18 research outputs found

    Boosting Guaranteed Performance in Wormhole NoCs with Probabilistic Timing Analysis

    Get PDF
    Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet. In this paper, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g. wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance. ur results show that WCET estimates of applications running on top of probabilistic wNoCs are reduced by 40% and 75% on average for 4x4 and 6x6 wNoC setups respectively when compared against deterministic wNoCs.This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    On the Representativity of Execution Time Measurements: Studying Dependence and Multi-Mode Tasks

    Get PDF
    The Measurement-Based Probabilistic Timing Analysis (MBPTA) infers probabilistic Worst-Case Execution Time (pWCET) estimates from measurements of tasks execution times; the Extreme Value Theory (EVT) is the statistical tool that MBPTA applies for inferring worst-cases from observations/measurements of the actual task behavior. MBPTA and EVT capability of estimating safe/pessimistic pWCET rely on the quality of the measurements; in particular, execution time measurements have to be representative of the actual system execution conditions and have to cover multiple possible execution conditions. In this work, we investigate statistical dependences between execution time measurements and tasks with multiple runtime operational modes. In the first case, we outline the effects of dependences on the EVT applicability as well as on the quality of the pWCET estimates. In the second case, we propose the best approaches to account for the different task execution modes and guaranteeing safe pWCET estimates that cover them all. The solutions proposed are validated with test cases

    Towards limiting the impact of timing anomalies in complex real-time processors

    Get PDF
    Timing verification of embedded critical real-time systems is hindered by complex designs. Timing anomalies, deeply analyzed in static timing analysis, require specific solutions to bound their impact. For the first time, we study the concept and impact of timing anomalies in measurement-based timing analysis, the most used in industry, showing that they require to be considered and handled differently. In addition, we analyze anomalies in the context of Measurement-Based Probabilistic Timing Analysis, which simplifies quantifying their impact.Peer ReviewedPostprint (published version

    On uses of extreme value theory fit for industrial-quality WCET analysis

    Get PDF
    Over the last few years, considerable interest has arisen in measurement-based probabilistic timing analysis. The term MBPTA has been used to indistinctly refer to a variety of different applications of Extreme Value Theory (EVT) to the timing analysis problem. The successful application of MBPTA techniques to a score of case studies has not fully dispelled the concerns that industrial stakeholders had with the quality of the computed bounds, hence ultimately with their industrial viability. Placing focus on the MBPTA methods and techniques developed in the PROARTIS and PROXIMA projects, collectively referred to as proMBPTA, we discuss the main misconceptions and pitfalls that can prevent a sound application of EVT-based WCET analysis. Using a combination of arguments and support examples, we show that proMBPTA is a rigorous process, fully amenable to sound and sustainable industrial use.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717. Authors also thank George Lima for his feedback on this manuscript.Peer ReviewedPostprint (author's final draft

    MC2: Multicore and Cache Analysis via Deterministic and Probabilistic Jitter Bounding

    Get PDF
    In critical domains, reliable software execution is increasingly involving aspects related to the timing dimension. This is due to the advent of high-performance (complex) hardware, used to provide the rising levels of guaranteed performance needed in those domains. Caches and multicores are two of the hardware features that have the potential to significantly reduce WCET estimates, yet they pose new challenges on current-practice measurement-based timing analysis (MBTA) approaches. In this paper we propose MC2, a technique for multilevel-cache multicores that combines deterministic and probabilistic jitter-bounding approaches to reliably handle both the variability in execution time generated by caches and the contention in accessing shared hardware resources. We evaluate MC2 on a COTS quad-core LEON-based board and our initial results show how it effectively captures cache and multicore contention in pWCET estimates with respect to actual observed values.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the MINECO and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft

    Establishing Confidence and Understanding Uncertainty in Real-Time Systems

    Get PDF

    Forecast-Based Interference : Modelling Multicore Interference from Observable Factors

    Get PDF
    While there is significant interest in the use of COTS multicore platforms for Real-time Systems, there has been very little in terms of practical methods to calculate the interference multiplier (i.e. the increase in execution time due to interference) between tasks on such systems. COTS multicore platforms present two distinct challenges: firstly, the variable interference between tasks competing for shared resources such as cache, and secondly the complexity of the hardware mechanisms and policies used, which may result in a system which is very difficult if not impossible to analyse; assuming that the exact details of the hardware are even disclosed! This paper proposes a new technique, Forecast-Based Interference analysis, which mitigates both of these issues by combining measurement-based techniques with statistical techniques and forecast modelling to enable the prediction of an interference multiplier for a given set of tasks, in an automated and reliable manner. The combination of execution times and interference multipliers can be used both in the design, e.g. for specifying timing watchdogs, and analysis, e.g. verifying schedulability

    STT-MRAM for real-time embedded systems: performance and WCET implications

    Get PDF
    STT-MRAM is an emerging non-volatile memory quickly approaching DRAM in terms of capacity, frequency and device size. Intensified efforts in STT-MRAM research by the memory manufacturers may indicate a revolution with STT-MRAM memory technology is imminent, and therefore it is essential to perform system level research to explore use-cases and identify computing domains that could benefit from this technology. Special STT-MRAM features such as intrinsic radiation hardness, non-volatility, zero stand-by power and capability to function in extreme temperatures makes it particularly suitable for aerospace, avionics and automotive applications. Such applications often have real-time requirements --- that is, certain tasks must complete within a strict deadline. Analyzing whether this deadline is met requires Worst Case Execution Time (WCET) Analysis, which is a fundamental part of evaluating any real-time system. In this study, we investigate the feasibility of using STT-MRAM in real-time embedded systems by analyzing average system performance impact and WCET implications.This work was supported by BSC, Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). This work has also received funding from the European Union’s Horizon 2020 research and innovation programme under ExaNoDe project (grant agreement No 671578). Jaume Abella was partially supported by the Ministry of Economy and Competitive-ness under Ramon y Cajal postdoctoral fellowship RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Time-Randomized Wormhole NoCs for Critical Applications

    Get PDF
    Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet. In this article, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g., wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance w.r.t. conventional time-deterministic setups. Our results show that performance guarantees of applications running on top of probabilistic wNoC designs improve by 40% and 93% on average for 4 × 4 and 6 × 6 wNoC setups, respectively.The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado \la Caixa" - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft
    corecore