2,669 research outputs found

    Boosted Multiple Kernel Learning for First-Person Activity Recognition

    Get PDF
    Activity recognition from first-person (ego-centric) videos has recently gained attention due to the increasing ubiquity of the wearable cameras. There has been a surge of efforts adapting existing feature descriptors and designing new descriptors for the first-person videos. An effective activity recognition system requires selection and use of complementary features and appropriate kernels for each feature. In this study, we propose a data-driven framework for first-person activity recognition which effectively selects and combines features and their respective kernels during the training. Our experimental results show that use of Multiple Kernel Learning (MKL) and Boosted MKL in first-person activity recognition problem exhibits improved results in comparison to the state-of-the-art. In addition, these techniques enable the expansion of the framework with new features in an efficient and convenient way.Comment: First published in the Proceedings of the 25th European Signal Processing Conference (EUSIPCO-2017) in 2017, published by EURASI

    Recognising Complex Activities with Histograms of Relative Tracklets

    Get PDF
    One approach to the recognition of complex human activities is to use feature descriptors that encode visual inter-actions by describing properties of local visual features with respect to trajectories of tracked objects. We explore an example of such an approach in which dense tracklets are described relative to multiple reference trajectories, providing a rich representation of complex interactions between objects of which only a subset can be tracked. Specifically, we report experiments in which reference trajectories are provided by tracking inertial sensors in a food preparation sce-nario. Additionally, we provide baseline results for HOG, HOF and MBH, and combine these features with others for multi-modal recognition. The proposed histograms of relative tracklets (RETLETS) showed better activity recognition performance than dense tracklets, HOG, HOF, MBH, or their combination. Our comparative evaluation of features from accelerometers and video highlighted a performance gap between visual and accelerometer-based motion features and showed a substantial performance gain when combining features from these sensor modalities. A considerable further performance gain was observed in combination with RETLETS and reference tracklet features

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms
    corecore