543 research outputs found

    Human-robot interaction and computer-vision-based services for autonomous robots

    Get PDF
    L'Aprenentatge per Imitació (IL), o Programació de robots per Demostració (PbD), abasta mètodes pels quals un robot aprèn noves habilitats a través de l'orientació humana i la imitació. La PbD s'inspira en la forma en què els éssers humans aprenen noves habilitats per imitació amb la finalitat de desenvolupar mètodes pels quals les noves tasques es poden transferir als robots. Aquesta tesi està motivada per la pregunta genèrica de "què imitar?", Que es refereix al problema de com extreure les característiques essencials d'una tasca. Amb aquesta finalitat, aquí adoptem la perspectiva del Reconeixement d'Accions (AR) per tal de permetre que el robot decideixi el què cal imitar o inferir en interactuar amb un ésser humà. L'enfoc proposat es basa en un mètode ben conegut que prové del processament del llenguatge natural: és a dir, la bossa de paraules (BoW). Aquest mètode s'aplica a grans bases de dades per tal d'obtenir un model entrenat. Encara que BoW és una tècnica d'aprenentatge de màquines que s'utilitza en diversos camps de la investigació, en la classificació d'accions per a l'aprenentatge en robots està lluny de ser acurada. D'altra banda, se centra en la classificació d'objectes i gestos en lloc d'accions. Per tant, en aquesta tesi es demostra que el mètode és adequat, en escenaris de classificació d'accions, per a la fusió d'informació de diferents fonts o de diferents assajos. Aquesta tesi fa tres contribucions: (1) es proposa un mètode general per fer front al reconeixement d'accions i per tant contribuir a l'aprenentatge per imitació; (2) la metodologia pot aplicar-se a grans bases de dades, que inclouen diferents modes de captura de les accions; i (3) el mètode s'aplica específicament en un projecte internacional d'innovació real anomenat Vinbot.El Aprendizaje por Imitación (IL), o Programación de robots por Demostración (PbD), abarca métodos por los cuales un robot aprende nuevas habilidades a través de la orientación humana y la imitación. La PbD se inspira en la forma en que los seres humanos aprenden nuevas habilidades por imitación con el fin de desarrollar métodos por los cuales las nuevas tareas se pueden transferir a los robots. Esta tesis está motivada por la pregunta genérica de "qué imitar?", que se refiere al problema de cómo extraer las características esenciales de una tarea. Con este fin, aquí adoptamos la perspectiva del Reconocimiento de Acciones (AR) con el fin de permitir que el robot decida lo que hay que imitar o inferir al interactuar con un ser humano. El enfoque propuesto se basa en un método bien conocido que proviene del procesamiento del lenguaje natural: es decir, la bolsa de palabras (BoW). Este método se aplica a grandes bases de datos con el fin de obtener un modelo entrenado. Aunque BoW es una técnica de aprendizaje de máquinas que se utiliza en diversos campos de la investigación, en la clasificación de acciones para el aprendizaje en robots está lejos de ser acurada. Además, se centra en la clasificación de objetos y gestos en lugar de acciones. Por lo tanto, en esta tesis se demuestra que el método es adecuado, en escenarios de clasificación de acciones, para la fusión de información de diferentes fuentes o de diferentes ensayos. Esta tesis hace tres contribuciones: (1) se propone un método general para hacer frente al reconocimiento de acciones y por lo tanto contribuir al aprendizaje por imitación; (2) la metodología puede aplicarse a grandes bases de datos, que incluyen diferentes modos de captura de las acciones; y (3) el método se aplica específicamente en un proyecto internacional de innovación real llamado Vinbot.Imitation Learning (IL), or robot Programming by Demonstration (PbD), covers methods by which a robot learns new skills through human guidance and imitation. PbD takes its inspiration from the way humans learn new skills by imitation in order to develop methods by which new tasks can be transmitted to robots. This thesis is motivated by the generic question of “what to imitate?” which concerns the problem of how to extract the essential features of a task. To this end, here we adopt Action Recognition (AR) perspective in order to allow the robot to decide what has to be imitated or inferred when interacting with a human kind. The proposed approach is based on a well-known method from natural language processing: namely, Bag of Words (BoW). This method is applied to large databases in order to obtain a trained model. Although BoW is a machine learning technique that is used in various fields of research, in action classification for robot learning it is far from accurate. Moreover, it focuses on the classification of objects and gestures rather than actions. Thus, in this thesis we show that the method is suitable in action classification scenarios for merging information from different sources or different trials. This thesis makes three contributions: (1) it proposes a general method for dealing with action recognition and thus to contribute to imitation learning; (2) the methodology can be applied to large databases which include different modes of action captures; and (3) the method is applied specifically in a real international innovation project called Vinbot

    Graph learning in robotics: a survey

    Full text link
    Deep neural networks for graphs have emerged as a powerful tool for learning on complex non-euclidean data, which is becoming increasingly common for a variety of different applications. Yet, although their potential has been widely recognised in the machine learning community, graph learning is largely unexplored for downstream tasks such as robotics applications. To fully unlock their potential, hence, we propose a review of graph neural architectures from a robotics perspective. The paper covers the fundamentals of graph-based models, including their architecture, training procedures, and applications. It also discusses recent advancements and challenges that arise in applied settings, related for example to the integration of perception, decision-making, and control. Finally, the paper provides an extensive review of various robotic applications that benefit from learning on graph structures, such as bodies and contacts modelling, robotic manipulation, action recognition, fleet motion planning, and many more. This survey aims to provide readers with a thorough understanding of the capabilities and limitations of graph neural architectures in robotics, and to highlight potential avenues for future research

    A Survey of Knowledge Representation in Service Robotics

    Full text link
    Within the realm of service robotics, researchers have placed a great amount of effort into learning, understanding, and representing motions as manipulations for task execution by robots. The task of robot learning and problem-solving is very broad, as it integrates a variety of tasks such as object detection, activity recognition, task/motion planning, localization, knowledge representation and retrieval, and the intertwining of perception/vision and machine learning techniques. In this paper, we solely focus on knowledge representations and notably how knowledge is typically gathered, represented, and reproduced to solve problems as done by researchers in the past decades. In accordance with the definition of knowledge representations, we discuss the key distinction between such representations and useful learning models that have extensively been introduced and studied in recent years, such as machine learning, deep learning, probabilistic modelling, and semantic graphical structures. Along with an overview of such tools, we discuss the problems which have existed in robot learning and how they have been built and used as solutions, technologies or developments (if any) which have contributed to solving them. Finally, we discuss key principles that should be considered when designing an effective knowledge representation.Comment: Accepted for RAS Special Issue on Semantic Policy and Action Representations for Autonomous Robots - 22 Page

    Structured machine learning models for robustness against different factors of variability in robot control

    Get PDF
    An important feature of human sensorimotor skill is our ability to learn to reuse them across different environmental contexts, in part due to our understanding of attributes of variability in these environments. This thesis explores how the structure of models used within learning for robot control could similarly help autonomous robots cope with variability, hence achieving skill generalisation. The overarching approach is to develop modular architectures that judiciously combine different forms of inductive bias for learning. In particular, we consider how models and policies should be structured in order to achieve robust behaviour in the face of different factors of variation - in the environment, in objects and in other internal parameters of a policy - with the end goal of more robust, accurate and data-efficient skill acquisition and adaptation. At a high level, variability in skill is determined by variations in constraints presented by the external environment, and in task-specific perturbations that affect the specification of optimal action. A typical example of environmental perturbation would be variation in lighting and illumination, affecting the noise characteristics of perception. An example of task perturbations would be variation in object geometry, mass or friction, and in the specification of costs associated with speed or smoothness of execution. We counteract these factors of variation by exploring three forms of structuring: utilising separate data sets curated according to the relevant factor of variation, building neural network models that incorporate this factorisation into the very structure of the networks, and learning structured loss functions. The thesis is comprised of four projects exploring this theme within robotics planning and prediction tasks. Firstly, in the setting of trajectory prediction in crowded scenes, we explore a modular architecture for learning static and dynamic environmental structure. We show that factorising the prediction problem from the individual representations allows for robust and label efficient forward modelling, and relaxes the need for full model re-training in new environments. This modularity explicitly allows for a more flexible and interpretable adaptation of trajectory prediction models to using pre-trained state of the art models. We show that this results in more efficient motion prediction and allows for performance comparable to the state-of-the-art supervised 2D trajectory prediction. Next, in the domain of contact-rich robotic manipulation, we consider a modular architecture that combines model-free learning from demonstration, in particular dynamic movement primitives (DMP), with modern model-free reinforcement learning (RL), using both on-policy and off-policy approaches. We show that factorising the skill learning problem to skill acquisition and error correction through policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contact-rich manipulation. Our empirical evaluation demonstrates how to best do this with DMPs and propose “residual Learning from Demonstration“ (rLfD), a framework that combines DMPs with RL to learn a residual correction policy. Our evaluations, performed both in simulation and on a physical system, suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs. Last but not least, our study shows that the extracted correction policies can be transferred to different geometries and frictions through few-shot task adaptation. Third, we employ meta learning to learn time-invariant reward functions, wherein both the objectives of a task (i.e., the reward functions) and the policy for performing that task optimally are learnt simultaneously. We propose a novel inverse reinforcement learning (IRL) formulation that allows us to 1) vary the length of execution by learning time-invariant costs, and 2) relax the temporal alignment requirements for learning from demonstration. We apply our method to two different types of cost formulations and evaluate their performance in the context of learning reward functions for simulated placement and peg in hole tasks executed on a 7DoF Kuka IIWA arm. Our results show that our approach enables learning temporally invariant rewards from misaligned demonstration that can also generalise spatially to out of distribution tasks. Finally, we employ our observations to evaluate adversarial robustness in the context of transfer learning from a source trained on CIFAR 100 to a target network trained on CIFAR 10. Specifically, we study the effects of using robust optimisation in the source and target networks. This allows us to identify transfer learning strategies under which adversarial defences are successfully retained, in addition to revealing potential vulnerabilities. We study the extent to which adversarially robust features can preserve their defence properties against black and white-box attacks under three different transfer learning strategies. Our empirical evaluations give insights on how well adversarial robustness under transfer learning can generalise.

    Vision-based human action recognition using machine learning techniques

    Get PDF
    The focus of this thesis is on automatic recognition of human actions in videos. Human action recognition is defined as automatic understating of what actions occur in a video performed by a human. This is a difficult problem due to the many challenges including, but not limited to, variations in human shape and motion, occlusion, cluttered background, moving cameras, illumination conditions, and viewpoint variations. To start with, The most popular and prominent state-of-the-art techniques are reviewed, evaluated, compared, and presented. Based on the literature review, these techniques are categorized into handcrafted feature-based and deep learning-based approaches. The proposed action recognition framework is then based on these handcrafted and deep learning based techniques, which are then adopted throughout the thesis by embedding novel algorithms for action recognition, both in the handcrafted and deep learning domains. First, a new method based on handcrafted approach is presented. This method addresses one of the major challenges known as “viewpoint variations” by presenting a novel feature descriptor for multiview human action recognition. This descriptor employs the region-based features extracted from the human silhouette. The proposed approach is quite simple and achieves state-of-the-art results without compromising the efficiency of the recognition process which shows its suitability for real-time applications. Second, two innovative methods are presented based on deep learning approach, to go beyond the limitations of handcrafted approach. The first method is based on transfer learning using pre-trained deep learning model as a source architecture to solve the problem of human action recognition. It is experimentally confirmed that deep Convolutional Neural Network model already trained on large-scale annotated dataset is transferable to action recognition task with limited training dataset. The comparative analysis also confirms its superior performance over handcrafted feature-based methods in terms of accuracy on same datasets. The second method is based on unsupervised deep learning-based approach. This method employs Deep Belief Networks (DBNs) with restricted Boltzmann machines for action recognition in unconstrained videos. The proposed method automatically extracts suitable feature representation without any prior knowledge using unsupervised deep learning model. The effectiveness of the proposed method is confirmed with high recognition results on a challenging UCF sports dataset. Finally, the thesis is concluded with important discussions and research directions in the area of human action recognition

    Efficient Online Processing with Deep Neural Networks

    Full text link
    The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.Comment: PhD Dissertatio

    Touch and Go: Learning from Human-Collected Vision and Touch

    Full text link
    The ability to associate touch with sight is essential for tasks that require physically interacting with objects in the world. We propose a dataset with paired visual and tactile data called Touch and Go, in which human data collectors probe objects in natural environments using tactile sensors, while simultaneously recording egocentric video. In contrast to previous efforts, which have largely been confined to lab settings or simulated environments, our dataset spans a large number of "in the wild" objects and scenes. To demonstrate our dataset's effectiveness, we successfully apply it to a variety of tasks: 1) self-supervised visuo-tactile feature learning, 2) tactile-driven image stylization, i.e., making the visual appearance of an object more consistent with a given tactile signal, and 3) predicting future frames of a tactile signal from visuo-tactile inputs.Comment: Accepted by NeurIPS 2022 Track of Datasets and Benchmark

    Joint Perceptual Learning and Natural Language Acquisition for Autonomous Robots

    Get PDF
    Understanding how children learn the components of their mother tongue and the meanings of each word has long fascinated linguists and cognitive scientists. Equally, robots face a similar challenge in understanding language and perception to allow for a natural and effortless human-robot interaction. Acquiring such knowledge is a challenging task, unless this knowledge is preprogrammed, which is no easy task either, nor does it solve the problem of language difference between individuals or learning the meaning of new words. In this thesis, the problem of bootstrapping knowledge in language and vision for autonomous robots is addressed through novel techniques in grammar induction and word grounding to the perceptual world. The learning is achieved in a cognitively plausible loosely-supervised manner from raw linguistic and visual data. The visual data is collected using different robotic platforms deployed in real-world and simulated environments and equipped with different sensing modalities, while the linguistic data is collected using online crowdsourcing tools and volunteers. The presented framework does not rely on any particular robot or any specific sensors; rather it is flexible to what the modalities of the robot can support. The learning framework is divided into three processes. First, the perceptual raw data is clustered into a number of Gaussian components to learn the ‘visual concepts’. Second, frequent co-occurrence of words and visual concepts are used to learn the language grounding, and finally, the learned language grounding and visual concepts are used to induce probabilistic grammar rules to model the language structure. In this thesis, the visual concepts refer to: (i) people’s faces and the appearance of their garments; (ii) objects and their perceptual properties; (iii) pairwise spatial relations; (iv) the robot actions; and (v) human activities. The visual concepts are learned by first processing the raw visual data to find people and objects in the scene using state-of-the-art techniques in human pose estimation, object segmentation and tracking, and activity analysis. Once found, the concepts are learned incrementally using a combination of techniques: Incremental Gaussian Mixture Models and a Bayesian Information Criterion to learn simple visual concepts such as object colours and shapes; spatio-temporal graphs and topic models to learn more complex visual concepts, such as human activities and robot actions. Language grounding is enabled by seeking frequent co-occurrence between words and learned visual concepts. Finding the correct language grounding is formulated as an integer programming problem to find the best many-to-many matches between words and concepts. Grammar induction refers to the process of learning a formal grammar (usually as a collection of re-write rules or productions) from a set of observations. In this thesis, Probabilistic Context Free Grammar rules are generated to model the language by mapping natural language sentences to learned visual concepts, as opposed to traditional supervised grammar induction techniques where the learning is only made possible by using manually annotated training examples on large datasets. The learning framework attains its cognitive plausibility from a number of sources. First, the learning is achieved by providing the robot with pairs of raw linguistic and visual inputs in a “show-and-tell” procedure akin to how human children learn about their environment. Second, no prior knowledge is assumed about the meaning of words or the structure of the language, except that there are different classes of words (corresponding to observable actions, spatial relations, and objects and their observable properties). Third, the knowledge in both language and vision is obtained in an incremental manner where the gained knowledge can evolve to adapt to new observations without the need to revisit previously seen ones (previous observations). Fourth, the robot learns about the visual world first, then it learns about how it maps to language, which aligns with the findings of cognitive studies on language acquisition in human infants that suggest children come to develop considerable cognitive understanding about their environment in the pre-linguistic period of their lives. It should be noted that this work does not claim to be modelling how humans learn about objects in their environments, but rather it is inspired by it. For validation, four different datasets are used which contain temporally aligned video clips of people or robots performing activities, and sentences describing these video clips. The video clips are collected using four robotic platforms, three robot arms in simple block-world scenarios and a mobile robot deployed in a challenging real-world office environment observing different people performing complex activities. The linguistic descriptions for these datasets are obtained using Amazon Mechanical Turk and volunteers. The analysis performed on these datasets suggest that the learning framework is suitable to learn from complex real-world scenarios. The experimental results show that the learning framework enables (i) acquiring correct visual concepts from visual data; (ii) learning the word grounding for each of the extracted visual concepts; (iii) inducing correct grammar rules to model the language structure; (iv) using the gained knowledge to understand previously unseen linguistic commands; and (v) using the gained knowledge to generate well-formed natural language descriptions of novel scenes
    corecore