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Abstract. In critical domains, reliable software execution is increasingly
involving aspects related to the timing dimension. This is due to the
advent of high-performance (complex) hardware, used to provide the
rising levels of guaranteed performance needed in those domains. Caches
and multicores are two of the hardware features that have the potential
to significantly reduce WCET estimates, yet they pose new challenges on
current-practice measurement-based timing analysis (MBTA) approaches.
In this paper we propose MC2, a technique for multilevel-cache multicores
that combines deterministic and probabilistic jitter-bounding approaches
to reliably handle both the variability in execution time generated by
caches and the contention in accessing shared hardware resources. We
evaluate MC2 on a COTS quad-core LEON-based board and our initial
results show how it effectively captures cache and multicore contention
in pWCET estimates with respect to actual observed values.

Keywords: WCET ·MBTA ·Multicore contention · Probabilistic timing
analysis · Jitter bounding

1 Introduction

Computing power needs are steadily increasing in the critical real-time embedded
domains, fuelled by the complexity and sheer amount of data a modern on-board
software is expected to handle [3, 7, 33]. At hardware level, while high-performance
features, such as caches and multicore processors, provide the demanded per-
formance, they also bring about hard-to-model jitter (variability) in execution
time, which complicates timing validation and verification. This has resulted
in an increased attention on timing in safety standards (e.g., ISO26262 [15] in
automotive) and support documents (e.g., CAST32-A [8] in aerospace).

MBTA is the dominant timing analysis approach in most real-time do-
mains [34]. MBTA aims at deriving a worst-case execution time (WCET) estimate
that holds for the program during system operation from the execution time
measurements captured during the tests executed at various stages in the analy-
sis phase. The quality of the derived WCET estimates lies on the user’s ability
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to design stressful test scenarios (conditions) that are presumably close to the
worst-case conditions that can arise during system operation. The degree of
control available to the user, while adequate on simple processor designs, di-
minishes with the inclusion of complex hardware that challenges: (i) designing
worst-case scenarios, e.g., identifying the memory object allocation (code and
data) that results in cache set mappings with high impact on execution time,
and the worst contention scenarios that the application can suffer in a multicore;
and (ii) designing experiments in which bad (pathological) behavior for several
resources occurs simultaneously. Overall, despite the user may perform thousands
of experiments, there is no guarantee on whether the bad behavior in the sources
of jitter (soj ), like the cache, has been sufficiently captured. This reduces the
confidence on the MBTA WCET estimates, which in turn can prevent the use of
some high-performance hardware features in critical real-time embedded systems.

Measurement-Based Probabilistic Timing Analysis (MBPTA) [5, 31] is a vari-
ant of MBTA that aims at increasing the confidence on WCET estimates. MBPTA,
which has been successfully evaluated on several case studies (e.g., [31, 32]), aims
at relieving the user from controlling hardware soj. Instead, MBPTA makes that
their impact on the measurements emerges naturally, reducing user’s burden
to only controlling the number of runs to perform [20]. To that end, MBPTA
implicitly controls the impact of jittery resources on measurements captured at
analysis. In particular, some resources are forced to work on their worst latency
during analysis (upperbounding), hence ensuring measurements conservatively
capture their impact. The latency of other resources is instead randomized so
that their execution times at analysis vary according to a probabilistic execution
time distribution that can be used to upperbound the latencies during operation.

In this paper we propose the MC2 (multicore and cache) MBPTA approach for
the analysis of a Commercial-Off-The-Shelf (COTS) multicore processor equipped
with multilevel-caches. While hardware designs have been proposed [17][14] for
MBPTA compliance, and some of them have hit pre-silicon (RTL) readiness
level [14], analyzing MBPTA applicability on COTS multicore processors is
fundamental to favor a fast and widespread adoption of MBPTA. MC2 exposes,
in a combined MBPTA-compliant manner, the jitter of caches and multicore
contention to the execution time measurements taken at analysis. As a result,
the WCET estimates MBPTA generates from those measurements upperbound
the impact of both resources on program execution time. MC2 combines two
techniques that have been classified as MBPTA compliant: software randomiza-
tion [18] for cache-jitter management, and delay upperbounding for multicore
contention management [16]. For the latter, since multicore contention can lead
to very pessimistic WCET estimates [13] when contention bounds are provisioned
for the worst possible contention, MC2 provides adaptable WCET estimates
that depend on contenders’ contention. Our results provides evidence that MC2
effectively captures the impact on execution time - and hence on WCET estimates
- of both resources, and provides tight WCET estimates.
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Fig. 1: pWCET example. Fig. 2: MBPTA steps. Fig. 3: Reference architecture.

2 Background

When selecting the timing analysis technique to use, industrial users balance the
cost-effectiveness of the technique and the evidence that it can provide to satisfy
the level of confidence required by the domain-specific standards [1]. MBTA
techniques are less rigorous than static analysis methods but, in general, are
more attractive because of their cost-effectiveness and major affinity with the
consolidated industrial practice. The quality of MBTA’s derived WCET estimates
relates to the evidence on their coverage of the worst-case conditions. When
evidence obtained is sufficient, MBTA can be used for high-integrity software, e.g.,
DAL-A functions in avionics [22]. In practice, all techniques require user-provided
inputs, e.g., worst-case scenarios for measurements for MBTA and hardware
timing models for static timing analysis (with hardware documentation potentially
being inaccurate or incomplete [1], thus eventually resorting to measurements to
reverse engineering the timing model [26]). This makes complex argue about the
quality of a WCET figure. In this paper, we focus on MBTA with the intent to
increase the confidence that can be placed on the provided WCET estimates.

MBPTA. MBPTA applies Extreme Value Theory [9] (EVT) on execution
time observations from the analysis phase to derive the probabilistic WCET
(pWCET) distribution that upperbounds program’s execution time during opera-
tion. MBPTA requires guaranteeing that the observations obtained at analysis
capture those events that can impact execution time at operation, and so pWCET
estimates [1]. MBPTA, by deploying EVT (see Figure 1), is able to derive the
probability that bad behavior of several of the soj (whose impact has been cap-
tured in the analysis-time runs) are triggered in the same run. Hence, EVT has
to be seen as a method to predict pathological combinations of observed events in
the analysis-time measurements. In general, EVT cannot predict the appearance
of unobserved events since their impact on execution time can be arbitrarily large.
To cover this gap, MBPTA builds an argument on representativeness by means
of i) either injecting randomization in the timing behavior of certain hardware
resources (e.g., caches and buses) so that it is possible to determine the proba-
bility of their worst behavior to be captured in the analysis-time measurement
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runs; or ii) making resources to work on their worst latency so the analysis time
measurements capture their worst timing behavior.

MBPTA application procedure starts by (1) collecting a set of representative
observations, see Figure 2. MBPTA then (2) applies some statistical test such as
independence and identical distribution tests [5] required for EVT application.
Since in a MBPTA-compliant platform these probabilistic properties hold by
construction1, in case statistical tests are failed, the user is simply asked for more
runs until statistical tests – which are subject to false positives/negatives – are
passed. (3) MBPTA checks whether the size of the sample is enough to include
all relevant events and ensure certain statistical stability of the results. To that
end we use the initial findings in [24] and ask the user for more runs until this
condition is satisfied. As final step, (4) MBPTA derives an EVT distribution
(pWCET estimate) as shown in Figure 1.

Software Randomization. MBPTA handles resources with small jitter
(usually in the order of few cycles) by means of upperbounding, i.e., by forcing
the resource to operate on its worst latency during analysis time [14]. How-
ever, cache resources exhibit high jitter between hit and miss events, especially
when these events span across multiple levels of cache. For this reason, timing
randomization is used. In particular we use software randomization which, by
randomly varying the memory layout between distinct program executions, causes
cache events (hits/misses) to have a probabilistic behavior that holds during
operation. This allows cache jitter to be properly modelled by MBPTA. In this
work we use our custom implementation of TASA (Toolchain Agnostic Software
rAndomization)[21, 19], a static variant of software randomization, applied at
source-code level. TASA randomizes the position in memory for any memory
object in the software under analysis such as functions, stack frames and global
data. Moreover, TASA can randomly affect the internal memory layout of several
memory objects such as stack frames and structures.

In general, compilers allocate memory objects in the order they are in the
source file. Very few compiler options violate this principle, which can be disabled
during compilation with small (if any) impact in the compiler performance [21].
TASA, by randomly rearranging the order of declarations for the corresponding
objects in the source file, modifies their relative position in the binary. This, in
combination with additional random-sized padding in the form of nop instructions
or unused data, increases the potential difference among binary layouts. When
the binary is loaded to main memory for the program execution, the random
binary memory layout translates into random main memory mapping and hence,
a random cache layout, i.e., memory objects are allocated in random cache sets.

1 Despite time-randomization, programs might exhibit a degenerate distribution of
timing, e.g., having a single or very few different execution times. While extremely
rare in practice for real-size programs, the lack of jitter would suggest that the
maximum observed execution time could be reasonably used as a precise WCET
indicator.
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3 Reference Platform

We use a 4-core LEON3 [2] platform implemented on an FPGA. Each LEON3
core implements a 7-stage pipeline and comprises first level instruction (ic) and
data (dc) caches, with the dc implementing a write-through no write allocate
policy, see Figure 3. An AMBA AHB bus propagates stores, dc misses and ic
misses to the partitioned L2 cache deploing a write-back policy. Requests sent to
the bus are not split. Hence, the bus is locked all the time a request accesses the
L2. If it misses in L2, the bus is locked until the request is solved in main memory
and answered back. Requests are arbitrated in the bus using round-robin which
provides time analyzability [12]. Hence, our reference architecture comprises
two main hardware shared resources, the bus and the memory, with the bus
arbiter controlling the contention in both of them. Our platform also comprises
performance monitoring counters (PMCs) from which we track ic misses, dc
misses, store operations and L2 misses, as detailed in Section 4.

In our experiments we consider one task under analysis (tua or τa) and several
(up to three) contender tasks, referred to as c(τa) or τb, τc and τd. τa is always a
time-critical task for which a WCET estimate is to be derived.

4 Handling Multicore Contention and Cache Jitter

Goals and Challenges. MC2 aims at reliably capturing the impact that multi-
core contention (handled by the bus arbiter in our reference architecture) and
cache jitter have on pWCET estimates. This requires ensuring that the execution
time observations collected at analysis capture the impact of the jitter of both. To
ease MC2 adoption, this goal has to be achieved under the following restrictions:

1. MBPTA compliance. The proposed technique must be MBPTA-compliant re-
quiring minimum changes to the single-core MBPTA timing analysis approach,
which has already been evaluated with several industrial case studies [31].

2. pWCET estimates should be time composable, so that they are independent of
the load contenders put on resources. Time composability enables incremental
integration of applications, performing timing analysis of applications mostly
in isolation, without the need of regression tests. Time composability also
allows updating functionality during system operation without the need of
analysing the entire task set, but just those tasks that are updated.

3. The information required by MC2 from the tasks should be obtained via
PMCs to facilitate its applicability to real hardware.

4. WCET estimates should be obtained as early as possible in the design process
to facilitate incremental software integration [23] (ideally during unit testing)
and should hold across integrations for incremental verification purposes.

Overall Process. MC2 process starts by running the software-randomized task
under analysis (τa) in isolation, see Figure 4. This exposes the impact of cache
jitter to the observed execution time (oeti) in each run ri. As a side effect, since
the hit/miss pattern of τa changes across runs (due to software-randomization),
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Fig. 4: Schematic view of the proposed pTC contention model.

its number of accesses to the bus and the memory also varies. Hence, τa has
an access distribution to cache/memory rather than a single value (with small
variations) as it would be the case if τa had not been time randomized.

MC2 also factors in the maximum contention delay (mcd) for each request
type and the level of contention generated by τa’s contenders (c(τa)), which
is refereed as locc(a). ∆cont in Equation (1) captures both mcd and locc(a). By
feeding MBPTA with enlarged execution times (eet), MC2 provides MBPTA
with representative information on the impact of cache and multicore contention.

eeti = oeti +∆cont (1)

Detailed Explanation. MC2 builds upon the following assumptions and inputs:

1. τa’s observed execution times (oetia) in each run ria of τa’s in isolation.
2. τa’s number of requests (pmcia) obtained with PMC readings in each run ria

of τa’s in isolation. The particular counters are discussed later.
3. Worst-case request overlap assumptions: MC2 assumes that contenders’

requests align in the worst possible manner with each τa request causing
maximum impact on τa’s execution time. While this assumption is pessimistic,
it relieves the end user from modelling the particular cycle when requests
occurs, which would be an overly expensive effort, and would only be doable
after integration. Instead, assuming mcd delay for each contenders’ request
brings some pessimism but allows MC2 enable WCET estimates during unit
testing to favor incremental integration [23]. This is in contrast to the number
of requests that can be derived during unit testing and do not change (for
our architecture) at integration, i.e., the number of requests of a task to the
bus/memory is not affected by its contenders.

4. User-provided contender’s level of contention (locc(a)): MC2 factors in the
contention (i.e., number of requests) of c(τa). To that end, we follow two
models. The first one, called fully Time Composable (fTC), assumes each
contender task makes as many requests of the longest duration as total number
of requests generated by τa. The fTC models results in fully time-composable
estimates, but at the cost of over-estimation. To reduce the latter, a second
model, called partially Time Composable (pTC), is adjustable to the expected
level of contention of the contenders (i.e., its number of requests and their
type). The pTC model derives the WCET estimate for τa in isolation under a
given level of contention of its contenders. At integration time, composability
can be assessed by simply checking that the contention level of the particular
contenders is smaller than the level assumed at analysis. Both models are
detailed in Section 5 and Section 6 respectively.
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Table 1: Request types and their latency
in our reference board.

Type mcd Description

sh lsh = 1 L2 st hit

lh llh = 8 L2 ld hit in L2

lmc llmc = 28 L2 ld clean miss
smc lsmc = 28 L2 st clean miss

lmd llmd = 31 L2 ld dirty miss

smd lsmd = 31 L2 st dirty miss

Table 2: PMCs available in the reference
processor.

Name Description

pmcicm Bus reads caused by ic misses

pmcdcm Bus reads caused by dc misses
pmcst Writes to L2
pmcm Misses in the L2

Request Characteristics. MC2 requires information about the types of requests
to the bus, with emphasis on those having different usage of the bus, and the
maximum time each request holds the bus (mcd).

From processor manuals, we identify six types of request to the bus (see
Table 1): load/store requests that hit/miss in L2, and for the case of misses, since
the L2 is write-back, request evicting and not evicting dirty data. The former
are called dirty misses and the latter clean misses.

The mcd for each request, see the second column of Table 1, is the time
interval (measured in cycles) since a request is granted access to the bus until it
relinquishes the bus. Hence, mcd is the maximum contention that a request of
each type can incur on other requests. We have derived mcd values empirically
following the process described in [16]. The general approach consists in generating
small benchmarks that generate a single-type of requests (e.g., load hits in L2)
and architect experiments so tight bounds to request latencies can be derived.

5 fTC contention Model

fTC derives a WCET estimate that is an upper bound to the slowdown τa can
suffer regardless of the load its contender tasks put on the shared resources. This
requires the model to pessimistically assume that the number of contenders equals
Nc−1 where Nc is the number of cores – four in our platform. Further, the model
assumes that for every τa request its contenders have one request of the worst
type, i.e., causing the longest contention on it that in our architecture corresponds
to lmd and smd (indistinctly referred to as xmd). Hence, fTC assumes that each
request of τa is delayed 31 cycles = lsmd = llmd by each contenders’ request.
Overall, fTC builds a set of enlarged execution time observations as shown in
Equation (2), where nia is the total number of request that τa performs in run ri.

eetia = oetia +∆i,fTC
cont = oetia +

[
nia × (Nc− 1)× lxmd

]
(2)

6 pTC model

The fTC model may result in noticeably pessimistic WCET estimates. The
partially Time Composable (pTC) model presented in this section trades time
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Fig. 5: Events and PMCs Fig. 6: Pairing steps

composability to tighten WCET estimates. With pTC [12], the user can yet enjoy
benefits of incremental integration with small effort to assess time composability.
The pTC model, instead of assuming Nc− 1 contenders, takes the actual number
of running τa contenders. Also, unlike fTC, pTC tracks the number of requests
of each type. This offers a powerful solution to tighten WCET estimates with a
reasonable low impact on time composability. pTC assumes that an upper bound
to the number of contenders’ request of each type can be derived.

The pTC model derives the impact that the number of requests for each
contender task τb can cause on τa. Ideally, we would like to have a PMC for the
number of requests of each type made by the task. We refer to that ideal counter
as nxxx where xxx corresponds to one of the types in Table 1. However, in the
target platform there is not a specific set of PMCs measuring those values as
shown in Table 2, which lists the relevant PMCs we used.

We performed an analysis of the relation we derive among the events needed
by the pTC model and the PMCs in the architecture (pmcyyy) as shown in
Figure 5: the number of loads to L2 (nl) matches the number of misses to the
dc and the ic (pmcdcm + pmcicm); the number of stores matches pmcst; and
the number of misses pmcm cover those caused by clean and dirty evictions
(pmcm = nlmc +nsmc +nlmd +nsmd). Further, the number of stores nst matches
pmcst = nsh + nsmd + nsmc.

With the existing PMC we approximate the number of requests of each type
made by each contender task. In doing so, we take into account the request
latency so that the resulting impact that τb causes on τa derived with PMCs is
an upperbound to the actual one we would derive if we had the ideal PMCs. The
approach consists in upper bounding high-latency requests first, which in our
architecture are dirty misses (lmd and smd).

Bounding Dirty Misses: The number of L2 misses evicting a dirty line is
upper bounded by the minimum between the number of stores (nst = pmcst)
that cause lines to be dirty and the number of L2 misses (nm = pmcm) that evict
cache lines, see left part of Equation (3).

n̂md = min(pmcm, pmcst) → ňmc = pmcm − n̂md (3)

Since nm = nmd + nmc, the approximation in Equation (3) may result in
assuming that some misses generate dirty evictions while, in reality, they do not,
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thus introducing some pessimism. In particular, it results in a lower bound to
the number of clean misses (ňmc), see the right side of Equation (3).

Bounding Load Hits: The number of loads that hit in cache is upper
bounded by the minimum between the number of hits (nh) and the number of
loads (nl) to the L2, see Equation (4). They are respectively computed from
PMCs as follows:

The number of loads performed to the L2 cache (nl) equals the number of
misses in the dc and ic, i.e., nl = pmcicm+pmcdcm. Note that the number of loads
to the L2 includes hits and misses (dirty and clean), i.e., nl = nlh + nlmc + nlmd.

The number of hits in L2, nh is obtained with existing PMCs as nh =
(pmcicm + pmcdcm + pmcst)− pmcm, that is, the number of read/write accesses
to the L2, which include load misses in the ic and the dc plus stores (due to the
write-through policy of the dc cache), minus the number of L2 misses. Note that
pmcm does only count the number of direct misses. More specifically, it does not
count the number of memory accesses due to write backs.

n̂lh = min(nh, nl) → ňsh = nh − n̂lh (4)

Since nh = nlh + nsh, a lower bound to the number of store hits is derived as
shown in the right side of Equation (4).

Bounding Contention: Once bounds to τb accesses have been computed,
the pTC model assumes that requests from τb delay τa requests by their respective
mcd. This is implemented by iteratively “pairing” each request from a run ri of
τa with one request of τb from worst to best latency, see Figure 6.

1. First, the number of requests from task τb of type miss dirty (n̂md), i.e the
type with highest mcd, that contend with requests of τa, n

i
a, is given by:

ĉmd = min(nia, n̂
md
b ). Hence the number of unpaired requests from τa is

n′ia = max(0, nia − ĉmdb ) requests of τa unpaired.
2. Those n′ia requests contend with ňmc (second most impacting type) requests of
τb: č

mc = min(n′ia , ň
mc
b ). This results in n′′a = max(0, n′ia − čmc) τa’s unpaired

requests.
3. Those n′′ia requests contend with n̂lhb (third most impacting type) requests

of τb: ĉ
lh = min(n′′ia , n̂

lh
b ) with n′′′a = max(0, n′′ia − ĉlh) requests unpaired.

4. Finally, the n′′′ia remaining τa’s requests contend with ňshb (fourth most
impacting type) requests of τb: č

sh = min(n′′′ia , ňshb ). With the remaining τa’s
request n′′′′ia = max(0, n′′′ia − čsh) not contending with any request of τb.

The obtained pTC contention is the result of assuming that each of these
contentions among τa and its contender τb are aligned in the worst way, causing
a contention delay as long as each τb request (see Equation (5)). This process
is repeated for the other potential contender tasks τc and τd. The overall pTC
contention bound is given by Equation (6).

∆i,pTC
τb→τa = (ĉmd × lmd) + (čmc × lmc) + (ĉlh × llh) + (čsh × lsh) (5)

∆i,pTC
cont = ∆i,pTC

τb→τa +∆i,pTC
τc→τa +∆i,pTC

τd→τa (6)
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Other Considerations. The fTC model has the advantage of breaking the
dependence between scheduling and WCET. In an exact model, the WCET
figure to be used depends on the schedule of tasks, which creates a circular
dependence as WCET is also an input for deriving a feasible schedule. This
issue has been initially tackled by an iterative approach to simultaneously attack
WCET and scheduling [11]. With fTC the WCET estimate is not affected by the
load contender tasks put on the shared resources, and hence it does not depend
on task scheduling. However, this comes at the cost of inflated WCET estimates.

It is worth noting that the principles of the presented model does not only
apply to the studied processor but also to other multicore processors. In order
to adapt the model, it is necessary to understand the type of events using the
shared resource and their duration. The quality of the results, however, depends
on the PMC support available and the accuracy it guarantees in tracking the
desired events, see Figure 5. As part of our current work we are extending the
model to multicore processors in other domains, e.g., automotive.

7 Experimental Results

We first demonstrate our combined approach on a synthetic application and then
with benchmarks of the EEMBC Automotive suite [28].

Hardware Setup. We used an FPGA implementation of the LEON3 [2]
platform, as introduced in Section 3. Each core comprises separate 16KB 4-
way set-associative L1 caches for instruction and data, with write-through, no
write allocate policy. The cache hierarchy is complemented by a shared 128KB
4-way unified L2 cache, with write-back policy. An AMBA AHB bus provides
connections among private caches, the L2 and the DRAM memory controller. In
our setting, we configured the L2 to be partitioned among cores (contention is
still to be suffered on bus accesses), so each core has a 32KB direct-mapped L2.

MBPTA Setup. We applied MBPTA to the target program, considering
10−12 as the pWCET exceedance probability threshold of interest. We collected
3,000 runs to meet the representativeness requirements, as determined by the
ReVS method [24]. The obtained set of observations successfully passed the
statistical independence and identical distribution tests, prerequisites to the
application of EVT, and allowed MBPTA to converge on a pWCET distribution.

7.1 Synthetic Application

Our synthetic application resembles an “aggressive” program uniformly accessing
the shared bus for 30% of its execution time. It consists of several functions
that are sequentially accessed within a loop a total of one hundred times. Each
function comprises a variable number of instructions, performing a mixture of
purely arithmetic and read/write operations.

Our empirical evaluation proceeds through two incremental steps. First, we
assess the effectiveness of software randomization in enabling MBPTA to capture
intra-core cache jitter. To that end, we execute and analyze our program in
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Fig. 7: Results of TASA and MBPTA on a single-core setup.

isolation (i.e., no contention at all), in a simple single-core setup. Second, we show
how the results in isolation can be complemented with the analysis of inter-core
contention jitter. We therefore assess our analytical model, combining cache and
contention jitter, against representative execution scenarios where all cores in
the system are concurrently enabled.

Capturing Cache Jitter. We exploited TASA to enable MBPTA to capture
the execution time variability incurred by caches. To this extent, we analyzed
our application in a single-core setup, guaranteeing complete isolation. Figure 7
reports the pWCET distribution computed by MBPTA for the target program.
Observed values are upperbounded by the MBPTA projection and pWCET
result is obtained by selecting the value of the projection at the 10−12 exceedance
threshold. In this case the pWCET distribution is particularly close to the
maximum observed execution time (MOET). It is worth noting that, since plain
observed values do not provide any worst-case guarantee, it is common (though
pretty unscientific) industrial practice to resort to a fudge factor to account for
unknown factors. This factor is typically in the order of magnitude of 20% of the
MOET. Notably, the pWCET computed with MBPTA is not only much tighter
than the 20% margin, but also comes with scientific reasoning.

Multicore Contention. The MC2 approach extends single-core pWCET
estimates by capturing the effect of inter-core contention through a contention
model based on PMCs. In order to assess the precision of our analytical model,
we performed a set of experiments on representative execution scenarios where all
cores in the system are concurrently enabled and compared against the results of
our analytical (fTC and pTC) models. In our setting and platform, the theoretical
worst-case inter-core contention suffered by an application corresponds to the fTC
scenario where all bus access requests are triggered one cycle after the reserved
slot and all other cores already have pending requests, each one incurring the
latency of a L2 dirty-miss. While being fully time-composable, this scenario can
be extremely pessimistic in practice as it can only occur under extremely bad
and rare overlapping of bus requests and cache miss patterns.

fTC. We consider first the fTC contention model as it is used as a reference
for the pTC one. Our application, τa, is executed under two different scenarios
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of contention: (1) against three stressing kernels performing loads that miss in
L2 (i.e., clean misses) and (2) against three stressing kernels performing stores
in L2 overwriting data (i.e., dirty misses). Figure 8 shows the execution time of
τa under the two scenarios of contention and the bound derived with the fTC
model. Values are normalized against the MOET from baseline observations (i.e.,
no contention). As expected the model is accurate when the execution conditions
are matching the fTC assumptions (i.e., worst request latencies and alignment).
In practice, contenders will not generate those overly-conflictive scenarios. The
pTC model cures the pessimism coming from the worst-case latency assumption.

pTC. To compare the accuracy of the pTC model and how it adapts to
contenders’ load on the bus, we run our application τa against three copies of
a benchmark that performs a variable number of bus accesses depending on
the configuration, which we express as a percentage of τa accesses. Figure 9
compares the observed execution times against the predictions of the pTC model.
Results from applying the fTC are included as well for the sake of comparison.
As expected, the fTC model yields pessimistic pWCET estimates. Conversely,
we observe that the pTC model computes pWCET estimates decrease in parallel
with the load put by contenders on the shared bus. Note that the difference among
fTC and pTC − 100% is that the former assumes that all requests contribute the
worst-case latency (dirty misses), whereas the latter accounts for the actual type
of requests of the contenders. For any value of p, e.g., pTC − 40%, the derived
pWCET@10−12 with pTC tightly upperbounds the actual observed value.

All in all this synthetic evaluation confirms that the MC2 method effectively
captures both cache and multicore contention into pWCET estimates that are
analytically reliable and tightly upperbounding the observed values.

7.2 EEMBC

To further evaluate our approach we applied MC2 on the EEMBC automotive
benchmarks [28]. In particular, we analyzed a2time, cacheb, idctrn, iirflt,
puwmod, and tblook on the same platform. Figure 10 reports, for each benchmark,
MOET in both singlecore and multicore scenarios, and the results of the fTC
and pTC models. For the pTC model contention was generated by deploying
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Fig. 10: Results of EEMBCs against 3 copies of themselves

three copies of the benchmark itself. All results are normalized with respect to
the multicore MOET.

First we observe that fTC WCET estimate are in general extremely high
(∼11x). This is explained by the fact that fTC model assumes not only the
worst-case alignment scenario but also the worst-case latencies for each contender
access, which is generally unrealistic. The pTC model, instead, provides quite good
results, with all values below 1.5x the multicore MOET. The only pessimism in the
pTC model comes from its conservative assumptions on the alignment of requests.
pTC estimates provides a good compromise between tightness and flexibility: a
further reduction in pessimism cannot be had without exact knowledge on how
bus accesses interleave, which is not flexible and typically too difficult to derive.

8 Related Work

Several approaches have been proposed to account for inter-core contention by
computing an upper bound to the delay a task or application may suffer [10].
Some of those approaches require extending classic timing analysis framework to
account for the effect of shared resources [4], but they are generally unsustainable
owing to the entailed computational complexity. Other approaches suggest a
separate (compositional) analysis approach [29, 30, 6]. They propose a separate
analysis for contention and, frequently, rely on splitting tasks into sub-tasks or
phases so that worst-case alignment in (typically) TDMA-based arbiters can be
reasonably computed. Assuming that tasks can be split into phases allows refining
the analysis model and reducing the overall pessimism; however, this assumption
is quite application-dependent and cannot be generalized. Moreover, the above
approaches typically rely on insightful information on all the applications in
the system and a preliminary static analysis step to characterize the pattern of
memory accesses. Conversely, the contention analysis approach we rely on limits
the pessimism while at the same time making no assumption on how memory
accesses are distributed. Our model only requires support for PMCs, which is
often available (though at variable extent) in COTS platforms.
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Other approaches make use of specific hardware and/or RTOS mechanisms to
enforce precomputed bounds to the maximum contention caused/suffered at run
time [27, 25]. While interesting, those approaches do rely on domain-specific and
custom run-time hardware mechanisms that are not typically available, and yield
results that are only valid under the specific task set and system configuration.
Our approach, instead, derives bounds on the inter-core contention that are at the
same time realistic and only partially dependent on the co-runners characteristics,
as a first step towards enabling incremental development and qualification.

The use of PMCs to model contention and derive an upper bound to multicore
contention delays has been originally introduced in [16], where the analytical
model for fTC and pTC is tailored to the NGMP platform. In this work, we
readapt the same concept to the MBPTA framework and combines the contention
model in [16] (adapted to the LEON3) with software randomization to provide
holistic pWCET bounds, accounting for both cache jitter and contention effects.

9 Conclusions

We have proposed MC2, a technique for COTS multilevel-cache multicores that
derives WCET estimates factoring in the jitter generated by caches and multicore
contention. To that end, each measurement fed in input to MBPTA systematically
accounts for the impact of both resources, effectively enabling MBPTA to factor
them in when deriving pWCET estimates. Our results on a COTS platform
confirm that MC2 effectively captures the impact of both multi-level cache
variability and inter-core contention in realistic WCET estimates, that tightly
upperbound observed values.
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