
On uses of Extreme Value Theory
fit for industrial-quality WCET analysis

Suzana Milutinovic1,2, Enrico Mezzetti1, Jaume Abella1, Tullio Vardanega3, Francisco J. Cazorla1,4
1Barcelona Supercomputing Center 2Universitat Politècnica de Catalunya 3University of Padova 4IIIA-CSIC

Abstract—Over the last few years, considerable interest has
arisen in measurement-based probabilistic timing analysis. The
term MBPTA has been used to indistinctly refer to a variety
of different applications of Extreme Value Theory (EVT) to the
timing analysis problem. The successful application of MBPTA
techniques to a score of case studies has not fully dispelled
the concerns that industrial stakeholders had with the quality
of the computed bounds, hence ultimately with their industrial
viability. Placing focus on the MBPTA methods and techniques
developed in the PROARTIS and PROXIMA projects, collectively
referred to as proMBPTA, we discuss the main misconceptions
and pitfalls that can prevent a sound application of EVT-based
WCET analysis. Using a combination of arguments and support
examples, we show that proMBPTA is a rigorous process, fully
amenable to sound and sustainable industrial use.

I. INTRODUCTION

The quest for novel WCET analysis methods capable of
keeping pace with the trend towards more complex hardware
has caused considerable interest to arise in statistical tools
based on Extreme Value Theory (EVT) [1]. EVT considers the
WCET as a rare event in the timing behaviour of a program
and reasons about it in terms of probability of occurrence,
yielding the notion of probabilistic WCET (pWCET).

Since EVT builds on observations, it is particularly attrac-
tive to real-time systems industry. In particular, it seams very
naturally with measurement-based timing analysis (MBTA),
which in spite of its theoretical limitations dominates indus-
trial practice for WCET analysis. The Measurement-Based
Probabilistic Timing Analysis (MBPTA) approach [2], [3]
combines EVT’s potential with the cost/benefit attractiveness
of MBTA [4]. MBPTA much improves on standard MBTA
by enabling the user to attach quantitative confidence to the
pWCET bounds computed from timing measurements of the
software program of interest, collected on the target platform.

Several works have consolidated various flavours of
MBPTA [5]–[9], showcasing industrial-strength experiments
run on processor simulators [10] or real hardware boards [11],
[12]. However, before being deemed ready for transfer to
industrial practice, MBPTA needs to be proven to: (i) de-
liver trustworthy results; (ii) be adaptable enough to em-
brace different kinds of software programs; and (iii) cause
lightweight impact on an already effort-intensive verification
and validation process. Arguably, the latter trait is a generally
ascertained fact, with a score of industrial case studies [10]–
[12] confirming that MBPTA requires an affordable number of
measurement observations in addition to what normal practice
already provides.

The trustworthiness of EVT has been challenged noting
that the quality of its results critically reflects the quality
of its inputs (for data, coverage, state control) [13], [14],
with poor inputs yielding wholly unsound probability models.
This should not surprise in fact, as the application of EVT
to observations over user-controlled program runs instead of

uncontrolled (e.g., natural) phenomena needs very careful
attention and adaptation. In this paper we show that this mis-
understanding originates from solely minding that the maxima
of the input data (i.e. execution-time observations) pass EVT’s
all-famous pre-requisite tests of identical distribution and (suf-
ficient) independence [6], [15]. However, it stands to reason
that the measurement observations that one collects reflect the
execution conditions that the program incurs (for input data,
coverage of execution space, and state control) during analysis
runs. In particular those conditions are intended to bear a
sound relation with the worst execution conditions that can
arise at operation. Only if that relation can be asserted, the
analysis-time measurements can be said to be representative,
thus useful for MBPTA. Ensuring representativeness is very
complex indeed, for it requires controlling all sources of
significant variation in the execution conditions explored in
the analysis process.

The adaptability trait has been criticized too, on the argu-
ment that EVT-based analysis would not apply to all classes
of software programs [13]. The critique showed that EVT was
unable to produce good-fit distributions even for programs
that exhibited sufficient execution-time variability, and was not
applicable at all for those that had near-constant execution-
time behaviour. This is where adaptation kicks in, which
requires profound understanding of what differentiates the
application of EVT to execution-time observations of program
runs from its use in other domains, where the observed events
and their sources have an altogether different nature.

In this paper we contend that these concerns are not inherent
to EVT (or MBPTA) per se, but rather pertain to the way
EVT is applied to the WCET domain, which may be seriously
fallacious. We show that the MBPTA techniques developed in
the PROARTIS and PROXIMA projects (collectively referred
to as proMBPTA) solve the adaptation problem and can be
used to produce trustworthy pWCET results.

II. BACKGROUND ON PROMBPTA

MBTA (and MBPTA alike) aims at deriving high-quality
estimates of the execution-time behaviour of selected programs
during system operation by sampling measurement observa-
tions at various levels of system integration during analysis,
i.e., testing. It is well known that the observable timing be-
haviour of a program reflects the specific execution conditions
incurred in the measurement run, which are not guaranteed to
stay the same from analysis to operation. In measurement-
based approaches, this problem calls for some form of control
by the user. Sufficient evidence for qualification or certification
can be obtained, including for the highest criticality functions
(e.g. DAL-A in avionics [16]), only as long as the user
can prove ability to exercise exhaustive control over all the
execution conditions considered of consequence. Looking at
hardware only, the use of increasingly complex processors

1

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87661243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


makes achieving the required level of control over the factors
of influence (e.g., bus occupancy, data/code mapping in cache)
much harder. This difficulty abates the confidence that can
be placed in the computed estimates, and increases the effort
intensiveness of the measurement collection, thereby reducing
the cost/benefit ratio of MBTA dramatically.

The proMBPTA solutions lessen the swell in the user
control burden considerably, while warranting soundness. To
this end, they define the notion of MBPTA compliance [17],
which reflects certain abilities of the observation process
and specific features of the execution platform. The latter
in particular require applying combinations of (hardware or
software) randomization or upper-bounding to the execution-
time behaviour of the hardware resources with the highest
jitter. Applying upper-bounding at analysis ensures that what
is observed upper-bounds the behaviour at operation. Applying
time randomization ensures that what is observed at analysis
is an equal representation of what can happen at operation.
Time randomization can be realized directly in the hardware
or obtained by software manipulations neutral to functional
behaviour on top of COTS processors [8], [12], [17].

In its original fields of application, EVT is used to produce
predictions on the extreme behaviour of the system from
observations of it collected non-intrusively. To apply EVT to
the execution-time domain, we must appreciate that there we
observe the system in a non-neutral (hence biased) way as the
user – intentionally or inadvertently – determines the execution
conditions that occur during analysis, but may not do the same
during operation. If different execution conditions may occur
between analysis and operation, different (extreme) timing
behaviours may emerge in the two situations: for EVT, they
would describe two distinct systems, whose respective extreme
behaviours may be far off one another. A simple-minded
application of EVT to analysis-time observation data will
thus produce pWCET estimates that solely upper-bound the
execution time of the program under the execution conditions
captured in the analysis-time experiments. Aspects related to
the faulty hardware are not covered in this work, we refer
interested reader to [18] for more informaton on this matter.

In order to ensure that the computed pWCET estimates
hold at operation, proMBPTA creates a judicious framework
of use around EVT. Firstly, it takes care of ensuring that the
analysis-time distribution (ATD) of the observation measure-
ments upper-bounds the operation-time distribution (OTD).
Subsequently, it feeds a sample of ATD, called ATS, to EVT,
which can then safely use it to model the tail of the ATD,
which in turn is warranted to upper-bound the tail of the
OTD. This is better illustrated in Figure 1. The dotted line
depicts the empirical complementary cumulative distribution
(ECCDF) of the execution-time behaviour of a program,
derived from observations of it taken during operation, hence
its OTD. We plot this OTD for illustrative purposes only,
since its retrospective nature (which observes operation-time
events) is too late to feed WCET analysis. The dashed line
depicts instead the program’s ATD, as resulting from the
execution-time conditions in effect during analysis. The solid
light line depicts the curve computed by EVT when feeding it
with the ATS obtained from the program’s ATD. ProMBPTA
ensures that ATD upper-bounds OTD, and makes a sound
use of EVT to compute high-quality pWCET estimates that
upper-bound ATD, and hence OTD. An incorrect use of EVT

Fig. 1. EVT quality issues.

might instead result in low-quality pWCET estimates that
may fail to upper-bound OTD while still upper-bounding non-
representative ATD.

III. EVT AND WCET: GUMBEL IS SAFE

Before presenting the proMBPTA framework, we discuss
the assumptions that characterize the problem domain of
WCET analysis and review what they imply for the appli-
cation of EVT, particularly the way it models the tail of the
probability distribution.

A. Introduction on EVT

EVT makes no assumption on the internals of the system (a
computing platform in our case) from which the measurements
are collected. In our problem domain, EVT has to be un-
derstood as a technique to predict the probability distribution
of the combined impact of the timing events observed in the
provided sample of analysis-time measurements. To contribute
to the combined effect that EVT seeks to predict, the base
events have to be observed (while their cumulative effect
need not). It follows that unobserved events (whose effect on
execution time might be arbitrarily large) cannot contribute to
the computation [5], [7]: if they can occur and are not captured
in the observations, then the predictions are inaccurate and
therefore fallacious.

EVT accurately approximates the tail (hence the extreme)
of a given probability distribution, taking in input only those
observations from the sample that belong to the tail. The Block
Maxima (BM) and Peak Over Threshold (PoT) [19] methods
are used to that end.

Block Maxima. BM defines a block size (bs) and splits
the sample in smaller groups (e.g. a sample of R = 2, 500
elements and a block size of bs = 25 elements yield nb =
R
bs = 100 blocks of bs observations each). EVT draws the
highest value in each block and creates a sample of maxima
to which it fits a probability distribution. Three families of
continuous probability distributions are used for fitting in
conjunction with the BM method: Gumbel, Fréchet and (re-
versed) Weibull. They are jointly described by the parametric
Generalised Extreme Value (GEV) distribution family. The
CDF of GEV is defined by the parameters µ, σ and ξ, known
as the location, scale and shape respectively [1], [15].

Peak-over-Threshold. PoT defines a threshold (th) value
and creates a maxima population drawing from the sample
only the observations higher than th. The resulting probability
distribution function can be described by the Generalised
Pareto Distribution (GPD) family. GPD can be described with
either 2 or 3 parameters. In the latter case, µ, σ and ξ, have
the same interpretation as for GEV (and ξ is identical): for
the same ξ, and similar values for µ and σ, GPD and GEV

2



yield the same distribution. [15] explains how to determine µ,
σ and ξ, and how µ and σ vary for GEV and GPD.

The tail shapes produced by the said distribution families
are not equally apt to model WCET behaviour: the (reversed)
Weibull family approaches asymptotically an exact (maxi-
mum) value, which helps when the WCET is known (but is not
our problem domain); the Gumbel family decreases exponen-
tially without converging to a finite upper-bound; the Fréchet
family does the same as Gumbel but decreases polynomially,
which makes it less tight for our problem domain. The same
holds for the GPD model distributions.

B. WCET existence and finiteness

WCET analysis rests on two main assumptions: (i) target
programs execute a finite number of instructions; and (ii)
each instruction executes in a finite number of cycles. Those
assumptions guarantee that a WCET does actually exist and
that an upper-bound to it is computable. Parametric static
timing analyses have been proposed to soften the finiteness
assumptions [20]: while they are useful to reuse results from
static analysis, they only produce preliminary formulas that
need instantiation before use. A real-time software program is
therefore assumed to have a theoretical maximum execution
time, the WCET, which needs to be estimated and upper-
bounded for safety. For this condition to hold true, the input
space of the program itself may require to be known and/or
controlled. For example, it would be impossible to derive an
upper bound to the execution time of the Factorial function
if we did not know or constrain its execution context, in this
case the range of admissible input values. We identify two
main classes of relevant information on the input ranges that
affect the search space, aka feasible region, of the WCET:

Finite Execution Conditions (FEC): these are determined
by input values that affect loop bounds and/or the depth
of recursion, when they are not hard-coded in the program.
Excluding parametric methods, which we do not consider
in this work, all timing analysis methods, whether static or
measurement-based, deterministic or probabilistic alike, need
the user to provide some information on FEC. The quality of
that information may affect the tightness and trustworthiness
of the analysis results. For instance, static timing analyses
may require the user to provide flow facts to fill in bounding
information that could not be automatically derived by, e.g.,
data flow or range analysis.

Path Traversal Conditions (PTC): when the software pro-
gram features multiple structural execution paths, identifying
the set of feasible and relevant paths is crucial to precision
or trustworthiness. This is especially true for measurement-
based analyses, which critically depend on the availability of
input vectors capable of providing sufficient PTC coverage,
to warrant cognizant confidence that the paths exercised in
the measurement observations include the path leading to the
WCET. Static analyses don’t need PTC information to achieve
full path coverage, but excluding non-relevant or semantically
infeasible paths, may improve the quality of their output.

C. Tail distributions and pWCET estimation

FEC&PTC assumptions impact GEV and GPD distribu-
tion models, especially for the characterization of the shape
parameter ξ. As we noted at the end of section III-A, the
reversed Weibull family of distributions should be used when a
maximum value exists and it is known. The former hypothesis

Fig. 2. Effect of misclassified tails.

generally holds for the WCET of real-time software programs;
the latter does not. When the WCET is unknown, which is
the case in the vast majority of situations in our problem
domain, it can be upper-bounded by either a Gumbel or a
Fréchet distribution, as the slope of their right tail decreases
much more gently than the reversed Weibull one. The descent
of the Fréchet distribution is gentler than that of its Gumbel
correspondent, and therefore it upper-bounds the latter’s right
tail. The Fréchet distribution is most appropriate when a
maximum value does not exist, which places it outside of
the core WCET problem domain. Gumbel, instead, is most
appropriate when a maximum value exists but it is unknown.

Methods as the Exponential Test [21] and the Coefficient
of Variation (CV) [22] help determine whether the sample
fits a Fréchet, Weibull or Gumbel distribution (or their GPD
counterparts). Yet, for the argument we have given above
(further developed in [23]), the extreme behaviour of the
execution-time distribution of a real-time software program
can always be modelled with a Gumbel distribution: it may
not be the tightest one, but it is always – at least – a safe
over-approximation of it. Unless we assume that our pro-
gram of interest has an unbounded WCET, using the Fréchet
distribution should be considered inappropriate. If a Fréchet
distribution were to best fit a given sample of execution-time
measurements, this should happen because either the sample
does not contain enough tail values or some of them do not
really belong to the tail of the distribution. The remedy would
be to increase the sample (to capture more tail values) or
use different BM block sizes (to discard less tail values),
respectively, as illustrated in [23].

To demonstrate our reasoning, we apply proMBPTA to
aifftr, a Fast Fourier Transform procedure included in the
EEMBC automotive benchmark suite (http://www.eembc.
org/benchmark/automotive_sl.php), which we executed 1,000
times on a MBPTA-compliant platform. We first tested expo-
nentiality with the CV test (with 95% confidence): the right
part of Figure 2 shows that the exponentiality hypothesis,
considered for the 95 highest observations, cannot be rejected,
since the blue line (that projects those 95 values) falls within
the red lines, meaning that exponentiality cannot be rejected
with 95% confidence. In statistical speak, this means that less
than 96 maxima observations are sufficient to approximate
the Gumbel (exponential) pWCET distribution. Note, however,
that passing such test means that data are compatible with the
exponentiality hypothesis (ξ = 0), but the best fit will likely
be non-exponential (although ξ ≈ 0). As explained before, the
decision of using an exponential tail as upper-bound resorts
to knowledge about the domain (pWCET estimation), not
about the best fit for the data. We obtained fitting pWCET
distributions for the three cases plotted in the left part of
Figure 2 (using point estimation, although confidence intervals

3



for the rate of the Exponential distribution could also be
considered): (1) Using the 40 highest values yielded a curve
that was more a Fréchet than a Gumbel distribution. This is
no surprise, in fact, for the probability of obtaining exactly
ξ = 0 for a sample, as required for a Gumbel distribution,
is close to nil; actual sampling typically yields ξ > 0 or
ξ < 0. With 40 values from the sample, we had ξ = 0.086,
which causes the tail to decrease polynomially (the red line in
the plot). (2) Using any other number of values (always less
than 96), e.g., 15, yielded ξ = −0.55. The resulting pWCET
curve was in the domain of the reversed Weibull family (the
green line in the plot). As noted earlier, going this way could
lead to an unsound, optimistic bound. (3) Picking 40 maxima
values and fitting the best Gumbel distribution to them, yielded
the tightest and most reliable pWCET curve (the blue line in
the plot), which tightly upper-bounds the actual sample (the
dashed line) increased to 5,000,000 measurements to prove
our point.

Using the best fit distribution from any family in the GEV
(or GPD) can lead to arbitrarily pessimistic pWCET estimates.
For instance, choosing an exceedance probability of 10−15

per run, the pWCET estimate for the test program would
be around 5,560,000 cycles for the exponential fit with 40
excesses. However, for 95 values, whose exponentiality cannot
be rejected, we obtain a Fréchet distribution and a pWCET of
more than 23 million cycles.

Whenever the best fit is a reversed Weibull distribution, we
can use a Gumbel equivalent in its stead since, for tail (ex-
treme) behaviour, the Gumbel curve always over-approximates
its Weibull correspondent. In other words, the reversed Weibull
CCDF may be above the Gumbel one in the first part of the
curve, which corresponds to high probabilities, but it is going
to be always below it for low probabilities. And only the latter
matter in the WCET problem domain.

If the method used to test exponentiality rejects the hypoth-
esis that the tail can be modelled (or upper-bounded) with an
exponential tail (e.g. Gumbel or, at least, Weibull), then the
sample size needs to be increased until the test passes.

EVT requires the random variable being observed to exhibit
a “variable” timing behaviour. Lack of variability prevents
EVT from producing good quality models and likely from
converging to an exponential distribution. In theory, this can
happen regardless of time-randomization when the timing
behaviour of the program under analysis has a degenerate
distribution. While this is extremely rare in practice, at least
for real-world programs, it is not necessarily a bad scenario:
if representativeness is guaranteed, lack of variability would
suggest that the maximum observed execution time could be
reasonably regarded as a precise estimator for the WCET.

Conclusions: in general, using EVT without passing this
step cannot be considered a valid approach to estimate the
WCET of real-time programs: it might be used for other
classes of programs characterized, for example, by unbounded
execution times (e.g. modeling the execution time distribution
of the Factorial function for any input value). However, as
already discussed, these scenarios are typically not considered
as they do not produce directly “usable” WCET estimates.

We therefore conclude that EVT is adaptable to all pro-
grams that are analyzable by other timing analysis techniques.
Moreover, we observed that the tail distributions of this
class of programs are properly described by a Gumbel. This
contrasts with [13] whose author concludes that the Gumbel

family does not always provide a reliable model, resulting
in low-quality WCET estimates. In fact, those conclusions
were drawn outside of the WCET finiteness and existence
assumptions, considering a class of programs that can only
be analysed parametrically.

As we noted in Section II, it is the responsibility of the
analysis process to guarantee that the statistical and represen-
tativeness requirements are met so that EVT can be applied
correctly. We now discuss what proMBPTA does to that end.

IV. PROMBPTA AND EVT TRUSTWORTHINESS

The accuracy of the model used to represent the timing
behaviour of the program of interest is a major factor of
influence, not only for the representativeness of observations,
but also for how they are collected and fed to EVT. In fact,
even when representativeness is assured (which requires col-
lecting a minimum number of runs [7], [9], [24]), the way the
observations are collected and submitted to analysis critically
affects the quality of the EVT results. This is especially
evident for the contribution of individual paths to the pWCET
distribution of a multi-path program.

In the following, we show how proMBPTA deals with
those concerns, and discuss the role that platform-level time
randomization and time upper-bounding play in achieving
representativeness. In describing an ideal MBPTA approach,
we focus first on those programs whose input vectors (or all
those regarded as relevant for the WCET) restrict the paths
of interest to one. We then consider how the proMBPTA
guarantees extend to multi-path programs.

A. Representativeness on Single-Path (Single-Input) Programs

ProMBPTA relies on time-randomization and upper-
bounding, applied to jittery hardware resources, to guarantee
that measurements capture execution conditions that are no
better than those that may occur at system operation [5]. We
refer to the factors that produce execution-time variability, as
Sources of Jitter (SoJ).

Two main steps are needed for assuring representativeness
with proMBPTA: (1) singling out the resources with jittery
timing behaviour; (2) either randomizing or upper-bounding
their response time, to make the analysis-time observations
representative of worst-case operation conditions.

Singling out SoJ: SoJ can affect even the simplest of single-
path programs. The nature and number of such factors is
platform-dependent and have to be determined by an expert.
Examples of SoJ include variable-latency FPU operations,
cache behaviour, or simple contention effects in a multicore.
Each SoJ should be controlled in a manner that guarantees that
the timing behaviour observed at analysis time captures the full
extent of possible variability and, hence, is representative of
system behaviour at operation.

Mastering the impact of all SoJ with standard measurement-
based timing analysis techniques is not generally viable.
Understanding and explicitly triggering scenarios in which
diverse hardware components may have to interact with one
another is untenable in practice. Moreover, the increasing
complexity of COTS processors causes the cost of any classic
timing analysis approach to explode and the quality of their
results to decrease. A qualitative analysis of the contribution
of hard-to-predict resources is thus the prerequisite to the
application of any timing analysis technique. For MBPTA,

4



this effort allows singling out the SoJ, to determine how
randomization and upper-bounding can capture their jitter.

A case for Randomization: Representativeness of the di-
verse SoJ can be attained by injecting randomization in the
timing behaviour of selected hardware or software compo-
nents [5], [17]. Randomization ensures that several of the
sources of execution-time variability are transparently cap-
tured in the analysis results without needed direct user in-
tervention (whether by providing specific input vectors or
setting the internal state). Time-randomized resources may
include placement and replacement policies in the different
cache memories, as well as arbitration policies in shared
resources such as interconnection networks (e.g. buses, trees)
and memory controllers.

A proMBPTA-compliant platform – which addresses the
SoJ concerns as described above – meets the EVT statistical
requirements for single-path programs. Each, conveniently col-
lected (see [5], [17]), execution-time measurement corresponds
to an independent and identically distributed (i.i.d.) observa-
tion of a random variable. Hence, if all requirements are met
by construction, EVT can be applied to that problem space
safely. Note that EVT is not applied to the real distribution
(the full universe of values), but on a sample of it. Hence,
although with proMBPTA the required properties hold on the
full population, they need to be empirically confirmed to hold
for the specific sample, with appropriate i.i.d. tests [2], [25].

Once the exponential test and i.i.d. tests are passed, and the
representativeness constraint holds, the distribution yielded by
the sample can be regarded as a valid pWCET distribution.

B. Limits of randomization

It has been suggested that randomization alone does not
suffice to enable the use of MBPTA [13]. As already observed,
while randomization might not cure degenerate distributions,
this is not a problem as long as the collected observations are
truly representative. We insist, however, that an inattentive use
of randomization does not guarantee representativeness.

Applying time randomization to individual processor com-
ponents (e.g. the cache) makes their jitter MBPTA-compliant.
However, doing that on a single resource does not cover
the jitter of other resources: for example, [13] notes that
randomizing the cache does not cover the jitter caused by
FPU or by multiple program paths. Instead, all SoJ have to
be studied individually and a solution has to be proposed to
address each of them.

C. Probability Distribution of Multi-Path Programs

When the program of interest has multiple execution paths,
the concept of representativeness extends to whether and how
frequently each path is traversed by the input data provided
and, thus, captured in the analysis.

Representativeness of execution paths: Assuring sufficient
path coverage is a widely acknowledged requirement of all
timing analysis approaches based on measurements [26], [27].
In contrast with static timing analyses, the results computed by
measurement-based methods hold only for the execution paths
observed at analysis. Measurement-based analyses typically
assume the availability of PTC information to guide the
identification of a subset of structurally feasible paths to be
included in the analysis. Path identification and generation
of the respective input vectors remain a non-trivial problem
for the end users. When PTC information is not available

(or is considered unreliable), it is still possible to build a
synthetic upper-bounding path [28] or use the measurements
from several paths to artificially derive measurements for all
unobserved paths [27].

Modelling the distributions of several paths: The critical
question is whether the timing behaviour of a multi-path
program can still be modeled as the outcome of a single
random variable, or else each path in the program needs to be
considered separately. In the former case, indistinctly feeding
all measurements to EVT on account that all paths concur to a
unique distribution postulates that the distribution occurred at
analysis does match what will happen at operation. While there
has been some works on timing analysis based on a priori
knowledge of path frequency [29], assuming that the analysis-
time observations always match the eventual distribution at
operation is very hazardous. Even if we assume that users can
provide input vectors capable of triggering all execution paths
of interest for WCET estimation, we cannot expect them to
reason about their probability of occurrence at operation.

Instead, we observe that each single path potentially leads
to a different execution time distribution. This is especially
evident in programs with significant input-data dependence
(and operation modes), where observations may fit signifi-
cantly different distributions depending on the provided input
vectors. Putting all measurements into a single bucket and
applying EVT simple-mindedly on them is not advisable, as
the collected measurements, while possibly independent, do
not necessarily have identical distribution. Even seeking fair
path frequency at analysis, for example by enforcing uniformly
distributed inputs [30], does not solve the problem that the
path distribution at operation is generally unknown and thus
cannot be modeled.

Hence, one option is to study each execution path in isola-
tion and derive an envelope distribution that safely accounts
for all considered paths. We refer to this solution as multiple-
bucket application of EVT, as opposed to its single-bucket
alternative. We do not consider how these paths have been
selected, whether by the user or by other means [27], [28].
In this scenario, the whole MBPTA process is applied on
a per-path basis to obtain individual CCDFs. Then a Max-
Envelope can be computed taking the maximum value for
each exceedance threshold across the pWCET distributions of
all the considered paths. If the cost of considering each path
separately is high, the user can apply path upper-bounding [28]
and then analyze any of the modified paths, which is an upper-
bound of all possible traversed paths.

Considering measurements from different paths in the same
bucket can potentially lead to unreliable results that can
equally be unsafe or more pessimistic than those obtained with
the Max-Envelope method, which is safe by construction. We
illustrate this on a real case study from the railway domain.
We experimented with the signalling subsystem, responsible
for protecting the train motion in a simplified European Train
Control System (sETCS), running on a LEON3-based FPGA
implementation, with 16KB randomized Instruction and Data
caches. We collected observations for 10 input vectors, which
corresponded to 10 distinct paths in the programs. To demon-
strate the inappropriateness of the single-bucket approach, we
compared the results of applying MBPTA on each path in
isolation against the results from pairwise combination of
different paths. The left side of Figure 3 shows that combining
samples from paths 0 (yellow) and 3 (blue) in a single bucket

5



causes the computed distribution (red) to fall even behind the
distribution of each individual path considered in isolation.
The right side of Figure 3 shows the combined distribution
(red) obtained by merging the samples from paths 7 (yellow)
and 9 (blue). In this case, the single-bucket approach causes
the final combined distribution to fall largely beyond the Max-
Envelope values (in this case corresponding to the yellow line).

Fig. 3. Unsafe and pessimistic results when combining paths.

V. RELATED WORK

After a seminal paper [31], a lot of effort has been devoted
to understand the challenges of applying statistical approaches
to WCET analysis [32]–[34].

Several efforts have been directed to studying the statistical
requirements and support needed to effectively use EVT. A
primal claim in this sense was that EVT requires observations
to be i.i.d. [33], [34]. Randomization has been proposed as
a means to facilitate the use of EVT [5], [7]–[9]. Random-
ization guarantees that the i.i.d. requirement is satisfied by
construction [17] and allows probabilistic reasoning on the
representativeness of input data and the quality of results [9].

The i.i.d. requirement has been softened [6], [15], [35]
showing that EVT can be applied on data exhibiting stationary
or weak dependence. This observation led to the definition
of well-structured approaches to apply statistical tests on the
sample data and to assess the goodness of model fitting [35].
This has paved the way for the application of EVT tools
to programs running on deterministic (i.e., non-randomized)
hardware [6], [36]. However, this use fails to account for
the role and importance of randomization in sustaining the
representativeness of inputs.

Finally, the application of EVT to model multiple paths,
relating to path concerns in measurement-based analyses, has
been studied in [27], [28] where methods have been proposed
to increase the eventual path coverage.

VI. CONCLUSIONS

In this paper, we argued that the main misconceptions
on the application of EVT to the WCET problem can be
defeated by considering the peculiarities of execution time
as the event EVT is expected to model. With a view to
the application of EVT to industrial-quality programs, we
demarcate proMBPTA, a well-defined, rigorous analysis pro-
cess that guarantees a WCET-centric application of EVT
with guarantees on trustworthiness of its results and wide
adaptability to software programs.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness (MINECO) under grant
TIN2015-65316-P and the HiPEAC Network of Excellence.
Jaume Abella has been partially supported by the MINECO
under Ramon y Cajal grant RYC-2013-14717. Authors also
thank George Lima for his feedback on this manuscript.

REFERENCES

[1] S. Kotz et al., Extreme value distributions: theory and applications.
World Scientific, 2000.

[2] L. Cucu-Grosjean et al, “Measurement-based probabilistic timing anal-
ysis for multi-path programs,” in ECRTS, 2012.

[3] F.J. Cazorla et al, “PROARTIS: probabilistically analysable real-time
systems,” ACM Transactions on Embedded Computing Systems, 2012.

[4] J. Abella et al, “WCET analysis methods: Pitfalls and challenges on
their trustworthiness,” in SIES. IEEE, 2015, pp. 1–10.

[5] F. Cazorla et al., “Upper-bounding program execution time with extreme
value theory,” in WCET Workshop, 2013.

[6] L. Santinelli et al., “On the sustainability of the extreme value theory
for WCET estimation,” in WCET Workshop, 2014.

[7] J. Abella et al., “Heart of Gold: Making the improbable happen to extend
coverage in probabilistic timing analysis,” in ECRTS, 2014.

[8] E. Mezzetti et al., “Randomized caches can be pretty useful to hard
real-time systems,” LITES, vol. 2, no. 1, pp. 01:1–01:10, 2015.

[9] S. Milutinovic et al., “Modelling probabilistic cache representativeness
in the presence of arbitrary access patterns,” in ISORC, 2016.

[10] F. Wartel et al., “Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study,” in SIES, 2013.

[11] M. Fernandez et al., “Probabilistic timing analysis on time-randomized
platforms for the space domain,” in DATE, 2017.

[12] F. Cros et al., “Dynamic software randomisation: Lessons learned from
an aerospace case study,” in DATE, 2017.

[13] G. Lima et al., “Extreme value theory for estimating task execution time
bounds: A careful look,” in ECRTS, 2016.

[14] J. Reineke, “Randomized caches considered harmful in hard real-time
systems,” LITES, vol. 1, no. 1, pp. 03:1–03:13, 2014.

[15] S. Coles, An introduction to statistical modeling of extreme values, ser.
Springer Series in Statistics. Springer-Verlag, 2001.

[16] S. Law et al., “Achieving appropriate test coverage for reliable
measurement-based timing analysis,” in ECRTS, 2016.

[17] L. Kosmidis et al., “Fitting processor architectures for measurement-
based probabilistic timing analysis,” Microprocessors and Microsystems,
vol. 47, Part B, pp. 287 – 302, 2016.

[18] M. Slijepcevic et al., “DTM: Degraded test mode for fault-aware
probabilistic timing analysis,” in Euromicro Conference on Real-Time
Systems (ECRTS), 2013.

[19] W. Feller, An Introduction to Probability Theory and Its Applications.
John Willer and Sons, 1996.

[20] S. Bygde et al., “An efficient algorithm for parametric WCET calcula-
tion,” Journal of Systems Architecture, vol. 57,6, pp. 614 – 624, 2011.

[21] M. Garrido et al., “The ET test, a goodness-of-fit test for the distribution
tail,” in Methodology, Practice and Inference, second international
conference on mathematical methods in reliability, 2000, pp. 427–430.

[22] J. Del Castillo et al., “Methods to distinguish between polynomial and
exponential tails,” Scandinavian Journal of Statistics, vol. 41, no. 2, pp.
382–393, 2014.

[23] J. Abella et al., “Measurement-based worst-case execution time estima-
tion using the coefficient of variation,” ACM Transactions on Design
Automation of Electronic Systems, to appear 2017.

[24] S. Milutinovic et al., “Software time reliability in the presence of cache
memories,” in Ada-Europe, 2017.

[25] J. Abella et al., “Extreme value theory in computer sciences: The case
of embedded safety-critical systems,” in 6th International Conference
on Risk Analysis (ICRA), 2015.

[26] R. Wilhelm et al., “The worst-case execution time problem: overview of
methods and survey of tools,” Trans. on Embedded Computing Systems,
vol. 7, no. 3, pp. 1–53, 2008.

[27] M. Ziccardi et al., “EPC: Extended path coverage for measurement-
based probabilistic timing analysis,” in RTSS, 2015.

[28] L. Kosmidis et al., “PUB: Path upper-bounding for measurement-based
probabilistic timing analysis,” in ECRTS, 2014.

[29] L. David et al., “Static determination of probabilistic execution times,”
in ECRTS, June 2004, pp. 223–230.

[30] Y. Lu et al., “A statistical response-time analysis of real-time embedded
systems,” in RTSS, 2012.

[31] S. Edgar et al., “Statistical analysis of WCET for scheduling,” in the
22nd IEEE Real-Time Systems Symposium (RTSS01), 2001.

[32] G. Bernat et al., “WCET analysis of probabilistic hard real-time system,”
in RTSS, 2002.

[33] J. Hansen et al., “Statistical-based wcet estimation and validation,” in
WCET Workshop, 2009.

[34] D. Griffin et al., “Realism in Statistical Analysis of Worst Case Execu-
tion Times,” in WCET Workshop, 2010.

[35] F. Guet et al., “On the reliability of probabilistic worst-case execution
time estimates,” in ERTS2, 2016.

[36] K. Berezovskyi et al., “Measurement-based probabilistic timing analysis
for graphics processor units,” in ARCS, 2016.

6


