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a b s t r a c t 

One approach to the recognition of complex human activities is to use feature descriptors that encode 

visual interactions by describing properties of local visual features with respect to trajectories of tracked 

objects. We explore an example of such an approach in which dense tracklets are described relative to 

multiple reference trajectories, providing a rich representation of complex interactions between objects 

of which only a subset can be tracked. Specifically, we report experiments in which reference trajectories 

are provided by tracking inertial sensors in a food preparation scenario. Additionally, we provide baseline 

results for HOG, HOF and MBH, and combine these features with others for multi-modal recognition. The 

proposed histograms of relative tracklets (RETLETS) showed better activity recognition performance than 

dense tracklets, HOG, HOF, MBH, or their combination. Our comparative evaluation of features from ac- 

celerometers and video highlighted a performance gap between visual and accelerometer-based motion 

features and showed a substantial performance gain when combining features from these sensor modal- 

ities. A considerable further performance gain was observed in combination with RETLETS and reference 

tracklet features. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

Activity recognition research in computer vision has made a re- 

markable trajectory from distinguishing full-body motion patterns 

like running, boxing and waving ( Schuldt et al., 2004 ) through de- 

tecting actions of interest in movies ( Laptev et al., 2008; Laptev 

and Prez, 2007; Liu et al., 2009 ) to reasoning about complex 

human-human ( Ryoo and Aggarwal, 2009 ) and human-object in- 

teractions ( Behera et al., 2012; Gupta et al., 2009; Ryoo and Aggar- 

wal, 2007 ), and tracking through multi-step processes ( Hoey et al., 

2010b ). These challenging problems have gained comparable inter- 

est in the ubiquitous computing community ( Hoey et al., 2010a; 

Pham and Oliver, 2009; Plötz et al., 2012; Roggen et al., 2010 ) 

but the literature shows few examples of creative cross-fertilization 

and of methods for integrated activity recognition from video and 

embedded sensors ( Behera et al., 2012; de la Torre et al., 2009; Wu 

et al., 2007 ). 

We propose to recognise complex human-object interactions 

with feature descriptors that encode interactions by describing 

properties of local visual features with respect to trajectories of 

tracked objects. Such an approach is particularly applicable when 
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only a subset of relevant objects can be tracked reliably. We dis- 

cuss an example of this approach in detail in which dense tracklets 

are described relative to reference tracklets in histograms of REla- 

tive TrackLETS (RETLETS). Each histogram captures visual motion 

relative to a reference object. We acquire trajectories of objects to 

serve as reference tracklets for RETLETS using embedded sensors. 

The effectiveness of this method for activity recognition is eval- 

uated on the 50 Salads ( Stein and McKenna, 2013 ) dataset which is 

at the time of writing the only publicly available dataset that in- 

cludes synchronized data from RGB-D video and accelerometers at- 

tached to objects. It captures people preparing mixed salads where 

activities correspond to individual tasks of a recipe and accelerom- 

eters are attached to kitchen objects. In a wide range of appli- 

cation areas it would be feasible to create a sensor-rich environ- 

ment if the benefit of accurate activity recognition outweighed the 

cost. This includes, for example, augmented reality ( Henderson and 

Feiner, 2011 ), cognitive situational support ( Hoey et al., 2010a; 

2010b ), supervision of assembly tasks ( Behera et al., 2012 ), skill as- 

sessment ( Rhienmora et al., 2009 ), and surgery. In these contexts, 

activities involve a potentially large number of objects, complex in- 

teractions between hands, tools and manipulated objects, and con- 

strained but non-unique orderings in which interactions may be 

performed. The challenges of recognizing such complex activities, 

sometimes referred to as manipulation actions ( Aksoy et al., 2011; 

Yang et al., 2013 ), are well illustrated by food preparation tasks. 

Kitchen utensils are hard to recognize and track visually as ob- 
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jects are often partially occluded and object categories are defined 

in terms of affordances. Food preparation activities usually involve 

transforming one or more ingredients into a target state without 

specifying a particular technique or utensil that has to be used. As 

a potentially wide range of techniques and utensils may be em- 

ployed for each activity, achieving good generalization is particu- 

larly challenging. 

Whereas recognition and tracking of objects from video is chal- 

lenging, embedded sensors such as accelerometers attached to ob- 

jects provide information about object identity and object motion 

by design; they capture subtleties in object motion and continu- 

ous miniaturisation allows them to be inconspicuously integrated 

into a wide variety of objects. However, reasoning about interac- 

tions between objects solely based on accelerometers would re- 

quire that each participating object has a sensor attached to it. 

Clearly it is not always practical to equip objects with sensors 

or tags. On the other hand, visual data effectively capture spatial 

relations and interactions between visual entities, assuming that 

they can be identified and localized. The complementarity of these 

sensing modalities suggests that methods for effectively combin- 

ing visual data with data from embedded accelerometers have the 

potential to significantly improve recognition of complex activities 

and, importantly, to increase the range of activities that recogni- 

tion systems can address. Traditionally, features from different sen- 

sor modalities are either combined for classification by concatenat- 

ing feature vectors ( early fusion ), by combining semantic concept 

classifiers ( mid-level fusion ), or by merging classification results ob- 

tained separately from each modality ( late fusion ). Extracting fea- 

tures from each sensor modality independently may, however, dis- 

card important cross-modal relational properties. In order to reason 

about complex interactions from video, it is useful to relate mo- 

tion captured by object-embedded sensors to locations in the im- 

age space. We present an accelerometer localization and tracking 

algorithm and use it to track objects in the visual field of a camera 

without relying on their visual appearance. 

We compare quantitatively the performance of computer vision 

motion features and accelerometer features for activity recogni- 

tion; this experiment can inform future decisions on sensor se- 

lection, how these sensors are used, and where they are placed. 

Since accelerometer tracking and dense tracklets are both based on 

dense optical flow, the proposed multi-modal features can be ex- 

tracted with little additional computational cost. We focus mainly 

on motion features as opposed to appearance features because 

manipulation of objects (such as food ingredients) can severely 

change their appearance; appearance-based activity models are 

likely to capture the comparably stable appearance properties of 

tools and utensils. Unless training data with a wide variety of such 

objects were available, which is hard to achieve for practical rea- 

sons, appearance-based activity models would be likely to learn 

the appearance of particular object instances, and their general- 

ization performance could not be assessed reliably. In any case, 

we note that the performance improvement obtained by including 

the well-established appearance descriptor, histograms of oriented 

gradients (HOG), by concatenation with motion features from both 

video and accelerometers, was negligible in our experiments. 

This paper builds on our previously published conference pa- 

pers ( Stein and McKenna, 2012; 2013 ) in several ways. A feature 

descriptor is proposed that encodes relations between tracked ob- 

jects and local visual features. The accelerometer localization algo- 

rithm presented in Stein and McKenna (2012) is extended to en- 

able long-term tracking and new experiments comparing multiple 

tracking methods are presented. New results are reported compar- 

ing features from accelerometers and video, and evaluating modal- 

ity fusion at different stages of the recognition pipeline. The con- 

tributions of this paper include the following. 

• A family of feature descriptors encoding relational properties 

between tracked objects and local visual features. 
• A method for online activity recognition based on multi-modal 

features from video and embedded sensor data. 
• An algorithm for accelerometer tracking and a comparative 

evaluation of features from accelerometers and video for activ- 

ity recognition. 

2. Related work 

This section briefly reviews related work on visual and 

accelerometer-derived features for activity recognition, and meth- 

ods for fusing vision with inertial sensors. 

2.1. Visual features for activity recognition 

Features for visual activity recognition can be broadly catego- 

rized as object-based ( Albanese et al., 2010; Behera et al., 2012; 

Fathi et al., 2011a; 2011b; Hoey et al., 2010a; Lei et al., 2012 ) or 

generic ( Laptev, 2005; Matikainen et al., 2009; Messing et al., 2009; 

Wang et al., 2011 ) descriptors. 

Object-based methods identify and track objects in the scene 

and recognize activities by reasoning about spatiotemporal rela- 

tionships between them ( high-level features ). This approach usu- 

ally assumes that all objects of interest can be detected and 

tracked reliably. The necessity of training reliable object detectors 

for all relevant objects is a major practical limitation; issues in- 

clude dealing with detector uncertainty, modelling hard-to-detect 

deformable objects, and scaling to large numbers of different ob- 

jects. Fathi et al. (2011a, 2011b) proposed to train object detectors 

from weak (image-level) annotations in a multiple instance learn- 

ing framework and used a probabilistic graphical model for activ- 

ity recognition in which nodes represented super-pixel regions, ob- 

ject labels, activities and a complex activity. Lei et al. (2012) rec- 

ognized activities in RGB-D video based on hand-object interac- 

tion events and hand trajectory features, tracking hands using skin 

color and modelling objects via local color, texture, and depth 

descriptors of foreground regions. In these methods ( Fathi et al., 

2011b; Lei et al., 2012; Rohrbach et al., 2015 ), object detectors 

were trained on the specific object instances to be used at test 

time. Therefore, it is questionable how well these methods general- 

ize. Rohrbach et al. (2015) proposed modelling fine-grained hand- 

object interactions using trajectories of tracked hands and encod- 

ing gradient and color descriptors extracted from within hands’ lo- 

cal image neighborhoods. 

Generic descriptors represent video as sets of local low-level 

features or higher-order statistics over those ( mid-level features ) 

( Matikainen et al., 2009 ), without making strong assumptions 

about the presence of specific objects. These methods have in 

common that local features are described relative to the image’s 

frame of reference. In comparison to features extracted at spatio- 

temporal interest points, dense tracklets (dense fixed length point 

trajectories) have shown superior performance on several standard 

action recognition datasets ( Wang et al., 2011; 2009 ), highlighting 

their discriminative power. Additional local appearance and motion 

features, i.e. HOG, histograms of optical flow (HOF) and motion 

boundary histograms (MBH), extracted along dense tracklets also 

outperformed the same descriptors extracted densely on a spatio- 

temporal grid ( Wang et al., 2011 ), suggesting higher repeatabil- 

ity. Matikainen et al. (2009) proposed to model pairwise spatio- 

temporal relations among tracklets using a relative location prob- 

ability table. As pairwise relations grow exponentially with code- 

book size, heuristics to populate multiple cells based on a single 

data point need to be applied, which severely weakens exhaustive 

relational models among generic features. While generic features 
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do not rely on object detection, it is unclear to what extent they 

are able to differentiate activities exhibiting similar motion but in- 

volving different objects. 

This paper explores some of the middle-ground between 

object-based and generic descriptors by proposing a family of fea- 

ture descriptors that relates generic visual features to properties of 

some detectable objects. Bilinski et al. (2013) present a degener- 

ate case of this family, tracking a single object, a person’s head, in 

order to extract tracklets that are invariant to the person’s trans- 

lational motion in the image plane. Our generalization of this ap- 

proach relates local motion to multiple reference trajectories pro- 

viding a rich representation of complex interactions between ob- 

jects of which only a subset can be tracked. Additionally, we pro- 

vide baseline results for HOG, HOF and MBH, and combine these 

features with others for multi-modal recognition. 

2.2. Accelerometer-based activity recognition 

Whereas carefully engineering or learning discriminative fea- 

tures are research foci in the computer vision community, ac- 

tivity recognition from accelerometers commonly involves stan- 

dard statistical features in the temporal or frequency domain as 

surveyed by Figo et al. (2010) . Recently, Plötz et al. (2012) ap- 

plied deep belief networks to learning features from accelerom- 

eter data. Hammerla et al. (2013) reported state-of-the-art per- 

formance on a wide variety of datasets by sampling the quan- 

tile functions of acceleration magnitudes along orthogonal axes. 

Pham and Oliver (2009) reported promising results for recogni- 

tion of food preparation actions such as scooping, stirring, peeling 

and chopping using statistical features in the temporal domain as 

well as estimates of accelerometer pitch and roll. The experiments 

we report incorporate the features of Pham and Oliver (2009) and 

Hammerla et al. (2013) . 

2.3. Fusing vision with inertial sensors 

Fusing vision with other sensor modalities has previously been 

investigated for tasks including activity recognition ( Behera et al., 

2012; Wu et al., 2007 ), people tracking ( Hsu and Yu, 2009 ) and 

object tracking ( Stein and McKenna, 2013 ). Chen et al. (2015) give 

an overview of research combining depth and inertial sensors for 

action recognition. Behera et al. (2012) recognized assembly tasks 

by concatenating histograms of visual and inertial sensor features 

in an early fusion approach. Specifically, pairwise distances and 

changes of distance between objects recognized from a body-worn 

camera were encoded in a histogram as were pairwise body-part 

relations estimated from inertial data. The problem of localizing 

inertial sensors in a camera view has been primarily investigated 

in the context of tracking people ( Maki et al., 2010; Shigeta et al., 

2008; Teixeira et al., 2010; Wilson and Benko, 2014 ). Wilson and 

Benko (2014) proposed tracking peoples’ phones in video using 

dense scene flow and Kalman filters. Teixeira et al. (2010) iden- 

tified multiple people in CCTV footage based on data from mag- 

netometers and accelerometers in mobile phones. Their method 

strongly relied on the person’s appearance for resolving ambigu- 

ities, e.g., when people cross each other or enter and exit the 

scene. Shigeta et al. (2008) made similar appearance assumptions 

by tracking hands and jackets, and matching their trajectories 

to accelerometer data using normalized cross correlation (NCC). 

Maki et al. (2010) proposed replacing trajectories of tracked ob- 

jects by trajectories of salient points tracked via KLT ( Tomasi and 

Kanade, 1991 ), also using NCC for matching. In a previous paper 

( Stein and McKenna, 2013 ) we investigated accelerometer localiza- 

tion based on dense point trajectories and proposed a more robust 

similarity measure. 

Fig. 1. Overview of data flow in the proposed method. Stages involved in encoding 

cross-modal properties are highlighted in bold. See Section 3.1 for details. 

2.4. Activity datasets 

Several public datasets for benchmarking activity recognition al- 

gorithms exist in the fields of ubiquitous computing ( Huynh et al., 

20 08; Pham and Oliver, 20 09; Roggen et al., 2010; Zappi et al., 

2008 ) and computer vision ( Liu et al., 2009; Marszałek et al., 2009; 

Messing et al., 2009; Rohrbach et al., 2015; Schuldt et al., 2004; 

Tenorth et al., 2009; de la Torre et al., 2009 ). We identified two key 

reasons for this multiplicity of datasets. Firstly, the terms activity 

and recognition are used for varied concepts. In many cases recog- 

nition means offline classification, where data from an entire video 

clip is used to determine its activity class (e.g., KTH ( Schuldt et al., 

2004 ), YouTube ( Liu et al., 2009 ), Hollywood2 ( Marszałek et al., 

2009 ) and URADL ( Messing et al., 2009 )). In others, however, recog- 

nition additionally includes identifying the temporal (and spatial) 

extent of an action, also referred to as activity detection or spotting 

(e.g., Darmstadt Daily Routines ( Huynh et al., 2008 ), AmbientK- 

itchen ( Pham and Oliver, 2009 ), TUM Kitchen ( Tenorth et al., 2009 ), 

CMU-MACC ( de la Torre et al., 2009 ), Opportunity ( Roggen et al., 

2010 ) and MPII 2 ( Rohrbach et al., 2015 )). Datasets supporting ac- 

tivity spotting have the benefit that they can also be used purely 

for classification. Secondly, methods for activity recognition make 

varied assumptions about availability and positioning of different 

sensors. This poses a major challenge, particularly for research into 

multi-modal activity recognition, to evaluate new methods across a 

wide range of application scenarios and datasets. As it is extremely 

time-consuming to record, annotate, document, and curate a large, 

challenging dataset, creating datasets across a wide range of ap- 

plications is a long-term community effort. By publishing the 50 

Salads dataset, we make a contribution towards this joint effort. 

3. Methodology 

3.1. Overview 

This section introduces a family of feature descriptors called 

object-generic relational histograms and describes a method for 

multi-modal recognition of activities from accelerometers and 

video data. Central to the proposed recognition method is one in- 

stance from the family of relational histograms - histograms of 

relative tracklets (RETLETS) – that encodes interactions between 

tracked objects and generic motion descriptors (dense tracklets) 

extracted from video ( Fig. 1 ). Specifically, the trajectories of certain 

objects are estimated by localizing and tracking accelerometers in 

video ( Section 3.3 ). These trajectories are subsequently used as ref- 

erence frames for dense tracklets ( Section 3.2 ), which are encoded 

as histograms of relative tracklets with respect to each reference 

frame ( Section 3.4 ). This feature descriptor capturing cross-modal 



S. Stein, S.J. McKenna / Computer Vision and Image Understanding 154 (2017) 82–93 85 

relational properties is then combined with (i) features extracted 

from each sensor modality independently ( Sections 3.2 and 3.5 ), 

and with (ii) statistical features from the visual trajectories of lo- 

calized accelerometers ( Section 3.5 ). 

3.2. Dense tracklets 

The methods presented in this paper are based on dense point 

tracking, specifically dense tracklets as proposed for visual activity 

recognition by Wang et al. (2011) . Point trajectories are initialized 

at locations g ∈ G on a regular grid (with horizontal and vertical 

displacement d between grid locations) in each frame if and only 

if two conditions are satisfied: 

1. none of the locations of active trajectories are within a d × d 

neighborhood around the grid point g , and 

2. the minimum eigenvalue, min (λ(g) 
1 

, λ(g) 
2 

) , of the auto- 

correlation matrix of the image at location g is larger than the 

threshold τλ = 0 . 001 · max h ∈ G min (λ(h ) 
1 

, λ(h ) 
2 

) . 

The displacement of a point from one frame to the next is es- 

timated as the median-filtered dense optical flow field in a 3 × 3 

neighborhood around the point’s location in the previous frame. 

Tracklets encode point trajectories P : (x 0 , . . . , x L −1 ) of image 

coordinates x : ( x , y ) with fixed length L as L − 1 displacements 

�x j : (x j+1 − x j , y j+1 − y j ) that are normalized by the total length 

of displacements (1) . 

T = 

(�x 0 , · · · , �x L −2 ) ∑ L −2 
j=0 || �x j || 2 

(1) 

Normalizing a trajectory by its total length emphasizes the trajec- 

tory’s shape. Tracklets are extracted at multiple spatial scales. Op- 

tionally, HOG, HOF and MBH descriptors ( Wang et al., 2011 ) are 

extracted from the local 32 × 32 × L neighborhood around each 

tracklet. Features extracted from a spatio-temporal video window 

are encoded as a histogram over codebook features (bag-of-words) 

for classification. Codebooks are obtained via k -means clustering of 

features from a training set. 

3.3. Accelerometer localization and tracking 

Localizing accelerometers in the visual field of a camera is non- 

trivial for a number of reasons. Firstly, accelerometers are usually 

visually occluded. An accelerometer may be occluded by the ob- 

ject it is attached to or embedded into, in which case the mo- 

tion observed at the visible location of the object is likely to be 

similar to the motion captured by the accelerometer. It may, how- 

ever, also be occluded by a different visual entity in which case the 

visual motion at the accelerometer’s location and the accelerom- 

eter’s motion projected in the image plane are likely to differ. 

Secondly, accelerometers capture tri-axial translational acceleration 

with respect to a local reference frame; in general an accelerome- 

ter’s orientation is unknown and changes over time, making align- 

ment with the camera’s frame of reference problematic. Thirdly, 

accelerometers measure proper acceleration (relative to free fall) 

whereas acceleration estimated from visual motion represents co- 

ordinate acceleration (relative to the camera’s frame of reference). 

Further issues include sensor synchronization and dealing with dif- 

ferences in sensor frequencies. 

The proposed method for accelerometer localisation involves 

generating location proposals in videos, estimating local visual 

accelerations at these locations and matching acceleration esti- 

mates to accelerometer data. Location proposals are generated by 

sampling points in the video. Tracked point sequences, i.e., point 

Fig. 2. Accelerometer localization (best viewed in color). By measuring similarity of 

accelerations along trajectories of point features (colored dots) with accelerometer 

data (black indicates weakest, red indicates strongest similarity), the algorithm es- 

timates the accelerometer location (red circle). A red cross marks the ground-truth. 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 

trajectories, are used to estimate acceleration. Section 3.3.1 de- 

scribes two methods for generating these point trajectories. Lo- 

cations along point trajectories are transformed into world coor- 

dinates and a scoring function is applied to determine point tra- 

jectories that best match the accelerometer data. The location of 

the best matching point trajectory in the most recent frame is re- 

garded as the estimated accelerometer location. An example simi- 

larity map representing scores for all location proposals is shown 

in Fig. 2 . 

3.3.1. Generating location proposals 

For sampling location proposals and point tracking the ini- 

tial steps involved in extracting dense tracklets as introduced 

in Section 3.2 are followed. Points are sampled on a regular 

grid and updated based on frame-by-frame dense optical flow 

( Farnebäck, 2003 ). A new sample is initialized at a grid location 

if no existing samples lie in a d × d neighborhood centred at that 

location. Whereas the dense tracklets described in Section 3.2 last 

for some fixed, pre-specified number of frames, the point trajec- 

tories generated here using optical flow are not of fixed length. 

Instead they are terminated if they pass too close to an older tra- 

jectory. In effect this imposes an upper bound on the number of 

trajectories. Specifically, a trajectory is terminated if its location in 

the most recent frame becomes closer than some threshold τ d to 

another track’s location and it is younger than that other track. 

We compare this method to sparsely tracking keypoints in 

the image at which the Hessian has two large eigenvalues 

( Bouguet, 1999 ) (the smaller eigenvalue being the cornerness ). Us- 

ing sparse tracking we maintain a fixed number of tracks, N t , at 

all times. In the first frame, N t points are initialized at locations 

with highest cornerness under the constraint that no two points 

lie within d pixels of each other. In every subsequent frame, points 

that cannot be tracked reliably get replaced by new keypoints. 

The set of location proposals at frame t consists of locations x (i ) 
t 

along all point trajectories P ( i ) that are tracked until that frame. 

3.3.2. Transformation to world coordinates 

Two transformations are needed in order to match accelera- 

tions estimated along point trajectories with data captured by ac- 

celerometers: (i) point trajectories in image coordinates need to 

be transformed into world coordinates (i.e., metric values with the 

center of the image plane at 0 ), and (ii) gravitational effects need 

to be simulated to transform coordinate acceleration to proper ac- 

celeration (relative to free fall). 
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The relationship between image and world coordinates is gov- 

erned by the distance of objects from the camera, and the cam- 

era’s intrinsic parameters. Assuming a pinhole camera model, in- 

trinsic parameters and distortion coefficients were determined as 

proposed by Zhang (20 0 0) and Brown (1966) , respectively, from 

multiple views of a chessboard pattern. Given an undistorted im- 

age location ( x , y ), estimated depth z , focal length f , imaging ele- 

ment dimensions s x and s y , and principal point ( c x , c y ), image lo- 

cations are transformed to world coordinates using (2) . 

x ′ = 

(x − c x ) z 

f s x 
y ′ = 

(y − c y ) z 

f s y 
z ′ = z (2) 

We investigate two methods for assigning depth values z to pix- 

els. First, we assign each pixel the value from the depth map pro- 

vided by the structured light sensor. In this case depth values of 

some pixels frequently become unavailable due to shadows of the 

structured light pattern and transparent or specular reflective sur- 

faces, for example. When this situation occurs we extrapolate from 

previous depth values and estimate velocity along the point tra- 

jectory. Second, we assume a constant depth for all pixels in the 

image. Surprisingly, we observed lower localization accuracy using 

depth maps than using a constant fixed depth. 

The estimation accuracies of x ′ , y ′ and z ′ in (2) depend linearly 

on the estimated depth z , and errors in z are exacerbated when 

estimating accelerations from sequences of locations. With z es- 

timated using a depth sensor, acceleration estimates are particu- 

larly sensitive to location estimates crossing depth discontinuities 

as these induce erroneous instantaneous spikes in acceleration. As- 

suming a constant fixed depth avoids these strong errors, but in- 

troduces noise as an object moves away from the pre-set depth 

and fails to capture acceleration along the z -axis. Both of these 

types of errors are relatively small if the chosen fixed depth is set 

to a reasonable value, and if the motion along z is small compared 

the distance to the camera or small compared to motion in x and 

y . 

Let P ′ : (x ′ 
0 
, . . . , x ′ t ) denote a point trajectory represented as a 

sequence of locations in world coordinates, x ′ 
j 

: (x ′ 
j 
, y ′ 

j 
, z ′ 

j 
) . Veloc- 

ities v ′ 
j 

and accelerations a ′ 
j 

are approximated using discrete dif- 

ferences v ′ 
j 
= f v id (x ′ 

j 
− x ′ 

j−1 
) and a ′ 

j 
= f v id (v ′ 

j 
− v ′ 

j−1 
) , respectively, 

where f v id is the video frame rate. Locations x ′ 
j 

are smoothed with 

a zero-mean Gaussian with some small standard deviation to avoid 

instabilities in the approximation ( Rao et al., 2002 ). 

Ideally, one would transform accelerometer data to coordinate 

acceleration by subtracting acceleration measured due to gravity, 

but as accelerometer orientation relative to the direction of grav- 

ity is unknown and changing over time this is not possible. For- 

tunately, acceleration due to gravity can be simulated and added 

to acceleration estimated along point trajectories if the direction 

of gravity in video can be estimated. We propose to determine the 

direction of gravity in the camera’s field of view by estimating sur- 

face normals from depth maps. Assuming there is a planar surface 

in the scene that is aligned with gravity (e.g., a floor, a ceiling, a 

work surface or a tabletop) we take a pragmatic approach and es- 

timate the normal from a set of at least three manually marked 

points on the surface. Given three such points in world coordinates 

p 0 , p 1 , p 2 , the direction of gravity is given by the cross-product of 

the co-planar vectors u = p 1 − p 0 and v = p 2 − p 0 , and the magni- 

tude follows from standard gravity (3) . 

ˆ g = 9 . 80 6 65 · u × v 

|| u × v || (3) 

The estimated proper acceleration a t of a point trajectory at time t 

is given by a t = a ′ t + ̂  g . 

3.3.3. Similarity scoring and localization 

Accelerometers are localized by estimating similarity scores be- 

tween acceleration sequences A 

(i ) 
v id : (a (i ) 

t− j 
, . . . , a (i ) 

t ) estimated at all 

location proposals x (i ) 
t and the sequence of accelerometer data 

A acc : (a acc 
t− j 

, . . . , a acc 
t ) . The video frame rate f v id is usually lower 

than the accelerometer sampling rate f acc . For a one-to-one associa- 

tion the accelerometer data needs to be sub-sampled. Acceleration 

as measured by an accelerometer corresponds to instantaneous 

properties of the sensor. Because acceleration experienced by the 

sensor in between subsequent samples is unknown, it is advisable 

to match visual acceleration estimates to the temporally closest ac- 

celerometer sample rather than using interpolation. Thereby ac- 

celerometer data is implicitly sub-sampled as some samples re- 

main unmatched. We confirmed this preference by comparative 

empirical evaluation. 

Since accelerometer orientation is unknown and changing over 

time, a similarity score between acceleration norms is established. 

A moving object’s visual trajectory is most easily discriminated 

from those of other objects during periods when its velocity 

changes frequently. Unfortunately, the similarity of raw accelera- 

tion sequences during such periods is sensitive to synchronization 

errors and to differences between instantaneous acceleration mea- 

sured by accelerometers and mean acceleration between frames as 

estimated from video. In order to address this issue we take the 

radical step of transforming sequences A 

(i ) 
v id and A acc into binary se- 

quences B : (b t− j , . . . , b t ) , where each element b t− j is non-zero if 

and only if the absolute difference between the acceleration norm 

and the magnitude of standard gravity exceeds some noise thresh- 

old τ a , as in (4) where 1[] is the indicator function. While this 

transformation discards most information on acceleration magni- 

tudes it preserves local extrema and saddle points in the corre- 

sponding velocity sequences. 

b t− j = 1[ | a | t− j − | g | ≥ τa ] (4) 

We define an efficient, recursive similarity score S between pairs of 

binary sequences which gives higher weight to recent frames using 

a multiplicative temporal decay α ∈ [0, 1) in (5) and (6) . 

S (i ) 
t− j−1 

(B 

(i ) 
v id , B acc ) = 0 (5) 

S (i ) 
t (B 

(i ) 
v id , B acc ) = αS (i ) 

t−1 
+ b (i ) 

t b acc 
t (6) 

The similarity score is thereby defined as the number of frames in 

which both sensors capture significant acceleration, reducing the 

impact of samples in the past through temporal decay. As new lo- 

cation proposals get initialized others have already accumulated a 

potentially high similarity score over time. Through empirical eval- 

uation we found that the algorithm becomes more effective if after 

the first frame the similarity score of new location proposals is ini- 

tialized to the similarity score of the closest location proposal. For 

each accelerometer, the similarity score is estimated between the 

corresponding sequence B acc and B (i ) 
v id corresponding to all location 

proposals in frame t . Finally, accelerometer location is estimated as 

the location proposal corresponding to the binary sequence with 

highest similarity score (7) . 

x 

acc 
t = x 

( ̂ i ) 
t , where ˆ i = argmax (i ) S (i ) 

t (7) 

3.3.4. Long-term accelerometer tracking 

If an occluding object’s motion differs from the accelerome- 

ter motion, a previously correctly matched trajectory is likely to 

drift away from the correct location as it tracks the occluder. This 

scenario frequently occurs, for example, after an accelerometer- 

equipped utensil has been released and the hand that previously 

held the device moves away. In this case (b acc 
t = 0) , the similar- 

ity scores of all location proposals are updated to S (i ) 
t = αS (i ) 

t−1 
and, 
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as the ranking of hypotheses does not change, the estimated ac- 

celerometer location diverges from the true location. For this rea- 

son we extend our approach by detecting when an accelerometer 

is not moving, taking a snap-shot of the similarity scores, and re- 

initializing similarity scores once an accelerometer starts moving 

again. 

A sample b acc = 0 indicates constant velocity. As it is un- 

likely that motion induced by a human exhibits constant veloc- 

ity over an extended period of time, it is likely that any sequence 

(b acc 
s , . . . , b acc 

t− j 
, . . . , , b acc 

t ) with s � t and b acc 
t− j 

= 0 for all j ∈ [0 , t − s ] 

is generated by a stationary device. At each time instant s with 

b acc 
s = 0 and b acc 

s −1 
� = 0 a similarity map M : (S (i ) 

s , x (i ) 
s ) consisting of 

similarity scores and associated location proposals is generated. 

Once the length of the interval [ s , t ] in which an accelerome- 

ter continuously measures no significant acceleration exceeds a 

threshold τ t , the location of that accelerometer is temporarily es- 

timated as x ( ̂
 i ) 

s until b acc 
s + k = 1 for some positive k . At time s + k 

when an accelerometer measures significant acceleration after be- 

ing stationary, the similarity scores of location proposals x (i ) 
t are 

re-initialized. We found empirically that initializing S (i ) 
t to the sim- 

ilarity score in M corresponding to the nearest neighbor of x (i ) 
t is 

most effective, com pared to no re-initialization, cold start ( S (i ) 
t = 0 

for all i ) and kernel density estimation. 

3.4. Object-generic relational histograms 

Methods for modelling activities from local features usually fol- 

low a bag-of-words approach encoding the occurrence frequency 

of codewords, essentially discarding spatial relations between fea- 

tures. Spatio-temporal pyramids address this issue to some ex- 

tent by coarsely encoding feature co-occurrence, but they are very 

limited in accurately capturing interactions that span across spa- 

tial segmentation boundaries ( Laptev et al., 2008 ). Recognition of 

complex interactions based on tracking all objects of interest of- 

ten relies on high-level reasoning methods which are computation- 

ally demanding and domain specific. This section presents object- 

generic relational histograms, a family of descriptors that captures 

relations between generic local features and reference features ex- 

tracted from some objects. This feature representation adapts the 

bag-of-words model to scenarios in which some objects can be de- 

tected or tracked, and facilitates recognition of complex interac- 

tions with standard classification algorithms such as support vector 

machines (SVM). First, a formalization of the family of relational 

histograms is presented. Then, RETLETS – one instance of this 

family – is introduced. Subsequently, we use RETLETS to capture 

relational properties between dense tracklets and accelerometers’ 

motion by encoding dense tracklets relative to reference tracklets 

acquired via accelerometer localization ( Section 3.3 ). 

3.4.1. Relational histograms 

Consider a set of M local features { (f m 

, x m 

) } M 

m =1 
consisting of 

feature descriptor f m 

and location in the image x m 

, and a set of 

N reference features { (f 
re f 
n , x n ) } N n =1 extracted from N tracked ob- 

jects. In order to encode interactions between local features and 

reference features we propose to construct N histograms H n , one 

for each reference feature. Each histogram encodes pairwise rela- 

tions R (f 
re f 
n , f m 

) between the descriptor of one reference feature 

and the descriptors of all local features using a codebook C of 

quantized pairwise relations. The codebook could, for example, en- 

code feature co-occurrence, difference in appearance, relative loca- 

tion or relative motion. The contribution of each pairwise relation 

to a histogram is weighted by the likelihood of a meaningful in- 

teraction w n,m 

. Given a quantization function q (R (f 
re f 
n , f m 

)) : R 

| f | ×
R 

| f | → [0 , 1] |C| , weighted relational histograms are constructed us- 

ing (8) and (9) . 

H n = 

M ∑ 

m =1 

w n,m 

q (R (f re f 
n , f m 

)) (8) 

All weighted histograms are individually L 1 -normalized. Each 

histogram H n provides a different representation of the set of local 

features by encoding their relations to one reference feature. De- 

pending on the choice of relational codebook C and spatial weight- 

ing function this descriptor can encode meaningful interactions 

between a reference object and local visual features in its prox- 

imity. The presence of a meaningful interaction between a local 

feature and a reference feature is intuitively related to their spa- 

tial separation. We chose to weight the contribution of a feature 

f m 

to a histogram H n using a Gaussian function with Euclidean 

distance (9) for point features and with mean Euclidean distance 

along point trajectories (12) , respectively. 

w n,m 

= exp 

(
−|| x 

re f 
n − x m 

|| 2 
2 σ 2 

)
(9) 

This formulation provides a generic model of relational histograms 

that can be used with a wide variety of local feature descriptors 

and pair-wise relations. Below, one instance of this family is de- 

scribed which we use for modelling interactions between dense 

tracklets and accelerometer-equipped objects. 

3.4.2. Histograms of relative tracklets (RETLETS) 

While feature co-occurrence may be a suitable second-order 

statistic for local appearance features, a relative description of lo- 

cal visual motion features better captures, in qualitative terms, in- 

teractions such as visual entities moving towards , away from and 

around each other (see Fig. 3 ). A descriptor encoding generic video 

tracklets relative to semantically meaningful reference tracklets ac- 

quired by tracking some objects is therefore more informative for 

complex interactions of multiple objects (see Fig. 4 ). This section 

proposes relational histograms using densely sampled fixed length 

point trajectories P m 

as local features f m 

, using fixed length refer- 

ence trajectories P 
re f 
n acquired through some form of object track- 

ing as reference features f 
re f 
n and using relative tracklets R m 

as pair- 

wise relations R . 

Given a pair (P m 

, P 
re f 
n ) , the relative trajectory P rel 

m 

is defined as 

the sequence of differences between point locations (10) . The dif- 

ference between a pair of point locations (x (m ) 
0 

, x 
re f 
0 

) describes the 

location x (m ) 
0 

relative to the location x 
re f 
0 

, and the sequence of rel- 

ative locations describes the motion of the visual entity tracked by 

P m 

from the perspective of the reference feature P ref . This relative 

motion is illustrated in Fig. 4 (b). 

P rel 
m 

= 

((
x 

(m ) 
0 

− x 

re f 
0 

)
, . . . , 

(
x 

(m ) 
L −1 

− x 

re f 
L −1 

))
(10) 

Similar to Eq. (1) , the relative tracklet R m 

is defined as the se- 

quence of normalized displacements along the relative trajectory 

P rel as in Eq. (11) . 

R m 

= 

(�x 

rel 
m, 0 , . . . , �x 

rel 
m,L −2 ) ∑ L −2 

j=0 || �x 

rel 
m, j 

|| 2 
(11) 

As tracklets are extracted along a sequence of points in the image, 

weights in Eq. (8) are determined based on the mean pair-wise 

distance between locations along the corresponding point trajecto- 

ries (12) . 

w n,m 

= exp 

⎡ 

⎣ − 1 

2 σ 2 

( 

1 

L 

L −1 ∑ 

l=0 

|| x 

(m ) 
l 

− x 

re f 

l 
|| 
) 2 

⎤ 

⎦ (12) 

The relational codebook C is trained using k-means clustering on 

a training set of relative tracklets R m 

. The Voronoi cells defined 
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Fig. 3. Point trajectories (green) in the left and right image have similar shape (best viewed in color). However, relative to the trajectory of the large spoon (red), points in 

the left image move towards whereas most points in the right image move away from this reference trajectory. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 4. Absolute tracklets and RETLETS. A toy example in which (a) histograms of absolute tracklets differ in only two bins whereas (b) tracklets relative to a reference tracklet 

(ref 1 -relative) change their shape entirely and make the corresponding histogram representation more discriminative. Distance-based re-weighting of histogram entries adds 

further to discriminative power. 

by the k cluster centers define the quantization function q . In ev- 

ery frame of a video, dense tracklets are extracted and reference 

tracklets are newly determined. For each reference tracklet, rela- 

tive tracklets are constructed using all dense tracklets ending in 

the same frame using (10) . All relative tracklets are then mapped 

onto the codebook C using quantization function q , and inserted to 

their respective histogram with their contribution weighted using 

(9) and (12) . 

Encoding tracklets relative to reference signals can be disadvan- 

tageous. The signal to noise ratio of an individual relative tracklet 

is usually lower compared to absolute tracklets as noise in tra- 

jectory estimates of a point feature and of a reference object are 

added. The potential negative impact this may have on classifica- 

tion is reduced in the RETLET descriptor by encoding each tracklet 

relative to multiple reference tracklets, which provides some noise 

averaging assuming estimation noise along reference tracklets are 

mutually independent. If reference object tracking fails, e.g. due to 

tracker uncertainty or objects leaving the cameras field of view, 

tracklets are encoded relative to a false reference. Note however, 

that each tracklet is also encoded relative to all other reference ob- 

jects, and if at least one reference object is not in use, the relative 

description resembles the absolute tracklet with some added noise. 

Thereby, the RETLET encoding provides some robustness against 

tracking failure. 

In this paper, we investigate visual accelerometer tracking as 

a method for generating reference tracklets from accelerometer- 

equipped objects. Analysis of relations between accelerometer mo- 

tion and visual features in spatial proximity to the device allows 

for joint reasoning about how an accelerometer-equipped object 

moves and what it interacts with. 

3.5. Online activity recognition 

We recognize activities by classifying features extracted from 

temporal sliding windows. We refer to this as online recognition, 

because activities commonly extend beyond the end of a sliding 

window and a decision about the ongoing activity has to be made 

without inspecting data from the future. For each accelerometer- 

equipped object we create one reference tracklet from the most 

recent L − 1 displacements of the point trajectory with highest 

similarity score. These reference tracklets are used to construct 

RETLETS . We also use dense tracklets, which are subsequently 

called Absolute Tracklets , as well as HOG, HOF and MBH descrip- 

tors along tracklets ( Wang et al., 2011 ) for classification. Addition- 

ally, we extract features from raw accelerometer data ( Accelerom- 

eter Statistics , Object Use and ECDF ( Hammerla et al., 2013 )) and 

from their respective visual trajectories ( Reference Tracklet Statis- 

tics ). 

Accelerometer Statistics : Accelerometer data were encoded as 

features previously shown to give good performance on a recog- 

nition task involving food preparation activities ( Pham and 

Oliver, 2009 ). Mean, standard deviation, energy and entropy were 
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extracted from each acceleration axis over the entire temporal 

window. Additionally, pitch and roll were estimated from four tem- 

poral sub-windows with 50% overlap. This set of features encodes 

each accelerometer’s motion with a 20-dimensional feature vector. 

Object use : As a baseline, we consider simple features that en- 

code whether an accelerometer-equipped object is in use. Follow- 

ing argumentation in Section 3.3.4 , an accelerometer is stationary 

if it measures no significant acceleration over an extended period 

of time. Assuming an accelerometer is in use if and only if it is 

moving, Object Use at time t is defined as in (13) . 

InUse (B 

acc ) = 

τt −1 ∑ 

j=0 

b t− j > 0 (13) 

Reference Tracklet Statistics : From the most recent L − 1 dis- 

placement vectors of the point trajectory that best matches an ac- 

celerometer’s data, the mean, standard deviation, energy and en- 

tropy were estimated separately for displacements in x- and y- 

coordinates in the image. 

Features extracted from temporal sliding windows were classi- 

fied using one-vs-all, multi-class support vector machines (SVMs). 

For Absolute Tracklets , RETLETS , HOG, HOF and MBH we used 

the RBF- χ2 kernel with γ = 

1 
A 
, where A is the average dis- 

tance between training histograms ( Zhang et al., 2007 ). For Ac- 

celerometer Statistics , Object Use and Reference Tracklet Statistics , fea- 

tures extracted for each accelerometer were concatenated and fea- 

ture vectors were compared using the squared Euclidean distance 

(Gaussian-RBF) after scaling all dimensions individually to [ −1 , 1] . 

γ was determined by cross-validation. 

4. Evaluation 

After introducing the 50 Salads dataset, this Section then 

presents empirical evaluations. Firstly, quantitative evaluation of 

the accelerometer location methods is reported ( Section 4.2 ). 

Section 4.3 details the protocol used for activity recognition exper- 

iments and recognition results are then presented in Sections 4.4 –

4.6 . These compare accelerometer features, visual features, the pro- 

posed RETLETS, and various combinations of features. 

4.1. Scenario and data acquisition 

The methods presented in this paper make several assumptions 

about the sensor setup: (i) the camera is equipped with a depth 

sensor which captures a surface that is perpendicular to the direc- 

tion of gravity, (ii) some objects (or body parts) involved in inter- 

actions are equipped with accelerometers, and (iii) those objects 

are in the camera view when in use. To the best of our knowledge, 

none of the existing public datasets meets all of these criteria. 

We have created and released annotated data of food prepa- 

ration activities for evaluation purposes 1 . These are, to the best 

of our knowledge, the only readily available datasets combining 

RGBD-video and accelerometers attached to objects (as opposed 

to people). Fig. 5 shows an illustrative snapshot. More than 4 h 

of data were acquired and annotated, consisting of RGB-D video 

(30 Hz ) with a top-down view onto a work surface and readings 

from tri-axial accelerometers (50 Hz ) attached to kitchen objects 2 . 

The main data set which we call 50 Salads includes 50 sequences 

of people preparing a mixed salad with two sequences per subject. 

Preparing the salad involved mixing a dressing from salt, pepper, 

1 All data created during this research are openly available from the University of 

Dundee Institutional Repository at http://doi.org/10.15132/10 0 0 0120 ( 50 Salads ) and 

at http://doi.org/10.15132/10 0 0 0121 ( Accelerometer Localization ). 
2 Sensors used were a Kinect RGB-D camera and Axivity tri-axial wireless ac- 

celerometers. 

Fig. 5. A snapshot from the dataset showing RGB-D video (top), accelerometer data 

(middle) and activity annotations (bottom). 

oil and balsamic vinegar, cutting cucumber, tomato, lettuce and 

cheese into pieces, mixing the ingredients, serving the salad onto 

a plate and dressing the salad. Accelerometers were attached to a 

knife, a peeler, a large spoon, a small spoon, a dressing glass, a 

pepper dispenser and an oil bottle. In addition to recruiting par- 

ticipants from different gender and a wide range of age, ethnicity 

and cooking experience, further variation was introduced by giving 

subjects a different task-ordering for each sequence, sampled from 

an activity model ( Stein and McKenna, 2013 ). 

4.2. Accelerometer tracking 

In contrast to published work by other authors on accelerome- 

ter localisation ( Maki et al., 2010; Shigeta et al., 2008 ) which eval- 

uated localisation only qualitatively, we report quantitative evalu- 

ation. The locations of three accelerometers attached to a knife, a 

spoon and the rim of a bowl were annotated in every frame of 

a 13,263-frame sequence (31,346 accelerometer samples) by man- 

ually clicking on the image at the estimated location of the geo- 

metric center of the devices. We identified 16 sub-sequences dur- 

ing which at least one accelerometer measured strong acceleration. 

These are used for evaluation as they account for all the intervals 

in the sequence during which at least one object with an embed- 

ded accelerometer was in use. We compared point trajectories gen- 

erated from dense optical flow (DOF) with sparse point tracking 

(KLT), estimating the distance from the camera from depth maps 

(variable) or with a manually defined constant depth (fixed). For a 

fair comparison we optimized the parameters of each point track- 

ing method empirically. Dense trajectories were initialized on a 

grid with d = 24 pixels and terminated based on a threshold τd = 5 

pixels. For sparse point tracking, the maximum number of trajec- 

tories was set to N t = 96 with a minimum distance at initialization 

of d = 14 pixels. The fixed depth was set to ˆ z = 0 . 9 m, which cor- 

responds roughly to the operating height of the camera. In all ex- 

periments accelerations were estimated from Gaussian-filtered lo- 

cations with σ = 

0 . 3 
f v id 

and a temporal decay α = 0 . 9982 was used. 

As shown in Table 1 , point trajectories from dense optical flow 

with fixed depth outperformed all other configurations on average. 

We suspect the substantial difference in performance to KLT to be 

due to the smoothness of the dense flow field, which significantly 

reduces the number of false feature correspondences, and the bet- 

ter coverage of low-texture regions obtained with uniform sam- 

pling. The depth maps produced by the camera are clearly not re- 

liable enough for extending point trajectories to 3D. This might be 

http://doi.org/10.15132/10000120
http://doi.org/10.15132/10000121
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Table 1 

Average Euclidean distance of estimated accelerometer 

location from ground truth (in pixels) for different point 

tracking methods using measured (variable) and hard- 

coded (fixed) depth. 

KLT DOF 

Depth Depth 

Seq. ID #Frames fixed var. fixed var. 

1 203 74 56 32 50 

2 25 206 313 92 99 

3 310 23 28 25 35 

4 296 19 28 49 32 

5 125 143 215 53 46 

6 45 89 259 67 94 

7 106 67 79 89 84 

8 85 138 146 48 69 

9 45 131 213 92 74 

10 170 66 304 36 91 

11 123 65 81 93 114 

12 1133 60 184 23 179 

13 375 62 63 97 105 

14 95 81 87 54 76 

15 798 135 265 52 104 

16 233 38 338 74 85 

Total 4167 76 167 49 106 

Fig. 6. Accelerometer localization accuracy. 

due, in part, to noisy depth measurements and holes in the depth 

maps on areas that lie in the shadow of the structured light pat- 

tern. 

We plotted cumulative distributions over the distances of pre- 

dicted locations to ground-truth to gain understanding of the local- 

ization precision and to compare our temporal decay thresholding 

(TDT) method with normalized cross-correlation (NCC) as used by 

Maki et al. (2010) ( Fig. 6 ). Specifically, we compared our method 

(DOF and KLT with fixed depth) to NCC using DOF trajectories. The 

plotted NCC result was obtained using a temporal window size of 

150 frames; this gave the lowest average distance from ground- 

truth (114 pixels) of all the window sizes tried in the range 10 to 

300 frames. Although the proposed method leaves room for im- 

provement, it clearly outperforms NCC, increasing the fraction of 

predictions within a 10 pixel radius from 12% to 50% and withing 

a 30 pixel radius from 50% to 80%. 

In order to compare the accuracy of long-term accelerome- 

ter tracking with different methods for re-initializing hypothesis 

scores after an accelerometer has been stationary, we evaluated 

the predicted accelerometer location in every frame of the entire 

video ( Fig. 7 ). We compared no re-initialization and cold start (ini- 

tialization to S t = 0 ) with two methods for re-initialization based 

Fig. 7. Long-term accelerometer tracking accuracy (best viewed in color). 

on the similarity map M : (i) assigning the score of the nearest 

neighbor and (ii) kernel density estimation (KDE). KDE did not 

perform better than other methods with σ = 1 , . . . , 10 . (For clarity 

we only plot KDE results for σ = 10 ). While none of the explored 

strategies clearly outperforms the others, re-initialization from the 

nearest neighbor in M and cold start show a significantly higher 

fraction of predictions in the range up to 25 pixels and approach 

saturation closer to the ground-truth location. As nearest-neighbor 

slightly outperforms cold start, we employ this method in all sub- 

sequent experiments. The shapes of the graphs in Fig. 7 give some 

indication for how frequently the tracker loses the target object. 

The roughly linear increase from 0 to 50 pixels and almost con- 

stant frequency between 50 and 100 pixels suggests that, on aver- 

age, the target object is lost if the prediction is more than 50 pix- 

els away from the ground-truth. Among all evaluated methods for 

long-term tracking, this occurs in 5–10% of frames. 

4.3. Activity recognition evaluation protocol 

In Sections 4.4 –4.6 , we report results on the task of classify- 

ing spatio-temporal windows into C activity classes, namely add 

pepper , add oil , mix dressing , peel cucumber , cut ingredient , place 

ingredient into bowl , mix ingredients , serve salad onto plate , dress 

salad and NULL , where NULL indicates that none of the other ac- 

tivities currently occurs. The 50 Salads dataset was partitioned 

into five folds. Each test set consisted of two sequences of each 

of five participants; the corresponding training set consisted of 

two sequences of each of the remaining 20 participants. SVM pa- 

rameters were determined via nested 5-fold cross-validation on 

each training set, using sequences from 16 participants for train- 

ing and sequences from the remaining four participants for val- 

idation, followed by testing on the held-out set. Performance was 

measured as mean precision, mean recall and their harmonic mean 

(f-measure). For an unbiased estimate of recognition performance 

based on unbalanced test data, class precision and recall were 

weighted inverse proportionally to their occurrence in the test set 

when aggregated. 

Features were extracted from temporal intervals of 154 video 

frames or 256 accelerometer samples ( ∼ 3 s ) at each video frame. 

A stratified sub-sample of all features extracted from training data 

was used. Codebooks with varied size k were learned from a sub- 

sample of 100 k tracklets extracted from training data. k -means 

was initialized 8 times and the codebook with minimal reconstruc- 

tion error kept. 
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Table 2 

Comparison of recognition performance observed with visual features, ac- 

celerometer features and sensor fusion methods on the 50 Salads dataset 

(in %). 

Visual features (k = 500) Precision Recall f-measure 

Absolute Tracklets (AT) 42 ± 2 43 ± 4 43 

HOG 50 ± 3 49 ± 3 49 

HOF 48 ± 3 47 ± 4 47 

MBH 54 ± 5 52 ± 5 53 

Visual motion (VM) 

AT, HOF, MBH 55 ± 5 53 ± 6 54 

Baseline vision (VIS) 

AT, HOG, HOF, MBH 59 ± 4 58 ± 4 58 

Accelerometer Features Precision Recall f-measure 

Object Use 43 ± 3 50 ± 2 46 

ECDF ( Hammerla et al., 2013 ) 60 ± 2 64 ± 5 62 

Baseline accelerometers (ACC) 

Accelerometer Statistics 60 ± 2 63 ± 6 62 

Sensor fusion Precision Recall f-measure 

Ref. Tracklet Statistics (REF) 51 ± 3 50 ± 2 51 

RETLETS (k = 250 , σ = 360) 63 ± 3 62 ± 4 62 

Baseline motion 

VM, ACC 70 ± 3 70 ± 3 70 

Baseline fusion 

VIS, ACC 71 ± 3 71 ± 3 71 

VIS, ACC, RETLETS 74 ± 3 74 ± 2 74 

Proposed method 

VIS, ACC, REF, RETLETS 76 ± 3 76 ± 2 76 

4.4. Visual features vs. accelerometers 

By comparing recognition performance obtained with features 

extracted from embedded accelerometers and visual data indepen- 

dently we aim to further motivate our multi-modal approach, and 

to justify a sensor-rich environment for certain applications. We 

compared recognition performance obtained with Absolute Track- 

lets , HOG, HOF, MBH, Object Use , ECDF and Accelerometer Statis- 

tics . Features along tracklets were extracted using the same pa- 

rameters as in Wang et al. (2011) . The codebook size was set to 

k = 500 where performance saturated during cross-validation (see 

Section 4.5 ). The results, presented in Table 2 (top and middle), 

confirm that the problem under investigation is sufficiently chal- 

lenging. The best performance of 60% precision at 64% recall was 

obtained with ECDF, with Accelerometer Statistics showing compa- 

rable performance. The best performance using visual features, ob- 

served when combining Absolute Tracklets , HOG, HOF, and MBH de- 

scriptors as proposed in Wang et al. (2011) , was comparably lower 

at 59% precision and 58% recall. Comparing results observed with 

visual features, it is interesting to note that the combination of vi- 

sual motion descriptors only showed marginal improvements over 

MBH, whereas adding local texture features (HOG) improved per- 

formance by about 5% compared to MBH. It may seem surprising 

that the simplest type of feature considered here, Object Use , com- 

pared favorably with Absolute Tracklets . This result indicates that, 

in this experimental scenario, the identity of objects involved in 

an activity is as discriminative as a generic description of motion in 

the scene. The comparable importance of the identity of objects in- 

volved in an activity and motion descriptors matches our intuition, 

considering that differences in visually observable motion across 

food preparation activities are very subtle, and knowledge about 

the involvement of specialized tools in an activity can significantly 

reduce the number of possibly occurring activities. Furthermore, 

the considerable margin between the results using Accelerometer 

Statistics and Object Use indicates that object involvement and mo- 

tion characteristics are strongly complementary. 

From a traditional computer vision perspective these results 

might suggest to use a method in which objects involved in ac- 

tivities of interest are detected and tracked over time, and activi- 

ties are recognized by reasoning about these object’s (relative) po- 

sition and motion. Such an approach is problematic for reasons 

of scalability and reliability. Learning detectors for all objects re- 

quires substantial amounts of labeled training data for each ob- 

ject class, which is costly to obtain in practice. As significant por- 

tions of kitchen objects are usually occluded when in use, tracks 

obtained by visual object detection are expected to be highly un- 

reliable and are therefore of limited value for motion analysis. 

4.5. Reference Tracklet Statistics and RETLETS 

We comparatively evaluated the impact of codebook size k and 

number of training samples on recognition performance with Ab- 

solute Tracklets , Reference Tracklet Statistics , and RETLETS . As shown 

in Fig. 8 , RETLETS significantly outperformed Absolute Tracklets and 

Reference Tracklet Statistics . Codebook size had less effect on recog- 

nition performance for RETLETS compared to Absolute Tracklets , and 

RETLETS with seven histograms of size k = 100 strongly outper- 

formed Absolute Tracklets with equal feature dimensionality ( k = 

700 ). As with RETLETS each tracklet contributes to one bin in each 

reference object’s histogram, these results support the hypothe- 

sis that RETLETS encode local motion using multiple complemen- 

tary descriptors efficiently. Performance with Absolute Tracklets sat- 

urated at a codebook size of about k = 500 , which is substantially 

smaller than k = 20 0 0 as used in Wang et al. (2011) . While larger 

codebooks better capture fine-grained nuances, a larger number of 

samples (tracklets) is required for a robust statistical estimate of 

the probability density function histograms approximate. We ex- 

pect larger codebooks to be beneficial on longer temporal windows 

of video data with higher spatial resolution. Performance also satu- 

rated at about 10k training samples, corresponding to an expected 

overlap of ∼ 75% between temporal windows. Table 2 shows 

that RETLETS (bottom) considerably outperformed Absolute Tracklets 

(19% increase), HOG, HOF, MBH and their combination, and per- 

formed comparably to ECDF and Accelerometer Statistics . 

The impact of applying spatial re-weighting to RETLETS on 

recognition performance was evaluated by constructing RETLETS 

with codebook size k = 100 and varied spatial weighting param- 

eter σ . Average precision and average recall are plotted in Fig. 9 . 

Performance rose sharply from σ = 30 to σ = 360 . From that point 

onwards recognition performance was relatively unaffected, falling 

a little. A possible explanation is that tracklets that were very 

close to the reference tracklet were likely to exhibit motion similar 

to the reference tracklet. A relative description of such motion is 

therefore uninformative. At the other extreme, tracklets that were 

very far away from the reference tracklet were less likely to in- 

teract with the reference object, justifying an intermediate spatial 

weighting of σ = 360 used here to discount the contribution of far 

away tracklets. 

4.6. Feature concatenation 

This section investigates recognition performance using con- 

catenations of various feature types. Table 2 (bottom) shows recog- 

nition results obtained by concatenating visual motion features 

with Accelerometer Statistics (baseline motion), all visual features 

with Accelerometer Statistics (baseline fusion), and features used for 

baseline fusion with RETLETS and Reference Tracklet Statistics . Con- 

catenations of features from accelerometers and video consistently 

showed a significant performance increase compared to features 

from individual modalities. Concatenating features extracted from 

both sensor modalities independently (baseline fusion) showed a 

performance increase of 8% and 12% compared to accelerometer 

features and visual features, respectively. The best performance 
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Fig. 8. Recognition results using Reference Tracklet Statistics, Absolute Tracklets and RETLETS with variation in codebook size and number of training samples. 

Fig. 9. Average precision and average recall using RETLETS with varied spatial 

weighting parameter σ . 

was achieved by concatenating baseline vision features, Accelerom- 

eter Statistics , Reference Tracklet Statistics and RETLETS . Our ap- 

proach of fusing information from video and accelerometers clearly 

outperformed the concatenation of features extracted from each 

sensor type independently (baseline motion and baseline fusion in 

Table 2 ) by 5% and 6%, respectively. 

We would argue that the cost of extracting Accelerometer Statis- 

tics is negligible and the additional cost of extracting HOG, HOF, 

MBH and Reference Tracklet Statistics is small compared to the cost 

of extracting RETLETS. Therefore, there is little to be gained by 

not extracting these features in addition to RETLETS. The computa- 

tional time complexities of accelerometer tracking and RETLET en- 

coding in each frame are O ( MN ) and O ( NMk ), respectively, where 

M is the number of tracked points, N is the number of reference 

objects, and k is the size of the codebook. In practice, the com- 

putation time required for accelerometer tracking and RETLET en- 

coding is relatively small compared to estimation of dense optical 

flow. 

The results presented in this section make a strong case for 

combining vision with accelerometers for activity recognition and 

confirm our hypothesis that careful combination of data from these 

sensors can significantly improve activity recognition performance: 

the proposed method outperformed visual features by 18% and ac- 

celerometer features by 14%. 

5. Conclusion & future work 

We developed a relational histogram model that encodes re- 

lations between local visual descriptors and properties of a small 

fixed number of tracked objects, where quantized relations are 

learned using bag-of-words. By distinguishing between generic fea- 

tures and features from reference objects, this model facilitates de- 

velopment of hybrids between generic and object-based recogni- 

tion models. We proposed one such hybrid model in this paper us- 

ing accelerometer tracking and RETLETS to capture interactions be- 

tween accelerometer-equipped objects and visual entities. We pre- 

sented an accelerometer localization algorithm that outperforms 

previous methods and extended it to enable long-term tracking 

across multiple episodes in which accelerometer-equipped objects 

are used. We thus proposed a novel approach to multi-modal activ- 

ity recognition combining information from video and accelerome- 

ter data through relative motion descriptors. 

RETLETS showed considerably better activity recognition per- 

formance compared to dense tracklets, HOG, HOF, MBH, and their 

combination on the 50 Salads dataset. Our comparative evaluation 

of features from accelerometers and video highlighted a perfor- 

mance gap between visual and accelerometer-based motion fea- 

tures and showed a substantial performance gain when combin- 

ing features from these sensor modalities. A considerable further 

performance gain was observed in combination with RETLETS and 

Reference Tracklet Statistics as proposed in this paper. These re- 

sults justify a multi-modal approach and indicate the importance 

of developing methods for effective modality fusion. 

For future work, evaluating the proposed method in different 

scenarios such as surgery, assembly tasks, repair tasks, sports and 

social interactions would be desirable to further support the effec- 

tiveness of our method. Currently, there is a strong unmet need for 

multi-modal activity recognition datasets. This is partly due to the 

substantial effort necessary for careful planning, data acquisition 

and annotation. 

The 50 Salads dataset has richer annotation than used here. 

Specifically, activities were split into preparation, core and post- 

phases, and these phases were annotated as temporal intervals. 

Each activity annotation also includes the ingredient acted upon 

(e.g., cut tomato into pieces ) and is associated hierarchically with 

more broadly defined activities. These detailed annotations may 

be used in future work to investigate the main sources of confu- 

sion errors between activities and for evaluating methods that si- 

multaneously reason about motion and objects acted upon ( Aksoy 

et al., 2011; Yang et al., 2013 ) and hierarchical activities ( Summers- 

Stay et al., 2012 ). 

There is potential for improvement in accelerometer localiza- 

tion accuracy through, e.g., probabilistic formulations such as par- 

ticle filtering methods and explicit pose estimation. We expect that 

more reliable estimation of accelerometer trajectories would trans- 

late into higher recognition performance using RETLETS. 

Occasionally, activities of interest are performed (partially) out- 

side the camera view. While visual recognition may fail in these 

instances, features extracted from accelerometer data capture use- 

ful information if at least one accelerometer-equipped object is in 

use. A set of conditional representations and a method for oppor- 

tunistic switching depending on visibility could help in this situa- 

tion. 
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In this paper, reference tracklets were determined by localiz- 

ing accelerometer-equipped objects. However, the proposed feature 

representation can be used with reference tracklets obtained in any 

way. These could, for example, be prominent point trajectories, or 

trajectories of visually tracked objects. Future work could evaluate 

RETLETS with reference tracklets from other sources such as vi- 

sual object tracking. Accelerometer tracking could provide a useful 

method for bootstrapping visual object tracker training with the lo- 

cal neighborhood around localised accelerometer-equipped objects 

serving as noisy object region annotations. It would also be useful 

to extend this model to incorporate uncertainty about localization 

of tracked objects. 

Acknowledgements 

The authors would like to thank Jianguo Zhang and Ruixuan 

Wang for valuable feedback on drafts of this paper. This research 

was funded by RCUK grants EP/G0 6 6019/1 and EP/K037293/1 . 

References 

Aksoy, E.E. , Abramov, A. , Dörr, J. , Ning, K. , Dellen, B. , Wörgötter, F. , 2011. Learning 
the semantics of object-action relations by observation. Int. J. Rob. Res. 30 (10), 

1229–1249 . 
Albanese, M. , Chellappa, R. , Cuntoor, N. , Moscato, V. , Picariello, A. , Subrahma- 

nian, V.S. , Udrea, O. , 2010. PADS: a probabilistic activity detection framework 
for video data. IEEE Trans. Pattern Anal. Mach. Intell. 32 (12), 2246–2261 . 

Behera, A. , Hogg, D.C. , Cohn, A.G. , 2012. Egocentric activity monitoring and recovery. 
In: Asian Conference on Computer Vision . 

Bilinski, P. , Corvee, E. , an F. Bremond, S.B. , 2013. Relative dense tracklets for human 

action recognition. In: Proceedings of IEEE International Conference on Auto- 
matic Face and Gesture Recognition . 

Bouguet, J.-Y. , 1999. Pyramidal implementation of the Lucas Kanade feature tracker. 
In: Proceedings of USENIX Annual Technical Conference . 

Brown, D.C. , 1966. Decentering distortion of lenses. Photometric Eng. 32 (3), 
4 4 4–462 . 

Chen, C. , Jafari, R. , Kehtarnavaz, N. , 2015. A survey of depth and inertial sensor fu- 

sion for human action recognition. Multimedia Tools Appl. 1–21 . 
Farnebäck, G. , 2003. Two-frame motion estimation based on polynomial expansion. 

In: Proceedings of Scandinavian Conference on Image Analysis, pp. 363–370 . 
Fathi, A. , Farhadi, A. , Rehg, J.M. , 2011a. Understanding egocentric activities. In: Pro- 

ceedings of International Conference on Computer Vision, pp. 407–414 . 
Fathi, A. , Ren, X. , Rehg, J.M. , 2011b. Learning to recognize objects in egocentric activ- 

ities. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recog- 

nition, Colorado Springs, Colorado, USA, pp. 3281–3288 . 
Figo, D. , Diniz, P.C. , Ferreira, D.R. , 2010. Preprocessing techniques for context recog- 

nition from accelerometer data. Pers. Ubiquitous Comput. 14 (7), 645–662 . 
Gupta, A. , Kembhavi, A. , Davis, L.S. , 2009. Observing human-object interactions: us- 

ing spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. 
Mach. Intell. 31 (10), 1775–1789 . 

Hammerla, N. , Kirkham, R. , Andras, P. , Plotz, T. , 2013. On preserving statistical char- 

acteristics of accelerometry data using their empirical cumulative distribution. 
In: Proceedings of International Symposium on Wearable Computers, pp. 65–68 . 

Henderson, S. , Feiner, S. , 2011. Exploring the benefits of augmented reality docu- 
mentation for maintenance and repair. IEEE Trans. Vis. Comput. Graph. 17 (10), 

1355–1368 . 
Hoey, J. , Ploetz, T. , Jackson, D. , Monk, A. , Pham, C. , Oliver, P. , 2010a. Rapid specifi- 

cation and automated generation of prompting systems to assist people with 

dementia. Pervasive Mobile Comput. 7 (3), 299–318 . 
Hoey, J. , Poupart, P. , v. Bertoldi, A. , Craig, T. , Boutilier, C. , Mihailidis, A. , 2010b. Au- 

tomated handwashing assistance for persons with dementia using video and a 
partially observable Markov decision process. Comput. Vis. Image Understand. 

114 (5), 503–519 . 
Hsu, C.-H. , Yu, C.-H. , 2009. An accelerometer based approach for indoor localiza- 

tion. In: Proceedings of Symposia and Workshops on Ubiquitous, Autonomic and 

Trusted Computing, Washington, DC, USA, pp. 223–227 . 
Huynh, T. , Fritz, M. , Schiele, B. , 2008. Discovery of activity patterns using topic mod- 

els. In: Proceedings of International Conference on Ubiquitous Computing . 
Laptev, I. , 2005. On space-time interest points. Int. J. Comput. Vis. 64 (2/3), 107–123 . 

Laptev, I. , Marszalek, M. , Schmid, C. , Rozenfeld, B. , 2008. Learning realistic human 
actions from movies. In: Proceedings of IEEE Conference on Computer Vision 

and Pattern Recognition . 
Laptev, I. , Prez, P. , 2007. Retrieving actions in movies. In: Proceedings of IEEE Con- 

ference on Computer Vision . 

Lei, J. , Ren, X. , Fox, D. , 2012. Fine-grained kitchen activity recognition using RG- 
B-D. In: Proceedings of International Conference on Ubiquitous Computing, 

pp. 208–211 . 
Liu, J. , Luo, J. , Shah, M. , 2009. Recognizing realistic actions from videos “in the wild”. 

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 

Maki, Y. , Kagami, S. , Hashimoto, K. , 2010. Accelerometer detection in a camera view 

based on feature point tracking. In: Proceedings of IEEE/SICE International Sym- 

posium on System Integration . 
Marszałek, M. , Laptev, I. , Schmid, C. , 2009. Actions in context. In: Proceedings of 

IEEE Conference on Computer Vision and Pattern Recognition . 
Matikainen, P. , Hebert, M. , Sukthankar, R. , 2009. Trajectons: action recognition 

through the motion analysis of tracked features. In: Proceedings of International 
Conference on Computer Vision . 

Messing, R. , Pal, C. , Kautz, H. , 2009. Activity recognition using the velocity histories 

of tracked keypoints. In: Proceedings of International Conference on Computer 
Vision . 

Pham, C. , Oliver, P. , 2009. Slice&Dice: recognizing food preparation activities using 
embedded accelerometers. Ambient Intell. LNCS 5859, 34–43 . 

Plötz, T. , Hammerla, N.Y. , Olivier, P. , 2012. Feature learning for activity recognition 
in ubiquitous computing. In: Proceedings of International Joint Conference on 

Artificial Intelligence, pp. 1729–1734 . 

Rao, C. , Yilmaz, A. , Shah, M. , 2002. View-invariant representation and recognition of 
actions. Int. J. Comput. Vis. 50 (2), 203–226 . 

Rhienmora, P. , Haddawy, P. , Suebnukarn, S. , Dailey, M.N. , 2009. Intelligent dental 
training simulator with objective skill assessment and feedback. Artif. Intell. 

Med. 52 (2), 115–121 . 
Roggen, D. , Calatroni, A. , Rossi, M. , Holleczek, T. , Förster, K. , Tröster, G. , Lukowicz, P. , 

Bannach, D. , Pirkl, G. , Ferscha, A. , Doppler, J. , Holzmann, C. , Kurz, M. , Holl, G. , 

Chavarriaga, R. , Creatura, M. , del R. Milln, J. , 2010. Collecting complex activity 
data sets in highly rich networked sensor environments. In: Proceedings of In- 

ternational Conference on Networked Sensing Systems . 
Rohrbach, M. , Rohrbach, A. , Regneri, M. , Amin, S. , Andriluka, M. , Pinkal, M. , 

Schiele, B. , 2015. Recognizing fine-grained and composite activities using hand–
centric features and script data. Int. J. Comput. Vis. 1–28 . 

Ryoo, M.S. , Aggarwal, J.K. , 2007. Hierarchical recognition of human activities inter- 

acting with objects. In: Proceedings IEEE Conference on Computer Vision and 
Pattern Recognition . 

Ryoo, M.S. , Aggarwal, J.K. , 2009. Spatio-temporal relationship match: video structure 
comparison for recognition of complex human activities. In: Proceedings of IEEE 

Conference on Computer Vision . 
Schuldt, C. , Laptev, I. , Caputo, B. , 2004. Recognizing human actions: a local SVM 

approach. In: Proceedings of International Conference on Pattern Recognition . 

Shigeta, O. , Kagami, S. , Hashimoto, K. , 2008. Identifying a moving object with an 
accelerometer in a camera view. In: Proceedings IEEE International. Conference 

on Intelligent Robots and Systems . 
Stein, S. , McKenna, S.J. , 2012. Accelerometer localization in the view of a station- 

ary camera. In: Proceedings of Conference on Computer and Robot Vision, 
pp. 109–116 . 

Stein, S. , McKenna, S.J. , 2013. Combining embedded accelerometers with computer 

vision for recognizing food preparation activities. In: Proceedings of ACM Inter- 
national Joint Conference on Pervasive and Ubiquitous Computing . 

Summers-Stay, D. , Teo, C.L. , Yang, Y. , Fermüller, C. , Aloimonos, Y. , 2012. Using a min- 
imal action grammar for activity understanding in the real world. In: Proceed- 

ings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 
Vilamourna, Portugal, pp. 4104–4111 . 

Teixeira, T. , Jung, D. , Savvides, A. , 2010. Tasking networked CCTV cameras and mo- 
bile phones to identify and localize multiple people. In: Proceedings ACM Inter- 

national Conference on Ubiquitous computing . 

Tenorth, M. , Bandouch, J. , Beetz, M. , 2009. The TUM kitchen data set of everyday 
manipulation activities for motion tracking and action recognition. IEEE Inter- 

national Workshop on Tracking Humans for the Evaluation of their Motion in 
Image Sequences . 

Tomasi, C. , Kanade, T. , 1991. Detection and tracking of point features. Carnegie Mel- 
lon University Technical Report CMU-CS-91-132, April . 

de la Torre, F. , Hodgins, J. , Montano, J. , Valcarcel, S. , Forcada, R. , Macey, J. , 2009. 

Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) 
Database. Technical Report. Robotics Institute, Carnegie Mellon University . 

Wang, H. , Klaser, A. , Schmid, C. , Liu, C.-L. , 2011. Action recognition by dense trajec- 
tories. In: Proceedings of IEEE International Conference on Computer Vision and 

Pattern Recognition . 
Wang, H. , Ullah, M.M. , Klaser, A. , Laptev, I. , Schmid, C. , 2009. Evaluation of local spa- 

tio-temporal features for action recognition. In: Proceedings of British Machine 

Vision Conference, pp. 124.1–124.11 . 
Wilson, A.D. , Benko, H. , 2014. Crossmotion: fusing device and image motion for user 

identification, tracking and device association. In: Proceedings of International 
Conference on Multimodal Interaction . 

Wu, J. , Osuntogun, A. , Choudhury, T. , Philipose, M. , Rehg, J.M. , 2007. A scalable ap- 
proach to activity recognition based on object use. In: Proceedings of IEEE In- 

ternational Conference on Computer Vision, pp. 1–8 . 

Yang, Y. , Fermüller, C. , Aloimonos, Y. , 2013. Detection of manipulation action con- 
sequences (MAC). In: Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Portland, Oregon, USA, pp. 2563–2570 . 
Zappi, P. , Lombriser, C. , Stiefmeier, T. , Farella, E. , Roggen, D. , Benini, L. , Tröster, G. , 

2008. Activity recognition from on-body sensors: accuracy-power trade-off by 
dynamic sensor selection. In: Proceedings of European Conference on Wireless 

Sensor Networks . 

Zhang, J. , Marszalek, M. , Lazebnik, S. , Schmid, C. , 2007. Local features and kernels 
for classification of texture and object categories: a comprehensive study. Int. J. 

Comput. Vis. 73 (2), 213–238 . 
Zhang, Z. , 20 0 0. A flexible new technique for camera calibration. IEEE Trans. Pattern 

Anal. Mach. Intell. 22 (11), 1330–1334 . 

http://dx.doi.org/10.13039/501100000690
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0003
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0003
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0003
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0003
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0004
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0004
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0004
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0004
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0005
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0005
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0008
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0008
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0017
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0017
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0017
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0019
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0019
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0020
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0020
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0020
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0020
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0020
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0023
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0023
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0023
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0023
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0024
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0024
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0024
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0024
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0027
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0027
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0027
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0027
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0035
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0035
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0035
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0036
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0036
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0036
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0036
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0037
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0037
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0037
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0037
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0038
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0038
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0038
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0039
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0039
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0039
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0043
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0043
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0043
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0052
http://refhub.elsevier.com/S1077-3142(16)30134-5/sbref0052

	Recognising complex activities with histograms of relative tracklets
	1 Introduction
	2 Related work
	2.1 Visual features for activity recognition
	2.2 Accelerometer-based activity recognition
	2.3 Fusing vision with inertial sensors
	2.4 Activity datasets

	3 Methodology
	3.1 Overview
	3.2 Dense tracklets
	3.3 Accelerometer localization and tracking
	3.3.1 Generating location proposals
	3.3.2 Transformation to world coordinates
	3.3.3 Similarity scoring and localization
	3.3.4 Long-term accelerometer tracking

	3.4 Object-generic relational histograms
	3.4.1 Relational histograms
	3.4.2 Histograms of relative tracklets (RETLETS)

	3.5 Online activity recognition

	4 Evaluation
	4.1 Scenario and data acquisition
	4.2 Accelerometer tracking
	4.3 Activity recognition evaluation protocol
	4.4 Visual features vs. accelerometers
	4.5 Reference Tracklet Statistics and RETLETS
	4.6 Feature concatenation

	5 Conclusion & future work
	 Acknowledgements
	 References


