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Abstract

Understanding how children learn the components of their mother tongue and the meanings

of each word has long fascinated linguists and cognitive scientists. Equally, robots face a similar

challenge in understanding language and perception to allow for a natural and effortless human-

robot interaction. Acquiring such knowledge is a challenging task, unless this knowledge is pre-

programmed, which is no easy task either, nor does it solve the problem of language difference

between individuals or learning the meaning of new words. In this thesis, the problem of

bootstrapping knowledge in language and vision for autonomous robots is addressed through

novel techniques in grammar induction and word grounding to the perceptual world. The

learning is achieved in a cognitively plausible loosely-supervised manner from raw linguistic

and visual data. The visual data is collected using different robotic platforms deployed in

real-world and simulated environments and equipped with different sensing modalities, while

the linguistic data is collected using online crowdsourcing tools and volunteers. The presented

framework does not rely on any particular robot or any specific sensors; rather it is flexible to

what the modalities of the robot can support.

The learning framework is divided into three processes. First, the perceptual raw data

is clustered into a number of Gaussian components to learn the ‘visual concepts’. Second,

frequent co-occurrence of words and visual concepts are used to learn the language grounding,

and finally, the learned language grounding and visual concepts are used to induce probabilistic

grammar rules to model the language structure.

In this thesis, the visual concepts refer to: (i) people’s faces and the appearance of their

garments; (ii) objects and their perceptual properties; (iii) pairwise spatial relations; (iv) the

robot actions; and (v) human activities. The visual concepts are learned by first processing

the raw visual data to find people and objects in the scene using state-of-the-art techniques in

human pose estimation, object segmentation and tracking, and activity analysis. Once found,

the concepts are learned incrementally using a combination of techniques: Incremental Gaussian

Mixture Models and a Bayesian Information Criterion to learn simple visual concepts such as



object colours and shapes; spatio-temporal graphs and topic models to learn more complex

visual concepts, such as human activities and robot actions.

Language grounding is enabled by seeking frequent co-occurrence between words and

learned visual concepts. Finding the correct language grounding is formulated as an integer

programming problem to find the best many-to-many matches between words and concepts.

Grammar induction refers to the process of learning a formal grammar (usually as a

collection of re-write rules or productions) from a set of observations. In this thesis, Probabilistic

Context Free Grammar rules are generated to model the language by mapping natural language

sentences to learned visual concepts, as opposed to traditional supervised grammar induction

techniques where the learning is only made possible by using manually annotated training

examples on large datasets.

The learning framework attains its cognitive plausibility from a number of sources. First,

the learning is achieved by providing the robot with pairs of raw linguistic and visual inputs

in a “show-and-tell” procedure akin to how human children learn about their environment.

Second, no prior knowledge is assumed about the meaning of words or the structure of the

language, except that there are different classes of words (corresponding to observable actions,

spatial relations, and objects and their observable properties). Third, the knowledge in both

language and vision is obtained in an incremental manner where the gained knowledge can

evolve to adapt to new observations without the need to revisit previously seen ones (previous

observations). Fourth, the robot learns about the visual world first, then it learns about how

it maps to language, which aligns with the findings of cognitive studies on language acquisition

in human infants that suggest children come to develop considerable cognitive understanding

about their environment in the pre-linguistic period of their lives. It should be noted that this

work does not claim to be modelling how humans learn about objects in their environments,

but rather it is inspired by it.

For validation, four different datasets are used which contain temporally aligned video clips

of people or robots performing activities, and sentences describing these video clips. The video

clips are collected using four robotic platforms, three robot arms in simple block-world scenarios

and a mobile robot deployed in a challenging real-world office environment observing different

people performing complex activities. The linguistic descriptions for these datasets are obtained



using Amazon Mechanical Turk and volunteers. The analysis performed on these datasets

suggest that the learning framework is suitable to learn from complex real-world scenarios.

The experimental results show that the learning framework enables (i) acquiring correct visual

concepts from visual data; (ii) learning the word grounding for each of the extracted visual

concepts; (iii) inducing correct grammar rules to model the language structure; (iv) using the

gained knowledge to understand previously unseen linguistic commands; and (v) using the

gained knowledge to generate well-formed natural language descriptions of novel scenes.





Acronyms and Symbols

API Application Programming Interface
BIC Bayesian Information Criterion
CFG Context Free Grammar
CNN Convolutional al Neural Network
CPM Convolutional Pose Machine
DAG Directed Acyclic Graph
DOF Degrees Of Freedom
DR Distinct-Regions
EM Expectation Maximisation
FPFH Fast Point Feature Histogram
GMM Gaussian Mixture Model
HMM Hidden Markov Model
HSL Hue-Saturation-Lightness
IGMM Incremental Gaussian Mixture Model
LDA Latent Dirichlet Allocation
LUCIE Leeds University Cognitive Intelligent Entity
LUCAS Leeds University Cognitive Artificial System
NLP Natural Language Processing
NLTK Natural Language Tool-Kit
PCFG Probabilistic Context Free Grammar
PO Partially-Overlapping
POS Part-of-Speech
PP Proper-Part
SVM Support Vector Machine
QDC Qualitative Distance Calculus
QSR Qualitative Spatial Representation
QTC Qualitative Trajectory Calculus
RCL Robot Control Language
RCC5 Region Connection Calculus 5
RGB Red-Green-Blue
RGB-D Red-Green-Blue-Depth
ROS Robotics Operating System
SLAM Simultaneous Localisation And Mapping
TPCC Ternary Point Configuration Calculus



A Target function resultant from solving the integer program
B Non-terminal symbol
b Number of all unique n-grams
c id of a connection node in DAG
C Non-terminal symbol
dM Mahalanobis distance
G A Gaussian component
GR id of robot gripper in a spatio-temporal DAG
H(.) Entropy of a set
j Human body part or joint
J Human pose estimate vector comprising of 15 body parts
K Concepts correlation matrix
K(i, j) The element at the ith row and jth column in matrix K
m Number of objects in a video clip
M Longest sequence of n words to form an n-gram
nd Number of dimensions in a feature space
nf Number of most prominent Eigen faces
nh Habituation constant
N Set of non-terminal symbols
N List of all observed n-grams
p Pixel or point in a point cloud
P Set of probabilities on production rules
R Set of production rules
S Start symbol in a grammar
T Set of terminal symbols
u Number of all unique visual concepts
vi A visual concept
Vm V-measure used in evaluating clustering techniques
V List of all observed visual concepts
X Observation vector in a visual feature space
y∞ Limiting value in the exponential function
Z A terminal symbol
α Constant in the exponential function
δ A single n-gram
µ Mean of a Gaussian component
ε Threshold to keep sparsity of groundings
τ Decaying rate constant
λ(.) Counting function
Σ Covariance matrix of a Gaussian component
Φ Language grounding function
Ω Vision tree
Ψ RCL tree
Π Language grammar



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Language Acquisition Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Language acquisition in robotics . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Language acquisition in cognitive sciences . . . . . . . . . . . . . . . . . . 3

1.3 Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Loosely-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Innate versus learned knowledge . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Natural Language Acquisition in Robotics . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Language grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Grammar induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Perception in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Learning object properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Learning people attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Learning spatial relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Learning robot actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Learning human activities . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



ii CONTENTS

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Visual Concepts 29

3.1 Robots and Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Low-Level Processing of Input Data . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Human pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Object detection and tracking . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Concept Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Human related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Object related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Spatial concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 Robot actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.5 Human activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Continual Learning of Visual Concepts . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Simple visual concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Complex visual concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Assumptions: Simple visual concepts . . . . . . . . . . . . . . . . . . . . . 56

3.5.3 Assumptions: Complex visual concepts . . . . . . . . . . . . . . . . . . . 56

3.5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.5 Loosely-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.6 Superlatives, comparatives, collectives and arity relations . . . . . . . . . 58

3.5.7 Simulated robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.8 Mobile robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Natural Language Grounding 61

4.1 Grounding framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Language and Vision Concept Extraction . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Language and Vision Concept Association . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Grounding Hypotheses Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 68



CONTENTS iii

4.5 Grounding Hypotheses Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Grounding Hypotheses Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Learning Probabilities of Language Grounding Φ . . . . . . . . . . . . . . . . . . 74

4.8 Continual Learning of Language Grounding . . . . . . . . . . . . . . . . . . . . . 76

4.8.1 Habituation of concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9.2 Loosely supervised learning of language grounding . . . . . . . . . . . . . 79

4.9.3 Human activities and language grounding . . . . . . . . . . . . . . . . . . 79

4.9.4 Function words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Grammar Induction 81

5.1 Learning Grammar from Language and Vision . . . . . . . . . . . . . . . . . . . 83

5.2 Robot Control Language (RCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Generation of RCL trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Substitute words with visual concepts . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Group concepts to generate RCL elements . . . . . . . . . . . . . . . . . . 88

5.3.3 Query RCL elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Matching RCL elements with Ω . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Learning Grammar Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Learning a PCFG Π from RCL tree Ψ . . . . . . . . . . . . . . . . . . . . 93

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Experimental Procedure 97

6.1 Experiments and Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 F1 score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.2 V measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.3 Normalised Mutual Information (NMI) . . . . . . . . . . . . . . . . . . . . 99



iv CONTENTS

6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Extended Train-Robots Dataset . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Leeds Robotic Commands Dataset . . . . . . . . . . . . . . . . . . . . . . 103

6.2.3 Extended Object Ordering Dataset . . . . . . . . . . . . . . . . . . . . . . 106

6.2.4 Extended Kitchen Activities Dataset (LUCIE) . . . . . . . . . . . . . . . 108

6.2.5 Datasets summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Experiment 1: Learning Visual Concepts . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 Learning visual concepts results . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Experiment 2: Learning Language Groundings . . . . . . . . . . . . . . . . . . . 120

6.4.1 Natural language grounding results . . . . . . . . . . . . . . . . . . . . . . 122

6.4.2 Grounding in other languages . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.3 Sensitivity analysis for grounding the parameter (ε) . . . . . . . . . . . . 127

6.5 Experiment 3: Learning Grammar Rules . . . . . . . . . . . . . . . . . . . . . . . 128

6.5.1 Grammar induction results . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.2 Grammar induction in other languages . . . . . . . . . . . . . . . . . . . . 131

6.6 Experiment 4: Scalability and Memory Requirements . . . . . . . . . . . . . . . . 134

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Discussion and Conclusion 137

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1.1 Visual concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1.2 Language grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1.3 Grammar induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 Loosely-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.2 Machine translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3.1 Learning from non-segmented videos and text . . . . . . . . . . . . . . . . 142

7.3.2 Generating new visual features . . . . . . . . . . . . . . . . . . . . . . . . 142



CONTENTS v

7.3.3 Using gained knowledge to improve learning . . . . . . . . . . . . . . . . . 143

7.3.4 Learning in the presence of external knowledge . . . . . . . . . . . . . . . 143

A Incremental Gaussian Mixture Models Approach 145

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Updating A Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2.1 Merging or creating components . . . . . . . . . . . . . . . . . . . . . . . 148

References 165



vi CONTENTS



List of Figures

1.1 Examples of input video clips annotated with the natural language commands. . 4

1.2 Language and vision learning framework. Consisting of three main components:

learning of visual concepts, natural language grounding and grammar induction. 5

2.1 SHRDLU system by Winograd (1972). It was capable of understanding a variety

of commands that included object descriptions and table-top actions such as pick

up, move, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 From left to right, Scitos A5 mobile robot (LUCIE), Baxter robot (LUCAS),

custom built mobile manipulator, and the 4-DOF robot arm in a chess-board

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Examples of detected human poses, using inputs from the head-sensor of the

mobile robot LUCIE. The 15 body joints are comprised of the head, neck, torso,

shoulders, elbows, hands, hips, knees and feet. . . . . . . . . . . . . . . . . . . . . 31

3.3 Processing of 3D data on the robot. The environment observations are fused

into a 3D map and segmented. (a) RGB image of the scene, (b) segmented surfel

map, or the objects of potential interest. . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Examples of four face clusters found automatically using GMM and BIC tech-

niques, with the averaged (mean) face shown in the center of each. . . . . . . . . 35

3.5 Left: defining upper and lower garments using human pose estimate 3.2.1 (Best

viewed in colour). Right: examples of six different colour clusters with the

averaged (mean) colour shown in the center of each cluster. . . . . . . . . . . . . 36

vii



viii LIST OF FIGURES

3.6 Left: Examples of Fast Point Feature Histograms for four objects in a point cloud.

Right: Examples of two different object clusters with the averaged (mean) values

of each of the 33 bins of FPFH shown in the center of each cluster. . . . . . . . . 38

3.7 Left: The horizontal coordinate system uses the azimuth and altitude angles to

measure the relative direction between two points in 3D space. Right: Utilizing

the horizontal coordinate system to measure the relative directions between pairs

of objects, the red arrow defines the “north” of the scene from which the azimuth

angle is measured, while the table defines the plane to measure the altitude angle. 41

3.8 Encoding the visual world into a list of predicates. An example showing LU-

CAS picking up an apple. Seven frames are shown along with their encoded

predicates printed in the boxes below. In this video, there exist two location

concepts (L1=initial gripper location, and L2=initial apple location), one shape

concept (S1=apple shape), one colour concept (C1=red), one direction concept

(r1=above), and two distance concepts (d1=far, and d2=touch), along with the

two predefined gripper states (Open, and Closed). The change in a predicate

value is indicated with red in the boxes. The change in value means that the

object property or relation has now a smaller distance with a different concept in

this frame. Using these predicates the robot now has an internal representation

of the visual world and how it changes at every frame. . . . . . . . . . . . . . . 43

3.9 Spatio-temporal DAGs representation. (top-left): two object o1 and o2 moving

away from each other with every frame. (bottom-left): the QSRs between the

two objects at every frame using Region Connection Calculus 5 by Cohn and

Gotts (1996) with relations Proper-Part (PP), Partially-Overlapping (PO) and

Distinct-Regions (DR). Three intervals (PP, PO, DR) are generated for this

video, where in each interval a different QSR holds between o1 and o2. (right):

the spatio temporal DAG for the two moving objects, the temporal relations

between the QSRs using Allen’s Interval Algebra (1983) the relations are meets

(m) and before (<). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



LIST OF FIGURES ix

3.10 Extended DAG representation for two moving objects with changing properties:

(top-left) two objects o1 and o2 moving away from each other, and object o1 is

changing its colour from white to grey. (bottom-left) this video has two colour

concepts (C1=white, and C2=grey), and three distance concepts (d1= touch,

d2=near, and d3=far). The three rows show the values of object colours (o1, o2)

and distance (D) at every frame, forming a number of intervals. By splitting

the intervals vertically whenever a change occurs in any of them, we generate a

sequence of states. Four states are generated for this video clip, where each state

represents a constant qualitative configuration of the visual world. (Right) the

extended DAG representation for this video clip showing the four states. . . . . . 45

3.11 Extended DAG representation for a “pick up” action performed by LUCAS com-

prising of four states. In the first state (state-1) the Gripper is Open, and both

Gripper and Apple are at different locations and are far from each other, hence

their location nodes in the extended DAG representation are assigned different

concepts (L1 and L2), and their distance node is assigned with the far distance

concept d1. In state-2, as the Gripper approaches the Apple, it gets close enough

to the Apple that its location node changes label from L1 to L2. In state-3,

the distance relation between the two objects gets changed to d2=touch and

the Gripper closes its fingers and change its state to Closed. In the final state

(state-4) as the gripper lifts the apple up, the position of both objects become

closer to the initial location of the gripper (L1), hence both location nodes switch

labels from L2 to L1. Note that the nodes are coloured with grey and contain

the gripper and apple images for expository purposes only. . . . . . . . . . . . . 47

3.12 All object property graphlets extracted from the DAG in Figure 3.11. From left to

right the graphlets represent the initial location of the apple (L2), initial location

of the gripper (L1), apple shape (S1), apple colour (C1), and combinations of

these concepts. Note that the connection nodes (c) are highlighted with grey for

clarification purposes only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



x LIST OF FIGURES

3.13 All relational graphlets extracted from the DAG in Figure 3.11. From left to

right the graphlets represent the far distance (d1), touch distance (d2), above

direction (r1), and combinations of these concepts. Note that the connection

nodes (c) are highlighted with grey. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.14 The action graphlet extracted from the pick up example in Figure 3.11. Note

that only one action graphlet is extracted from each DAG, i.e. the four states

are part of a single action graphlet. In this action graphlet, the gripper starts

at state-1 with an Open state, a different location concept than the object, also

above (r1) and far away (d1) from the object. At state-2 the gripper changes its

location to be the same as the object. At state-3 the gripper touches the object

(d2) and closes its gripper. Finally, at state-4 the gripper carries the object to

its initial location. Note that the property nodes 1 and 2 are used to signify

two different location concepts, but any two locations can be integrated here by

connecting a location graphlets. The connection nodes (c) are highlighted with

grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.15 QSRs representations; (bottom left) QDC between right hand and object1.

(centre) Subset of the TPCC system between right hand and torso-head plane.

(right) QTC (relative motion) between left hand and object2. Figure taken from

Alomari et al. (2017a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.16 IGMM on the simplified HSL colour space (Note that for simplicity HSL feature

space is abstracted and shown as a 2D space and not in 3D). . . . . . . . . . . . 54

3.17 Examples from the simulated robot environment (Extended Train-Robots dataset). 59

3.18 The generated map of level 9 in the School of Computing, University of Leeds. . 59

4.1 Examples of natural language descriptions collected for four different datasets. . 63

4.2 The language grounding learning framework from sentences and video clips. . . . 63

4.3 The concepts correlation matrix K of size b× u, where each observed n-grams is

a row, and each visual concept is a column in the matrix. . . . . . . . . . . . . . 65

4.4 The effect of changing the value of the decay constant τ on the convergence to y∞. 67



LIST OF FIGURES xi

4.5 Grounding hypotheses generation. (left) The concepts correlation matrix K,

where each observed n-gram is a row, and each visual concept is a column. The

value of each element varies from 0 to 1, where 0 means the two concepts were

never observed together. (right) The target function A that results from solving

the integer program for the matrix K. Integer programming allows for multi-

to-multi associations between n-grams and vision concepts. For example, ‘up’,

‘apple’ and ‘red apple’ each is mapped to two visual concepts. . . . . . . . . . . 69

4.6 Filtering the grounding hypotheses. (left) The target function A obtained by

solving the integer program from the previous example shown in Figure 4.5.

(right) The resultant target function A after filtering the grounding hypothe-

ses using Rules 4.3 to 4.6. The accepted hypotheses where the target function

A(δ, v) = 1 are shown in black, while the rejected hypotheses where A(δ, v) = 0

are shown in red to highlight them. The grounding hypotheses related to ‘pick’

and ‘up’ are rejected based on Rule 4.3, while the hypotheses related to ‘red

apple’ and ‘the red’ are rejected based on Rules 4.4 and 4.5. In this example,

the 1-gram ‘apple’ is still mapped to two shape concepts after filtering, shape1

represents the apple shape, and shape2 represents the mug shape. We will show

in the following section how we can validate which of these two is the correct

grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Generating hypothesis graphs from the sentence “pick up the apple”. The 2-gram

‘pick up’ has one candidate vision concept representing the pick up action, ‘the’

has none, while ‘apple’ has two (S1=apple shape, and S2=mug shape). These

vision concepts in their graphlet format are combined to generate two hypothesis

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Grounding framework for human activities and robot actions. . . . . . . . . . . . 80

5.1 Example of an annotated grammar tree used as training data for supervised

parsers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Example of an unsupervised grammar tree. The c denotes an unknown label. . . 82



xii LIST OF FIGURES

5.3 Vision tree Ω definition. The vision tree is an event tree, i.e. a tree with the

eventv element as its head. The eventv element takes three children {actionv,

entityv, destinationv}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 The input video clip that we generate for the command “place the green sphere

over the red cube” encoded with the learned visual concepts shown at different

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 The vision tree extracted from the video in Figure 5.4. . . . . . . . . . . . . . . . 86

5.6 Automatic generation of RCL trees. (left) The grounding function Φ showing

the probabilities of assigning words to vision concepts. (right) The four steps

(Substitute, Connect, Query, and Match) to generate an RCL tree Ψ from the

sentence “place the green sphere over the red cube” from the Dukes (2013) dataset. 88

5.7 The generated RCL tree Ψ from the example shown in Figure 5.4 using the

automatic language tree generation algorithm presented in Algorithm 1. . . . . . 91

5.8 PCFG example. (left) A probabilistic context free grammar Π = (N,T,R, S, P ).

The probability of each rule is shown on the right side of each arrow. (right) A

parsed tree for the sentence “astronomers saw stars with telescopes” using the

grammar Π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 A scene example from the Train-Robots dataset with two images, the initial

configuration (left) and the desired or final configuration (right). Image taken

from Dukes (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 An Example of a human annotated RCL tree from the Train-Robots dataset. . . 101

6.3 Examples from the Extended Train-Robots dataset along with their annotated

commands; the Arabic sentences are translated from the English ones. . . . . . . 102

6.4 Leeds Robotic Commands dataset setup. (left) The Baxter robot (LUCAS) used

as the robotic platform in this dataset, and is fitted with Microsoft Kinect2 sensor

on its chest to record data. (right) The point-cloud generated from the Kinect2

sensor after calibrating its position with respect to LUCAS’s body frame. . . . . 103



LIST OF FIGURES xiii

6.5 Example from the Leeds Robotic Commands dataset for the command ‘move the

the red apple into the white bowl ’. (top) An external camera is placed opposite

the robot to record the scene. Note that this camera is not used in objects

detection nor tracking. (middle) The RGB feed from the Kinect2 sensor showing

the point-of-view of the robot. (bottom) The RGB-D feed from Kinect2, along

with the detected objects’ ids and tracks. . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Table-top object detection technique for the example shown in Figure 6.5. . . . . 105

6.7 Two examples from the Leeds Robotic Commands dataset along with examples

from their annotated natural language commands. . . . . . . . . . . . . . . . . . 105

6.8 The Object Ordering dataset robot. (left) The Segway Robotic Mobility and the

6-DOF Kinova Mico arm mobile manipulator along with all the objects used in

this dataset. (right) Six of the seven predefined actions used to teach the robot

about object properties. Both figures are copied from Sinapov et al. (2016). . . . 106

6.9 Four examples from the extended Object Ordering dataset along with their an-

notated natural language commands. . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.10 Part of the generated map of level-9 in the School of Computing, University

of Leeds. (left) 2D map generated with SLAM algorithm using base-mounted

laser scanner. (right) 3D map generated by integrating RGB-D scans from the

head-mount xtion sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.11 OpenNI and CPM human pose estimation. (left) OpenNI human pose estimation

technique is prone to error when body joints are partially occluded. (right) The

use of CPM technique to improve the results of OpenNI. CPM finds a better

human pose estimate even when joints are partially or fully occluded. Image

copied from Duckworth et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.12 The environment observations are fused into a 3D map and segmented. (a) RGB

image of the scene, (b) segmented surfel map, or the segmented objects in the

scene. (bottom) Examples on objects of interest found after filtering the objects

with human trajectories. The objects are from left to right, bin, microwave,

fridge and printer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xiv LIST OF FIGURES

6.13 Two examples from the extended Kitchen Activity dataset along with their an-

notated natural language descriptions. . . . . . . . . . . . . . . . . . . . . . . . . 111

6.14 Examples of visual concepts learned from the extended Train Robots dataset.

The examples include clusters of colours, shapes, directions and locations. . . . . 114

6.15 Examples of visual concepts learned from the Leeds Robotic Commands dataset,

including clusters of shapes, colours, locations and distances. . . . . . . . . . . . 116

6.16 Examples of visual concepts learned from the extended Object Ordering dataset.

The examples include clusters of shapes, colours and locations. . . . . . . . . . . 117

6.17 Examples of visual concepts learned from the Extended Kitchen Activities dataset.

The examples include clusters of faces, colours, human activities and segmented

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.18 Natural language grounding framework. The framework consists of a prepro-

cessing step, and four learning steps aiming to find the correct mapping between

n-grams in language and visual concepts in vision. The arrows at the bottom

shows the different processing steps applicable to each of the four datasets. . . . 121

6.19 F1-scores for incremental language grounding for each dataset. The Extended

human activity dataset collected using LUCIE is processed using daily batches,

i.e. we increment the learning by processing the videos collected in each day.

Note that different y-axes scales were selected for each dataset to better show

the results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.20 Examples of learned language groundings from all four datasets. Note that the

cross mark symbol (7) is used to indicate that this learned grounding is incorrect.

We manually annotated the list of correct groundings for each visual concept. . . 125

6.21 Examples of learned language groundings from both Arabic and English language

in the Extended Train Robots dataset. The training was performed on each

language separately. The arrows between words are used to indicate the direct

translation between the two words and were manually added to the image. Our

system does not know that these words are translations in different languages. . . 127



LIST OF FIGURES xv

6.22 Sensitivity analysis for the language grounding parameter epsilon (ε). (left) the

graph shows the final F1-score values in each feature space from the four datasets

on the y-axis, and the different ε values used to compute these F1-scores on the

x-axis. (right) the average F1-score results obtained from all feature spaces. . . . 128

6.23 The grammar trees generated for the new command “place the yellow ball on top

of the blue cylinder” using our system (top) and Ponvert’s unsupervised system

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.24 The incremental memory requirement of our learning system in the Leeds Robotic

Commands dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1 Extending our learning framework to use the gained knowledge in language

grounding and grammar induction to influence the learning of new words and

concepts, as indicated by the orange arrows. . . . . . . . . . . . . . . . . . . . . . 143



xvi LIST OF FIGURES



List of Tables

5.1 The list of all RCL elements used in this thesis. These RCL elements are designed

to work in the context of robot manipulation. . . . . . . . . . . . . . . . . . . . . 85

5.2 The learned grammar rules from the example sentence “place the green sphere

over the red cube” are shown on the left side, while the probability of each rule

is shown to the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Data analysis for the four collected datasets. The table shows the number of

video clips, frames, annotated commands, unique words in all commands, and

average number of objects present in the individual video clips for all four datasets.112

6.2 Number of unique visual concepts in colour, people, shape, location, direction,

distance, and action features in the four available datasets. The hyphen symbol

(-) is used in the table to indicate that the visual feature space is not applicable

for the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Experimental results of visual concept extraction for the Extended Train Robots

dataset, showing five clustering metrics. Also, we show the V-measure of a

supervised SVM as an upper limit, that has access to the ground truth labels

during training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Experimental results of visual concept extraction for the Leeds Robotic Com-

mands dataset, showing five clustering metrics for colour, shape, location, direc-

tion, distance and robot action extraction. . . . . . . . . . . . . . . . . . . . . . 116

xvii



xviii LIST OF TABLES

6.5 Experimental results of visual concept extraction for the Extended Object Order-

ing dataset, showing five clustering metrics for colours, shapes and robot actions

extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Experimental results of unsupervised concept extraction showing five clustering

metrics for face, colour, object and activity extraction. Also, we show the V-

measure using a supervised SVM as an upper limit. . . . . . . . . . . . . . . . . . 118

6.7 Natural language grounding results. OS stands for Our System and HMM stands

for the Hidden Markov Model system. The hyphen symbol (-) is used in the table

to indicate that the visual feature space is not applicable for the dataset. . . . . 123

6.8 Natural language grounding results for Arabic language in the Extended Train

Robots dataset. OS stands for Our System and HMM stands for the supervised

Hidden Markov Model system. The English grounding results are presented for

comparison with the Arabic ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.9 Grammar induction results. US stands for Unsupervised system (Ponvert’s), OS

for Our System, while SS stands for Supervised System (Abney’s). The values

presented in the table are percentage of correctly parsed subtrees in each test

fold. The last raw presents the average number of grammar rules or productions

generated in all four folds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.10 The learned grammar rules used to parse the command “place the yellow ball on

top of the blue cylinder” shown in Figure 6.23 (top). . . . . . . . . . . . . . . . . 132

6.11 Grammar induction results. US stands for Unsupervised system (Ponvert’s), OS

for Our System, while SS stands for Supervised System (Abney’s). The values

presented in the table are the percentage of the correctly parsed sentences in

each fold. The last row presents the average number of grammar rules generated

in all four folds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



List of Algorithms

1 Automatic generation of RCL trees . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2 Incremental Gaussian Mixture Model Estimation . . . . . . . . . . . . . . . . . . 149

xix



xx LIST OF ALGORITHMS



Chapter 1

Introduction

“Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce

one which simulates the child’s? If this were then subjected to an appropriate course of education one

would obtain the adult brain.”
—Alan Turing, 1950

1.1 Motivation

To date, the human brain is the only known system capable of fully learning and understanding

natural language. Understanding the process though which we learn our mother tongue has

received a great deal of attention since the 1950s in various fields from psychology and cognitive

sciences to computer sciences. In computer science, researchers were particularly interested in

understanding this learning process in order to transfer it to a machine. Alan Turing (1950)

was one of the earliest researchers to articulate this idea by suggesting to provide the machine

with the ability to learn like a child, rather than providing it with the knowledge itself. This

way, a machine could theoretically learn in the same manner as humans do resulting in the

same knowledge if provided with the same course of education. Although this idea remains as

an ambition for the future, in this work we explore parts of it. We aim to provide a machine

with the ability to bootstrap its knowledge in natural language and perception. By doing so,

we provide robotic agents with the ability to learn from their own experiences about people,

objects and activities in their environments. It must be noted that even though our learning

1
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system is inspired by how children learn about their language, we do not claim that this work

models the same learning procedure.

1.2 The Language Acquisition Problem

The language acquisition problem, be it for humans or robots, has received a great deal of

attention over the years. The quest to find solutions to this problem has raised many questions,

some concerning the nature of how we learn our language, others concerning transferring this

learning ability to a machine. In this work, we attempt to tackle some of these questions

by addressing the problem of joint perceptual learning and natural language acquisition for

autonomous robots. The bulk of this thesis focuses on the loosely-supervised learning of a

language’s syntax and semantics from a corpus of videos and descriptions featuring robots and

humans performing various tasks.

1.2.1 Language acquisition in robotics

For robots to integrate in human environments, it is essential that they be equipped with the

ability to continuously learn about their environments, the people that inhabit these environ-

ments, the activities that take place in it, and how to perform useful tasks. From an autonomous

robot point of view, this requires incremental learning methods that can operate on the out-

puts of various sensing modalities, such as RGB and depth cameras, voice recognition, laser

rangefinder measurements, etc. The outcome of this learning process is a collection of concepts,

such as objects, people, relations and activities that occur in the robot’s environment, as well

as their mapping to natural language such that the robot can understand given commands and

be able to interact with humans.

Researchers have tackled the language acquisition problem for robotic systems using different

approaches, such as individual and social learning. In individual learning, the robot is provided

with data to learn about natural language without any further assistance from a teacher, and

is expected to learn from such data as presented by Siskind (1996), Roy et al. (1999) and

Needham et al. (2005). In social learning, the teacher plays an important role in the learning

process, by providing feedback to guide the learner in acquiring different language components
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as presented by Steels & Kaplan (2002) and Spranger (2015). In this research, we follow the

individual approach as it enables learning from large datasets without the need for constant

supervision, which is more suitable for autonomous life-long learning for robots.

1.2.2 Language acquisition in cognitive sciences

Over the last forty years, more evidence has emerged supporting the idea that language acqui-

sition process relies significantly on our ability to learn cognitive concepts in the prelinguistic

period of our lives. However, this was not always the case. In the 1950s and 1960s, the general

assumption was that children learn semantic categories of their environment using language. As

suggested by Whorf (1956), language shapes our understanding of the world by noticing which

properties of referents remain constant across successive uses of a word by a fluent speaker. In

the early 1970s, the idea of how we learn language began to change as more evidence showed

that Whorf’s hypothesis is incorrect. A number of studies on language acquisition in human in-

fants such as ones presented by Piaget (1954), Berlin and Kay (1969), Rosch and Mervis (1977)

and Bowerman (1996) have suggested that children come to develop considerable cognitive un-

derstanding about their environment in the prelinguistic period of their lives. In other words,

these studies suggest that humans come to learn about object properties, spatial relations and

other cognitive concepts before they learn the words used to describe them in natural language.

The work presented in this thesis aligns with those findings, whereby the robots develop a

cognitive understanding of their environments before attempting to ground the words used to

describe them in natural language.

1.3 Learning Framework

This work aims to answer the following two questions, (i) can a robot bootstrap its knowledge

in language and vision? and (ii) can a robot ground language to concepts in vision? To answer

these questions in a cognitively plausible setting, we take inspiration from human learning,

which is incremental and is typically loosely supervised. Furthermore, our system is tasked

with learning incrementally from human description of the world, while the outcome of the

learning process is representable in a human understandable form. We present a novel indi-
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vidual learning approach capable of acquiring symbolic knowledge in both language and vision

concurrently, and use this knowledge to parse previously unseen natural language commands.

The learning is accomplished using a show-and-tell procedure; this is inspired by how children

acquire knowledge of their everyday physical world by interacting with their parents. The

learning data comes from two sources, (a) volunteers controlling a robot to perform a variety

of table top tasks, (b) people performing everyday activities in an office environment. Both

were subsequently annotated with appropriate linguistic descriptions as shown in Figure 1.1.

The recorded videos and descriptions are used as input data to our system to learn three key

components, (i) the visual representation of the world; (ii) the groundings of words and phrases

to the learned visual representations; and (iii) the grammar rules of the language. To the best

of our knowledge, this is the first system that learns these three components concurrently.

Figure 1.1: Examples of input video clips annotated with the natural language commands.

We presuppose that the robots can visually analyse the environment in order to extract a

multitude of features and incrementally recover useful classes of features, which are referred to

as visual concepts: abstractions of the feature spaces generated by the robot modalities which
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carry a human-level meaning, for example the colour red, or the face of a person. Once we

learn the visual concepts, the natural language descriptions are analysed to ground words and

phrases to their most relevant visual concepts, followed by learning simple syntactic rules (i.e. a

grammar) that govern the sentence structure. Thus, the framework supports recognition of ob-

jects, individuals, spatial relations, robot actions and human activities. To do this we integrate

state-of-the-art object segmentation, pose estimation and activity analysis into a flexible, incre-

mental framework. We aim to learn and distinguish instances of human-level visual concepts

in simulated and real-world complex scenarios in a loosely supervised manner. The learning

framework shown in Figure 1.2 represents our entire system for bootstrapping knowledge in

natural language and perception for robotic systems.

Figure 1.2: Language and vision learning framework. Consisting of three main components:
learning of visual concepts, natural language grounding and grammar induction.

The framework consists of three main components: 1-Learning Visual Concepts, 2-Natural

Language Grounding, and 3-Grammar Induction. The framework is applied on every video-

sentence input, and the cumulative knowledge in language and vision is updated incrementally

with each processed input. In visual concepts learning, we first perform low-level analysis on

videos to detect and track objects and people in the scene. Then, we incrementally learn the

visual representation of the world in a number of predefined feature spaces such as colours,
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people, object shapes, robot actions, etc. by clustering values observed from each video clip.

These features are divided into two categories, simple and complex features based on their mea-

surement and encoding complexities. Further details on learning visual concepts are provided

in Chapter 3. In natural language grounding, we map words and phrases to their corresponding

visual concepts. For example, we learn that the word ‘red’ is used to describe the colour red.

The language grounding approach is discussed in detail in Chapter 4. In grammar induction,

we learn simple syntactic rules that enables the robot to understand new linguistic commands.

The learning of grammar rules is achieved by mapping the sentence structure to the structure

of the input video, more details on our grammar induction approach are provided in Chapter 5.

1.4 Assumptions and Limitations

This work makes several assumptions, some of which are purposeful and serve to usefully delimit

the scope of the investigation while others are more problematic and are left as open research

questions for future work in language acquisition in robotics.

1.4.1 Loosely-supervised learning

We use the term loosely-supervised to describe the learning process that requires the videos

and sentences to be temporally aligned beforehand, making it more suitable for teaching robots

about basic concepts such as colours or shapes. We consider the learning in our system to

be loosely-supervised rather than unsupervised. A fully unsupervised system would be able to

learn from longer non-segmented videos and documents (i.e. be able to temporally segment and

align long videos and documents), or even learn from a constant stream of audio-video data,

which remains an ambition for the future.

1.4.2 Innate versus learned knowledge

In a dynamic environment, animals must constantly gain new information and skills to survive.

However, in a stable environment, the same individuals need to gather the information needed

once, and then rely on it to survive. Therefore, different environments better suit either the need

for innate or learning knowledge. Essentially the cost of obtaining certain knowledge versus
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the benefit of already having it, determines whether an animal evolved to learn or to innately

know the information, as presented by Mery and Kawecki (2004). The same line of thought

can be applied to machines: if a machine is expected to repeatedly perform a single task, e.g.

car assembly robots, then it is more beneficial to provide the machine with knowledge needed

to perform this specific task. However, if it is expected to perform numerous tasks, e.g. home

and office service robots, then gaining knowledge becomes more important for the utility and

survival of the machine. We provide our robots with enough innate knowledge to enable them

to learn useful concepts in their environments. For example, we assume the robots are capable

of detecting and tracking both objects and people in each video using a number of state-of-the-

art techniques. We also assume that each robot has a predefined set of visual feature spaces

to learn from. Moreover, we assume that each robot has a set of predefined language classes

that enables the learning of language grammar. Each of these assumptions limits the learning

ability of our robots by adding a certain constraint. For example, the nature of objects we can

detect and track are limited by the algorithm we use. However, we argue that having these

assumptions allow our robots to focus on learning interesting concepts in both natural language

and vision.

1.5 Thesis Structure

In this chapter, we briefly motivated the language acquisition problem for robotic systems,

defined our learning framework and its three main components, and discussed the main as-

sumptions and limitation of our work. The remainder of this thesis is presented as follows.

In Chapter 2, we present the literature review of the language acquisition problem, starting

from one of the earliest language and vision systems in computing (SHRDLU 1972), up until

state-of-the-art techniques, and discuss our system’s contributions.

In Chapter 3, we present the visual concepts learning framework. We start by introducing

the robotic systems used in this thesis, describe the low-level processes used to detect and track

objects and people in each video, and finally present in detail how we learn the visual concepts.

We also list the techniques used and the assumptions made for each of the robotics systems.

In Chapter 4, we present the language grounding framework, and in particular the details
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of techniques used to enable the mapping of natural language words and phrases to visual

concepts.

In Chapter 5, we present the grammar induction process from linguistic and vision data,

and elaborate on the algorithm we developed to enable the robots to learn simple grammatical

rules, which are used to enable understanding and execution of new linguistic commands.

In Chapter 6, we present the experimental setup used to evaluate each of the framework’s

three components, namely, learning visual concepts, language grounding, and grammar in-

duction. Four experiments are performed with different evaluation measures to examine the

performance and scalability of our system. We also compare our results with other supervised

and unsupervised techniques to better demonstrate our system’s abilities and limitations.

In Chapter 7, we present the key findings of our work, and the contributions we offer in the

field of natural language acquisition in robotics. We also discuss the main limitations of this

work and suggest a number of research directions for future work.



Chapter 2

Related Work

2.1 Background

Natural Language acquisition and understanding has been a long standing objective of AI and

robotics research. One of the earliest computer systems capable of understanding natural lan-

guage commands to perform simple tasks in a virtual world is ‘SHRDLU’ by Winograd (1972).

It was pre-equipped with all the linguistic knowledge needed to understand and execute lin-

guistic commands such as “pick up the red block”, and answer questions such as “what did the

red cube support before you started to clean it off?”, as shown in Figure 2.1. Another system

by Hogg (1977) was capable of generating linguistic descriptions, in real time, of simple visual

situations involving one or two moving objects using picture differencing algorithm. The sys-

tem was implemented on a DECsystem-10 and was capable of generating scene descriptions by

processing images of people moving in the lab such as “An object has appeared at left of scene,

call it object A. Object A has begun moving. Object A looks like a person, call it Fred”.

Our system can incrementally acquire parts of the knowledge needed to perform similar tasks

from real-world data. We focus on joint learning of perceptual and language components for

autonomous robots. This chapter is divided into two sections: (i) Natural Language Acquisition

in Robotics, and (ii) Perception in Robotics. In each section, we discuss relevant work done in

the field and compare it with our system where applicable.

9



10 CHAPTER 2. RELATED WORK

Figure 2.1: SHRDLU system by Winograd (1972). It was capable of understanding a variety of
commands that included object descriptions and table-top actions such as pick up, move, etc.

2.2 Natural Language Acquisition in Robotics

Language acquisition is the process by which humans acquire the knowledge needed to perceive

and comprehend natural language, as well as to produce meaningful words and sentences to

communicate with others. The field of language acquisition contains within it a large number of

research areas. We focus on learning only two aspects of language in this work. The grounding

of language to vision (learning a semantic representation of language), and the grammar rules of

language (learning a syntactic representation of language). These two components are essential

for understanding simple natural language commands such as “pick up the red block”, and

therefore, are a good starting point to bootstrap our robot’s knowledge in natural language.

In the following sections, we discuss the recent work done in language grounding and grammar

induction, and their application in understanding natural language commands.

2.2.1 Language grounding

In the field of psychology, referential uncertainty is often thought to be the most important

aspect of word learning. As described by Quine (1960), referential uncertainty is defined as

the problem of how words get their meanings, which is a general problem everyone faces when

trying to learn a new language. The space of possible meanings for a new word is infinite. A

word can be used to refer to anything from a physical object (e.g. book), a feeling (e.g. love), a

mathematical process (e.g. integration), etc. The language grounding problem can be thought

of as a subset of the referential uncertainty problem, where the space of possible meanings are

limited to concrete observable ones.
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We limit the space of possible meanings of a word to ones that can be measured using

the robot’s limited sensing modalities, such as objects’ shapes and colours, spatial relations,

peoples’ appearances, etc. The aim of language grounding is to learn the words used to refer

to each of these meanings. For example, learning that the word ‘red ’ refers to a particular

connected subset of the HSL colour space.

In computer science, Siskind (1996) was one of the earliest researchers to try and under-

stand how children ground their language to vision in a computational setting. His research

focused on understanding how children learn their native language, and how their language

is mapped to their visual representation of the world; however, he separated the learning of

language from learning the mapping of words to visual concepts. Following his research, one of

the earliest works to try and learn language grounding for robotics applications was a system

by Roy et al. (1999), their system was capable of learning audio-visual associations (basically

objects’ names) using mutual information criteria from recorded images and audio data. Several

robotic applications were developed subsequently, such as Steels (2001) where language games

were used to teach autonomous robots the meaning of words. Two pan-tilt cameras looking

at a white board containing coloured geometric figures were used as robots to learn the words

used to refer to colours and shapes through a guessing game. Further, Needham et al. (2005)

used language grounding as part of a system to teach artificial agents to play table-top card

games. The system observed two people playing the game, and recorded audio-video data of

how the game is played, and the names of the different cards, which were used to teach the

system how to play the game and interact with other players.

Researchers also used social learning to teach robots the language grounding in vision.

For example, the work by Steels & Kaplan (2002) “AIBO’s First Words” designed a language

grounding framework that enabled a robot dog, called AIBO, to learn the meaning of words

through social interaction. The learning commenced by presenting AIBO with a small object

while the teacher utters the object’s name; this provided the robot with the audio-visual data

needed to learn the language grounding. Later, the teacher presented the same object to AIBO

and asked “What is it?”. If AIBO answers correctly, the teacher says “Good.”, otherwise, the

teacher corrects AIBO by repeating the object’s name again. Following their work, Bleys et

al. (2009) developed a colour naming game for robots. The game was played with two humanoid
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robots, where one of them teaches the other the names of different colours by pointing and

uttering the names in a static environment. Guadarrama et al. (2013) focused on teaching a PR2

robot (2010) spatial relations through interacting with a human teacher. The gained knowledge

allowed the robot to execute linguistic commands with spatial prepositions, such as “Move the

cup close to the robot to the area in front of the plate and behind the tea box”. However, the

knowledge about language grammar and actions was provided to the robot beforehand to enable

the learning. Similarly, Lanbo She et al. (2014) implemented a system that can teach a robot

arm simple manipulation actions by having a dialogue with expert-users. The system grounded

words to sequence of predefined atomic actions using natural language. For example, to teach

the arm how to grab an object the following dialogue was used: Human: “Grab the blue block.”

Robot: “What do you mean by grab?” Human: “Open your gripper.” Robot: “Ok.” Human:

“Move to the blue block.” Robot: “Sure.” Human: “Close gripper.” Robot: “Alright then.”

Human: “Now you achieved the grab action.” Robot: “Ok, got it.”. Their system was able to

ground words to sequences of predefined primitive actions with the assumption that the robot

knows the objects and how to ask and answer questions when speaking to a user. Further, the

work of Spranger & Steels (2015) focused on teaching a robot about spatial relation’s utterances

in guided-learning interactions with a tutor robot. The tutor robot was equipped with a system

for producing English spatial phrases, and is responsible for guiding the language grounding

process by simplifying the challenges and complexities of utterances, providing feedback to the

student robot, and gradually increasing the complexity of the language to be learned. While

Spranger focused on robot teachers, Parde et al. (2015) focused on enabling non-expert users to

teach robots about object names using a game called I Spy : a guessing game where the spy says

“I spy with my little eye (object name)” and players have to guess the object the spy saw. In

their work, the player was replaced by a robot trying to learn object names by playing the game.

Their system filtered out unwanted words using a stop-words list in order to extract the key

words in the input sentences, which are used in language grounding and learning object names.

Hristov et al. (2017) presented a framework that exploits the pragmatics of human sensorimotor

behaviour to derive cues that enable the grounding of symbols to object’s colours and shapes.

A 3D eye tracking sensor was used to track the non-expert user’s gaze while performing a given

task such as “put the red cube on top of the yellow cube”. The 3D tracking sensor provided
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the robot with data needed to detect and track objects in the scene, as well as hints to which

objects were being described in the given input sentence since the users were more likely to

focus on them.

Researchers also used web-available descriptions and images to teach robots how to per-

form different tasks. For example, Beetz et al. (2011) implemented a system that used de-

scriptions from the wikihow website1 to teach a robot to make pancakes in their work “Robotic

Roommates Making Pancakes”. The descriptions included the procedure of how to make pan-

cakes. Examples of these descriptions included instructions like “1-Take the pancake mix from

the refrigerator”, “2-Add 400ml of milk (up to the marked line) shake the bottle head down for

1 minute. Let the pancake-mix sit for 2-3 minutes, shake again”, “3-Pour the mix into the

frying pan”, etc. To understand such instructions, the robot needs to link the steps to the

appropriate predefined atomic actions in its library and ground the abstract ingredient and

utensil descriptions with their corresponding objects in its environment. Similarly, Dubba et

al. (2014) presented a system that teaches a robot to arrange a casual dinner table. A PR2

robot learned to arrange cutlery and plates on a table, acting as a waiter. The learning was

achieved using web-available descriptions from the wikihow website2 in the form of a sequence of

instructions. For example, “1-Set a placemat on the table”, “2-Arrange your plate and napkin”,

“3-Place your silverware on the placemat”, etc. The descriptions were used to learn objects’

arrangements on the table using language grounding to vision.

In the field of robot navigation, Lauria et al. (2002) introduced a system capable of

teaching a vision based miniature mobile robots to navigate inside a miniature town. Their

system used natural language commands for learning, such as “take the second right after the

post-office”. The system learned the meaning of each word by grounding it to predefined

primitive procedures. Following their research, Huang et al. (2010) developed a supervised

system capable of guiding a drone in a 3D environment. The system used natural language

commands to learn from, such as “Fly past room 124 and then face the windows. Go up. Go

back down”. The system learned meanings of words by grounding them to previously labelled

actions and objects in the environment. Tellex et al. (2011) developed a system that grounds

1http://www.wikihow.com/Make-Pancakes-Using-Mondamin-Pancake-Mix
2http://www.wikihow.com/Set-a-Dinner-Table
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words and phrases to predefined objects (e.g. a truck or a door), places (e.g. a particular

location in the world), paths (e.g. a trajectory through the environment), and events (e.g. a

sequence of predefined atomic robot actions). Their system aimed to guide a forklift using

natural language commands, such as “Put the tire pallet on the truck”. Mutsaziek et al. (2013)

implemented a system capable of parsing natural language commands to actions and control

structures that can navigate a mobile robot in an office environment. The system learned the

meaning of words by grounding them to predefined location nodes, relations and actions in

a supervised probabilistic manner. For example, it grounded the word ‘left’ to a predefined

relation of the direction left. This enabled the robot of executing commands like “Go straight

down the hallway past a bunch of rooms until you reach an intersection with a hallway on your

left; turn left there”. Thomason et al. (2015) implemented an agent that expands its natural

language understanding incrementally from conversations with users. The system learned new

words by grounding them to predefined directory of people, objects and offices. Their system

assumed that a robot can have a conversation with users to ask about the meaning of the

unknown words. Hemachandra et al. (2015) presented a system that uses language grounding

techniques to understand navigation commands. Their goal was to enable a user of guiding a

wheelchair with voice commands, such as “Go to the kitchen that is down the hallway”. To do

so, the mapping between the given commands and the environment had to be learned. The

learning was achieved by grounding words to parts of a graphical model used to represent the

world map and actions. Barrett et al. (2017) presented a framework which supports grounding

the semantics of natural language in the domain of robot navigation. Their system focused on

learning meanings of nouns and prepositions from noisy data containing sentences describing

paths driven by a robot, such as “The robot went right of the table which is left of the chair,

then went in front of the chair, then went behind the table which is right of the chair”. The

gained knowledge was used to enable their robot of executing novel commands and drive in new

paths. However, they assumed predefined object types and actions to enable the learning.

In the field of robot manipulation, researchers used artificial neural networks to ground

language in robot actions. For example, Wermter & Elshaw (2003) presented a system based on

self-organising maps approach that learns to control a robot using language instructions. The

system takes as inputs the verb from the input sentence, and the sensory-motors data from the
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robot. A self-organising map is used to map these two inputs together to learn the meanings

of verbs in robot actions. However, they limited the language grounding to verbs.

In the works described above, the language grounding problem was simplified by using one

of the four following assumptions. The robot was assumed to have the knowledge of: 1-A stop

word list to filter out unwanted words, such as function words: a word whose purpose is to

contribute to the syntax rather than the meaning of a sentence, for example ‘do’ in “we do

not live here”. 2-The syntactic or semantic grammar rules, used to parse input sentences and

extract key words such as verbs, nouns, etc. rather than learning from raw textual descriptions.

3-A set of predefined atomic actions, spatial relations, or object classes that are used as the

space of possible meanings of language, rather than learning from raw vision data. 4-A teacher

that supervised the learning of language grounding and provides constant feedback to correct

any mistakes. These assumptions simplify the learning of language grounding and enables the

robot to focus on learning more complex concepts, such as making pancakes. However, in this

work, we focus on natural language acquisition itself, and present a novel technique capable of

acquiring semantic meanings of words and phrases from unlabelled linguistic and vision data.

We improve on the above mentioned works in a number of ways by tackling the same learning

problem using a more relaxed set of constraints. First, we assume less predefined knowledge is

available to the robot initially. For example, we do not assume having the knowledge of a stop

word list initially, or knowing the language grammar beforehand. Second, we learn the space

of visual meanings by clustering features in videos, as opposed to assuming a set of predefined

objects and colours, or having a list of predefined atomic actions that the robot knows of.

Third, we learn from real-world noisy data, allowing multiple objects to be present in the scene

during learning, and allowing for objects to be partially occluded.

2.2.2 Grammar induction

Having a working knowledge of language grammar is essential for understanding the meaning

conveyed by sentences, and developing our ability to express and respond to this meaning.

Grammar induction refers to the process of learning a formal grammar from a set of observa-

tions, usually as a collection of re-write rules or productions or alternatively as a finite state
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machine or automaton of some kind. Thus, constructing a model for the syntactic or semantic

structure of natural language.

Learning Grammar rules has been a long standing objective in linguistic and cognitive

studies. Researchers tackled the problem of how humans learn their grammar. The work of

Hudson-Kam and Newport (2005) led to the idea that children learn their languages based on

the frequency of the grammatical forms they hear. We adopt this approach and learn something

of the wording meaning and grammatical structure of imperative sentences and the way in which

this relates to objects, relations and actions depicted in video clips. However, it is worth noting

that our system does not claim to be cognitively modelling human language learning, even

though certain aspects of it may be cognitively plausible.

Researchers have tackled the grammar induction problem in a supervised manner to

enable their robots to understand natural language commands. The robots were provided

with input sentences along with their manually annotated grammar trees, be it syntactic or

semantic trees. For example, MacMahon et al. (2006) presented a system that learns to follow

verbal route instructions in a simulated world. The learning was achieved by inducing grammar

rules that parse the natural language commands into a predefined structure that the robot can

execute. The learning of these rules was performed in a supervised manner. The system used

the learned rules to execute new commands such as “With the wall on your left, walk forward”,

or “Walk to the further end of the hall”. Matuszek et al. (2013) used probabilistic combinatory

categorial grammars (CCG) presented by Steedman (2000) to parse natural language navigation

instructions such as “exit the room and go left” into a LISP-like tree representation that the

robot can understand and execute such as “(do-sequentially (take-unique-exit) (turn-left))”.

The grammar rules learned from the training data enabled their mobile robot of executing

new linguistic commands, provided that actions (e.g. turn), spatial relations (e.g. left) and

locations on the map (e.g. room) were predefined initially and known to the robot. Similarly,

Dukes (2014) learned how to parse natural language commands for manipulation tasks into a

formal representation named Robot Control Language (RCL): a tree semantic representation

for natural language commands. Each sentence is represented as an RCL tree, where leaf nodes

align to words in the corresponding sentence, and non-leaves are labelled with a predefined

set of categories that the robot can understand. Dukes used supervised grammar induction
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technique to enable the robot of understanding natural language commands in a simulated

world such as “place the red tetrahedron to on top of the blue and green tower”, provided that

colours, actions and spatial relations were predefined initially. Further, Wang et al. (2016)

learned how to parse natural language commands by learning semantic parsing technique in

a simulated world. The system is trained using a web-interface3 where users played a game

with a robot. The users provided the robot with commands such as “remove all red”, and

provided feedback until the robot succeeded in performing the given command. This generated

training data needed to learn to parse natural language commands into a plan which the robot

can understand and execute. However, their system assumed that object colours, relations and

actions were predefined initially to enable the learning of grammar rules.

Unsupervised learning techniques were also used to tackle the grammar induction prob-

lem from unlabelled sentences. For example, Chen and Mooney (2011) implemented a system

that learns to transform natural-language navigation instructions into executable formal plans.

The transformation from language to plans is achieved using a grammar parser that was trained

without using direct supervision. However, the parser was provided with natural language in-

structions such as “Place your back against the wall of the ‘T’ intersection. Turn left. Go

forward”, and their human-annotated plans that the robot can understand and execute such

as “Turn(), Verify(back:WALL), Turn(LEFT), Travel()”. Away from the robotics domain, re-

searchers have tackled unsupervised grammar induction from raw text inputs with the aim of

replacing supervised techniques. Unsupervised techniques are favoured over supervised ones

because of their ability to learn from unlabelled data. The process of annotating each sen-

tence with a grammar tree is a labour intensive task that hinders the learning from large

dataset. Also, labelled data is not necessarily available for all languages. Therefore, researches

focused on tackling the problem of unsupervised grammar induction. For example, Ponvert

et al. (2011) tackled the problem of unsupervised partial parsing, or unsupervised chunking of

sentences using probabilistic finite-state method. Their work focused on learning how sentences

can be parsed into smaller constituents by searching for repeated patterns in text. The work of

Søgaard (2012) focused on tackling the problem of unsupervised dependency parsing without

training. His system parses an input sentence using a combination of universal linguistic knowl-

3Interface: http://shrdlurn.sidaw.xyz
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edge predefined initially, and the page rank algorithm. Further, Shain et al. (2016) presented

a system that model the working memory limitations of young language learners in an unsu-

pervised manner. The system learned the grammar rules from raw-text, using unsupervised

hierarchical hidden Markov models. While unsupervised grammar induction techniques enable

learning from unlabelled data, their performance is usually significantly worse than those of the

supervised techniques. In this work, we present a novel technique capable of acquiring more

accurate grammar rules from unlabelled data by mapping language to visual features extracted

from video clips in a loosely-supervised manner.

Grammar induction techniques we also applied to model visual inputs. For example,

Siskind et al. (2007) presented a system capable of learning the hierarchical structure of an

image and its region using Probabilistic Context Free Grammar (PCFG). The hierarchical

structure of the image regions is used in image analysis and classification. In their work,

grammar rules were used to represent the spatial relations between the different regions in the

image. Similarly, Socher et al. (2011) introduced a max-margin structure prediction architecture

based on recursive neural networks. Their system was able to recover such structure both in

images as well as sentences. However, it did not aim to learn the mapping between language

and vision domains, but rather to show that the same technique can be applied successfully in

both domains to learn the structure of images and sentences independently. Other researchers

focused on using grammar to learn video structures. For example, Moore & Essa (2002) used

PCFG rules to recognize multi-tasked activities from videos illustrating a Blackjack card game.

However, the production rules describing all relations between the tracked events were manually-

defined and not learned. Further, Yang et al. (2015) presented a system capable of learning

cooking action plans from unconstrained video inputs. In their paper, the Viterbi probabilistic

parser (1997) was used to represent different cooking actions in the form of a hierarchical and

recursive tree structures.

Our work offers a novel loosely-supervised grammar induction approach from raw language

and vision inputs. Our approach is developed to parse sentences into grammar trees with

meaningful labels and probabilistic grammar rules. The learning of meaningful grammar rules

is enabled by the use of both language and vision pairs as inputs, where grammar rules obtain

their meanings from the vision domain. A detailed explanation of our approach is presented in
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Chapter 5.

2.3 Perception in Robotics

Understanding how robots perceive the world and their own movements is essential for ac-

complishing navigation and manipulation tasks. In this work, we process images and videos

acquired by cameras mounted on robots into predefined intermediate representations we call

visual features. The values of these visual features are measured and accumulated in an incre-

mental manner from recorded video clips. We then cluster these values into meaningful concepts

we call visual concepts: which are abstractions of the visual feature spaces generated by the

robot sensing modalities which carry a human-level meaning. For example, we consider the

Red-Green-Blue (RGB) space as a visual feature, while the red colour as a visual concept in the

RGB space. Ideally, we want our robots to be able to generate their own visual feature spaces,

providing them with the ability to learn about any visual concept. However, this remains an

ambition for the future.

We define a number of visual features and provide our robots with the ability to measure

them from recorded video clips. The visual features selection was biased towards the available

sensing modalities our robots have, and the nature of the objects present in the environment.

The features are classified into five categories. First, object related features that include object

colours, shapes, and locations. Second, human related features that include people’s look (or

faces) and their garments’ colours. Third, spatial features that include relative directions and

distances. Fourth, robot action features that include spatio-temporal graphs. Finally, human

activity features that include Spatio-temporal relations and graphs. The visual features are

presented in detail in Chapter 3.

The aim of our perceptual learning is to enable each robot to learn the unique visual concepts

in its environment given only the definition of the visual feature spaces. For example, we

provide one of our robots with the ability to detect people and extract features representing

their faces, with the aim of enabling this robot to learn the different people that work/live in its

environment. This reduces the amount of hard-coded initial knowledge significantly, and allows

our robots to learn new concepts incrementally without the need for a professional programmer
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to predefine these visual concepts.

The following sections walk through the available literature in perceptual learning in robotics.

We present state-of-the-art learning approaches in each of the five classes we define in this the-

sis, namely, object properties, people attributes, spatial relations, robot actions and human

activities. We also compare our approach against state-of-the-art systems where applicable.

2.3.1 Learning object properties

Researchers at the American Academy of Pediatrics (1993) suggest that children’s ability to

recognize different colours, sizes, shapes and textures improves around 18 months. It will be a

while longer before they can recognise basic shapes and colours, but most children can name

at least one by the age of 36 months. We aim to enable our robots of learning about object

properties such as object colours, shapes, etc., taking inspiration from how children learn about

objects in their environment. We tackle this problem in a loosely-supervised manner, using a

show-and-tell procedure; this is inspired by how children acquire knowledge of their everyday

physical world by interacting with their parents.

A number of researchers have tackled the problem of learning object properties for robotic

applications. One of the earliest works to tackle this problem in a robotic setup was the work

of Pfeifer & Scheier (1997). They showed that the problem of object categorisation based on

sizes was greatly simplified when the robot’s own movements and interactions were utilized.

In particular, a robot could grasp and lift small objects, push medium objects but not lift

them, and do nothing with large objects. Through this interaction the robot was able to learn

different object classes by interacting with them. Further, Roy et al. (1999) designed one of the

earliest robotic systems capable of learning object shapes from static images. He used a simple

background subtraction algorithm to detect objects along with various 2D contour features to

learn object shapes. The system was deployed on a small robot arm which enabled it to learn

different objects. Several robotic systems aiming to learn object properties were developed

subsequently. For example, Rusu et al. (2008) presented a framework capable of acquiring

location information of predefined objects in a room. Their system aimed at enabling robots

to acquire object positions when deployed in new environments, and thus allowing robots to
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perform given tasks in new places. Furthermore, Griffith et al. (2009) proposed a framework

that enables a robot to learn simple object categories such as identifying containers from non-

containers. Their proposed approach is based on the principle that robots should learn object

categories in their own sensorimotor experience. Their system was able to learn container/non-

container categorization of objects by observing the motion behaviour that follows throwing a

small block on top of the object. Similarly, the work of Kaboli et al. (2014) aimed at enabling

a humanoid robot of learning object properties by interacting with them. Their robot was able

to learn about textures and weights of different objects by sliding them against each other and

measuring the forces involved in the process. Also, Sinapov et al. (2016) implemented a system

capable of learning object properties such as weight, height, size, etc. Their robot learned

the object properties by measuring them using a set of predefined actions such as ‘pick up’ to

measure weight, ‘drop’ to measure sound and infer material type, ‘grasp’ to measure stiffness,

etc. Their aim was to enable a robot to arrange objects based on their various properties,

which is thought to be fundamental for human children to understand the property of numbers.

However, their system was provided with the knowledge of robot actions (e.g. pick up, drop,

etc.) needed to enable the learning of such properties.

In the works described above, the learning of object properties was enabled (made simpler)

by using one of the following assumptions:

– the robot was presented with a single object in the scene to learn from.

– a teacher provided feedback to enable and correct the learning of properties.

– the learning was performed in batch mode (not incremental), where the robot was provided

with a fixed-length dataset to learn from.

The main contribution we offer in the field of learning object properties is that we learn the

properties in an incremental loosely-supervised manner, without teacher’s supervision or feed-

back, with multiple objects present in the scene, and from real-world noisy data where objects

are partially occluded and viewed from different angles. We also combine the learning of object

properties with learning about other features such as spatial relations, robot actions, and at the

same time learn the words and phrases in natural language used to describe the learned object

properties. Hence, we build a framework the enables robots of bootstrapping their knowledge
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in language and vision.

2.3.2 Learning people attributes

To integrate in human environments, robots with collaborative/assistive human-oriented tasks

should be enabled to continuously learn about the people who inhabit these environments.

Researchers have tackled the problem of learning people’s attribute using different techniques.

For example, Berg (2004) presented a system that learns about names and faces from labelled

news images. The images were processed to find the different faces, and then rectified to correct

the face posture. The text (image labels) was processed to extract all names. For example,

“British director Sam Mendes and his partner actress Kate Winslet arrive at the London

premiere of ‘The Road to Perdition’, September 18, 2002 ”. These names were used as features

to improve the learning of faces. However, their learning approach was not incremental and

required processing of all data when a new image is added to the dataset. Further, Fukui &

Yamaguchi (2005) presented an approach to learn people’s faces using multiple face patterns

obtained from various views. By tackling the multi-view problem in face recognition, their

system was able to improve the recognition results. However, it required supervised training

of the faces. Recently, with the new development of deep learning techniques, researchers

formulated the face recognition problem into a deep learning framework. For example, Parkhi

et al. (2015) implemented a Convolutional Neural Network (CNN) to classify each individual

that appeared in a large dataset. The network was trained to identify a total of 2622 unique

faces that appeared in their 2.6 million images dataset. Their CNN implementation achieved

state-of-the-art results in face recognition. However, the supervised training of CNNs, and the

need for annotated data to learn from makes deep learning approaches less desirable for our

incremental and loosely-supervised framework for autonomous robots.

Not many researchers focused on learning people’s attributes using a mobile robot collecting

noisy, real-world and partially occluded data. Also, the works described above address this

problem mostly in a supervised and not incremental manner. We believe that the nature of

the learning should be incremental, as new people may join the environment where the robot

operates. Therefore, we designed our system to learn about people in an incremental loosely-
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supervised manner, and without the need for a teacher to correct the learning. We also learn

the names of these people using our language grounding framework.

2.3.3 Learning spatial relations

The recent advancements in robotics manipulation research are enabling robots of performing

a wide range of tasks, and allow them to move from carefully engineered to open and unknown

environments. This raised the need for a concise representation of a widely varying world.

For example, a robot may encounter objects in a wide variety of configurations. In order

for the robot to be able to manipulate these objects, it needs to understand the qualitative

relations between them. Qualitative Spatial Representation (QSR) offers a suitable answer to

this problem. QSRs also align well with how humans represent and describe the world, which

makes this representation more suitable for robots designed to interact with humans and learn

from them.

Researchers have defined a large number of qualitative relations. For example, the sur-

vey paper presented by Chen et al. (2013) shows that there exist numerous types of QSRs.

Also, an open-source library that encodes various types of QSRs was presented by Gatsoulis et

al. (2016a). For brevity, we will mention only the ones used in this thesis. Three QSRs are used

to represent human activities. First, the Qualitative Distance Calculus (QDC) presented by

Clementini et al. (1997) expresses the qualitative Euclidean distance between two points based

on predefined distance thresholds. A set of QDC relations can be used to localise an object or

a person with respect to reference landmarks. By observing changes in QDC relations, we can

model human activities. For example, we can use QDC to model a drinking action. First, a tea

cup is ‘far’ from the person’s face. Then, it’s ‘touching’ the face. Then, it’s back to being ‘far’,

These changes in relations are used to model human activities. Second, the Ternary Point Con-

figuration Calculus (TPCC) presented by Moratz and Ragni (2008) describes in a qualitative

way the spatial arrangement of a point relative to two others. That is, it describes the referent ’s

position relative to the plane created by connecting the two other points (which are referred

to as relatum and origin). Relations in TPCC are triples of 〈 { front, back }, { left, right,

straight }, { distant, close } 〉. Third, the Qualitative Trajectory Calculus (QTC) presented
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by Delafontaine et al. (2011) represents the relative motion of two points with respect to the

reference line connecting them, and is computed over consecutive timepoints. For two objects

o1, o2, it defines the following three relations (objects are abstracted to their centroids when

computing QSRs). : {o1 is moving towards o2 (symbol −), o1 is moving away from o2 (+), o1

is neither moving towards nor away from o2 (0)}.

Researchers have also tackled the problem of learning QSRs from observations. For example,

Galata et al. (2002) presented an unsupervised approach to learn spatial relationships between

moving objects. Using their approach, a system can learn to cluster distances and directions

of motion into a set of QSRs from unlabelled traffic videos of moving vehicles. The system

was able to learn different motion patterns between pairs of cars, and use these relations to

represent the different driving activities that occur in the videos such as overtaking, passing,

etc. Similarly, Rosman & Ramamoorthy (2011) presented a system capable of learning distance

and direction based QSRs but in a supervised manner. Their system takes as inputs segmented

3D point-clouds (i.e. the unique objects were manually defined) and extracts quantitative

measurements of distances and directions at the points of contact between objects, which are

clustered into different relations using k-means clustering presented by MacQueen et al. (1967).

These relations are then used to represent different spatial configurations between objects, such

as representing a tower of block. Also, Sjöö & Jensfelt (2011) presented a system capable of

learning functional spatial relations from a simulated world. The simulation is used to produce

static scenes with random objects placed in various configurations. A physics engine was also

used to simulate the interactions between these objects. Their system was capable of learning

five functional distinctions: effective support, support force, location control, confinement and

protection. However, their experiments were limited to simulated scenes with noise-free and

fully observable measurements. The work of Behera et al. (2012) presented a system that learns

distance and velocity qualitative relations. Their work aimed at monitoring the workflow of

assembling various products such as ‘hammering nails’ and ‘driving screws’. The learning

of QSRs was enabled by quantising distance and velocity measurements into a finite number

of states using a Hidden Markov Model (HMM). However, the objects types were known to

the system before hand by using Vicon markers on all key objects, including both wrists of the

participants. Further, Kunze et al. (2014) presented a system that bootstraps robot’s knowledge
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in QSRs in an office environment. The system learns the different relations (directions and

distances) by observing the relations between different objects on desks. These relations are

used to facilitate the object search task by narrowing the search space. For example, by knowing

that a computer mouse (a small object) is often placed close and to the right of a keyboard

(a bigger and easier to find object). Then the problem of searching for the computer mouse

becomes easier. Similarly, Boularias et al. (2016) implemented a system that learns QSR in

directions and distances but with the aim of improving robot navigation. Their system aims

to enable a mobile robot of understanding commands such as “Navigate around the building to

the car left of the fire hydrant and near the tree”. To understand such commands, the robots

need to have a working knowledge of spatial relations. Their system was able to learn different

relations such as “left”, “right”, “front”, “near”, etc. However, they assumed the objects were

known beforehand to enable the learning of spatial relations.

In this work, we present a system capable of learning QSRs from noisy real-world data,

along with learning about object properties and robot actions. We also learn to ground words

from natural language descriptions to describe these learned relations, which enable our robot

to understand natural language commands with spatial information such as “place the ball on

top of the red block”, or “place the apple in the bowl”.

2.3.4 Learning robot actions

Autonomous robots are becoming an important part of our society, whether an exploration

rover on Mars or service robot for the home. In order for these robots to operate successfully in

any environment, they need the knowledge of how to perform the different requested tasks. Such

knowledge can be provided by an expert. But, as robots become more available to non-expert

users, they will need to learn the different actions by observing and imitating their users.

In the literature, several approaches were developed to enable the learning robot actions

from non-expert users. For example, Calinon & Billard (2007) implemented a system that

enables robots of learning gestures by imitation. A user performs a demonstration of a gesture

while wearing motion sensors recording his upper-body movements. These recordings are then

used to learn each gesture using a Gaussian mixture model to model the motion. However, their
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system was only able to learn gestures which can not be generalised to actions manipulating

objects at different locations. Similarly, Pastor et al. (2009) implemented a system capable

of learning robotic motor skills from human demonstration. Their system learns movements

by learning a non-linear differential equation to represent and reproduce each movement. The

differential equations can be generalised to adapt to different locations by adapting a start and

a goal parameter in the equation to the desired position values of a movement. However, their

learned actions lacks the notion of object manipulations and focuses on primitive movements

only. Further, Ramirez-Amaro et al. (2015) presented a method that allows transferring skills

to humanoid robots based on observations of human activities. The robots obtain a higher-level

understanding of a demonstrator’s behaviour using semantic representations. However, they

simplified the vision problem by using the ArUco library to detect the AR marker on each

object.

Our work is focused on learning actions in robotic manipulation domain. The learning of

actions is enabled by the use of spatio-temporal graphs (Alomari et al. (2017b)). The use of

spatio-temporal graphs enables our robots to learn relatively complex activities such as ‘pick

up’, ‘move’, ‘push’, etc. by modelling the interactions between the arm and the objects, rather

than modelling the motion of the arm itself. This enables the robots to generalise to new objects

placed at different locations. A detailed explanation on how we learn robot action concepts is

presented in Chapter 3.

2.3.5 Learning human activities

A key factor for the success of autonomous intelligent robots, deployed in human populated

environments, is their ability to understand human activities. This allows for safer and more

effective interaction with humans. Researcher have tackled the learning of human activities

using supervised techniques. For example, Dubba et al. (2012) presented a system capable of

learning activity models in a supervised manner using inductive logic programming technique.

The system was able to learn from videos of an airport apron where events such as ‘loading’,

‘unloading’, ‘jet-bridge parking’, etc. took place. Similarly, Behera et al. (2012) implemented a

supervised system that learns to recognise the workflow of assembling products. Their system
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used learned spatial relations to represent the interactions between hands and objects in each

scene. An HMM was then trained to recognise these activities. Further, the work of Tayyub

et al. (2014) focused on learning and recognising complex human high-level activities in a

supervised manner by training an SVM. Their method was based on using both qualitative and

quantitative spatio-temporal features to capture the person-object interactions in each scene.

Some researchers tackled the problem of learning human activities in an unsupervised man-

ner. This allows robot to learn from large datasets, as no human annotation or supervision

is needed. For example, Sridhar et al. (2008) used spatio-temporal graphs to represent the

time series data for unsupervised learning of event classes from video clips. The activities were

modelled using a set of predefined qualitative spatial relations and temporal relations using

Allen’s intervals (1983). Both spatial and temporal relations were combined into graph struc-

tures called spatio-temporal graphs. Their system mines these graphs and use them as features

to represent and learn the different activities. Similarly, Duckworth et al. (2016b) presented a

system for unsupervised learning of human motion patterns in an office environment. The data

was collected using a mobile robot patrolling an office environment for over one month. Their

system used spatio-temporal graphs, similar to that presented by Sridhar et al. (2008), which

were used as features to learn the different motion patterns using k-means clustering. Further,

Duckworth et al. (2017) extended their unsupervised approach to model more complex human

activities. They collected data that included skeleton tracking of humans in a kitchen environ-

ment. The data was then used to learn complex activities such as ‘making tea’, ‘microwaving

food’, etc. in an unsupervised manner. The learning of activity models was achieved using

Latent Drichlet Allocation (LDA) technique. However, the learning was enabled by using a set

of manually annotated objects on the map such as ‘fridge’, ‘microwave’, etc.

To learn human activities, we follow the work of Duckworth et al. (2017), which I co-

authored. We learn human activity models in an unsupervised manner using LDA technique.

Also, we extend the work by learning from a set of discovered objects rather than manually

defined ones, along with learning words in language used to describe the learned activities using

our language grounding framework as presented in our work Alomari et al. (2017a).
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2.4 Summary

We tackle a number of research problems in an incremental and loosely-supervised manner.

First, can a robot acquire human-level visual concepts from its sensory-motor experience?

Second, can a robot learn the meaning of words by grounding them into the learned visual

concepts? Finally, can a robot learn about language grammar in a loosely-supervised manner

from language and vision data?

As presented in this chapter, researchers have tackled these questions using various tech-

niques and assumptions. The key contribution this work offers is that it aims to answer all

three questions concurrently. Our learning framework aims to learn about the visual world

and natural language at the same time without assuming one is provided to learn about the

other. For example, some researchers assumed their robots know about natural language and

are capable of having a conversations with a teacher to enable the learning of visual concepts,

such as learning about new objects or actions. Others assumed their robots know about the

visual world, and are capable of recognising objects or rooms in an environment to enable the

learning of natural language, such as learning to understand natural language commands and

grounding words to vision.

We aim to bootstrap a robot’s knowledge in both language and vision simultaneously. We

show that a robot can start with little hard-coded knowledge and can still learn about language

and vision. The following chapters walk through the details of how we achieve this goal. We

start by describing the learning of the vision domain in the next chapter.
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Visual Concepts

In this section we introduce our notion of visual concepts: abstractions of the feature spaces

generated by the robot sensing modalities which carry a human-level meaning. For example,

concepts might include a colour represented as a cluster of values in the HSL colour space (Hue-

Saturation-Lightness), or an object represented as a cluster of points in a 3D point cloud, or a

complex human activity represented as a probability distribution over spatio-temporal graphs.

We present in the following sections the robots, sensors and feature spaces used along with

the unsupervised methods employed to generate such concepts. Note that our visual concept

extraction framework does not rely on any particular robot or any specific sensors; rather it is

flexible to what the modalities of the robot can support.

3.1 Robots and Sensors

Four different robots are used to validate our learning approach of language and vision: (i) A

Scitos A5 mobile robot from MetraLabs (2016) (named LUCIE) running Robotics Operating

System (ROS) Indigo (2009) and the full STRANDS system (2016); (ii) A Baxter robot from

Rethink-Robotics (2013) (named LUCAS) that has two arms and two fingered grippers; (iii) A

custom made mobile manipulator by Sinapov et al. (2016) that uses the Segway Robotic Mobil-

ity platform (2004) and a 6-DOF Kinova Mico arm (2014) with a two fingered gripper as its end

effector; and (iv) A simulated 3-DOF robotic arm with a two fingered gripper in a chess-board

29
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simulation environment that I developed using the Python programming language presented

by Alomari et al. (2016a). The four robots are shown in Figure 3.1.

The robots are equipped with at least one sensor that allows mapping of the robots’ environ-

ments. For example, LUCIE (the mobile robot) has two Xtion PRO LIVE sensors (2014); one

over-head and one chest-mounted, while the Kinova mobile manipulator has one fitted on its

base. The Xtions allow safe navigation and collection of 640×480 RGB video streams in addi-

tion to depth point clouds of the environment. On the other hand, LUCAS (the Baxter robot)

is equipped with one chest mounted Kinect2 sensor (2015) that allows collecting of 1920×1080

RGB video streams in addition to high resolution depth point clouds of the environment from

the robot’s perspective. These sensors are used to collect the data needed to learn the visual

concepts. Note that the 4-DOF simulated robot arm has no sensors and is assumed to have

access to full observations from the environment.

Figure 3.1: From left to right, Scitos A5 mobile robot (LUCIE), Baxter robot (LUCAS), custom
built mobile manipulator, and the 4-DOF robot arm in a chess-board simulation.

3.2 Low-Level Processing of Input Data

The robots are used to collect instances (short video clips) of the environment, where each

instance contains at least one action performed by either a robot or a person, e.g. a person

printing or making tea, or a robot moving an object. Each recorded video clip is processed

to detect and track humans and objects in the scene. This helps the robot in identifying

and focusing on the interesting concepts in the environment and enables the learning of such

concepts. The details of how the robots detect and track both humans and objects in each

recorded video clip are given in the following two sections.
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3.2.1 Human pose estimation

The mobile robot LUCIE detects and tracks humans as they pass within the field of view of

its head-mounted RGB-D sensor. We define a human pose as the estimated 3D position of

the person’s 15 body joint locations at a single frame in a video clip. The 15 body joints are

the head, neck, torso, shoulders, elbows, hands, hips, knees and feet. For each body joint j,

its (xyz) Cartesian coordinates are inferred, and a human pose estimate comprises of 15 such

joints J = [j1, j2, . . . , j15]. To estimate the human pose, a real-time depth-only tracker built

on OpenNI (2016) is used along with a post-processing state-of-the-art human pose estimation

technique that uses convolutional pose machines (CPM) by Wei et al. (2016). For each human

detected by the robot, a sequence of human pose estimates over a time series of frames is

acquired, e.g. Figure 3.2 shows two pose estimates for a detected person at two different times

in a recorded video clip.

Figure 3.2: Examples of detected human poses, using inputs from the head-sensor of the mobile
robot LUCIE. The 15 body joints are comprised of the head, neck, torso, shoulders, elbows,
hands, hips, knees and feet.

3.2.2 Object detection and tracking

The robot constructs a 3D model of its environment by fusing RGB-D images into surfels:

surface elements used as rendering primitives introduced by Pfister et al. (2000), from which

the robot generates segments of “objects of interest”. As demonstrated by Schoeler et al. (2015),

an unsupervised segmentation algorithm grounded in the convexity of common human objects

can achieve state-of-the-art performance in extracting semantically meaningful object segments.
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We use the method presented by Bore et al. (2017) to segment the scene, which first splits the

scene into a collection of supervoxels: a polyhedral part of a three-dimensional digital image

introduced by Papon et al. (2013), over which an adjacency graph is formed. Then, weights are

assigned to the edges based on local convexity of the point cloud and colour differences between

segments. Finally, to segment the point cloud, iterative graph cuts are performed to separate

parts with concave boundaries and/or large colour differences. This results in a collection of

point cloud segments or objects of interest as illustrated in Figure 3.3.

In the mobile robot environment, it is important to concentrate attention on the objects

that are part of the observed human activities. First, walls, floors and ceilings are removed from

the list of objects of interest using a threshold on size and height. Second, the trajectories in

3D space of people in the environment are analysed to extract the locations where people stop

more frequently. The objects are scored according to their proximity to people’s hands in these

locations. The highest scoring objects are considered as the only objects in the environment.

In the manipulator robot environment, to concentrate attention on the objects that are part

of the observed manipulation activities, a “table-top” object detection technique by Muja and

Ciocarlie (2013) is used to drive the attention of the robot to the graspable objects placed on

a table within the robot’s reach. Once an object is detected in a video clip, the location of this

object is tracked across all remaining frames using a six dimensional particle filter presented by

Klank et al. (2009). The six dimensions are the three x, y, z location and the three r, g, b colour

values of each pixel in the object segment.

Figure 3.3: Processing of 3D data on the robot. The environment observations are fused into a
3D map and segmented. (a) RGB image of the scene, (b) segmented surfel map, or the objects
of potential interest.
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3.3 Concept Extraction

Concepts are learned automatically by clustering the low-level sensory input of each of the

sensor modalities of the robot after an appropriate encoding. This clustering operation results

in a collection of classes that are candidate concepts within each feature space. Because we

assume no pre-knowledge of the structure of the sensor feature spaces, we employ probabilistic

modelling techniques to each feature space independently to elicit meaningful classes that are

supported by the observed data. These classes are used as our candidate visual concepts and

will later be used to learn the mapping between natural language and vision.

We differentiate between two kinds of visual concepts, (i) simple concepts: ones that can

be detected in a single observation. For example, objects are simple concepts that can be

segmented from 3D point clouds using geometrical and textural cues as per recent literature by

Bore et al. (2017). Similarly, concepts like colours can be represented as Gaussian components in

a Gaussian Mixture Model over the HSL space. On the other hand, (ii) complex concepts: ones

that manifest over longer sequences of observations. For instance, temporally-extended human

activities and robot actions are examples of complex concepts. For these, a more elaborate

encoding and more sophisticated clustering mechanism are needed as per recent literature by

Duckworth et al. (2016a; 2017). For human activities, the robot first abstracts each observed

human pose sequence using a qualitative representation and obtains clusters using a hierarchical

Bayesian model, Latent Dirichlet Allocation (LDA) presented by Blei et al. (2003). It translates

the detected pose sequence into a relatively small number of logical spatial relations that can be

used to qualitatively describe the interactions taking place between the person and the objects

in the environment. The topics recovered from this process are considered human activity

concepts which the robot learns and grounds to words in natural language.

Our visual concept extraction framework is demonstrated by extracting five kinds of con-

cepts from raw data obtained by deploying four robots in different environments. The five

visual concepts are; (i) Human related concepts: ones used to represent peoples faces and the

appearance of their garments, (ii) Object related concepts: ones used to describe object proper-

ties such as object’s shape, colour and location on a table, (iii) Spatial relation concepts: ones

used to represent spatial relations between pairs of objects like the relative distance and di-
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rection between them, (iv) Robot action concepts: complex concepts (i.e. temporally extended

ones that require more elaborate encoding) used to represent the actions such as object lifting,

pushing and moving performed by the different robotic manipulators used in this thesis, and

finally (v) Human activity concepts: complex concepts used to represent various human activ-

ities from walking through a door to preparing a meal observed/recorded by the mobile robot

LUCIE. In the following sections, we introduce each of the feature spaces used in this thesis

and demonstrate how robots cluster observations in each of them to obtain candidate visual

concepts that model their environments.

3.3.1 Human related concepts

Only LUCIE (the mobile robot) was used to observe and learn from humans. By deploying

LUCIE in a human populated environment, we aim to learn about the people that live or work

there. This is achieved by processing each detected person to extract facial and colour features.

The aim is to use the facial features to learn people’s names by finding the different (unique)

faces in an environment, and to use the colours of their clothes to learn people’s garment

description.

Faces

Recent experiments in child development by Turati et al. (2006) have shown that even one

to three day old babies are capable of distinguishing between known and unknown faces. So

how hard could it be for a mobile robot fully equipped with RGB-D sensors? One of the

key challenges in this task is the variation in multiple viewpoint observations obtained for the

same person by the mobile robot. Fukui & Yamaguchi (2005) tackled the multiple viewpoint

face recognition problem using a supervised technique, while Berg (2004) learned about names

and faces from labelled news data in a supervised setting. We tackle the learning of names

and faces in an incremental and loosely-supervised setting, from a noisy real-world dataset

obtained by a mobile robot patrolling in an office environment where faces can be partially

occluded and viewed from different angles. To learn and recognise people’s faces, a small patch

around the location of the head joint is automatically cropped from the RGB visual feed for
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every person detection, the head joint is estimated using the human pose convolutional pose

machine in 3.2.1. The presence of a face in the cropped images is detected using a cascade of

boosted classifiers with Haar features presented by Lienhart & Maydt (2002) along with the

OpenCV generic face model. Then, the Eigenvalues for the nf most prominent ‘Eigenfaces’ are

extracted as presented by Turk and Pentland (1991). This transforms a face instance into a

much-smaller nf -dimensional data point. Then, we fit a Gaussian mixture model (GMM) in

that space with an optimal number of components selected in an unsupervised manner using the

Bayesian Information Criterion (BIC) by Posada and Buckley (2004). The resulting Gaussian

components are used as candidate visual concepts to represent different people that the robot

encounters in its environment, which facilitate the grounding and learning of language and

vision (i.e. learning to recognise people and their names). Examples of face clusters found by

LUCIE are shown in Figure 3.4.

Figure 3.4: Examples of four face clusters found automatically using GMM and BIC techniques,
with the averaged (mean) face shown in the center of each.

Colours

The robot learns about people’s description by observing the colours of their garments. The

values of the upper and lower garment’s colours of each person detection is extracted and then

clustered into candidate visual concepts. The colours of the upper and lower garments are

extracted from the visual feed using the human pose estimate 3.2.1, where the colour of the

upper garment is estimated by the average of sampled pixel colours from the triangle of the

shoulders and torso, and the colour of the lower garment is sampled from the triangle between

the torso and knees, as shown in Figure 3.5 (left). The clustering is achieved by fitting a

Gaussian mixture model. The number of Gaussian components is selected automatically using



36 CHAPTER 3. VISUAL CONCEPTS

the BIC. The extracted colours are projected into a single Hue-Saturation-Lightness (HSL)

feature space where they are clustered. Using the HSL feature space as opposed to using RGB

increases the robustness of colour recognition under varying lighting conditions. Examples of

six colour clusters extracted by our mobile robot LUCIE are shown in Figure 3.5 (right).

Figure 3.5: Left: defining upper and lower garments using human pose estimate 3.2.1 (Best
viewed in colour). Right: examples of six different colour clusters with the averaged (mean)
colour shown in the center of each cluster.

3.3.2 Object related concepts

A number of studies by the American Academy of Pediatrics (1993) suggest that the human

child’s ability to recognize different colours improves around 18 months, the same time s/he

begins to notice differences and similarities in size, shape, and texture of different objects in the

environment. It will be a while longer before s/he can recognise the basic shapes and colours,

but most children can name at least one by the age of 36 months. We tackle the learning

of object properties (e.g. shape, colour, and location on a table) and the words describing

these properties in natural language, while keeping the cognitive plausibility of our learning

framework in mind. A number of studies on language acquisition in human infants such as

Piaget (1954), Berlin and Kay (1969), Rosch and Mervis (1977) and Bowerman (1996) have

suggested that children come to develop considerable cognitive understanding about the objects

they encounter in the prelinguist period of their lives. In other words, their studies suggest that

we come to learn about object properties before we learn the words used to describe them

in natural language. It should be noted that this work does not claim to be modelling how
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humans learn about objects in their environments, but rather it is inspired by how we learn

about objects, and it also mimics certain aspects of this complex learning process. Specifically,

we assume that our robot has no pre-given knowledge about the number of unique concepts

in each feature space or the words used to describe them in natural language (e.g. the basic

colours or what they are called in English or any other language), and we also assume that the

robot learns about the object properties before it learns the words used to describe them as

suggested by the language acquisition studies in human infants. In the following sections, we

describe in detail the unsupervised techniques used by the robot to acquire object-related visual

concepts from raw visual data. For each detected object, we aim to learn about its properties

(shape, colour, and location on a table). This is achieved by clustering the values in these

continuous feature spaces into a number of candidate visual concepts. This set of features is

not intended to be exhaustive, but rather to demonstrate our approach. Other features could

be easily added, such as size and texture of objects.

Shapes

To learn and recognise the different objects found in the environment, the robot examines the

“objects of interest” extracted from the 3D model of the environment using the unsupervised

segmentation techniques described in §Objects detection and tracking 3.2.2. Each segmented

object is processed to extract features describing/representing its shape. We use the fast point

feature histogram (FPFH) presented by Rusu (2009) for this purpose. The FPFH is a multi-

dimensional histogram of features which describe the local geometry around a point p in a 3D

point cloud, that is scale and view invariant and copes very well with different sampling densities

or noise levels presented in the recorded point cloud. Examples of FPFH values for four objects

in a point cloud are shown in Figure 3.6 (left). FPFH is used to generate a 33 bin histogram

of features for every detected object of interest, the bins are basically counts that measure the

angles between the normal vector of point p and the normals of its k nearest neighbouring

points. This technique is shown to work well in representing various table-top objects in the

literature by Rusu (2010) and Rusu et al. (2010). Once the FPFH values are computed for

all objects in the scene, they are projected into one feature space where each value represent

a single datapoint in that feature space. Then, we fit a Gaussian mixture model in that space
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with an optimal number of components selected unsupervised using a Bayesian Information

Criterion (BIC). The resulting Gaussian components are used as candidate concepts to represent

unique shapes/objects in the environment. Examples of such clusters from the Baxter robot

environment are shown in Figure 3.6 (right).

Figure 3.6: Left: Examples of Fast Point Feature Histograms for four objects in a point cloud.
Right: Examples of two different object clusters with the averaged (mean) values of each of the
33 bins of FPFH shown in the center of each cluster.

Colours

We aim to teach our robot about the basic object colours observed in its environment, similar

to how we learn about human garment colours in 3.3.1. The robot examines the segmented

objects detected in the environment (the “objects of interest”) to extract their colour values. For

each detected object in a scene (a recorded video clip), we measure the HSL (Hue-Saturation-

Lightness) values of every pixel in the object segment at every frame. The values extracted

from each video clip are projected into a single HSL feature space and clustered using GMM

to obtain the unique concepts, i.e. unique colours. The number of components is selected

unsupervised using BIC technique, similar to how we learn garment colours in 3.3.1. The only

difference between object and garment colours, is the way we measure the colour values. In

object, we measure the colour value for every pixel in the object segment, while for garments,

we define an upper and lower triangles as shown in Figure 3.5.
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Locations

To learn and recognise the different canonical locations on a table (e.g. centre of the table, top

right corner), we measure the x,y,z location of the centre of each object segment. The mea-

surements are taken at every frame in a video clip, and the measured values are projected into

a single x,y,z feature space, where the location values are clustered into Gaussian components

(unique locations on a table) using GMM. The number of components is selected unsupervised

using a BIC.

3.3.3 Spatial concepts

Human children as early as three years old are capable of distinguishing a number of basic spatial

relations such as telling “left” from “right”, and “in” from “on”, and most children develop a

firm grasp of such spatial relations by the age of seven or eight. As they get older, they can do

more complex tasks that involve more complex spatial relations according to Bowerman (1996).

We take a cognitive approach to teach the robot about a number of simple pair-wise spatial

relations by first extracting the spatial concepts from raw visual data, then grounding words

to these concepts as suggested by language development in human infants literature such as

Piaget (1954) and Bowerman (1996). For every pair of detected objects in a scene, two pair-

wise spatial relations are computed: Euclidean distance, and relative direction (azimuth and

altitude angles). The robot is assumed to start with no pre-given knowledge in any of these

feature spaces, e.g. the number of concepts in any of these relations, or the language used to

describe them. In the following sections, we describe how the robot extracts and clusters the

values of these relations from raw visual data.

Euclidean distance

To teach the robot about relative distances, for example near and far, the Euclidean distances

between every pair of detected objects (the objects of interest from 3.2.2) in the scene are

extracted at every frame, distance : object × object → R; distance(o1,o2) gives the Euclidean

distance between the centroids of object o1 and object o2. Once the values are measured between

all pairs of objects at every frame in the scene, they are clustered into Gaussian components
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using GMM, and BIC to select the optimal number of components. These Gaussian components

represent the candidate spatial concepts in the distance feature space, and are used along with

other extracted concepts to teach the robot about language and vision. We limit the learning

to simple distances as opposed to learning comparatives and superlatives too, like (further,

furthest), (nearer, nearest), etc. as learning such concepts requires a more complex notion of

logic that we do not assume is innately provided to our robot.

Relative direction

To teach our robot about relative directions, e.g. to the right of and on top of, we use the

horizontal coordinate system to measure the azimuth and altitude (or elevation) angles between

every pair of detected objects in the recorded scenes at every frame, direction : object×object→

[0, 360) × [0, 360); dirction(o1,o2) gives the azimuth and altitude angles from the centroid of

object o1 to the centroid of object o2 as shown in Figure 3.7 (left). This measurement is

applied on all pairs of objects in the scene. The observation plane from which the altitude

angle is measured is assumed to be the table plane, and the north direction from which the

azimuth angle is measured is assumed to be the robot’s heading as shown in Figure 3.7 (right).

Once the values are measured between all pairs of objects, they are clustered into Gaussian

components by fitting a GMM, and BIC to select the optimal number of components. We

assume that the computation of the azimuth and altitude angles is dependent on the point

of view of the observer (the robot) as we do not assume the individual objects have a main

or principal axis or a front face to compute these angles from. Also, we limit the learning to

pair-wise simple directions as opposed to learning superlatives too, such as rightmost, leftmost,

etc. as learning these concepts require a more complex notion of logic.

3.3.4 Robot actions

We are interested in learning about the concepts in the robot’s environment, and also about

concepts related to the robot itself. Our robot is assumed to start with no given knowledge

regarding what it can or can’t do and what is worth doing. For example, the robot does not know

if pushing an object is a useful action that is worth learning. To learn such concepts, i.e. robot-
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Figure 3.7: Left: The horizontal coordinate system uses the azimuth and altitude angles to
measure the relative direction between two points in 3D space. Right: Utilizing the horizontal
coordinate system to measure the relative directions between pairs of objects, the red arrow
defines the “north” of the scene from which the azimuth angle is measured, while the table
defines the plane to measure the altitude angle.

action concepts in a table-top setup, the robot is controlled by volunteers to demonstrate how to

perform different table-top tasks in a loosely-supervised manner. The term loosely supervised

refers to the kind of learning that requires the videos and sentences to be temporally aligned

beforehand, which is more suitable for teaching infants about basic concepts such as colours or

shapes. A fully unsupervised system would be able to learn from longer non-segmented videos

and documents (i.e. be able to temporally segment and align long videos and documents), which

remains an ambition for the future. The loosely-supervised teaching of robot-action concepts

happens in the following way; if we ask the robot to move object A into object B, a volunteer

would drive the robot arm using a joystick to perform this action while the robot records

the changes in the environment. The joystick controls the velocity of the robot arm1. Using

the recorded videos, the robot learns about the different actions using three processes: First,

encoding the visual world into a number of predicates using the extracted visual concepts;

Second, abstracting the changes in the visual world using “spatio temporal graphs”; Third,

mining these graphs to obtain sub-graphs that represent the different objects, relations and

actions. In the following sections, the learning of robotic actions is explained by describing

each of these three steps in detail.

1Code and details are available in the github repository https://github.com/OMARI1988/baxter pykdl
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Visual world encoding

In order to teach the robot about actions, we first have to represent the objects and relations

that are involved in each action. This is enabled using the extracted object concepts (colours,

shapes and locations) and spatial concepts (relative directions and distances) shown in sections

3.3.2 and 3.3.3 respectively. Each video clip is processed separately to extract the unique spatial

and object related concepts, which are used to represent the state of each object and spatial

relation at every frame in the clip. The representation is made using a collection of predicates

of the form: object-concept(object) for object properties; and spatial-concept(object1, object2)

for spatial relations. To extract these predicates, first, each detected object is assigned a unique

number (an id = 1, . . . ,m) while the robot gripper is assigned a unique id = GR, and each

visual concept is assigned an internal symbol, e.g. the cluster representing the red colour is

colour1, the cluster of the cube shape is shape1, the cluster of the far distances is distance1
2,

etc. Each internal symbol holds as a predicate on the identity of the object that has that

sensory value in that dimension, which is decided using the Mahalanobis distance introduced

by Mahalanobis (1936). The Mahalanobis distance dM shown in Equation 3.1 measures the

distance in an nd dimensional feature space between an observation X = {x1, . . . , xd} and a

multi-variant Gaussian distribution G with a mean µ = {µ1, . . . , µd} and an d × d standard

deviation matrix Σ. The Mahalanobis distance measures how many standard deviations away

X is from the mean of G. The distance is equal to zero if X is at the mean of G, and grows as

X moves away from the mean.

dM (X) =
√

(X − µ)TΣ−1(X − µ) (3.1)

The Mahalanobis distance provides an indication of whether the observation X belongs to

the distribution G or not. The observation X in our case is a measured value of an object

property (colour, shape, location) or a spatial relation (direction, distance) at a single frame

in a video clip, while the distribution G is an extracted Gaussian component that represent

an object or spatial visual concept. Using this distance measure we can decide which of the

2Note that the robot does not know the words colour, shape and distance specifically, the features are named
feature1, feature2, etc. The words are only used for the ease of explanation to the reader.
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concepts (e.g. shape1, distance1, etc.) holds as a predicate for which objects in the video clip

by finding the minimum distances between observations and concepts in each feature space.

For example, in a video clip where there exists an object with id = i, and its shape value

is closest to the visual concept shapej . Then, we say that the visual concept shapej holds

as a predicate for object i in that particular frame. This is achieved by adding the predicate

shapej(i) to the list of predicates at that frame, the same applies for the other object properties

and spatial relations. An example from the LUCAS robot dataset is shown in Figure 3.8 where

the generated predicates for each object property and relation are added to the figure for that

particular frame. This process is repeated for every frame in a video clip to encode the visual

world and represent each object and relation at every frame in the video clip. The next step in

learning robot-action concepts is to represent changes in object properties and spatial relations

using spatio-temporal graphs. Note that the changes will always relate to locations, directions

and distances in the datasets used in this thesis. However, the same approach can be applied

to changes in other features such as shapes when assembling parts to create an object with a

new shape, or colours when painting an object with a different colour.

Figure 3.8: Encoding the visual world into a list of predicates. An example showing LUCAS
picking up an apple. Seven frames are shown along with their encoded predicates printed in the
boxes below. In this video, there exist two location concepts (L1=initial gripper location, and
L2=initial apple location), one shape concept (S1=apple shape), one colour concept (C1=red),
one direction concept (r1=above), and two distance concepts (d1=far, and d2=touch), along
with the two predefined gripper states (Open, and Closed). The change in a predicate value is
indicated with red in the boxes. The change in value means that the object property or relation
has now a smaller distance with a different concept in this frame. Using these predicates the
robot now has an internal representation of the visual world and how it changes at every frame.
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Spatio-temporal graphs

Spatio-temporal graphs are Directed Acyclic Graphs or DAGs (1975) comprising of three layers.

These graphs were used in the literature to model human activities as presented by Sridhar et

al. (2010a; 2010b), Gatsoulis et al. (2016a) and Duckworth et al. (2016b); an example of these

graphs is shown in Figure 3.9. The three layers of the spatio-temporal graphs are: (1) the

object layer: used to represent the objects in the scene with a single node per object, (2) the

spatial layer: used to represent the Qualitative Spatial Representations (QSRs) between pairs

of objects with a single node per spatial relation, and (3) the temporal layer: used to represent

changes in spatial relations using Allen’s Interval Algebra (1983) which comprises of thirteen

basic relations between time intervals that are distinct, exhaustive, and qualitative.

Figure 3.9: Spatio-temporal DAGs representation. (top-left): two object o1 and o2 moving away
from each other with every frame. (bottom-left): the QSRs between the two objects at every
frame using Region Connection Calculus 5 by Cohn and Gotts (1996) with relations Proper-
Part (PP), Partially-Overlapping (PO) and Distinct-Regions (DR). Three intervals (PP, PO,
DR) are generated for this video, where in each interval a different QSR holds between o1 and o2.
(right): the spatio temporal DAG for the two moving objects, the temporal relations between
the QSRs using Allen’s Interval Algebra (1983) the relations are meets (m) and before (<).

We extend the spatio-temporal graphs in two ways: First, more object properties and spatial

relations are encoded into each layer of the graph structure to allow for richer and more complex

representation of the scene. Second, our DAG uses extracted object and spatial concepts that

the robot learns by clustering the video clips as opposed to predefined ones such as Region

Connection Calculus 5 (RCC5) by Cohn and Gotts (1996) in the example shown in Figure 3.9.

In our spatio-temporal DAGs, we abstract the temporal changes in the world into states, where

each state represents a constant qualitative configuration of the visual world. This final step

helps the robot in abstracting the changes in the environment into a sequence of states that can

be executed once observed, which enables the robot to repeat/learn the observed actions. An
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example demonstrating our graph representation is shown in Figure 3.10. In this example, we

extend the one shown in Figure 3.9 by allowing object properties to change in the video, e.g.

the colour property of object o1 is constantly changing from white to grey through the video.

Also, we use learned distance concepts to replace predefined RCC5 relations.

Figure 3.10: Extended DAG representation for two moving objects with changing properties:
(top-left) two objects o1 and o2 moving away from each other, and object o1 is changing its
colour from white to grey. (bottom-left) this video has two colour concepts (C1=white, and
C2=grey), and three distance concepts (d1= touch, d2=near, and d3=far). The three rows
show the values of object colours (o1, o2) and distance (D) at every frame, forming a number
of intervals. By splitting the intervals vertically whenever a change occurs in any of them, we
generate a sequence of states. Four states are generated for this video clip, where each state
represents a constant qualitative configuration of the visual world. (Right) the extended DAG
representation for this video clip showing the four states.

In our extended DAG representation shown in Figure 3.10: at any given time in a video

clip, the state of the visual world is represented as a directed acyclic graph (DAG) with two

layers: object and relational layers, while the temporal layer is discarded and replaced with

the use of a sequence of states. The object layer is used to represent the objects in the scene,

where each object is encoded with one node along with object property nodes connected to it,

e.g. colour, shape, location, etc. The relational layer is used to represent the spatial relations

between pairs of objects, where the relations are encoded with a relational node Ri,j between

objects i and j, along with relational feature nodes connected to it, e.g. directions, distances,

etc. In Figure 3.10, the visual world is represented with a single object property (colours) and

a single relation (distances). This video contains two colour clusters (C1=white and C2=grey)

and three distance clusters (d1=touch, d2=near, and d3=far). The value of each property node

at each frame is decided using the generated predicates presented in the previous section §visual
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world encoding, which is the internal symbol of a visual concept. For example, in the first frame

of the video clip in Figure 3.10, the object o1 is represented with the node o1 along with a colour

node with a value of C1. Similarly, object o2 is represented with node o2 and a colour node

with value C2, while the relation between objects o1 and o2 is represented with the node R1,2

and a distance node with value d1. By omitting consecutive repetitions of identical DAGs,

i.e. consecutive frames that have the same states of the world, we obtain a sequence of unique

DAGs that represents the video clip. In other words, a new DAG is used to represent the state

of the world whenever a node changes label from one visual concept to another. We will refer

to each of these DAGs as states, since they describe constant qualitative configurations of the

visible objects. The video clip in Figure 3.10 contains four states, each of which has a unique

DAG that describes a different constant configuration of the visual world.

An example of our graph representation for a simple “pick up” action performed by LUCAS

(the Baxter robot) is shown in Figure 3.11. The object node corresponding to the gripper is

distinguished and is special as it is assumed to form a particular pre-known object type that has

only the location and the state feature nodes connected to it. The location feature node of the

gripper is similar to the object one, i.e. assigned a location concept, while the state node can

be either Open or Closed to indicate the state of the gripper. The top part of Figure 3.11 shows

an input video clip where the Gripper (GR) approaches the Apple (id=0) and picks it up. In

this video, all visual features remains constant except for the location and distance features as

was previously shown in Figure 3.8. Note that these concepts were not given to the robot, but

learned as described previously in §Object related concepts. The gripper and the apple tracks

in the top part of the figure are shown with different colours (blue and red) based on which

location concept the track is closest to. The distance between each track and location concept is

measured using the Mahalanobis distance and the value of the track is assigned with the closest

concept (L1 or L2). The second part of Figure 3.11 shows a time bar (interval representation)

for each object and relation in the scene. The third part (States) shows how a new state is

created for every change in a visual concept. A total of four states are created to represent this

input video clip, i.e. four states are needed to represent the “pick up” action if the robot arm is

positioned directly above the object. Using this extended DAG the robot now has an internal

representation to model and learn the different actions. Note that the training data for these
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actions is collected by asking volunteers to drive the robot arm to perform a given task while a

camera records the changes in the environment. The next step is to mine this graph structure

into sub-graphs to represent the different objects, relations, and actions.

Figure 3.11: Extended DAG representation for a “pick up” action performed by LUCAS com-
prising of four states. In the first state (state-1) the Gripper is Open, and both Gripper and
Apple are at different locations and are far from each other, hence their location nodes in the
extended DAG representation are assigned different concepts (L1 and L2), and their distance
node is assigned with the far distance concept d1. In state-2, as the Gripper approaches the
Apple, it gets close enough to the Apple that its location node changes label from L1 to L2.
In state-3, the distance relation between the two objects gets changed to d2=touch and the
Gripper closes its fingers and change its state to Closed. In the final state (state-4) as the
gripper lifts the apple up, the position of both objects become closer to the initial location of
the gripper (L1), hence both location nodes switch labels from L2 to L1. Note that the nodes
are coloured with grey and contain the gripper and apple images for expository purposes only.
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Extracting concepts from spatio-temporal DAGs (graphlets)

The principle we use for learning the mapping between language and vision, i.e. bootstrap-

ping the robot’s knowledge in both natural language and perception, is to seek frequent co-

occurrences of words and sub-graphs extracted from the spatio-temporal DAG of each video

clip. The idea is to relate words to fragments of the visual representation of the world. Ideally

we would like to perform the learning on all possible sub-graph structures, but this remains

an ambition for the future. In this thesis, we steer the learning towards (1) object properties,

by extracting all connected sub-graphs involving objects nodes and their properties, (2) spatial

relations between pairs of objects, by extracting all connected sub-graphs from relational nodes

R and their properties, and (3) robot actions, by extracting sequences of sub-graphs that con-

tain the gripper, the moving object, and the relational nodes that connects the gripper node

with this object node. We will refer to these sub-graphs as graphlets, where each graphlet has

at least one connection node (denoted with c) that is used to connect graphlets together. Con-

necting different graphlets together enables the robot to reconstruct a complete spatio-temporal

DAG. This ability will be used later to enable i) the execution of commands, ii) learning of

words’ meanings, and iii) learning grammar rules. The generated graphlets from the “pick up”

example are shown in Figures 3.12, 3.13, and 3.14. The extracted robot action graphlets are

used as templates for the different actions that the robot observes. These action graphlets can

be joined with other object and relational graphelts to assemble a full DAG that the robot can

understand and execute. For example, the pick up action graphlet learned from the previous

example can be joined with any combination of object property graphlets to pick up that object.

Figure 3.12: All object property graphlets extracted from the DAG in Figure 3.11. From left
to right the graphlets represent the initial location of the apple (L2), initial location of the
gripper (L1), apple shape (S1), apple colour (C1), and combinations of these concepts. Note
that the connection nodes (c) are highlighted with grey for clarification purposes only.
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Figure 3.13: All relational graphlets extracted from the DAG in Figure 3.11. From left to right
the graphlets represent the far distance (d1), touch distance (d2), above direction (r1), and
combinations of these concepts. Note that the connection nodes (c) are highlighted with grey.

Figure 3.14: The action graphlet extracted from the pick up example in Figure 3.11. Note
that only one action graphlet is extracted from each DAG, i.e. the four states are part of
a single action graphlet. In this action graphlet, the gripper starts at state-1 with an Open
state, a different location concept than the object, also above (r1) and far away (d1) from the
object. At state-2 the gripper changes its location to be the same as the object. At state-3 the
gripper touches the object (d2) and closes its gripper. Finally, at state-4 the gripper carries
the object to its initial location. Note that the property nodes 1 and 2 are used to signify
two different location concepts, but any two locations can be integrated here by connecting a
location graphlets. The connection nodes (c) are highlighted with grey.

3.3.5 Human activities

To learn temporally-extended human activities, the pose of humans within the environment

is detected and tracked (as explained in section 3.2.1) along with the positions of the learned

objects of interest (as shown in section 3.2.2). Then, the observations are encoded into a

number of qualitative spatio-temporal abstractions as presented by Duckworth et al. (2017).

This encoding condenses noisy observations of arbitrary spatial positions into semantic low-

level qualitative descriptors. This allows the system to compare observations based upon key
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qualitative features and learn common patterns in an abstracted space, instead of their metric

positions which can arbitrarily differ. For example, in a “making coffee” activity, the exact

spatial position of a person reaching for a mug is not as useful for learning the activity as a

qualitative representation of a hand approaching a mug.

We introduce the Qualitative Spatio-temporal Representations (QSRs) used by Duckworth

et al. (2017) to encode detected pose-object sequences, and computed by a publicly available

ROS library by Gatsoulis et al. (2016a; 2016b) which I co-authored. A QSR is an abstraction

from exact quantitative observations in a particular feature space into qualitative states that

hold between the human’s pose and objects in the environment. The three representations used

are: First, Ternary Point Configuration Calculus (TPCC) by Moratz and Ragni (2008) which

qualitatively describes the spatial arrangement of a point relative to two others. That is, it

describes the referent ’s position relative to the plane created by connecting the relatum and

origin. Relations in TPCC are triples of 〈 { front, back }, { left, right, straight }, { distant,

close } 〉. Second, Qualitative Trajectory Calculus (QTC) by Delafontaine et al. (2011) which

represents the relative motion of two points with respect to the reference line connecting them,

and is computed over consecutive timepoints. For two objects o1, o2, it defines the following

three relations (objects are abstracted to their centroids when computing QSRs). : {o1 is

moving towards o2 (symbol −), o1 is moving away from o2 (+), o1 is neither moving towards

nor away from o2 (0)}. Third, Qualitative Distance Calculus (QDC) by Clementini et al. (1997)

which expresses the qualitative Euclidean distance between two points based on defined distance

thresholds. A set of QDC relations localises a person with respect to reference landmarks, while

changes in the relations can help explain relative motion. An illustration of the three QSRs

relative to two objects is shown in Figure 3.15. Note that these QSRs are given to the robot to

enable it to learn about human activities, unlike the ones learned in robot-actions.

Once each human pose-objects sequence is converted into a set of qualitative relations (one

per frame), we perform a temporal abstraction using Allen’s Interval Algebra (1983). This

compresses repeated qualitative relations at adjacent frames into an interval representation,

maintaining the relation and duration information. Secondly, temporal relations are computed

between temporally connected intervals to create an Interval Graph as presented in Duckworth

et al.( 2017), where nodes represent intervals (relations holding between a set of objects) and
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Figure 3.15: QSRs representations; (bottom left) QDC between right hand and object1.
(centre) Subset of the TPCC system between right hand and torso-head plane. (right) QTC
(relative motion) between left hand and object2. Figure taken from Alomari et al. (2017a).

directed arcs link nodes with the temporal relation. Given a corpus of Interval Graphs, one per

human detection, a set of unique k-length paths are extracted from the graphs as features for

some small k (usually ≤ 4), where each feature represents a small set of temporally-connected

spatial relations between a person and some object (likewise ≤ 4). This unique set of features

is considered as a discrete vocabulary, and thus bag-of-words descriptors of activities (called

activity feature vectors) can be computed for each detection. This bag-of-words representation

is different from the traditional bag-of-words used normally in document analysis in that it

maintains some temporal information within its structure.

Latent Dirichlet Allocation (LDA) presented by Blei et al. (2003) is used to discover the

unique activities (topics) observed by LUCIE the mobile robot as presented in Duckworth et

al. (2017) which I co-authored. This model has proved successful in problems with large corpora

not exclusive to document analysis. A topic, a probability distribution over the vocabulary of

features, is a conceptual model of a human activity, and thus it is considered as a candidate

visual concept representing the different human activities. It should be noted that the Human

activity analysis work in this Chapter has been performed as a collaborative work within the

STRANDS project consortium (2016). Therefore, the activity modelling itself should not be

considered a contribution of this thesis. For more details please refer to the work presented by

Duckworth et al.( 2016a; 2017).
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3.4 Continual Learning of Visual Concepts

In our incremental learning process, the robot is introduced to new visual concepts over time,

e.g. new faces, spatial relations, human-activities, etc. In this section, we describe the unsu-

pervised incremental techniques used to update the learning of both simple and complex visual

concepts when the robot is provided with new observations, i.e. a new short video clip that the

robot recorded of its environment.

3.4.1 Simple visual concepts

As discussed in the Concept extraction section 3.3, the term simple concepts is used in this thesis

to describe visual concepts that can be detected in single observations. For example, human

related concepts in 3.3.1, object related concepts in 3.3.2 and finally spatial related concepts

in 3.3.3. To incrementally create and update these visual concepts we use an Incremental

Gaussian Mixture Model (IGMM) technique presented by Song and Wang (2005). The IGMM

is used to create newly observed concepts and update previously learned ones, which is not

a straightforward process because visual concepts can vary across different video clips. This

variation can happen due to a number of reasons such as different lighting conditions when

the videos were recorded, observing the same concept from different view points, occlusions,

etc. For example, the colour red may be represented with two different Gaussian models in two

videos due to differences in lighting conditions between the videos. Another example can be

that the face of a person might look different due to observing that person from a different angle,

hence modelled with two different Gaussian components. To address this issue, an Incremental

Gaussian Mixture Model (IGMM) approach is used to merge or create newly observed visual

concepts. The IGMM technique works in two steps: (i) decide whether an observed visual

concept has been seen before using two statistical tests, the W -statistic and the Hotelling’s T 2

tests, and (ii) update the visual concept if it has been seen before, otherwise create a new one,

i.e. create a new Gaussian component in that feature space which is equivalent to learning a

new visual concept in the feature space.

Incremental Gaussian Mixture Model (IGMM) works by processing a single video clip at a

time. It is also applied to a single feature space (colours, shapes, etc.) at a time, i.e. the visual
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concepts in each feature space are updated and created independently from the visual concepts

in other feature spaces. The IGMM algorithm and implementation details are presented in

Appendix A. In this section we will describe how to formulate the learning of simple visual

concepts into an IGMM problem. The IGMM takes as inputs the old and the new Gaussian

components, the old being the visual concepts that were previously learned from all processed

video clips so far, and the new ones being the ones generated from the newly observed video

clip. An example of learned (old) visual concepts in the colour feature space are shown in

Figure 3.16 (a). This feature space happened to have three learned visual concepts (red, green,

blue) with frequencies (N1, N2, N3). The frequencies are part of the IGMM process and are

used to keep track of how often each component was updated (more details on the use of these

frequencies are provided in Appendix A). When the IGMM receives the newly observed visual

concepts from a new video clip as shown in Figure 3.16 (b), it measures the similarities between

the old concepts in (a) and the new concepts in (b) looking for the best match between them as

presented in Figure 3.16 (c). Two significance tests are used to measure the similarities between

the new and old Gaussian components: the W statistics test: which tests the similarity of the

covariance matrices; and the Hotelling’s T 2 test: which tests the similarity between the mean

vectors of the two Gaussian components. The output of the IGMM technique is shown in

Figure 3.16 (d), every updated candidate concept gets its frequency updated as shown in the

red and green Gaussian components, which means that the robot has seen these visual concepts

before, learned them, and now updated them when they are observed again. The concepts that

did not get updated in the process have their frequencies remain constant as in the Gaussian

component blue, which means the system did not observe this concept in this new video. The

new concepts in (b) that did not match with any old concept in (a) will be added as new

visual concepts in that feature space with a frequency equal to 1, as in the Gaussian component

yellow. By applying the IGMM process on every new observation, the robot is able to connect

new visual concepts with previously learned ones even if they appear slightly different across

multiple video clips, as in the colour red and the face of a person examples described earlier.
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Figure 3.16: IGMM on the simplified HSL colour space (Note that for simplicity HSL feature
space is abstracted and shown as a 2D space and not in 3D).

3.4.2 Complex visual concepts

The term complex visual concepts refers to concepts that manifest over longer sequences of

observations, i.e. can not be learned or recognised using a single frame in a video clip. For

example, the robot action concepts presented in section 3.3.4, and the human activity concepts

presented in section 3.3.5. For these complex concepts more sophisticated techniques are applied

to update learned concepts and create new ones when necessary.

The robot action concepts are represented with action graphlets as described in section 3.3.4,

where each action graphlet consists of a sequence of states (spatio temporal DAGs) that each

contains the gripper object node and one other object node with a property that changed its

label from one visual concept to another (see Figures 3.11 and 3.14). The incremental learning

of these graphlets is enabled by the use of graph matching techniques. The incremental learning

of graphlets starts by processing one observation at a time, i.e. each video clip is processed

separately in four steps to extract the action graphlets. First, extract and update the visual

concepts using the IGMM technique. Second, encode each frame in the new video clip into a

list of predicates as described in §Visual world encoding. Third, Generate the spatio-temporal

DAGs by omitting consecutive repetitions of identical DAGs to obtain the states of the world

as described in §Spatio-temporal graphs. Forth, extract the action graphlet from the generated

spatio-temporal DAG for the new video as described in §Extracting graphlets. Once the new

graphlets are obtained from the new video, each of them is compared against the previously

observed/learned ones looking for a match; if no match is found the graphlet is added to the list

of all learned graphlets so far. The comparison between newly observed and previously learned
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graphlets is performed using graph matching techniques implemented in a Python library named

NetworkX by Schult and Swart (2008). The matching is achieved by comparing edges and nodes

in each graphlet searching for an exact match.

For human activity concepts, the generative LDA model is incrementally updated using

Variational Bayes Inference by Hoffman et al. (2010). For new observations, the process is

divided into two folds: (i) the multinomial distribution representing the observed activity over

the current set of topics is computed, then (ii) the topic distributions over the vocabulary

are updated using this new observation. New code words can be added to the vocabulary if

they do not already exist, and the topic distributions are uniformly initiated. This allows the

robot to efficiently update its model of activity concepts using a single pass over the data,

optimising both storage and computation complexity making it ideal for incremental lifelong

learning situation. It should be noted that the Human activity analysis work in this Chapter

has been performed as a collaborative work within the STRANDS project consortium (2016).

Therefore, the incremental activity modelling itself should not be considered a contribution of

this thesis. For more details please refer to the work presented by our group in Alomari et

al. (2017a).

3.5 Discussion

In this section, we discuss the main contributions presented in this chapter in the field of

incremental learning of visual concept for robotic systems. We also discuss the limitations and

assumptions made in this chapter to enable the learning of both simple and complex visual

concepts.

3.5.1 Main contributions

Below is a list of the main ideas and contributions that were presented in this chapter:

1. The use of Gaussian components along with the Bayesian Information Criterion to learn

and represent simple visual concepts (colours, faces, shapes, locations, directions and

distances) allows for efficient learning from noisy real-world data.
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2. The incremental learning of simple visual concepts by employing the Incremental Gaussian

Mixture Models (IGMM) technique enables our robot to learn from large data in an

incremental and memory efficient manner, which is a step closer towards achieving a

human-like life-long learning of simple visual concepts for robots.

3. The extension of spatio-temporal directed acyclic graphs (DAG) representation is also

a key contribution of this work. The extension includes adding objects and relational

properties to object nodes, allowing for more complex representation of dynamic scenes.

4. The learning framework of visual concepts is easily transferable to learn from differ-

ent robots, environments and sensing modalities. Also, the learning framework is ro-

bust/suitable to learn from noisy real-world data, with partial observations from varying

view points of objects and people.

3.5.2 Assumptions: Simple visual concepts

In order to learn about the simple visual concepts, this work assumes that the visual feature

spaces are defined beforehand. We define seven continuous visual feature spaces: faces, garment

colours, object shapes, object colours, object locations, relative directions and relative distances.

The robot starts with the knowledge of how to compute and extract these feature values from

an input video clip, but with no pre-given knowledge regarding the number of unique concepts

in each feature space or the words used to describe them in natural language, or any prior

discretisation of any of the feature spaces. The selection of these features was influenced by the

data collected from the robots’ environments, which included different objects, people, spatial

relations and actions. However, more features can be added without the need to modify the

system architecture of our learning framework, as the clustering and learning of simple visual

concepts in each feature space is done independently from the remaining feature spaces using

the GMM, BIC and IGMM techniques.

3.5.3 Assumptions: Complex visual concepts

The learning of complex visual concepts, i.e. robot actions and human activities, relies on

a number of assumptions. For robot actions, the robot is assumed to be equipped with the
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knowledge needed to build spatio-temporal DAGs from video sequences, and how to mine these

DAGs to generate graphlets which represent the different robot actions. Similarly, for learning

concepts in human activities, the robot is assumed to be capable of recognising and tracking

people poses in the scene using the OpenNI tracker (2016) and the Convolutional Pose Machine

(CPM) technique. It is also assumed that our robot can encode raw measurements of people

poses and objects into three different QSRs; the Ternary Point Configuration Calculus (TPCC),

the Qualitative Trajectory Calculus (QTC) and the Qualitative Distance Calculus (QDC). The

computation of these QSRs is performed using a publicly available library. These QSRs are

used as features/vocabulary to model the human activities using the LDA technique. Note that

the selection of these QSRs was based on domain knowledge of the types of human activities

expected in an office environment where LUCIE the mobile robot was deployed, more QSRs

can be encoded to model human activities in different environments without the need to modify

the learning framework of human activity concepts.

It is also worth noting the reasons behind using both spatio-temporal DAGs and LDA to

model complex visual concepts. The spatio-temporal DAGs were chosen for modelling the robot

actions because of their ability to represent an action as a sequence of events that the robot

can repeat. This enables the robot to model and execute actions by simply observing them,

which is one of the aims of this work to teach robots about actions by demonstrating them,

yet it is limited to learning relatively simple actions that are repeated in the same order such

as picking up objects and moving them around. On the other hand, for temporally-extended

human activities, a more elaborate encoding and more sophisticated clustering mechanism (such

as LDA) are needed to capture the variations in human activities. Humans tend to perform the

same action in various different ways, for example “making coffee”, people add the ingredients

in different orders and the given label of all of these actions is making coffee. LDA assumes

exchangeability between codewords (or grahlets) when modelling an observation. This implies

that the specific encoding of an action’s codewords is subject to permutation and variation.

This allows for modelling similar actions, performed in a different order, into the same topic

(or a single visual concept), but at the same time, prohibiting the ability to execute/repeat the

action as the specific ordering of how to perform the action is lost.
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3.5.4 Scalability

The use of Incremental Gaussian Mixture Model (IGMM) and Variational Bayes techniques

allows our robots to learn from large data incrementally, whilst efficiently updating its model of

the different visual concepts. Both IGMM and Variational Bayes Inference work by processing

one observation (a single video clip or a batch of clips) at a time, without the need to look at

them again to update existing visual concepts or learn new ones in the future, optimising both

storage and computational complexity.

3.5.5 Loosely-supervised learning

Even though the techniques used to extract the visual concepts from their feature spaces are

unsupervised, e.g. GMM, BIC, IGMM, LDA and Variational Bayes, the learning architecture

of visual concepts in this thesis is named loosely-supervised as opposed to unsupervised. The

reason of naming it this way is that the visual feature spaces (e.g. faces, shapes, etc.) were

provided to the robot. We believe a fully unsupervised system should be able to generate new

feature spaces when needed, allowing the robot to learn much more complex visual concepts

without the need to provide the feature spaces to represent them. But for now it remains as

an ambition for future work.

3.5.6 Superlatives, comparatives, collectives and arity relations

The learning of visual concepts is limited to concepts that can be directly represented in the

predefined visual feature spaces. Therefore, the learning of concepts that require logical op-

erations and more complex representations is not included in this thesis. This includes, for

example superlatives as in “rightmost”, “highest”, “largest”, etc., comparatives as in “further”,

“higher”, “larger”, etc. collectives of objects as in “tower”, “stack”, “column”, etc., and ar-

ity relations as in “between”. The learning of such concepts remains open for future work by

building on our existing methodology for learning visual concepts.
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3.5.7 Simulated robot

In the simulated robot environment/dataset shown in Figure 3.17, the state of the world is

assumed to be fully observable. The extracted feature values are reformed to mimic real world

data by adding noise to observations. The added noise to each feature value was generated

from Gaussian distributions with zero mean and appropriate covariances in every dimension.

Figure 3.17: Examples from the simulated robot environment (Extended Train-Robots dataset).

3.5.8 Mobile robot

For its basic operations, the mobile robot is equipped with a base-mounted laser scanner that is

used to model the physical environment as a 2D occupancy grid where occupied cells indicate

static objects, allowing localisation, mapping and navigation, as shown in Figure 3.18. For

this purpose, an off-the-shelf ROS-packages developed by the STRANDS European project

consortium (2016) is used.

Figure 3.18: The generated map of level 9 in the School of Computing, University of Leeds.
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Chapter 4

Natural Language Grounding

Understanding how children learn the meaning of words has long fascinated cognitive and

linguistic scientists. This problem is equally important in the field of AI to enable robots to

learn the meaning of words they encounter. In the field of psychology, referential uncertainty is

often thought to be the most important aspect of word learning. As described by Quine (1960),

referential uncertainty is a general problem everybody faces when trying to learn a new language.

Quine poses this problem as a scenario where an anthropologist studies an isolated tribe. When

members of the tribe see a rabbit, they shout “gavagai”. Referential uncertainty refers to the

problem the anthropologist encounters when hearing the word “gavagai” for the first time and

has no idea what the word means. In principle the meaning of the word “gavagai” could

be anything from a visual concept of a physical object or entity, features of the surrounding

environment, social and historical facts, etc. The space of possible meanings for this word is

essentially infinite and the question is how can the anthropologist learn the meaning of this

new word. In this work, the robot is assumed to be in a similar position to the anthropologist.

The robot has to learn the meaning of words without being able to ask a direct question as to

what each individual word means, as the robot is assumed not to know the language initially,

and therefore it has to learn the meanings from observations. To enable the learning, we

limit the space of possible meanings to concrete observable concepts, i.e. concepts that can be

measured here and now when the word in mentioned. More precisely, these are concepts that

61
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have the following three properties: i) are related to physical entities and relations between

these entities as opposed to abstract concepts like social facts; ii) exist in the scene when the

word is mentioned; and, iii) can be measured with the available sensors on the robot. This

simplified version of referential uncertainty is usually referred to in the robotics community and

NLP literature as the “natural language grounding” problem.

Natural language grounding is a term used to refer to the problem of learning the meaning

of words in other domains by mapping words to concepts in these domains, e.g. grounding

words to vision-related concepts as presented by Siskind (1996), Roy (1999), Steels (2001),

Spranger (2015), and Dukes (2014), or grounding words to robot actions as presented by

Lauria (2002), Matuszek (2013), Misra (2015), Chai (2014), Tellex (2011), Chen (2011), and

Siskind (2015). In this thesis, the grounding problem is tackled across several domains or

feature spaces simultaneously. These features include the human, object, spatial and robot

related concepts that are learned incrementally using unsupervised techniques as described in

Chapter 3 and as presented by our work in Alomari et al. (2016a; 2016b; 2017a; 2017b; 2017c).

4.1 Grounding framework

In this section, we describe how the robot performs grounding of words in natural language

sentences to the learned visual concepts in order to communicate effectively with humans in its

environment. First, it is essential that the robot gets a natural language description of what

it is learning about to perform the language grounding. Ideally we would like our robot to

have a speech recognition modality and the capacity to learn about people, objects, qualities

and actions, but this remains an ambition for the future. At present, we collect multiple

natural language textual descriptions of video snippets recorded by the robot. The descriptions

are provided by volunteers and online crowd-sourcing tools such as Amazon Mechanical Turk.

Examples of the collected natural language descriptions are shown in Figure 4.1 from each of

the recorded datasets used in this thesis.

The aim is to learn the meaning of key words in the sentences by mapping/grounding

them to visual concepts that represent their meaning. For example, we aim to learn that the

grounding of the word “Eris” shown in Figure 4.1 (top left) is the visual concept in the face
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Figure 4.1: Examples of natural language descriptions collected for four different datasets.

feature space that represents how Eris looks like. Similarly, we aim to learn that the grounding

of the word “black” is the visual concept representing the black colour in the HSL feature space.

The language grounding process, i.e. learning the mapping from language to vision, involves

several steps that are all shown in Figure 4.2. The process starts by first abstracting both raw

linguistic and visual inputs into a number of concepts as shown in the pre-processing step in

Figure 4.2. Then, we aim to find the correct mappings between linguistic and visual concepts

by following the four steps in the Grounding Language to Vision block in Figure 4.2: 1) building

a language-vision correlation matrix that measures the probability of associating linguistic and

visual concepts together in a way that is inspired by human language development; 2) generating

hypotheses that map concepts from language to concepts in vision; 3) filtering the generated

hypotheses using case analysis and a number of predefined rules to reduce their number by

ruling out some incorrect ones; and, at the end 4) validating these hypotheses through mental

simulations and graph matching techniques to find the correct grounding from language to

vision. These steps are described in detail in the following sections.

Figure 4.2: The language grounding learning framework from sentences and video clips.



64 CHAPTER 4. NATURAL LANGUAGE GROUNDING

4.2 Language and Vision Concept Extraction

The learning of language grounding is performed on a single pair of visual and linguistic inputs

at a time, i.e. a video clip and a sentence describing it. For each video and sentence pair shown

in Figure 4.1, we aim to match words from the input sentence to their visual representations

in the input video clip. To achieve this goal, we need to first represent both domains, language

and vision, in a way that enables the mapping between them.

For the vision domain, the input video clip is processed to generate a set of visual concepts

as described in Chapter 3. The newly generated visual concepts from this input video are

merged with the previously learned ones. The mapping between new and old visual concepts

is achieved using the IGMM and graph matching techniques described in Continual Learning

of Visual Concepts in 3.4. The set of all learned visual concepts from all feature spaces are

accumulated together into a single list V = {v1, . . . , vu}, where vi is a visual concept, e.g. a

colour, a relation, a robot action, etc., and u is the total number of visual concepts across all

video clips. The list V is updated with every new video clip. I.e. the list V holds the cumulative

knowledge the robot has gained about the visual world and is updated incrementally.

For the linguistic domain, each sentence is processed independently from other sentences

even if they are describing the same video. The process starts by converting the input text to all

lower case and removing any punctuation (as this is not explicitly present in spoken language).

We then extract all possible n-grams from a sentence with n ≤ M , where M is the longest

sequence of n words to form an n-gram. An n-gram is a sequence of n consecutive words in a

single sentence, and is considered to be our representation for language, i.e. a linguistic concept.

The use of n-grams allows the learning of multi-word descriptions such as ‘pick up’, ‘light blue’

and ‘bottom left corner ’. The list of all unique n-grams across all input sentences are combined

into a list N = {δ1, . . . , δb}, where δi is an n-gram, and b is the total number of unique n-grams

in all input sentences. The list N is updated with every new input sentence.

The robot now has an intermediate representation for both vision and language domains.

This representation transforms knowledge from continuous spaces to bounded discrete ones, the

list V represents the cumulative knowledge of all visual concepts, and the list N for all linguistic

concepts. These two lists are used to learn the associations between language and vision.
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4.3 Language and Vision Concept Association

According to recent studies in the field of child language development by Owens Jr (2016), every

child has a bank of words in their brain. For every child, the bank is of different size. Some

children need to hear a word up to seven hundred times before they understand its meaning

and are able to use it correctly. Other children, especially ones with learning difficulties, need

lots more, and therefore repetition is key in teaching children about the meaning of a word.

In this thesis, we rely on repetitions between words and visual concepts to teach our robots

the meaning of words in the vision domain. The grounding of language is also inspired by

an idea from Hebbian theory, which can be summarized as: “Cells that fire together, wire

together” by Schatz (1992). This idea is translated to “concepts in language and concepts in

vision that appear together, wire together”. As an example, the word ‘apple’ and the apple

shape concept will appear repeatedly and consistently together throughout the input videos

and text; therefore the two concepts should be wired together (grounded), while the word ‘the’

is not solely consistent with any visual concept and therefore it should not be connected to any.

To measure the consistency of repetitions between concepts in language and vision, we

follow the frequentist approach presented by Everitt and Skrondal (2002). We keep track of

the number of times an n-gram and a visual concept appear individually, and the number of

times the two appear together, across all observed instances. Given the set of all learned vision

concepts V of length u, and the set of all observed unique n-grams N of length b, we define a

concepts correlation matrix K of size b × u and with n-grams as rows and visual concepts as

columns as shown in Figure 4.3.

Figure 4.3: The concepts correlation matrix K of size b× u, where each observed n-grams is a
row, and each visual concept is a column in the matrix.
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The values in the concepts correlation matrix K are computed using Equation 4.1 that

contains two parts: the maximum of two frequentist terms representing strength of association

between an n-gram (δ) and a vision concept (v), and an exponential function representing the

learning curve, where λ(.) is a count function, and τ is the decay rate constant.

K(δ, v) = max

(
λ(δ, v)

λ(δ)
,
λ(δ, v)

λ(v)

)
︸ ︷︷ ︸

strength of association

(
1− e−

min(λ(δ),λ(v))
τ

)
︸ ︷︷ ︸

learning curve

(4.1)

The first part of Equation 4.1 computes the strength of associating an n-gram (δ) to a

vision concept (v) by counting the number of times a vision concept and a language concept

are observed together, normalised by either the number of times the vision concept is observed

or the language concept is observed, i.e. the strength of associating δ to v or v to δ, where λ(.)

is the count function, i.e. (i) λ(v) counts the number of times a vision concept v is observed

in all processed videos, (ii) λ(δ) counts the number of times an n-gram δ is observed in all

processed text, while (iii) λ(v, δ) counts the appearance of both concepts v and δ together in

all processed input video-sentence pairs, i.e. both v and δ has to appear in a video clip and its

description to increment this counter. The value of this part of the equation ranges between

0 and 1. It is equal to 1 if both concepts v and δ are constantly appearing together, and

is equal to 0 if they are never seen together in the same pair of inputs. We use both terms(
λ(v,δ)
λ(v) ,

λ(v,δ)
λ(δ)

)
to concentrate on the less-observed of the two concepts, improving the quality

of the multi-to-multi association and preserving the richness of language. I.e. by using the

maximum of both terms, we allow the robot to learn multiple words describing the same vision

concept and learn multiple vision concepts representing the same word. For example, if the

word “Eris” appeared in the description of 20 video clips, 10 of which person-A was featured

in and the other 10 person-B was there, and also both person-A and B never appeared in any

other videos. I.e. λ(δ) = 20, λ(vA) = 10, and λ(vB) = 10. For both person-A and B, the

number of times where both the word “Eris” and the vision concept appear together is equal

to 10, i.e. λ(δ, vA) = λ(δ, vB) = 10. It is clear that by normalising on the less-observed of the

two concepts (language or vision) generates a strength of associating “Eris” with a value of 1

with person-A, i.e. max
(
λ(δ,vA)
λ(δ) , λ(δ,vA)

λ(vA)

)
= max

(
10
20 ,

10
10

)
= 1. The same applies for person B.
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The second part of Equation 4.1 (the exponential component) represents the certainty or

the learning curve of concepts. The aim of using this component is to penalise the proposed

strength of associating concepts that have been observed only a few times. Consider the scenario

where the robot observes an apple for the first time, every word in the input sentence is equally

likely to be describing this new shape, and the probability of associating this visual concept

with all the words in the input sentence is equal to 1 (i.e. the first part of Equation 4.1 is equal

to 1). The same applies for linguistic concepts observed for the first time. Hence, we need a

mechanism to penalise the probability for concepts that were observed only a few times. The

second component in Equation 4.1 is an exponentially decaying function towards a limiting

value. Such functions have the form
(
y = y∞ + αe−

t
τ

)
, where t = min

(
λ(v), λ(δ)

)
, y∞ is the

limiting value of the function when t → ∞1, α is a constant that helps setting the function

value when t = 0, and τ is the decaying rate constant. The higher the value of the constant

τ , the slower the system converges to the y∞ value, and visa versa as shown in Figure 4.4.

In Equation 4.1, the limiting value (y∞) is set to 1, and the constant α is set to -1, creating

an exponential function that ranges from 0 at (t = 0) and 1 at (t → ∞). The decaying rate

constant value (τ) is chosen to be in the range of 5 to 10; a concept has to be observed 25 to

50 times in order for the second part of Equation 4.1 to equal 1. A detailed sensitivity analysis

on the selection of these parameters is presented in the Experimental Results chapter.

Figure 4.4: The effect of changing the value of the decay constant τ on the convergence to y∞.

1The ∞ value in the exponentially decaying functions is usually assumed to be five times the value of τ , i.e.
at (t = 5τ). At this value, the exponential component is too small (e−5 = 0.0067) and can be ignored, leaving
the exponential decaying function value equal to the limiting value (y = y∞).
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Once the new input video-sentence pair is processed, the elements of the concepts correlation

matrix K are updated according to Equation 4.1. Each element in the matrix K(i, j) holds

information of the strength of associating the ith n-gram to the jth visual concept. This

information is used in the next section to generate the initial hypotheses that map/ground

natural language to vision.

4.4 Grounding Hypotheses Generation

Grounding language to vision is a challenging task for those who do not speak the language.

Going back to the anthropologist example, the meaning of the word “gavagi” is not necessarily

limited to a single visual concept. It is possible that “gavagi” means different things in the more

general case, which means that the mapping between words and vision concepts is not always

one-to-one. For example, certain words can refer to different visual concepts like names, e.g.

Eris can be the name of any person regardless of their look. Also, some visual concepts can be

described with different words, e.g. a block shape can be referred to in the English language

with block, brick, slab, bar, etc. To learn the grounding of language to vision, we search for the

highest correlations between n-grams and visual concepts that feature in each video clip and

description, allowing multi-to-multi associations to preserve the richness of natural language.

The associations are measured using the concepts correlation matrix K as described in the

previous section. Defining a target function A which has A(δ, v) = 1 if the association (δ, v) is

selected as a grounding candidate and 0 otherwise, we can formulate the problem of multi-to-

multi language-to-vision grounding as solving an integer program with the objective function:

max
A

∑
N×V

A(δ, v)K(δ, v). (4.2)

We maximise the objective function with the following constraints:

–
∑
N×V A(δ, v)/(b ∗ u) < ε, keeping sparsity of the groundings by forcing the number

of selected groundings to be below some small ε (set between 5 and 10%) of the total

number of possible groundings. A detailed sensitivity analysis on ε is performed in the

Experimental Results chapter.
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–
∑
N A(δ, v) ≥ 1, ∀v ∈ V, forcing the assignment of at least a single n-gram to each of the

learned visual concepts. This helps ensuring that each visual concept gets at least one

word to describe it even in noisy data. The reason why we do not enforce the same rule

on n-grams is because some words can relate to no vision concepts in the scene, such as

function words, e.g. articles, pronouns, pro-sentences, auxiliary verbs, etc.

Solving this integer program results in assigning a number of highly-correlated n-grams to each

visual concept. An example for solving the integer program for matrix K is shown in Figure 4.5,

where A(i, j) = 1 (black) for every chosen grounding, and A(i, j) = 0 otherwise. The error in

this process gets rectified through filtering, validation and continual learning processes which

will be discussed in the following sections.

Figure 4.5: Grounding hypotheses generation. (left) The concepts correlation matrix K, where
each observed n-gram is a row, and each visual concept is a column. The value of each element
varies from 0 to 1, where 0 means the two concepts were never observed together. (right) The
target function A that results from solving the integer program for the matrix K. Integer
programming allows for multi-to-multi associations between n-grams and vision concepts. For
example, ‘up’, ‘apple’ and ‘red apple’ each is mapped to two visual concepts.

4.5 Grounding Hypotheses Filtering

By using n-grams as linguistic concepts, we end up with a number of n-grams that map to

the same visual concept, some of which are incorrect. For example, the n-grams (‘red ’, ‘the

red ’, and ‘the red apple’) will all be connected to the same red colour visual concept with high
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probability. Therefore, we need to filter out the incorrect ones ‘the red ’ and ‘the red apple’ from

the target function A and keep only the correct groundings between red colour and the word

‘red ’. This is achieved by case analysis. Consider the case of whether to accept the assignments

in A of n-gram ab, consisting of smaller n-grams a and b (e.g. the 2-gram ‘the red ’ consists of

the 1-grams ‘the’ and ‘red ’). Let vab, va, vb be the visual concepts assigned to the n-grams δab,

δa and δb respectively. There are four possible cases shown by the rules below (4.3 to 4.6) from

which we can figure out which ones of these n-grams are incorrect. The accepted assignment

hypotheses are shown on the right side of the arrow. For example, in Equation 4.3 all three n-

grams are assigned to the same visual concept (vab = va = vb), then we accept the hypothesis for

the bigger n-gram A(δab, vab) = 1 and filter out the smaller n-grams A(δa, va) = A(δb, vb) = 0.

vab = va = vb → A(δab, vab) (4.3)

vab = va 6= vb → A(δa, va),A(δb, vb) (4.4)

vab = vb 6= va → A(δa, va),A(δb, vb) (4.5)

vab 6= va 6= vb → A(δab, vab),A(δa, va),A(δb, vb) (4.6)

Rule (4.3) filters out the smaller incorrect n-grams, by allowing complex n-grams to subsume

their constituent ones when all of them are equal. The intuition behind it can be seen in

examples like the n-grams ‘pick up’, ‘pick ’ and ‘up’ where we want to keep the longer n-gram

‘pick up’ and remove the smaller ones ‘pick ’ and ‘up’ if they are all grounded to the same visual

concept. Rules (4.4, 4.5) filter out the larger incorrect n-grams. The intuition behind it is we

do not want the robot to use more words than necessary to describe a concept, such as ‘the

red ’ to describe the red colour. Rule (4.6) states that if the n-grams are connected to different

concepts, keep all of them. This rule can be used to learn phrasal verbs where their meaning is

different to their individual components. For example, the phrasal verb ‘break down’ is different

to both ‘break ’ and ‘down’. These rules will filter some of the incorrect groundings. Also, they

will not stop different synonyms from connecting to the same vision concept. For example,

‘cyan’ and ‘sky blue’ could share the same vision concept, because ‘cyan’ is not a constituent of

‘sky blue’. After filtering out some of the incorrect groundings (example shown in Figure 4.6)
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the robot ends up with a number of candidate grounding hypotheses that require validation;

details of the validation process are presented in the following section.

Figure 4.6: Filtering the grounding hypotheses. (left) The target function A obtained by solv-
ing the integer program from the previous example shown in Figure 4.5. (right) The resultant
target function A after filtering the grounding hypotheses using Rules 4.3 to 4.6. The accepted
hypotheses where the target function A(δ, v) = 1 are shown in black, while the rejected hy-
potheses where A(δ, v) = 0 are shown in red to highlight them. The grounding hypotheses
related to ‘pick’ and ‘up’ are rejected based on Rule 4.3, while the hypotheses related to ‘red
apple’ and ‘the red’ are rejected based on Rules 4.4 and 4.5. In this example, the 1-gram ‘apple’
is still mapped to two shape concepts after filtering, shape1 represents the apple shape, and
shape2 represents the mug shape. We will show in the following section how we can validate
which of these two is the correct grounding.

4.6 Grounding Hypotheses Validation

Once the best grounding hypotheses between language and vision concepts have been selected

and filtered, we attempt to validate them by using mental simulations to identify the correct

ones. Mental simulation is a term first articulated by Craik (1967) and is used to describe how

humans evaluate their environment to better understand the interactions between its compo-

nents. For example, with a simple glance humans can realise whether a stack of dishes will

topple, or whether a branch will support a child’s weight. Craik’s suggestion is that humans

perform quick mental simulations that allow them to imagine different scenarios, and to try

out a learned activity in their mind to predict the most likely outcome for each situation. This

idea has been used in a computational setting to help robots analyse physics based simulated
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environments to figure out whether a stack of blocks would topple as presented by Battaglia et

al. (2013). Our approach is motivated by Craik’s proposal, that the brain builds mental models

that support inference by mental simulations, to help the robot verify which of the available

grounding hypotheses between language and vision are correct and which are not. Imagine the

scenario were the 1-gram ‘apple’ in the given input sentence “pick up the apple” is grounded

with two different visual concepts, one representing the shape apple in the FPFH feature space,

and the other representing something incorrect, e.g. the shape of a mug as shown in Figure 4.5.

This can occur due to noise or insufficient data, e.g. whenever the robot encounters the word

‘apple’ in the input sentence it finds a mug and an apple in the corresponding video clip. The hy-

potheses validation process developed here aims to find the correct groundings for every n-gram

and visual concept if any exist. The validation is accomplished using two steps: First, examin-

ing the outcome of adopting each grounding by simulating an environment. Second, comparing

the simulated environment with the input video through graph matching techniques.

The mental simulations of the environment is achieved by translating the input text into

multiple scenes/graphs as follows: first, substituting all n-grams in the sentence with their

grounded visual concepts that were selected and filtered in the target function A as described

in the previous two sections; second, representing each visual concept as a graphlet as shown in

Chapter 3 in Figures 3.12, 3.13, and 3.14; third, connecting the graphlets together in different

orders to create all possible graph structures (spatio-temporal DAGs). The order in which the

graphlets are connected is important and will later map to learning grammar in the following

Chapter. We refer to the graphs generated from connecting the graphlets together as hypothesis

graphs. Each hypothesis graph represents a different course of actions taken by the robot in

the simulated world that reflects what it thinks the sentence means. For example, if the robot

believes the 1-gram ‘apple’ in the previous example (“pick up the apple”) might mean the apple

shape, it will pick the apple shape in the simulation. On the other hand, if it assumes it means

the mug shape, it will pick up the mug in the simulation. These two hypotheses about the

1-gram ‘apple’ will create two different hypothesis graphs shown in Figure 4.7.

Each simulated scene (from a sentence) is compared against its corresponding input video

sequence. The idea is to look for a match between a simulated scene and the input video. We

use the matching between the two as a clue to infer that the hypotheses used to generate the
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Figure 4.7: Generating hypothesis graphs from the sentence “pick up the apple”. The 2-gram
‘pick up’ has one candidate vision concept representing the pick up action, ‘the’ has none, while
‘apple’ has two (S1=apple shape, and S2=mug shape). These vision concepts in their graphlet
format are combined to generate two hypothesis graphs.

simulated scene are correct. For example, using the hypothesis that relates the word ‘apple’

to the apple shape visual concept will result in a simulated scene where the robot behaves in

a similar way as to what happened in the input video. In other words, the robot picks up the

apple object, which is not the case when simulating the mug shape. The matching between this

simulated scene and the input video supports the hypothesis that the word ‘apple’ should be

grounded to the apple shape concept (S1) and not the mug shape concept (S2), and this is how

we validate each of the available grounding hypotheses. The comparison between the mentally

simulated scenes and the input video occurs on the graph level. The comparison is achieved by
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testing if any of the hypothesis graphs matches with the spatio-temporal DAG extracted from

the input video. The matching is enabled by using an induced sub-graph matching technique

presented by Howorka (1977). We say that a simulated scene matches the input video if its

hypothesis graph is an induced subgraph of the spatio-temporal DAG extracted from the input

video. For example, we want to validate the grounding hypotheses for the input sentence “pick

up the apple” with the input video shown in Figure 3.11. The initial grounding hypotheses for

this example were generated using the integer program technique shown in Figure 4.5. Then the

hypotheses were filtered as shown in Figure 4.6, which reduces the number of potential candidate

hypotheses. The robot now has one vision concept grounded to the n-gram ‘pick up’, none for

the 1-gram ‘the’, and two candidate concepts for the 1-gram ‘apple’: one concept representing

the apple-shape (S1), and one representing the mug-shape (S2). To validate these grounding

hypotheses, multiple hypothesis graphs are generated that reflect all possible combinations.

This is done by connecting the connection nodes (denoted with c) in both the action graphlet

and the object graphlets together as shown in Figure 4.7. The robot then checks which (if

any) of the generated hypothesis graphs match the input video. Since that hypothesis graph-1

(shown in Figure 4.7) is an induced sub-graph of the input video DAG (shown in Figure 3.11),

then, we say that the hypotheses used to build the hypothesis graph-1 are validated and will

be used to represent the n-grams ‘pick up’, ‘the’ and ‘apple’. The exact procedure of how to

probabilistically accumulate the knowledge of grounding hypotheses is described in the following

section. Note that the 1-gram ‘the’ is learned to be a function word as it has no mapping in

the vision domain and the graph was still validated.

4.7 Learning Probabilities of Language Grounding Φ

In this section, we describe how to accumulate the knowledge about all validated hypotheses.

For example, if the 1-gram ‘apple’ was validated 10 times, nine of which were with the shape-

apple (S1), and only once it was validated to be the shape-mug (S2), then we need a way

of saying that these two are not equal. Note that this might happen as our visual concept

clustering is unsupervised and does not produce perfect results; also because we learn from

noisy data.
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Once a hypothesis graph is validated as described in the previous section, the robot learns

all of the grounding hypotheses used to build it. The accumulation of grounding hypotheses

knowledge is performed in a similar way to learning the Part-of-Speech tags of words in Natural

Language Processing (NLP) applications. Part-of-Speech (POS) tagging refers to the process of

marking up each word in a sentence with an appropriate grammatical category. The grammati-

cal categories vary between languages and can range to hundreds of different types, for example

in English a word can be tagged as noun, verb, article, adjective, preposition, pronoun, adverb,

etc. POS tagging is not an easy task to perform for machines, and is harder to learn than just

having a list of words and their POS tags as a training set. This is mainly because some words

can be labelled with different POS tags in different sentences, which is quite common in natural

languages. For example, the word “dogs”, which is usually thought of as just a plural noun,

can also be marked up as a verb in the sentence “The sailor dogs the hatch”2.

The learning of such POS tags in NLP literature can be divided into two categories, super-

vised and unsupervised. In the supervised setting, a tagger is trained on a corpus of sentences

labelled by a human expert with their equivalent POS tags, like (“The sailor dogs the hatch”,

“Determiner Noun Verb Determiner Noun”). The manual labelling of data is a tedious task

that hinders learning from large corpora, and is not necessarily available for all languages. In

the unsupervised setting, clustering techniques are employed to generate a set of POS tags from

unlabelled data by exploiting regularities in natural language and word signatures, i.e. words

are clustered based on the similarity of their neighbouring words where each cluster forms a

POS tag. While unsupervised POS tagging techniques enable learning from unlabelled data,

their performance is usually significantly worse than those of the supervised techniques.

In this thesis, the learning of word tags is performed on unlabelled data and enabled by

combining language and vision inputs in a loosely supervised manner. The word tags are

assumed to be the visual concepts extracted in Chapter 3 such as colours, shapes, distances, etc.

Once a grounding hypothesis that connects an n-gram (δ) to a vision concept (v) is validated,

the robot updates its knowledge about it. This is achieved by updating the probability of this

grounding hypothesis using Equation 4.7, where Φ is the grounding function that maps n-grams

to vision concepts (Φ : N → V), P is the conditional probability for a vision concept v given

2“dog the hatches” a sailing term that means to lock or make tight the doors and windows.
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the n-gram δ, λ(δ, v) counts the number of times the n-gram δ was validated with the vision

concept v, and λ(δ) is the total number of times the n-gram δ was validated with any vision

concept. For example, if we revisit the example mentioned earlier where the word ‘apple’ was

validated 10 times (λ(δ) = 10), 9 of which was with the apple-shape S1, and 1 of which was

with the mug-shape S2 (λ(δ, S1) = 9, and λ(δ, S2) = 1). Then, the probability of grounding

the word ‘apple’ to the apple-shape (S1) is equal to 0.9, i.e. Φ(δ, S1) = P (S1|δ) = 0.9, and the

probability of it being grounded to the mug-shape S2 is equal to 0.1. The grounding function Φ

is important and will later be used in learning grammar rules in the following chapter. Also, it

is used to enable our robot to parse and executing commands by mapping language to vision as

will be shown in the Experimental Results chapter. The probabilities in the grounding function

Φ are updated incrementally for each n-gram as more grounding hypotheses are validated as

discussed in the next section.

Φ(δ, v) = P (v|δ) =
λ(δ, v)

λ(δ)
(4.7)

4.8 Continual Learning of Language Grounding

For incremental grounding of natural language, the entire pipeline of language grounding is

executed again whenever new visual observations and text descriptions are available. This is

vital to obtain correct groundings of language to vision as the richness of natural language and

the possible noise in the data require continuous re-evaluation of the associations and mapping

between language and vision. This incremental process is achieved by the following six steps:

1. Add new rows and columns to the correlation matrix K to keep track of newly-observed

n-grams and newly-learned vision concepts.

2. Update the frequency measure of every observed n-gram and vision concept pair in the

correlation matrix K using Equation 4.1.

3. Re-solve the integer program to generate new grounding hypotheses with the objective

function 4.2.



4.8. CONTINUAL LEARNING OF LANGUAGE GROUNDING 77

4. Filter the grounding hypotheses using the four developed n-gram case analysis shown in

rules 4.3, 4.4, 4.5 and 4.6.

5. Validate the hypotheses using mental simulations by comparing hypothesis graphs with

the input video spatio-temporal DAG.

6. Update the probabilities in the grounding function Φ for each validated grounding hy-

pothesis using Equation 4.7.

In this grounding framework, there is no need to store the original data, i.e. the input sentences

and the raw input video clips. We only need to keep track of the frequencies in the concepts

correlation matrix K to perform the incremental grounding of language. In the following section

we present an idea that prevents the matrix K from growing indefinitely.

4.8.1 Habituation of concepts

The concepts correlation matrix K will grow in size as more observations are provided to the

robot, more rows for newly observed n-grams, and more columns for newly learned vision

concepts. This will result in an increased processing time and memory space requirements to

keep track of all language and vision concepts. To address this issue, we built a mechanism

inspired by an idea from psychology called habituation. In psychology, the term ‘Habituation’

refers to the diminishing of an innate response to a frequently repeated stimulus as presented

by Bouton (2007). In our case, the stimulus is the observation of a linguistic or a visual concept

in an input, and the innate response is the update of the concepts correlation matrix K. By

applying the habituation concept to our system, the robot loses interest in updating the meaning

of a visual or linguistic concept if it observes this concept for many times. I.e. if the robot

observes the word ‘apple’ for more than a certain threshold nh (i.e. λ(δ) > nh), then, the ‘apple’

word is assumed to be no longer interesting for learning and its corresponding row is removed

from the matrix K. This is clearly a naive interpretation of the habituation idea as we assume a

cut off threshold in learning concepts, that once passed the robot loses interest in this concept,

when in fact it is a much more complicated process. Also, even though the word ‘apple’ was

removed from the concepts correlation matrix K, its grounding knowledge is preserved in the
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grounding function Φ. It is just that the robot stops being interested in learning what ‘apple’

means as by now it should have converged to the correct grounding.

4.9 Discussion

In this section, we highlight the main contributions in the field of language grounding pre-

sented in this thesis. We also discuss the assumptions made to enable the learning of language

grounding, and the learning of function words.

4.9.1 Main contributions

Below is a list of the main ideas and contributions presented in this chapter:

1. Learning the grounding of language to vision from raw textual inputs as opposed to

parsed inputs with extracted grammatical categories, like verbs, nouns, adjectives, etc.

Our approach enables learning of different languages, even ones that do not have trained

parsers for them. Also, we use n-grams as linguistic concepts which enables learning of

longer descriptions such as ‘light green’, ‘pick up’, ‘top left corner’, etc.

2. Using extracted/learned vision concepts as candidate groundings of language as opposed

to using hard-coded pre-defined concepts.

3. Formulating the language grounding problem into an integer programming one, allowing

for multi-to-multi associations between language and vision, preserving the richness of

natural language. Also, language grounding is learned in an incremental manner by

extending the concepts correlation matrix K with new observations.

4. Using mental simulations and graph matching techniques to validate the grounding hy-

potheses is the main contribution in this chapter. Also, using habituation idea (inspired

from the field of Psychology) to prevent the increase of processing time and memory space

requirements for the grounding technique.
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4.9.2 Loosely supervised learning of language grounding

Even though the techniques used to learn the grounding of language are unsupervised, such

as the integer programming and the mental simulation, the learning architecture of natural

language grounding in this thesis is named loosely-supervised as opposed to unsupervised for

three reasons. First, the input videos are assumed to include a single action in each, e.g. a

single pick up or a single use of the microwave in each video clip. Second, the sentences are

assumed to be describing the concrete concepts in the scene, such as the actions, colours, shapes,

etc. as opposed to abstract concepts. Third, the videos and sentences are temporally aligned

beforehand, i.e. the robot knows which sentences belong to which video clips. We believe a

fully unsupervised system should be able to learn from long videos and text, i.e. be able to

temporally segment the videos and map the segments to sentences automatically. This will

allow our system to learn from much more rich sources like YouTube videos, but for now it

remains an ambition for future work.

4.9.3 Human activities and language grounding

In Chapter 3, we discussed how learning human activities differs from learning robot actions as

it requires more elaborate encoding and more sophisticated clustering mechanism to model the

variation in each activity class, and how LDA and Variational Base algorithms are used to model

these activity classes. Humans tend to perform the same action in various different ways, for

example “making coffee”, people add the ingredients in different orders and the given label of all

of these actions is making coffee. LDA assumes exchangeability between codewords (or grahlets)

when modelling an observation. This implies that the specific encoding of an action’s codewords

is subject to permutation and variation. This allows for modelling similar actions performed in a

different order into the same topic (or a single visual concept), but at the same time prohibiting

the ability to execute/repeat the action as the specific ordering of how to perform the action is

lost. In our grounding framework, the validation process described in §Grounding Hypotheses

Validation (4.6) assumes that the robot is capable of executing the action in a simulated world to

validate the grounding hypotheses. Therefore, using LDA to learn human activities eliminates

the ability of validating the grounding for these visual concepts. Hence, when learning from
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data containing people performing various tasks we limit the learning framework to the first

two steps and use n-grams of length equal to one, n ≤ N,N = 1 as shown in Figure 4.8. The

search for a visual representation that has the capacity to model human activities performed

in different orders, and at the same time maintain the ability to repeat/execute the actions is

outside the scope of this thesis and remains an ambition for future work in the fields of computer

vision and human activity recognition.

Figure 4.8: Grounding framework for human activities and robot actions.

4.9.4 Function words

To simplify the learning of language grounding in robotics applications, it is common to use a

stop word list to remove function words such as ‘the’ and ‘as’ from all sentences. But, since

we learn from unlabelled data (i.e. avoiding human annotation including stop word lists), we

learn such words using the integer programming technique where certain words do not have any

mappings with the vision domain such as the word ‘the’. This has the same effect as using term

frequency-inverse document frequency (tf-idf) weighting to remove function words as presented

by Jones (1972).



Chapter 5

Grammar Induction

The human brain is the only precise and complete language processing system currently known

to us. Linguists and psychologists have debated for decades on how humans acquire the knowl-

edge of natural language components and how they master speaking and understanding it; and

also how much of it is an innate knowledge and how much is learned. However, they all agree

that we acquire language in a primarily unsupervised fashion. On the other hand, nearly all

computational approaches developed to learn about natural languages are supervised. In par-

ticular ones developed to learn the language structure (grammar), relaying on human experts

to provide training data labelled with grammar trees. An example is shown in Figure 5.1 for

an annotated grammar tree (Robot Control Language tree) from the Dukes (2013) dataset for

the sentence “place the green sphere over the red cube”. These trees are used to train a parser

in a supervised manner to model the language structure.

Figure 5.1: Example of an annotated grammar tree used as training data for supervised parsers.

81
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The use of supervised grammar induction techniques was made popular due to the poor

performance of unsupervised ones. Unsupervised grammar induction approaches aim to learn

the language structure from unlabelled text inputs, making them more desirable to learn from

large corpora, and to model languages with no annotated datasets. But, the resultant language

model from these unsupervised techniques usually holds little, if no meaning at all, to how

the words interact between each other, which is needed by robotic systems to understand

and execute natural language commands. An example of a grammar tree generated by an

unsupervised system for the previous example “place the green sphere over the red cube” is

shown in Figure 5.2. The unsupervised system used to generate this tree was presented by

Ponvert et al. (2011) and was trained on the entire Dukes (2013) dataset. This technique learns

a language model via chunking the raw text into smaller parts that shows a repeated pattern

throughout the dataset. Using such unsupervised techniques raises two main issues that are

hard to fix. First, these methods do not label the chunks in the generated tree; they only

output a nested set of brackets defining each chunk of text which carry no meaning to the

robotic system. I.e. the robot would not know if a chunk, e.g. “place the green” in the Figure

below, represents an entity, or a spatial relation, or an action, etc. Second, for systems which do

provide labelled brackets, there is the problem of mapping the generated labels with symbols

provided by the human expert. This problem is similar to the one faced when evaluating

unsupervised clustering techniques, where cluster labels have no inherent link to true class

labels and usually do not map one-to-one with the true classes. As can be seen in the example

in Figure 5.2, the generated chunks hold no meaning to the robot agent, and are hard (if not

impossible) to map back to the sub-tree labels provided by the human expert in Figure 5.1 that

are needed by the robot to understand and execute the given command.

Figure 5.2: Example of an unsupervised grammar tree. The c denotes an unknown label.
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5.1 Learning Grammar from Language and Vision

In order to fully understand linguistic commands, the robot needs to learn the grammar rules

that govern the sentence structure in natural language. To highlight this, consider the previous

example command “place the green sphere over the red cube”. Even assuming that the robot has

a correct visual representation (grounding) for each word in this sentence, the robot still needs

an understanding of which object should be placed where. This translates to knowing that the

action ‘place’ changes the location of the ‘green sphere’ object and not the ‘red cube’ object, and

further, that it needs to change the sphere’s position to a final location described by the spatial

relation ‘over the red cube’. Grammar rules are used to analyse the grammatical structure of a

sentence, i.e. establish relationships between head words and words which modify those heads.

Providing the system (a robot in our case) with the knowledge needed of how words interact

among themselves in a sentences.

In this chapter, we describe our approach for loosely supervised grammar induction from

unlabelled inputs. Our approach is developed to parse sentences into grammar trees with

meaningful labels and probabilistic grammar rules. The learning of meaningful grammar rules

is enabled by the use of both language and vision pairs as inputs, where grammar rules obtain

their meanings from the vision domain. The idea of learning grammar rules by mapping them to

features in the vision domain has been introduced in the robotics literature before. For example,

Dominey and Boucher (2005), Tellex et al. (2011), Matuszek et al. (2013) and Dukes (2014)

have developed supervised systems that can model the structure of natural language commands

from vision. A parser is trained to model the language by generating a set of grammar rules that

enables the generation of Robot Control Language (RCL) trees from sentences. An example of

an RCL tree was shown earlier in Figure 5.1. A more detailed explanation of RCL is provided

in the following section. The parsing of sentences into RCL trees enables robotic agents to

understand and execute linguistic commands that were not seen before in the training data.

In this thesis, the aim is to enable robots to fully understand natural language commands and

descriptions without the use of labelled/annotated training data, i.e. without the need of a

human expert to label the inputs. In the previous two chapters we showed how to cluster

the vision domain to learn a set of visual concepts in Chapter 3, and how to use these visual
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concepts to learn the groundings of n-grams in Chapter 4. In this chapter, we will use the

visual concepts along with the learned language groundings to enable the learning of grammar

rules from unlabelled data. In the following sections, the Robot Control Language is described,

along with how it is used to enable the learning of grammar rules.

5.2 Robot Control Language (RCL)

Robot Control Language (RCL) is a tree semantic representation for natural language com-

mands. Each sentence is represented as an RCL tree, an example is shown in Figure 5.1, where

leaf nodes align to words in the corresponding sentence, and non-leaves are labelled with a prede-

fined set of categories that the robot can understand and execute as presented by Dukes (2014).

The RCL elements used in this thesis are presented in Table 5.1. Each element represents one

or more of the visual features defined in Chapter 3, which are object properties {colour, shape,

location}, spatial relations {direction, distance} and robot actions. These elements are used to

represent the structure of natural language commands for robot manipulation tasks. Although

RCL elements used in this work are designed to operate within the context of robot manipu-

lation only, it can be easily extended to other domains such as robot navigation commands as

presented by Tellex (2011) and Matuszek et al. (2013), or learning from YouTube how-to videos

as presented by Alayrac et al. (2016b), or learning cooking instructions as presented by Beetz

et al. (2011) and Malmaud et al. (2015).

In the robotics literature, the problem of parsing sentences into RCL trees has been for-

mulated as a grammar induction problem. A parser is trained on linguistic commands and

their human annotated RCL trees as shown in Figure 5.1. The parser is then used to parse

new sentences/commands into trees which the robot can understand and execute. The human

annotation of RCL trees is a labour-intensive task that hinders the learning from large datasets,

and requires the constant supervision of human experts to provide the trees for learning.

In this thesis, we automatically generate a vision tree (Ω) from each input video clip. These

vision trees will later substitute the human annotated RCL trees to learn grammar. We define

a vision tree Ω as an event tree, i.e. a tree with the eventv element as its head, which consists of

three vision elements (actionv, entityv, destinationv) as shown in Figure 5.3. The v subscript
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RCL element Description

event Specification of a single command. Takes (action, entity, destination)
elements as children.

action Aligned to a verbal group in natural language, e.g. ‘place’.

entity Specification of a single entity. Takes (colour, shape, location) as chil-
dren.

destination A spatial destination. Takes (spatial-relation, location) as children.

spatial-relation Used to specify a spatial relation between two entities or to describe a
location. Takes (direction, distance, entity) elements as children.

colour Colour attribute of an entity, e.g. ‘red’, ‘green’, ‘light blue’.

shape Shape attribute of an entity, e.g. ‘pyramid’, ‘apple’, ‘mug’.

location Location attribute of an entity, e.g. ‘center’, ‘top left corner’.

direction Direction relation between two entities, e.g. ‘right of’, ‘on top of’.

distance Distance relation between two entities, e.g. ‘near’, ‘far’.

Table 5.1: The list of all RCL elements used in this thesis. These RCL elements are designed
to work in the context of robot manipulation.

Figure 5.3: Vision tree Ω definition. The vision tree is an event tree, i.e. a tree with the eventv
element as its head. The eventv element takes three children {actionv, entityv, destinationv}.

in these elements refers to ‘vision’, to distinguish them from the equivalent RCL elements shown

in Table 5.1. The actionv element holds the internal symbol of the action graphlet. Action

graphlets are extracted from the spatio-temporal DAG of the input video clip as presented

in §Extracting Graphlets (3.3.4). The entityv element holds the id of the object that is ma-

nipulated by the robot in the video. The definition and use of object ids were presented in

§Visual World Encoding (3.3.4). The destinationv element holds the internal symbol of the

final location-concept of the manipulated object and the final spatial configuration with other

objects in the scene. Learning location and spatial concepts using Gaussian mixture models

was presented in §Object related concepts (3.3.2) and §Spatial concepts (3.3.3) respectively.

To better explain vision trees, consider the input video example shown in Figure 5.4, which is
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the video clip paired with the linguistic command “place the green sphere over the red cube”.

We extract a vision tree Ω from this video clip with three elements shown in Figure 5.5. The

actionv element holds the internal symbol of the action graphlet extracted from this video clip.

This action graphlet was labelled with the internal symbol action1. The entityv element holds

the object id of the manipulated object, which is the green sphere with id=0 in this video clip.

The destinationv element holds the internal symbol of the location concept of the manipulated

object, i.e. the final position of the green sphere, which has the internal symbol location4 in

this video clip. Also, it holds the final spatial configuration with other objects in the scene, i.e.

the spatial relation1 with respect to the red cube since it is the only other object in the scene,

which is direction1(0, 1) in this video clip, as indicated on Figure 5.4. In the following section,

we show how to use vision trees extracted from input videos to substitute the human annotated

RCL trees in learning grammar rules.

Figure 5.4: The input video clip that we generate for the command “place the green sphere over
the red cube” encoded with the learned visual concepts shown at different frames.

Figure 5.5: The vision tree extracted from the video in Figure 5.4.

1Note that in Dukes (2013) dataset the distance feature is not computed, more details in Experiments chapter.
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5.3 Generation of RCL trees

To automatically generate RCL trees, we employ the same idea used in validating the language

groundings, which is comparing the language model with the vision input. This idea assumes

that the input sentences provided to the robot are describing the actions, objects and relations

involved in the corresponding input video clip. Therefore, the sentence structure should also

reflect/map the features extracted from the input video. We formulate the problem of automatic

generation of RCL trees into a search problem as follows. For each input video-sentence pair, we

(i) extract the vision tree Ω from the input video; (ii) generate the set of all possible RCL trees

from the input sentence; (iii) search for an RCL tree that matches the extracted vision tree Ω.

I.e. we aim to find the sentence structure that will result in a match with what happened in

the input video. We say an RCL tree matches a vision tree if the values of their corresponding

elements are equal, the elements are {action-actionv, entity-entityv, destination-destinationv}.

Given a match is found between these three elements in a language tree Ψ, we use this language

tree to update the robot’s knowledge in grammar. The procedure to perform the search for the

correct RCL tree Ψ is shown in Algorithm 1, and is divided into four steps (substitute, group,

query, and match). The following sections walk through the entire process using the example

“place the green sphere over the red cube” shown in Figure 5.5, and shows how the robot obtains

a correct RCL tree Ψ from this input video-sentence pair.

Algorithm 1 Automatic generation of RCL trees

1: procedure search for correct rcl tree
2: Variables
3: Φ is the grounding function Φ : N → V
4: Ω is the extracted vision tree from the input video
5: S is the input sentence
6: Ψ is the correct RCL tree
7: Input Φ, Ω, S
8: Output Ψ
9: Substitute each word in S with its visual concept using Φ : N → V

10: Group vision concepts to create RCL elements
11: Query RCL elements with the input video to link the sentence with the video
12: Match RCL elements with the vision tree Ωi to find the correct RCL tree
13: if all RCL tree elements pass the matching test with Ω then
14: create Ψ from matched RCL tree elements
15: Return Ψ
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5.3.1 Substitute words with visual concepts

For each input sentence S consisting of t words, S = 〈w1, . . . , wt〉, we substitute each word with

the internal symbol of its visual concept using the grounding function Φ learned in Chapter 4.

For instance, the sentence S = 〈place, the, green, sphere, over, the, red, cube〉, is transformed

using the grounding function Φ into S′ = 〈action1, None, colour2, shape3, direction1, None,

colour3, shape1〉. The grounding function Φ for this example is shown in Figure 5.6 (left). Note

that if a word has multiple groundings in Φ, then this process is repeated for all combinations

of possible groundings, i.e. a new sentence S′ is created for every possible grounding. The word

substitution process for this example is shown in the substitute section in Figure 5.6 (right).

Figure 5.6: Automatic generation of RCL trees. (left) The grounding function Φ showing the
probabilities of assigning words to vision concepts. (right) The four steps (Substitute, Connect,
Query, and Match) to generate an RCL tree Ψ from the sentence “place the green sphere over
the red cube” from the Dukes (2013) dataset.

5.3.2 Group concepts to generate RCL elements

Once the sentence S is transformed into a list of visual concepts S′, we aim to group these

concepts to find elements that can be linked back to the input video clip. We group the visual

concepts in S′ to create all possible entity, action, spatial-relation, and destination RCL ele-

ments. The definitions of these elements were mentioned earlier in Table 5.1 and are assumed
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to be known to the robot. The grouping of these elements is performed by connecting (i) con-

secutive colour, shape, and location concepts to form entity RCL elements; (ii) consecutive

action concepts to form action RCL elements; (iii) consecutive direction, distance, and entity

concepts to form spatial-relation RCL elements; and (iv) each spatial-relation and location

concept forms a destination RCL element. For example, in the sentence S′ = 〈action1, colour2,

shape3, direction1, colour3, shape1〉 the concepts colour2 and shape3 are grouped together to

generate an entity element of the form entity(colour2, shape3), i.e. an entity element with two

children: colour2 and shape3, as shown in the Connect section in Figure 5.6. Similarly, the

concepts colour3 and shape1 are grouped together to generate another entity element. Note

that shape3 and colour3 were not grouped together because there is a direction concept between

them, and our grouping method requires the concepts to be consecutive in the sentence. Also,

the ordering and number of concepts are not constrained in the grouping procedure, i.e. an

entity element can be created by grouping a colour concept followed by shape, or vice versa.

This allows the learning of grammar from different languages where adjectives and nouns are

ordered differently. The same grouping procedure applies to action, spatial-relation and des-

tination elements. For example, each of the two entities mentioned earlier is grouped with

the direction1 concept to generate a spatial relation element as shown in the Figure 5.6. By

grouping different concepts together, we managed to create different RCL elements and differ-

ent sentence structures. Each of which tells a different story as to what happened in the input

video as will be explained in the following section.

5.3.3 Query RCL elements

The query process aims to link RCL elements found in the previous section to objects and

relations in the input video clip. This is achieved by linking each (i) entity element in the

sentence to an object id, (ii) location element to a location concept, and (iii) spatial-relation

element to a relation concept. The linking is enabled by querying the children of RCL elements

with the list of predicates extracted from the input video clip. The extraction of predicates was

previously mentioned in §Visual World Encoding (section 3.3.4), and the list of predicates for

this example are shown in Figure 5.4.
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To perform the linking of RCL elements to the input video, we query the children of each

element against the encoded predicates from the input video. The aim is to find all objects

or relations in the input video that satisfies the constraints imposed by the children of each

element. For instance, to link the entity element entity(colour2, shape3), we query its children:

colour2 and shape3 looking for all objects that have both of these properties attributed to them.

By inspecting the list of predicates shown in Figure 5.4, we can see that the green sphere, the

object with id = 0, is the only object that satisfies both constraints. Therefore, the entity

element entity(colour2, shape3) is linked to id = 0, and by doing so we successfully linked

part of the input sentence to the input video, i.e. the robot now knows that this part of the

sentence (“green sphere”) is describing the green sphere object in the input video. Similarly,

querying the entity element entity(colour3, shape1) will result in linking it to the red cube

object with id = 1. The same technique applies for destinations. For example, the destination

element spatial-relation(direction1, entity(colour3,shape1)) returns the spatial relation predicate

direction1(0, 1). This means that the final destination of the manipulated object has to satisfy

this spatial relation, meaning the object with id=0 should be located at direction1 with respect

to the object with id=1. This is repeated for all found entities and destination elements in the

input sentence, as shown in Figure 5.6 (Query).

If multiple objects in the scene satisfy a query, a list of ids is returned, while if there are

none, the query returns an empty list, this might happen due to noise in vision and/or language.

In the next section, we match the results found by querying elements with the values of vision

tree elements {actionv, entityv and destinationv}.

5.3.4 Matching RCL elements with Ω

Given the query results of RCL elements, we aim to find the correct language structure Ψ

by matching the query results to the elements of the vision tree Ω. I.e. we aim to find the

correct language structure that reflects what happened in the input video. This is achieved by

comparing the values of each RCL element with the vision elements. For example, the vision

tree Ω in Figure 5.5 has an entityv element with id=0. By matching this with the available

RCL elements we find that the entity(colour2, shape3) which is describing the green sphere
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object holds the same object id. Therefore, the two are matched together, as shown in the

Matching section in Figure 5.6. Similarly, the actionv element in the vision tree holds the value

action1, which is matched to the available action element in the input sentence for the word

‘place’. Finally, the destinationv element in the vision tree holds two potential values: the

location concept location4, and the spatial relation direction1(0, 1). By looping through the

available options, we match the spatial relation described by the words ‘over the red cube’ with

the destinationv element in the vision tree. By performing the matching, the robot now has the

correct sentence structure that reflects what happened in the input video, i.e. the robot now

has an RCL tree that it can use to learn the grammar rules of natural language. The resultant

sentence structure Ψ from this example is shown in the Figure 5.7. The names used in the

tree (colour, shape, spatial-relation, etc.) are used for simplicity/readability. The robot is not

assumed to know these words specifically but knows of the existence of these elements. In the

following section, the learning of probabilistic grammar rules using this tree is discussed.

Figure 5.7: The generated RCL tree Ψ from the example shown in Figure 5.4 using the automatic
language tree generation algorithm presented in Algorithm 1.

5.4 Learning Grammar Rules

Grammar induction refers to the process of learning a formal grammar usually as a collection

of re-write rules or productions from a set of observations. The observations usually consist of

natural language sentences annotated with grammar trees. These observations are used to train

a parser by learning the grammar rules. In this thesis, Probabilistic Context Free Grammar

(PCFG; also known as Stochastic CFG) is used to model the grammar rules of language. The
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PCFG is presented in the NLP literature in the form Π = (N,T,R, S, P ), where Π is the

language grammar, N is the set of non-terminal symbols, T is the set of terminal symbols,

R is the set of production rules, S is the start symbol, and P is the set of probabilities on

production rules. The productions rules are of the form (left handside, right handside, weight).

A production (lhs, rhs, w) is written as lhs →w rhs, such that lhs ∈ N , rhs ∈ N × T , and

∀iΣjP (lhsi →w rhsj) = 1. The probability w of each rule is proportional to the number of

times this rule is observed in the training data. An example of PCFG is shown in Figure 5.8

along with a parsed tree for a sentence using this grammar.

In this thesis, we show how we learn PCFG rules by mapping natural language commands

to visual features extracted/learned from input video clips. The main contribution in our

grammar induction approach is that we automatically generate training examples similar to

those annotated by human experts shown in Figure 5.1 as presented in the previous section.

The generation of such training data is achieved by employing three different components

obtained from linguistic and visual inputs, which are: (1) the learned visual concepts presented

in Chapter 3, (2) the learned language groundings presented in Chapter 4, and (3) the extracted

vision trees presented in the previous section. By combining all thee of them we successfully

replace the human expert annotations of RCL trees, enabling the robot to learn about natural

language grammar without human supervision.

Figure 5.8: PCFG example. (left) A probabilistic context free grammar Π = (N,T,R, S, P ).
The probability of each rule is shown on the right side of each arrow. (right) A parsed tree for
the sentence “astronomers saw stars with telescopes” using the grammar Π.
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5.4.1 Learning a PCFG Π from RCL tree Ψ

To provide our robot with the ability of understanding new natural language commands, we

learn/induce a grammar Π = (N,T,R, S, P ) from the automatically generated language tree

(Ψ) shown in Figure 5.7. The induced grammar rules are used to parse new commands into

RCL trees that the robot can understand and execute. The grammar rules are modelled using

Probabilistic Context Free Grammar (PCFG). To learn the grammar rules, we follow the Inside-

Outside algorithm presented by Lari and Young (1990). To induce a PCFG grammar rule, i.e.

learn the probability of a production from a list of observations we use Equations 5.1 and 5.2.

There are only two kinds of productions in the grammar rules we learn: the non-terminal ones

(B → C1, . . . , Cm), and the terminal ones (B → Z), where B and Ci are non-terminal symbols,

while Z is a terminal symbol. A probability, called P (C1, . . . , Cm|B) or P (Z|B), is associated to

each production. The computation of these probabilities are shown in Equations 5.1 and 5.2,

where P is the probability of the grammar rule, λ is a counting function, and ∗ is any right hand

side for the grammar rule, i.e. any grammar rules with a left hand side B. A normalization

condition must hold for every non-terminal B, which is the summation of the probabilities of

all rules where B is the left side of it must equal to one, as shown in Equation 5.3.

P (C1, . . . , Cm|B) =
λ(B → C1, . . . , Cm)

λ(B → ∗)
(5.1)

P (Z|B) =
λ(B → Z)

λ(B → ∗)
(5.2)

∑
c

P (c1, . . . , cm|B) +
∑
z

P (z|B) = 1 (5.3)

To learn the grammar rules we start with an empty Probabilistic Context Free Grammar

(PCFG) rule set. The rules learned from the example sentence “place the green sphere over the

red cube” are shown in Table 5.2. The rules learned from all examples are accumulated into

one PCFG grammar Π. These rules model the structure of natural language commands and

are used to parse new commands into RCL trees which the robot can understand and execute.



94 CHAPTER 5. GRAMMAR INDUCTION

Learning Grammar Rules

Grammar Rules Probabilities

event → action, entity, destination 1.0

entity → colour, shape 1.0

destination → spatial-relation 1.0

spatial-relation → direction, entity 1.0

action → place 1.0

direction → over 1.0

shape → sphere 0.5

shape → cube 0.5

colour → green 0.5

colour → red 0.5

Table 5.2: The learned grammar rules from the example sentence “place the green sphere over
the red cube” are shown on the left side, while the probability of each rule is shown to the right.

5.5 Discussion

In this section we discuss the main contributions presented in this chapter, along with the

assumptions made to enable the learning of grammar rules and the limitations of our approach.

5.5.1 Main contributions

In this chapter, a new probabilistic grammar induction approach of natural language commands

was presented. The learning was achieved in a semi-supervised manner using language and

vision inputs. The learning of grammar rules from unlabelled linguistic inputs was enabled

by matching the language structure with the vision tree of the input video. To the best of

our knowledge, this work is the first to learn grammar rules using extracted/learned visual

concepts and language groundings. The automatic generation of training data similar to the

ones annotated by a human expert is the main contribution we offer in this chapter.

5.5.2 Assumptions

The video and sentence each have to contain only one action, the RCL elements have to be

known before hand, and the matching has to be complete between the vision and RCL trees.
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5.5.3 Limitations

Even though our grammar induction approach can be expanded to more domains such as robot

navigation or cooking recipes, it is not an easy task to do so. More RCL elements would have

to be manually defined and provided to the robot, which makes it less suitable to learn from

different domains at once. However, we believe that this grammar induction approach takes a

step closer towards building a system that can autonomously generate new RCL elements and

learn in an unsupervised manner the grammar rules of natural language by connecting language

to vision. Also, we do not use the gained knowledge to improve the chances of learning a new

grammatical form, or learn the meaning of a new word, which remains as future work.
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Chapter 6

Experimental Procedure

“If a machine is expected to be infallible, it cannot also be intelligent.”

—Alan Turing

In this thesis, a novel, loosely-supervised and incremental learning framework is presented

that enables robots of bootstrapping their knowledge in language and vision domains. The

framework contains a number of existing and newly developed machine learning techniques

that focus on learning three aspects of language and vision, (a) visual concepts, (b) language

groundings and (c) grammar rules. In this chapter, we evaluate each of the presented machine

learning techniques in this thesis, and compare them against other supervised and unsupervised

systems when applicable.

This chapter is organised as follows. First, we list the experiments used to evaluate our

learning framework along with the evaluation measures used in this thesis. Second, we list the

robots and collected datasets used in evaluating our learning framework. Third, we describe in

detail each of the experiments and present the results of each.

6.1 Experiments and Evaluation Measures

The performance of the presented language and vision learning framework is evaluated using

four experiments that are designed to evaluate the framework’s ability in:

97
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1. Incremental learning of visual concepts from video inputs. This experiment evaluates the

use of Incremental Gaussian Mixture Models (IGMM) technique along with a Bayesian

Information Criterion (BIC) for simple visual concepts learning such as faces, distances,

shapes, etc., and the use of spatio-temporal DAGs along with LDA and Variational Bayes

algorithm for complex concepts learning such as robot and human actions.

2. Incremental language groundings of n-grams to visual concepts. This experiment evalu-

ates the performance of the integer programming technique in correctly finding the correct

multi-to-multi mappings between language and vision compared to other methods like the

supervised Hidden Markov Model (HMM) for Part-of-Speech (POS) tagging system which

require the ground truth groundings to learn from in a supervised manner.

3. Incremental grammar rules induction. This experiment evaluates the incremental learning

of probabilistic context free grammar (PCFG) rules from pairs of inputs, where each pair

contains a video clip along with its corresponding natural language command describing

it. The learned grammar rules are evaluated based on their ability to correctly parse

new (previously unseen in training data) natural language commands into Robot Control

Language (RCL) trees which our robots can understand and execute.

4. Scalability of the learning framework. This experiment briefly evaluates how the learning

framework scales with large amounts of data by presenting the memory requirements of

our learned models in an incremental manner compared with the size of the raw data.

A number of evaluation measures are used to evaluate the performance of our system in each

experiment. The measures along with their descriptions are presented in the following sections.

6.1.1 F1 score

In binary classification statistical analysis, F1 score (also known as the F -measure or F -score) is

a measure of the accuracy of a binary classification test. As presented by Rijsbergen (1979), the

F1 score is computed using both the Precision and Recall of the test, where Precision is the

number of correct positive results divided by the number of all positive results, and Recall is the

number of correct positive results divided by the number of total relevant positive results. The
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F1 score can be thought of as a weighted average of the precision and recall of a classification

test, where it is equal to 1 at its best value (every point in the test classified correctly) and 0

at its worst. The F1 score is computed using Equation 6.1.

F1 = 2× 1
1

precision + 1
recall

= 2× precision× recall
precision+ recall

(6.1)

6.1.2 V measure

The V-measure (Vm) presented by Rosenberg and Hirschberg (2007) is a combination of both

1-homogeneity : a metric of cluster labelling given the ground truth classes, it measures whether

each predicted cluster contains same-class data points as shown in Equation 6.2, where C is

the ground truth classes, K is the clusters and H() is the entropy. 2-completeness: a metric

measuring whether all data points that are members of a given class are elements of the same

predicted cluster measured using Equation 6.3. The V-measure metric provides a measure of

similarity of any two sets of class labels, where 0 indicates no correlation and 1 indicates perfect

correlation, and is computed using Equation 6.4.

homogeneity = 1− H(C|K)

H(C)
(6.2)

completeness = 1− H(K|C)

H(K)
(6.3)

Vm = 2× homogeneity × completeness
homogeneity + completeness

(6.4)

6.1.3 Normalised Mutual Information (NMI)

The Mutual Information (MI) between two sets of labels is computed using Equation 6.5, where

P (x, y) is the joint probability distribution of X and Y , and P (x) and P (y) are the marginal

probability distribution functions for X and Y as presented by Cover and Thomas (1991). This

metric provides a measure of similarity of any two sets of class labels. The Normalised Mutual

Information (NMI) provides a normalised measure of MI as shown in Equation 6.6, where H

represents the entropy of the set. The NMI provides an output of 0 to indicate no mutual

information between the sets X and Y , and 1 to indicate perfect correlation.
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MI(X,Y ) =
∑
y∈Y

∑
x∈X

P (x, y) log

(
P (x, y)

P (x) P (y)

)
(6.5)

NMI(X,Y ) =
MI(X,Y )√
H(X) H(Y )

(6.6)

6.2 Datasets

Four different datasets are collected/extended and used to evaluate the performance of our

language and vision learning framework. The datasets include three robot manipulators per-

forming different table-top tasks such as picking up and moving blocks, and one mobile robot

observing humans performing various kitchen activities such as making tea or microwaving

food. The four datasets are presented in more detail in the following sections.

6.2.1 Extended Train-Robots Dataset

Extended Train-Robots is a simulation dataset with a 3 DOF robot arm along with a two

fingered gripper performing various table-top manipulation tasks in a simulated block world

environment. This dataset is an extended version of the Train-Robots dataset presented by

Dukes (2013). The Train-Robots dataset aims to improve natural language human-robot spatial

interaction through verbal commands. It was designed to develop systems capable of under-

standing natural language commands with spatial information on an 8×8 chessboard simulated

world. The dataset contains 1000 scenes, where each scene consists of two images. One repre-

sents the initial configuration of the world, and the second represents the desired (or final) one.

In each scene, only one object changes its location as shown in Figure 6.1. After the scenes

were generated, non-experts were asked to annotate the 1000 scenes with appropriate natural

language commands such that if these commands were given to a robot, the robot would be

able to change the scene from the initial to the desired configuration. An example to these

commands for the scene shown in Figure 6.1 is “move the yellow prism to on top of the grey

tower”. Amazon Mechanical Turk (2010) was used to collect the natural language commands,

4850 commands were collected and annotated with appropriate Robot Control Language (RCL)
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trees as shown in Figure 6.2. The original Train-Robots dataset contains two shapes only (cube

and prism), and eight different colours (red, green, blue, cyan, grey, white, yellow and pink).

Figure 6.1: A scene example from the Train-Robots dataset with two images, the initial con-
figuration (left) and the desired or final configuration (right). Image taken from Dukes (2013).

Figure 6.2: An Example of a human annotated RCL tree from the Train-Robots dataset.

In this work, the Train-Robots dataset1 is extended in a number of ways. First, the dataset

contained only two shapes one of which (the cube) existed in almost every scene, also the red

colour existed in every scene. This limits the learning ability of our robot as it will associate

every word in the input sentences with the cube shape and the red colour. Therefore, we

modified the scenes to include two more objects (sphere, cylinder) and one more colour (black).

This is achieved by changing half the scenes that contains prisms to spheres, cubes to cylinders,

and red to black. The scenes were randomly selected and were different for changing the prisms,

cubes and red. Out of the 1000 scenes, 500 were randomly chosen to change prisms to spheres,

1The original and extended versions of the dataset are available at http://doi.org/10.5518/32
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and a different 500 were chosen to change cubes to cylinders, etc. Particular care was taken in

modifying the annotated natural language commands to match the scenes in order not to alter

the meaning or any mistakes in the descriptions. This allows the dataset to be more rich and

thus contains more variation to learn from. The second extension to the Train-Robots dataset

was to automatically animate the 1000 scenes to produce videos of the robot performing the

action. Examples of key frames for the generated videos are shown in Figure 6.3. The third

extension is the translation of all 4485 commands from English to Arabic to test the learning

framework on a different language. The translation was performed using Goslate (2016), a free

Google translator API for the Python programming language. Again, particular care was taken

not to alter the commands or correct any mistakes before translation.

Figure 6.3: Examples from the Extended Train-Robots dataset along with their annotated
commands; the Arabic sentences are translated from the English ones.
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6.2.2 Leeds Robotic Commands Dataset

The Leeds Robotic Commands dataset2 was first presented in Alomari et al. (2017b). The

dataset contains real-world RGB-D scenes of a robot manipulating different objects together

with natural language descriptions of these actions. For this dataset, we used a Baxter robot

(LUCAS) from Rethink Robotics as the robotic platform. We fitted LUCAS with a Microsoft

Kinect2 sensor (2015) on its chest such that it can observe and model its environment in RGB-D

as shown in Figure 6.4. The Kinect2 was used to collect RGB-D videos of LUCAS performing

various manipulation tasks with real objects from the robot’s point of view. To record each

video, an annotator was asked to perform a given task by driving LUCAS using a joystick3.

In each video, only one object is manipulated (i.e. only one object changes its location). The

three commands used in this dataset to guide the annotators are ‘pick up’, ‘put down’ and

‘move’. For example, the command ‘move the red apple into the white bowl ’ was provided to

an annotator who guided LUCAS to perform the action as shown in Figure 6.5.

Figure 6.4: Leeds Robotic Commands dataset setup. (left) The Baxter robot (LUCAS) used
as the robotic platform in this dataset, and is fitted with Microsoft Kinect2 sensor on its chest
to record data. (right) The point-cloud generated from the Kinect2 sensor after calibrating its
position with respect to LUCAS’s body frame.

The dataset includes 204 video clips consisting of 17,373 frames in total of LUCAS manipu-

2The Leeds Robotic Commands dataset is available at http://doi.org/10.5518/110
3The Python and ROS implementation of the joystick commands and their mapping to the velocity control

of LUCAS’s arms are available at https://github.com/OMARI1988/baxter pykdl
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Figure 6.5: Example from the Leeds Robotic Commands dataset for the command ‘move the
the red apple into the white bowl ’. (top) An external camera is placed opposite the robot to
record the scene. Note that this camera is not used in objects detection nor tracking. (middle)
The RGB feed from the Kinect2 sensor showing the point-of-view of the robot. (bottom) The
RGB-D feed from Kinect2, along with the detected objects’ ids and tracks.

lating various objects. A total of 51 different objects are manipulated in the dataset that include

basic block shapes, fruits, cutlery, and office supplies, with an average of five objects present in

each scene. The objects are detected using an off-the-shelf table-top object detector presented

by Muja and Ciocarlie (2013) which I implemented in the Robotics Operating System (ROS).

This technique is used to drive the attention of the robot to the graspable objects placed on

a table within the robot’s reach. Examples of detected objects are shown in Figure 6.6. Once

an object is detected in a video clip, the location of this object is tracked across all remaining

frames using a six dimensional particle filter presented by Klank et al. (2009) which has a C++

implementation in the Point-Cloud-Library (PCL 2011). The six dimensions of the particle

filter are the three x, y, z location, and the three r, g, b colour values of each pixel in the object

segment. The object detection and tracking techniques are also shown in the bottom row of



6.2. DATASETS 105

Figure 6.5 where each detected object is assigned a unique id and tracked throughout the video.

Figure 6.6: Table-top object detection technique for the example shown in Figure 6.5.

For the linguistic domain, the videos were annotated with appropriate natural language

commands by a separate group of annotators. The annotators were presented with the video

clips, one at a time, and were asked to provide appropriate natural language commands for

each clip in such a way that if the command was provided to LUCAS, then it would be able

to perform the command with no ambiguity. The dataset contains a total of 1024 natural

language commands describing the 204 videos, an average of five per video. Examples from the

Leeds Robotic Commands dataset showing the collected videos and the annotated linguistic

commands are presented in Figure 6.7.

Figure 6.7: Two examples from the Leeds Robotic Commands dataset along with examples
from their annotated natural language commands.
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6.2.3 Extended Object Ordering Dataset

The original Object Ordering dataset was presented by Sinapov et al. (2016). The robot used

in this dataset is a custom built mobile manipulator that uses the Segway Robotic Mobility

platform (2004) along with a 6-DOF Kinova Mico arm (2014) with a two fingered gripper

as its end effector. The robot is shown on Figure 6.8 (left) along with all the objects used

in this dataset. The Object Ordering dataset was originally designed to teach a robot how

to arrange objects in an ascending order based on their properties. For example, to arrange

objects from shortest to tallest, smallest to largest, lightest to heaviest, etc. To learn about

object properties, the robot performs seven different predefined actions on each object in the

scene. The predefined actions are grasp, lift, lower, drop, press, push and hold, these actions

are shown in Figure 6.8 (right).

Figure 6.8: The Object Ordering dataset robot. (left) The Segway Robotic Mobility and the
6-DOF Kinova Mico arm mobile manipulator along with all the objects used in this dataset.
(right) Six of the seven predefined actions used to teach the robot about object properties.
Both figures are copied from Sinapov et al. (2016).

The set of objects that the robot explores and learns about consists of 32 common household

items including cups, bottles, cans, and other containers. The object properties varied in weight,

height, and width. The objects’ height and width was measured in millimeters while their weight

was measured in grams in this dataset. The objects were chosen in this dataset such that the

distributions of their weight, width, and height were roughly uniform. Also, each video clip

features only a single object in it, which means the robot cannot learn about spatial relations

between objects in this dataset.
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We extended the Object Ordering dataset by annotating the video clips with appropriate

natural language commands. The commands were provided by annotators who viewed the video

clips, one at a time, and wrote appropriate commands such that if the command is provided to

the robot, the robot would be able to perform the task with no ambiguity. The dataset contains

a total of 1120 video clips, which were annotated with 1120 linguistic commands, one for each

clip. Examples of video clips and the their corresponding commands are shown in Figure 6.9.

Figure 6.9: Four examples from the extended Object Ordering dataset along with their anno-
tated natural language commands.
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6.2.4 Extended Kitchen Activities Dataset (LUCIE)

To integrate into human environments, mobile robots with collaborative human-oriented tasks

should be enabled to continuously learn about their environments, the people who inhabit

these environments, and the activities that take place there. From an autonomous robot point

of view, this requires incremental learning methods that operate on the outputs of various kinds

of sensor modalities the robot might have, ranging from laser rangefinder and RGB-D cameras

to voice recognition. The desired outcome of this process is learning a collection of grounded

concepts of the robot’s environment that are beneficial for the robot’s specific task.

In this dataset, we present a demonstration of our learning framework for symbol grounding

for autonomously-extracted components of real-world, human environments for a mobile robot.

The novelty of our framework is that it extends existing work in autonomous symbol grounding

towards ‘the wild’ from the typical lab settings towards more realistic, real-world scenarios,

and from ideal sensing conditions to noisy, limited and changing perception of a mobile robot.

Moreover, it does this in a loosely-supervised, incremental fashion. We presuppose that the

robot can navigate and visually analyse the environment to extract a multitude of visual features

in order to incrementally recover useful visual concepts. If natural language descriptions of the

observations are also provided, they can be analysed along with the visual features to ground

the words describing people, objects, activities, etc. to their most relevant perceptual concepts.

One possible application of such a framework could be in the field of security or assistive robotics

where robots need the ability to learn on-the-go how to describe new objects or situations in a

human-understandable form in a lifelong setting.

For its basic operations, LUCIE (a Metralabs Scitos A5 robot) is equipped with a base-

mounted laser scanner used to model the physical environment as a 2D occupancy grid where

occupied cells indicate static objects, allowing localisation, mapping and navigation, as shown

in Figure 6.10. For this purpose, an off-the-shelf ROS-packages developed by the STRANDS

project consortium (2016) is used. Also, the robot is equipped with two RGB-D sensors, one

over-head and one chest-mounted, that allow collecting 640x480 RGB video streams in addition

to depth point clouds. These sensors are used to generate a 3D map of the robot’s environment

to search for objects and detect/track humans as they pass within its field of view.
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Figure 6.10: Part of the generated map of level-9 in the School of Computing, University
of Leeds. (left) 2D map generated with SLAM algorithm using base-mounted laser scanner.
(right) 3D map generated by integrating RGB-D scans from the head-mount xtion sensor.

For human detection and tracking, the mobile robot LUCIE detects and tracks humans as

they pass within the field of view of its head-mounted RGB-D sensor as previously describe in

§Human Pose Estimation (3.2.1). The human pose is defined as the estimated 3D position of

the person’s 15 body joint locations at a single frame in a video clip. The 15 body joints are

the head, neck, torso, shoulders, elbows, hands, hips, knees and feet. For each body joint j,

an (xyz) Cartesian coordinate is inferred, and a human pose estimate comprises of 15 such

joints J = [j1, j2, . . . , j15]. To estimate the human pose, a real-time depth-only tracker built

on OpenNI (2016) is used along with a post-processing state-of-the-art human pose estimation

technique that uses a convolutional pose machine (CPM) by Wei et al. (2016) which I integrated

with Python and ROS4. For each human detected by the robot, a sequence of human pose

estimates over a time series of frames is acquired and recorded along with the RGB and depth

frames, e.g. Figure 6.11 shows frames from a recorded video clip along with the human pose

estimates from both OpenNI and CPM techniques overlayed on the images.

For object detection, LUCIE constructs a 3D model of its environment by fusing RGB-

D images into surfels, from which the robot generates segments of “objects of interest” as

previously described in §Object detection and tracking (3.2.2). In this work, a similar method

to that presented by Bore et al. (2017) is used, which first splits the scene into a collection of

supervoxels over which an adjacency graph is formed. Then, weights are assigned to the edges

based on local convexity of the point cloud and colour differences between segments. Finally,

4The code is available at https://github.com/OMARI1988/cpm skeleton
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Figure 6.11: OpenNI and CPM human pose estimation. (left) OpenNI human pose estimation
technique is prone to error when body joints are partially occluded. (right) The use of CPM
technique to improve the results of OpenNI. CPM finds a better human pose estimate even
when joints are partially or fully occluded. Image copied from Duckworth et al. (2017).

to segment the point cloud, iterative graph cuts are performed to separate parts with concave

boundaries and/or large colour differences. This results in a collection of point cloud segments

or objects of interest as illustrated in Figure 6.12. It is important to concentrate attention on

the objects that are part of the observed human activities. First, walls, floors and ceilings are

removed from the list of objects of interest using a threshold on size and height. Second, the

trajectories in 3D space of people in the environment are analysed to extract the locations where

people stop more frequently. The objects are scored according to their proximity to people’s

hands in these locations. The highest scoring objects are considered as the only objects in the

environment as presented in Alomari et al. (2017a). Examples on these objects are shown in

Figure 6.12 (bottom).

In this thesis, we use and extend a publicly available long-term human activity dataset5

collected over a one week period by our mobile robot LUCIE from multiple view points. The

dataset contains 493 video clips each containing a single human performing a simple activity

in a kitchen area of an office environment, the activities include, for example, heating food,

preparing hot drinks, using a multi-function printer, throwing trash and washing up, amongst

others. The length of the videos range between 6 and 2561 frames (as detected by LUCIE’s

head cam), with a median of 137 frames. On top of the dataset, we collected natural language

5The original and extended versions of the dataset are available at http://doi.org/10.5518/86
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Figure 6.12: The environment observations are fused into a 3D map and segmented. (a) RGB
image of the scene, (b) segmented surfel map, or the segmented objects in the scene. (bottom)
Examples on objects of interest found after filtering the objects with human trajectories. The
objects are from left to right, bin, microwave, fridge and printer.

descriptions of each video clip using Amazon Mechanical Turk, where we requested ‘turkers’

to describe the activity in the clip and the person’s appearance (given a fabricated name). A

total of almost 3000 descriptions were collected (6 per clip on average). Example video clips

are shown in Figure 6.13 along with a subset of the descriptions obtained.

Figure 6.13: Two examples from the extended Kitchen Activity dataset along with their anno-
tated natural language descriptions.
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6.2.5 Datasets summary

The proposed learning framework for bootstrapping robots’ knowledge in language and vision

is evaluated against four publicly available datasets, three of which are collected using robot

manipulators, and one using a mobile robot. The collected videos and linguistic command

numbers are shown in Table 6.1. For example, the Train Robots dataset (in the first row)

contains 1000 video clips, with a total of 30,000 frames, 4850 natural language commands

describing the 1000 videos, 277 unique words in the 4850 commands, and around 25 objects

on average are present in each video clip. The datasets share the predefined visual feature

spaces mentioned in §Visual Concepts (Chapter 3), but none of the datasets contains all of

them. A summary of all visual feature spaces and their ground truth concepts are shown in

Table 6.2. For example, the Train Robots dataset contains nine unique colour visual concepts

which are red, green, blue, cyan, grey, white, yellow, pink and black, that we expect the robot

to learn/model using the IGMM technique, and also learn the words used to describe them in

natural language as will be shown in the following sections through the different experiments.

Datasets summary - data analysis

Feature video clips frames commands unique words objects (average)

Train Robots 1000 30, 000 4850 277 24.8

Robotic Commands 204 17, 373 1024 87 5.3

Object Ordering 1120 145, 573 1120 31 1

Kitchen Activities 493 67, 541 3000 641 5.7

Table 6.1: Data analysis for the four collected datasets. The table shows the number of video
clips, frames, annotated commands, unique words in all commands, and average number of
objects present in the individual video clips for all four datasets.

Datasets summary - visual concepts

Feature Colour people Object Location Direction Distance Action

Train Robots 9 − 4 4 5 − 3

Robotic Commands 10 − 13 6 5 6 3

Object Ordering 7 − 6 − − − 7

Kitchen Activities 9 17 12 − − − 11

Table 6.2: Number of unique visual concepts in colour, people, shape, location, direction, dis-
tance, and action features in the four available datasets. The hyphen symbol (-) is used in the
table to indicate that the visual feature space is not applicable for the dataset.
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6.3 Experiment 1: Learning Visual Concepts

In this section, we present empirical results to evaluate the visual concept extraction and learn-

ing framework. Visual concepts are abstractions of the feature spaces generated by the robot

modalities which carry a human-level meaning such as a colour or a spatial relation. Visual

concepts are learned automatically by clustering the low-level sensory input of each of the sen-

sor modalities of the robot after an appropriate encoding. This clustering operation results

in a collection of classes that are candidate visual concepts within each feature space. We

incrementally learn concepts in each of the feature spaces; namely faces, colours, objects, loca-

tions, directions, distances, robot actions and human activities, over the four collected/extended

datasets. Since the learning is performed in a loosely-supervised setting, and the robot does

not know the label of each concept beforehand, then we use two popular clustering metrics to

evaluate the performance: normalised Mutual Information (1991), and V-measure (2007). For

the ground truth of each datasets, we use the sets presented in Table 6.2, extracted manually

from each dataset by paid annotators.

As an upper bound and to provide a reference result, we also show the V-measure results

obtained using a supervised (linear) support vector machine classifier (SVM) with 4-fold cross-

validation. The SVM clearly has access to the ground truth labels during training. Still, in the

following sections we show how the SVM only marginally outperforms our loosely-supervised

visual concept learning framework in the four available datasets, even though our system learns

visual concepts from unlabelled data.

6.3.1 Learning visual concepts results

Extended Train-Robots dataset

Table 6.3 presents results of our incremental, loosely-supervised visual concept extraction when

compared against ground truth classes for the Extended Train-Robots dataset. This dataset

contains 5 visual feature spaces, namely colours, shapes, locations, directions and robot actions.

Using our visual concept extraction framework, the robot managed to recover 9 colour concepts,

5 shape concepts, 8 location concepts, 13 direction concepts and 5 robot action concepts from

this relatively simple and simulated dataset. The numbers of manually defined unique concepts
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are presented in Table 6.2. The robot had access to noisy observation of the world, we added

Gaussian noise to typical mean values of the observations. The number of unique concepts

is selected unsupervised using BIC for simple visual concepts (colour, shape, location and

direction), and using graph matching for complex concepts (robot actions). The results in

Table 6.3 show the majority of the instances observed are successfully clustered into consistent

concepts. Also, our system achieves comparable results to the supervised SVM, keeping in

mind that we learn from unlabelled data. Examples of learned visual concepts are presented in

Figure 6.14.

Metric Colours Shapes Locations Directions Actions

Mutual Information 1.31 1.07 1.58 1.40 0.73

Normalised MI 0.70 0.70 0.54 0.58 0.72

Homogeneity Score 0.63 0.69 0.38 0.48 1.00

Completeness Score 0.77 0.70 0.76 0.71 0.54

V-measure 0.69 0.70 0.51 0.57 0.69

V-measure (SVM) 0.77 0.79 0.57 0.91 0.89

Table 6.3: Experimental results of visual concept extraction for the Extended Train Robots
dataset, showing five clustering metrics. Also, we show the V-measure of a supervised SVM as
an upper limit, that has access to the ground truth labels during training.

Figure 6.14: Examples of visual concepts learned from the extended Train Robots dataset. The
examples include clusters of colours, shapes, directions and locations.
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Leeds Robotic Commands dataset

Table 6.4 presents the results of learning visual concepts from the Leeds Robotic Commands

dataset. This dataset contains 6 visual features, namely colours, shapes, locations, directions,

distances and robot actions. Our system managed to recover 16 colour concepts, 25 shape

concepts, 6 location concepts, 6 direction concepts, 4 distance concepts and 7 robot action

concepts from this real-world dataset. The results in Table 6.4 show that the observed instances

are reasonably clustered into consistent concepts. The number of learned concepts was selected

unsupervised using BIC and graph matching approaches. For example, our robot thinks there

are 25 unique shape concepts in this dataset, when in fact there are only 13 classes, and 7 robot

action concepts when there are only 3. We found a number of reasons behind the larger number

of recovered concepts when compared to ground truth data. First, using unsupervised object

segmentation techniques (as presented in §Object detection 3.2.2) to identify the individual

objects in the scene does not produce perfect object segments, which lead to having objects

with incorrect point cloud segments (with extra or missing points/parts). Second, using a

particle filter to track objects (as presented in §Object tracking 3.2.2) produced noisy tracks

that lead to variations in activities. Third, objects were recorded from different view points

which led to variations in their appearance. Objects were placed in different orientations on

the table in each scene and were viewed from different angles from the camera. Fourth, objects

were allowed to be partially occluded by other objects in the scenes. Fifth, the recordings of

videos occurred at different times of the day with varying lighting conditions in the robotics lab

which lead to variations in object colours. Finally, the same action was performed differently by

different annotators, e.g. a simple pick up action was performed in various ways as annotators

approached the objects from different angles, which lead to variations in the spatio-temporal

graph structure. These reasons made learning of visual concepts from real-word data more

challenging for our robot, yet, our system still managed to learn and cluster the visual concepts

with comparable accuracy with the supervised SVM system, and it even produced better results

in the direction relation feature space. Examples from the learned visual concepts for this

dataset are shown in Figure 6.15.
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Metric Colours Shapes Locations Distances Directions Actions

Mutual Information 1.46 1.19 1.27 1.13 1.16 0.82

Normalised MI 0.62 0.58 0.83 0.88 0.93 0.69

Homogeneity Score 0.68 0.62 0.81 0.91 0.91 1.00

Completeness Score 0.58 0.53 0.86 0.86 0.94 0.48

V-measure 0.62 0.57 0.83 0.88 0.93 0.65

V-measure (SVM) 0.82 0.62 0.96 0.89 0.90 0.71

Table 6.4: Experimental results of visual concept extraction for the Leeds Robotic Commands
dataset, showing five clustering metrics for colour, shape, location, direction, distance and robot
action extraction.

Figure 6.15: Examples of visual concepts learned from the Leeds Robotic Commands dataset,
including clusters of shapes, colours, locations and distances.

Extended Object Ordering dataset

Table 6.5 presents the results of concept extraction for the Extended Object Ordering dataset.

This dataset contains 3 visual features only, namely colours, shapes and robot actions. Note

that more feature spaces can be added to this dataset such as weights and sizes, but we leave

this as an extension to future work. Using our learning system, the robot managed to recover

7 colour concepts, 10 shape concepts and 7 robot action concepts from this relatively simple

real-world dataset. The results in Table 6.5 show that the instances observed are successfully

clustered into consistent concepts with good accuracy, even when compared to the supervised
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SVM system. The action concepts results are relatively high for this dataset. The two main

reasons for this high score are firstly the 7 actions in this dataset are simple, namely grasp,

lift, lower, drop, press, push and hold with distinctive differences between them, and secondly

these actions were programmed and executed by the robot when recorded, as opposed to being

performed by an annotator guiding the robot arm which produces more variations in each action

class. Examples from the learned visual concepts are shown in Figure 6.16.

Metric Colours Shapes Actions

Mutual Information 1.19 0.77 0.78

Normalised MI 0.67 0.45 0.96

Homogeneity Score 0.66 0.57 0.96

Completeness Score 0.67 0.36 0.96

V-measure 0.67 0.44 0.96

V-measure (SVM) 0.88 0.47 0.93

Table 6.5: Experimental results of visual concept extraction for the Extended Object Ordering
dataset, showing five clustering metrics for colours, shapes and robot actions extraction.

Figure 6.16: Examples of visual concepts learned from the extended Object Ordering dataset.
The examples include clusters of shapes, colours and locations.

It is worth noting that the previous three datasets data collection, extension, processing

and analysis were performed using a midrange PC. The robots were simulated/controlled using

a single PC with an Intel Core i7-4790 processor and 16 GB of RAM running Ubuntu 14.04
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OS and ROS indigo. The use of incremental Gaussian mixture model (IGMM) technique for

simple concept learning allowed for smaller memory requirements, making it possible for the

full incremental learning framework of visual concepts to run on-board a single PC.

Extended Kitchen Activities dataset

Table 6.6 presents results of our incremental, loosely-supervised visual concepts extraction when

compared against ground truth classes for the Extended Kitchen Activities dataset. We use the

most likely component in a mixture as a label if the prediction is multinomial, as in the case of

activity topics. The robot managed to recover 34 face concepts, 13 colour concepts, 14 object

concepts, and 13 activity concepts from this challenging real-world dataset with multiple view

points, changing lighting conditions and occlusions. The results in Table 6.6 show the majority

of the instances observed are successfully clustered into consistent concepts. Examples from

the learned visual concepts for this dataset are shown in Figure 6.17.

Metric Faces Colours Objects Activities

Mutual Information 1.85 1.27 1.21 1.34

Normalised MI 0.70 0.70 0.69 0.62

Homogeneity Score 0.90 0.91 0.71 0.60

Completeness Score 0.55 0.54 0.68 0.64

V-measure 0.68 0.66 0.69 0.62

V-measure (SVM) 0.75 0.74 0.77 0.69

Table 6.6: Experimental results of unsupervised concept extraction showing five clustering
metrics for face, colour, object and activity extraction. Also, we show the V-measure using a
supervised SVM as an upper limit.

Given the limited size of the dataset, we compute the most prominent 20 Eigenfaces from

the observations of day 1, and use them after that to compute Eigenvalues in all later detections.

Also, we first seed the activity model by learning topics using Collapsed Gibbs Sampling (2014)

on day 1 observations in batch mode. After that, we incrementally process new data using

Variational Bayes with a regular mini-batch size of 5 videos to allow frequent updating. For the

number of topics/human-activity concepts, we first start with the number of discovered objects

to initialise the learning, then increase this number by one each day to allow new activities to

appear over time. Also, we remove any unused topics.
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Figure 6.17: Examples of visual concepts learned from the Extended Kitchen Activities dataset.
The examples include clusters of faces, colours, human activities and segmented objects.

It is worth noting that all data collection, processing and analysis for this dataset were

performed using midrange CPU and GPU units. Our mobile robot LUCIE has three PCs with

i7 processors running ROS indigo, and a single GTX 1050 Ti GPU with 2 GB of memory on

which the convolutional pose machine (CPM) for human pose estimation runs. The use of

incremental techniques (IGMM and VB) for concept learning allowed relatively less complex

and more memory-efficient processing, making it possible for the full framework to run on-board

the PCs of our robot.

6.3.2 Discussion

The visual concepts learning results obtained from all four datasets show that our system is

capable of learning visual concepts from robot observation in a loosely-supervised manner. The
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term loosely-supervised is used to describe the fact that video clips were temporally segmented

by human annotators such that each clip contains a single human or robot action. These tem-

porally segmented clips were used for both crowd-sourcing of textual descriptions and learning.

Our system succeeded in extracting and learning meaningful concepts even from real-world

challenging datasets were objects and people were viewed from different angles and with oc-

clusions. The results obtained are also comparable with the ones generated using a supervised

SVM approach, keeping in mind that the SVM had access to the human annotated ground-

truth labels during learning while our system learns from unlabelled data. The visual concept

learning results generated from our system can be improved using semi-supervised learning

approaches, where the robot is provided with a few data points with labels and many other

data points without labels. The labels can be obtained/extracted from video clips that contain

a single object in them, or even using human-robot interaction where the robot asks about a

specific feature space such as the colour of a few objects to improve the learning. We leave the

aforementioned extensions for future work to investigate. The learned visual concepts presented

in this experiment are used in the following section to learn language groundings.

6.4 Experiment 2: Learning Language Groundings

In this section, we present empirical results to evaluate the natural language grounding frame-

work presented in this thesis. Natural language grounding is a term used to refer to the

problem of learning the meaning of words in other domains by mapping words to concepts in

these domains. Our language grounding framework is presented in Chapter 4 and consists of

a preprocessing step and four learning steps as shown in Figure 6.18. In the preprocessing

step, we extract meaningful concepts from both vision and language inputs. The vision con-

cepts are represented with Gaussian components, human activity topics and spatio-temporal

DAGs as discussed in Chapter 3, while the language concepts are represented with a bag of

n-grams that covers all word sequences up to length N in the input sentences. The aim of

our language grounding framework is to map the extracted n-grams to their corresponding

visual concepts, which is achieved using the four learning steps: (i) building associations, (ii)

generating hypotheses, (iii) filtering hypotheses, and (iv) validating hypotheses.
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Figure 6.18: Natural language grounding framework. The framework consists of a preprocessing
step, and four learning steps aiming to find the correct mapping between n-grams in language
and visual concepts in vision. The arrows at the bottom shows the different processing steps
applicable to each of the four datasets.

In our language grounding framework, we allow multi-to-multi mappings between language

and vision to preserve the richness of language. In other words, a vision concept can be grounded

with different n-grams and visa versa. For example, the n-grams ‘cyan’ and ‘sky blue’ can share

the same colour concept. Similarly, the n-gram ‘Tony ’ can be shared with multiple face con-

cepts (i.e. different people can be called ‘Tony’ and they may look different). The multi-to-multi

mappings are enabled by formulating the grounding problem into an integer programming one

as described in §Grounding Hypotheses Generation (4.4), which is one the key novelties of

this work. Another key novelty of this work is the validation process of grounding hypotheses.

The validation is achieved using a mental simulation technique developed to find the correct

groundings of language to vision as described in §Grounding Hypotheses Validation (4.6). Men-

tal simulation is a term first articulated by Craik (1967) and is used to describe how humans

evaluate their environment to better understand the interactions between its components. Our

validation approach is motivated by Craik’s proposal, that the brain builds mental models that

support inference by mental simulations, to help the robot verify which of the available ground-

ing hypotheses are correct and which are not. The validation process is enabled by using graph

matching techniques to validate the grounding hypotheses.

The grounding results for the first three datasets (Extended Train-Robots, Leeds Robotic

Commands and Extended Object Ordering) are obtained using the full framework and com-
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puted using n-grams of length less than or equal three, n ≤ N,N = 3. On the other hand,

the results for the fourth dataset (Extended Kitchen Activities) are obtained using only the

first two steps in the framework, and computed using only words (i.e. n-grams of length one,

N = 1) as shown in Figure 6.18. The fourth dataset is treated differently due to using a dif-

ferent approach to learn about human activities, i.e. using LDA and Variational Bayes instead

of spatio-temporal DAGs to model human activities. In Chapter 3, we discussed how learn-

ing human activities differs from learning robot actions as it requires more elaborate encoding

and more sophisticated clustering mechanism to model the variation in each activity class, and

how LDA and Variational Base algorithms are used to model these activity classes. Moreover

in Chapter 4, we discussed how using LDA prevents the robot from executing/repeating the

learned actions, as the specific ordering of how to perform the action is lost. As a result, the

ability of validating the grounding hypotheses is lost, the system is limited to the first two steps

of the grounding framework.

6.4.1 Natural language grounding results

We present the empirical results for our language grounding framework demonstrating its ability

to acquire correct groundings from pairs of short video clips and their corresponding descrip-

tions. We aim to learn all the possible groundings of words to their corresponding visual con-

cepts. For ground truth, we manually annotated all correct word-vision groundings for each of

the learned visual concepts in the four listed datasets, e.g. the word ‘red ’ should be grounded to

the learned Gaussian component of the colour red, and the phrase ‘pick up’ should be grounded

to the learned spatio-temporal DAG of the pick up action, etc. The learning begins by feeding

the recorded video clips and sentences to our system incrementally, effectively updating the

robot’s knowledge in language grounding. As a metric, we compute the F1-score (1979) of

the grounding results in each feature space separately. The F1-score penalises both incorrect

and missing groundings between language and vision, therefore providing a better insight than

precision or recall into our grounding framework.

As an upper bound, we also present the results obtained using a supervised Hidden Markov

Model (HMM) for Part-of-Speech (POS) tagging system presented by Rabiner (1989) with
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a Python implementation available in the NLTK repository (2017). The HMM technique is

desirable for POS tagging tasks as the highest probability tag sequence can be calculated for

a given sequence of words. The use of an HMM differs from other POS tagging mechanisms

which often tag each word individually without regard to the optimal combination of tags for

the whole sentence. The HMM produce a sequence of tags for the input sentence using the

Viterbi algorithm, which efficiently computes the optimal path through the graph given the

sequence of input words. The HMM has access to ground truth data/tags during training. The

HMM requires for learning both the input sentences (e.g. “move the red sphere over the green

block”) and the annotated tags (e.g. “action, none, colour, shape, none, colour, shape”). A

four fold cross validation is performed to compute the F1-scores for the HMM system on all

four datasets.

Table 6.7 presents the final F1-scores computed using our incremental learning framework

and the supervised HMM system for each of the four datasets. The results show how our

system was able to successfully learn part of the correct language groundings in each dataset.

It also shows that our system achieves comparable results with the supervised HMM system

even though it learns from unlabelled sentences.

Natural language grounding results (F1 scores)

Datasets Train Robots Leeds Commands Object Ordering Kitchen Activities

Systems OS HMM OS HMM OS HMM OS HMM

Colour 0.92 0.93 0.42 0.84 0.81 0.92 0.57 0.84

People - - - - - - 0.47 0.68

Object 0.88 0.94 0.51 0.81 0.86 0.95 0.43 0.76

Location 0.62 0.80 0.34 0.78 - - - -

Direction 0.55 0.89 0.56 0.82 - - - -

Distance - - 0.55 0.93 - - - -

Action 0.82 0.91 0.59 0.91 0.78 0.96 0.55 0.90

Table 6.7: Natural language grounding results. OS stands for Our System and HMM stands
for the Hidden Markov Model system. The hyphen symbol (-) is used in the table to indicate
that the visual feature space is not applicable for the dataset.

Figure 6.19 shows the language grounding incremental results obtained using our system

from each of the four datasets. The graphs show an improving trend in the F1-score of the
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word groundings in each feature space as more data is observed/processed. We hypothesise

that extended observation of the environment will allow all the concepts in these predefined

feature spaces to be correctly grounded in a loosely-supervised manner. Similarly, the visual

concepts themselves will improve with more observations.

Figure 6.19: F1-scores for incremental language grounding for each dataset. The Extended
human activity dataset collected using LUCIE is processed using daily batches, i.e. we increment
the learning by processing the videos collected in each day. Note that different y-axes scales
were selected for each dataset to better show the results.

Figure 6.20 shows examples from the learned language and vision groundings using our

incremental system for each of the four datasets. The examples show how each robot managed
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to learn the mappings between language and vision. The system did not learn the groundings of

all n-grams in the datasets due to noise or lack of training data. For example, the 1-gram cyan

in the Leeds Robotic Commands is mentioned only once in the entire dataset and therefore

our system did not manage to ground it with its corresponding colour concept. Similarly, our

system learned some incorrect mappings, such as mapping the 1-gram “glasses” to a person

wearing glasses thinking that glasses is the name of that person. We hypothesise that extended

observation of the environment will allow all the groundings in these predefined feature spaces

to be correctly learned in a loosely-supervised manner without the need for human annotations.

Figure 6.20: Examples of learned language groundings from all four datasets. Note that the
cross mark symbol (7) is used to indicate that this learned grounding is incorrect. We manually
annotated the list of correct groundings for each visual concept.

6.4.2 Grounding in other languages

In this section we evaluate our language grounding framework in learning from other languages.

We translated all 4485 commands in the Extended Train Robots dataset from English to Arabic.

The translation was performed using Goslate (2016), a free Google translator API for the Python
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programming language. Particular care was taken not to alter the commands or correct any

mistakes in them before translation. Examples of the translated commands were shown earlier

in Figure 6.3. The learning framework is applied on the Arabic language in the exact same

way as the English language. The translated commands are processed to extract all available

n-grams from them, with n ≤ N,N = 3. These n-grams are then used to learn the language

grounding with vision as described in Chapter 4. Table 6.8 presents the results of language

grounding in both Arabic and English for the Extended Train Robots Dataset. As an upper

bound, we present the results obtained using a supervised Hidden Markov Model (HMM) for

POS tagging. The HMM system has access to the ground truth data and was tested in a

four-fold cross validation setup.

Language grounding in Arabic

Language Arabic English

Systems OS HMM OS HMM

Colour 0.78 0.89 0.92 0.93

Object 0.84 0.90 0.88 0.94

Location 0.55 0.70 0.62 0.80

Direction 0.54 0.81 0.55 0.89

Action 0.80 0.88 0.82 0.91

Table 6.8: Natural language grounding results for Arabic language in the Extended Train Robots
dataset. OS stands for Our System and HMM stands for the supervised Hidden Markov Model
system. The English grounding results are presented for comparison with the Arabic ones.

The results in Table 6.8 show that our system performed well in comparison with the

supervised HMM system in learning from the Arabic language. The F1-scores are slightly

worse in learning from Arabic than in English. We believe the reason behind this is that

nouns, verbs, and adjectives have genders in the Arabic language. The grammatical gender

in Arabic is one of two: a word may be masculine or feminine, and there is no neuter option.

Moreover, masculinity is the default grammatical gender and a word does not have to have

anything special in order to reflect this (e.g. masculine grey → ramady). Femininity on the

other hand, is not default and a word would have to have something special added to it to

reflect this gender (e.g. feminine grey → ramadia, the ia added to the end of this word to

reflect the femininity). Therefore, the same word appears in multiple forms in the dataset and
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are treated differently in our system. The masculine grey word and the feminine grey one are

considered two different n-grams, and are mapped to visual concepts separately. This results in

having fewer training examples for the same word when compared with the English language.

With this in mind, our system still managed to ground words in Arabic to their corresponding

visual concepts. Examples of learned groundings from both the Arabic and English language

are shown in Figure 6.21. The arrows are used to indicate the direct translation between the

two words. This means that our system can be used to learn translation between languages

based on the their groundings to the visual domain, but we leave this idea open for future work

to investigate and validate.

Figure 6.21: Examples of learned language groundings from both Arabic and English language
in the Extended Train Robots dataset. The training was performed on each language separately.
The arrows between words are used to indicate the direct translation between the two words and
were manually added to the image. Our system does not know that these words are translations
in different languages.

6.4.3 Sensitivity analysis for grounding the parameter (ε)

In this section we discuss the sensitivity analysis performed for the language grounding parame-

ter epsilon (ε). We formulate the natural language grounding problem into an integer program,

which has the benefit of allowing multi-to-multi mappings between words in language and con-

cepts in vision. The parameter epsilon presented in §Hypotheses Generation (4.4) is used as a

threshold to keep the sparsity of groundings by forcing the number of selected groundings to

be below this threshold. All language grounding results presented in this work were obtained

using an ε = 0.05. The selection of this value was based on a sensitivity analysis experiment

performed over all four datasets. Figure 6.22 presents the results of this experiment. The re-

sults of this experiment shows that the grounding performance peaks at ε = 0.05 for most of

the feature spaces in the four datasets, and therefore this value was selected in this work.
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Figure 6.22: Sensitivity analysis for the language grounding parameter epsilon (ε). (left) the
graph shows the final F1-score values in each feature space from the four datasets on the y-axis,
and the different ε values used to compute these F1-scores on the x-axis. (right) the average
F1-score results obtained from all feature spaces.

6.5 Experiment 3: Learning Grammar Rules

We evaluate our grammar induction framework based on its ability to learn grammar rules

capable of parsing never-seen-before linguistic commands. Grammar induction refers to the

process of learning a formal grammar, usually as a collection of re-write rules or productions

from a set of observations. The observations usually consist of natural language sentences

annotated with grammar trees. The human/manual annotation of grammar trees is a labour

intensive task that hinders learning from large datasets. In this work, we do not use human

annotations to learn the grammar rules, but rather we employ the visual inputs (video clips)

to infer the grammar structure of the input sentences as presented in Chapter 5.

We use Robot Control Language (RCL) trees to represent the learned structure of input

sentences. RCL is a tree semantic representation for natural language commands. Each sentence

is represented as an RCL tree, where leaf nodes align to words in the corresponding sentence,

and non-leaves are labelled with a predefined set of categories that the robot can understand

and execute. The predefined RCL labels used in this work are the visual features defined in

Chapter 3 (e.g colour, shape, direction, etc.) and are limited to robot manipulation tasks.

The aim of our system is to automatically generate an RCL tree from each input video-

sentence pair. Each input video is used to extract a vision tree (Ω), which is used to infer the

structure of the input sentence and generate a grammar tree. We automatically generate a
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grammar tree (an RCL tree) using the same idea used in validating the language groundings,

which is comparing the language model with the vision input. This idea assumes that the input

sentences provided to the robot are describing the actions, objects and relations involved in

the corresponding input video clip. Therefore, the sentence structure should also reflect/map

the features extracted from the input video. The generation of grammar trees from input

sentences and videos is formulated as a search problem presented in Algorithm 1, which is the

key contribution offered by this work in the field of grammar induction. The algorithm takes as

inputs the extracted vision tree (Ω) and the input sentence, and outputs the grammar tree (Ψ).

The resultant grammar trees (Ψ1,Ψ2, . . .) are then used to learn the grammar rules of

natural language in the form of grammar Π = (N,T,R, S, P ), which provides our robot with

the ability of understanding new linguistic commands by parsing them into RCL trees.

We use Probabilistic Context Free Grammar (PCFG) to model the grammar rules. We start

with an empty rule set, and incrementally create and update the rules observed in each generated

RCL tree (Ψ). The creating/updating of grammar rules is achieved using the Inside-Outside

algorithm presented by Lari and Young (1990) as described in §Learning Grammar Rules (5.4).

The rules from all grammar trees are incrementally accumulated into a grammar set Π.

6.5.1 Grammar induction results

To evaluate our grammar induction framework and the learned grammar (Π), we test on three

robotic manipulation datasets, (i) Extended Train Robots, (ii) Leeds Robotic Commands, and

(iii) Extended Object Ordering datasets. Each of the three datasets is randomly divided into

four folds, and four fold cross-validation is applied. Three folds are used to learn grammar

rules, and the fourth is used for testing, we repeat this process four times to test on each fold.

The learned grammar rules are evaluated based on their ability to correctly parse new (never

seen before) linguistic commands. A parser is equipped with the learned grammar set (Π) and

is used to parse the commands in the test fold.

The results present the score of correctly parsed RCL sub-trees from sentences in each of

the test fold. A score of 1 is given if the parsed sentence completely matches the human

annotation, while a partial score in (0, 1) is given if it partially matches the human annotation.
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The partial matching is computed by matching subtrees in both trees divided by the total

number of subtrees. For example, if a parsed tree contains 10 subtrees and only 8 of which

match in links and labels with the manually annotated tree, then it is given a score of 0.8.

As an upper bound, we also present the results obtained using a supervised grammar in-

duction system presented by Abney (1996). The supervised system has access to the human

annotated RCL trees to learn the grammar rules from, while our system automatically gener-

ates them using Algorithm 1. Our system only uses the human annotation in the evaluation

process. The same four fold cross validation procedure is applied on this system.

We also tested our system against an unsupervised grammar induction approach presented

by Ponvert et al. (2011) that learns from language alone. This approach learns a language

model via chunking the raw text into smaller parts that shows a repeated pattern throughout

the dataset. Both our system and Ponvert’s learn from unlabelled sentences, i.e. without

the human annotated RCL trees. However, we learn from language and vision inputs, while

Ponvert’s system learns from language alone. We evaluate Ponvert’s unsupervised system based

on its ability to chunk the text into correct sub-trees only as it does not generate labels.

The grammar induction results for the three systems (i) Abney’s supervised, (ii) ours, and

(iii) Ponvert’s unsupervised systems are presented in Table 6.9, for the three manipulation

datasets. The results in Table 6.9 clearly show that our approach outperforms the unsupervised

grammar induction system and achieves comparable results to the supervised system by learning

from both language and vision as opposed to learning from language alone. The number of

grammar rules generated differs between techniques as shown in the last row in Table 6.9. The

supervised rules are higher in number because a few sentences contain classes which we assume

we can not learn (the system fails to generate a grammar tree from the input sentence). For

example, in the Extended Train Robots dataset there exist an indicator class for superlatives,

e.g. (indicator →w tallest). These classes add to the number of learned rules. However, the

results do not vary as much because there are not many sentences including these rules.

An example from one of the test commands in the Extended Train Robots dataset is pre-

sented in Figure 6.23. The example is for the command “place the yellow ball on top of the

blue cylinder”. The figure shows the parsed tree using the learned grammar set (Π) from our

approach (top), and the parsed tree using Ponvert’s unsupervised system that learns from lan-
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Grammar induction results

Datasets Train Robots Leeds Commands Object Ordering

Systems US OS SS US OS SS US OS SS

Fold 1 0.32 0.66 0.74 0.28 0.83 0.88 0.41 0.86 0.91

Fold 2 0.31 0.65 0.74 0.28 0.81 0.89 0.42 0.81 0.89

Fold 3 0.35 0.66 0.75 0.30 0.83 0.87 0.41 0.85 0.91

Fold 4 0.31 0.69 0.75 0.28 0.84 0.87 0.40 0.84 0.90

average 0.32 0.66 0.75 0.28 0.83 0.88 0.42 0.84 0.90

grammar rules 45 46 114 38 39 89 30 34 78

Table 6.9: Grammar induction results. US stands for Unsupervised system (Ponvert’s), OS for
Our System, while SS stands for Supervised System (Abney’s). The values presented in the
table are percentage of correctly parsed subtrees in each test fold. The last raw presents the
average number of grammar rules or productions generated in all four folds.

guage alone (bottom). The learned grammar rules from our system used to parse this natural

language command are presented in Table 6.10. The rules are written in the form (lhs→w rhs),

where lhs is the left had side of the grammar rule, rhs is the right hand side, and w is the weight

of the rule. For example, the grammar rule (colour→0.16 yellow) is used to tag the word yellow

as a colour non-terminal, similarly rule (shape→0.13 ball) is used to tag the word ball as a shape

non-terminal, while the rule (entity →0.85 colour, shape) is used to group both non-terminals

(colour and shape) as the non-terminal entity. The parser loops through all learned rules to

maximise the final probability value of the parsed tree using the CYK algorithm. The CYK al-

gorithm or the Cocke-Younger-Kasami algorithm (1967) is a parsing algorithm for context-free

grammars that employs bottom-up parsing and dynamic programming. Note that our robot is

not assumed to know the words colour, shape, entity, etc. specifically, but rather knows of the

existence of these elements or types (since it already has feature spaces for each of these).

6.5.2 Grammar induction in other languages

In this section we evaluate our grammar induction framework in learning from other languages.

We translated all 4485 commands in the Extended Train Robots dataset from English to Arabic

as previously discussed in §Language grounding in other languages (6.4.2). Examples of the

translated commands were shown earlier in Figure 6.3. The learning of grammar rules is
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Figure 6.23: The grammar trees generated for the new command “place the yellow ball on top
of the blue cylinder” using our system (top) and Ponvert’s unsupervised system (bottom).

Terminal Leaves Non-Terminals

colour →0.16 yellow event →0.33 action, entity, destination

colour →0.22 blue entity →0.16 colour, shape

shape →0.13 ball destination →0.81 spatial-relation

shape →0.05 cylinder spatial-relation →1.0 direction, entity

action →0.01 place

direction →0.52 on top of

Table 6.10: The learned grammar rules used to parse the command “place the yellow ball on
top of the blue cylinder” shown in Figure 6.23 (top).

applied on the Arabic language in the exact same way as the English language. The translated

commands are processed to extract all available n-grams. These n-grams are then used to learn

the language grounding with vision as described in Chapter 4. Then, these language groundings
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are used to learn the grammar rules as presented in Algorithm 1. Table 6.11 presents the results

of grammar induction in both Arabic and English for the Extended Train Robots Dataset. As

an upper bound, we present the results obtained using a supervised system that has access to

the human annotated RCL trees during training. We also compare our results with Ponvert’s

unsupervised system trained on the Arabic sentences. Even though it was not designed to work

with the Arabic language, Ponvert’s system was tested on other languages such as German and

Chinese as presented in his paper (2011). The results in Table 6.9 show that our approach

outperforms the unsupervised grammar induction system by learning from language and vision

data. We also achieve results that are little lower than those of the supervised system but still

very promising by learning from unlabelled data (without the human annotated RCL trees), as

opposed to learning from labelled linguistic inputs. Moreover, this experiment shows that our

system is capable of learning grammar rules regardless of the POS tags ordering in a sentence.

For example, in the Arabic language, the adjectives comes after the noun in a sentence, while

in English they are positioned before nouns. Our system succeeded in learning grammar rules

that represent nouns and adjectives in both Arabic and English.

Grammar induction results in other languages

Language Arabic English

Systems US OS SS US OS SS

Fold 1 0.31 0.62 0.69 0.32 0.66 0.74

Fold 2 0.30 0.62 0.70 0.31 0.65 0.74

Fold 3 0.32 0.59 0.70 0.35 0.66 0.75

Fold 4 0.31 0.61 0.69 0.31 0.69 0.75

average 0.31 0.61 0.70 0.32 0.66 0.75

grammar rules 57 63 187 45 46 114

Table 6.11: Grammar induction results. US stands for Unsupervised system (Ponvert’s), OS
for Our System, while SS stands for Supervised System (Abney’s). The values presented in the
table are the percentage of the correctly parsed sentences in each fold. The last row presents
the average number of grammar rules generated in all four folds.
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6.6 Experiment 4: Scalability and Memory Requirements

In this section, we present empirical results to evaluate the scalability of our language and vision

learning framework presented in this thesis. Scalability refers to the capability of a system,

network, or process to handle a growing amount of work, or its potential to be enlarged to

accommodate that growth. Scalability is an important aspect in any life-long learning system,

such as the system presented in this thesis for teaching robots about language and vision.

We evaluate the scalability of the three main components in our system, (i) visual concepts

learning, (ii) natural language grounding, and (iii) grammar induction. The scalability of each

component is evaluated using the memory requirement of the learned model compared with the

size of the processed raw data. All calculation were measured on a Desktop PC, with an Intel

Core i7-4790 processor with 8 cores and 3.6 GHz clock speed, and 16 GB of RAM.

We define the memory requirement of each component to be equal to the memory size

of its learned model when stored on the PC’s hard-drive. For example, the memory size of

the Gaussian mixture models used to learn the colours, shapes, etc., or the memory size of

the learned grammar rules, etc. Since our system learns incrementally, the learned models

will grow in size with every video-sentence pair. Figure 6.24 shows the incremental memory

requirement of the three components in our system along with the raw size of the input data

in the Leeds Robotic Commands datasets. The graphs in Figure 6.24 show how efficient our

learning system is when compared with the size of the raw data. The sizes of the learned

models are orders of magnitude smaller than that of the raw data. For example, at the final

video (video number 204) in the Leeds Activity Commands dataset the processed raw data was

nearly a hundred Gigabytes in size, while the learned models did not exceed 50 Kilobytes in

size. Moreover, the learned models memory requirements flatten as more data is observed, this

is mainly because the system has learned most of the visual and linguistic concepts there are to

learn in this dataset. Most of the vision concepts, words’ groundings, and grammar rules have

been observed and allocated a location in memory. We hypothesise that extended observation

of the environment will scale well with our system as the size of the learned models will not

increase linearly with the size of observed data, but rather would flatten as the robot explores

most of the new concepts in its environment.
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Figure 6.24: The incremental memory requirement of our learning system in the Leeds Robotic
Commands dataset.

6.7 Summary

We have presented four experiments to evaluate our incremental loosely-supervised learning

system. The experiments focused on evaluating four aspects of our system that include learning

of (i) visual concepts from raw input videos, (ii) language grounding from raw video and text,

(iii) grammar rules of natural language, and (iv) scalability analysis by measuring the memory

requirements of our learned models. The results obtained from the four experiments show how

our system is capable to bootstrap its knowledge in both language and vision in a loosely-

supervised manner. We also compared our system against other supervised and unsupervised

approaches to better demonstrate the limitations and abilities of our system. In the following

chapter we discuss some of these limitations and suggest solutions in the form of future work

research directions.
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Chapter 7

Discussion and Conclusion

“Beautiful is what we see, more beautiful is what we know, most beautiful, by far, is what we don’t.”

—Nicolas Steno

We have presented a novel, incremental and loosely-supervised framework that enables

robots to bootstrap their knowledge in language and vision domains. We have demonstrated

for the first time in a developmentally plausible setting, that a system can concurrently and

incrementally learn three kinds of knowledge:

– Visual representations of the world in a number of predefined feature spaces (objects

properties, people attributes, spatial-relations, robot actions and human activities).

– Language grounding which maps words and phrases in language to their corresponding

learned visual concepts.

– Probabilistic grammar rules of natural language.

Previous systems are designed to use one of these three components (visual representation, lan-

guage grounding and language grammar) to learn the other two. To the best of our knowledge,

this is the first system capable of learning all three components concurrently, which reduces the

amount of predefined initial knowledge significantly. We also show that these components can

be learned from real-world noisy data collected using mobile and manipulator robots equipped

with different sensing modalities, thus enabling our robots to bootstrap their knowledge in both

language and vision domains without the need for direct supervision.

137
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7.1 Summary

Our learning framework is divided into three components: visual representation, language

grounding and grammar induction. We assume little information is given initially, and learn

the vision concepts by clustering the sensory-motor experience of each robot, and learn the

language grounding and grammar by mapping natural language sentence to the vision domain.

Out system is capable of “generalising” what it learned to unseen situations. For example,

our probabilistic grammar rules are capable of parsing never-seen-before sentences by mapping

words into their visual categories. For example, the learned rule that parses a ‘colour’ followed

by ‘shape’ into an ‘entity’ (entity →w colour, shape) can be applied to any colour and shape

words, even if not all combinations are seen in the dataset, such as a “purple banana”, or a

“blue apple”, etc. In the following sections, we summarise each of our learning components and

highlight the key contributions in each.

7.1.1 Visual concepts

The learning of visual concepts is the first step in our language and vision learning framework.

Visual concepts are learned automatically by clustering the low-level input of each of the robot’s

sensing modalities after an appropriate encoding. This clustering operation results in a collec-

tion of classes that are candidate visual concepts in each feature space. Because we assume no

prior knowledge of the structure of the sensor feature spaces, we employ probabilistic modelling

techniques to each feature space independently to elicit meaningful classes that are supported

by the observed data.

We differentiate between two kinds of visual concepts. Simple concepts are ones that are

time-independent and can be detected from a single or a small number of observations. For

example, simple visual concepts like colours can be represented as Gaussian components in

a Gaussian Mixture Model over the HSL space. On the other hand, complex concepts ex-

hibit a temporal dimension and manifest over longer sequences of observations. For instance,

temporally-extended human activities are one example of complex concepts. For these, a more

elaborate encoding and a more sophisticated clustering mechanism are needed as described in

Chapter 3.
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One of the key contributions we offer in this field is the use of incremental Gaussian mixture

models (IGMM) and Bayesian information criterion (BIC) to learn the simple visual concepts in

a loosely-supervised manner. The extended spatio-temporal graphs (STDAG) representation

is also a key contribution of our work acting as an intermediary representation between the

continuous perceptual space, and the purely symbolic linguistic structures.

7.1.2 Language grounding

The language grounding is the second step in our learning framework, and is performed after

updating the visual concepts in each video clip. We ground natural language sentences to the

learned concepts (e.g. colours, objects, people, human activities, etc.) in order to enable our

robots to communicate effectively with the humans in their environment.

First, it is essential to acquire a natural language description of what the robot is perceiving

to perform the grounding. Ideally we would like our robot to have a speech recognition modality

and the capacity to ask people about particular objects or actions using natural language, but

this remains a goal for future work. At present, we use Amazon Mechanical Turk and volunteers

to collect multiple natural language descriptions of video clips recorded by each robot.

For grounding, we search for the highest correlations between words and phrases in a video

clip description and the visual concepts that feature in that clip, allowing multi-to-multi asso-

ciations to preserve the richness of natural language. The multi-to-multi association is enabled

using integer programming. After finding the highest correlations, each is validated using our

mental simulation idea which is enabled using graph matching technique. The use of integer

programming along with mental simulation validation are the key contributions we offer in the

field of language grounding.

7.1.3 Grammar induction

Grammar induction is the third and final step in our learning framework. Our grammar in-

duction technique integrates with the previous two components by using the knowledge gained

to enable learning of grammar rules. Using learned vision concepts and groundings to learn

grammar strengthen our claims of cognitive plausibility, where a our robots learn about natural
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language and vision with minimum human supervision, allowing each robot to learn from its

own experience.

We learn probabilistic grammar rules by mapping natural language commands to visual

inputs. The main contribution we offer in the field of grammar induction is that we auto-

matically generate training examples similar to those annotated by a human expert. This is

achieved by exploiting the learned groundings and the extracted vision trees to successfully

replace the human annotator. We formulate the automatic generation of language trees into a

search problem. We search the space of all possible language trees from a sentence for one that

matches the extracted vision tree. Given a match, we use that language tree to learn grammar.

The procedure to perform the search is divided into five steps (substitute, group, query, match

and learn) as presented in Algorithm 1.

7.2 Discussion

7.2.1 Loosely-supervised learning

We call our entire learning framework loosely-supervised even though the techniques used to

learn about visual concepts and language components are unsupervised. For example, we use

IGMM with BIC to model simple visual concepts and to select the number of components in an

unsupervised manner. Also, we use LDA with Variational Bayes to learn and model complex

human activities in an unsupervised way. Further, we use integer programming and graph

matching to learn the language grounding from raw language and vision inputs without direct

supervision. However, our framework is named loosely-supervised as opposed to unsupervised

for three reasons: First, videos were manually segmented to include a single action in each.

Second, videos and sentences were temporally aligned beforehand. Third, visual feature spaces

(e.g. faces, shapes, etc.) were manually defined. We believe a fully unsupervised system should

learn from long videos and text, i.e. be able to temporally segment the videos and map it to

sentences automatically. Also, it should be able to generate new feature spaces when needed.

This will allow our system to learn from much more rich sources like YouTube videos and

wikihow descriptions. However, this remains as an ambition for future work.
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7.2.2 Machine translation

On several occasions, the analogy between machine translation and our system has been men-

tioned. The analogy is between (A) how we learn the mapping between language and vi-

sion, and (B) how machine translation learns the mapping between two languages, e.g. learn-

ing translation in parliamentary proceedings with multiple language versions as presented by

Koehn (2005). In other words, why not consider the vision domain to be another language and

learn the translation between language and vision? Analysis suggests that indeed some aspects

of machine translation techniques could be used to substitute parts of our system, and even

further improve on it. For example, our system might be able to benefit from an idea used in

machine translation bootstrapping to find the mapping between words in language and visual

concepts. The bootstrapping idea explained in Knight (1999) explains how to use the Expecta-

tion Maximisation technique presented by Dempster et al. (1977) to find a suitable translation

and alignment between the two languages. We are mainly interested in the translation part

in this work. However, we believe learning the alignment too could help our system generate

language descriptions for visual scenes, in particular longer scenes. For example, the work pre-

sented by Rohrbach et al. (2013; 2015) and Venugopalan et al. (2015) show how deep learning

techniques can be used to learn to describe video snippets with natural language sentences. We

leave these ideas open for future work to explore.

7.3 Future Work

Several research directions might emerge from our work; some improve on the existing frame-

work, others build on it. Our approach suffers from two main limitations that hinder learning

from longer videos, such as continuous stream of audio-video data or YouTube videos. First, it

requires the videos and sentences to be temporally aligned beforehand, and second, it requires

the feature spaces (e.g. colours, shapes, etc.) to be specified beforehand (though not their

discretisation, which is learned). We discuss both points in detail in the following sections.

We also discuss two main research directions that we believe are achievable by building on our

existing system, which are (1) using the gained knowledge to enhance the learning from new

language and vision data, and (2) learning in the presence of external knowledge.
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7.3.1 Learning from non-segmented videos and text

Providing our robots with the ability to learn from long, non-segmented videos and text will

significantly improve the learning. This will allow our robots to learn from rich web-available

sources such as YouTube videos. Our language grounding and grammar induction frameworks

are based on the idea that sentences map to their corresponding input videos, and having

longer sentences and videos would break our assumption and prevent the learning. However,

our system can be upgraded using an idea similar to that presented by Alayrac et al. (2016a).

In their work, they presented a system capable of automatically learning the main steps to

complete a given task, such as changing a car tire, from a set of narrated instruction videos.

They addressed this task by formulating the problem as two clustering tasks, one in text and

one in video, and then linking both domains by joint constraints. However, they assumed the

language grammar is known, and used it to parse the long descriptions into smaller entities

they called direct object relations, which consist of a single ‘verb’ and ‘object’ in each such as

“remove tire”.

7.3.2 Generating new visual features

Visual features are the representation or encoding we use to move from pixel level inputs into a

space where visual concepts can be learned. These features are manually defined in this work,

such as the HSL colour feature space. The manual definition of these feature spaces enables the

robot to learn interesting concepts within the feature space, such the colours red, green, blue,

etc. Automatically generating new visual feature spaces will enable our robot to learn more

visual concept without the need to manually defining each feature space. One possible way of

addressing this problem is to create a set of primitive features, which can be used to generate new

feature space as presented by Bennett et al. (2016). In their paper, they addressed the problem

of generating relational calculi from a set of primitive relations, as opposed to manually defining

all relations in an ad hoc way. The work was limited to generating relations only, however, it

can be expanded to include other features such as human activities, and object properties. By

using this idea, we can reduce the problem of generating all possible feature spaces, into finding

the set of primitive features that can be used to generate new visual features.
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7.3.3 Using gained knowledge to improve learning

When learning a new language, the space of possible meanings of every word you hear is infinite.

However, once the grammar rules are learned, an educated guess can be made to limit the space

of possible meanings for each word. For example, provided that someone can speak English,

if this person is provided with the sentence “pick up the x block”. Assuming the person does

not know what x means, s/he can guess that x is a property of the block, since the location

of the word x is usually reserved for adjectives describing the following noun in this sentence.

Using a similar concept, the gained knowledge in language grounding and grammar induction

components can be used to influence the learning of new words, or bias the learning towards

an expected outcome as presented in Figure 7.1.

Figure 7.1: Extending our learning framework to use the gained knowledge in language ground-
ing and grammar induction to influence the learning of new words and concepts, as indicated
by the orange arrows.

7.3.4 Learning in the presence of external knowledge

This thesis focused on learning from robots’ experiences only, where each robot learns about

language and vision by manipulating objects and observing humans performing different tasks.

One future direction can build on our system by combining the knowledge gained from experi-
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ence along with readily available external knowledge sources such as web-available videos and

instructions. The learning from experience achieved in this thesis can focus on learning sim-

pler actions and concepts to bootstrap the robot’s knowledge (e.g. pick up and move objects).

Once the bootstrapping is achieved, the robot can move to learn from rich external knowledge

sources that contain more complex actions (e.g. cooking pasta) and require some background

knowledge encoded in the robot. Using both knowledge sources in this order (learning from

experience then external sources) is similar to how humans learn to perform different tasks. For

example, a child learns to manipulate blocks and toys before learning how to make a sandwich

or cut the grass. We believe this learning architecture is more capable of achieving human-level

performance as the robot learns the basics about language and vision from its own experience,

and is capable of learning more basic concepts when needed, as opposed to having to program

each basic concept individually for each task.



Appendix A

Incremental Gaussian Mixture

Models Approach

The Incremental Gaussian Mixture Model (IGMM) approach used in this thesis was first pre-

sented by Song and Wang (2005). In their paper, a new probability-density-based data clus-

tering technique was presented, which requires only the newly observed data to be saved in

memory, as opposed to storing the entire historical data. Their IGMM approach incrementally

updates the density estimate by processing only the newly observed data, and having access

to the previously estimated Gaussian components. The approach was implemented using the

Expectation Maximisation (EM) algorithm along with a cluster merging strategy that deploys

multivariate statistical tests to check for equality of covariance and mean. This approach is

highly efficient in computational and memory requirements when clustering large amounts of

online data streams if compared with the standard EM algorithm, which is an essential require-

ment in our work of life-long learning of language and vision for robotic agents.

A.1 Introduction

The data stream clustering problem is defined by Guha et al. (2003) as “to maintain a consis-

tently good clustering of the sequence observed so far, using a small amount of memory and

145
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time”. This definition emphasise on limited time and memory requirements relatively to the

amount of data being clustered. Time-critical applications such as neuronal signal monitoring

require real-time clustering of relatively small amounts of data. Memory-critical applications

such as clustering financial transactions over a period of years, require massive data clustering.

Other applications are both time and memory critical such as the work presented in this thesis

of teaching a robot about language and vision in an incremental manner.

In their paper, Song and Wang use the following terminologies to describe the different data

types used in the paper, we follow the same terminology in this section. They define “recent

data” as all data available in the memory from a data stream, while they define “historical

data” as all data received in the data stream so far, this include the recent data. Historical

data is not stored in memory, except for the recent data portion. I.e. only recent data is stored

in memory. Also, they call unprocessed recent data “newly arrived data”. If the entire historical

data were available in memory, then the Gaussian mixture model (GMM) technique would have

been effectively employed to estimate the Gaussian components and cluster the data using the

EM algorithm. However, this is not the case in this thesis, as we assume the robot does not

store all of the observed data in the memory. Also, humans do not re-evaluate their entire

knowledge base (i.e. re-cluster) whenever they observe a new object or activity. That is why

we try to perform the clustering in an online-incremental manner. The EM algorithm (or any

of its known variations) is not applicable for a data stream without complete historical records

available in memory. Song and Wang argue in their paper that their new IGMM technique can

adapt probability density based clustering algorithms to solve data stream clustering problems

much more efficiently than applying the EM on the entire historical data. This is achieved by

applying the standard EM algorithm only on newly arrived data, while the IGMM estimation

algorithm merges newly found Gaussian components with previously learned ones that are

statistically equivalent as shown in Figure 3.16 in this thesis. The statistical equivalence of

any two Gaussian components is determined using two tests: the W -statistic test to check

for equality of covariances, and the Hotelling’s-T 2 statistic test to check for equality of mean.

The sufficient statistics of mean and covariance for a multivariate normal distribution make it

possible to perform the tests and merging without resort to historical data, i.e. to cluster a

stream of data by having access to only recent data and the learned Gaussian components.



A.2. UPDATING A GAUSSIAN MIXTURE MODEL 147

In this section, we follow the notation presented in Song and Wang’s (2005) paper. Let T

be the discrete time when the data point xT in Rd is observed, while d represents the number

of dimensions which vary across feature spaces in this thesis. For example, the HSL feature

space has 3 dimensions, while FPFH has 32. In their paper, xT is regarded as a random vector,

while we consider it to be the observed values in a visual feature space in a single input video

clip. Let gT : Rd → R be an estimator of the true probability density function (p.d.f.) p0(x)

based on the data points observed from time 1 to T . Let gN (x) be an estimator of p0(x) based

on the historical data x1, . . . , xN . Let a(x) be an estimator of p0(x) based on the newly arrived

data xN+1, . . . , xN+M . Let gN+M (x) be an estimator of p0(x) based on both the historical data

x1, . . . , xN and the newly arrived data xN+1, . . . , xN+M . The data stream clustering problem

that we will address in this appendix is: obtain the estimator gN+M (x) from gN (x) and the

M newly arrived data sample xN+1, . . . , xN+M , i.e. to estimate gN+M (x) from the previously

learned Gaussian components and the new observation.

A.2 Updating A Gaussian Mixture Model

The p.d.f. of a GMM is written as:

K∑
k=1

πkφ(x|µk,Σk)

with
K∑
k=1

πk = 1, 0 ≤ πk ≤ 1, for k = 1, . . . ,K

where φ(x|µ,Σ) is the p.d.f. of a multivariate normal distribution with mean vector µ and

covariance matrix Σ:

φ(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)

We represent gN (x) by a GMM with parameters:

πj , µj ,Σj , j = 1, . . . ,Kg
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and a(x) by a GMM with parameters:

πk, µk,Σk, k = 1, . . . ,Ka

where Kg and Ka are the numbers of components in each GMM respectively.

To update the Gaussian mixture model, we first obtain a GMM for a(x) from the newly

arrived data xN+1, . . . , xN+M with Ka components. The number of components is selected

unsupervised using the Bayesian Information Criterion (BIC) technique. According to the

GMM of a(x), the newly arrived data xN+1, . . . , xN+M is separated into Ka clusters. Let Dk

be the collection of data in cluster k. Let Mk be the number of data points in Dk. For each

cluster k, we will determine if it has a statistically equivalent covariance, using W-statistic test,

and mean, using Hotelling’s T 2 statistic test, with any of the Gaussian components in gN (x).

I.e. we will test to see if any of the newly clustered Gaussian components in a(x) matches with

any of the previously learned Gaussian components in gN (x). This translates to mapping newly

found vision concepts to previously observed and learned ones in this thesis.

The mean equality test happens after covariance equality test as the Hotelling’s T 2 test

assumes equality of covariances between components. If any component j in gN (x) is found

to be equivalent to the component k in a(x), then we create a new component in gN+M (x) by

merging both components j and k together using Equations (A.1, A.2, A.3). If not, we will

add the component k of a(x) as a new component to gN+M (x) with an adjusted weight using

Equation (A.4). All remaining components in gN (x) will be added to gN+M (x) with adjusted

weights too using Equation (A.5). At the end, we perform both statistical tests one more time

on all components of gN+M (x) to merge statistically equivalent components with a similar

strategy. The overall algorithm is presented in Algorithm 2 which was initially presented by

Song and Wang (2005).

A.2.1 Merging or creating components

If the new data points Dk passes both statistical tests (covariance and mean) for component j

of gN (x), then we consider component k of a(x) and component j to be statistically equivalent.

We merge the two to create a new component in gN+M (x) with mean µ, covariance matrix Σ
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Algorithm 2 Incremental Gaussian Mixture Model Estimation

1: procedure
2: Input GMM gN (x), newly arrived data xN+1, . . . , xN+M

3: Output GMM gN+M (x)
4: Perform EM algorithm to estimate the Gaussian mixture model a(x) from the new data
xN+1, . . . , xN+M , with number of components Ka determined by BIC.

5: Assign each new data xm to the most likely component according to the conditional prob-
ability

Prob(k|xm), k = 1, . . . ,Ka

6: for each component k in a(x) do
7: Let Dk be the collection of all data in component k
8: for component j with mean µj and covariance Σj in gN (x) do
9: Calculate the W-statistic to determine if Dk has equal covariance with Σj

10: if Dk has passed the covariance test then
11: Perform the Hotelling’s T 2 test to determine if Dk has the same mean µj
12: if Dk has passed the mean test then
13: Consider components k in a(x) and j in gN (x) identically distributed
14: Compute the log likelihood of component j for Dk to break possible ties

15: for each pair of equivalent components in gN (x) and a(x) do
16: Create a new component in gN+M (x) by merging the pair using Eq. (A.1, A.2, A.3)

17: for each remaining component k in a(x) do
18: Assign this component to gN+M (x) with an updated weight using Equation (A.4)

19: for each remaining component j in gN (x) do
20: Assign this component to gN+M (x) with an updated weight using Equation (A.5)

21: Merge statistically equivalent components in gN+M (x)
22: Return gN+M (x)

and weight π using Equations (A.1, A.2, A.3).

µ =
Nπjµj +Mkµk
Nπj +Mk

(A.1)

Σ =
NπjΣj +MkΣk
Nπj +Mk

+
Nπjµjµ

>
j +Mkµkµ

>
k

Nπj +Mk
− µµ> (A.2)

π =
Nπj +Mk

N +M
(A.3)

For each component k in a(x) that does not have a statistically equivalent component in

gN (x), we create a new component in gN+M (x) with mean and covariance equal to that of

component k, i.e. µ = µk and Σ = Σk, but with a weight presented in Equation (A.4).

π =
Mk

N +M
(A.4)
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For each remaining component j in gN (x) that does not have a statistically equivalent

component in a(x), we create a new component in gN+M (x) with mean and covariance equal to

that of component j, i.e. µ = µj and Σ = Σj ,, but with a weight presented in Equation (A.5).

π =
Nπj

N +M
(A.5)
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