The algorithms presented in this thesis were designed to 

be easy to integrate into any computer system, since they do not rely on a special 

hardware. 
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2 Liver segmentation 

The basis of all computer assisted liver analysis is the liver segmentation. Since the 

manual segmentation of the organ is very time consuming, it is important to solve this 

problem in more efficient way. This section presents three techniques for automated liver 

segmentation which represent the different phases of a research work. 

The first two methods were developed for single- and multi-phase contrast-enhanced CT 

images. The first algorithm (Section 2.1) applies standard image processing concepts to 

segment the liver on portal-phase CT images. It is based on some straightforward rules 

which describe the separation of the liver from the surrounding organs. The second 

approach (Section 2.2) is an extension of the first one. It can incorporate the information 

of more contrast-enhanced phases (e.g. arterial or late) to improve segmentation. The 

results related to the first two methods were published in a journal paper [1]. The third 

algorithm (Section 2.3) was developed for contrast-enhanced MR images. It incorporates 

a probabilistic liver model as additional information about the organ. This technique was 

published in another journal paper [2]. Each method was originally evaluated using 

different test images, which makes their comparison difficult. Section 2.4 presents the 

evaluation of all methods using a large test dataset, which allows the quantitative 

comparison of the three approaches. 

Before going in the details of the algorithms it is demonstrated how the performance of a 

segmentation method can be assessed. The performance of a method can be characterized 

by its accuracy and efficiency. Only those methods can be successful in clinical practice, 

which demonstrate good measures considering both factors. A very accurate 

segmentation method has limited practical usability if it takes long time to run on an 

average case. The objective quantification of segmentation accuracy is also necessary for 

comparing different approaches. The next part of the introduction presents the error 

measures which are used in this thesis to assess segmentation accuracy. Then, it is 

demonstrated what level of accuracy can be achieved by manual contouring within 

reasonable time. The goal of the study presented in the last part of the introduction was to 

provide a baseline for automated liver segmentation techniques. 

The accuracy represents the difference of a segmentation result ( ) from a reference ( ) 

that is defined manually by one or more medical experts. Assume that   and   are binary 

images. Let (   )( )   ( )   ( ) and (   )( )   ( )   ( ) for any index 

position  . Furthermore, let | | denote the number of non-zero voxels in the image  . The 

accuracy can be demonstrated by various volume- and surface-based measures. Each 

measure can reflect under-segmentation (i.e. |   |  | |) or over-segmentation 

(i.e. |   |  | |) or both. 

The workshop “3D Segmentation in the Clinic: a Grand Challenge” [28] of MICCAI 

2007 conference introduced some error measures which have become standard for 

evaluating liver segmentation accuracy since 2007. These measures are listed in the 

following paragraphs. 
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 Volumetric Overlap Error (%): 

        (  
|   |

|   |
) 

This measure is equal to 0% if and only if the segmentation is perfect (   ) and 

100% when the segmentation and the reference have no intersection (     ). 

 Relative Volume Difference (%): 

        
| |  | |

| |
 

This measure is equal to 0% if the segmentation is perfect, -100% in case of empty 

segmentation (   ), and arbitrarily large positive number when | |  | |. It is 

important to note that this metric can be equal to 0% when the volume of the over-

segmentation (|  (   )|) is equal to the volume of the under-segmentation 

(|  (   )|). When the average     is computed for a set of test exams the 

absolute relative volume difference      |   | is used, so that the positive and 

negative differences don’t eliminate each other. 

 Average Symmetric Surface Distance (mm): assume              and 

             represent the set of voxels located on the contour of the 

automatically segmented and the reference liver, respectively. 

     
∑    

     
‖     ‖  ∑    

     
‖     ‖

 
   

 
   

|  |  |  |
  

where ‖     ‖ represents the Euclidean distance of the spatial position of voxels 

   and    in millimeter. This measure is equal to 0 mm in case of perfect 

segmentation and arbitrarily large positive number otherwise. Similarly, the Root 

Mean Square Symmetric Surface Distance (mm) is defined in the following way: 

     √
∑    

     
‖     ‖

 
 ∑    

     
‖     ‖

  
   

 
   

|  |  |  |
 

 Maximum Symmetric Surface Distance (mm): using the same notation introduced 

in the definition of      

                     ‖     ‖. 

This metric has the same properties as     . 

The above-mentioned measures can characterize well both the under- and the over-

segmentation of the result. However, there are other measures which are also frequently 

used in the literature. In order to make the results presented in this thesis comparable with 

most of the publications the following accuracy measures are also used: 
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 True Positive Volume Fraction (%): 

         
|   |

| |
 

This measure demonstrates only the under-segmentation. It is equal to 100% if there 

is no under-segmentation, and 0% if the intersection of   and   is empty. 

 False Positive Volume Fraction (%): 

     
|   |

| |
 

This measure demonstrates only the over-segmentation. It is equal to 0% if there is 

no over-segmentation, and arbitrary large number depending of the size of the over-

segmentation. Note that neither      nor      can characterize segmentation 

accuracy alone, both metrics shall be always considered. 

 Dice Similarity Coefficient (%):  

        
  |   |

| |  | |
 

This measure is equal to 100 if and only if the segmentation is perfect (   ), and 

0% when the segmentation and the reference have no intersection (     ). 

The duration is also a very important factor in medical image segmentation. Since time is 

money in healthcare, physicians tend to omit computation-demanding software functions 

when the given function is not vital for solving the clinical problem. For example, in 

surgery planning the precise quantification of the (resected and remaining) liver volume is 

very important, so even the very time consuming (10–15 minute long) semi-automated 

contouring is worth doing in the daily practice. However, in case of lesion assessment, 

liver segmentation could facilitate the detection of tumours (e.g. by automated 

enhancement of abnormal regions inside the liver), but no user would make efforts to 

segment the liver instead of adjusting the visualization parameters manually. Since users 

shall process several cases per hour, the majority of them would skip the liver 

segmentation if took significantly longer than half minute. The fully manual (slice by 

slice) liver segmentation can take 45–150 minutes per case, which means it is rarely 

performed in the daily clinical practice. 

As mentioned before, there is a trade-off between segmentation accuracy and processing 

time, so accuracy and duration cannot be considered separately. The simplest approach 

for liver segmentation (that is available in most medical image processing applications) is 

the manual contouring. In order to assess accuracy of manual contouring versus 

contouring time two experiments were performed. The first study assessed the accuracy 

of a non-expert operator. The second study focused on the effect of using interpolation 

tools during manual contouring. Interpolation refers to a technique that is able to 

smoothly define the contour in one slice based on the contours of the preceding and the 

following slices. The latter work involved clinicians of the Department of Oncotherapy at 

the University of Szeged and its results were published in a Hungarian conference [7]. 
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In the first experiment 20 liver exams (for more information about the data refer to 

Subsection 2.1.5) were manually contoured by a non-expert operator (software developer 

intern) using a publicly available software (MITK [29]). The operator was allowed to 

draw contour in any slice, to use interpolation between manually contoured slices, and to 

adjust the contour when interpolation was incorrect. The contouring process stopped 

when the result was visually acceptable for the operator. The total time needed for 

contouring was recorded and the manual segmentation results were compared with 

ground-truth (defined by experts) using the error measure    . 

The results of the evaluation are presented in Table 2.1. The average contouring time was 

5.8 minutes (min = 1.5, max = 11, stdev = 2.4), and the average     was 6.3% 

(min = 4.9%, max = 10.2%, stdev = 1.3%). The trade-off between accuracy and time can 

be defined as the ratio of         and the duration (i.e. the volumetric overlap that 

can be achieved in 1 minute). The average of this trade-off was 16.2, which can be 

roughly interpreted such a way that a non-expert operator can achieve an average 16.2% 

volumetric overlap with 1 minute of contouring. Assuming linear increase in this trade-

off a     equal to 20%, 15%, 10%, 5% could be achieved in 4.9, 5.2, 5.6, and 

5.9 minutes, respectively. Based on the result of this experiment one can conclude that a 

non-expert operator can provide a reasonably accurate manual segmentation (    

  ) in 5.6 minutes. 

Exam Time (s) VOE (%) Exam Time (s) VOE (%) 

01 6.00 10.2 11 8.00 5.6 

02 3.50 7.3 12 6.00 5.9 

03 4.50 6.4 13 4.50 6.9 

04 4.50 7 14 3.00 5.2 

05 5.50 5.2 15 6.00 5 

06 5.50 5.3 16 9.00 4.9 

07 10.00 6.1 17 2.50 5.3 

08 11.00 8.1 18 7.00 5.9 

09 4.50 5 19 7.00 5.5 

10 6.00 7.9 20 1.50 6.7 

Table 2.1 The evaluation of a non-expert manual liver contouring using ground-truth segmentation. The 

contouring time (minutes) and the accuracy (VOE, %) are listed for 20 test exams. 

The goal of the second experiment was to understand how the number of manually 

contoured slices affects the segmentation accuracy, when the contour on the remaining 

slices is automatically generated by interpolation method. This study involved 83 liver 

exams (for more information refer to Section 2.4), where the slice thickness varied 

between 0.5 mm and 5 mm. The manual liver contour was defined by one expert slice by 

slice for each exam. Then, the following workflow (demonstrated by Alg. 2.1) was 

performed. At the beginning all liver contours were resliced using 1 mm slice thickness in 

order to make the data uniform (Fig. 2.1/a). Then, the contouring at different slice 

thickness was simulated using interpolation methods (Fig. 2.1/b-c). The simulated 

contours were compared with the reference using various error measures. 
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Figure 2.1 Simulation of manual contouring with various slice thickness: reference contour (a) and simulated 

contour with larger slice thickness (b, c). 

1. Re-slice all test exams using 1 mm slice thickness 

2. For each slice thickness in {2, 4, 6, …, 60} mm 

2.1 For each exam in the set of test exams 

2.1.1 Compute the interpolated contour by re-slicing the original contour to the 

actual slice thickness using nearest neighbour interpolation 

2.1.2 Compute    ,     ,     , and      to compare the interpolated 

contour with original one. 

2.2 Compute average of    ,     ,     , and      incorporating all exams. 

Algorithm 2.1 Simulation of manual contouring with various slice thickness 

The average error measures are plot in Figure 2.2. The x-axis represents the slice 

thickness and the y-axis represents the error when the contouring was simulated using the 

corresponding slice thickness. The larger is the slice thickness the larger error 

characterizes the contouring result. The line of the linear ascending is also plot for each 

chart. According to the diagrams the contouring error is approximately a linear function 

of slice thickness. Since the contouring slice thickness is the inverse of the time needed 

for contouring, there is nearly linear correlation between contouring time and accuracy. 

Based on the top left chart of Fig. 2.2         can be achieved by contouring slices 

using 12 mm thickness. Considering that the average vertical height of the liver is 

175 mm (based on the test dataset) and contouring one slide takes approximately half a 

minute (feedback from physicians), the average time needed for manually contouring the 

liver at         is equal to 6.26 minutes. 

Note that      is very low (less than 5%) even when 44 mm slice thickness is used for 

contouring. This means a relatively short time (175/44·0.5 = 1.95 minutes) is enough, 

when only the liver volume is required by the physician. This estimation was confirmed 

by another study [10] where 86 second was reported as average contouring time for 

manual liver volume estimation. Similar to    ,      is very (and      is even more) 

sensitive to the distance between interpolated slices. As low as 10 mm distance between 

interpolated slices can imply that      is greater than 1 mm. In order to achieve this 

accuracy 8.75 (=175/10·0.5) minutes are needed to contour the liver, in such case      

= 12.9 mm. If very accurate (     < 5 mm) segmentation is required, one shall use less 

than 2 mm slice distance, which would take 43.75 minutes per case. 
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Figure 2.2 Average error (y axis) introduced by manual contouring using different slice thickness (x axis). Trend 

lines are also plot (that is fully overlapped by the curve in case of ASSD). 

The results imply the time needed for automated liver segmentation shall not exceed 

6 minutes because a human operator can make a liver contour with         within 

this time using a simple contouring tool and interpolation between slices. A method that 

cannot provide this level of accuracy within this time, would probably have limited 

practical usability. The goal of the works presented in the following chapter was to 

develop a method that is significantly more efficient than a human operator, which means 

it can provide liver segmentation with         within half a minute. 
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2.1 Single-phase method for CT images 

This section presents an automated method for liver segmentation in portal-phase CT 

contrast-enhanced images. The method is based on neighbourhood-connected region-

growing that is facilitated by various pre- and post-processing steps. These steps are the 

detection of the liver, the separation of liver and heart, the compensation of under-

segmentation due to respiratory motion at the right lung lobe, the removal of inferior vena 

cava (IVC), and the filling of cavities due to vessels or lesions. According to its 

evaluation the method can efficiently segment the liver parenchyma in most cases, 

however, in tumorous cases the result can exclude large lesions located on the boundary 

of the organ. This method was published in a journal paper [1]. 

There were several methods published on the segmentation of CT images before this 

work. Most of them are some variants of intensity based thresholding or classification, 

region-growing, active contour or surface, or level-set techniques. There are generalized 

algorithms, but most of the approaches are specialized to an organ. The fundamental 

segmentation concept is usually extended with various pre- and post-processing 

operations, statistical, anatomical, or geometric models, so that the method is adapted to 

an organ or an anatomical structure. The following paragraphs summarize the major types 

of liver segmentation techniques which were available when this work was started. 

Soler [30] proposed a fully automatic method to segment the liver from contrast-enhanced 

CT scans. This method delineates the skin, bones, lungs, kidneys and spleen, by 

combining the use of thresholding, mathematical morphology, and distance maps in order 

to extract the liver. Subsequently, a 3D reference model, which was previously generated 

from manually contoured liver cases, is positioned in the image using the combination of 

rigid and affine registration. The model is then deformed based on the image data in order 

to get the final segmentation. The weakness of this method is that it was specialized to 

images acquired with a special contrast protocol that is not widespread in clinical 

practice. 

Another automated approach for liver segmentation, which is based on 3D statistical 

shape model, was presented by Lamecker [31]. This iterative technique uses statistical 

model built from a set of manually contoured liver shapes. Each shape was defined by 

specific anatomical points located on the liver surface. The main steps of the method are 

the positioning of the mean shape into the image, and the adjustment of the shape 

according to the image data. Unfortunately, there was no clinical evaluation presented in 

the paper, and the selection of the anatomical landmarks is very difficult due to the big 

variation in liver size and shape. 

Level-set methods ([23, 32]) were successfully applied in medical image segmentation. 

The advantage of this approach is that it can handle topological changes of the contour, 

but these methods can be time-consuming and it is difficult to handle over-segmentation. 

The active contour method presented by Bekes [33] was successfully used to segment 

various abdominal organs (liver, kidney, spleen). This algorithm works well for non-

contrast images where the organs are homogeneous inside. In case of contrast-enhanced 

images the distribution of the contrast agent can be heterogeneous in the liver (e.g. vessels 
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and tumours are enhanced), which forms sharp edges inside the organ. These edges can 

block the evolution of the surface, which can cause under-segmentation. 

The region-growing approach [34] can provide good segmentation in contrast-enhanced 

images. This method is very efficient and it can close around the vessels and tumours, but 

it can easily leak into neighbouring organs which have similar intensity as the liver. 

The goal of this research was to develop a method that can combine the efficiently of the 

intensity-based techniques with the accuracy of approaches which incorporate anatomical 

knowledge. The proposed algorithm is based on the following assumptions: 

 the liver is the largest organs in the abdomen, 

 most of its volume is located in the right half of the abdomen, 

 the contrast-enhancement makes the liver brighter than its surrounding organs, 

 the liver parenchyma is nearly homogeneous in CT images. 

The proposed method also incorporates information about the anatomical structures 

surrounding the liver such as the lung, the heart, and the IVC. The core of the algorithm is 

a region-growing method that is facilitated by various pre- and port-processing steps. 

More specifically, the main steps of the method are the following. First the liver is 

localized in the abdomen and an initial region is created for the segmentation 

(Subsection 2.1.1). Then, the liver is separated from the heart (Subsection 2.1.2) to 

prevent over-segmentation at this area. Subsequently, a neighbourhood connected region-

growing is performed to segment the liver parenchyma (Subsection 2.1.3), which is 

followed by additional steps correcting various under- and over-segmented areas 

(Subsection 2.1.4). The evaluation of the algorithm and its comparison with other 

techniques is presented in Subsection 2.1.5. 

2.1.1 Localization of the liver 

When the CT image is enhanced using contrast agent, the abdominal organs can be easier 

separated due to the different contrast uptake of the organs. In addition to the 

characteristic intensity, the expected volume (ca. 1500 cm
3
) and the location (right 

abdomen) of the liver can be exploit to localize significant part of the organ 

automatically. 

The image to be segmented is acquired in the portal-phase of the multi-phase CT 

examination. In this image the mean liver intensity (that varies among different cases) is 

in the range of [-50,250] Hounsfield Unit (HU). Eliminating voxels having intensity out 

of this range excludes air, fat, and bones from the analysis, which makes the localization 

of the liver more robust. In order to determine the mean liver intensity for a particular 

exam, the histogram of the image is computed incorporating voxels located only in the 

right half of the body (second assumption). The histogram always has two significant 

peaks (in the above defined range) which represent the muscles and the liver (first 

assumption). Since the liver is better perfused (i.e. absorbs more contrast) than the 

muscles, the intensity of the liver is always higher than that of the muscles (third 

assumption). Based on experiments with several portal-phase images the histogram peak 

above 80 HU represents the mean liver intensity in all cases. 
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Figure 2.3 displays the histogram of a typical liver exam and the average histogram of 

multiple cases in the range [-50,250] which represents the soft tissue. The histogram of a 

single case (solid line) has 2 peaks at 50 HU and 140 HU, which represent the muscles 

and the liver, respectively. This observation is true for all liver exams because both tissue 

types represent significant volume in the abdomen. The contrast uptake of the liver 

depends on many factors (e.g. timing protocol, patient condition, pathology, etc.), which 

makes the mean liver density vary among cases. That is why liver peak is hardly visible 

on the average histogram (Fig. 2.3 – dashed line). Due to the relatively low perfusion of 

the muscles the intensity of this tissue is very stable considering many cases. The peak 

representing the muscles is clearly visible on the average histogram, which makes it 

possible to separate it from the liver peak using a simple threshold (80 HU). 

 

Figure 2.3 Histogram of a typical portal-venous liver exam (solid line) and the average histogram of several 

exams (dashed line). The liver intensity range is defined by lmin, lmod, and lmax. 

Assume that the liver intensity mode (    ) is defined by the largest peak in the range 

[80,250] HU (Fig. 2.3). The minimal (    ) and maximal (    ) intensity of liver voxels 

are computed in the following way. Let      denote the highest intensity   in the range 

         such that   is a local minimum or  ( )        (    ) and  ( )  

 ( ) for all g       . Similarly, let      denote the lowest intensity   in the range 

         such that   is a local minimum or  ( )        (    ) and  ( )  

 ( ) for all         .  

Using thresholds      and      a binary image is created where voxels having intensity in 

the range             are set to 1 and all other voxels are set to 0. This image involves 

voxels from the liver parenchyma as well as from other regions, which have similar 

intensity as the liver (Fig. 2.4/a). In order to find a compact region inside the liver, the 

binary image is eroded with a large kernel (with radius equal to 15 mm) and the largest 

3D connected region is located in the eroded image (Fig. 2.4/c). For sake of efficiency the 

erosion is implemented by computing a distance map with respect to the contour of the 

binary image (Fig. 2.4/b). The distance map is thresholded at 15 mm, which results in a 

volume that is equivalent with the erosion of the original volume using the large kernel. 

Since the liver has a large compact volume (first assumption), the above defined region is 

always located inside the organ. According to experiments with several CT exams, this 

method provides a reliable set of liver voxels, which represent approximately 15% of the 

total liver volume. 
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Figure 2.4 The main steps of the initial region detection: The image is thresholded (a), eroded using distance map 

(b), and the largest 3D connected region is located (c). 

2.1.2 Separation of liver and heart 

The liver and the heart can have similar intensity in the portal-phase image. In order to 

prevent the liver segmentation from leaking into the heart, the two organs are separated. 

This step is based on the spatial relation of the lung, the heart, and the liver. According to 

the human anatomy the bottom surface of the lung (on both left and right side) fits the top 

surface of the liver. The boundary between the liver and heart can be defined by means of 

connecting the bottom surface of the left and right lung lobes (Fig. 2.5/c). 

 

Figure 2.5 Liver-heart separation: Body and lung lobes are segmented on the topmost slice (a), the lung lobes are 

segmented in 3D (b), separating curves defined for each coronal slice (c), and separating surface is created from 

the set of curves (d). 

In case of liver CT examinations the bottom part of the lung is also acquired, which 

allows segmenting the lung lobes. The lung consists of air whose intensity is significantly 

different from the soft-tissue, so it can be segmented based on its intensity. In order to 

find seed-points for the left and the right lung lobes, the uppermost slice is processed. 

First, the air voxels are separated using a threshold equal to -400 HU. Then, the largest 

connected non-air region (i.e. the body) is located (Fig. 2.5/a – red region). Subsequently, 

the largest connected air region is identified in the left and the right side of the body 

(Fig. 2.5/a – green and blue contours). Starting from these regions, the left and right lobes 

are segmented using 3D region-growing technique (Fig. 2.5/b). 

After the lung lobes are segmented, each coronal slice of the CT image is processed. The 

goal is to detect the curves representing the bottom contour of the right and the left lung 
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lobes and connect them with a curve that lies on the edge of the liver and heart. First, the 

leftmost point of the right curve ( ) and the rightmost point of the left curve ( ) are 

located (Fig. 2.5/c). Then, the following iterative approach is applied to connect these two 

points. Moving from   to   on a slice along increasing   coordinates, in each column the 

largest image gradient is located in the   mm local environment of the previously visited 

point. When the iteration reaches the column of  , the actual point is connected with   

using a discrete line, and the method stops. 

When the    curve is computed for each coronal slice, the surface separating the liver 

and heart is created by averaging the curves located on the neighbouring slices. For any 

coronal slice the   coordinate at each column is defined by the average of positions 

belonging to the corresponding column in the preceding, the actual, and the following 

coronal slices. The set of coronal curves define a smooth surface that is used to separate 

the liver and the heart in the following way. All voxels located above the surface are set 

to a high value (3000), so that the latter intensity-based segmentation does not leak into 

the heart (Fig. 2.5/d). 

2.1.3 Neighbourhood-connected region-growing 

The liver parenchyma is nearly homogeneous in CT images (fourth assumption), so an 

intensity-based technique can used to segment most of it. This method requires an initial 

region and an intensity range of the voxels to be segmented. The initial region is defined 

according to Subsection 2.1.1 and the intensity range is defined in the following way. 

Using      (computed in Subsection 2.1.1) the voxels of the initial region are split into 

two subsets based on their intensity. Let      (or      ) denote the standard deviation of 

voxels which are lower (or higher) than     . The intensity range used by the 

segmentation is defined by            ,            ], where     is an empirical 

constant that was defined based on segmenting several CT examinations. 

In this work the neighbourhood-connected variant of the region-growing approach is 

used. The standard region-growing method can leak into organs which have similar 

intensity similar as the liver (e.g. stomach, small bowels, pancreas, or spleen). Unlike the 

heart, these anatomical structures cannot be easily separated from the liver because their 

location, size, or shape is varies significantly. Such over-segmentations can be eliminated 

using the neighbourhood-connected version of the algorithm. The main difference 

between the two techniques is found in the way of adding a new voxel to the 

segmentation. According to the modified method a voxel is added to the segmentation if 

all voxels in its local environment satisfies the intensity condition. 

Using large environment can eliminate significant amount of over-segmentation, but in 

the same time the result can be under-segmented when the image to be segmented is 

affected by pixel noise (that is characteristic for CT images). The effect of the noise is 

reduced in two different ways. On one hand the image is convolved with a Gaussian 

kernel (having 1.5 mm radius) before starting the segmentation. On the other hand a small 

(2%) tolerance is applied when the local environment of a voxel is analysed in each 

iteration of the region-growing. 
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According to experiments with several liver cases the over-segmentation can be 

significantly reduced when the radius of the environment is set to 3 mm. Using such a big 

environment significantly increases the number of voxels to be processed in each 

iteration, which can make the segmentation slow. In order to preserve the efficiency of 

the method, the CT image is re-sliced, such that the slice spacing is between 2 and 3 mm. 

This way, the size of the environment can be reduced to a few hundreds of voxels in case 

of typical liver exam. Another drawback of using large environment is that the method 

stops before reaching the boundary of the liver (Fig. 2.6/b). This can be corrected by 

applying an additional dilation to the result of the region-growing (Fig. 2.6/c). The kernel 

of the dilation has the same radius as the local environment. 

 

Figure 2.6 Segmentation using neighbour-connected region-growing: initial region (a), result of the segmentation 

(b) and the subsequent dilation (c). 

The homogeneous part of the organ can be segmented using the presented technique, but 

the liver also involves regions whose intensity significantly differs from the normal 

parenchyma. The following subsections present, how the under-segmentation of such 

areas (low density region at the lung, contrast enhancement in vessels, hypo- or hyper-

dense lesions) can be eliminated. 

2.1.4 Correction of under- and over-segmented regions 

The liver can be under-segmented near the right lung lobe, where many voxels have 

lower intensity due to respiratory motion during the acquisitions (Fig. 2.7/a). This 

problem is corrected by an additional segmentation that allows lower intensity range in 

the region located between the segmented liver and the right lung lobe. 

In order to find the target region, the surface of the segmented liver and the right lung is 

analysed. First, the surface voxels for the right lung are located and the surface normal is 

calculated for each of them. If the normal vector of a surface voxel points toward a liver 

voxel that is closer than 20 mm (the liver surface can shift this much due to respiration), 

the surface voxel is labelled. Each labelled lung surface point is then connected with the 

corresponding liver voxel with a discrete line. Then, the discrete lines are dilated using a 

sphere with 5 mm radius. As result of that a closed connected region is formed between 

the liver and the right lung (Fig. 2.7/b – blue region). 

Based on this region a new intensity interval is calculated, which is used by the additional 

region-growing. This segmentation is started from the liver surface points and it is limited 
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to the target region, so it does not cause over-segmentation in other parts of the liver. The 

result of the additional segmentation (Fig. 2.7/c – red area) is added to the liver. 

 

Figure 2.7 Additional segmentation at the right lung: The liver can be under-segmented due to lower intensities 

near the lung (a), region of interest between the liver and lung surface is localized (blue – b), result of the 

additional segmentation (red – c). 

The result of the region growing usually does not involve most part of the portal vein 

because it has significantly higher intensity. In the clinical practice, a vessel is considered 

as part of the liver as long as it is completely surrounded by liver parenchyma. In order to 

reduce this type of under-segmentation, opened cavities having diameter nearly equal to 

the average diameter of the portal vein are detected and filled. 

First, the 3D contour of the segmented liver is determined (Fig. 2.8/a – white), and the 

surface normal vector for each contour voxel is calculated. Then, each surface voxel is 

labelled, when its distance from another liver voxel in the direction of the normal vector 

is nearly equal to the average diameter of the portal vein (10 mm). Finally, the liver is 

dilated at each labelled surface voxel (Fig. 2.8/b) using a sphere having radius equal to 

the average radius of the portal vein (5 mm). This approach fills only the holes due to 

under-segmented vessels without smoothing the other parts of the liver surface (in 

contrast to the standard morphological opening). 

 

Figure 2.8 Filling cavities in the result of the segmentation: Liver surface points are detected (white – a), vessel 

walls are identified and dilated (red – b), and cavities are filled (c). 

Similar to hyper-dense vessels lesions can be under-segmented due to their low or high 

intensity. This problem is reduced using standard 3D cavity filling method. In this step of 

the algorithm, each 3D-connected zero valued (i.e. background) region is identified in the 
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segmented image, and all of them is added to the liver except for the largest one which 

represent the real background. This process fills all lesions except for those located on the 

boundary of the organ (i.e. not fully surrounded by liver). 

 

Figure 2.9 IVC removal: Circular Hough transform is used to detect circles on axial slices (a). Probability map 

highlights voxels, which are likely to be located inside a vertical tubular structure (b). Detection of large 3D-

connected tubular structure (c). Red regions are candidate for removal, and the green region (IVC) is really 

deleted (d). 

Unlike the portal-vein (that is hyper-dense in most cases) the intensity of the IVC can be 

similar to the liver in many cases. Since the radius of this vessel is about 10-15 mm, the 

neighbourhood connected region-growing leaks out through the IVC in nearly half of 

these cases. The idea behind the IVC removal is to detect those parts of the segmented 

liver which are similar to a vertical cylinder that has a specified diameter. 

The axial cross section of the IVC is a circular region (Fig. 2.9/a – red area). Such regions 

can be detected using circular Hough transform. Since the radius of this vessel varies, 

circles with different radius shall be detected. That is why instead of a discrete circle a 

discrete ring is used in the computation of the Hough transform. The inner radius of the 

ring is smaller (5 mm) and the outer is larger (20 mm) than the average radius of the IVC. 

Figure 2.9 demonstrates the concept of detecting of circles with variable diameter. First, 

an IVC probability map is computed in the following way. A discretized binary ring (Fig. 

2.9/a – solid circles) is placed into each contour point (Fig. 2.9/a – black dot) of the 

segmented image, and the value of the IVC map is increased by one in such voxels where 

both the ring (Fig. 2.9/a – bright region between the solid rings) and the segmented image 

(Fig. 2.9/a – red region) have non-zero value. When all contour points are processed, the 

probability map has large value at the centre of circles (Fig. 2.9/a – bright region in the 

centre of the red region) the diameter of which is nearly equal to the average diameter of 

the IVC (Fig. 2.9/a – dashed circle). An example for IVC probability map can be seen on 

Fig. 2.9/b. In order to make IVC detection more robust, the ring is prolonged in vertical 

direction by 2 slices. 

The IVC map is thresholded to reduce the possibility of false detection. The threshold 

value is equal to 0.3 times the largest value of the IVC map, which was defined based on 

empirical tests. Then, the map is processed slice by slice. In each slice all local maxima 

are located. For each maximum it is checked, whether a closed contour is found around it 

within a small environment. In order to do that, a 2-dimensional region-growing is started 

from the maximum visiting only the nonzero voxels of the segmented image. When the 
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2D region-growing cannot reach any voxel located farther than 20 mm from the starting 

point, the corresponding maximum is considered to be encircled by closed contour. When 

closed contour is found, the 2D region around the given maximum is labelled as 

candidate for removal (Fig. 2.9/c – red areas). 

After processing all slices, all 3D-connected regions in the set of unlabelled liver voxels 

are determined. Except for the largest one (that represents the liver) these regions are 

labelled as candidate for removal. Such regions can be found along the IVC, where the 

vein has a branching point or in the bottom or top of the liver. Finally, each labelled 

region, whose vertical length is greater than 25 mm is deleted from the segmentation 

result (Fig. 2.9/d – green area). Due to the size constraint the bottom peaks of the right 

and left liver lobes are not removed (Fig. 2.9/d – red area). 

2.1.5 Evaluation of the single-phase method 

The proposed algorithm was tested on a set of 20 portal-venous CT examinations. This 

set of cases was introduced by the workshops “3D Segmentation in the Clinic – The Great 

Challenge” of MICCAI 2007 conference [28]. The goal of this event was to compare the 

existing techniques for liver segmentation. The organizers of the workshop provided 20 

cases with ground-truth liver contour, which was used by the research teams for preparing 

their segmentation algorithm for a live competition. 

The examinations were acquired using different CT scanners. The image resolution was 

512 × 512 in all cases. The slice number, the slice thickness, and the pixel size varied 

between 64–502 (average 214), 0.5–5.0 mm (average 1.6) and 0.54–0.87 mm (average 

0.7), respectively. The cases involved a few healthy cases, but most of them were 

pathologic involving tumours, metastasis and cysts of different sizes. This dataset will be 

referred as MICCAI training set in the rest of the thesis. 

Table 2.2 shows the accuracy of the proposed method using error measures introduced at 

the beginning of this chapter. According to the results the average relative volume 

difference (RVD) was negative (-1.7%), which indicates the results were a bit under-

segmented. The average of VOE was 8.2%, and it was above 10% in only 2 of the cases. 

Based on visual assessment, these cases involve large hypo-dense lesions, which were 

under-segmented by the method (Fig. 2.10/b). The relatively larger surface-based errors 

in a few cases (ASSD and MSSD) were due to under-segmentation of large lesions or the 

main trunk of the portal vein. 

In addition to standard error measures, the precision of the algorithms was measured 

according to a complex scoring system [28] which makes it possible to compare the result 

of an automated segmentation with that made by a non-expert human operator. According 

to the scoring system a perfect result (i.e. all error measure is equal to 0) is worth 100 

score per each metric, while a non-expert manual segmentation (with VOE = 6.4%, 

ARVD = 4.7%, ASSD = 1 mm, RMSD = 1.8 mm, MSSD = 19 mm) is worth 75 score per 

each metric. The score is interpolated between 0 and 75 and extrapolated above 75, and 

negative scores are replaced with 0. 

Using this scoring system exam 01 (with metrics equal to 10.8%, 4.3%, 1.9 mm, 3.8 mm 

and 31.3 mm) merits scores of 58, 77, 53, 48, and 59, respectively, so the average score is 

59. According to the numbers of the last column (Table 2.2) the average score (71) of the 
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proposed method was nearly as good as the score of a non-expert manual segmentation 

(75). In the majority (90%) of the cases the score was greater or equal to 70, and only in 

two cases was it lower than 70 (exams 01 and 16). The latter cases involve large tumours, 

one of them (exam 16) is displayed in Fig. 2.10/b. 

Exam VOE RVD ASSD MSSD Score 

01 10.8 -4.3 1.9 31.3 59 

02 6.6 -1.6 1.0 17.7 78 

03 8.5 1.0 1.4 27.3 71 

04 5.9 0.7 0.9 19.9 81 

05 7.3 -1.2 1.1 17.1 77 

06 7.1 -0.4 1.0 21.9 78 

07 7.8 -2.1 1.2 21.9 73 

08 7.2 2.9 1.3 23.5 73 

09 8.1 -3.8 1.3 22.7 70 

10 7.7 -0.8 1.3 20.8 75 

11 7.4 2.7 1.3 25.4 70 

12 7.0 4.4 1.1 31.0 70 

13 9.7 0.6 1.5 15.4 74 

14 8.8 -2.6 1.6 20.3 70 

15 4.6 -0.7 0.7 20.2 83 

16 24.2 -21.9 3.8 55.5 8 

17 7.0 -0.5 1.1 16.4 79 

18 5.6 -1.1 0.9 24.3 78 

19 4.6 -0.8 0.7 13.7 85 

20 7.4 -4.4 1.3 19.8 71 

AVG 8.2 -1.7 1.3 23.3 71 

STD 4.1 5.3 0.6 8.9 16 

Table 2.2 Accuracy of the single-phase method on the MICCAI 2007 training dataset. 

 

Figure 2.10 Result of the portal-phase segmentation for an average case (a) and a case with large tumour (b). 

Table 2.3 demonstrates the ranking of the methods based on the scores achieved at the 

live competition. This evaluation used a separate set of 10 exams which were not 

published before the event. It is slightly visible that interactive methods performed the 

best. Considering the automated approaches the method of Kaimuller et al. [35] 

outperformed the others. The difference was mainly due to the fact, that this method can 

provide good results when liver involves large lesions. A group of other methods 
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(including the proposed one) [1], [37], [39], [36] performed at nearly the same accuracy. 

The common point of these methods was that they under-segmented large lesions. The 

methods [48] and [40] failed in some cases, while method [42] failed in most of the cases. 

Method Type Score Time 

Dawant [45] Interactive 75 20 

Beck [44] Interactive 73 7 

Lee [46] Interactive 70 7 

Wimmer [47] Interactive 68 4-7 

Kaimuller [35] Automated 68 15 

Rusko [1] Automated 57 0.5 

Schmidt [37] Automated 53 6-20 

Seghers [39] Automated 51 30 

Saddi [36] Automated 51 5.5 

Slagmolen [48] Automated 42 60 

Furukawa [40] Automated 42 36 

Susomboon [42] Automated 5 25 

Table 2.3 Scores and running time (in minutes) of the liver segmentation methods based on the evaluation 

performed at the live contest of MICCAI 2007 workshop. 

The evaluation at the live competition demonstrated that the proposed method was the 

second best based on accuracy among automated approaches. This result was very good, 

especially if the running time is also taken into account. The proposed algorithm can 

segment the liver within half a minute in average, while other techniques (including the 

best automatic one in precision) required at least 15-30 minutes to run per case. Only one 

automated approach [36] had similar efficiency as the proposed one. 

It is important to note that the accuracy of all methods was significantly lower at the live 

evaluation compared to the evaluation using the training set (e.g. proposed method scored 

57 and 71 respectively). One possible reason for the difference can be the size of the 

dataset used for evaluation. In the live evaluation, one extreme case (out of 10 exams) 

could decrease the average accuracy significantly (due to its relative weight). The 20 

training exams, however, involved relatively less extreme cases. Another possible 

explanation is that in the live evaluation all exams were unknown for the teams, so there 

was no opportunity to fine tune the algorithms for this set of cases. 

The results of this workshop were summarized in a prestigious journal paper [6] that has 

over 200 citations. This publication involved the following statement about the proposed 

method: “Rusko et al. demonstrate that it is possible to produce competitive results with 

low-level image processing techniques, too. One of the major strengths of their approach 

is the speed of segmentation, which is with approximately half a minute a magnitude 

faster than all other methods.” It is important to note, that in addition to presenting the 

state-of-art in liver segmentation, the workshop published the test datasets at a website 

[49], which allows researchers to compare their new method with the existing ones. The 

metrics used at this workshop became standard in the last few years for evaluating liver 

segmentation methods.  
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2.2 Multi-phase method for CT images 

This section presents an automated liver segmentation technique for multi-phase CT 

images. The goal of this research was to investigate whether the accuracy of the liver 

segmentation can be improved if more phases of the contrast-enhanced CT examination 

are incorporated. The proposed approach is based on similar image processing concepts 

presented in the previous section, but it can combine the information of two or three 

images. According to the qualitative evaluation and the quantitative comparison with the 

single-phase approach, this method can more accurately segment the liver parenchyma in 

cases, when large tumours are found in the liver. The results of this research was 

published in a journal paper [1] and the proposed approach was patented [11, 12]. 

The paper [6] gave an overview about the automated liver segmentation techniques for 

portal-phase CT images. According to the evaluation of these methods the average 

clinical case can be handled by most algorithms with good accuracy, however, in the 

challenging cases (e.g. presence of large hypo- or hyper-dense lesions, or low contrast 

enhancement) most of the methods can fail. 

The presented approaches had different theoretical background. Rikxoort [41] et al. 

presented a method that is based on statistical voxel classification using probability liver 

model. The algorithm of Kainmuller et al. [35] uses statistical shape model that is 

combined with a constrained free-form model. Chi’s segmentation approach [38] 

integrates a rotational template matching and K-means clustering with a gradient vector 

flow geometric snake. Schmidt et al. [37] presented a system that allows defining a set of 

rules based on which the abdominal organs are segmented using simple functions (like 

region-growing and morphological operators). The method of Furukawa et al. [40] uses 

maximum a-posterior probability estimation for rough liver extraction whose result is 

subsequently refined with level-set technique. Seghers et al. [39] presented an active 

shape model approach wherein multiple local shape models are incorporated. The 

algorithm of Susomboon et al. [42] uses intensity-based partition, texture-based 

classification, and probability model to segment the liver. Slagmolen’s et al. [48] 

presented a method that incorporates atlas using non-rigid registration. The algorithm of 

Saddi et al. [36] incorporates statistical shape model with global-to-local shape matching 

in order to segment the liver. 

Similar to the methods presented in [6] the majority of the published approaches use only 

the portal-phase of the contrast-enhanced CT examination because this image allows the 

best separation of the liver parenchyma from the surrounding organs. In the clinical 

practice usually 2-4 phases are acquired in a contrast-enhanced examination. In addition 

to the portal, the non-contrast, the arterial, and the delayed images are also available in 

most of the cases. The contrast uptake of the liver depends on many circumstances, such 

as the acquisition timing, the applied contrast agent, or the patient’s blood circulation. 

Since the first two factors depend on hospital protocols and the last one cannot be 

controlled, the quality of the portal venous image varies significantly among patients. A 

method, which incorporates more phases, is less dependent on these external 

circumstances, so it can be widely used in clinical practice. 
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Using more phases to segment anatomical structures has been already introduced in a few 

publications. Saitoh et al. [50] presented a liver segmentation approach that automatically 

delineates the portal vein using the portal and the non-contrast images, and segments the 

liver volume starting from the vessels. The paper of Duda et al. [51] described an 

algorithm for automatic liver lesion detection and classification from multiphase CT 

images. The method of Shimizu et al. [52] extracts a rough liver region from triple-phase 

images that is subsequently refined with level-set technique to get precise segmentation. 

Papers [53, 54] discussed automated liver volume and lesion segmentation approaches 

which are based on the subtraction of the portal and the non-contrast images. All the 

above referred approaches require the input phases to be registered, so their result 

significantly depends on the quality of the registration. The precise registration of the 

different phases is a very complex problem for the following reason. Although the patient 

remains in the same position during the multiphase abdominal CT examination (i.e. spine 

does not move considerably), the organs cans shift, rotate, or deform significantly due to 

respiration. In order to compensate this motion a deformable registration is required, 

which is very time consuming for an average liver case (of resolution 512 × 512 × 200). 

The idea behind the proposed approach is to exploit the characteristic contrast uptake of 

the liver as well as the other organs. The intensity of a surrounding organ can be similar 

to the liver when only a particular phase (does not matter which) is considered. However, 

it is very unlikely that an organ has the same intensity in all phases. That is why the liver 

parenchyma can be more accurately localized when the joint information of multiple 

phases is incorporated. This approach requires the phases to be precisely registered, 

which is very time-consuming when it is performed to the whole image. In order to do 

that efficiently the registration is performed in two steps. In the beginning of the proposed 

method a rough registration is performed for the whole image based on the geometry of 

(i.e. origin, voxel spacing) the images. As result of this alignment the liver significantly 

overlaps on the different phases, which allows detecting a large region inside the organ. 

Then, each phase is separately segmented from the initial region. Finally, the results are 

precisely registered and combined. This precise registration can be done efficiently 

because it is performed incorporating only the local environment of the liver. 

More specifically, Algorithm 2.2 demonstrates the main steps of the multi-phase 

approach. First, an initial region is located using the joint information of all phases 

(Step 1 – Subsection 2.2.1). Starting from the initial region each input image is separately 

segmented (Step 2) using the single-phase method presented in Section 2.1. The 

segmentation involves the separation of liver and heart (Step 2.1 – see prior Subsection 

2.1.2), the region-growing (Step 2.2 – see prior Subsection 2.1.3), and the correction of 

the under- or over-segmented areas (Step 2.3 – see prior Subsection 2.1.4). The 

segmentation does not involve the IVC removal because it is very specific for the portal-

phase image. The result of each phase involves the liver as well as the other structures 

which have similar intensity. In order to get the liver the results are precisely registered 

using affine transformation and the final segmentation is defined as the combination of 

the results belonging to the different phases (Step 3 – Subsection 2.2.2). 
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1 Localize liver based on the joint information of the input phases 

2 For each phase 

2.1 Separate liver and heart 

2.2 Segment liver using neighbourhood-connected region-growing 

2.3 Correct under-segmented hypo- or hyper-dense regions 

3 Register the segmentations using affine transform and combine the results 

Algorithm 2.2 The multi-phase approach 

The qualitative evaluation of the proposed algorithm was performed on a set of multi-

phase examinations involving physicians. The results of the visual evaluation as well as 

the quantitative comparison with the single-phase approach are presented in Subsection 

2.2.3. The presented method was evaluated on large number of multi-phase cases for 

automated liver volume measurement. This study was performed by physicians of a 

hospital in France. The results of these experiments are presented in Subsection 2.2.4. 

2.2.1 Compute seed region based on multi-phase information 

The localization of the liver is based on histogram analysis like in case of the single-phase 

method, but here the joint histogram of all phases is analysed. Before doing that, the input 

phases are normalized using a common format. This is necessary because the input 

images have different geometry in many cases. The origin, the slice number, and the 

voxel spacing vary according to the acquisition parameters of the different phases. For 

example, the arterial phase is usually made with smaller slice thickness, and the portal-

phase covers the pelvis (in addition to the abdomen) in many cases. The goal of the 

normalization is to create a multi-scalar image that shows the intensity of each voxel in 

all phases. Using the geometry of the images, the position of each voxel in each phase can 

be represented in a common coordinate system, which allows computing the extent of the 

largest region that is covered by all images. The input phases are resampled within the 

common region using the same voxel spacing, which results an image that represents the 

contrast uptake of the same anatomical point in each phase. 

Figure 2.11 demonstrates the challenges of the histogram analysis when the phases are 

separately considered. For the sake of easier presentation assume the input consists of two 

phases: arterial and portal. The two phases as well as the histogram of each phase is 

displayed on Fig. 2.11. According to the images it is very difficult to visually separate the 

liver from the muscles in the arterial image (arrows in Fig. 2.11/a), while in the portal 

phase the spleen has similar intensity as the liver (arrows in Fig. 2.11/b). The histogram 

of the arterial phase (solid curve in Fig. 2.11 – bottom) has one large peak that represent 

both liver and muscle voxels, while the largest peak of the portal-phase histogram (dashed 

curve in Fig. 2.11 – bottom) represents the voxels of both liver and spleen. In conclusion, 

muscles and spleen cannot be separated from the liver based on the single-phase 

histograms, which can lead to over-segmentation into muscles or the spleen because the 

liver surface is connected to both of these regions. 



 2.2 Multi-phase method for CT images 

  37 

 

Figure 2.11 Dual-phase liver examination: in arterial phase (a) the muscles, in portal-venous phase (b) the spleen 

has similar intensity as the liver (see arrows). It is not possible to separate the liver from these tissue types based 

on the histogram (bottom) of any of the phases. 

The separation of similar tissue types becomes feasible when the joint information of two 

phases is considered. Figure 2.12 shows the fusion of the arterial and the portal phases of 

a multi-phase CT examination. The arterial and the portal enhancement is visualized 

using the red (Fig. 2.12/a) and the green (Fig. 2.12/b) channels, respectively (blue channel 

is set to 0). According to the fused image (Fig. 2.12/c) the liver is green (due to high 

portal contrast), muscles are dark brown (due to low contrast in both phases), spleen is 

light brown (due to high contrast in both phases), aorta is orange (due to its very high 

contrast in arterial phase), bones are yellow (due to the very high contrast in both phases). 

 

Figure 2.12 Fusion of two phases: When red (a) and green (b) channels are used to represent the arterial and the 

portal density, respectively, the result RGB image (c) shows the joint information of two phases, which allows 

better separation of the liver from surrounding organs. 
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Figure 2.13 Joint histogram of a dual-phase liver examination (bottom): the peaks represent contrast 

enhancements which are characteristic for the different organs (see arrows). 

The joint histogram (Fig. 2.13/c) of a dual-phase image shows the distribution of intensity 

pairs associated with the voxels of the image. This function assigns high probability to a 

gray-level pair (     ) if there are many voxels whose intensity is equal to    at the 

arterial and    at the portal phase. Even though the phases are not perfectly registered, 

there are some clearly separable peak on the on the joint histogram. Each of these maxima 

represents a specific tissue type (i.e. set of voxels having similar contrast uptake). 

All of the large anatomical structures (e.g. liver, spleen, stomach, kidney, muscles, bones, 

heart, and aorta) could be identified based on the joint histogram, but this work focuses 

on the liver only. Two main properties are exploited to find the peak representing the 

liver. First is that it is always located in the intensity range  (     ) (       ) . Second 

is that it is the largest peak within this range. Note that the muscles can form a larger peak 

when the chest or the pelvis is also covered by the CT exam, but the muscles do not have 

as high intensity as 80 HU in the portal phase. 

In order to improve the robustness of the liver localization, the joint histogram is 

computed incorporating only voxels located in the right half of the body (which makes 

the liver peak more significant). Assume the intensity pair (     ) denotes the liver peak. 

The intensity pair (     )   (           ) (           ) is considered similar 

to the liver, if      (     )   (     ), where function   represents the joint 

histogram. Note that the intensity similarity is not separately defined for each phase, 

rather those intensity pairs are selected which belong to the local environment of the liver 

peak and their probability greater than 20% of the liver mode. The latter percentage was 

defined empirically. 
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In the next step the image is thresholded such that one is assigned to each voxel whose 

contrast uptake is similar to (     ) and zero is assigned to the other voxels. Finally, the 

largest 3D-connected component of the thresholded image is computed and eroded with a 

kernel having 5 mm radius. The result set of voxels (Fig. 2.14/b) represent a connected 

area inside the liver, which can be used to initialize the subsequent segmentation. 

 

Figure 2.14 Initial region based on dual-phase information: the fusion of arterial and portal phases (a) and the 

initial region detected based on the joint histogram of two phases (b). 

The proposed technique can be also applied for three-phase images (note that the native 

or the late phase is also acquired in many cases). In such case the distribution of contrast 

uptake can be represented by 3D joint histogram and the liver mode can be described by 

an intensity triplet. Tests with a small set of images showed that using three phases 

provides smaller initial region due to the misalignment of the different phases. In 

conclusion, two contrast-enhanced phases are enough to determine significant amount of 

seed points for the segmentation in all cases. 

After the detection of the initial region the neighbourhood-connected region-growing 

(presented in Subsection 2.1.3) is used to segment the liver in each phase. The initial 

region is resampled according to a voxel spacing of the given phase and the intensity 

range of liver voxels is computed in the same way as presented in Subsection 2.1.3. The 

neighbourhood radius used by the segmentation is set to 5 mm, the applied tolerance is 

equal to 98%, and the subsequent dilation is performed using spherical kernel with 5 mm 

radius. In order to improve efficiency the input phases are re-sliced (by omitting slices), 

so that the slice spacing is between 2 and 3 mm. 

The segmentation is facilitated by most of the pre-and post-processing functions 

presented in Subsections 2.1.2 and 2.1.4. The liver-heart separation is applied to reduce 

the large over-segmentation into the heart. Additional segmentation at the right lung lobe 

is also performed to reduce under-segmentation. The IVC removal and the vessel filling 

algorithms are not used because these steps are specific for the portal phase only, but the 

cavity filling is applied to the result of the segmentation. 

2.2.2 Registration and combination of the results of different phases 

The initial region is significantly larger than that used by the single-phase approach, 

which makes the standard deviation of intensities (     and       in Subsection 2.1.3) 

greater. That is why the segmentation results rather over-segmented in each phase. The 
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over-segmentation can affect different parts of the liver. Most of these areas (muscles 

between ribs, pancreas, stomach, and small bowels) cannot be handled with simple rules 

due to the large variety of their location, size, and shape. However, a neighbouring organ 

is very unlikely to have similar intensity in all phases, so a specific over-segmentation 

occurs in one phase only. That is why probability of over-segmentation can be 

significantly reduced by combining the result of the different phases. 

Due to the patient’s respiration the organs located near the lung move and deform 

considerably between two phases (Fig. 2.15). It is clearly visible (especially on the 

coronal slice) that the liver is shifted down significantly due to respiration. This 

phenomenon is characteristic for all multi-phase abdominal CT images, so registration is 

needed before the segmentations of the different phases are combined. 

 

Figure 2.15 Inter-phase registration problem: axial (a), sagittal (b), and coronal (c) slices of a portal-phase 

image. The green region represents the segmented liver belonging to the portal phase and the red contour shows 

the segmentation of the arterial phase. 

For sake of efficiency the inter-phase registration is reduced to the environment of the 

liver. Since the fine registration is very time-consuming for a high resolution CT image, 

only the segmented liver volumes (i.e. binary images) are registered. For further 

optimization, the liver volumes are resampled using isotropic voxel size (5 x 5 x 5 mm). 

The registration transform is computed in two steps. First, a translation transform is 

computed. This step is initialized such that the weight centre of the moving liver is shifted 

to that of the fixed liver (that belongs to the portal phase). Then, an affine transform is 

computed. The matrix (representing the rotation, scale, and shear) of the transform is 

initially set to the identity, the centre of rotation is set to the weight centre of the moving 

liver, and the translation vector is set to the result of the previous step. In both step of the 

registration the squared difference is used as similarity metric, and gradient descent 

optimizer is applied to find the best transformation. The registration was implemented 

using ITK [55]. Figure 2.16 demonstrates an example for inter-phase registration. 

 

Figure 2.16 Inter-phase registration result: axial (a), sagittal (b), and coronal (c) slices of a portal-phase image. 

The green region represents the segmented liver belonging to the portal phase and the blue contour shows the 

registered segmentation of the arterial phase. 
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When the segmentation results are registered the result can be defined as an arbitrary 

function of the segmented as well as the original grayscale images. Before doing that, all 

images must be resampled using the registration transform and the geometry of the 

reference image. The reference image can be any of the phases depending on the clinical 

application, in most of the cases it is the portal-phase image. The resampling of large CT 

images is very time consuming, so in this work the final result is defined based on the 

segmented liver belonging to the different phases. This way, only binary volumes need to 

be resampled. 

The number of voxels belonging to the reference image can be very large  

(e.g. 512x512x500) when it covers large part of the pelvis or the chest or the slice 

thickness is below 1 mm (both are very common in clinical practice). Applying the 

registration transform to all of these voxels is very computation demanding. In order to 

make an efficient resampling that results a smooth liver surface, the binary liver volume 

is converted into a triangle mesh before transformation. This approach allows applying 

the inverse of the registration transform to the surface points only and computing the liver 

voxels only in slices which intersect the triangle mesh. Moreover, this surface-based 

approach allows smoother interpolation between the down-sampled slices (note that the 

segmentation is performed on a down-sampled image in case of small slice thickness) 

than the linear, the nearest neighbour, or the spline-based interpolation of the binary liver 

volumes. This way, the result is closer to the expectation of the physicians. 

The combination of the results can be defined in various ways. It can be majority vote 

(e.g. a voxel is considered as part of the liver if it is involved in the majority of 

segmentation results) or some weighting of images can be used (e.g. portal phase has 

higher weight compared to the arterial). The exact type of the input phases is, however, 

unknown for all examinations. Based on the timestamp of each phase one can compute 

the chronological order of input images and the delay between the injection of the 

contrast agent and the acquisition of each phase, but cannot define the exact phase. Even 

though a standardized protocol is used for contrast injection, no one can guarantee that 

the contrast will arrive to the portal vein of at a given time (because it depends on patient 

condition). That’s why, when two contrast-enhanced phases are available, there are many 

possible configurations (e.g. arterial/portal, pre-portal/post-portal, portal/late, etc.). 

 

Figure 2.17 The combination of result belonging to two different phases: the segmentation of the arterial (a) and 

the portal (b) phase can be over-segmented, taking their intersection after affine registration can significantly 

reduce the over-segmentation (c). 
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Due to the above mentioned issues the intersection is used to combine the segmentation 

results of the different phases. Even this simple approach can significantly reduce the 

over-segmentation in all anatomical regions involving the muscles between ribs, the 

inferior vena cava, the stomach, the pancreas and the small bowels. Figure 2.17 shows an 

example for combining the result of two phases. As it is demonstrated by the figure the 

over-segmentation into the muscles (a) and IVC (b) can be eliminated when the 

intersection is taken (c). 

2.2.3 Evaluation of the multi-phase liver segmentation 

This section presents the preliminary qualitative evaluation of the proposed multi-phase 

algorithm and the quantitative comparison with the single-phase method (more extensive 

evaluation and comparison with other methods can be found in Section 2.4). The test 

dataset involved 19 multiphase examinations (3 dual-phase, 16 with three-phase). The 

dual-phase cases involved the arterial and the portal images, and the three-phase images 

involved the non-contrast or the late phase in addition. Since manual segmentation was 

not available for the images, the segmentation accuracy was assessed using a 

questionnaire. The questions were answered by 5 radiologists for each segmentation 

result. The questions were related to specific segmentation errors (Table 2.4) and the 

overall accuracy of the results (Table 2.5). 

Question good acceptable bad 

Rate separation from chest wall between ribs 88.75 11.25 0.00 

Rate separation from heart 86.25 12.50 1.25 

Rate detection of caudal part of the left lobe 72.50 22.50 5.00 

Rate detection of hepatic portal vein 82.50 13.75 3.75 

Rate detection of bottom part of liver 73.75 26.25 0.00 

Rate detection of upper part of liver 45.00 51.25 3.75 

Rate correction of breathing artefacts 92.50 7.50 0.00 

Question as it is after edit not at all 

Can the segmented liver be used 55.00 38.75 6.25 

Table 2.4 Evaluation using questionnaire: Possible answers for the questions are shown in the columns. Each 

row demonstrates the distribution of answers given by 5 radiologists for all test cases. 

Question 1 2 3 4 5 

Rate under-segmentation 1.25 6.25 18.75 63.75 10.00 

Rate over-segmentation 0.00 0.00 1.25 27.50 71.25 

Table 2.5 Evaluation using questionnaire: Each value represents the average of answers made by 5 radiologists 

for all test cases. The possible answers for the two questions are: 1 = the result is useless; 2 = the result is largely 

over- or under-segmented, so it requires significant manual correction; 3 = the result is slightly over/under-

segmented, so it requires some manual correction; 4 = the result is rarely over/under-segmented, so it requires a 

minor manual correction; 5 = the result is not over/under-segmented. 

Tables 2.4 and 2.5 summarize the average rating of segmentation quality provided by the 

radiologists. According to Table 2.4, the separation from the chest wall and the heart, the 

detection of hepatic portal vein, and the correction of breathing artefacts was successful in 

more than 82% of the cases. The detection of the caudal part of the left lobe and the 

bottom part of liver was good in more than 72% of the cases. The detection of the upper 
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part of the liver was successful only in 45% of the cases, and it failed only in 3.75% of 

the cases. The answer for the question concerning the overall usability of the results 

shows the segmented liver was useful for clinical purposes in nearly 94% of the cases as 

it was or after some editing. The clinical application was liver surgery planning including 

living related liver transplantation and oncological resection. 

The overall under- and over-segmentation was also rated by the radiologists. According 

to Table 2.5 the average over-segmentation rate was (3·1.25+4·27.50+5·71.25)/100=4.7, 

the under-segmentation rate was (1·1.25+2·6.25+3·18.75+4·63.75+5·10.00)/100=3.75. 

The latter result was due to under-segmented lesions, whose intensity was significantly 

different from the normal liver in one phase. Based on the results,      was probably 

good because in 71% of the cases the result was not over-segmented and in further 27% 

the result was a bit over-segmented. However,      was probably lower because under-

segmentation was characteristic for 90% of the cases, although it was acceptable in more 

than 73%. The hypothesis about      and      is confirmed by the next test, wherein 

the single- and multi-phase methods are evaluated using manually segmented liver. 

 

Figure 2.18 Axial (left), sagittal (centre), and coronal (right) slices of segmentation results rated good (top), 

acceptable (middle), and bad (bottom) by radiologists. 

Figure 2.18 demonstrates the result of the multi-phase method for three representative 

cases. The top row (Fig. 2.18/a-c) displays a good solution that can be used without 

manual correction (based on the physician’s feedbacks). The middle row (Fig. 2.18/d-f) 
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shows an acceptable segmentation that can be used after minor corrections. The bottom 

row (Fig. 2.18/g-i) demonstrates a bad solution that could be used only after time 

consuming editing. In the last case a large lesion (in the left part of the liver) was not 

involved by the result. 

The goal of the other test was to demonstrate the multi-phase method can efficiently 

separate liver from organs which have similar intensity in a particular phase. The two 

methods were qualitatively compared using a small set of 5 challenging exams (selected 

from the 19 cases used in the preliminary evaluation). These exams involved the arterial 

and the portal phases. The images were segmented by both methods, such that the single-

phase method used only the portal-phase image, while the multi-phase incorporated both 

arterial and portal images. 

 

Figure 2.19 The result of the single-phase (red area) and the multi-phase method (green contour): over-

segmented regions at the pancreas (a, b), the stomach (c), the bowels (d), and the IVC (e) can be reduced by 

combining more phases. 

Figure 2.19 shows the result of the single- and the multi-phase methods for the 5 

challenging exams. The small dataset involved cases with good (a, b), bad (c), and 

moderate (d, e) contrast enhancement. There were healthy as well as tumorous exams 

involved. Based on the visual assessment one can see the single-phase method can leak 

into the pancreas (a, b, d), the stomach (c), the IVC (b, e), or the muscles between ribs 

(b), but the multi-phase approach provided better result in all of these cases. 

In order to make quantitative comparison, the liver was manually contoured on the portal-

venous phase of the elected cases. The contour was defined by a non-expert operator and 

acknowledged by a physician. The result of both methods was compared with the manual 
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segmentation and various error measures were computed, which are reported in 

Tables 2.6 and 2.7. 

According to the tables the average row shows better accuracy for the multi-phase 

method. The VOE as well as the surface errors (ASSD, MSSD) were lower for the multi-

phase method thanks to the lack of extensive over-segmentation. However, the average 

TPVF was 3.3% lower in comparison with the single-phase method, which indicates the 

multi-phase method is more specific to the healthy liver parenchyma. The lower 

sensitivity of the multi-phase method is also confirmed by the negative average RVD. 

The loss of TPVF was smaller compared to the improvement in FPVF that was 9.7% 

lower for the multi-phase method. 

In more details, subject of exam (a) had a large lesion that was under- segmented by both 

methods. In this case, the result of the single-phase method was over-segmented in the 

bowels, which compensated for the loss of volume (identical VOE and different RVD). In 

case of exams (b) and (c) the single-phase method over-segmented the stomach and some 

bowels, which increased the MSD and FPVF significantly. For these exams as well as for 

exams (4) and (5), the multi- phase method provided better results. 

Exam VOE RVD ASSD MSSD Score TPVF FPVF 

a 18.56 0.51 2.61 48.61 43 90.0 10.5 

b 19.74 22.51 5.18 78.93 5 99.1 23.4 

c 20.06 11.24 4.79 73.58 13 93.8 17.4 

d 11.07 5.43 1.54 34.53 59 96.7 8.7 

e 10.16 0.61 1.54 25.21 69 94.9 5.7 

Average 15.92 8.06 3.13 52.17 38 94.9 13.1 

Std.Dev. 4.88 9.2 1.75 23.59 28 3.4 7.2 

Table 2.6 Quantitative evaluation of the single-phase method. 

Exam VOE RVD ASSD MSSD Score TPVF FPVF 

a 18.56 -12.65 2.83 49.41 32 84.1 3.3 

b 9.40 1.84 1.68 22.59 69 95.9 5.9 

c 10.36 -5.52 1.52 21.11 66 91.9 2.6 

d 9.48 -4.10 1.14 22.26 72 92.9 2.8 

e 9.30 -4.29 1.18 25.21 70 93.1 2.6 

Average 11.42 -4.94 1.70 28.12 62 91.6 3.4 

Std.Dev. 4.01 5.17 0.69 12 17 4.4 1.4 

p-value 0.118 0.009* 0.139 0.129 0.177 0.011* 0.024* 

Table 2.7 Quantitative evaluation of the multi-phase method, and comparison with the single-phase method 

(* demonstrates significant difference p < 0.05). 

In order to assess the significance of the differences, two-tailed paired T-test was 

performed for each error measure (see bottom row of Table 2.7). According to the p-

values three metrics (RVD, TPFV, FPVF) showed significant difference, while the other 

differences (VOE, ASSD, MSSD) were not statistically significant. As reported earlier, 6 

of the 7 error measures had better average and smaller deviation for the multi-phase 

method. Since the deviation was still high, the number of cases was too low to 

demonstrate statistically significant difference for 4 of the 7 error measures. 
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In summary, the multi-phase method provided more accurate result because the 

possibility of over-segmentation was significantly lower. This was due to the more 

reliable initial segmentation and the intersection of the results belonging to the different 

phases. However, both methods can under-segment large (hyper- or hypodense) lesions. 

The lesions are the most visible in the portal phase (due to the high contrast uptake of the 

liver), so they are very likely under-segmented if this phase is incorporated. 

It is important to note that the multi-phase method can use any contrast-enhanced phases 

(unlike the single phase method that works only for the portal image only). It is possible 

to combine the arterial phase with another less contrast-enhanced phase, when the exam 

involves large hypo-dense lesions. According to experiments with three-phase images, the 

under- segmentation of large lesions was eliminated, when the late phase was used 

instead of the portal venous. An example for such result can be seen on Fig. 2.20. In this 

particular case the arterial, the portal, and the late phases were available. Incorporating 

the portal phase only (Fig. 2.20/a) or combining it with the arterial phase (Fig. 2.20/b) did 

not result in good segmentation. However, when the arterial phase was combined with the 

late phase (Fig. 2.20/c) the segmentation was significantly better. 

 

Figure 2.20 The main advantage of the multi-phase method: using of the portal venous phase only (a) or 

combined with the arterial phase (b) may result in under-segmented image. When the arterial image is combined 

with another less contrast-enhanced phase, the multi-phase method provides good result (c). 

The comparison of the single- and multi-phase phase methods showed the single-phase 

method can provide similar level of precision as the multi-phase method in case of ideally 

acquired portal-venous images. In clinical practice, however, the quality of the portal-

venous image varies. Since the multi-phase method can incorporate more images, it 

provides better results in cases when the liver is not easily separable from the surrounding 

organs in the portal-venous phase. The single-phase method involves various pre- and 

post-processing steps to eliminate over-segmentation at different organs which can be 

described with simple rules (heart, IVC, vessels). The multi-phase method can also 

separate the other organs which cannot be described with such rules. 

In the clinical routine the running time is very important, and the proposed multi-phase 

approach meets this requirement. The fully automated segmentation of a contrast-

enhanced liver CT exam (having two phases) took 25.6 (±7.2) seconds in average using 

Intel Core2 Duo 2.2 GHz CPU with 2 GB RAM. The running time of the single-phase 

method (without optimization) was 40.7 (±9.4) seconds using the same hardware. The 
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running time of the presented approaches was significantly less than 5-30 minutes 

reported for other methods in the MICCAI 2007 liver contest (see Table 2.3). 

In summary, the preliminary evaluation demonstrated that the overall precision of both 

methods is good. The results were rarely over-segmented, but the under-segmentation of 

large lesions (10-20% of the total volume) shall be considered. The latter issue can be 

solved in various ways. Two directions (incorporating probabilistic liver model in the 

segmentation – Section 2.4, and automated detection of lesions in the environment of the 

healthy liver – Section 3.2) were explored and presented latter part of this thesis. 

2.2.4 Clinical study on liver volume measurement 

This subsection presents another evaluation of the multi-phase method, which was 

performed in cooperation with the clinicians of the Henry Mondor Clinic in France. The 

goal of this study was to investigate, whether the proposed method can be used to solve a 

real clinical problem: the quantification of the liver volume based on CT images. The 

results of the study were published in a medical journal [10]. 

The quantification of the liver volume is very important before transplantation. The 

hospital provided 40 cases belonging to patients who underwent liver transplantation 

prior the study. The hospital also provided the ground-truth liver volume which was 

calculated from the weight measured after the liver was removed by the surgeon. The 

volume computed from the manually segmented liver was also available for each case. 

The dataset involved various exams. The common property of the cases was that all 

patients had chronic liver disease. In this condition the organ absorbs small amount of 

contrast agent, which makes these cases difficult to segment automatically. Moreover, 

many cases were affected by ascites (when the abdomen is filled with water-like liquid 

that can take large volume of the total abdomen). For more information about the images 

refer to Tables A.2 – A.5 in the appendix. 

The proposed multi-phase method was executed for all cases using the arterial and the 

phases as input and the result volumes were compared with ground truth using statistical 

correlation. The volume computed from the manual segmentation was also compared 

with the ground-truth liver volume (using RVD measure). 

According to the results presented in Table A.1, the mean ground-truth liver volume was 

1401 cm
3
 (range 708-2350 cm

3
; SD = 401 cm

3
). The mean liver volume computed from 

the manual segmentations was 1425 cm
3
 (range 713-2772 cm

3
; SD = 474 cm

3
). The mean 

liver volume computed from the result of the automated segmentation was 1404 cm
3
 

(range 493-2769 cm3; SD = 514 cm3), which was closer to the ground truth. The mean 

difference of the manual and the automated method from the ground-truth liver volume 

was 23 cm
3
 (RVD = 1.4%) and 2.9 cm

3
 (RVD = -0.5%), respectively, which also shows 

the proposed algorithm was more accurate than the manual segmentation. Both automated 

and manual liver volume measurements were strongly correlated to the ground-truth with 

respective Pearson coefficients of 0.87 (p<0.0001) and 0.91 (p<0.0001). 

According to the visual assessment of the results the overall accuracy of the proposed 

automated approach was good (see images in Appendix A). The largest errors in multi-

phase volume measurement were due to some over-segmentation into the stomach (exams 

24, 29) or the spleen (exam 22). 
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These results showed the proposed algorithm can efficiently combine the information of 

the portal and the arterial phases to provide accurate segmentation. This feature of the 

method becomes important when the portal-venous image have low contrast. The mean 

liver density in the portal-phase images involved in this study was equal to 90 HU (min = 

66 HU, max = 106 HU, stdev = 10 HU), which is significantly lower than the mean 

hepatic enhancement (128 HU) reported by Li [56] for routine contrast-enhanced 

abdominal CT cases. In such cases the liver is more difficult to separate from 

neighbouring organs when only one phase is considered, which makes it beneficial to 

incorporate more phases in the automated liver segmentation. 

The mean time required by the manual segmentation was significantly longer than that of 

the automated method. The respective values were 86±3s and 17s±5s. In conclusion, the 

study showed that automated liver volume measurement based on multi-phase CT 

examinations is feasible with reduced computation time when the proposed multi-phase 

method is used. 

2.3 Model-based method for MR images 

The intensity-based liver segmentation has its limitations, as it was demonstrated in the 

last two sections. The intensity distribution is not homogeneous inside the liver, which 

can results in under-segmentation. The under-segmentation of vessels can be relatively 

easily corrected (as presented in Section 2.1). However, the problem of missing lesions 

and other pathologic areas, which are the primary targets of a medical examination, shall 

be also addressed. This problem has more significance in case of MR images where even 

the normal liver parenchyma can be inhomogeneous. The main motivation of this work 

was to find a solution for this problem. 

This section presents an automated liver segmentation method that uses probabilistic liver 

model to increase the accuracy of the intensity-based segmentation technique presented in 

prior sections. The novelty of the proposed model is that it is partitioned into 8 segments 

according to the anatomy of the liver. The partitioning allows using different intensity 

statistics in different parts of the organ, which makes the segmentation less sensitive to 

local intensity differences caused by pathology or MR artefacts. The method was 

evaluated using eight representative contrast-enhanced MR exams. The results showed 

the proposed algorithm can accurately segment the liver in short time despite the 

significant intensity variation that is characteristic for MR images. The results of this 

work were published in a journal paper [2] and the proposed approach was patented [13]. 

Several methods were published for liver segmentation on CT images, and many of them 

were referred in prior sections. In this introduction only those publications are mentioned, 

which are related to the presented approach. The literature of MR-based liver 

segmentation is significantly smaller compared to CT modality, but methods from this 

area are also referred. 

There are algorithms [35, 39, 59] which use shape models extended with local intensity or 

shape characteristics. These methods can handle intensity variations of the liver in 

efficient way, but most of them relies on CT characteristics (e.g. liver intensity lies in a 
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well-defined range), which makes them challenging to adapt to MR modality. 

Furthermore, using complex shape models can increase significantly the running time. 

Furukawa et al. [40] and Rikxoort et al. [41] applied probabilistic model to facilitate liver 

segmentation that is based on level-set or voxel classification methods, respectively. 

Although their probabilistic model is modality independent, these techniques cannot 

handle significant intensity variation characteristic to MR images. A low-computation 

demanding approach was presented in Section 2.1. This method uses region-growing and 

incorporates anatomical rules to eliminate under- and over-segmentation. The 

disadvantage of this algorithm is that it uses global intensity statistics, therefore it cannot 

be applied to MR images. Li et al. [60] described an approach which combines level-set 

with watershed technique. According to their results the algorithm provides good 

segmentation, but there are no statistics presented about accuracy and running time. 

Farraher et al. presented an approach [61] that segments the liver on MR images using 

clustering. This technique is semi-automated (the user is required to inspect the 

segmentation results and modify parameters if needed) and moderately time-consuming 

(the running time was above 5 min). Hermoye et al. [62] compared manual contouring 

with 2D semiautomatic deformable model technique for liver segmentation. In this work 

the semi-automatic segmentation is performed slice-by-slice started from a user-

positioned circle which is deformed to the organ’s boundary. It requires about 5 min and 

multiple user interactions which can introduce significant inter-operator variability. 

In the clinical practice the number of MR liver examinations is increasing thanks to the 

very good soft tissue differentiating capability of this modality and the widespread of MR 

scanners. Computer assisted liver analysis shall also follow this trend, so there is a need 

for an automated method that can accurately segment the liver volume in MR images in 

efficient way. These facts motivated the development of a new method that integrates the 

advantages of the intensity-based, model-based and local statistics-based approaches. 

More specifically, Subsection 2.3.1 demonstrates the main challenges of segmenting 

abdominal MR images. Subsection 2.3.2 describes how the partitioned probability liver 

model was created. Subsection 2.3.3 shows how the liver model is incorporated in 

segmentation using region-growing technique. Finally, Subsection 2.2.4 presents the 

evaluation of the proposed method on a small set of representative MR liver cases. 

2.3.1 Challenges of the automated MR image segmentation 

The automated segmentation of contrast-enhanced MR images is very challenging due to 

various reasons. The first problem is that the intensity values in the MR images cannot be 

associated with any material or tissue type, which is due to the physics of MR image 

acquisition (i.e. the measured signal is related to the molecular environment of hydrogen 

protons they are embedded in). In case of CT modality the intensity values represent X-

ray absorption coefficients, which allows segmenting the main tissue types (e.g. air, fat, 

soft tissue, bone) by simple thresholding using pre-defined intensity ranges. 

Figure 2.21 shows the histogram of 8 abdominal CT images (thin lines) and the average 

histogram of all 8 exams (thick line). It is slightly visible, that the each histogram has 

some significant peaks at nearly the same intensity level. These peaks represent the 
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different material or tissue types. This property of abdominal CT image allows locating 

soft-tissue regions (including the liver) in a very easy way, which can be exploited when 

the liver is automatically segmented. 

 

Figure 2.21 Histogram of 8 contrast-enhanced abdominal CT images (thin) and the average histogram (thick). 

The main material types (air, lung, fat, soft-tissue, bones) are represented by a well-defined intensity range. 

In case of MR modality the intensity range belonging to the different material types (as 

well as the whole image) varies significantly among cases. Figure 2.22 shows the 

histogram of 8 abdominal MR images (thin lines) and the average histogram of the 8 

exams (thick line). It is visible that the intensity range of the whole image varies between 

[0,1800] and [0,4800]. Each histogram has some well separable peaks, but they belong to 

different intensity levels. That is why the average MR histogram has no characteristics 

peaks, which does not allow segmenting different material types (e.g. soft tissue) using 

pre-defined intensity ranges. 

 

Figure 2.22 Histograms of 8 contrast-enhanced abdominal MR images (thin). The intensity range representing 

the same tissue type does not overlap among cases, which makes the average histogram (thick) have no well-

separable peaks. 

The pathologic regions are more visible in MR images thanks to the better soft-tissue 

differentiation of this modality, which makes the liver more heterogeneous compared to 

CT modality. The second main problem from automated segmentation’s point of view is 

that even the healthy liver parenchyma can be heterogeneous in MR images due to 

various artefacts. The intensity range covering all liver voxels can be so wide that it 

usually overlaps with other tissues like fat, bones, or even air. Moreover, the 

heterogeneity of the normal liver can be different in different contrast phases, which 
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makes it very difficult to detect the normal liver based on the joint information of more 

phases according to our preliminary experiences. Examples for the above mentioned 

issues are visualized in Fig. 2.23. 

 

Figure 2.23 Challenges of MR image segmentation: the healthy liver parenchyma has different intensity at 

different locations due to signal inhomogeneity (a – arrow in left lobe) or near the boundary of the acquired field 

of view (c – arrow in the top of the liver). Pathologies can have similar intensity as the air (b – top arrow), and 

motion artefact can introduce artificial contours (b - bottom arrow). 

Besides many properties which make their automated processing difficult, MR images 

have some advantages from technical point of view. Due to the special image acquisition 

arrangement (i.e. coils are attached to the body region to be examined) MR images cover 

small part (20-40 cm) of the body. This property is true for abdominal images, which 

makes the automated localization of the organ easier. 

The MR images used in this work are portal-phase gadolinium-enhanced LAVA (Liver 

Acquisition with Volume Acceleration) exams. The LAVA protocol was developed for 

liver imaging, so the image to be segmented involves only the upper part of the abdomen, 

where the liver is located (i.e. chest or pelvis is never involved in such images). Thanks to 

the contrast enhancement the liver parenchyma is brighter than the surrounding organs. 

2.3.2 Construction of the partitioned probability liver model 

In order to incorporate the mean shape of the liver during segmentation, a probabilistic 

model was created. The probabilistic model in general represents the spatial distribution 

voxels belonging to an organ. The proposed model is extended with the segmental 

structure of the liver. Combining these two kinds of knowledge allows diverging from 

mean liver intensity in voxels where the probability is high and segmenting different parts 

of the liver using local intensity statistics. The model was constructed in two steps. First, 

the probability map of liver voxels was computed based on a set of training examples. 

Then, the anatomical segmentation of the liver was applied to the model. 

The probabilistic model was built from 60 non-contrast CT liver exams which were 

manually contoured by radiologists as part of a research project on abdominal organ 

segmentation [33]. Since the model represents the spatial distribution of liver voxels, the 

modality of the images used for manual contouring does not have any effect to it. It is 

also important to note that these liver cases were not involved in any test database used 

for evaluation in this thesis (which requires contrast-enhanced CT images, anyway). 
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In the first step the binary liver volumes were normalized by resampling to an isotropic 

voxel spacing (2.5 mm) and cutting to the smallest extent. Then, each liver was registered 

to a reference case using 3D similarity transformation. The reference exam was selected 

based on its volume that was the closest to the average (1525 cm
3
) of the training 

database. The registration transformation involves translation, scaling, and rotation, so it 

can describe the inter-patient variation of liver position and size in the abdomen. The 

transformation was initialized by translating the weight centre of the moving image into 

that of the reference image, setting the centre of rotation to the common weight centre, 

and setting the rotation matrix to the identity. In order to find the best transformation 

between two liver volumes the square difference of the binary images was minimized 

using gradient descent method. After registration a probability map was created by taking 

the sum of all registered liver binary volumes and normalizing it to the range [0,1]. 

The novelty of the model construction was to extend the liver model with information 

about the segmental structure of the organ. According to the Couinaud definition [63] the 

liver can be divided into eight segments. The practical definition of Couinaud 

segmentation uses five planes to separate the eight segments. These planes are fit to the 

three main branches of the hepatic vein and to the two main branches of the portal vein. 

In order to incorporate the segmental structure in the model the cutting planes were 

defined for the reference liver based the corresponding CT image (to visualize the internal 

structure of the liver) and subsequently applied to the average liver shape. The average 

liver shape was created by thresholding the probability map at 30%. This threshold level 

was selected such that the volume of the average liver shape was the closest to 1525 cm
3
. 

 

Figure 2.24 Partitioned liver model: The probability map was thresholded at 30% to get the average liver shape 

that was partitioned using 5 planes defined for the reference liver (left). An axial (centre) and a coronal (right) 

slice of the liver model that assigns two values to each voxel: the liver probability (brightness) and the segment 

label (colours) 

As result of the model construction a 3D multi-scalar image was created that assigns two 

values to each voxel: the probability of the voxel to belong to the liver and the label of the 

segment that involves the given voxel. The latter value is set for voxels involved by the 

average liver shape. Figure 2.24 shows the partitioned average liver shape (a), an axial (b) 

and a coronal (c) slice of the partitioned probability map of the liver. 

  



 2.3 Model-based method for MR images 

  53 

2.3.3 Segmentation using the liver model 

The segmentation method comprises of three main steps. In the first step the intensity 

range representing the contrast-enhanced soft-tissue (involving normal liver intensity) is 

computed. Then, the liver model is registered to the image. Finally, the liver is segmented 

using neighbourhood-connected region-growing incorporating the partitioned liver model. 

As demonstrated in Subsection 2.3.1 the intensity of a given tissue type varies among MR 

images. In the test dataset used for the latter evaluation the mean liver intensity varied 

between 729 and 2954. That is why the intensity mode representing the contrast-enhanced 

tissue shall be determined in each case, separately. Algorithm 2.3 demonstrates how this 

intensity mode (    ) and range             is determined. 

1 Compute histogram   and let                  

2 For each local maximum ( ) of the histogram 

2.1 Compute left (  ) and right (  ) edge of maximum ( ) 

2.2 Compute     ( )  ∑  ( )        

2.3 If                 ( ) 

let       ,        , and         

Algorithm 2.3 Compute contrast-enhanced soft tissue intensity range 

The algorithm exploits that the histogram always has a well separable maximum that 

represents the contrast-enhanced soft tissue and there is only a few voxels (e.g. lesions or 

vessels) which are brighter than that. These two properties are the consequence of the 

liver specific contrast enhancement and the localized acquisition (i.e. the liver allocates 

significant part of the image).  

In the first step of Alg. 2.3 the histogram of the image computed and variables     , 

    , and      are initialized. In the subsequent loop (Step 2) the environment of each 

local maximum ( ) is analysed so that the left (  ) and right (  ) edges of the 

histogram peak are computed (Step 2.1).    is defined by the highest intensity (   ) 

that represents a local minimum in the histogram or whose probability  ( ) is less than 

 ( )   . Similarly,    is defined by the lowest intensity (   ) that represents a 

local minimum in the histogram or whose probability  ( ) is less than  ( )   . 

When    and    are available for a maximum, the area under the histogram is computed 

in the range         (Step 2.2.). If the area represents at least 5% of the total image,   is 

considered as a candidate for     . The highest   among all candidates is selected as 

    , while      and      is set to    and   , respectively (Step 2.3). Using the 5% 

constraint prevents the method to select an intensity range that represent hyper-dense 

lesions or contrast filled vessels. 

Figure 2.25 shows the histogram of two MR liver cases. It is slightly visible, that each 

histogram has only a few maxima. The peak belonging to the contrast-enhanced soft 

tissue (Gmod) can be defined using the proposed rules, even though its position varies 

significantly among cases (see solid and dashed curves and corresponding values). 
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Figure 2.25 Histogram of 2 contrast-enhanced abdominal MR images (solid and dashed curves). The liver 

intensity mode (Gmod) and range (Gmin,Gmax) is located at different intensity values. 

 

Figure 2.26 Model registration: The input image is thresholded (a), distance map is computed (b – red colour 

represents large distance), registered probability map (c – red colour represents high probability), dilated 

average liver shape with anatomical segment information using different colours (d). 

In the second step of the segmentation the liver model is registered to the image. This 

process consists of the following activities: 

 In the first step the image is resampled using 2.5 mm isotropic voxel spacing so that 

its size is significantly reduced and its spacing is compatible with the model. 

 Then, the image is thresholded using             and the left-posterior quarter of 

the image (where the spleen is located) is deleted (Fig. 2.26/a – right bottom). 

 For all nonzero voxels of the thresholded image the 3D distance from the nearest 

contour voxel is computed, which results in a 3-dimensional distance map 
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(Fig. 2.26/b). Since the liver has the largest compact volume in the abdomen, the 

largest values in the distance map always represent the central part of the liver. The 

distance map is normalized to the range [0,1]. 

 In the next step, the liver probability map is registered to the distance map. Note that 

the liver model has the same characteristics as the distance map (Fig. 2.26/c), which 

is exploited in this step. The registration computes a 3D similarity transform by 

minimizing the square difference between the probabilistic model and the distance 

map using gradient descent method. The registration transform is initialized, such 

that the rotation matrix is set to the identity, the initial translation is set to the 

difference of the weight centres of the distance map and the liver model, and the 

centre of rotation is set to the weight centre of the liver probability map. 

 After the registration, the liver probability map, the average liver shape as well as 

the segmental structure is aligned with the image. In order to make the segmental 

information available for voxels located outside the average liver, 3D dilation is 

applied to the image representing the anatomical segments (Fig. 2.26/d). 

The third main step of the algorithm is to segment the liver parenchyma using 

neighbourhood-connected region-growing method. The segmentation, which incorporates 

the liver model and the segmental structure, works in the following way: 

 First, the initial region is located inside the liver. This region is extracted from the 

soft-tissue image (created in the model registration) by performing 3D erosion. 

Large radius (15 mm) is used for the erosion so that small regions are eliminated. 

The largest 3D connected region of the eroded image is used as initial region 

(Fig. 2.27/a). This region is always located in the liver because this organ has the 

largest compact volume in the abdomen. 

 Then, intensity statistics are computed for the initial region and for each segment, 

separately. The intensity range of the initial region             is defined based on 

the histogram of the seed region in the way as presented for the single-phase method 

(in Subsection 2.1.3). Note that this intensity range is narrower than             

because it does not involve vessels and hypo- or hyper-dense lesions. The segment 

specific intensity ranges      
      

   for each       are computed in the same 

way as            , such that only the corresponding segment of the average liver 

shape is taken into account. In summary, the following intensity statistics are 

incorporated during the segmentation: 

o Liver intensity range             is a subset of the global soft-tissue range 

            and represents liver parenchyma without vessels and lesions. 

o Segment specific range (    
      

 ) that represents local intensity of segment 

 , including liver parenchyma, vessels and lesions. It can be either narrower 

than             or wider than             due to artefacts or pathology. 

 Starting from the initial region the liver is segmented using neighbourhood-

connected region-growing technique. Let   denote an index position in the image. 

Furthermore, let  ( ) and  ( ) denote the value of the registered probability model 

and the segment label at voxel ( ), respectively. In each iteration of the 
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segmentation a voxel ( ) is examined, and it is added to the result, if the intensity of 

all voxels in its 3D environment is in the intensity range      ( )     ( ) , where: 

    ( )      
 ( )  (         

 ( ))  (   ( )) 

    ( )      
 ( )

 (         
 ( )

)  (   ( )) 

This definition makes it possible to balance between local (segment specific) and 

global (initial region) intensity ranges. The higher the value of  ( ) is, the accepted 

intensity range is closer to the local intensity range. This approach allows 

segmenting regions, where the probability of liver is high, but the intensity is very 

different from normal liver parenchyma (e.g. inside a lesion). Furthermore, large 

over-segmentation can be also eliminated by using the model because the result can 

involve voxels having low probability only if their intensity is very close to the 

normal liver parenchyma. 

 The result of the segmentation requires some morphological processing. Since large 

environment (with 2.5 mm radius) is used the segmentation, the result of the region-

growing is under-segmented (Fig. 2.27/b). This problem is eliminated by 

performing a dilation using the same kernel (Fig. 2.27/c). Furthermore, a 2D cavity 

filling is performed for each axial slice, so that vessels or lesions, which can be 

under-segmented, are included in the final result (Fig. 2.27/d). 

 

Figure 2.27 The main steps of the segmentation: initial region (a), the result of the region-growing (b), the result 

of dilation (c), and the result of the cavity filling (d). 
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2.3.4 Evaluation of the model based liver segmentation 

The proposed method was evaluated on a set of 8 portal-phase contrast-enhanced MR 

images. The test cases were acquired with LAVA protocol where gadolinium-based 

contrast agent (that highlights liver parenchyma and liver veins) was applied. The slice 

resolution was 512×512 for all cases and the average the slice number was 134 (min 91, 

max 176). The average pixel size was 0.82 mm (min 0.7 mm, max 0.86 mm) and the 

average slice thickness was 1.7 mm (min 1.3 mm, max 2.2 mm). The exams were selected 

and by application specialist, so they represent typical clinical cases. The liver was 

manually contoured for each exam. The test exams (see Fig. 2.28) involved: 

 healthy liver with moderate inhomogeneity (A), 

 healthy liver with significant heterogeneity at its left lobe and inferior part (B), 

 liver with large hypo-dense lesion (C), 

 liver with large heterogeneous lesion in the posterior part of the right lobe (D), 

 liver with a lot of hypo-dense cysts (E), 

 liver with some hyper-dense lesions in the left lobe (F), 

 liver with hyper-dense lesions and acquisition artefacts – the border of the organ is 

blurred near the kidney and the stomach (G), 

 liver with large heterogeneous diffuse disease (H). 

 

Figure 2.28 Axial (ax) and coronal (co) slices of the segmentation result for 8 test cases (A-H): red contour 

represents the manual segmentation and white contour represents the result of the automatic segmentation. 
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Figure 2.28 shows the results of the segmentation using segment specific intensity 

statistics. According to the images, the majority of the liver parenchyma is well 

segmented even when the image is affected by artefacts (A/ax, F/co) or hypo-dense lesions 

(C/ax, D/ax, and E/ax). One can see that the results are rarely over-segmented except for 

(F/co) at the heart or (A/co, G/ax) at the stomach, and most of the hypo-dense lesions are not 

under-segmented. In some cases, the liver is under-segmented near the boundary of the 

organ (G/co), especially in the left lobe (A/ax, B/co, and C/co), where the probability model 

has lower values and the intensity differs significantly from the normal liver. 

Exam TPVF FPVF DSC VOE RVD ASSD MSSD 

A 93.9 1.9 95.9 7.9 −4.2 1.6 47.6 

B 86.5 0.6 92.5 14.0 −12.9 2.6 46.4 

C 90.1 1.0 94.3 10.9 −8.9 2.1 26.1 

D 95.3 3.7 95.7 8.2 −1.0 1.5 27.8 

E 85.0 3.4 90.2 17.8 −11.6 3.1 24.6 

F 94.1 4.7 94.7 10.1 −1.1 2.8 43.0 

G 89.2 4.6 92.0 14.7 −6.2 3.2 32.7 

H 95.3 1.1 97.1 5.7 −3.6 0.9 23.9 

AVG 91.2 2.6 94.1 11.2 −6.2 2.2 34.0 

SD 4.1 1.7 2.3 4.1 4.6 0.8 10.1 

Table 2.8 The accuracy of the results when the segmentation uses local (segment specific) intensity statistics. 

Exam TPVF FPVF DSC VOE RVD ASSD MSSD 

A 84.6 3.7 89.9 18.4 −11.7 3.0 33.1 

B 66.6 0.1 79.9 33.4 −33.3 5.9 45.9 

C 67.1 0.2 80.2 33.1 −32.7 6.5 48.8 

D 88.8 2.2 93.0 13.1 −9.0 2.5 39.7 

E 77.2 1.2 86.6 23.7 −21.6 4.1 27.6 

F 82.3 0.6 90.0 18.1 −17.1 3.8 40.3 

G 72.7 2.7 82.9 29.2 −24.6 6.1 30.7 

H 87.7 0.5 93.2 12.7 −11.9 2.1 29.2 

AVG 78.4 1.4 87.0 22.7 −20.2 4.2 36.9 

SD 8.9 1.3 5.4 8.4 9.5 1.7 7.9 

Diff −12.8 −1.2 −7.1 11.6 −14.1 2.0 2.9 

p 0.0007 0.0795 0.0024 0.0015 0.0004 0.0032 0.4793 

Table 2.9 The accuracy of the results when the segmentation uses global intensity statistics. Last two rows: 

average difference compared to method using local statistics (Diff), and P-value of the Student’s t-test (p). 

The segmentation results were compared with the manual contour using the error 

measures presented earlier. The quantitative evaluation was performed for the result of 

two different variants of the method. In the first case, local intensity statistics were used 

by the method (as proposed in Subsection 2.3.3). In the second case, only the global 

intensity statistics (            and            ) were used by the algorithm. 



 2.3 Model-based method for MR images 

  59 

Tables 2.8 and 2.9 present the accuracy of the two variants, respectively. In case of using 

local statistics (Table 2.8), TPVF and FPVF reflect moderate under- and insignificant 

over-segmentation. The average TPVF is 91.2% and the average FPVF is 2.6%. DSC is 

above 90% in all cases and the average VOE is 11.2%. The negative RVD indicates that 

the results are under-segmented, especially in cases B and E. The average ASSD = 

2.2 mm and the average MSSD = 34 mm indicate large surface distance at some 

locations, as it can be seen in cases A, B (under-segmentation in the left lobe), and F 

(over-segmentation at the heart). 

In case of using global statistics (Table 2.9) the metrics are slightly different. Both VOE 

and (absolute) RVD are significantly higher, and DSC and TPVF are much lower, only 

FPVF is nearly the same in average. According to the surface metrics the average ASSD 

as well as the average MSSD are higher. The difference between the average metrics (that 

was statistically significant for 5 of the 7 metrics – see bottom row of Table 2.9) show 

that better segmentation quality can be achieved by using local intensity statistics. 

Figure 2.29 allows comparing the results of the segmentation using local and global 

intensity statistics on two exams (A and B) with typical inhomogeneity. The right lobe of 

exam A is brighter (a), while the left lobe of exam B is darker (b) than the normal liver. 

These regions are remarkably under-segmented, when global intensity statistics are used. 

 

Figure 2.29 Result of the segmentation for exams A (a) and B (b) with method using local (white contour) and 

global (blue contour) statistics. 

The segmentation accuracy was quantified using various error measures, which allows 

comparing the results with other techniques. Heimann et al. [6] presented a comparison of 

automated liver segmentation methods developed for CT modality. The average error 

measures for the first 10 automated methods presented in this paper were: VOE = 11.3%, 

absolute RVD = 4.5%, ASSD = 2.5 mm, and MSSD = 35.5 mm. Comparing these values 

with those of the proposed method (VOE = 11.2%, absolute RVD = 6.2%, ASSD = 

2.2 mm, MSSD = 34.0 mm) one can see that the proposed algorithm was competitive 

with the existing CT approaches. The literature of the automated liver segmentation for 

MR images is much smaller. The paper of Gloger et al. [64] was published short before 

this work. They reported better absolute RVD = 8.3% (on a small dataset). 

In summary, the proposed model-based liver segmentation proved to be accurate when 

segment specific statistics were used. In this case the result involves the heterogeneous 

regions due to pathology or artefacts. Although the presented model is modality 

independent, the model registration exploits some characteristics of the LAVA images 
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(such as liver has high intensity due to contrast enhancement), which shall be eliminated 

to adapt the segmentation method for wide range of MR protocols. The average running 

time of the proposed method methods was 30 s ± 8.7 using Intel Core2Duo 2.1GHz, and 

2 GB RAM, which proves the efficiency of the method. 

2.3.5 Adaptation of the model based liver segmentation to CT images 

The evaluation in the previous subsection showed the proposed algorithm can accurately 

segment the liver on a small set of contrast-enhanced MR images, but more extensive 

evaluation was required to demonstrate the wide-range clinical usability of the method. In 

the next section the accuracy of the model-based algorithm (as well as the other 

approaches presented in Sections 2.1 and 2.2) is demonstrated on a large CT dataset. In 

order evaluate the model-based approach on CT exams, the method was adapted to CT 

modality. The adaption involved following modifications in the segmentation part of the 

method (Section 2.3.3): 

 In the first step the intensity range representing the contrast-enhanced soft-tissue is 

computed in different way. Since the gray-level values in CT images are always in a 

well-defined range, the computation of the global liver intensity range             

was restricted to the interval [0,250] HU in Alg. 2.3. 

 In the second step the anatomical segmentation of the model is not applied to the 

image in the last phase of the model registration. 

 In the third step of the segmentation local (segment specific) intensity statistics are 

not incorporated by the region-growing. Since large intensity heterogeneity of the 

normal liver is not characteristic for CT images, the following, simplified voxel 

specific intensity range was used by the region-growing: 

    ( )       (         )  (   ( )) 

    ( )       (         )  (   ( )) 

2.4 Quantitative comparison of liver segmentation methods 

The preceding sections presented three approaches for automated liver segmentation. All 

of them are based on neighbourhood-connected region-growing and use additional 

information to eliminate over- or under-segmentation. The single-phase approach 

incorporates information about the organs surrounding the liver. The multi-phase 

algorithm takes benefit of another contrast-enhanced phase. The model-based technique 

involves a liver model in the segmentation. Each method was originally evaluated using 

different datasets (e.g. 20 MICCAI training, 19 multi-phase, 8 MR LAVA). Although the 

same error measures were used for evaluation, which allows comparing the methods to 

some extent, the direct comparison was not possible. The goal of this section was to 

evaluate and quantitatively compare the three algorithms using the same dataset that 

involves large number of clinical cases. 

The test dataset consists of 83 contrast-enhanced liver CT exams. 37 exams included the 

portal-phase image, and 46 exams involved both arterial and portal-venous phases. The 
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exams were acquired in different hospitals using different CT scanners. The examinations 

involved a few healthy cases, but majority of them was pathologic (including lesions, 

cirrhosis, or ascites). For each case the liver contour was manually defined by physician 

for the portal-phase image. In addition to the abdomen the exams covered the pelvis in 43 

cases (52%), the chest in 22 cases (27%), and both in 17 cases (21%). The slice number 

ranged between 37 and 1076, the average slice number was 292. The minimum, average, 

and maximum slice thickness was 0.6, 2.15, and 5 mm, respectively. 

The first two approaches were evaluated as presented in earlier sections, while the model-

based technique was adapted to CT images (as described in the end of Section 2.3). The 

single-phase and the model-based methods were executed for all cases using the portal-

phase image as input. The multi-phase algorithm was executed for all cases which 

involved both phases (referred as multi-phase dataset), and the liver contour was 

computed for the portal-phase image. The test runs were performed on the same hardware 

(3 GHz dual core processor, 4GB RAM) and the segmentation time was measured. The 

following error measures RVD, ARDV, ASSD, RMSD, MSSD, VOE as well as the Score 

(referred in Subsection 2.1.5) was computed for each result. In order to compare the 

results, the average, the standard deviation, the minimum, and the maximum of the error 

metrics were also computed. Furthermore, paired T-test was performed to see whether the 

difference between two methods was statistically significant. 

2.4.1 Comparison of single-phase and model-based methods on the whole dataset 

This subsection presents the comparison of the single-phase and the model-based using 

the whole dataset. Each exam was segmented with both methods and the result was 

compared with the reference liver. Tables B.1 and B.2 (in Appendix B) demonstrate the 

segmentation accuracy for each case using the single-phase and the model-based 

methods, respectively. 

The average RVD (35±195%) and ARVD (45±193%) was very high for the single-phase 

method, which was mainly due to some completely failed segmentations (e.g. exams 45 

and 50). Based on these two metrics this method can provide very over-segmented 

results. The average RVD (-0.2±13%) and ARVD (7.9±11%) was much better for the 

model-based method. The paired T-test did not show significant difference in ARVD 

(p=0.0878), but this is primarily due to the extremely high standard deviation of these 

error measures in case of the single-phase method. 

The surface based measures also showed the model-based method outperforms the single-

phase one. The average ASSD (9±25 mm), RMSD (14±31 mm), and MSSD (56±74 mm) 

of the single-phase method were much worse than those measured for the model-based 

method, where ASSD (2.6±2.7 mm), RMSD (5.3±5.2 mm), and MSSD (38±26 mm). 

Considering these metrics the differences were statistically significant, where the p value 

was equal to 0.0197, 0.0173, and 0.0295, respectively. 

The VOE and the Score provide information about the overall quality of the segmentation 

result. In case of the single-phase method the average VOE (19±21%) was much worse, 

while the average Score (50±28) was little worse than in case of the model-based method, 

where the average VOE was (13±8%) and the average Score was (52±23). The difference 
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was statistically significant for the VOE (p=0.0107) and not significant (p=0.4806) for the 

Score. 

Although, the difference was statistically significant in most metrics (except for RVD, 

ARVD, where p ≤ 0.1) the difference in Score was not. This phenomenon was due to the 

way the Score is computed. According to the definition each negative Score is replaced 

with zero, which means the Score cannot be arbitrary bad for any metric. If negative 

Scores had been taken into account the average Score would have been (-9±184) for the 

single-phase and (44±49) for the model-based method, which had been significant 

difference (p=0.0105). Using thresholded Score was motivated by practical 

considerations. When a result has 0 or less Score its clinical usability is questionable, so it 

makes no sense to distinguish between useless (Score=0) and very useless (Score=-100) 

segmentation from the physician’s point of view. 

The model-based method performed better based on the average errors (including the 

Score). Furthermore, considering the extremities of all metrics the model-based was also 

more robust. The worst ARVD, ASSD, MSSD, and VOE were equal to 81.4%, 20.8 mm, 

179.3 mm, and 47.5% in case of the model-based method, while the worst metrics were 

1626.6%, 131.7%, 380.5%, and 100% in case of the single-phase method. Furthermore, 

the model-based method provided zero-Score result in 2 cases (exams 21 and 47), while 

the single-phase method resulted 10 zero-Score segmentation. 

 

Figure 2.30 Scatter plots demonstrating the VOE (left) and the Score (right) of the segmentation result provided 

by the single-phase (y axle) and the model-based (x axle) methods. Each mark represents one exam. 

Figure 2.30 shows the scatter-plot of the two methods according to metrics VOE (left) 

and Score (right). In the diagrams each mark represents one exam, such that the position 

along x and y axles correspond to the error metric achieved by the model-based and the 

single-phase methods, respectively. The left diagram shows the distribution of VOE. It is 

slightly visible that the model-based method does never provide segmentation, whose 

VOE is greater than 50%, while in case of the single-phase method VOE is above 50% 

for several (9) exams. The diagram on the right, which plots the Score, shows the same 
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phenomenon. In contrast to the model-based method, which results below 20 of Score for 

10 exams only, the single-phase method provides such bad result for 22 exams. 

In summary, the model-based method performed significantly better than the single-

phase. The average of all error metrics as well as their standard deviation was lower. The 

number of results having very limited usability was much lower for the model-based 

method, which demonstrates its robustness that is very important in clinical applications. 

The running time is the only measure that was better for the single-phase method. The 

average running time 19.3±14.3 s of the single-phase method was significantly shorter 

than that (30.8±12.6 s) of the model-based. However, the model-based method was better 

considering the extremities because its longest running time (58.1 s) was much less than 

that of the single-phase method (91.7 s). 

2.4.2 Comparison of all methods on the multi-phase dataset 

This subsection presents the comparison of all methods using the dual-phase subset of the 

dataset. Each exam was segmented with all methods and the result was compared with the 

reference liver. Tables B.3, B.4, B.5 (in Appendix B) demonstrate the segmentation 

accuracy for each case using the single-phase, the multi-phase, and the model-based 

methods, respectively. 

According to Table B.3 the average RVD (67±257%) and ARVD (77±254%) was 

extremely high for the single-phase method, which implies the segmentation failed in 

several cases (e.g. exams 31, 34, 36, 37, 40, 43, 45, 50). The large positive RVD implies 

these exams are extremely over-segmented. The average RVD (-9.8±9.6%) and ARVD 

(10.2±9.2%) was much better for the multi-phase method as well as the model-based 

method – RVD (-0.5±16.8%) and ARVD (9.9±13.6%). The negative RVD of the multi-

phase method implies the results were under-segmented, while the results of the model-

based method were accurate from this point of view. The average ARVD of the model-

based method was a bit better than that of the multi-phase method, but the difference was 

not significant. The paired tests did not show statistically significant difference between 

the single-phase and the other methods considering RVD and ARVD, but this was due to 

the extremely high standard deviation of the metrics in belonging to the single-phase 

method (similar to results presented in the previous subsection). 

The surface based metrics showed the multi-phase and model-based methods definitely 

outperformed the single-phase one. The average ASSD (15±33 mm), RMSD 

(22±40 mm), and MSSD (80±92 mm) of the single-phase method are much worse than 

those measured for the multi-phase method – ASSD (2.4±1.6 mm), RMSD (4.5±3 mm), 

MSSD (35±13 mm), or the model-based method – ASSD (2.9±3.2 mm), RMSD 

(5.9±6 mm), MSSD (42±30 mm). Considering the last three measures the difference 

between the single-phase and the other two methods was significant, while the difference 

between the multi-phase and model-based methods was not statistically significant. 

The average VOE (26±26%) of the single-phase method was much worse than VOE 

measured for the multi-phase (14.8±8.4%) and the model-based methods (15±9.4%). The 

average Score was also much worse for the single phase method (40±30) compared to the 

multi-phase (49±22) and the model-based (48±24) methods. Considering these two 
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metrics the differences between the single-phase and the other 2 methods were, but the 

difference between the multi-phase and model-based methods was not statistically 

significant. 

Considering extremities, the single-phase method provided the worst results in terms of 

ARVD (1626%), ASSD (132 mm), MSSD (381 mm), VOE (100%), and Score (0 in 10 

cases). The worst metrics for the multi-phase method were ARVD (49%), ASSD 

(9.2 mm), MSSD (75 mm), VOE (49.5%), and Score (1) were slightly better than those 

ARVD (81%), ASSD (21 mm), MSSD (179 mm), VOE (48%), and Score (0 in 2 cases) 

belonging to the model-based method. 

 

Figure 2.31 Scatter plots demonstrating the Score of the segmentation results provided by the single-phase 

(y axle) and the multi-phase (x axle) methods (on the left), and the Score of the segmentation results provided by 

the multi-phase (y axle) and the model-based (x axle) methods (on the right). 

Figure 2.31 allows pairwise comparison of the Score belonging to segmentation results 

provided by the different methods. The left side shows the scatter-plot of the single-phase 

and multi-phase methods, and the right side shows the scatter-plot of the multi-phase and 

the model-based methods. Each mark represents one exam, such that the position along x 

and y axle corresponds to the error metric achieved by the one and the other method. The 

diagram on the left shows the multi-phase method provided much less (8) results with 

Score below 20 compared to the single-phase method (17). According to the right 

diagram, the accuracy of the multi-phase and the model-based method was similar. Both 

methods achieved a Score below 20 for 8 exams. 

In connection with Fig. 2.31 it is interesting to analyse distribution of marks. There are 

exams, for which one approach provided very good result while the other method failed. 

For exam 56 the single-phase Score was high (71), but the multi-phase Score was low 

(18). However, for exam 31 the single-phase Score (0) was much less than the multi-

phase (79). For exam 31 the model-based method had very low Score (12) in contrast to 

the multi-phase (79), but for exam 19 the model-based Score (78) was much better than 

the multi-phase (10). In conclusion, the average performance of the multi-phase and the 
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model-bases method was better than the single phase, but in some cases the single-phase 

method provided much better result than any of the other two methods. This is 

observation was also true for the comparison of the multi-phase and the model-based 

methods, which implies in most of the cases one of the methods provided a good result. 

When the best Score was taken for each test exam, the average Score was as high as 60. 

 

Figure 2.32 Histogram of Scores achieved by the single-phase (light gray), multi-phase (middle gray), the model-

based (black) methods, and the best result of all methods (dashed). 

Figure 2.32 displays how the Score distributes among the results of the different methods. 

According to the diagram the single-phase method scored below 10 for 13 exams (28%), 

while the other two methods had only a few scores in this range. The majority of the 

multi-phase (29, that is 63%) and the model-based (27, that is 59%) scores were found in 

the range 50-80, which demonstrate the two methods provide better result in general. 

When the best result was taken for each exam, most of the scores (30, that is 65%) was 

above 60. 

In summary, the multi-phase and the model-based methods performed significantly better 

than the single-phase (average Score was 40). The multi-phase method has the least zero-

Score result, and its average Score (49) was a bit better than those of the model-based 

method (48), but there was no significant difference between the last two methods. The 

average running time was 23.7±17.6 s for the single-phase, 18.8±11.5 s for the multi-

phase, and 36.6±13.3 s for the model-based method, which means the multi-phase method 

proved to be the most efficient tool for liver segmentation on the reduced dataset. 

The top row of Fig. 2.33 demonstrates the best (Score 80), an average (Score 39), and a 

bad (Score 0) segmentation provided by the single-phase method. According to the 

images the result with Score 80 (a) is correct, the result with the average score (b) needs 

some correction because a large heterogeneous lesion is under-segmented, and the worst 

segmentation (c) is completely useless because other anatomical structure was segmented 

instead of the liver. The latter failure was due to the fact that exam 50 involves the entire 

chest and the pelvis in addition to the abdomen. In this case the assumption that liver 
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parenchyma has the largest peak in histogram of the right half of the body was not true 

because the muscles represented larger volume than the liver. That is why the 

initialization of the single-phase method failed. 

 

Figure 2.33 Good (a, d, g), average (b, e, h), and bad (c, f, i) segmentation provided by the single-phase (top row), 

the multi-phase (middle row) and the model-based (bottom row) method. 

The middle row of Fig. 2.33 demonstrates the best (Score 79), an average (Score 48), and 

a bad (Score 1) segmentation provided by the multi-phase method. The best result (d) is 

correct, the average result (e) needs some correction (but less than the average result of 

the single-phase method), and the worst result (f) is very under-segmented. In contrast to 

the single-phase method, here the liver was segmented, but due to its extreme shape and 

pathology the left lobe was not segmented. The main advantage of using the arterial 

image is demonstrated here by the more robust initialization, which eliminates complete 

failures committed by the single-phase method. 

The bottom row of Fig. 2.33 demonstrates the best (Score 80), an average (Score 51), and 

a bad (Score 0) segmentation provided by the model-based method. The best result (g) is 
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correct, the average result (h) needs some correction (but less than the average result of 

the single-phase method), and the worst result (i) is very over-segmented. The imperfect 

registration of the liver model can cause under-segmentation in the left lobe (h) or over 

segmentation in the stomach or the spleen (i), but the initialization of this method is still 

much more robust compared to the single phase approach. 

 

Figure 2.34 Pairwise comparison of segmentation results, when one method is successful, but the other fails. 

Successful and failed segmentations are displayed with white contour and red region, respectively. 

Figure 2.34 shows the result of cases, when one method provided good while other 

method provided bad result. Exam 56 (a) was segmented well by the single-phase method 

(Score 71) unlike the multi-phase method (Score 18). In this case the right lobe has a 

large lesion that shows different enhancement in the arterial image than the normal 

parenchyma, so the lesion is under-segmented in this phase as well as in the final result. 

The multi-phase method gave good result (Score 79) for exam 31 (d), while the single-

phase method over-segmented the whole heart. In this case the heart had very similar 

intensity to the liver in the portal phase, so the single-phase segmentation leaked into the 

heart. The multi-phase method did not involve the heart at all because its intensity is very 

different from the liver in the arterial phase. 
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For exam 31 the multi-phase (Score 79) method outperformed the model-based (Score 

12), which over-segmented the heart (b). This over-segmentation was much smaller 

compared to the single-phase result (d) because the liver-model does not allow leaking far 

into the neighbouring structure that has similar intensity. In case of exam 19 (e) the result 

of the model-based method (Score 78) was much better than that of the multi-phase 

(Score 10). In this case the respiratory movement of the liver was so big between the 2 

phases, that the inter-phase registration did not compensate it. Since the segmented liver 

was significantly displaced in one phase, the intersection of 2 phases was very under-

segmented. 

The advantage of using liver model is clearly visible in case of exam 13 (c), where large 

heterogeneous lesion is found in the liver. In such case the single-phase method provided 

bad result (Score 10), but the model-based method gave good result (Score 72) because 

the model allows involving structures with extreme intensity where the probability of the 

liver is very high. On the other hand incorporating the liver model can result over-

segmentation into the small bowels or the pancreas when these organs have very similar 

intensity. In the presented case (f) the single-phase method gave better result (Score 59) 

than the model-based (Score 7). 

In summary, the model-based method performed the best for 20 (that is 43%) of the 

exams, the multi-phase method proved to be the best for 16 (35%) exams, and single-

phase method provided the best result for the remaining 10 (22%) exams. According to 

the visual assessment, a result with more than 50 of Score can be used (without or with 

some manual correction) for clinical purposes. The number of results above this score 

was equal to 28 for the model-based, 29 for the multi-phase method, and 23 for the 

single-phase method. 

All in all, the model-based and the multi-phase methods were superior to the single phase 

algorithm, but there was no significant difference between the first two approaches. Since 

the model-based method requires only the portal-phase image to segment the liver, it has 

the widest clinical usability. Considering its low running time it could significantly 

reduce the time spent by clinicians for liver segmentation. 

2.5 Summary 

This chapter addressed the problem of automated liver segmentation that is the basis of all 

computer assisted liver analysis. The author developed three algorithms which apply 

standard image segmentation techniques and incorporate anatomical information about 

the liver and its neighbourhood. 

The first algorithm was developed for portal-phase CT image that is available in most 

cases when the liver is examined with medical imaging techniques. The method is based 

on neighbourhood-connected region-growing that is facilitated by various pre- and post-

processing steps to reduce under- and over-segmentation. The proposed approach 

involves the localization of the organ, the separation of liver and heart, the correction of 

under-segmentation at the right lung and inside vessels, and the removal of IVC. The 

evaluation using a public dataset showed the method is competitive (VOE=8%) especially 
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if the short running time (30 s) is also taken into account. The results related to this 

approach were published in journal paper [1]. 

The second algorithm is based on the first one but it can incorporate the information of 

more phases. This approach makes sense because a contrast-enhanced liver examination 

usually results in multi-phase images. According to this technique, the liver is localized 

based on the joint histogram of the input images, the liver is segmented on each phase 

separately, and all results are registered and combined to get the final segmentation. The 

qualitative evaluation using a set of multi-phase images demonstrated the results can be 

used for clinical purposes in majority of the cases after some minor or no correction. The 

quantitative comparison with the single-phase method on a set of challenging cases 

showed the multi-phase method performs better (VOE=11%) than the other one 

(VOE=16%). These results were published in journal paper [1]. 

The third algorithm is also based on region-growing and it incorporates a probabilistic 

liver model to eliminate under- and over-segmentation. The applied liver model was built 

from manually contoured cases and it was partitioned according to the segmental anatomy 

of the liver in order to handle the intensity heterogeneity that is characteristic for contrast-

enhanced MR exams. The evaluation using a representative set of images showed the 

accuracy of the proposed approach (VOE=11%) is comparable with the multi-phase 

method despite the inhomogeneous liver parenchyma and the various MR acquisition 

artefacts. In addition, the author demonstrated the results are significantly less accurate 

(VOE=23%), when the liver model is not partitioned. These results were published in 

journal paper [2]. 

The author performed an extensive comparison of the three techniques using a large set of 

liver CT exams including normal as well as extreme (in terms of size or disease) cases. 

The single-phase and model-based algorithms were compared on the whole dataset, 

which showed the latter has better overall accuracy (VOE=13%) compared to the first one 

(VOE=19%). Using a subset of multi-phase test examinations all methods were 

compared. This test demonstrated the multi-phase (VOE=15%) and the model-based 

(VOE=15%) approaches perform at the same level of accuracy, while the single-phase 

method proved to be significantly less accurate (VOE=26%). The average running time of 

the multi-phase and the model-based method was around half minute, which indicates 

that these methods are efficient enough for clinical application. Considering the fact that 

the model-based method requires the portal-phase image only, it has the widest usability. 
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3 Liver lesion detection 

Liver lesion assessment is one of the most important functions of computer assisted liver 

analysis. The diagnosis of malignant liver lesions (i.e. tumours) is usually based on 3D 

images in (CT, PET, and MR). The number of liver cancer cases is increasing in the 

clinical practice, which increases the number of images to be processes. There is 

significant need for tools which make liver lesion analysis more efficient. This chapter 

presents a novel technique for automated liver lesion detection in portal-phase contrast-

enhanced CT images. The related work of the author was published in a journal paper [3]. 

The introduction gives an overview about the existing techniques and the motivations of 

this work. Furthermore, it presents a study on manual liver lesion contouring, which 

demonstrates the challenges of computer assisted lesion segmentation. 

In the field of computer aided diagnosis (CAD) several applications are available for the 

detecting pulmonary nodules and colon polyps [17]. The main cancer types (lung, 

colorectal, breast) can frequently develop liver metastases. Due to the vital function of the 

liver the treatment of such metastases became as important as the therapy of the primary 

tumour. The liver usually involves several lesions of different size and shape, which 

makes it difficult to estimate their total volume inside the organ. This process can be 

facilitated by automated techniques. The automated detection and segmentation of liver 

lesions is very challenging due to the large variety in size, shape, density distribution of 

lesions [65] and the large number of slices to be processed. Thus, there is significant need 

for software tools which can increase the sensitivity of liver lesion detection without 

forcing the user to review large numbers of false positives. 

Automated lesion detection and segmentation has extensive literature. Most of the 

published methods are related to detection of pulmonary nodules, colon polyps on CT 

images, or malignant lesions on mammography images [17]. In addition to the main 

cancer types the detection and segmentation of brain pathologies [66] in MR images [67], 

lymph nodes in CT images [68], and liver tumours in CT or MR images were also 

focused on in many publications. The three main motivations for liver lesion detection are 

lesion classification [51, 69-73, 88, 90], lesion segmentation and quantification [75-85, 

89], and follow-up [86]. The following paragraphs summarize the recent methods and 

results related to liver lesion detection. 

Bilello et al. [69] presented an approach for liver lesion detection and classification, 

which is based on intensity and texture analysis. The results demonstrate the proposed 

technique can efficiently detect hypo-dense lesions in portal-phase liver CT images. The 

algorithm of Duda et al. [51] also extracts basic texture features from multi-phase 

contrast-enhanced CT images and uses decision tree and a support vector machine 

classifier to separate different types of pathology from normal liver tissue. According to 

the results, this method is efficient for recognizing normal liver and two types of primary 

tumours. Huang et al. [70] presented an approach that uses a support vector machine to 

classify manually selected circular regions of interest based on covariance texture 

features. This technique proved to be efficient in separating benign and malignant liver 
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lesions. The algorithm of Mougiakakou et al. [71] combines various texture features and 

classifiers for differential diagnosis of focal liver lesions. This approach achieved high 

accuracy in classification of various types of pathologic liver tissue. Tajima et al. [72] 

presented a method that can detect a specific type of liver lesions (hepatocellular 

carcinoma) based on subtraction of different phases of a contrast-enhanced CT 

examination. Kumar et al. [73] presented an algorithm that extracts curvelet and texture 

features from the image, which serve as input of a neural network. The evaluation showed 

the method can efficiently distinguish between two particular types of liver lesions. The 

approach proposed by Quatrehomme et al. [90] uses support vector machines to separate 

5 types of liver lesion in multi-phase CT images based on texture and other statistical 

features. 

Automated liver lesion segmentation (that is strongly related to lesion detection) has also 

extensive literature. The workshop “3D Segmentation in the Clinic: A Grand Challenge 

II” at MICCAI 2008 [74] gave an overview of methods developed until 2008. The most 

accurate automated method at this workshop was presented by Shimizu et al. [75], which 

used AdaBoost technique to separate liver tumours from normal liver based on several 

local image features. There were several other approaches published independently from 

this workshop. The method presented by Pescia et al. [76] uses texture features to 

segment different types of liver lesions. Massoptier et al. [77] introduced a statistical 

model-based technique that proved to be efficient in the detection of various types of 

hypo-dense lesions. The algorithm of Moltz et al. [78], which combines a threshold-based 

approach with model-based morphological processing adapted to liver metastases, can 

segment liver tumours with a 31% volumetric overlap error (VOE). Abdel-Massieh et al. 

[79] published a method that can automatically segment liver lesions incorporating 

intensity and shape information, and demonstrated 21% VOE on a small set of (7) test 

exams. The approach of Militzer et al. [80] utilizes a probabilistic boosting tree to classify 

points in the liver as lesion or liver parenchyma. Masuda et al. [81] proposed an algorithm 

that classifies voxels into normal and abnormal classes using the expectation-

maximization method, and performs a morphological filter that incorporates circularity 

and proximity to boundary to eliminate false positives. The method presented by Casciaro 

et al. [82] is based on graph-cut and gradient flow active contour, which has a relatively 

high computation cost (10+ seconds per slice). Linguraru et al. [83] published a technique 

that uses graph cuts to segment the hepatic tumours using shape and enhancement 

constraints. This method takes a couple of minutes to run. The approach of Wu et al. [84] 

combines gradient based locally adaptive segmentation with intensity and geometric 

features based classification, which takes 20-30 seconds to process one case. Chi et al. 

[85] proposed a hybrid generative-discriminative framework for liver lesion detection that 

needs more than 4 minutes to run. Safdari et al. [88] introduced an algorithm that applies 

techniques of computer vision in order to detect and classify liver lesions. The method 

proposed by Schwier et al. [89] performs object-based image analysis on the result of a 

watershed segmentation. The execution time of this method ranged between 15-

20 minutes. 
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Method Detection 

rate 

False 

positive 
Precision Specialization 

Bilello et al. [69], 2004 80% 0.8 / slice n.a. Hypo-dense 

Tajima et al. [72], 2007 98% 2.1 / case n.a. HCC 

Massoptier et al. [77], 2008 83% 0.1 / case 93% Hypo-dense 

Militzer et al. [80], 2010 71% 14 / case 17%   

Masuda et al. [81], 2010 73% 1.7 / case 30% 2 test cases 

Casciaro et al. [82], 2012 92% n.a. n.a. Hypo-dense 

Linguraru et al. [83], 2012 100% 2.3 / case 71% Metastases 

Wu et al. [84], 2012 90% 2.6 /case n.a.   

Chi et al. [85], 2012 90% 1.0 /case n.a.   

Safdari et al. [88], 2013 84% n.a. 73%  

Schwier et al. [89], 2013 78% n.a. 53% Hypo-dense 

Table 3.1 Performance characteristics of recent liver lesion detection methods. 

Table 3.1 summarizes the performance characteristics (including accuracy and processing 

time) of some recently published methods for liver lesion detection. According to the 

table the most efficient methods can achieve 90% or better detection rate with a few (1-2) 

false positives per case. The precision (see exact definition in Section 3.2) demonstrates 

bigger variation, but achieving 50% in this measure is required for an efficient method. 

The last column of the table shows that significant number of the existing methods was 

specialized for hypo-dense lesions. 

From the above list of existing methods one can see there are only a few methods which 

can efficiently solve the problem of liver lesion detection in general. Some of the 

algorithms are specialized for certain lesion types (hypo-dense in most cases) or have 

special input requirement (e.g. multi-phase). Other approaches require a long time (5-

20 minutes) to process one case. Furthermore, some of the available techniques were 

evaluated on a small dataset, which gives less information about their robustness. 

Considering the clinical needs as well as the performance characteristics of the existing 

methods our goal was to develop a method that: 

 is automated,  

 can detect at least 90% of liver lesions with a few (1-2) false positives per case, 

 works for all lesion types, irrespective of size, shape, density, and heterogeneity, 

 terminates within 1 minute. 

The algorithm is described in Section 3.1. The method involves the characterization of the 

normal liver parenchyma (Subsection 3.1.1), the segmentation of abnormal regions inside 

the liver using (Subsection 3.1.2), and the classification of these regions using a multi-

level shape characterization (Subsection 3.1.3). The parameters of the proposed approach 

were set using a training dataset (Subsection 3.1.4), while the accuracy of the algorithm 

was measured on another set of test images. The details of the evaluation are presented in 

Section 3.2 that describes the test data and methodology (Subsection 3.2.1), the results 

(Subsection 3.2.2) and the discussion (Subsection 3.2.3). 

The rest part of the introduction demonstrates the challenges of tumour segmentation in 

CT images. The boundary of tumours can be ambiguous in medical images, which 
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introduces significant inter-operator variation in manual contouring. The goal of the 

following study was to quantitatively assess the difference in tumour contouring among 

physicians. The study was performed in cooperation of the physicians of the Department 

of Oncotherapy at University of Szeged, and the experiences were published [8]. 

The test CT exams were selected by oncotherapists form the database of the hospital, 

such that they represent cases of the everyday clinical practice. The test exams involved 

tumours from different anatomical regions (neck, lung, liver, and rectum). Most exams 

were contrast-enhanced. Each tumour was manually contoured by 4 operators who had 

different level of experience (resident, doctor with few years of experience, and doctor 

with much experience). The contouring was performed at clinical site with the software 

that is used by the physicians in the daily routine. The study was retrospective, which 

means that no therapeutic decisions were made based on the tumour contours. 

Table 3.2 shows the inter-operator differences for the 17 test cases. The following 

measures were used to compare the contours made by the different operators: 

 The tumour volume (cm
3
) for each operator (O1, O2, O3, O4) 

 The mean (M) and the standard deviation (SD) of tumour volumes (cm
3
) 

 The coefficient of variation (CV) that is the ratio of the standard deviation and the 

mean of tumour volumes (%), this measure is equal to 0% in case of perfect match 

 The volume of the union ( ) and the intersection ( ) of all contours (cm
3
) 

 The overlap (OVR) that is the ratio of the intersection and the union volume (%), 

this measure is equal to 100% in case of perfect match 

Exam Region O1 O2 O3 O4 M SD CV     OVR 

1 liver 156 153 153 112 143 21 15% 194 99 51% 

2 liver 21 23 23 19 22 2 8% 26 17 65% 

3 liver 273 197 207 162 210 47 22% 281 152 54% 

4 liver 1146 1034 1088 974 1061 73 7% 1193 936 78% 

5 liver 11 15 7 8 10 3 32% 16 7 43% 

AVG   321 284 296 255     17%     58% 

8 lung 30 36 39 26 33 6 17% 53 21 40% 

13 lung 11 15 11 9 12 2 20% 20 6 32% 

22 lung 184 192 231 165 193 28 14% 270 137 51% 

AVG   75 81 94 67     17%     41% 

10 rectum 136 227 97 138 150 55 37% 279 70 25% 

11 rectum 118 116 97 100 108 11 10% 147 73 50% 

16 rectum 180 249 192 186 202 32 16% 264 155 59% 

17 rectum 66 83 58 57 66 12 19% 92 49 54% 

AVG   125 169 111 120     20%     47% 

9 neck 16 124 110 119 92 51 55% 154 8 5% 

12 neck 25 41 32 24 31 8 26% 59 14 24% 

15 neck 54 96 86 51 72 23 32% 110 42 38% 

18 neck 380 343 326 344 348 22 6% 459 252 55% 

23 neck 143 154 141 128 141 11 7% 214 86 40% 

AVG   123 152 139 133     25%     32% 

AVG               20%     45% 

Table 3.2 Inter operator variability of tumour contouring in different anatomy regions. 
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Considering the tumour volume, the largest variability was observed in case of neck 

tumours (average CV=25%). It was also remarkable that the contouring of rectum 

tumours was less operator dependent (average CV=20%), and the variability was the 

smallest for liver and lung tumours (CV=17%). According to the average CV of all cases, 

the inter-operator variation was equal to 20% of the tumour volume. 

 

Figure 3.1 Inter-operator variability of tumour contouring for liver (exam 3 – a, b), lung (exam 8 – c, d), rectum 

(exam 11 – e, f ), and neck (exam 9 – g, h) tumours: The axial (a, c, e, g) and coronal (b, d, f, h) views are 

displayed. The colours (red, yellow, blue, green) represent the different operators (O1, O2, O3, O4), respectively. 

The value of the OVR shows the overlap of contoured tumours. This measure can be 

small even if the tumour volume shows small variation. For example, in case 23 CV was 

equal to 7% (small volume difference) while OVR = 40% which means moderate overlap 

of the four contours. The lowest average overlap (32%) was characteristic for neck cases 

(which was mainly due to case 9). Better overlap belonged to lung (41%) and rectum 

(47%) tumours, and the best overlap was measured for liver tumours (58%). Based on the 

average overlap of all cases one can see the volume that was considered as tumour by all 

operators was only 45% of the volume that was considered as tumour by any of the 

operators. 

Figure 3.1 demonstrates 4 contoured cases, where different colours represent the different 

operators (red – O1, yellow – O2, blue – O3, green – O4). In case of the liver tumour (case 

3 – a, b) the contour had small variation. The contours belonging to the lung (case 8 – c, 

d) and the rectum (case 11 – e, f) tumours showed more variation. In the case of neck 

tumour (case 9 – g, h) the variation was slightly visible (see the lack of red contour). 

From the presented difference measures and screenshots one can see that it is very 

challenging to define ground-truth for tumour contour which can be used to evaluate 

automated segmentation methods. Rather such approaches are welcomed in the clinical 

the practice, which allows easy adjustment of the result according to the physician’s 

expectations. The design of the following lesion detection method addressed this issue (to 

some extent) because it allows the user to adjust parameters, which affect the sensitivity 

of the method. 
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3.1 Automated liver lesion detection for contrast-enhanced CT images 

The idea behind the proposed method is to compute a map that represents the level of 

abnormality with respect to the healthy liver, and perform a multi-level morphological 

analysis for all local maxima of this map in order to separate lesion from other abnormal 

regions. The morphological analysis incorporates various geometric features. These 

features are considered as probability factors, the product of which is used to classify 

abnormal regions and define the contour of them. 

More specifically, the proposed algorithm consists of the following main steps. First, the 

CT image and the liver mask are pre-processed in order to facilitate further operations, 

and the intensity as well as other features of the normal liver is computed (Subsection 

3.1.1). Then, hyper- and the hypo-dense abnormal regions are (separately) segmented 

using level-set technique (Subsection 3.1.2). In the next step, a multi-level morphological 

analysis is performed to the abnormal regions (Subsection 3.1.3), as result of which 

lesions are segmented and separated from the other abnormal regions. The algorithm has 

some parameters. Subsection (3.1.4) presents how these parameters were set based on a 

set of training examinations. 

3.1.1 Preprocessing and computing global liver features 

The input of the proposed method consists of a portal-phase abdominal CT image and the 

segmented liver that serves as volume of interest (VOI). Since many steps of the proposed 

algorithm are related to morphology, the input images are first resampled to isotropic 

voxel spacing. This way, several functions (e.g. morphology operators, computing 

compactness) shall not incorporate voxel asymmetry, which makes them more efficient. 

The resampling uses the x (that is equal to the y) voxel spacing of the input CT (or 

0.65 mm, when it is smaller). In order to reduce pixel noise, the input CT image is 

convolved using Gaussian kernel having 1 mm radius. 

An automatically segmented liver may exclude lesions at the organ boundary. In order to 

reduce false negative detections due to under-segmentation of the liver, morphological 

closing is applied to the input VOI. In this works the CT adaptation of the model-based 

liver segmentation approach (presented in Section 2.3) was used to generate the VOI. 

This method can exclude lesions located on the boundary of the organ when the intensity 

of the lesion differs from the liver significantly. In case of such under-segmentation open 

cavities are found on the surface of the organ (Fig. 3.2/a-b). The lesion detection would 

miss these boundary lesions if the analysis was restricted only to the segmented liver. 

This problem is corrected by morphological closing (Fig. 3.2/c-d). The radius of the 

kernel used by the morphological operator is equal to 30 mm, which ensures that cavities 

belonging to under-segmented lesions of various sizes (up to 60 mm of diameter) are 

filled without changing other parts of the liver significantly. The result of this operation 

can involve a small area at the edge of the right and left liver lobe, where the portal vein 

enters the liver. This area can include contrast-enhanced vessels, visceral fat, or the 

gallbladder. The majority of these regions can be separated from lesions by the latter 

processing steps, so they don’t increase the number of false positives considerably. Using 

the morphologically closed VOI the false negative detection of boundary lesions can be 
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prevented. Note that cavities fully surrounded by liver parenchyma can be also eliminated 

in this way. From this point all steps of the proposed method incorporate only voxels 

located inside the closed VOI.  

 

Figure 3.2 Morphological closing of the VOI: the result of the automated liver segmentation excludes lesions on 

the boundary of the liver (a, b). The morphological closing fills these cavities (c, d) without modifying the organ 

boundary significantly. 

In the next step the intensity of the normal liver is computed. In case of a contrast-

enhanced CT examination the intensity of the normal liver parenchyma depends on many 

circumstances. The type and the amount of contrast agent as well as the applied timing 

protocol can introduce significant variation. Furthermore, the blood circulation of the 

subject can significantly impact the intensity of the liver in the portal- phase image. 

Although the effect of the first two factors can be decreased by using clinical standards, 

the latter issue cannot be eliminated. 

 

Figure 3.3 The histogram of three typical liver cases. Normal liver (solid), liver with large hypo-dense tumours 

(dotted), liver with large hyper-dense regions (dashed). 

Figure 3.3 shows the histogram of three typical contrast-enhanced liver cases. The solid 

curve represents a case, when the mean liver intensity (82 HU) is equal to the histogram 

mode. The dotted curve represents a case when the liver involves large hypo-dense 

tumours and the mean (94 HU) is significantly lower than the mode (105 HU). The 

dashed curve represents a case when the liver involves large hyper-dense regions around 

tumours and the mean intensity (141 HU) is significantly higher than the mode (136 HU). 

The latter increase of the mean can happen, when the hepatic vein is filled with contrast 

in addition to the portal vein. Considering the above issues with the average intensity the 

normal liver is defined by the mode of the histogram. 

0.000

0.010

0.020

0.030

0.040

0.050

0 20 40 60 80 100 120 140 160 180 200



 3.1 Automated liver lesion detection for contrast-enhanced CT images 

  77 

In the last step of the preprocessing some basic geometric features of the liver are 

computed. These features involve the number of liver voxels, the bounding box of the 

liver, and the set of voxels belonging to the organ’s contour. 

3.1.2 Segmentation of abnormal regions 

In the next step, the abnormality map is computed. For each voxel the level of 

abnormality is based on two factors: the intensity difference with respect to the normal 

liver and the proximity of the nearest normal liver voxel. The fast-marching technique 

[23] is applied to compute the distance map that incorporates intensity differences. This 

approach requires an initial region and a function that defines the speed of contour 

propagation in each voxel. The fast-marching results an image, where the value of each 

voxel represents the shortest distance from the initial region, such that the distance is 

weighted by intensity differences along the shortest path. A voxel in the abnormality map 

can have a high value for two reasons: whether its intensity differs from the normal liver 

significantly, or it is located far from the normal parenchyma. Figure 3.4 shows two 

examples for CT image (a, c) and the corresponding abnormality map (b, d). In the first 

case (a, b) two small (8 mm) hypo-dense lesions are clearly visible in the abnormality 

map due to their significant intensity difference. In the second case (c, d) a nearly iso-

dense lesion is enhanced due to its large (30 mm) size. 

 

Figure 3.4 The abnormality map enhances pathologic regions: Small hypo-dense lesions (a, b) are highlighted 

due to significant intensity difference, while the large, nearly iso-dense lesion (c, d) is highlighted due to its size. 

The abnormality map is defined for hypo- and hyper-dense regions in different way. In 

the hyper-dense case the initial region primarily consists of the liver voxels, whose 

intensity is lower than or equal to the normal liver. Involving these voxels in the initial 

region enables the enhancement of lesions which are fully surrounded by normal liver 

parenchyma. As mentioned before many lesion is located on the boundary of the liver. In 

order to enhance these lesions too, the voxels located on the contour of the liver are also 

added to the initial region. 

Assume that   represents a voxel index (3D coordinate) in the input CT image as well as 

the VOI. Let  ( ) represent the intensity of the CT image at index position  , and let      

represent the liver mode. The hyper-dense speed function       ( ) is defined in the 

following way: 

       ( )   , if  ( )       

       ( )        ( ( )      )   ⁄ , if       ( ) 

       ( )     , if          ( ) 
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According to the above formula, the speed is maximal (1) in voxels having intensity 

lower or equal to the normal liver, and the slowest (0.2) in voxels having intensity 

significantly (that is 30 HU) higher than the normal liver. The latter constant was 

empirically defined based on the analysis of liver cases with hyper-dense lesions. The 

lowest speed is set to 0.2, which prevents the fast marching from getting stuck in voxels 

which have extremely high density (e.g. calcified necrosis). 

In case of hypo-dense abnormality the definition of the initial region is more complex. 

Here, the voxels having intensity greater than or equal to the liver mode are involved into 

the initial region in addition to the voxels located on the contour of the liver. In order to 

eliminate low density fat regions (located in the vicinity of the liver) from the abnormality 

map, voxels having lower intensity than -70 HU are also included in the initial region. 

Involving the liver contour in the initial region has two advantages. First, the abnormality 

map has the highest values in the centre (not the edge) of abnormal regions which are 

located on the boundary of the organ (that is important for the multi-level morphological 

characterization described in the next subsection). On the other hand, in hypo-dense case 

it eliminates a large number of normal regions at the organ boundary where lower 

intensities can be found due to partial volume effect (especially near the lung). 

The definition of the speed function incorporates the liver mode, the intensity of the fat 

(-70 HU), and the intensity of the hypo-dense tumours (i.e. non-enhancing soft tissue, 

70 HU). The latter two values were defined based on the analysis of liver exams with 

hypo-dense lesions). Using the notation introduced in prior paragraph the speed function 

     ( ) is defined in the following way: 

      ( )   , if  ( )      

      ( )        ( ( )    )    ⁄ , if      ( )     

      ( )        (      ( )) (       )⁄ , if     ( )       

      ( )   , if       ( ) 

According to the formula the speed is equal to 1 where the intensity is lower than the fat 

intensity (-70 HU) or higher than the liver mode, and it is the minimal (0.2) where the 

intensity is equal to the expected intensity of hypo-dense lesions (70 HU). Since hypo-

dense lesions do not absorb (significant) contrast, their intensity is very similar to the 

unenhanced liver parenchyma. That is why their expected intensity is defined in absolute 

way rather than relative to the normal liver (as in case of the hyper-dense abnormality). 

When the normal liver intensity is low (close to hypo-dense tumours) small intensity 

difference can result in a large difference of speed. As result of that, the method is more 

sensitive as opposed to the case when the normal liver has higher intensity. 

After computing the initial region and the speed function the fast marching technique is 

separately executed for hypo- and hyper-dense lesions. The number of iterations 

performed by the method is limited to 25 for two reasons. On one hand, it makes the 

method quick. On the other hand, there is no need to differentiate the high abnormality 

levels (from the point of view of the morphological analysis presented in the next 

section). This way, the result of the fast marching can involve voxels with infinity 

abnormality (inside a large abnormal region), but these values are replaced with 25. The 
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continuous value of the result is rounded to the nearest integer number, which results in a 

discrete abnormality map. Figure 3.5 shows two examples. The CT image (a, e), the 

initial region (b, f), the speed function (c, g), and the abnormality map (d, h) are displayed 

for a hyper- (top row) and a hypo-dense (bottom row) case. The bright regions in the 

abnormality map represent contrast-enhanced lesions and vessels in the first case (top 

row), and hypo-dense lesions in the other case (bottom row). 

 

Figure 3.5 Construction of a hyper- (top row) and hypo-dense (bottom row) abnormality map. The CT image (a, 

e), the initial region (b, f), speed function (c, g), and the abnormality map (d, h). The high values of the 

abnormality map (d, h) represent liver lesions, contrast-enhanced vessels, fatty tissue. 

In the last step of the segmentation the discrete abnormality map is partitioned into a set 

of disjoint regions, where each region has the following properties: 

 it is 3D-connected 

 it consists of voxels having the same abnormality value 

 it is maximal (i.e. cannot be extended with other voxels) 

 it is neighboured by voxels having a different abnormality value 

According to this definition, the partitioning is unique for any discrete abnormality map. 

Two regions are considered neighbours if the one region has at least one voxel that is a 

26-neighbour of any voxel in the other region. A region is considered a maximum region 

if all of its neighbours have lower abnormality value. After partitioning, the following 

features are computed for each region: the value in the abnormality map, the set voxels 

belonging to the region, the volume and the bounding box of the region, the set of 

neighbours, and the region type (maximum or other). 

3.1.3 Multi-level morphological analysis 

The partitioned abnormality map consists of regions with a zero (representing normal 

liver, organ contour, fat) or positive (abnormal areas) values, and its maximum regions 

represent the centres of abnormal areas. The goal of this step is to analyse the 

neighbourhood of each abnormal region, starting from the maximum region and 
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iteratively adding its neighbours in order of decreasing abnormality. In each iteration (i.e. 

at each abnormality level), various geometric features are computed for the actual set of 

regions. Based on these features a probability value is computed, which shows the 

likelihood of the given set of regions to represent a lesion. If the probability belonging to 

an abnormality level is above a predefined threshold the corresponding maximum region 

is classified as a lesion centre, and the level, which maximizes the probability, defines the 

boundary of the detected lesion. 

More specifically, assume that                represents the set of (non-zero) regions 

in the partitioned abnormality map. For any region      let  (  ) denote the abnormality 

value of the region. For any subset of regions     let  ( )         ( ) denote the 

minimal abnormality value of regions involved in  . For any     and any        

the relation   (    ) is true if and only if    is the neighbour of at least one region in  . 

For any     let   ( )         |   (   )  denote the set of regions, which are 

the neighbour of any region in  . Let     ( )       ( ) |  ( )   ( )     denote 

the subset of the neighbourhood, which involves only regions, the abnormality value of 

which is equal to the abnormality value of   subtracted by 1. 

Region      is a maximum region if and only if  ( )   (  ) for all     (    ). The 

abnormality level   surrounding maximum region    is defined in the following way: 

  
  {

                                                           

  
        (  

   )       (  )    
 

 

Figure 3.6 Lesion in CT (left) and the discrete abnormality map (right) belonging to the area found in the black 

rectangle. In the abnormality map black voxels represent the normal liver, the brightest region represents the 

maximum region (ri), and labels (Q) represent different abnormality levels surrounding ri. 

Figure 3.6 demonstrates a small hypo-dense lesion (left) and the corresponding 

abnormality map (right). The brightest voxels of the abnormality map (right) represent the 

maximum region   , where  (  )   . The first abnormality level surrounding    (that is 

  
 ) involves    and all regions which neighbour    and the abnormality value of which is 

equal to 8. Continuing the iteration (         ), one can achieve the last level of 
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abnormality   
  that involves all regions of   

  and all regions which neighbour   
  and 

whose abnormality value is equal to 1. 

The morphological analysis of a maximum region (  ) starts with computing the 

following features for each level of abnormality (  
  |      (  )   ) surrounding the 

given maximum: 

  (  
 )      (        )     (        ), where   ,   , and    represents the 

size of the bounding box belonging to   
  along  ,  , and   axles, respectively. 

This function demonstrates the asymmetry of the region, such that      . 

  (  
 )    (        )  (        ), where   ,   , and    represents the size 

of the bounding box belonging to the VOI along  ,  , and   axles, respectively. 

This function demonstrates size of the region compared to the VOI, such that 

     . 

  (  
 )  |  

 | (        )⁄ , where |  
 | represents the volume of   

 . This 

function demonstrates the compactness of the region, such that      . 

  (  
 )      (  |  

 |     ⁄ ), where      represents the minimal volume of 

lesions to be detected. This function demonstrates the volume of the region, such 

that    . 

These functions are used to assign to each abnormality level a probability value which 

shows the likelihood of   
  to represent a lesion. The larger the value of  (  

 ),  (  
 ), 

 (  
 ), and  (  

 ) is, the more likely that   
  represents lesion. More specifically, the 

following probability function is defined by 

 (  
 )   (  

 )   (  
 )   (  

 )   (  
 ). 

Assume that  (  
 ) is computed for all levels      (  )   , the abnormality level 

maximizing  (  
 ) is demoted by              (  

 ). 

Using the above presented concept the set of maximum regions is processed in the 

following way. Let                   denote the subset of maximal regions such 

that       (  )   (  )    (  )      , where             ( ) and      is 

a predefined abnormality minimum. The process iterates through    and for each   , 

which satisfies the condition       (  ), the  (  
 ) is computed for all level     

 (  )   . When      (  
 ) is greater than a predefined probability threshold (denoted 

by     ),    is classified as lesion and the region   
     is added to the set of findings. 

The rest of this subchapter demonstrates how the different features affect the probability 

function. Function   is usually small for lower levels, it grows monotonically as further 

levels are added, and reaches the maximum (1) when the volume of the region   
  reaches 

the minimal lesion volume (    ). Function   starts from a greater value (since   is 

large for small regions), it decreases monotonically, and it drops when the extent of the 

region becomes large compared to the bounding box of the liver. Function   varies 

according to the shape of the region such that it has a greater value for spherical and a 

smaller value for elongated regions, while function   varies according to the compactness 
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of the region. The product of all functions ( ) has great value, if all of the features has 

great value, and it is small when any of the features has a small value. This way, the 

maximum of   represents the level at which the abnormal region is the most likely a 

lesion (considering its volume, size, asymmetry, and compactness). 

 

Figure 3.7 The CT image (left), the abnormality map (centre), and functions  ,  ,  ,   , and   (right) for four 

regions (a, b, c, d). Each plot starts from the centre of the region (l = 0) and shows values for all surrounding 

abnormality levels. When the maximum of function   is above a predefined threshold (horizontal lines show the 

maximum in case of a and b), the region is classified as lesion and its contour (green – in the images of a and b) is 

defined by the level belonging to the corresponding maximum. 

Note that asymmetry and compactness are computed based on the bounding box of the 

regions. This simplification was primarily motivated by computational efficiency. These 

features are computed for tens of thousands of regions when a liver exam is processed. It 

was very time consuming to compute the exact asymmetry and compactness using 

sophisticated algorithms (like Principal Component Analysis), but it is possible to 

compute an estimation of these features within a reasonable time. Using the product of 

different features for regions classification was also motivated by efficiency. The low 
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value of any feature indicates that the given region does less likely represent a lesion. 

Since the low value of one function makes the entire product close to zero, it is an 

efficient way to aggregate all features. 

Figure 3.7 shows the functions  ,  ,  , and   as well as the probability   for four 

abnormal regions. The first value of each plot (   ) represents the value belonging to 

the maximum region   
       and the subsequent values belong to regions 

  
    

      
   which represent the surrounding abnormality levels. 

In the case of a small lesion (Fig. 3.7/a)   starts with a low value and increases until 

    . The value of   starts with the largest possible value (1) and it decreases above 

level     . The asymmetry ( ) shows big variations at different abnormality levels, 

while the compactness ( ) starts with a large value (0.75) and decreases as the level 

increases. The product of all features ( ) starts with a low value and it reaches its 

maximum at level     . 

In case of a medium sized lesion (Fig. 3.7/b),   is maximal for all levels (since   
  is large 

enough), functions   and   have a nearly constant value until level     , but feature   

shows a significant drop beyond the level      where the maximum of   can be found. 

In case of vessel branches (Fig. 3.7/c-d), function   is low for all levels, and the values of 

  is low for several levels. Since there is no such level at which all metrics have a high 

value,   has low value for all levels, which means its maximum is also low. 

The maximum of the function   is equal to 0.31 and 0.23 for lesions (Fig. 3.7/a-b), and it 

is equal to 0.02 and 0.08 for vessel regions (Fig. 3.7/c-d), respectively. This difference in 

the maximum of   allows the separation of lesions from other regions. 

The analysis of abnormal regions is separately performed for hypo- as well as hyper-

dense regions. In the last step of the algorithm the two sets of findings are merged into a 

label-map where different integer numbers represent the different findings. Using 3x3x3 

(voxel) kernel the label-map is dilated, and the result is resampled to the voxel size of the 

original input CT. As result of the dilation, small lesions are not erased by the resampling 

when the original slice thickness is significantly larger than the pixel size (that was used 

to resample the input in the pre-processing step). 

3.1.4 Setting the parameters of the method 

The description of the method involved some constants that affect the result of the lesion 

detection. This subsection presents the justification of the value assigned to each constant. 

The parameter values were defined based on experiments with a set of contrast-enhanced 

abdominal CT exams. This set of images was not involved in the evaluation (presented in 

Section 3.2). The training dataset involved 55 portal-phase liver CT exams. The slice 

resolution was 512x512 in all cases, the slice number ranged between 53 and 1076 

(average 428), the pixel size varied between 0.65 mm and 0.98 mm (average 0.77 mm), 

and the slice thickness was in the range of 0.6 mm to 5 mm (average 1.7 mm). The exams 

were acquired with different types of CT scanner. Most of the cases belong to patients 

who underwent liver cancer treatment. For each training exam all lesions were identified, 

but no contour was provided for them. The definition of the lesions was based on the 
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image only (i.e. diagnostic information was not available). The total number of liver 

lesions identified in the dataset was 120 such that 15 cases had no lesion, 10 cases had 1 

lesion, 13 cases had 2 lesions, 7 cases had 3 lesions, and 10 cases had more than 3 lesions 

in them. The maximal number of lesions per case was 11 (the average was 2.2). 

In the preprocessing, the minimal pixel size used for isotropic voxel resampling 

(0.65 mm) and the radius used for Gaussian smoothing (1 mm) were derived from the 

minimum and maximal pixel size of the training images. The kernel radius (30 mm) used 

for morphological closing of the VOI was set high enough to correct all open cavities on 

the liver surface due to under-segmentation of boundary lesions by the automated liver 

segmentation method. Few parameters of the abnormality map computation, such as the 

density difference of normal liver and hyper-dense tumours (30 HU), the intensity of fat 

(-70 HU) and hypo-dense lesions (70 HU) were set based on manual measurements 

performed on the training dataset, while the maximal number of iterations (25) used by 

the fast marching as well as the morphological analysis was set based on the largest 

lesions found in the training set. 

There are three parameters which directly influence the sensitivity of the proposed 

method. The abnormality minimum (    ), which allows the pre filtering of false positive 

regions, was separately set for hypo- (8) and hyper-dense (20) lesions. The significantly 

lower value for hypo-dense lesions was due to the low contrast difference observed 

between the normal liver and hypo-dense lesions in some training cases. Using 0.25 cm
3
 

as minimal lesion volume (    ) was motivated by other publications (which exclude 

lesions below 5 mm diameter). This way, the value of function   is equal to 1, 0.5, 0.25 

for a region whose volume is equal to a sphere having 4, 3, 2.5 mm radius, respectively. 

The probability threshold (    ) takes the largest effect on the sensitivity of the method. 

The value of this parameter was set based on test runs with different parameter values in 

the range [0.05,0.5]. For each value the method was executed for all cases (such that the 

VOI was defined using automated liver segmentation method) and the result was visually 

assessed considering the following two simple metrics: 

 True Positive Rate (TPR): the total number of detected lesions divided by the total 

number of known lesions (that was equal to 120). 

 False Positive Per Case (FPPC): the total number of false detections divided by 

the number of cases (that was equal to 55). 

Based on the preliminary tests using the training dataset 0.1 was found to be the optimal 

value for     . Using this value, 102 lesions were detected (TPR=0.85) in addition to 131 

false findings (FPPC=2.4). In the next section, an extended analysis using ground-truth 

data will show how the selection of parameter      affects the number of true and false 

positives. 

3.2 Evaluation of automated liver lesion detection 

This section presents the evaluation of the proposed algorithm. Subsection 3.2.1 describes 

the test data and the evaluation methodology. Subsection 3.2.2 demonstrates the results, 

and Subsection 3.2.3 involves the discussion and the comparison with other approaches. 
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3.2.1 Test data and methodology 

The evaluation was based on a ground-truth lesion database that was created using 30 

portal-phase contrast-enhanced liver CT exams published by a liver segmentation 

workshop [28]. The test images were acquired using different CT scanners. The image 

resolution was 512x512 in all cases. The slice number, the slice thickness, and the pixel 

size was between 64–502 (average 214), 0.5–5.0 mm (average 1.6), and 0.54–0.87 mm 

(average 0.7), respectively. The exams involved a few healthy cases, but most of them 

were pathologic including lesions of different sizes. 

 

Figure 3.8 Definition of ground-truth for one exam in axial (left) and 3D (right) views, the liver contour is white 

and lesion contours are red. 

The ground-truth liver contour was provided by the workshop for 20 cases and the 

remaining 10 cases were manually contoured by physician. In all cases the lesions were 

manually contoured by a radiologist who had three years of experience in radiology 

including gastrointestinal imaging. Similar to other publications on liver lesion detection, 

lesions below 5 mm diameter were not included in the ground truth because they consist 

of such small number of voxels that they represent insignificant volume. The 30 test cases 

involved 59 lesions, 10 of which were hyper-dense (contrast-enhancing) and 49 were 

hypo-dense. The (largest axial) diameter of the lesions ranged between 8 and 120 mm. 

Figure 3.8 demonstrates the reference liver and lesion segmentation for one test exam. 

The evaluation using manually defined liver contour as VOI demonstrates the accuracy of 

the proposed method in ideal circumstances. However, the liver is rarely contoured 

manually in clinical practice to enable automated lesion detection. In order to simulate the 

real scenario, all exams were automatically segmented using the CT adaptation of the 

model-based approach presented in Section 2.3. Although the liver segmentation 

incorporates a probabilistic liver model, the result can exclude a lesion located on the 

boundary of the organ when its intensity significantly differs from the normal liver. 

Figure 3.13 demonstrates a few cases where the automated liver segmentation does not 

fully involve all lesions. This problem was corrected by the morphological closing in the 

preprocessing step of the algorithm, which was disabled when manually segmented liver 

was used to define the VOI. 

The proposed algorithm was executed for all test exams using the manually as well as the 

automatically segmented liver. The result of each run was an image where different labels 

represent the different findings detected by the algorithm. Each result was compared with 
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the corresponding reference lesion segmentation and the number of true positives (  ), 

false positives (  ), and false negatives (  ) were computed in the following way: 

 For each reference lesion, it was checked whether it has intersection with any 

finding in the result. If there was intersection    was increased, otherwise    was 

increased. 

 For each finding in the result, it was checked whether it intersected any lesion in the 

reference. If there was no intersection or the intersected reference lesion had been 

already associated with another finding in the result,    was increased (i.e. when a 

large lesion was intersected by multiple regions, only one of them was considered as 

  , all others were counted as   ). 

Assume    ,    ,     denote the sum of   ,   , and    for all test cases. The 

following three metrics were computed to characterize the accuracy of the lesion 

detection: 

 True Positive Rate (   ):    (       )⁄ , which demonstrates the sensitivity 

(in other words detection rate or recall) of the method. 

 False Positive per Case (   ):                        ⁄ , which demonstrates 

the number of false positives per case and reflects the amount of false positives. 

 Precision (   ):    (       )⁄ , which demonstrates the rate of true positives 

among all positive findings. 

The pair (       ) is commonly used to characterize the accuracy of a binary 

classifier. In order to demonstrate its overall accuracy, the algorithm was executed for all 

test cases using 32 different probability threshold (     = 0.01, 0.02, …, 0.19, 0.20, 0.22, 

…, 0.38, 0.40, 0.45, 0.50). For each threshold the pair (       ) was computed and the 

number of true and false positives was displayed for the different thresholds according to 

the Free-Response Operating Characteristic (FROC) analysis [87]. The FROC curve 

demonstrates well the trade-off between the two measures:     (rate of the detected 

lesions) and     (unnecessarily detected other regions). This way it represents well 

accuracy of the detection from the physician’s point of view. 

3.2.2 Results 

The FROC analysis of the proposed algorithm for manually and automatically segmented 

liver is displayed in Fig. 3.9 and Fig. 3.10, respectively. The diagrams are zoomed in the 

clinically relevant range and the (       ) pairs belonging to a few probability 

thresholds are highlighted with solid marks (see magnified diagram on the right). 

Figure 3.9 shows the FROC curve belonging to the case when manually contoured liver 

was used as VOI. On the left side the entire curve is plot, which shows the method can 

achieve high     with low     in general. On the right side a magnified view of the 

curve is visible, which is focused on the practically relevant range of     (75%–100%) 

and     (0–10). The plot shows that 

    =91.5% and    =1.7 (PRE=51.4%) when           

    =93.2% and    =4.6 (PRE=28.6%) when           

    =94.9% and    =6.3 (PRE=22.9%) when          . 
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Figure 3.9 FROC analysis of lesion detection from manual liver segmentation: (TPR, FPC) pairs are plot for all 

probability thresholds (left), the plot is magnified to the practically relevant TPR and FPC range (right). 

Figure 3.10 demonstrates the FROC curve belonging to the case when automatically 

contoured liver was used as VOI. The left plot (based on the same values of     ) shows 

the method can achieve 90%     with somewhat higher    . According to the 

magnified view: 

     = 84.7% and     = 1.6 (PRE = 51%) when           

     = 91.5% and     = 4.7 (PRE = 27.6%) when          . 

 

Figure 3.10 FROC analysis of lesion detection from automated liver segmentation: (TPR, FPC) pairs are plot for 

all probability thresholds (left), the plot is magnified to the practically relevant TPR and FPC range (right). 

The detailed accuracy statistics (TP, FP) belonging to the probability threshold     =0.12 

is displayed in Table 3.3. According to the numbers the result is perfect (i.e. all lesions 

were detected with no false positive) in 7 or 6 cases when the VOI was defined manually 

or automatically. The maximal number of false negatives per case was 2 (for both VOI 
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types), while the maximal number of false positives per case was 8 and 7 for the manual 

and the automated VOI, respectively. The proposed method detected all lesions in 26 (or 

22) of 30 cases when it was started from manually (or automatically) contoured VOI. The 

sensitivity was 91.5%, the precision was 51.4% and the number of false positives was 1.7 

per case when the method was started from manually contoured liver. The sensitivity was 

84.7% the precision was 51%, and the number of false positives was 1.6 per case when 

the input VOI was segmented by automated method. 

Exam 
Num. of 

lesions 

Manual liver Auto liver 

TP FP TP FP 

1 0 0 5 0 5 

2 2 2 0 2 0 

3 0 0 4 0 4 

4 3 3 0 3 0 

5 0 0 0 0 2 

6 0 0 1 0 2 

7 5 5 1 4 2 

8 3 3 0 3 0 

9 0 0 1 0 2 

10 5 5 2 5 2 

11 5 5 8 4 7 

12 0 0 0 0 0 

13 1 1 1 1 1 

14 2 2 6 2 3 

15 2 1 0 1 0 

16 8 8 1 7 2 

17 2 0 0 0 0 

18 2 2 0 2 0 

19 0 0 1 0 1 

20 0 0 1 0 1 

21 2 2 1 1 0 

22 0 0 1 0 2 

23 2 2 2 2 2 

24 5 5 0 5 0 

25 1 0 1 0 1 

26 0 0 3 0 3 

27 1 0 4 0 2 

28 0 0 1 0 1 

29 0 0 2 0 1 

30 8 8 4 8 2 

SUM 59 54 51 50 48 

Table 3.3 The number of lesions and the number of true positives (TP) and false positives (FP) achieved with 

probability threshold 0.12. The results are displayed for each case where the detection was started from 

manually and automatically segmented liver. 
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Figure 3.11 allows visual comparison of the ground-truth (a) and the result when the 

detection was started from manually defined (b) as well as automatically segmented (c) 

liver. The presented images belong to probability threshold           and represent 

exam 16 (in Table 3.3). 

 

Figure 3.11 Reference lesion segmentation (a) and the result of the detection from manually (b) and 

automatically (c) defined liver contour displayed in axial (top) 3D (bottom) views. 

3.2.3 Discussion 

This subsection presents the visual analysis of false positive and false negative findings 

generated from manually as well as automatically segmented liver when the probability 

threshold      was set to 0.12. Furthermore, at the end of the subsection the accuracy of 

the proposed algorithm is compared with some recently published techniques. 

Figure 3.12 displays all (5) false negatives when the method was started from manually 

segmented liver. The first three lesions (a, b, and c) are small, while the other two (d and 

e) are in the range of 20 – 30 mm. Lesions a and b are small hypo-dense tumours which 

are located on the boundary of the organ. They were missed due to their low compactness 

and small volume. The abnormality maximum inside lesion “c” (7) was below the 

minimally required value (    ) for hypo-dense lesions (that was 8), so it was rejected 

without morphological analysis. The hardly visible, nearly iso-dense lesion “d” fades into 

the low density liver boundary that is also affected by bean-hardening artefact in the 

vicinity of a rib. The hyper-dense lesion “e” looks like a network of contrast-enhanced 

vessels. The common property of these lesions is that the compactness is very low for all 

abnormality levels, at which the corresponding region has significant volume. That is why 

the probability is low for all levels. 
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Figure 3.12 False negatives (red contour) when the method was started from manually defined VOI (white 

contour): the CT image (left), the abnormality map (centre), and morphological features (right). There was no 

morphological analysis performed for lesion “c” because the maximal abnormality level inside this lesion (7) was 

below the minimum required for hypo-dense lesions (amin = 8). 

In addition to the previously presented 5 lesions, the proposed method did not detect 4 

lesions when it was started from an automatically segmented liver volume. Figure 3.13 

shows these false negatives. It is clearly visible that lesions “f” and “i” are not fully 

involved in the VOI, so they cannot be detected. The other lesions (g, h) have the same 

characteristics (low compactness) as the earlier mentioned false negatives. 
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Figure 3.13 Additional 4 false negatives (red contour) when the method was started from automatically 

segmented VOI (white contour): the CT image (f, g, h, i) and the corresponding abnormality maps (j, k, l, m). 

The number of false positives was equal to 51 when the detection was started from 

manually defined liver. Figure 3.14 shows the typical false positive findings  including: 

17 local intensity deviations (a); 11 multiple detections of one lesion, which were also 

considered as false positives (b); 6 thick parts of hepatic vein or inferior vena cava (c); 4 

cysts or lesions, which were too small to be involved in ground-truth (d); 4 visceral fat 

regions (e); 4 vessel branching points (f); 3 artefacts due to ribs or contrast filled bowels 

(g); and 2 calcifications (h). In addition to these region types, the gallbladder (for example 

see Fig. 3.11/c) or gallstones were typical false positives when the detection was started 

from automatically segmented liver. 

 

Figure 3.14 Typical false positives (red contour): hyper-vascularized region (a), lesion detected by 2 separate 

findings (b) where red area represents the hyper-dense part, big vein branch (c), tiny lesion not involved in the 

ground-truth (d), visceral fat(d), vein junction (e), artefact (g), and calcification (h). 



3.2 Evaluation of automated liver lesion detection 

92 

It is very challenging to compare the presented approach with other recent techniques due 

to the large variety of methodologies and error metrics used for their evaluation. 

Considering TPR and FPC, which characterize well the overall accuracy of a lesion 

detection method, the actual state of the art can be characterized in the following way: 

 Massoptier et al. [77] presented a method that detects liver lesions with TPR=82.6% 

with very low FPC=0.14 

 The detection rate of the method proposed by Militzer et al. [80] was TPR=71% 

with very high FPC=14 (precision 17%). 

 Casciaro et al. [82] published a method that could achieve TPR=92.3% (no 

information about FPC). 

 The evaluation of the method presented by Linguraru et al. [83] demonstrated 

TPR=100% with FPC=2.3. 

 The paper of Wu et al. [84] demonstrated TPR=90% with FPC=2.6. 

 The publication of Chi et al. [85] reported TPR=90% with FPC=1. 

 The detection rate of the method published by Safdari’s et al. [88] was TPR=84% 

with precision equal to 73%. 

 Schwier et al. [89] proposed an approach that could achieve TPR=78% with 54% 

precision. 

Based on the above summary one can see the accuracy of the proposed approach is 

competitive with the most efficient methods when the liver is manually defined because 

high TPR=91.5% was achieved with low FPC = 1.7 (precision 51.4%). When the VOI 

was created by automated liver segmentation method, the same TPR=91.5% was 

achieved with somewhat higher FPC=4.7 (precision 28%). The larger number of false 

positives does not significantly limit the usability of the method because false positive 

findings can be very easily eliminated in any clinical software application. 

The proposed algorithm processed one case in an average of 28.2 (±7.7) seconds when 

started from manually defined liver. When the liver was segmented automatically, the 

running time was 30.1 (±9.8) seconds on average due to the additional morphological 

opening of the preprocessing step. The liver segmentation took 20.2 (±4.5) seconds on 

average, which means the whole process was done in less than 1 minute for one case. 

Considering running time, the proposed method is absolutely competitive. Only the 

method of Wu et al. [84] can demonstrate such a low time for automated liver lesion 

detection. 

Although the test dataset originates from a liver segmentation contest [28], it was 

appropriate to give an overall picture about the efficiency of the proposed legion 

detection method because it involved various types of lesions. The evaluation showed the 

method can detect the majority of lesions, but its clinical usability shall be confirmed by 

extensive evaluation involving all types of liver lesions. It is important to note that lesions 

below 5 mm diameter were not involved in the test dataset (similar to recent 

publications). The automated detection of such lesions is very challenging because they 

appear only in one or two slices of the CT image (assuming 2-3 mm slice thickness), 

which does not allow real 3D analysis. 
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3.3 Summary 

Due to the increasing number of liver oncology cases in the clinical practice there is 

significant need for efficient tools in computer assisted liver lesion analysis. A wide range 

of clinical applications, such as lesion characterization, quantification, and follow-up 

could be facilitated by automated liver lesion detection method. Liver lesions vary 

significantly in size, shape, density, and heterogeneity, which make them very difficult to 

detect automatically. In this chapter the author presented an automated approach that can 

detect all types of liver lesions with high sensitivity and low false positive rate within a 

short run time. The related results were published in a journal paper [3]. 

The author developed a novel technique for automated liver lesion detection in contrast-

enhanced CT images. The proposed algorithm is based on the segmentation of abnormal 

regions inside the volume of interest and the classification of these regions based on a 

multi-level shape characterization. The shape description incorporates standard geometric 

features like asymmetry, size, compactness, and volume. Based on these features a 

probability is defined for each level of an abnormal region, which shows the likelihood of 

the given level to represent a lesion. Using this probability the abnormal regions are 

classified as lesion or other region and the contour of each detected finding is defined. 

The proposed analysis is separately performed for hypo- and hyper-dense lesions and the 

result is defined by the union of the two set of findings. 

The method was trained on a set of 55 cases involving 120 lesions and evaluated using 

another set of 30 contrast-enhanced liver CT cases, where all (59) lesions were manually 

contoured by one physician. Manually defined as well as automatically segmented liver 

was used as VOI. The algorithm was executed for all case using various sensitivity 

threshold values, which allowed the FROC analysis of the method’s accuracy. The results 

showed the method can achieve 92% detection rate with 1.7 false positive per case when 

the VOI is manually segmented. The same level of false positives was reached at lower 

detection rate (85%) when the VOI is segmented using automated liver segmentation 

technique. The detailed analysis of the false negatives demonstrated the method can miss 

small lesions which fade into the low density boundary of the organ. In addition to the 

other false findings, the false positives involved multiple detection of some lesion, and 

lesions or calcifications not involved in the reference (due to their size). 

In conclusion, the proposed algorithm can efficiently detect liver lesions irrespective of 

their size, shape, density, and heterogeneity within short running time (half a minute). 

According to the comparison with recent publications, its accuracy is competitive with 

the state-of-the-art approaches. Combined with automated liver segmentation it can be 

good basis of complex clinical workflows, such as liver lesion classification or 

quantification. 
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4 Virtual volume resection 

The liver can be partitioned into anatomical segments. This information was leveraged by 

the automated liver segmentation algorithm presented in Section 2.3. The separation of 

liver segments can also facilitate cancer therapy. In surgical treatment planning it is 

important to precisely quantify the resected (involving tumour) and the remnant (healthy) 

segments of the liver before the operation. The automated partitioning of liver segments is 

very challenging because the segment boundaries are not visible in medical images. There 

are vessel based approaches, but these techniques require very precise vessel 

segmentation, which can be time consuming. There is significant need for tools which 

allow efficient separation of the liver segments based on the physician’s anatomical 

knowledge. In this chapter the author presents a novel technique for interactive 

partitioning of 3D binary objects using smooth surfaces. The related results of the author 

were published in a journal paper [4]. 

The introduction gives an overview about the existing techniques and the main 

motivations of this work. Furthermore, it presents the theory of B-spline curve and 

surface interpolation that is applied by the proposed algorithm. 

The automated organ partitioning is feasible when the boundary of the segments (or 

lobes) is visible in the medical image. This is true for lung lobe separation. In case of the 

liver, the boundary of the segments is not visible in medical images, so the automated 

separation is very challenging. One possible approach for liver partitioning is to compute 

the vascular territories belonging to the main branches of the organ’s vascular system (i.e. 

the portal- or hepatic vein, or hepatic artery). In the paper of Saito [91] such a software 

package is presented for surgical liver resection simulation. Another approach is to 

manually define the boundary of organ sections on 2D slices of a 3D volume, interpolate 

the contour for all other slices, and cut the organ using the interpolated surface. Lang [92] 

presented the clinical usability of such software for surgical liver tumour and lobe 

resection planning. A simplified implementation of this technique is to use planes to 

separate different sections of an organ as presented in the work of Reitinger [93]. It is also 

possible to combine the different approaches as introduced by Bourquain [94]. Bernhard 

et al. [95] published a method that allows using smooth surfaces, which can be flexibly 

deformed, in virtual liver resection for surgery planning. 

Computing the intersection of a smooth surface and a 3D object is a very complex 

mathematical problem even if the object is a simple line. Rockwood [96] presented a 

method that can compute the intersection of a line with a B-spline surface that is 

represented by a set of planar faces. The algorithm of Dokken [97] computes the 

intersection of a line with a surface by recursively subdividing the surface into sub-

patches. The method of Nishita [98] iteratively cuts those regions of the B-Spline surface 

which are not intersected with the line using the convex hull property of the surface. Jean 

[99] published a method for computing the intersection of 2 spline surfaces based on the 

hierarchical triangulation of the surfaces. 
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In this work a semi-automated technique is proposed for partitioning the liver into its 

anatomical lobes and segments. The presented algorithm integrates the advantages of the 

existing approaches: allow cutting a 3D object with smooth surface, use triangular 

representation of the surface, and apply multi-resolution approach to compute the 

intersection. The input of the tool involves a 3D binary image representing the segmented 

organ to be partitioned and the corresponding 3D medical image that depicts the internal 

structure of the organ. The output of the tool is a 3D label image, in which the different 

segments/lobes have different discrete labels. 

According to the proposed approach the set of user-defined traces is interpolated with a 

B-Spline surface and the voxels of the 3D object are separated in two classes based on 

voxel coordinates located on the different side of the surface. The algorithm was 

integrated into the open-source MITK [29] framework which allows iterating the method 

on different objects several times. The presented technique was evaluated for virtual liver 

segment separation and tumour resection. 

The proposed method is described in Section 4.1. The presented algorithm starts with 

computing the orientation of the surface (Subsection 4.1.1) and creating the multi 

resolution triangular representation of B-spline surfaces (Subsection 4.1.2). The volume 

cut is based on an efficient way to compute the intersection of the surface with a scan line 

(Subsection 4.1.3). The input volume is partitioned in two parts based on the intersection 

of the surface with several scan lines (Subsection 4.1.4). The evaluation of the proposed 

approach is demonstrated in the Section 4.2. This section discusses liver segment 

separation primarily, and it also involves two case studies for virtual tumour resection. 

The rest part of the introduction presents the mathematical background of B-Spline curve 

and surface interpolation. The goal of this part was to introduce the annotations used in 

the following subsections. Given    , and degree    , the B-Spline [100] curve is 

defined by the following function: 

  ( )  ∑     ( )  
 
    (         ), (4.1) 

where  ̅  (          )  represents a set of control points, such that       for all 

     , and the basis function      is defined by the following recurrent formula: 

     ( )  {
   if          

    otherwise             
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where   (              ), referred as knot vector, is defined in this paper in the 

following way: 
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Given a vector of data points  ̅  (          ) , where       for each      , 

the B-Spline curve interpolation means computing the vector  ̅ of control points that 

satisfies the following equation for all      : 

     (  )  ∑     (  )  
 
   , (4.4) 

where   (          ) is a parameter vector such that               . 

Vector   is defined in this work incorporating the distance between data points: 
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the B-spline interpolation is equivalent to solving the following system of linear 

equations: 

  ̅    ̅. (4.7) 

In summary, the input of the curve interpolation involves the degree  , the vector  ̅ of 

data points with size    , and the parameter vector  . The output is the  ̅ vector of 

control points, which define the B-spline curve  ( ) with degree  , such that     (  ) 

for all      . The process starts with computing the knot vector   and matrix   

based on the input parameters. Then, the system of linear equations (Equation 4.7) is 

solved using the Gauss elimination. 

Given    ,     the 2D B-spline surface of degrees (   )     is defined by the 

following function: 

  (   )  ∑ ∑     ( ) 
   

 
       ( )          , (4.8) 

where   [    ] is a grid of control points, furthermore, basis functions      and      are 

defined using Equation 4.2, such that vectors   (              ) and   

(              ) are defined according to Equation 4.3. 

Given a grid of (   )  (   ) data points   [    ] the B-spline surface 

interpolation means computing the grid of control points  , such that  (   ) satisfies the 

following equation for all pairs of (   ), where       and      : 

       (     )  ∑ ∑     (  )
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where 

      ∑     (  )    
 
   , (4.10) 

and parameter vectors   (          ) and   (          ) are defined according to 

the following equations: 
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Assume that   and (   ) are defined by the user, the grid   of control points belonging 

to the surface that fits the data points can be computed using Algorithm 4.1. The input of 

the method includes: degrees      and grid   [    ] of data points with size (   )  

(   ). The output of the method is the grid   [    ] of control points, which define 

the surface  (   ) with degrees   and q such that       (     ) for all       and 

     . The algorithm starts (Step 1) with computing vectors   and  , which is 

followed by two main steps. In the first one (Step 2)     B-spline curves are 

interpolated based on the column vectors of the input data points, which results in a grid 

of intermediate control points. In the second one (Step 3)     B-spline curves are 

interpolated using the row vectors of the intermediate control points, which results in the 

final grid of control points. 

1 Compute   and   based on   

2 For each       

2.1 Perform B-spline curve interpolation to the column   of the input data points 

(                ), using degree  , and parameter vector   

2.2 Let (                ) denote the vector of intermediate control points 

belonging to the interpolated curve 

3 For each       

3.1 Perform B-spline curve interpolation to the row   of the intermediate control 

points (                ), using degree  , and parameter vector   

3.2 Let (                ) denote vector of control points control points belonging 

to the interpolated curve 

Algorithm 4.1 B-spline surface interpolation 
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4.1 Volume partitioning using B-spline surfaces 

The problem of cutting a binary volume with a spline surface is solved by separating its 

voxels located on the different side of the surface. Since this problem is very complex to 

solve for an arbitrary surface, the following three constraints are required for the input 

grid of data points: 

 Due to the quadratic interpolation in both directions (     ) at least 3 traces 

shall be defined by the user and each trace shall involve at least 3 points. 

 No trace can be self-intersecting (which makes sense from the application’s point of 

view). 

 Each trace shall be defined on the same type of 2D view (axial, coronal, or sagittal). 

This way, the surface has an orientation that shows, which plane (axial, coronal, or 

sagittal) is the surface aligned with. Based on the orientation, the direction of lines 

nearly perpendicular to the surface can be defined. 

The above defined constraints don’t limit the practical usability of the tool, but makes the 

problem easier to solve. This way, the original problem can be reduced to computing the 

intersection of the surface with a set of scan lines, which are nearly perpendicular to the 

surface. In order to compute the intersection of the surface with several lines efficiently, 

the B-Spline surface is triangularized by sampling the surface at high resolution. This 

way, the problem is further reduced to finding the triangle intersected by each scan-line 

and computing the position of the intersection. Since the number of triangles can be very 

large (due to the high resolution) the process is further optimized by using multi-

resolution triangularization of the B-Spline surface. 

Algorithm 4.2 presents the process of the volume cut. The input of the algorithm involves 

a triplet (     )     that represents the domain 

                                       

of the 3D binary image, where       denotes the size of the image. In addition, the input 

involves a set of traces               , where    , and for each       

                   for some     (i.e. each trace is an ordered set of voxel 

positions). The output of the algorithm is a binary image            that assigns 0 

and 1 to voxels located on the different side of the B-spline surface that fits input traces. 

1 Compute grid of normalized data points and perform surface interpolation 

2 Compute surface and scan line orientation 

3 Create multi-resolution triangular representation of the surface 

4 Compute intersection for all possible scan lines which intersect the surface 

5 Propagate surface boundary for the remaining scan lines and compute output mask 

Algorithm 4.2 Cut volume with B-spline surface. 

The algorithm starts with the normalization of input traces (Step 1), as result of which 

each trace consists of the same number of data points. This step makes it possible to 
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define a (   )  (   ) grid, where (   ) represents the number of traces and 

     represents the number of data points within each trace (this resolution proved to 

be large enough based on empirical tests). For each       B-spline curve 

interpolation is performed using                 as data points and the result curve 

  ( ) is used to define the c-th row of the grid of the normalized data points   [    ], 

such that        (   ) for any      . When   is computed, B-spline surface 

interpolation is performed using Alg. 4.1, which results in  (   )  The following (2–5) 

steps of Alg. 4.2 are discussed in Subsections 4.1.1–4.1.4. 

4.1.1 Surface and scan line orientation 

In the second step of Alg. 4.2 the orientation of the surface is determined based on the set 

of normalized input traces. The orientation denotes one the three axles (     ) of the 3D 

Cartesian coordinate system. Using the notation introduced earlier, let   [    ] denote 

the grid of normalized data points, where       and      . Furthermore, let 

(    
      

 
     

 ) denote the coordinates of the data point     , and let  (  
 ),  (  

 
), and 

 (  
 ) denote the standard deviation of  ,  , and   coordinates of all data points 

belonging to the trace indexed by  . The x-orientation of the trace  ,   ( ) is equal to 1, 

if the deviation is the smallest for the x coordinate of its data points. Otherwise it is equal 

to 0 according to the formal definition: 

   ( )  {
   (  

 )   (  
 
)   (  

 )   (  
 )

           
. (4.13) 

Furthermore, the x-orientation of the grid  ,   ( ) represents the number of traces, for 

which the x coordinate has the smallest deviation: 

   ( )  ∑   ( ) 
   . (4.14) 

Assume that   ( ) and   ( ) are defined similar to Equation 4.13 and 4.14. The surface 

orientation of the grid  ,  ( ) shows which coordinate of the data points has the smallest 

deviation considering all traces: 

  ( )                  
 ( ). (4.15) 

For example, when the traces are defined on axial slices ( -plane), the   coordinate is 

constant for all points of each trace. In this case   ( ) is equal to    , which means 

 ( )     Note that   ( ) can be equal to     for more than one          . That 

can happen in the very unlikely case when the user specifies strait horizontal (or vertical) 

lines on each slice. In such a case the orientation is selected according to inverse 

lexicographic order (e.g.   ( )    ( )        ( )   ). 

The surface orientation shows, which plane (i.e. type of slice) is the surface nearly 

perpendicular to. The two side of the surface is computed in each of these planes (i.e. 

axial slices) using scan-lines which are parallel with one of the two axles of the given 

plane (i.e. x or y). The orientation of the scan lines,  ( ) is selected such that the 
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intersection of the surface and a given plane is nearly perpendicular to the scan lines. The 

selection is based on the value of   ( ) according to the following definition: 

  ( )                   ( )   ( ). (4.16) 

Figure 4.1 demonstrates a case when the traces are defined on axial slices and the y 

coordinates of the data points have greater deviation than the x coordinates. In this case 

the z coordinates of the input traces have the smallest deviation because the traces are 

defined on axial slices, so the surface orientation  ( ) is equal to z. Moreover the x 

coordinates show smaller variation compared to the y coordinates, so the scan-line 

orientation  ( ) is equal to x. 

 

Figure 4.1 Definition of surface and scan-line orientation: Since the traces are defined on  -planes (  coordinate 

is constant for each trace) and the   coordinate has smaller deviation than   coordinates, the surface orientation 

 ( )    and the scan line orientation  ( )   . 

When  ( ) is computed, the scan lines are defined in the following way. As earlier 

introduced,                                        represents the 

image domain. Assume that  ( )   , in this case the total number of scan lines is equal 

to    . For each (   ) pair the corresponding scan line is defined by the subset of voxels 

                      in which the   and   coordinates are fixed. The scan lines 

can be similarly defined, when  ( )    or  ( )    by fixing the x and z or the x and y 

coordinates, respectively. 

4.1.2 Multi-resolution triangular representation 

In the third step of Alg. 4.2 the surface  (   ) is sampled according to a multi-level grid. 

Let     denote the top level and     denote the resolution of the grid. For each level 

      the grid is defined by the following function: 

                                  , 

such that 

   (   )   (
 

   
 

  ). (4.17) 
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For any set      of 3D points let 

   ( )  (                          )    , and 

   ( )  (                          )     

denote the minimum and maximum coordinates of the point set   along each axles (i.e. 

the bounding box of the point set). Furthermore, let 

   (       )  ⋃   (   )(         ) (         )  (4.18) 

denote the subset of grid belonging to the index range  (     ) (         ) . 

 

Figure 4.2 Multi-resolution representation of a cutting surface: White curves represent the normalized input 

traces, blue lines represent the grid of normalized input data points, and red lines demonstrate the triangular 

surface. Zero-level representation (G0) – left, first-level representation (G1) – right. Round dots represent some 

highlighted grid points (both levels), and squared dots represent the points of the first-level sub-grid gl(1,1,2). 

Assume that    ,    , and the user defines 3 traces (   ) which have 21 data 

points (    ) after normalization. Figure 4.2 demonstrates the multi-resolution 

representation of such a surface, where white, blue, and red lines represent the normalized 

input traces, the grid of normalized input data points, and the triangular surface, 

respectively. The left side of the figure shows the zero-level (   ) representation that 

consist of 4 surface points { (   ),  (   ),  (   ),  (   )} and 2 triangles, while the 

right side of the figure shows the first-level (   ) representation that consist of 25 

surface points { (   ),  (      ), … ,  (   ),  (      ),  (         ), … ,  (      ), 

 (   ),  (      ), … ,  (   )} and 32 triangles. The squared dots of the right grid 

represent the first-level sub-grid   (     ) that involves 9 grid points {  (   ),   (   ), 

  (   ),   (   ),   (   ),   (   ),   (   ),   (   ),   (   )} which represent the 

following surface points { (         ),   (        ),  (         ),  (        ), 

 (       ),  (        ),  (         ),  (        ),  (         )}. 



4.1 Volume partitioning using B-spline surfaces 

102 

For each level       the bounding box of the surface points is defined by the 

following function: 

                                            , 

where 

  (   )  {
(   (  (     ))     (  (     )))                                    

(   (    (         ))     (    (         )))    
 

4.1.3 Intersection of scan lines with the triangular surface 

In the fourth step of Alg. 4.2 the intersection of the surface with all scan lines 

 (   ) |              is computed. The intersection with a single scan line 

(   ) is computed in the following way. First, the intersected triangle is located based on 

a hierarchical search, then the point of the intersection is computed using the concept of 

barycentric coordinates. 

Assume that relation (   )    (   )  (         ) is true, if     
 

       
 

 and 

    
        

 , and false otherwise. Furthermore, assume that   〈          〉 

represents a queue of   (   ) structures, such that    ( )    ,    ( )  〈       〉, 

and     (      )  〈            〉 per definition. 

Algorithm 4.3 demonstrates the computation of the intersection of a scan line with the 

surface  (   ). The input of the algorithm is the scan line position (   ) and the multi-

resolution triangular representation of the surface (   and   ) for all levels      . The 

method returns the   coordinate of the point of intersection, where            .  

At the beginning of the method (Step 1)   is set to the default value (  ), which means 

the scan line has no intersection with  (   ), and   is initialized with empty queue. If the 

scan line crosses the bounding box of the lowest-level triangular representation, then 

  (   ) is added to the queue (Step 2). 

The following loop (Step 3) encounters all levels in increasing order in order to find 

  (   ) that is crossed by the scan line. When     (Step 3.3) the actual   (   ) is further 

analyzed at the next level of resolution (Step 3.3.1.1.1). 

When the finest resolution is reached (Step 3.4) all smallest subset {  (   ),   (     ), 

  (     ),   (       )} of grid    is identified, whose bounding box   (   ) is 

crossed by the scan line. For each of these bounding boxes two triangles are created form 

the corresponding grid points (Step 3.4.2, and Step 3.4.6) and the intersection of these 

triangles and the scan line is checked based on the following criteria. 

The scan line (   ) with orientation  ( )    intersects the triangle     (Step 3.4.2) if 

the projection of the triangle into the plane     includes the point (     ). The latter 

condition is decided using the concept of barycentric coordinates (Step 3.4.3 and Step 

3.4.4) which can be also used to compute the   coordinate of the intersection (Step 

3.4.4.1). When one triangle is not intersected the other is also tested (Steps 3.4.6–3.4.8). 

The function terminates, when the first intersection is found (Step 3.4.4.2 or Step 3.4.8.2) 

or no intersection is found (Step 4). 
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1     ,     

2 if (   )    (   )     (    (   )) 

3 while   | | do 

3.1 let   (   ) denote    ( ) 

3.2      ( ) 

3.3 if     then 

3.3.1 for each    in              (   )     

3.3.1.1 for each    in              (   )     

3.3.1.1.1 if (   )      (     ) then      (      (     )) 

3.4 else 

3.4.1     (   ),     (     ),     (     ),     (       ) 

3.4.2    (           )    (           )    (         ) 

3.4.3   
(     ) (     ) (     ) (     )

(     ) (     ) (     ) (     )
   

(     ) (     ) (     ) (     )

(     ) (     ) (     ) (     )
 

3.4.4 if (   )  (   )  (     ) 

3.4.4.1        (     )    (     ) 

3.4.4.2 return 

3.4.6    (           )    (           )    (         ) 

3.4.7   
(     ) (     ) (     ) (     )

(     ) (     ) (     ) (     )
   

(     ) (     ) (     ) (     )

(     ) (     ) (     ) (     )
 

3.4.8 if (   )  (   )  (     ) 

3.4.8.1        (     )    (     ) 

3.4.8.2 return 

4 return 

Algorithm 4.3 Computation of the intersection of a scan-line with the surface, when  ( )    and 

 ( )   . 

 

Figure 4.3 Hierarchical localization of the intersection of the surface with a scan line: the process starts with first 

level (l = 0) – left, and proceeds with the next level – centre, until the maximal level (     ) is reached – right. 

Figure 4.3 demonstrates how the algorithm works for the example surface introduced in 

Fig. 4.2. Assume the scan line intersects the bounding box   (   ) – Fig.4.3/a. In that 

case the bounding boxes   (   ) for all         are checked. Furthermore, assume 
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the scan line intersects bounding box   (   ) – Fig.4.3/b. In that case the bounding boxes 

  (   ) for all       and        are checked. Finally, assume the scan line 

intersects bounding box   (    ) – Fig.4.3/c. At this point the method reaches the 

maximal level ( ), and the point of intersection can be computed. 

4.1.4 Propagation of the boundary to non-intersecting scan-lines 

In the fifth step of Alg. 4.2 the edge of the surface is extended to the entire 3D image. 

Using Alg. 4.3 the boundary can be computed for all scan lines (   ) which intersect the 

surface  (   ) within its domain (           ). In order to cut the whole 3D 

image, the boundary shall be propagated to the remaining scan lines in both y and z 

directions. 

Assume that  ( )   ,  ( )   . For any             and             let 

the relation (   )    be true, if and only if the scan line (   ) intersects the surface 

 (   ). The propagation in   direction works in the following way. For any   

          let      and      denote the smallest and the largest             

such that (   )   , and let (           ) and (           ) denote the point of 

intersection for scan lines (      ) and (      ), respectively. For all          the 

point of intersection is set to (        ), and for all            the point of 

intersection is set to (        ). 

The propagation in   direction works in similar way. Assume that      and      denote 

the smallest and the largest             for which the point of intersection is already 

defined for all            . For each          the points of intersection are 

defined for all             as in case of     . For each            the 

points of intersection are defined for all             as in case of     . This way, 

the point of intersection is defined for all scan lines (   ), where             and 

              

Assume that  (   ) represents the x coordinate of the surface boundary in the scan line 

(   ). The output image representing the two sides of the surface is defined in the 

following way: 

 (     )  {
     (   )
     (   )

. 

The above defined function defines a binary volume where 0 and 1 represent the two 

sides of the surface. This volume can be used to partition any binary volume (e.g. a 

segmented liver or a vessel tree). Note that the whole concept (Subsection 4.1.1-4.1.4) 

can be applied for other surface and scan-line orientations. 

4.2 Evaluation of virtual volume resection 

This section presents the evaluation of the proposed algorithm. Subsection 4.2.1 describes 

the test data and the evaluation methodology. Subsection 4.2.2 demonstrates the results 

for virtual liver segment and lobe separation and tumour resection. In the last subsection 

(4.2.3) the results of the liver segment separation are compared with that of another 

technique and the results of another publication. 
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4.2.1 Test data and methodology 

One clinical application of virtual volume resection is liver segment separation [101]. For 

evaluation purposes the proposed algorithm was integrated into MITK [29]. This open-

source software framework allows displaying medical images with segmentation results, 

handling user interactions such as drawing traces into axial, coronal, or sagittal slices, 

executing the algorithm for partitioning the liver, and visualizing the partitions in 3D 

view or superimposed on 2D slices using different colours (see screenshot in Fig. 4.4). 

The presented algorithm was evaluated for liver segment separation using a set of 20 

publicly available portal-phase liver CT examinations with gold standard liver contour. 

The test cases were originally provided for a liver volume segmentation contest [28]. The 

slice resolution was 512x512 for all cases, the number of slices varied between 64 and 

394 (average 208), the pixel size was in the range 0.58 mm to 0.81 mm (average 

0.68 mm), and the slice thickness varied between 0.7 mm and 5 mm (average 1.6 mm). 

The dataset represents average clinical cases involving healthy as well as tumorous 

exams. The evaluation was performed involving radiologist. Six of the 20 cases were 

excluded by the physician because the hepatic vein was not visible in these images. 

 

Figure 4.4 User interface of the prototype implemented in MITK. 
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According to the Couinaud definition [102, 103] the liver can be cut into anatomical 

segments using surfaces which are fit to the main branches of the hepatic and the portal 

vein. The hepatic vein has 3 main branches (left, middle, and right) and the portal vein 

bifurcates into two (right and left) branches. Applying 5 cuts in a predefined order results 

in a set of 7 sections including segments 2, 3, 4 (that involves segment 1), 5, 6, 7, and 8. 

The five cuts can be performed in the way presented in Fig.4.5. 

 

Figure 4.5 The workflow of the liver segment separation. 

The first surface is defined by traces, which are drawn on axial slices and connect the 

inferior vena cava (IVC) with the middle hepatic vein branch (Fig. 4.5/b). Using a surface 

fit to these traces the liver is cut into left and right lobes. Based on the relative position of 

the resulted partitions, left (green) and right (red) liver can be automatically labelled 

(Fig. 4.5/c). The second surface is fit to the right portal vein branch. The corresponding 

traces are drawn on coronal slice (Fig. 4.5/d), and the interpolated surface is used to cut 

the right section into right inferior and right superior lobes. Similar to the first step, the 

superior (red) and inferior (blue) lobes can be automatically labelled (Fig. 4.5/e). The 

third surface is defined similar to the first one, but here the right branch of the hepatic 

vein is incorporated (Fig. 4.5/f). This surface is used to perform 2 cuts: the right inferior 

lobe is separated into segment 5 and 6, while the right superior lobe is separated into 

segments 7 and 8. The resulted segments (5, 6, 7, and 8) can be automatically labelled 
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based on their relative superior/inferior and anterior/posterior position (yellow, cyan, 

gold, and orange, respectively – (Fig. 4.5/h). 

The fourth surface is defined similar to the first one, but here the left branch of the hepatic 

vein is incorporated (Fig. 4.5/i). Using this surface the left lobe is partitioned into the left 

lateral lobe and the left medial lobe that represents segments 4 and 1. Based on its 

position segment 4 (purple) can be automatically labelled (Fig. 4.5/j). The fifth surface is 

defined on axial slice. The input trace starts from the left portal vein and goes between the 

sub-branches feeding segment 2 and 3 (Fig. 4.5/k). This surface separates segments 2 

(anterior) and 3 (posterior) which can be automatically labelled using green and blue 

according to their position (Fig. 4.5/l). 

Based on preliminary technical experiences the workflow was further optimized to make 

it easier to use. As mentioned earlier the quadratic surface interpolation needs at least 3 

traces. When a surface was defined with only one trace, the input was tripled, such that 

the same input trace was used on the preceding and the succeeding slices. 

For each test exam the physician defined the input traces for all 5 surfaces such that each 

surface was defined by one trace. The liver was partitioned into 7 segments (2, 3, 4(+1), 

5, 6, 7, 8) according to the workflow presented in Fig. 4.5, and the volume of each 

segment was measured. The test was repeated 3 times by the operator with a few weeks 

of delay. The variation of segment volumes was also computed as the standard deviation 

of the volumes measured in the different tests. This way, the average volume of liver 

segments and the intra-operator variability of segment separation were assessed. 

Another clinical application for volume partitioning is liver tumour resection. In this case 

the part involving the tumour is virtually cut out from the liver and the removed and the 

remnant liver is quantified. Two test exams were selected to simulate this scenario. The 

liver contour was available and the tumours were manually contoured using the 

interactive segmentation tool of the MITK framework for both exams. In each case 

multiple (3 or 4) traces were drawn to define the cutting surface. The liver was cut with 

the surface and the resected and remnant volumes were visualized and quantified. 

4.2.2 Results 

Tables C.1 and C.2 (in Appendix C) presents the volumetric analysis of the liver segment 

separation. For each exam the volume of each segment is reported (in cm
3
) according to 

each test. Furthermore, the average volume of the 3 test runs and the standard deviation is 

reported (in % of the total liver). 

Based on the presented numbers the largest average variation (2.8%) was observed in 

case 14 (with segment specific variations equal to 0.3%, 0.4%, 0.6%, 5.5%, 4.0%, 3.2%, 

5.7%), which was due to large variation in the right liver (i.e. last four values). The lowest 

average variation (1.1%) belonged to exam 5 (0.6%, 1.3%, 1.4%, 1.1%, 0.8%, 2.2%, 

0.2%), while the mean average variation was 1.9%, which was close to that (2.1%) of 

exam 7 (2.0%, 1.3%, 2.3%, 1.1%, 2.3%, 2.3%, 3.2%). 

Figure 4.6 shows the result of the liver segment separation for case 14. The result of all 3 

runs are shown from anterior as well as posterior view, where segments 2, 3, 4(+1), 5, 6, 

7, and 8 are displayed with green, blue, purple, yellow, cyan, gold, and orange colours, 
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respectively. In case of this exam the large intra-operator variability of segment volumes 

was due to the different definition of the surface that divides the right liver into superior 

and inferior parts. As result of that, the size of segment 8 increased, and that of segment 5 

was significantly smaller in the third test (see white arrow on Fig. 4.6/3). Figure 4.7 

demonstrates the exam (5) with the smallest variation (1.1%). In this case there is no 

significant difference among the three results. 

 

Figure 4.6 Result of the liver segmentation for exam 14 in 3 different times (in columns): each result is shown 

from anterior (top) and posterior (bottom) views. The large intra-operator variation was due to the different 

definition of the surface fit to the right portal vein, as result of which segment 8 (orange) had increased volume 

in contrast to segment 5 (yellow) – demonstrated by the white arrow. 

 

Figure 4.7 The result of the liver segmentation for exam 5 in 3 different times (in columns): each result is shown 

from anterior (top) and posterior (bottom) views. This case demonstrated the smallest intra-operator variability. 
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The diagram of Fig. 4.8 and Fig. 4.9 show the average volume and the intra-operator 

variation segment-by-segment. Segment 2 had the smallest variation (1%), while segment 

8 had the largest variation. The variation correlated with the average segment volumes, 

only segment 6 had a bit larger variation compared to its average volume, which means 

the liver segment separation was reproducible with the proposed tool. 

 

Figure 4.8 The average segment volume (in % of the total liver). 

 

Figure 4.9 The average (AVG) and the standard deviation (STD) of segment volumes (in % of the total liver). 

Figure 4.10 demonstrates the first case study for tumour resection. In this case three 

tumours were found at the superior part of the right lobe and the partial resection of the 

right lobe was simulated. In order to define the cutting surface 4 traces were manually 

drawn on axial slices. The first trace (a) was placed at the top of the liver at the boundary 

of the left and right liver, the second (b) and third traces (c) were placed approximately 

20 mm far from the lesions, and the fourth one (d) was placed outside the liver below the 

bottommost lesion. The result of the virtual cut is displayed in an axial view (e) and in 3D 

(posterior) views. When the resected part is not visible (h) one can see the cutting surface 

is smooth and the location of the input traces is not remarkable. In addition to the 

visualization the volume parts were quantified: the remnant liver (red) was 1461 cm
3
, and 

the resected part (green) was 716 cm
3
. 
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Figure 4.10 Virtual tumour resection, case study 1: definition of cutting surface on axial slices (a-d), and the 

result in axial (e) and 3D (f, g, h) views. Green - resected liver, red - remnant liver, black - resected tumours. 

Figure 4.11 shows the second case study for tumour resection. In this case the tumours 

are located in the left lobe and the resection of the entire left lobe is simulated. In order to 

define the cutting surface three traces were manually drawn on axial slices. The first trace 

(a) was placed at the bottom of the left lobe, the second trace (b) was defined at the first 

lesion on the visible boundary of the left lobe, and the third trace (c) was placed 

approximately 20 mm far from the second lesion. The results are shown on Fig. 4.11 in 

axial (d) and 3D (posterior) views (e, f). Although the traces have significant curvature, 

the cutting surface is smooth and the location of the input traces is not remarkable (f – 

when the resected part is not visible). The volume parts were quantified: the remnant liver 

(red) was 991 cm
3
, and the resected part (green) was 189 cm

3
. 

 

Figure 4.11 Virtual tumour resection, case study 2: definition of cutting surface on axial slices (a-c), and the 

result in axial (d) and 3D (e, f) views. Green - resected liver, red - remnant liver, black - resected tumours. 
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4.2.3 Discussion 

The boundary of liver segments is not visible in CT images, so it is very challenging to 

define ground truth for liver segment separation. In order to assess the accuracy of the 

results achieved with the proposed tool, the results were compared with two types of 

reference segmentation. 

The first reference was published in the paper of Leeluudomlipi [104] who presented the 

average volume (in % of the total liver) of certain liver lobes based on an extensive study 

involving liver 155 exams. Instead of the volume of the anatomical segments this paper 

reports the volume of some lobes which can be considered as unions of certain segments. 

Computing the corresponding unions made it possible to compare our results with these 

reference volumes. 

The other reference was created using vessel-based liver segment separation. According 

to another definition the anatomical liver segments can be defined as vascular territories 

of the eight main branches of the portal vein. Kriston [105] presented a tool that allows 

the separation of liver segments based on its portal tree. Using this tool the following 

workflow was performed. First, the portal vein was segmented from a user defined root 

point (Fig. 4.12/a). Then, the 8 main branches of the portal vein were manually labelled 

(Fig. 4.12/b). Finally, the vascular territory belonging to each branch was computed and 

quantified (Fig. 4.12/c). The vessel-based segment separator was performed for all test 

cases by the physician three times. The average volume was computed for the above 

mentioned anatomical liver sections and compared with the partitioning using virtual 

volume resection (Fig. 4.12/d). 

 

Figure 4.12 Vessel-based liver segment separation: portal vein segmentation (a), manual labelling of 8 main 

segmental branches (b), and vascular territories (c) that can be compared with the partitioning using virtual 

volume resection. 

Table 4.1 shows the average volume of the anatomical liver sections (in percentage of the 

total liver) for the proposed method and the two references. According to the results of 

the proposed method, the left lateral lobe (segment 2+3) was equal to 12.2%, the left 

medial (4+1) lobe was equal to 20%, the right anterior lobe (5+8) was equal to 40.2%, 

and the right posterior lobe (6+7) was equal to 27.6% of the total liver volume. The 

corresponding volumes reported in the paper of Leeluudomlipi [104] are 17.0%, 16.0%, 

37.0%, and 30.0% (correlation=0.94), while the vessel-based segment separation resulted 

in lobes having volume equal to 19.2%, 13.6%, 37.2%, and 30.0% (correlation=0.87), 

respectively. 
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Lobe left lateral 
left medial 

& caudate 
right anterior right posterior 

Segment 2+3 4+1 5+8 6+7 

Proposed 12.2% 20.0% 40.2% 27.6% 

Leelaudomlipi 17.0% 16.0% 37.0% 30.0% 

Vessel-based 19.2% 13.6% 37.%2 30.0% 

Table 4.1 Comparison of liver lobe volumes (in % of the total liver) achieved with the proposed tool with 

reference values reported in literature and provided by a vessel-based approach. 

In conclusion, the algorithm presented for cutting a 3D object with a B-spline surface 

proved to be efficient for liver lobe and segment separation and tumour resection 

simulation. The tool based on the proposed algorithm provides the level of freedom that is 

required for such a complex task as complete anatomical segment separation that can be 

automated to some extent as presented. The constraints of the surface interpolation (e.g. 

user shall draw all traces on the same type of slices) do not limit its clinical usability, 

however, they allow very quick processing. Since the algorithm can be applied to any 

type of segmented object, additional structures (e.g. vessel tree) can be also considered 

when an organ is cut. Very complex cuts, which are not supported by the proposed 

algorithm, can be put in place by iterating the proposed tool. The experiences with tumour 

resection simulation indicate that the tool provides the level of freedom that is enough to 

solve real clinical problems. 

The average processing time of the segment separation using the presented technique was 

201 seconds per case considering all tests (min 128, max 319), which means about 40 

second to perform one cut. It is important to note that this time is primarily accounted for 

selecting the right slice and drawing the right trace manually, while the time needed for 

surface interpolation and volume cut was always below 1 second. 

4.3 Summary 

The computer assisted analysis of organs has important role in clinical diagnosis and 

therapy planning. As well as the visualization, the manipulation of 3-dimensional (3D) 

objects are key features of medical image processing tools. This section presented an 

efficient and easy-to use technique that allows the physician to partition a segmented 

organ into its segments or lobes. The related results were published in a journal paper [4]. 

The author proposed a new technique for partitioning 3D binary objects using smooth 

surfaces. The method applies B-Spline curve and surface interpolation to fit a smooth 

surface on user-defined traces which specify the cutting edge. The proposed volume 

cutting algorithm creates the multi-resolution triangular representation of B-spline 

surfaces which allows computing the intersection of the surface with a scan line very 

efficiently. The partitioning is based on computing the intersection of the surface with 

several scan lines (according to image resolution), such that the direction of the scan lines 

is defined based on the orientation of the surface. The boundary of the two sections is 

propagated to all scan lines which do not intersect the surface. 
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The author with a physician performed the evaluation of the proposed tool for liver 

segment separation using a public set of 14 CT liver cases having gold standard liver 

contour. According to the Couinaud definition the liver was partitioned into its 

anatomical segments using 5 surfaces which were fit to the main branches of the hepatic 

and the portal vein. For each test exam the physician defined the input traces for each cut. 

The liver was then partitioned into segments according to a predefined order of cuts and 

the volume of each segment was measured. The test was repeated 3 times by the operator 

with a few weeks of delay, and the variation of segment volumes was also computed. 

Having no ground-truth the segment volumes were compared with the results of another 

technique and published reference values. The comparison demonstrated the segment 

volumes were in good agreement with the result of the vessel based technique as well as 

the volumes reported in the literature. The intra-operator variability was low, which 

indicates the liver segment separation was repeatable using the proposed technique. 

The proposed method was evaluated on another clinical application of volume 

partitioning, the liver tumour resection planning. In this scenario the tumour was virtually 

cut from the liver and the removed and the remnant liver were quantified. Two test exams 

were selected for this study. The liver contour was available and the tumours were 

manually contoured. In both cases, multiple traces were drawn to specify the cutting 

surface. The liver was cut with the surface and the resected and remnant volumes were 

visualized and quantified. These experiments confirmed that the proposed tool provides 

the level of freedom that is required to solve this clinical problem. 

According to the time statistics of the liver segment separation study, the operator needed 

40 seconds to perform one cut. Most of the time was spent for defining the input traces, 

and less than a second was spent for surface interpolation and performing the volume cut. 

This means the proposed approach is efficient enough to be involved in clinical 

applications. 
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Summary in English 

1 Motivations 

The liver has important role in the digestive system. Its function is vital, which cannot be 

substituted by machine, and it has exceptional regenerative capability. The last property is 

a consequence of its modular structure that allows separating the organ into functionally 

independent parts. Several diseases threaten the liver. Besides poisoning and infections, 

the number of cancer cases is increasing in the clinical practice. In addition to primary 

liver tumours, the metastases of other cancer types can frequently occur in the organ. In 

the last decade the treatment of liver cancer became a very important filed in oncology. 

The computerized medical image processing plays important role in clinical diagnosis 

and therapy. The 3-dimensional (3D) imaging techniques, such as Computed 

Tomography (CT) and Magnetic Resonance Imaging (MR) allow in vivo visualization of 

the liver. The CT and MR examinations can be enhanced using contrast agents. In such 

case more images are acquired in different times, which result multi-phase images. Due to 

the widespread of modern imaging techniques the number of medical images to be 

processed is rapidly increasing. There is significant need for software tools which make 

the analysis of medical images more efficient. This thesis focuses one of the most 

important fields of image processing: the segmentation. 

There are various options for liver cancer treatment. The applied therapy depends on 

many conditions, like the tumour size, the number of tumours and their distribution, the 

stage of the disease. The treatment options involve surgery, interventional radiology, 

chemotherapy, radiation therapy, and the combination of these techniques. All of them 

can be facilitated with software tools which make the liver analysis more precise and less 

dependent on the operator. This thesis focuses on the segmentation of the liver, the 

detection of livers lesions, and the virtual liver resection. 

In this work the author paid special attention to the efficiency of the proposed algorithms 

in addition to their accuracy. According to clinical feedbacks a software workflow is 

useful when the computation time between starting a function and visualizing its result 

does not exceed half minute. The algorithms presented in this thesis were designed to 

solve complex clinical problems efficiently. Another important requirement was implied 

by the properties of the clinical systems. Today, most applications run on servers which 

can execute multiple instances of a function in the same time. This software environment 

limits the usability of methods which need some special hardware. The algorithms 

presented in this thesis do not have such requirement, so they are easy to integrate in any 

system. 

2 Liver segmentation 

The basis of all computer assisted liver analysis is the liver segmentation. The author 

presented three approaches which represent the different phases of a long research. The 

first and the second algorithms were developed for single- and multi-phase contrast-

enhanced CT images. These techniques were published in a journal paper [1]. The third 

method was developed for contrast-enhanced MR images. This technique was published 

in a journal paper [2]. Each method was evaluated on different datasets, which makes 

their comparison difficult. In order to enable their quantitative comparison, the author 

performed an extensive evaluation of all methods using a large CT dataset. 

The accuracy of the segmentation methods was measured using various error metrics in 

this thesis. This summary refers only to Volumetric Overlap Error (VOE). Assume that 

Volumetric Overlap (VO) is equal to the intersection of the result and the reference liver 
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divided by their union, VOE is defined by 100·(1-VO). This measure demonstrates both 

under- and over-segmentation and it is equal to 0% in case of perfect segmentation. 

2.1 Single-phase method for CT images 

The author developed an automated liver segmentation algorithm for portal-phase CT 

images. This method is based on basic assumptions such as the liver is the largest organ 

in the abdomen, the contrast-enhancement makes the liver brighter than its surrounding 

organs, and the liver parenchyma is nearly homogeneous in CT images. The method also 

incorporates information about the surrounding anatomical structures such as the lung, the 

heart, and the inferior vena cava (IVC). The core of the algorithm is a neighbourhood-

connected region-growing technique that is facilitated by various pre- and post-processing 

steps. More specifically, the algorithm consists of the following steps: 

• First, the liver is localized based on its volume and intensity. This is done by 

computing the contrast-enhanced soft-tissue intensity range based on the histogram of 

the image. Using this range, the image is thresholded and subsequently eroded, and 

the largest connected region of the result is used to initialize the segmentation. 

• The second step separates the liver from the heart. It starts with segmenting the lung 

and identifying the bottom edge of the left and right lung lobes. Then, the bottom of 

the two lung lobes are connected in each coronal slice of the image, which result in a 

3D surface that defines the edge between the liver and the heart. 

• In the third step, the liver parenchyma is segmented using neighbourhood-connected 

region-growing. The initial region is used to compute the intensity of the normal liver 

and to start the segmentation. Due to the large radius used for connectedness the result 

of the region-growing is dilated after the segmentation finished. 

• The fourth step corrects various types of over- and under-segmentations. An 

additional segmentation is performed between the liver and the lung using lower 

intensity statistics. Furthermore, liver veins are filled based on their characteristic 

geometric features, and missing lesions are added using standard cavity filling 

technique. The IVC is also detected based its characteristic shape and removed. 

The author evaluated the proposed method using a set of 20 portal-phase CT 

examinations having ground-truth liver contour. The test cases were published by a liver 

segmentation contest, which makes the presented results comparable with other 

publications. The images involved a few healthy cases, but most of them were pathologic 

including lesions of different sizes. According to the evaluation the method can 

accurately (VOE=8%) segment the liver parenchyma within short time (30s per case). 

The visual assessment of the results showed the results excluded some lesions which were 

located on the boundary of the organ. 

2.2 Multi-phase method for CT images 

The author developed an automated approach for liver segmentation in multi-phase CT 

images. This algorithm is based on the previous one, but it can incorporate the 

information of more contrast-enhanced phases. The goal was to make the liver 

segmentation less dependent on the quality of the portal-phase image. The proposed 

approach exploits the characteristic contrast uptake of the liver. The intensity of a 

neighbouring organ can be similar to the liver in one particular phase, but it is very 

unlikely that it has the same intensity in all phases. Thus, the liver parenchyma can be 

localized more accurately, when the joint information of multiple phases is incorporated. 

More specifically, the multi-phase approach consists of the following steps: 
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• First, the input phases are normalized, so latter steps shall not deal with differences in 

slice number, voxel spacing, and image origin. As result of this step a multi-scalar 

image is created that represents the intensity of each voxel in all phases. 

• The distribution of the contrast uptake is demonstrated by the joint histogram of the 

normalized images. Since the liver has the largest volume the largest peak in the joint 

histogram represents the liver parenchyma. All voxels are detected which have similar 

uptake as the liver, and the largest connected region of them is used as initial region. 

• In the next step, the input phases are segmented one-by-one using the single-phase 

approach, which results in a set of binary volumes. The segmentation involves the 

separation of liver and heart, the region-growing, and the correction of under- and 

over-segmented areas (except for the IVC removal that is specific to the portal-phase). 

• The segmentation belonging to the different phases involves the liver as well as some 

other regions which have similar intensity in the given phase. In the last step, the 

results are precisely registered and the final segmentation is defined as the 

combination of the results belonging to the different phases. 

The author qualitatively evaluated the multi-phase algorithm on a set of 19 multi-phase 

examinations using a questionnaire filled by 5 physicians. According to the results the 

segmentation was useful for clinical purposes in 94% of the cases after some minor or no 

manual correction. The quantitative comparison with the single-phase method on a small 

set of challenging cases showed the multi-phase method performed better (VOE=11%) 

than the single-phase one (VOE=16%) without increasing the running time (25s per case). 

2.3 Model-based method for MR images 

The intensity distribution can be heterogeneous inside the liver due to pathology, which 

can result in under-segmentation of these areas. Addressing this problem is even more 

important in case of MR images which have better soft-tissue contrast. The author 

developed an automated approach that incorporates probabilistic liver model to increase 

the accuracy of the intensity based liver segmentation techniques. The model was created 

by registering 60 manually contoured liver exams. The novelty of the model is that it was 

partitioned into 8 segments according to the anatomical structure of the liver. The 

partitioning allows using local intensity statistics in different parts of the organ, which 

makes the segmentation less sensitive to local intensity differences caused by pathology 

or artefacts. More specifically, the algorithm consists of the following steps: 

• The intensity range of the contrast-enhanced soft-tissue varies significantly among the 

examinations, so it is dynamically computed. In the first step, the histogram peak with 

the greatest mode is selected among those which represent at least 5% of the image. 

• In the second step, the liver model is registered to the image to be segmented. The 

input image is thresholded using the contrast-enhanced soft-tissue range. Then, 

distance map is computed for the threshold image, which results in an image that has 

the large value inside the liver. The probabilistic model is registered to the distance 

map and the partitioning is also applied to the image. 

• In the third step, the liver is segmented using neighbourhood-connected region-

growing that incorporates the partitioned liver model. The initial region is created 

from the soft-tissue image using erosion and taking the largest connected region. 

Intensity statistics are computed for the initial region as well as each segment, 

separately. The segmentation uses voxel specific intensity condition that incorporates 

the statistics of the contrast-enhanced soft-tissue, the initial region, and the 

corresponding segment. Similar to the CT approaches, dilation and cavity filling is 

applied to the result of the region-growing. 
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The author evaluated the algorithm on a set of 8 representative contrast-enhanced MR 

liver exams having manually defined liver contour. The results showed the proposed 

approach can accurately (VOE=11%) segment the liver within short time (30s per case) 

despite the significant intensity heterogeneity that was characteristic for MR images. 

2.4 Quantitative comparison of liver segmentation methods 

The goal of this section was to present the quantitative comparison of the proposed 

algorithms on a large set of clinical cases. The first two approaches were tested as they 

were proposed, while the model-based technique was adapted to CT images. The test 

cases involved 83 contrast-enhanced liver CT examinations (37 portal-phase, and 46 dual-

phase). The images involved healthy, tumorous, as well as some extreme (considering 

size or pathology) cases. The reference liver contour was defined by physician for the 

portal-phase image of each exam. The single-phase and the model-based methods were 

tested for all cases, while the multi-phase algorithm was executed for the dual-phase cases 

only. The test runs were performed on the same hardware, and the segmentation time was 

measured. In order to compare the results, the average, and the standard deviation of 

various error metrics were computed. Furthermore, paired T-test was performed to see 

whether the difference between two methods is statistically significant. 

The comparison of the single-phase and the model-based algorithms on the whole dataset 

showed the latter has significantly better overall accuracy (VOE=13%) compared to the 

first one (VOE=19%). The tests with the dual-phase images demonstrated the multi-phase 

(VOE=15%) and the model-based (VOE=15%) approaches perform at the same level of 

accuracy, while the single-phase method proved to be significantly less accurate 

(VOE=26%). The average segmentation time was 24s, 19s, and 37s for the three methods, 

which indicated that both multi-phase and the model-based methods are efficient enough 

to be used in clinical practice. Considering the fact that the model-based method requires 

the portal-phase image only it has the widest usability. 

3 Liver lesion detection 

The liver lesion assessment is one of the most important functions of computer assisted 

liver analysis. The number of liver cancer cases is increasing in the clinical practice, 

which increases the number of images to be processes. Liver lesion classification and 

quantification can be facilitated by automated lesion detection. This is very challenging 

task due to the large variety of lesion size, shape, and density distribution. There is 

significant need for software tools which can increase the sensitivity of liver lesion 

detection without forcing the user to review large numbers of false positives. The author 

proposed an automated approach to solve this problem. The related results were published 

in a journal paper [3]. 

3.1 Automated liver lesion detection for contrast-enhanced CT images 

The author developed a new technique for automated liver lesion detection in contrast-

enhanced CT images. The proposed algorithm is based on the segmentation of abnormal 

regions inside the liver and the classification of these regions based on a novel multi-level 

shape characterization. More specifically, the algorithm consists of the following steps: 

• The pre-processing step involves the morphological closing of the volume of interest 

(VOI) to reduce false negatives due to under-segmented lesions on the liver boundary, 

the resampling of the image using isotropic voxel size, the reduction of CT image 

noise, and the computation various features of the normal liver. 
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• In the second step, staring form the normal liver the abnormal regions are segmented 

(in an outside-in manner) and the list of candidate regions is created. This step is 

performed for hypo- and hyper-dense lesions, separately. 

• In the last step a multi-level (inside-out) shape characterization is performed for each 

candidate region using standard geometric features (asymmetry, size, compactness, 

and volume). Based on these features a probability is defined for each level of a 

region, which shows the likelihood of the given level to represent a lesion. If the 

maximal probability level of a candidate region is above the sensitivity threshold, the 

region is classified as lesion and the corresponding level is used as contour. 

3.2 Evaluation of automated liver lesion detection 

The author evaluated the proposed method on a set of 30 contrast-enhanced liver CT 

exams. For each case all lesions were manually contoured by physician. Manually defined 

as well as automatically segmented liver was used as VOI. The algorithm was executed 

for all case using various sensitivity values, which allowed the Free-Response Operating 

Characteristic (FROC) analysis of the method. The results showed the method can 

achieve 92% detection rate with 1.7 false positive per case when the VOI is manually 

segmented. The same level of false positives was reached at lower detection rate (85%), 

when the VOI is segmented using automated liver segmentation technique. The detailed 

analysis of the false negatives demonstrated the method can miss small lesions which 

fade into the low density boundary of the organ. The false positives involved multiple 

detections of some lesion and small lesions or calcifications which were not involved in 

the reference in addition to other false findings. The average running time of the method 

was 30s per case, which demonstrates the efficiency of the method. 

4 Virtual volume resection 

The separation of liver segments can facilitate cancer therapy. In surgical treatment 

planning it is very important to precisely quantify the resected and the remnant part of the 

liver before operation. The automated partitioning of liver segments is very challenging 

because the segment boundaries are not visible in medical images. There is a need for 

tools which allow efficient separation of liver segments based on the user’s anatomical 

knowledge. The author proposed a novel technique to solve this problem. The related 

results were published in a journal paper [4]. 

4.1 Volume partitioning using B-spline surfaces 

The author developed a new technique for interactive partitioning 3D binary objects using 

a smooth surface specified by the user. The presented volume-cutting algorithm is based 

on a multi-resolution triangular representation of B-spline surfaces. This representation 

allows computing the intersection of the surface with a scan line very efficiently. The 

partitioning is performed by computing the intersection of the surface with several scan 

lines. More specifically the algorithm consists of the following steps: 

• In the first step, a normalized grid of input points is created from the user defined 

input traces using B-Spline curve interpolation, and a B-spline surface is interpolated 

that fits the normalized grid of input points. 

• In the second step, the orientation of the surface and the scan lines are computed. The 

scan line orientation represents the axis of the 3D coordinate system which is nearly 

perpendicular to the surface. 

• In the third step, the multi-resolution triangular representation of the surface is created 

by sampling the B-spline surface according to a multi-resolution grid. 
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• In the fourth step, the intersection of the surface with all scan lines are computed, 

which define the cutting edge. The intersection points are localized using a 

hierarchical search that is based on the multi-resolution triangular representation. 

• In the last step, the cutting edge is propagated to all scan lines which do not intersect 

the surface. 

4.2 Evaluation of virtual volume resection 

The author with a radiologist performed the evaluation of the proposed tool for liver 

segment separation on a set of 14 CT liver exams having gold standard liver contour. 

Based on the Couinaud definition the liver was cut into anatomical segments using 5 

surfaces which were fit to the main branches of the hepatic and the portal vein. For each 

test exam the physician defined the input traces for each cut. The liver was partitioned 

into segments according to a predefined order of cuts and the volume of each segment 

was quantified. The test was repeated 3 times by the operator with a few weeks of delay, 

and the variation of segment volumes was also computed. Having no ground-truth the 

segment volumes were compared with the results of another technique and the literature. 

The comparison demonstrated the segment volumes correlated with the result of the 

vessel based technique as well as the volumes reported in the literature. The intra-operator 

variability was low, which indicate the liver segment separation was repeatable using the 

proposed technique. 

Another clinical application of volume partitioning is the liver tumour resection planning. 

In this case the tumour is virtually cut from the liver and the removed and the remnant 

parts are quantified. Two test exams were selected to simulate this scenario. The liver 

contour was available and the tumours were contoured manually using an interactive tool. 

In each case, multiple traces were drawn to specify the cutting surface. Then, the liver 

was cut with the surface and the resected and remnant volumes were visualized and 

quantified. These experiments confirmed that the proposed tool provides the level of 

freedom that is required by this clinical problem. According to the time statistics less than 

a second was spent for surface interpolation and performing the volume cut, which 

demonstrates the efficiency of the proposed approach. 

Key thesis points 

I. Liver segmentation 

Liver segmentation is the basis of computer assisted liver analysis. Since the manual 

segmentation of the liver is very time consuming, there is a big need for automated 

techniques. The author developed three algorithms for automated liver segmentation. The 

related results were published in journal papers [1] and [2]. 

I.1  Single-phase method for CT images (Section 2.1): The author developed a fully 

automated liver segmentation technique for portal-phase CT images. The algorithm 

uses standard image processing concepts and incorporates basic anatomical 

information about the liver and the surrounding organs. The core of the method is a 

neighbourhood-connected region-growing that is facilitated by various pre- and post-

processing steps, such as the localization of the liver, the separation of liver and heart, 

the correction of breathing artefact, the removal of IVC, and filling the cavities due to 

liver veins or lesions. The author evaluated the method using a set of 20 portal-phase 

CT examinations having ground-truth liver contour. According to the evaluation the 

proposed approach can accurately segment the liver within short time. 

I.2  Multi-phase method for CT images (Section 2.2): The author developed an automated 

approach for liver segmentation in multi-phase CT images. The algorithm is based on 
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the single-phase one, but it can incorporate the information of more contrast-enhanced 

phases. The main idea of this technique is to exploit the characteristic contrast uptake 

of the liver for more precise localization of the organ and to combine the 

segmentation results belonging to different contrast enhanced phases. The author 

qualitatively evaluated the algorithm on a set of 19 multi-phase examinations using a 

questionnaire filled by 5 physicians. The results showed the segmentation was 

acceptable for clinical use in majority of the cases. The quantitative comparison with 

the single-phase method demonstrated the multi-phase method performs better than 

the single-phase one without increasing the running time. 

I.3  Model-based method for MR images (Section 2.3): The author developed an 

automated liver segmentation approach that incorporates probabilistic liver model to 

increase the accuracy of the intensity-based segmentation techniques presented in 

prior sections. The model was created by registering 60 manually contoured liver 

exams. The novelty of the model is that it was partitioned into 8 segments according 

to the anatomical structure of the liver. The partitioning allows using local intensity 

statistics in different parts of the liver, which makes the segmentation less sensitive to 

local intensity differences caused by pathology or artefacts. The author evaluated the 

algorithm on a set of 8 representative contrast-enhanced MR cases. The results 

showed the proposed approach can accurately segment the liver in short time despite 

the significant intensity variation that is characteristic for MR images. 

I.4 Quantitative comparison of liver segmentation methods (Section 2.4): The author 

performed the evaluation of the three algorithms on a large CT dataset including 

single and dual-phase images. The first two approaches were tested as they were 

proposed, while the model-based technique was adapted to CT images. The single-

phase and the model-based methods were tested for all cases, while the multi-phase 

algorithm was executed for the dual-phase images only. The comparison of the single-

phase and model-based algorithms showed the latter has significantly better overall 

accuracy. The tests with the dual-phase images demonstrated that the multi-phase and 

the model-based approaches perform at the same level of accuracy, while the single-

phase method proved to be significantly less accurate. The average segmentation time 

was low for both multi-phase and model-based methods, which indicate these 

techniques are efficient enough to be used in clinical practice. Since the model-based 

method requires the portal-phase image only, it has the widest usability. 

II. Liver lesion detection 

The number of liver cancer cases is increasing in the clinical practice, so the computer 

assisted detection of liver lesions has recently become an important area. The detection of 

liver lesions is very challenging task due to the large variety in size, shape, density 

distribution of liver lesions and the large number of slices to be processed. There is a need 

for tools that can increase the sensitivity of liver lesion detection without forcing the 

physician to review many false positives. The author proposed a solution for this 

problem, which published in a journal paper [3]. 

II.1. Automated liver lesion detection for contrast-enhanced CT images (Section 3.1): The 

author developed a novel technique for automated liver lesion detection in contrast-

enhanced CT images. The proposed algorithm is based on the segmentation of 

abnormal regions inside the volume of interest (VOI) and the classification of these 

regions based on a multi-level shape characterization. The shape description 

incorporates standard geometric features like asymmetry, size, compactness, and 

volume. Based on these features a probability is defined for each level of a region 
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that shows the likelihood of the given level to represent a lesion. Using this 

probability the abnormal regions are classified as lesion or other region, and the 

contour of each finding is defined. 

II.2. Evaluation of automated liver lesion detection (Section 3.2): The author evaluated 

the method on a set of 30 contrast-enhanced liver CT cases, where all lesions were 

manually contoured by physician. Manually defined and automatically segmented 

liver was used as VOI. The algorithm was executed with different sensitivity 

settings, which allowed FROC analysis of the method. The results showed the 

algorithm can achieve high detection rate at low false positive per case when the VOI 

is manually defined. The same level of false positives was achieved at lower 

detection rate, when the VOI is segmented using automated technique. The detailed 

analysis of false negatives demonstrated the method can miss small lesions which 

fade into the lower density boundary of the organ. The average running time of the 

method was 30s per case, which demonstrates the efficiency of the method. 

III. Virtual volume resection 

The separation of the anatomical liver segments can facilitate for surgical treatment 

planning. The automated partitioning of the liver is very challenging because the 

boundary of the segments is not visible in medical images. There is a need for interactive 

tools which allow efficient separation of the anatomical liver segments. The author 

proposed a solution for this problem, which was published in a journal paper [4]. 

III.1. Volume partitioning using B-spline surfaces (Section 4.1): The author developed a 

new technique for partitioning of 3D binary objects using smooth surfaces. The 

method applies B-Spline curve and surface interpolation to fit a smooth surface on 

the user-defined traces which specify the cutting edge. The proposed volume cutting 

algorithm creates the multi-resolution triangular representation of B-spline surfaces, 

which allows computing the intersection of the surface with a scan line very 

efficiently. The partitioning is based on computing the intersection of the surface 

with several scan lines, where the direction of the scan lines is defined based on the 

global orientation of the surface. The cutting edge is propagated to all scan lines 

which do not intersect the surface. 

III.2. Evaluation of virtual volume resection (Section 4.2): The author with a physician 

performed the evaluation of the proposed tool for liver segment separation. The test 

set involved 14 CT exams and manually defined liver contour was available for 

each of them. The liver was partitioned according to a predefined sequence of five 

cuts and the volume of each segment was measured. The test was repeated three 

times by the physician with a few weeks of delay, and the variation of segment 

volumes was computed. The results were compared with a vessel-based segment 

separation approach. The segment volumes correlated with the other technique as 

well as the literature, and the intra-operator variability was proved to be low. In 

addition to these experiments, two case studies on virtual tumour resection 

confirmed that the tool provides the level of freedom that is required by the clinical 

application. Less than a second was spent to perform the volume cut, which 

demonstrates the efficiency of the proposed approach. 
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Magyar nyelvű összefoglaló 

1 Motiváció 

A máj fontos szerepet tölt be az emésztő rendszerben. A funkciója létfontosságú, amely 

nem helyettesíthető géppel, továbbá különleges regeneráló-képessége van. Az utóbbi 

tulajdonsága a moduláris szerkezetére vezethető vissza, amely szerint funkcionálisan 

független részekre bontható. Számos betegség fenyegeti a májat. A mérgezések és 

fertőzések mellet a rákos megbetegedések száma is egyre nő a klinikai gyakorlatban. A 

primer daganatok mellett más daganatok áttétei is gyakran megjelennek a májban, ezért a 

májrák kezelése az elmúlt évtizedben az onkológia egyik fontos területévé vált. 

A számítógépes orvosi képfeldolgozás fontos szerepet játszik a klinikai diagnózis és 

terápia területén. A 3-dimenziós (3D) képalkotó technikák, mint komputeres tomográfia 

(CT) és mágneses rezonancia (MR) lehetővé teszik a máj in-vivo megjelenítését. A CT és 

MR felvételek információ tartalma különböző kontraszt-anyagok használatával növelhető. 

Az ilyen esetekben rendszerint több felvétel készül, amelyek több-fázisú képet alkotnak. 

A modern képalkotó berendezések elterjedése révén a feldolgozandó képek száma gyors 

ütemben nő. Jelentős igény van tehát olyan szoftveres eszközökre, amelyek hatékonyabbá 

teszik a felvételek feldolgozását. Az értekezés az orvosi képfeldolgozás egyik 

legfontosabb területére, a szegmentációra fókuszál. 

A máj rákos megbetegedésének kezelésére számos lehetőség áll rendelkezésre. Az 

alkalmazott terápia olyan különböző tényezők függvénye, mint a tumorok mérete, száma, 

elhelyezkedése, vagy a betegség előrehaladottsága. A leggyakoribb kezelési módok a 

sebészet, az intervenciós radiológia, a kemoterápia, a sugárterápia, illetve ezek különböző 

kombinációja. Ezen technikák mindegyike segíthető szoftveres eszközökkel, amelyek 

pontosabbá és objektívabbá teszik a máj számítógépes vizsgálatát. Az értekezés a máj 

automatikus szegmentációjára, a máj-léziók automatikus detektálásra, valamint a virtuális 

sebészi vágás területére fókuszál. 

A bemutatott módszerek pontossága mellett az értekezésben kiemelt figyelmet kap az 

egyes algoritmusok hatékonysága. Klinikai visszajelzések alapján egy szoftveres 

munkafolyamat akkor tekinthető hatékonynak, ha a funkció indítása és az eredmény 

megjelenítése között eltelt idő nem haladja meg a fél percet. A bemutatott algoritmusok 

tervezésénél nagy hangsúlyt került arra, hogy azok komplex klinikai problémákat rövid 

időn belül oldjanak meg. Egy másik fontos követelmény a klinikai rendszerek 

tulajdonságából ered. A mai alkalmazások többsége szervereken fut, ahol egy folyamat 

több példányban is működhet egyszerre. Eben a szoftveres környezetben a speciális 

hardver-igényű módszereknek limitált a használhatósága. Az értekezésben bemutatott 

módszereknek nincs ilyen igényük, így egyszerűen integrálhatók bármilyen rendszerbe. 

2 Máj-szegmentáció 

A számítógépes máj-analízis alapja a máj-szegmentáció. A szerző három módszert mutat 

be, amelyek egy hosszabb kutatás különböző állomásai voltak. Az első két algoritmus 

egy- és több-fázisú kontrasztos CT képekhez készült, és a hozzájuk kapcsolódó 

eredmények egy folyóiratcikkben [1] jelentek meg. A harmadik eljárás kontrasztos MR 

felvételekhez készült, és egy másik folyóiratcikkben [2] lett publikálva. Mindhárom 

megközelítés más adathalmazon volt kiértékelve, ami megnehezíti az összehasonlításukat. 

Hogy lehetővé váljon a számszerű összevetésük, az értekezés keretében megtörtént a 

módszerek kiértékelése egy közös esethalmazon. 

A bemutatott szegmentációs technikák pontosságát számos hiba mértékkel lehet 

jellemezni. Ebben az összefoglalóban csak a térfogati átfedés hibáját (VOE) említjük. 

Feltéve, hogy a térfogati átfedés (VO) egyenlő az eredménye és a referencia metszetének 
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és uniójának térfogati hányadosával, az említett hiba a következő módon definiálható: 

VOE=100•(1-VO). Ez a mérőszám egyszerre mutatja az alul- és a túlszegmentálást, 

értéke 0% tökéletes szegmentáció esetén. 

2.1 Módszer egy-fázisú CT képekhez 

A szerző kidolgozott egy automatikus módszert portális-fázisú kontrasztos CT képekre. 

Az algoritmus olyan feltevéseken alapul, mint a máj a legnagyobb szerv a hasi régióban, a 

kontrasztanyag kiemeli a májszövetet a környező szervektől, valamint a májszövet közel 

homogén a CT képeken. A módszer kihasználja a környező anatómiai struktúrák 

tulajdonságait (mint a tüdő, a szív, vagy az inferior vena cava - IVC). Az eljárás magja 

egy szomszédsági összefüggőségen alapuló régió-növelő algoritmus, melyhez több elő- és 

utófeldolgozó lépés kapcsolódik. A módszer az alábbi lépésekből áll: 

• Az első lépésben megtörténik a máj lokalizálása a mérete és intenzitása alapján. A kép 

hisztogramja alapján meghatározzuk a kontrasztos lágyszövetet reprezentáló 

intenzitás tartományt. Ezt használva a képet küszöböljük, majd erodálás után 

kiválasztjuk a legnagyobb összefüggő komponensét. Az így kapott régiót használjuk a 

szegmentálás inicializálásához. 

• A második lépésben szeparáljuk a májat a szívtől. Ez a tüdő szegmentálásával 

kezdődik, majd a jobb és bal tüdő lebenyek alsó felülete kerül meghatározásra. Ezután 

függőleges metszeteken összekötjük a bal és jobb tüdő alját, amely egy 3D elválasztó 

felületet eredményez a máj és a szív között. 

• A harmadik lépésben a májszövetet szegmentáljuk összefüggőségen alapuló régió-

növelő módszerrel. Kezdő régióként az első lépésben meghatározott területet 

használjuk, valamint ebből számítjuk az intenzitás tartományt. Mivel nagy 

összefüggőséget használunk, a szegmentáció eredményét a végén dilatálni kell. 

• A negyedik lépés különböző alul- és túlszegmentált területeket korrigál. Egy további 

szegmentációt használunk a máj és a tüdő közötti sötétebb rész hozzá vételére. 

Továbbá, az erek feltöltésre kerülnek geometriai tulajdonságaik alapján, valamint a 

hiányzó léziókat standard üregfeltöltő technikákkal korrigáljuk. Az IVC-t jellegzetes 

alakját kihasználva detektáljuk és töröljük az eredményből. 

A szerző elvégezte a fenti módszer kiértékelését egy 20 CT esetből álló képhalmazon, 

amelyre referencia májkontúr is adott volt. A teszteseteket egy nyilvános máj-

szegmentációs versenyen publikálták, így a kapott eredmények közvetlenül összeverhetők 

más publikációkkal. A tesztképek néhány egészséges esett mellett számos tumoros esetet 

tartalmaztak. Az eredmények alapján a bemutatott algoritmus pontosan szegmentálta a 

májat (VOE=8%) rövid idő alatt (30 mp). Az eredmények vizuális értékelése során 

kiderült, hogy a módszer kihagyhat a máj határán található léziókat. 

2.2 Módszer több-fázisú CT képekhez 

A szerző kidolgozott egy automatikus máj-szegmentációs módszert többfázisú, 

kontrasztos CT képekre. Az algoritmus az előzőn alapul azzal a különbséggel, hogy ez 

képes több kontrasztos fázis információját felhasználni. A cél az volt, hogy a máj-

szegmentáció kevésbé függjön a portális fázis minőségétől. Az javasolt módszer a 

májszövet jellegzetes kontraszt-halmozását használja ki. Egy környező szerv intenzitása 

ugyanis lehet hasonló a májéhoz egy adott fázisban, de valószínűtlen, hogy minden 

fázisban az lesz. Így a májszövet pontosabban behatárolható a különböző fázisok 

egyesített információja alapján. A módszer az alábbi lépésekből áll: 

• Először a különböző fázisokhoz tarozó képeket normalizáljuk, így a későbbi 

lépésekben nem kell az eltérő kép- és voxel-méretet figyelembe venni. A létrejövő 
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több-értékű kép minden pontjában az adott pozíció, különböző fázisban felvett 

intenzitását mutatja. 

• A kontraszt halmozás eloszlását jól mutatja a különböző fázisok egyesített 

hisztogramja. Mivel a máj a legnagyobb térfogatú szerv, a hisztogram legmagasabb 

csúcsa mindig a májat reprezentálja. Ebben a lépésben meghatározzuk azokat a 

pontokat, amelyek kontraszt felvétele hasonló a májéhoz, majd az így kapott 

ponthalmaz legnagyobb összefüggő komponense alkotja a kezdő régiót. 

• A következő lépésben minden fázis külön szegmentálásra kerül az egy-fázisú 

módszert használva, amely eredményeként több bináris kép jön létre. A szegmentáció 

magába foglalja a máj-szív elválasztást, a régió-növelést, és az alul- és túlszegmentált 

részek korrekcióját (kivéve az IVC eltávolítást, ami specifikus a portális fázisra). 

• A különböző fázisok szegmentációja tartalmazza a májat és a hasonló intenzitású 

szomszédos régiókat. Az egyes eredményeket ezért pontosan összeregisztráljuk, majd 

a végeredményt a különböző fázisok eredményének kombinálásával számítjuk. 

A szerző a bemutatott algoritmust egy 19 több-fázisú esetet tartalmazó képhalmazon 

értékelte ki, amely egy kérdőív öt orvos általi kitöltésével történt. Az eredmények alapján 

a szegmentáció alkalmas volt klinikai használatra az esetek 94%-ban minimális vagy 

semmilyen korrekcióval. A módszer számszerű összehasonlítása az egy-fázisú 

algoritmussal néhány nehezen szegmentálható eseten megmutatta, hogy a több-fázisú 

megközelítés lényegesen pontosabb eredményt ad (VOE=11%) mint az egy-fázisú 

(VOE=16%) anélkül, hogy a futási idő növekedne (25 mp). 

2.3 Modell alapú módszer MR képekhez 

A májon belüli intenzitás eloszlás heterogén lehet a különböző elváltozások miatt, amely 

alul-szegmentáláshoz vezethet. E problémának a megoldása különösen fontos MR képek 

esetén, amelyeknek jobb a lágyszövet kontrasztja. A szerző kidolgozott egy automatikus 

máj-szegmentációs eljárást, amely egy valószínűségi modellt alkalmazva javítja a 

korábban bemutatott intenzitás alapú technikák pontosságát. A modell 60 manuálisan 

kontúrozott CT sorozat regisztrálásával készült, és az újdonsága abban rejlik, hogy fel lett 

osztva 8 szegmentumra a máj anatómiai szerkezetének megfelelően. A részekre osztás 

lehetővé teszi lokális intenzitás statisztikák használatát a májon belül, így az eljárás 

kevésbé érzékeny a patológia vagy műtermékek okozta intenzitás inhomogenitásra. A 

módszer az alábbi lépésekből áll: 

• Mivel a kontrasztos lágyszövet intenzitás tartománya képről képre változik MR 

modalitás esetén, dinamikusan kell kiszámolni minden esetre. Az első lépésben 

meghatározzuk a legnagyobb intenzitás-tartományhoz tartozó olyan hisztogram 

csúcsot, amely a képpontok legalább 5%-át lefedi. 

• A második lépésben regisztráljuk a modellt a szegmentálandó képhez. Ehhez a képet 

küszöböljük a kontrasztos lágyszövet intenzitás tartománnyal. Majd egy távolság 

térképet számítunk a küszöbölt képre. Ez egy olyan képet eredményez, amelyen a 

nagy objektumok belsejében nagy értékek vannak. A valószínűségi modellt (és azzal 

együtt a szegmentum felosztást) ehhez a képhez regisztráljuk. 

• A harmadik lépésben a májat összefüggőségen alapuló régió-növelő módszerrel 

szegmentáljuk figyelembe véve az osztott valószínűségi modellt. A kezdő régióként a 

kontrasztos lágyszövet kép legnagyobb összefüggő komponensét használjuk erodálás 

után. Majd intenzitás statisztikát számítunk mind a kezdő régióra, mind az egyes 

szegmensekre. A szegmentáció voxel specifikus intenzitás tartományt használ 

figyelembe véve a globális és lokális intenzitás statisztikákat és a modell 

valószínűséget. A régió-növelés eredményét a korábbiakhoz hasonlóan dilatáljuk, és 

üregfeltöltő algoritmust alkalmazunk rá. 
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A szerző a bemutatott algoritmust egy 8 reprezentatív esetből álló kontrasztos MR 

képhalmazon értékelte ki, amelyekhez rendelkezésre állt a manuálisan definiált referencia 

májkontúr. Az eredmények megmutatták, hogy a fenti eljárással pontosan (VOE=11%) és 

hatékonyan (30 mp) ki lehet szegmentálni a májat akkor is, ha a májszövet patológia vagy 

műtermékek miatt jelentős intenzitás inhomogenitást mutat. 

2.4 Máj-szegmentációs módszerek számszerű összehasonlítása 

A különböző algoritmusok számszerű összehasonlítása egy nagy esetszámú CT 

képhalmazon történt. A szerző az első két módszert módosítás nélkül, míg a modell-alapú 

módszert CT képekre való adaptálás után tesztelte. A teszthalmaz 83 (37 portális és 46 

két-fázisú) kontrasztos CT vizsgálatot tartalmazott, amely magába foglalt egészséges, 

tumoros, valamint néhány szélsőséges (méretű és patológiájú) esetet is. A referencia 

májat minden esetben orvos kontúrozta a portális fázisú képen. Az egy-fázisú és a 

modell-alapú módszer minden képre lefutott, a több-fázisú módszer viszont csak a két-

fázisú képekre lehetett tesztelni. A tesztek ugyanazon a számítógépen történtek, így a 

futási idő közvetlenül összemérhető volt. Az eredmények összehasonlítása céljából a 

szerző meghatározta a különböző hiba-mértékek átlagát és szórását. Továbbá, páros T-

próbát alkalmazott a különbségek statisztikai jelentőségének vizsgálatára. 

Az egy-fázisú és a modell-alapú algoritmusok összehasonlítása a teljes adathalmazon 

megmutatta, hogy a modell-alapú megközelítés lényegesen pontosabb (VOE=13%) az 

előbbihez viszonyítva (VOE=19%). A két-fázisú képekkel történt tesztek azt mutatták, 

hogy a több-fázisú (VOE=15%) és a modell-alapú (VOE=15%) eljárások ugyanolyan 

pontossággal működnek, míg az egy-fázisú módszer lényegesen pontatlanabb 

(VOE=26%). Az átlagos futási idő 24, 19 illetve 37 mp volt (a módszerek 

prezentálásának sorrendjében), amely az mutatja, hogy mind a több-fázisú, mind a 

modell-alapú módszerek elég hatékonyak ahhoz, hogy klinikai gyakorlatban 

használhatóak legyenek. Tekintve, hogy a modell-alapú módszerhez csak a portális kép 

szükséges, ez a megközelítés alkalmazható a legszélesebb körben. 

3 Máj-lézió detektálás 

A máj-léziók vizsgálata a számítógépes máj analízis egyik legfontosabb feladata. A máj-

tumoros esetek száma emelkedő tendenciát mutat, így egyre nő a feldolgozandó képek 

száma is. A léziók osztályozása és méretének meghatározása jelentősen gyorsítható 

automatikus módszerekkel. A máj-léziók detektálása nehéz feladat, mivel nagyon eltérő 

méretűek, alakúak, intenzitásúak lehetnek. Komoly igény van tehát olyan automatikus 

módszerekre, amelyek javítják a detektálás szenzitivitását nagyszámú hibás találat 

detektálása nélkül. A szerző a probléma megoldására bemutat egy automatikus módszert, 

amelyet egy folyóiratcikkben [3] publikált. 

3.1 Máj-léziók automatikus detektálása kontrasztos CT képeken 

A szerző egy új eljárást dolgozott ki máj-léziók automatikus detektálására kontrasztos CT 

képeken. Az algoritmus az abnormális régiók májon belüli szegmentációjára, valamint a 

szegmentált régiók többszintű alakleíráson alapuló osztályozására épül. A módszer az 

alábbi lépésekből áll: 

• Az elő-feldolgozó lépés magába foglalja a vizsgált terület morfológiai zárását (az 

automatikusan szegmentált máj felszínén hiányzó léziók korrigálására), a CT kép 

zajszűrését és átméretezését uniform voxel méretre, valamint a normál egyes máj 

jellemzőinek meghatározását. 

• A második lépésben a normál májszövetből kiindulva (kívülről befelé) megtörténik az 

abnormális régiók szegmentálása, majd létrejön a lehetséges régiók listája. Ez a lépés 

külön hajtódik végre sötét és világos régiókra. 
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• Ezt követően, minden lehetséges régióra meghatározunk egy többszintű (belülről 

kifelé haladó) alak-leírást, amely olyan geometriai tulajdonságokra épül, mint az 

aszimmetria, kompaktság, méret, és térfogat. Ezekből tulajdonságokból kiszámítunk 

egy valószínűséget, ami megmutatja, hogy az adott régió egyes szintjei milyen 

valószínűséggel reprezentálnak léziót. Ha a valószínűség meghalad egy küszöböt, az 

adott régió lézióként kerül megjelölésre, és a kontúrját a legnagyobb valószínűséghez 

tartozó szint definiálja. 

3.2 Automatikus máj-lézió detektálás kiértékelése 

A szerző a bemutatott eljárást egy 30 kontrasztos CT esetet tartalmazó képhalmazon 

értékelte ki, ahol minden esetre egy orvos manuálisan kikontúrozta az összes léziót. A 

vizsgált régió manuális és automatikus módszerrel is meg lett határozva. A szerző az 

algoritmust számos szenzitivitás küszöbbel futtatta, amely lehetővé tette a módszer 

pontosságának komplex analízisét. Az eredmények alapján az algoritmus a léziók 92%-át 

képes volt detektálni átlagosan 1.7 hibás találat mellett manuálisan kontúrozott májban. 

Ugyanolyan hibás találati szám mellett, valamivel kevesebb volt a detektálási ráta (85%) 

az automatikus módszerrel szegmentált májban. A nem detektált léziók részletes 

elemzése megmutatta, hogy a módszer hajlamos kihagyni olyan kisebb, kevésbé 

kontrasztos régiókat, amelyek a máj határán lévő sötétebb régióban találhatók. A hibás 

találatok között szerepeltek többszörösen detektált tumorok, valamint a referenciában 

nem szereplő kis léziók és meszes elváltozások. A módszer átlagos futási ideje 30 mp 

volt, amely demonstrálta a módszer hatékonyságát. 

4 Virtuális reszekció 

A máj szegmentumainak elkülönítése hasznos lehet tumorok diagnózisánál és 

kezelésénél. A sebészi beavatkozás tervezésénél például fontos az eltávolítandó és a 

maradó részek pontos méretének meghatározása. A máj-szegmentumok automatikus 

meghatározása nehéz feladat mivel az egyes részek határa nem látszik az orvosi képeken. 

Szükség van tehát olyan eszközökre, amelyek lehetővé teszik a máj szegmentumainak 

hatékony meghatározását a felhasználó anatómiai tudása alapján. A probléma 

megoldására a szerző bemutat egy módszert, amelyet egy folyóiratcikkben [4] publikált. 

4.1 Virtuális vágás B-Spline felületekkel 

A szerző egy új technikát dolgozott ki bináris 3D objektumok a felhasználó által definiált 

görbe felülettel történő interaktív vágására. A bemutatott objektum-vágó algoritmus 

B-spline felületek különböző felbontású, háromszög-hálóval történő reprezentálásán 

alapul. Ez a reprezentáció lehetővé teszi a felület és egy pásztázó egyenes 

metszéspontjának nagyon hatékony számítását. Az objektum két részre osztása ugyanis a 

felület számos pásztázó egyenessel történő metszése révén történik. A módszer az alábbi 

lépésekből áll: 

• Az első lépésben egy normalizált ponthálót hozunk létre a felhasználó által kézzel 

megrajzolt határvonalakból B-Spline görbe interpolációt használva, majd egy felületet 

illesztünk a normalizált ponthálóra. 

• A második lépésben meghatározzuk a felület és a pásztázó egyenesek orientációját. 

Az utóbbi a koordináta rendszer azon tengelyét jelöli, amelyre a felület 

megközelítőleg merőleges. 

• A harmadik lépésben a felületet mintavételezzük különböző felbontású ponthálók 

szerint, amellyel létre jön a felület különböző-felbontású, háromszög-hálós 

reprezentációja. 
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• A negyedik lépésben minden lehetséges pásztázó egyenesre egy hierarchikus kereső 

módszerrel kiszámítjuk a legfinomabb felbontású háromszög felülettel való 

metszéspontot. Ezek a pontok reprezentálják két partíció határát. 

• Az utolsó lépésben a partíciók határát propagáljuk azokra a pásztázó egyenesekre, 

amelyek nem metszik a felületet. 

4.2 Virtuális reszekció kiértékelése 

A szerző orvos közreműködésével kiértékelte a bemutatott módszert máj-szegmentumok 

szeparálására. A tesztekhez 14 CT esetet használtunk, amelyekre adott volt a máj kontúrja 

is. A Couinaud felbontás szerint a máj felosztható 5 felület használatával, amelyek a 

májban lévő vénák főbb ágaira illeszkednek. Minden esetre az orvos kézzel rajzolt 

görbékkel definiálta az öt vágó felületet. Majd megtörtént a máj szegmentumokra bontása 

a vágások egy előre meghatározott sorrendben történő végrehajtásával, majd az így 

keletkezett részek térfogatát kiszámoltuk. A teszteket az operátor háromszor hajtotta 

végre pár hét eltéréssel, így az alkalmazott módszer variabilitása is mérhető volt. 

Referencia szegmentáció hiányában a szegmentum térfogatokat egy másik technikával 

kapott felosztás eredményével, valamint irodalomban található értékekkel hasonlítottuk 

össze. Az összehasonlítás megmutatta, hogy a kapott szegmentum térfogatok közel 

megegyeznek az ér alapú megközelítéssel kapott, valamint a mások által publikált 

értékekkel. Az intra-operátor variabilitás alacsony volt, azaz a bemutatott módszerrel a 

szegmentum szeparálás jól reprodukálhatót. 

A virtuális vágás egy másik klinikai alkalmazása a máj-tumor reszekció tervezés. Ehhez a 

tumor virtuális eltávolítását szimuláltuk, és az eltávolított valamint a maradó részek 

térfogatát vizsgáltuk. A folyamat végrehajtására két esetet választottunk ki a korábbi 

halmazból. A májkontúr adott volt mindkét esetre, a tumorokat pedig kikontúroztuk 

interaktív eszközökkel. Mindkét esetben több görbét rajzoltunk a vágófelület 

definiálására, majd vágás után az egyes részeket megjelenítettük és térfogatukat 

megmértük. Ezek a kísérletek a korábbiakkal együtt alátámasztották, hogy a bemutatott 

technika jól használható komplex klinikai feladatok megoldására. Az egyes vágások 

elvégzéséhez kevesebb, mint 1 mp kellett, ami jól mutatja a módszer hatékonyságát. 

Tézispontok 

I. Máj-szegmentáció 

A máj szegmentálása a számítógépes májanalízis alapja. A szerv manuális kontúrozása 

nagyon időigényes folyamat, ezért nagy szükség van automatikus módszerekre. A szerző 

három megközelítést dolgozott ki a máj automatikus szegmentálására. Az eredményeket 

két folyóiratcikkben [1, 2] publikálta. 

I.1  Módszer egy-fázisú CT képekre (2.1 Szekció): A szerző kifejlesztett egy automatikus 

máj-szegmentációs módszert portális-fázisú CT képekre. Az algoritmus standard 

képfeldolgozó technikákon alapul és alapvető anatómiai összefüggéseket használ ki a 

májról és a környező szervekről. Az eljárás alapja az összefüggőségen alapuló régió-

növelő technika, amelyhez olyan elő- és utófeldolgozó lépések kapcsolódnak, mint a 

májdetektálás, a máj-szív elválasztás, a légzésből eredő műtermékek kiküszöbölése, 

egy nagy ér-szakasz eltávolítása, valamint a léziók és kontrasztos erek által okozott 

üregek kitöltése. A szerző a bemutatott módszert egy 20 esetből álló teszthalmazon 

értékelte ki, amelyhez adott volt a referencia májkontúr. Az eredmények alapján az 

algoritmus a legtöbb esetben pontosan ki tudta szegmentálni a májat rövid idő alatt. 

I.2  Módszer több-fázisú CT képekre (2.2 Szekció): A szerző kifejlesztett egy automatikus 

máj-szegmentációs módszert több-fázisú CT képekre. Az algoritmus az egy-fázisú 
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megközelítésen alapul, de képes több kontrasztos fázis információját felhasználni. Az 

eljárás alapjai, hogy a máj jellegzetes kontraszt-halmozása kihasználható a szerv 

pontosabb lokalizálására, valamint hogy a különböző fázisok szegmentációját 

kombinálva jobb eredmény érhető el. A szerző a módszer kiértékelését egy 19 több-

fázisú képet tartalmazó teszthalmazon demonstrálta, amelyet orvosok végeztek 

kérdőív segítségével. Az eredmények azt mutatták, hogy a szegmentáció használható 

volt klinikailag célokra az esetek döntő többségében. Továbbá, a számszerű 

összehasonlítás az egy-fázisú módszerrel megmutatta, hogy a több-fázisú 

megközelítés jobb eredményt ad a nehéz esetekre a futási idő növelése nélkül. 

I.3  Modell-alapú módszer MR képekre (2.3 Szekció): A szerző kifejlesztett egy 

automatikus máj-szegmentációs módszert, amely valószínűségi májmodell 

felhasználásával javítja a korábban bemutatott, intenzitás alapú szegmentációs 

technikák pontosságát. A modell 60 manuálisan kontúrozott máj regisztrálásával 

készült. A modell újdonságtartalma az, hogy fel van osztva 8 részre a máj anatómiai 

szerkezetének megfelelően. A részekre osztás lehetővé teszi lokális intenzitás-

statisztikák használatát a máj különböző részeiben, melynek köszönhetően a 

szegmentáció kevésbé érzékeny a patológia és műtermékek által okozott lokális 

intenzitás-változásokra. A szerző az algoritmus kiértékelését egy 8 esetből álló, 

reprezentatív adathalmazon végezte el, amelyre referencia májkontúr rendelkezésre 

állt. Az eredmények megmutatták, hogy a bemutatott eljárás pontosan képes 

szegmentálni a májat rövid időn belül az MR képekre jellemző jelentős intenzitás 

inhomogenitás ellenére. 

I.4 Máj-szegmentációs módszerek számszerű összehasonlítása (2.4 Szekció): A szerző 

elvégezte mindhárom algoritmus kiértékelését egy nagy CT adathalmazon, amely 

egyaránt tartalmazott egy- és két-fázisú képeket. Az egy- és többfázisú módszerek a 

bemutatott módon, míg a modell-alapú módszert CT képekre való adaptálás után 

tesztelte. Az egy-fázisú és a modell-alapú módszerek minden teszteseten futottak, míg 

a több-fázisú módszer csak a két-fázisú eseteken lett tesztelve. Az egy-fázisú és 

modell-alapú módszerek összehasonlítása megmutatta, hogy az utóbbi jelentősen 

pontosabb eredményt ad. A két-fázisú esetekkel történt tesztek kimutatták, hogy a 

több-fázisú és a modell-alapú módszerek pontossága megegyező, míg az egy-fázisú 

módszer eredménye jelentősen pontatlanabb. Az átlagos futási idő alapján mind a 

több-fázisú, mind a modell-alapú módszerek elég hatékonynak bizonyultak ahhoz, 

hogy klinikai gyakorlatban használhatóak legyenek. Mivel a modell-alapú módszer 

csak a portális képet használja, ez a legszélesebb körben alkalmazható módszer. 

II. Máj-lézió detektálás 

A májrákos esetek száma folyamatosan emelkedik, így a máj-léziók számítógépes 

detektálása az hangsúlyos kutatási területté vált. A máj-léziók detektálása nehéz 

probléma, mivel a léziók mérete, alakja, intenzitása nagy variabilitást mutat. Szükség van 

tehát olyan szoftveres eszközökre, amelyek javítják a detektálás érzékenységét anélkül, 

hogy jelentős számú hibás találatot kellene átnézni. A szerző egy új módszert dolgozott ki 

a probléma megoldására, amelyet egy folyóiratcikkben [3] publikált. 

II.1. Automatikus máj-lézió detektálás kontrasztos CT képekre (3.1 Szekció): A szerző 

kidolgozott egy új eljárást máj-léziók automatikus detektálására kontrasztos CT 

képeken. Az algoritmus alapja a vizsgált területen belüli abnormális régiók 

szegmentálása, valamit e régiók osztályozása többszintű alakleíró módszer 

használatával. Az alak leírása olyan standard geometriai jellemzőkön alapul, mint az 

aszimmetria, kompaktság, méret, és térfogat. E jellemzőket használva az eljárás 

minden abnormális régió minden szintjére meghatároz egy valószínűségi értéket, 
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amely megmutatja, hogy az adott szint milyen valószínűséggel reprezentál léziót. A 

valószínűség nagysága alapján történik a régiók osztályozása és a detektált léziók 

kontúrjának meghatározása. 

II.2. Automatikus máj-lézió detektálás kiértékelése (3.2 Szekció): A szerző a bemutatott 

eljárást 30 kontrasztos CT eseten értékelte ki. Minden esetre egy orvos kikontúrozta 

az összes léziót. A vizsgált területként manuálisan illetve automatikus módszerrel 

szegmentált májat használtunk. A tesztek során az algoritmus, különböző 

érzékenységi küszöböt használva, többször feldolgozta a teljes adathalmazt, így 

lehetővé vált módszer pontosságának komplex analízise. Az eredmények 

megmutatták, hogy az eljárás magas találati arányt tudott elérni alacsony hibás 

találati számmal manuálisan definiált májban. Ugyanazt a hibás találati számot 

valamivel alacsonyabb találati aránnyal érte el a módszer automatikusan 

szegmentált májban. A nem detektált léziók részletes analízise megmutatta, hogy a 

módszer kihagyhat olyan léziókat, amelyek halványan látszanak a máj elsötétedő 

határ-régióiban. Az módszer átlagos futási ideje 30 mp volt, amely jól mutatja a 

módszer hatékonyságát. 

III. Virtuális reszekció 

A máj szegmentumainak szeparálása hasznos információt jelent műtéti tervezésnél. A 

szegmentumok automatikus szeparálása nagyon nehéz probléma, mert a szegmentum 

határok nem látszanak az orvosi képeken. Ezért igény van olyan interaktív eszközre, 

amely lehetővé teszi a probléma hatékony megoldását. A szerző egy új módszert javasol a 

probléma megoldására, amelyet egy folyóiratcikkben [4] publikált. 

III.1. 3D objektumok vágása B-Spline felületekkel (4.1 Szekció): A szerző kidolgozott 

egy új technikát 3D objektumok sima felülettel történő vágására. A módszer 

B-Spline görbe és felület interpolációt használ ahhoz, hogy egy sima felületet 

illesszen a felhasználó által rajzolt görbékre, amelyek a vágás határát definiálják. A 

bemutatott objektum-vágó algoritmus a B-Spline felület több különböző felbontású 

háromszög reprezentációját hozza létre, amely lehetővé teszi a felület és egy 

pásztázó egyenes metszéspontjának hatékony számítását. A vágás folyamata a 

felület számos pásztázó egyenessel való metszés-pontjának meghatározásán alapul, 

ahol az egyenesek iránya a felület orientációjától függ. A vágási felület propagálása 

kerül olyan pásztázó egyenesekre, amelyek nem metszik a felületet. 

III.2. Virtuális reszekció kiértékelése (4.2 Szekció): A szerző orvos bevonásával 

elvégezte a bemutatott objektum-vágó módszer kiértékelését máj-szegmentumok 

meghatározására. A felhasznált 14 tesztesetre adott volt a manuálisan definiált 

májkontúr. A máj szegmentumokra osztását az orvos végezte öt vágás adott 

sorrendben történő végrehajtásával, majd a keletkezett szegmentumok térfogatát 

feljegyezte. Az orvos a teljes tesztet háromszor hajtotta végre pár hét eltéréssel, így 

a szegmentum térfogatok variabilitása is mérhető volt. Az eredményeket 

összehasonlítottuk egy más módszerrel történő szeparálás eredményével valamint az 

irodalomban található értékekkel. A szegmentum térfogatok jó egyezést mutattak az 

ér alapú technikával kapott valamint a mások által publikált értékekkel, emellett az 

intra-operátor variabilitás is alacsonyak bizonyult. További, két eseten végzett 

tumor reszekciós kísérletek eredményei is alátámasztották, hogy a bemutatott 

technika jól használható komplex klinikai feladatok megoldására. A vágások 

elvégzéséhez kevesebb, mint 1 mp kellett, ami jól mutatja a módszer hatékonyságát. 
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Appendix 

A – Clinical study on liver volume measurement 

 

Patient 

ID 

Calculated 

(cm
3
) 

Manual 

(cm
3
) 

Manual 

RVD  

(%) 

Automated 

(cm
3
) 

Automated 

RVD 

(%) 

Automated 

time (s) 

1 708 732 3.4% 717 1.3% 15 

2 1513 1629 7.7% 1437 -5.0% 13 

3 927 962 3.8% 859 -7.3% 3 

4 878 713 -18.8% 493 -43.8% 11 

5 1952 1713 -12.2% 1583 -18.9% 14 

6 1696 1598 -5.8% 1368 -19.3% 24 

7 1049 981 -6.5% 986 -6.0% 24 

8 1189 1263 6.2% 1230 3.4% 19 

9 1110 1191 7.3% 1160 4.5% 17 

10 1744 1926 10.4% 1862 6.8% 23 

11 1769 1641 -7.2% 1417 -19.9% 26 

12 1586 1824 15.0% 1759 10.9% 18 

13 1464 877 -40.1% 816 -44.3% 20 

14 1708 1505 -11.9% 1442 -15.6% 18 

15 1616 1509 -6.6% 1396 -13.6% 18 

16 1249 1199 -4.0% 1100 -11.9% 18 

17 1464 1214 -17.1% 1065 -27.3% 19 

18 1464 1425 -2.7% 1385 -5.4% 17 

19 1842 1713 -7.0% 1560 -15.3% 21 

20 988 1254 26.9% 1278 29.4% 14 

21 1580 1590 0.6% 1567 -0.8% 19 

22 1256 1119 -10.9% 1549 23.3% 17 

23 1816 2306 27.0% 2284 25.8% 19 

24 1864 2024 8.6% 2354 26.3% 15 

25 1130 1037 -8.2% 1078 -4.6% 11 

26 1055 1157 9.7% 1144 8.4% 13 

27 998 1010 1.2% 961 -3.7% 13 

28 1948 2190 12.4% 2178 11.8% 17 

29 1570 1576 0.4% 1753 11.7% 15 

30 1026 935 -8.9% 925 -9.8% 13 

31 1016 1134 11.6% 1170 15.2% 14 

32 790 811 2.7% 729 -7.7% 4 

33 900 818 -9.1% 819 -9.0% 14 

34 980 1037 5.8% 1026 4.7% 19 

35 1570 1687 7.5% 1765 12.4% 21 

36 1964 1913 -2.6% 2312 17.7% 14 

37 1480 1671 12.9% 1640 10.8% 13 

38 2350 2772 18.0% 2769 17.8% 15 

39 1836 2097 14.2% 2103 14.5% 16 

40 992 1230 24.0% 1114 12.3% 30 

CORR - 0.91 - 0.87 - - 

AVG 1401 1425 1.4% 1404 -0.5% 17 

MIN 708 713 -40.1% 493 -44.3% 3 

MAX 2350 2772 27.0% 2769 29.4% 30 

STDEV 401 474 13.2% 514 17.4% 5 

Table A.1 The clinical evaluation of the multi-phase method for automated liver volume measurement. 
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1 1 2 2 

    
3 3 4 4 

    
5 5 6 6 

    
7 7 8 8 

    
9 9 10 10 

    

Table A.2 The result of the multi-phase liver segmentation method (red contour) for cases 1-10: each row 

presents 2 exams, where an axial (left) and a coronal (right) slice are displayed. 
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11 11 12 12 

    
13 13 14 14 

    
15 15 16 16 

    
17 17 18 18 

    
19 19 20 20 

    

Table A.3 The result of the multi-phase liver segmentation method (red contour) for cases 11-20: each row 

presents 2 exams, where an axial (left) and a coronal (right) slice are displayed. 
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21 21 22 22 

    
23 23 24 24 

    
25 25 26 26 

    
27 27 28 28 

    
29 29 30 30 

    

Table A.4 The result of the multi-phase liver segmentation method (red contour) for cases 21-30: each row 

presents 2 exams, where an axial (left) and a coronal (right) slice are displayed. 
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31 31 32 32 

    
33 33 34 34 

    
35 35 36 36 

    
37 37 38 38 

    
39 39 40 40 

    

Table A.5 The result of the multi-phase liver segmentation method (red contour) for cases 31-40: each row 

presents 2 exams, where an axial (left) and a coronal (right) slice are displayed. 
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B – Evaluation and comparison of liver segmentation methods 

 
Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

1 -3.8 3.8 1.5 2.8 27.8 8.2 67 14.5 

2 -4.0 4.0 2.0 4.4 40.3 9.7 55 11.4 

3 -5.7 5.7 2.1 3.6 24.5 12.1 57 8.7 

4 -5.4 5.4 1.4 2.3 15.8 9.1 70 9.6 

5 -3.7 3.7 1.2 2.0 15.3 8.6 74 14.8 

6 -15.8 15.8 4.8 10.7 75.5 18.2 9 8.6 

7 -12.8 12.8 2.5 4.0 24.4 14.9 45 11.0 

8 -3.8 3.8 1.5 2.5 17.4 9.3 70 10.2 

9 -14.1 14.1 5.4 10.9 57.3 29.0 10 16.6 

10 -4.2 4.2 1.4 2.7 26.6 8.8 67 11.2 

11 -4.2 4.2 1.9 3.4 22.7 10.0 63 19.5 

12 -0.4 0.4 1.2 2.6 27.5 7.1 74 18.5 

13 -23.0 23.0 3.7 8.0 45.5 25.5 10 12.9 

14 -1.5 1.5 1.3 2.5 27.0 8.6 71 18.2 

15 -2.5 2.5 1.9 3.1 21.2 13.5 63 8.9 

16 -8.2 8.2 2.2 3.6 35.7 13.0 51 9.1 

17 -1.1 1.1 1.1 1.9 13.1 8.5 78 9.3 

18 -0.3 0.3 1.6 2.8 31.7 10.1 67 14.5 

19 -5.4 5.4 1.7 3.3 25.0 10.9 62 9.0 

20 -8.7 8.7 1.8 3.0 18.9 11.7 59 11.4 

21 37.8 37.8 8.0 20.5 102.1 40.8 0 12.1 

22 -25.3 25.3 5.8 11.2 59.9 29.3 4 10.3 

23 -8.7 8.7 4.8 9.1 56.1 20.1 20 9.9 

24 -11.1 11.1 2.5 4.6 25.3 13.9 45 11.4 

25 -2.3 2.3 1.5 3.0 26.3 11.0 66 10.9 

26 -5.1 5.1 1.7 3.4 25.7 11.6 61 12.2 

27 -3.6 3.6 7.1 15.0 72.3 29.9 17 9.3 

28 -7.7 7.7 1.8 2.9 21.5 11.8 60 9.0 

29 11.4 11.4 4.9 13.5 75.0 18.2 14 20.7 

30 -7.2 7.2 1.2 2.1 13.2 9.4 70 24.1 

31 95.1 95.1 20.1 38.8 278.6 52.9 0 29.0 

32 -11.2 11.2 2.5 4.4 33.2 14.7 43 17.5 

33 -26.8 26.8 103.3 109.3 179.9 100.0 0 21.9 

34 87.2 87.2 24.6 43.6 141.5 61.8 0 22.4 

35 -10.6 10.6 2.0 3.3 22.2 12.2 54 16.0 

36 113.1 113.1 26.3 46.1 150.8 57.0 0 41.1 

37 127.0 127.0 20.9 37.8 124.2 56.8 0 57.8 

38 -4.0 4.0 0.9 1.7 17.6 6.9 76 20.7 

39 -5.6 5.6 1.1 1.9 12.6 8.8 73 16.0 

40 1626.6 1626.6 118.0 148.7 353.4 94.2 0 48.2 

41 -1.5 1.5 1.0 2.0 18.9 7.4 77 23.0 

42 -6.5 6.5 1.7 3.1 31.1 9.7 60 26.8 

43 612.0 612.0 116.8 155.0 380.7 86.1 0 89.0 

44 -2.5 2.5 1.8 3.3 40.6 11.0 60 24.1 

45 129.7 129.7 40.6 66.3 202.5 57.3 0 91.7 

46 1.1 1.1 0.9 1.6 22.1 5.7 80 15.7 

47 -9.6 9.6 2.6 4.8 36.1 15.7 42 20.9 

48 10.8 10.8 4.3 10.8 59.8 20.4 17 22.5 

49 29.9 29.9 6.0 14.5 72.5 23.9 2 20.8 

50 397.6 397.6 131.7 154.1 330.0 99.2 0 51.5 

Table B.1 The evaluation of the single-phase method on the whole dataset (test cases 1-50). 

 



Appendix B – Evaluation and comparison of liver segmentation methods 

142 

 
Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

51 4.7 4.7 1.6 3.1 28.8 10.5 63 18.1 

52 -2.7 2.7 1.1 2.3 173.1 7.1 60 22.3 

53 0.1 0.1 1.6 4.0 40.2 8.9 63 23.6 

54 -0.8 0.8 1.3 2.6 28.3 7.8 72 21.1 

55 -18.0 18.0 5.0 10.5 53.0 24.4 8 16.0 

56 -0.9 0.9 1.4 2.6 27.3 8.2 71 21.6 

57 -2.2 2.2 2.1 3.3 25.6 13.3 61 10.8 

58 -10.3 10.3 1.9 3.0 34.4 12.7 52 21.3 

59 17.3 17.3 5.3 14.3 71.0 16.9 10 23.6 

60 -5.5 5.5 1.2 2.4 25.0 10.4 67 16.6 

61 -8.1 8.1 1.5 2.8 26.8 10.2 61 19.1 

62 -8.2 8.2 2.3 4.6 30.2 12.9 49 16.6 

63 -11.4 11.4 2.3 5.7 36.5 14.8 39 15.6 

64 -4.4 4.4 2.0 3.8 30.8 11.3 58 13.1 

65 -1.6 1.6 1.0 2.0 17.7 6.6 78 14.3 

66 2.3 2.3 1.0 2.3 26.0 6.9 74 10.8 

67 0.6 0.6 0.9 1.5 19.7 5.9 81 12.2 

68 0.1 0.1 1.1 2.2 18.1 7.7 77 27.0 

69 -0.4 0.4 1.0 1.9 21.9 7.0 78 15.2 

70 -3.5 3.5 1.2 2.4 21.4 7.8 72 10.6 

71 2.8 2.8 1.3 2.2 23.7 7.1 73 14.7 

72 -3.8 3.8 1.3 2.5 22.7 8.0 70 11.9 

73 0.4 0.4 1.3 2.6 24.0 8.2 73 16.4 

74 2.9 2.9 1.3 3.0 24.6 7.5 69 20.9 

75 5.5 5.5 1.2 2.5 31.5 7.7 67 12.6 

76 0.5 0.5 1.5 2.4 15.5 9.7 74 11.2 

77 -2.1 2.1 1.0 2.2 20.6 6.6 76 11.6 

78 0.4 0.4 0.7 1.5 19.8 5.0 83 20.0 

79 -21.9 21.9 3.8 9.0 55.5 24.2 8 12.5 

80 -0.5 0.5 1.1 2.0 16.5 6.9 79 18.4 

81 -1.3 1.3 1.0 2.0 24.0 5.7 78 11.0 

82 -0.7 0.7 0.7 1.3 13.7 4.6 85 16.8 

83 -4.4 4.4 1.6 2.6 18.9 8.8 68 16.4 

AVG 35.3 44.7 9.2 13.6 56.0 18.9 50 19.3 

STD 194.7 192.7 25.2 31.1 74.1 21.2 28 14.3 

MIN -26.8 0.1 0.7 1.3 12.6 4.6 0 8.6 

MAX 1626.6 1626.6 131.7 155.0 380.7 100.0 85 91.7 

Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

Table B.1 (continued) The evaluation of the single-phase method on the whole dataset (test cases 51-83). 
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Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

1 -4.2 4.2 1.5 2.9 22.7 8.1 68 20.8 

2 -3.7 3.7 1.9 4.3 41.8 8.5 57 20.5 

3 -7.4 7.4 1.9 3.0 17.0 10.8 62 21.6 

4 -7.8 7.8 1.9 3.9 33.2 11.4 54 19.2 

5 6.2 6.2 1.7 4.5 35.6 9.4 56 25.0 

6 -3.1 3.1 2.6 6.3 44.7 12.3 45 16.7 

7 20.5 20.5 10.1 24.0 103.8 20.9 4 20.0 

8 -1.6 1.6 1.1 2.0 17.2 7.3 77 17.6 

9 -1.0 1.0 5.3 9.6 44.4 23.2 29 22.9 

10 -3.6 3.6 1.9 3.6 31.1 11.2 60 21.2 

11 3.9 3.9 2.6 7.8 63.3 9.3 39 41.2 

12 -3.9 3.9 1.4 3.1 30.5 8.2 66 32.0 

13 1.6 1.6 1.3 2.6 18.5 9.9 72 19.1 

14 -8.3 8.3 2.1 4.3 32.7 11.9 51 31.3 

15 7.1 7.1 2.9 7.3 55.0 16.0 31 12.6 

16 -1.8 1.8 1.5 3.1 37.9 9.1 65 15.4 

17 -1.7 1.7 1.2 2.7 179.3 9.0 58 13.0 

18 -2.1 2.1 2.0 3.5 31.4 11.7 61 23.4 

19 -0.3 0.3 1.1 2.1 17.5 7.7 78 16.9 

20 16.6 16.6 4.6 10.1 66.6 22.8 7 15.9 

21 44.9 44.9 9.3 21.0 101.6 45.9 0 12.3 

22 -23.0 23.0 5.8 12.2 59.7 27.5 4 15.5 

23 -5.3 5.3 3.0 6.9 53.2 15.0 34 16.8 

24 -5.1 5.1 2.0 3.9 25.9 11.7 58 13.9 

25 -2.9 2.9 1.3 2.9 21.7 10.5 68 15.2 

26 6.6 6.6 1.4 3.1 25.1 9.2 63 36.2 

27 -9.9 9.9 3.4 7.3 44.5 22.2 24 16.1 

28 -7.8 7.8 1.6 3.4 36.0 10.9 56 14.9 

29 -6.4 6.4 1.7 3.1 26.4 9.9 61 51.5 

30 -5.5 5.5 1.0 2.1 19.8 8.3 71 34.9 

31 14.7 14.7 4.1 10.1 57.9 22.1 12 52.4 

32 -9.6 9.6 2.6 5.0 33.1 13.7 44 37.1 

33 -6.5 6.5 1.6 3.1 30.1 12.0 59 55.8 

34 -10.6 10.6 5.7 10.5 53.7 35.6 15 49.8 

35 -9.6 9.6 1.8 3.4 29.7 11.1 55 41.4 

36 -20.5 20.5 6.0 12.5 74.1 26.0 1 52.9 

37 4.2 4.2 1.4 2.7 22.0 10.5 67 52.2 

38 -1.4 1.4 0.9 1.7 16.8 6.6 80 44.8 

39 0.6 0.6 0.9 1.6 20.4 7.7 79 39.4 

40 6.0 6.0 3.3 7.7 42.6 19.0 31 52.6 

41 -1.6 1.6 1.1 2.1 23.8 7.8 75 37.1 

42 -19.7 19.7 4.2 7.0 36.1 22.1 14 51.1 

43 -8.5 8.5 3.1 8.2 63.4 14.5 27 53.0 

44 -10.2 10.2 3.0 6.3 50.0 15.3 31 42.0 

45 19.1 19.1 2.6 5.2 38.4 17.8 28 55.1 

46 5.2 5.2 1.3 2.3 21.5 8.2 69 37.2 

47 81.4 81.4 20.8 37.9 136.7 47.5 0 45.8 

48 -5.6 5.6 2.0 4.4 32.4 13.2 53 44.2 

49 1.8 1.8 2.2 3.7 22.2 15.2 59 43.1 

50 7.6 7.6 1.6 2.8 22.3 11.7 61 47.0 

Table B.2 The evaluation of the model-based method on the whole dataset (test cases 1-50). 
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Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

51 -0.7 0.7 2.2 4.3 43.6 13.4 55 37.4 

52 -4.9 4.9 1.4 3.1 36.6 8.3 63 58.1 

53 1.4 1.4 1.9 4.1 34.4 10.2 61 36.7 

54 -2.8 2.8 1.4 2.6 24.7 7.7 70 34.8 

55 -30.5 30.5 7.5 11.7 41.5 32.7 9 33.1 

56 -4.8 4.8 1.5 3.1 29.1 9.1 64 30.1 

57 -10.6 10.6 2.3 5.1 33.4 15.6 42 17.7 

58 -2.5 2.5 1.0 2.0 34.3 7.0 73 28.7 

59 5.9 5.9 1.3 2.6 27.7 7.4 67 33.5 

60 14.9 14.9 3.3 7.8 40.1 19.0 22 30.3 

61 -2.1 2.1 1.1 2.4 23.7 8.5 73 27.4 

62 -11.5 11.5 2.8 5.6 36.8 14.7 37 35.4 

63 -7.6 7.6 2.2 5.3 35.0 12.8 47 49.2 

64 -6.9 6.9 2.5 4.7 30.8 13.1 49 26.9 

65 -0.6 0.6 0.8 1.6 14.0 5.3 83 15.0 

66 1.9 1.9 0.7 1.7 19.4 4.9 81 17.0 

67 -4.3 4.3 1.3 2.4 18.3 8.5 71 24.1 

68 1.3 1.3 1.2 2.4 25.3 7.5 74 35.8 

69 15.0 15.0 2.6 5.9 42.0 14.4 32 23.8 

70 -6.3 6.3 1.9 3.5 24.1 11.4 59 30.1 

71 -1.2 1.2 1.5 2.6 22.5 8.3 72 28.2 

72 0.3 0.3 1.0 1.9 21.1 6.3 79 25.3 

73 4.2 4.2 2.1 3.9 29.5 12.3 57 24.0 

74 6.6 6.6 2.6 6.2 45.7 12.3 41 31.7 

75 3.7 3.7 1.8 2.8 18.2 11.4 65 25.3 

76 10.6 10.6 1.9 3.0 21.6 12.0 56 21.7 

77 -7.4 7.4 1.5 3.0 21.4 9.3 63 16.9 

78 1.0 1.0 0.9 1.7 18.4 6.1 80 31.9 

79 -9.1 9.1 2.9 6.8 51.4 12.1 34 23.9 

80 3.0 3.0 0.9 2.2 20.6 6.0 76 25.6 

81 0.3 0.3 1.1 1.9 16.1 6.5 80 30.0 

82 0.7 0.7 1.3 3.8 40.7 6.7 66 36.4 

83 -0.5 0.5 0.8 1.5 13.5 4.9 84 25.6 

AVG -0.2 7.9 2.6 5.3 37.6 13.2 52 30.8 

STD 13.4 10.8 2.7 5.2 25.7 8.0 23 12.6 

P-single 
 

0.0878 0.0197 0.0173 0.0295 0.0107 0.4806 0.0000 

MIN -30.5 0.3 0.7 1.5 13.5 4.9 0 12.3 

MAX 81.4 81.4 20.8 37.9 179.3 47.5 84 58.1 

Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

Table B.2 (continued) The evaluation of the model-based method on the whole dataset (test cases 51-83). The row 

“P-single” shows the p-value of the T-test, when model-based method was compared with single-phase method. 
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Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

12 -0.4 0.4 1.2 2.6 27.5 7.1 74 18.5 

13 -23.0 23.0 3.7 8.0 45.5 25.5 10 12.9 

14 -1.5 1.5 1.3 2.5 27.0 8.6 71 18.2 

16 -8.2 8.2 2.2 3.6 35.7 13.0 51 9.1 

17 -1.1 1.1 1.1 1.9 13.1 8.5 78 9.3 

18 -0.3 0.3 1.6 2.8 31.7 10.1 67 14.5 

19 -5.4 5.4 1.7 3.3 25.0 10.9 62 9.0 

21 37.8 37.8 8.0 20.5 102.1 40.8 0 12.1 

22 -25.3 25.3 5.8 11.2 59.9 29.3 4 10.3 

23 -8.7 8.7 4.8 9.1 56.1 20.1 20 9.9 

24 -11.1 11.1 2.5 4.6 25.3 13.9 45 11.4 

26 -5.1 5.1 1.7 3.4 25.7 11.6 61 12.2 

29 11.4 11.4 4.9 13.5 75.0 18.2 14 20.7 

31 95.1 95.1 20.1 38.8 278.6 52.9 0 29.0 

32 -11.2 11.2 2.5 4.4 33.2 14.7 43 17.5 

33 -26.8 26.8 103.3 109.3 179.9 100.0 0 21.9 

34 87.2 87.2 24.6 43.6 141.5 61.8 0 22.4 

35 -10.6 10.6 2.0 3.3 22.2 12.2 54 16.0 

36 113.1 113.1 26.3 46.1 150.8 57.0 0 41.1 

37 127.0 127.0 20.9 37.8 124.2 56.8 0 57.8 

38 -4.0 4.0 0.9 1.7 17.6 6.9 76 20.7 

39 -5.6 5.6 1.1 1.9 12.6 8.8 73 16.0 

40 1626.6 1626.6 118.0 148.7 353.4 94.2 0 48.2 

41 -1.5 1.5 1.0 2.0 18.9 7.4 77 23.0 

42 -6.5 6.5 1.7 3.1 31.1 9.7 60 26.8 

43 612.0 612.0 116.8 155.0 380.7 86.1 0 89.0 

44 -2.5 2.5 1.8 3.3 40.6 11.0 60 24.1 

45 129.7 129.7 40.6 66.3 202.5 57.3 0 91.7 

46 1.1 1.1 0.9 1.6 22.1 5.7 80 15.7 

47 -9.6 9.6 2.6 4.8 36.1 15.7 42 20.9 

48 10.8 10.8 4.3 10.8 59.8 20.4 17 22.5 

49 29.9 29.9 6.0 14.5 72.5 23.9 2 20.8 

50 397.6 397.6 131.7 154.1 330.0 99.2 0 51.5 

51 4.7 4.7 1.6 3.1 28.8 10.5 63 18.1 

52 -2.7 2.7 1.1 2.3 173.1 7.1 60 22.3 

53 0.1 0.1 1.6 4.0 40.2 8.9 63 23.6 

54 -0.8 0.8 1.3 2.6 28.3 7.8 72 21.1 

55 -18.0 18.0 5.0 10.5 53.0 24.4 8 16.0 

56 -0.9 0.9 1.4 2.6 27.3 8.2 71 21.6 

57 -2.2 2.2 2.1 3.3 25.6 13.3 61 10.8 

58 -10.3 10.3 1.9 3.0 34.4 12.7 52 21.3 

59 17.3 17.3 5.3 14.3 71.0 16.9 10 23.6 

60 -5.5 5.5 1.2 2.4 25.0 10.4 67 16.6 

61 -8.1 8.1 1.5 2.8 26.8 10.2 61 19.1 

62 -8.2 8.2 2.3 4.6 30.2 12.9 49 16.6 

63 -11.4 11.4 2.3 5.7 36.5 14.8 39 15.6 

AVG 66.6 76.9 15.1 21.7 79.5 25.6 40 23.7 

STD 257.2 254.3 32.7 39.9 92.1 26.1 30 17.6 

MIN -26.8 0.1 0.9 1.6 12.6 5.7 0 9.0 

MAX 1626.6 1626.6 131.7 155.0 380.7 100.0 80 91.7 

Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

Table B.3 The evaluation of the single-phase method on the dual-phase dataset. 
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Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

12 -5.0 5.0 1.3 2.3 19.0 8.2 71 9.6 

13 -30.1 30.1 4.5 8.5 44.9 31.0 8 8.3 

14 -5.3 5.3 1.1 2.2 27.0 7.8 70 17.3 

16 -8.0 8.0 1.6 2.8 31.6 11.0 59 6.3 

17 -11.0 11.0 2.0 3.1 20.3 12.8 54 5.5 

18 -9.4 9.4 2.1 3.3 32.1 12.9 52 6.9 

19 -30.5 30.5 5.1 7.9 36.7 30.9 10 5.7 

21 -3.8 3.8 4.8 10.4 74.8 30.5 16 5.0 

22 -28.0 28.0 5.5 10.5 52.6 28.9 6 5.0 

23 -16.2 16.2 3.1 5.2 31.1 17.0 31 4.6 

24 -17.4 17.4 4.0 6.3 34.5 18.5 21 4.1 

26 -6.9 6.9 1.9 4.2 35.7 11.3 54 10.3 

29 -9.4 9.4 1.9 3.0 25.0 11.3 57 21.0 

31 -2.3 2.3 0.8 1.6 14.7 7.3 79 31.3 

32 -16.2 16.2 3.1 5.3 34.9 18.3 29 15.0 

33 -10.5 10.5 1.6 3.1 24.9 12.4 56 19.5 

34 -49.2 49.2 9.2 16.2 72.7 49.5 1 19.9 

35 -11.6 11.6 2.0 3.4 22.9 12.7 52 18.5 

36 -1.5 1.5 2.6 5.6 43.3 16.0 46 26.5 

37 0.5 0.5 1.6 4.2 40.8 10.3 61 25.3 

38 -5.8 5.8 1.1 2.2 24.8 7.7 70 27.1 

39 -7.3 7.3 1.0 1.9 14.0 8.5 72 22.9 

40 8.0 8.0 5.1 10.5 57.6 26.8 16 24.2 

41 -6.9 6.9 1.3 2.6 22.2 9.5 66 24.8 

42 -5.5 5.5 1.5 2.7 28.0 8.6 65 65.3 

43 -10.2 10.2 1.9 3.3 35.0 13.4 51 46.9 

44 -7.7 7.7 2.2 3.8 26.7 13.0 53 26.6 

45 -3.6 3.6 1.3 2.4 21.9 10.1 69 26.7 

46 -0.1 0.1 1.1 1.9 20.9 7.1 78 21.0 

47 -10.0 10.0 2.5 4.0 33.7 16.8 44 26.1 

48 -8.6 8.6 1.8 4.0 32.3 11.9 53 30.3 

49 0.0 0.0 1.1 1.8 19.8 8.2 78 18.9 

50 -12.5 12.5 2.0 4.1 26.6 14.5 47 26.6 

51 -1.1 1.1 1.5 2.4 22.0 10.7 71 20.1 

52 -5.9 5.9 1.7 3.9 46.1 9.9 54 29.8 

53 -4.6 4.6 1.2 2.0 17.0 8.1 73 14.6 

54 -2.2 2.2 1.1 2.3 25.1 6.7 74 23.1 

55 -16.7 16.7 4.5 9.4 52.8 21.2 12 16.3 

56 -16.3 16.3 3.4 7.0 43.3 21.0 18 14.3 

57 -6.9 6.9 1.5 3.0 30.0 11.4 60 5.4 

58 -10.2 10.2 1.8 3.0 32.1 12.3 54 11.8 

59 -0.1 0.1 1.1 1.9 22.4 6.9 78 20.8 

60 -5.0 5.0 0.9 1.9 20.0 9.0 72 10.5 

61 -14.4 14.4 2.4 4.1 34.9 15.5 40 10.3 

62 -9.4 9.4 2.3 4.5 26.8 13.7 48 15.5 

63 -17.0 17.0 3.0 6.3 37.6 17.7 26 18.7 

AVG -9.8 10.2 2.4 4.5 32.5 14.8 49 18.8 

STD 9.6 9.2 1.6 3.0 13.3 8.4 22 11.5 

P-single 0.0501  0.0857 0.0119 0.0053 0.0011 0.0057 0.0350 0.0288 

MIN -49.2 0.0 0.8 1.6 14.0 6.7 1 4.1 

MAX 8.0 49.2 9.2 16.2 74.8 49.5 79 65.3 

Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

Table B.4 The evaluation of the multi-phase method on the dual-phase dataset. The row “P-single” reports the p-

value of the T-test, when multi-phase method was compared with single-phase method. 
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Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

12 -3.9 3.9 1.4 3.1 30.5 8.2 66 32.0 

13 1.6 1.6 1.3 2.6 18.5 9.9 72 19.1 

14 -8.3 8.3 2.1 4.3 32.7 11.9 51 31.3 

16 -1.8 1.8 1.5 3.1 37.9 9.1 65 15.4 

17 -1.7 1.7 1.2 2.7 179.3 9.0 58 13.0 

18 -2.1 2.1 2.0 3.5 31.4 11.7 61 23.4 

19 -0.3 0.3 1.1 2.1 17.5 7.7 78 16.9 

21 44.9 44.9 9.3 21.0 101.6 45.9 0 12.3 

22 -23.0 23.0 5.8 12.2 59.7 27.5 4 15.5 

23 -5.3 5.3 3.0 6.9 53.2 15.0 34 16.8 

24 -5.1 5.1 2.0 3.9 25.9 11.7 58 13.9 

26 6.6 6.6 1.4 3.1 25.1 9.2 63 36.2 

29 -6.4 6.4 1.7 3.1 26.4 9.9 61 51.5 

31 14.7 14.7 4.1 10.1 57.9 22.1 12 52.4 

32 -9.6 9.6 2.6 5.0 33.1 13.7 44 37.1 

33 -6.5 6.5 1.6 3.1 30.1 12.0 59 55.8 

34 -10.6 10.6 5.7 10.5 53.7 35.6 15 49.8 

35 -9.6 9.6 1.8 3.4 29.7 11.1 55 41.4 

36 -20.5 20.5 6.0 12.5 74.1 26.0 1 52.9 

37 4.2 4.2 1.4 2.7 22.0 10.5 67 52.2 

38 -1.4 1.4 0.9 1.7 16.8 6.6 80 44.8 

39 0.6 0.6 0.9 1.6 20.4 7.7 79 39.4 

40 6.0 6.0 3.3 7.7 42.6 19.0 31 52.6 

41 -1.6 1.6 1.1 2.1 23.8 7.8 75 37.1 

42 -19.7 19.7 4.2 7.0 36.1 22.1 14 51.1 

43 -8.5 8.5 3.1 8.2 63.4 14.5 27 53.0 

44 -10.2 10.2 3.0 6.3 50.0 15.3 31 42.0 

45 19.1 19.1 2.6 5.2 38.4 17.8 28 55.1 

46 5.2 5.2 1.3 2.3 21.5 8.2 69 37.2 

47 81.4 81.4 20.8 37.9 136.7 47.5 0 45.8 

48 -5.6 5.6 2.0 4.4 32.4 13.2 53 44.2 

49 1.8 1.8 2.2 3.7 22.2 15.2 59 43.1 

50 7.6 7.6 1.6 2.8 22.3 11.7 61 47.0 

51 -0.7 0.7 2.2 4.3 43.6 13.4 55 37.4 

52 -4.9 4.9 1.4 3.1 36.6 8.3 63 58.1 

53 1.4 1.4 1.9 4.1 34.4 10.2 61 36.7 

54 -2.8 2.8 1.4 2.6 24.7 7.7 70 34.8 

55 -30.5 30.5 7.5 11.7 41.5 32.7 9 33.1 

56 -4.8 4.8 1.5 3.1 29.1 9.1 64 30.1 

57 -10.6 10.6 2.3 5.1 33.4 15.6 42 17.7 

58 -2.5 2.5 1.0 2.0 34.3 7.0 73 28.7 

59 5.9 5.9 1.3 2.6 27.7 7.4 67 33.5 

60 14.9 14.9 3.3 7.8 40.1 19.0 22 30.3 

61 -2.1 2.1 1.1 2.4 23.7 8.5 73 27.4 

62 -11.5 11.5 2.8 5.6 36.8 14.7 37 35.4 

63 -7.6 7.6 2.2 5.3 35.0 12.8 47 49.2 

AVG -0.5 9.9 2.9 5.9 41.5 15.0 48 36.6 

STD 16.8 13.6 3.2 6.0 29.8 9.4 24 13.3 

P-single 0.0860  0.0848 0.0164 0.0108 0.0099 0.0073 0.0423 0.0000 

P-multi 0.0008  0.9068 0.2786 0.1168 0.0527 0.8528 0.7470 0.0000 

MIN -30.5 0.3 0.9 1.6 16.8 6.6 0 12.3 

MAX 81.4 81.4 20.8 37.9 179.3 47.5 80 58.1 

Exam RVD ARVD ASSD RMSD MSSD VOE Score Time 

Table B.5 The evaluation of the model-based method on the reduced (dual-phase) dataset. The row “P-single” 

and “P-multi” reports the p-value of the T-test, when model-based method was compared with single- and multi-

phase methods. 
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C – Study on liver segment separation 

 
Exam    II III IV+I V VI VII VIII 

1 

1 155 217 413 314 228 250 403 

2 141 145 451 345 187 229 479 

3 145 203 335 346 188 258 504 

AVG 7.4% 9.5% 20.2% 16.9% 10.2% 12.4% 23.3% 

STD 0.4% 1.9% 3.0% 0.9% 1.2% 0.8% 2.7% 

2 

1 178 171 381 482 199 248 457 

2 127 73 364 374 127 347 704 

3 125 133 379 394 131 329 625 

AVG 6.8% 5.9% 17.7% 19.7% 7.2% 14.5% 28.1% 

STD 1.4% 2.3% 0.4% 2.7% 1.9% 2.5% 6.0% 

3 

1 118 118 385 272 66 162 362 

2 148 181 273 258 106 210 306 

3 112 93 387 248 104 201 336 

AVG 8.5% 8.8% 23.5% 17.5% 6.2% 12.9% 22.6% 

STD 1.3% 3.1% 4.4% 0.8% 1.5% 1.7% 1.9% 

4 

1 68 81 318 232 186 85 240 

2 58 60 299 222 132 135 305 

3 83 129 230 231 93 150 296 

AVG 5.7% 7.4% 23.3% 18.8% 11.3% 10.2% 23.1% 

STD 1.0% 2.9% 3.8% 0.5% 3.9% 2.8% 2.9% 

5 

1 45 93 240 200 139 225 300 

2 60 67 217 174 152 275 297 

3 54 96 206 181 133 270 303 

AVG 4.3% 6.9% 17.8% 14.9% 11.4% 20.7% 24.2% 

STD 0.6% 1.3% 1.4% 1.1% 0.8% 2.2% 0.2% 

6 

1 241 216 454 339 162 218 219 

2 138 108 517 378 188 225 295 

3 184 93 468 290 244 284 287 

AVG 10.1% 7.5% 25.9% 18.1% 10.7% 13.1% 14.4% 

STD 2.8% 3.6% 1.8% 2.4% 2.3% 2.0% 2.3% 

7 

1 121 77 162 302 191 390 524 

2 55 92 243 311 167 376 523 

3 63 123 193 339 112 314 622 

AVG 4.5% 5.5% 11.3% 18.0% 8.9% 20.4% 31.5% 

STD 2.0% 1.3% 2.3% 1.1% 2.3% 2.3% 3.2% 

8 

1 74 66 348 271 166 282 291 

2 65 69 248 301 210 285 319 

3 63 55 258 280 163 319 360 

AVG 4.5% 4.2% 19.0% 18.9% 12.0% 19.7% 21.6% 

STD 0.4% 0.5% 3.7% 1.0% 1.8% 1.4% 2.3% 

9 

1 35 44 282 184 117 201 308 

2 23 47 221 171 199 242 267 

3 33 49 212 127 149 304 296 

AVG 2.6% 4.0% 20.4% 13.7% 13.2% 21.3% 24.8% 

STD 0.5% 0.2% 3.3% 2.6% 3.5% 4.4% 1.8% 

Table C.1 Volumetric analysis of the anatomical liver segments for test cases 1-9. The volume (cm3) of each 

segment is displayed for each test runs. The average segment volume and the standard deviation of the segment 

volumes are also reported (in % of the total liver volume) for each case. 
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10 

1 95 91 253 135 178 233 193 

2 92 83 241 141 183 235 204 

3 100 105 218 178 157 181 239 

AVG 8.1% 7.9% 20.1% 12.8% 14.6% 18.3% 18.0% 

STD 0.3% 0.9% 1.5% 2.0% 1.2% 2.6% 2.0% 

11 

1 126 113 543 546 431 540 717 

2 135 79 655 528 477 529 612 

3 141 114 445 523 455 602 735 

AVG 4.4% 3.4% 18.2% 17.6% 15.1% 18.5% 22.8% 

STD 0.3% 0.7% 3.5% 0.4% 0.8% 1.3% 2.2% 

12 

1 56 29 388 186 160 283 359 

2 56 29 384 155 109 312 416 

3 43 39 383 200 95 252 449 

AVG 3.5% 2.2% 26.3% 12.3% 8.3% 19.3% 27.9% 

STD 0.5% 0.4% 0.2% 1.6% 2.3% 2.1% 3.1% 

13 

1 158 125 211 318 185 340 462 

2 111 195 263 251 185 347 447 

3 114 190 199 290 198 363 445 

AVG 7.1% 9.4% 12.5% 15.9% 10.5% 19.4% 25.1% 

STD 1.5% 2.2% 1.9% 1.9% 0.4% 0.7% 0.5% 

14 

1 75 84 388 188 108 233 468 

2 67 97 373 258 219 175 355 

3 77 89 372 88 114 274 530 

AVG 4.7% 5.8% 24.4% 11.5% 9.5% 14.7% 29.2% 

STD 0.3% 0.4% 0.6% 5.5% 4.0% 3.2% 5.7% 

AVG   5.9% 6.3% 20.0% 16.2% 10.6% 16.8% 24.0% 

STD   1.0% 1.6% 2.3% 1.7% 2.0% 2.1% 2.6% 

Table C.1 (continued) Volumetric analysis of the anatomical liver segments for test cases 10-14. The volume 

(cm3) of each segment is displayed for each (3) test runs. The average segment volume and the standard 

deviation of the segment volumes are also reported (in % of the total liver volume) for each case. The last two 

rows show the average and the standard deviation of segment volumes considering all cases. 


