15 research outputs found

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put ā€œintelligenceā€ into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    Optical wireless MIMO communication

    Get PDF
    This thesis provides an in-depth investigation and evaluation of infrared optical wireless MIMO communication systems to be applied in both indoor and outdoor environment. The principle objective of the research is to demonstrate both the advantages and disadvantages of the optical wireless MIMO systems using different modulation types. The first part provided analyses of important OW configurations using APD receivers using WMC model and SISO, MISO, SIMO and MIMO configuration. Thus, an analytical expression for 2-1 MISO, 1-2 SIMO and MIMO was successfully developed. This part also illustrates the coding gains possible using diversity schemes for APD OW systems. In the presence of strong fading, the SISO approach is rendered virtually useless, whereas diversity offers acceptable BER values. The results underpin the approach of this thesis, where indoor PIN diode based experimental measurements confirm the gains offered by diversity. In the second part of the work, several optical wireless MIMO systems applicable for the indoor environment are developed for three different modulation types, OOK modulation, PPM modulation and SIR-RZI modulation. These modulations are used in optical MIMO systems are studied for which, mathematical models that evaluate the BER performance of the MIMO system for different axis displacement and for different distances between transmitters and receivers. Based on the results, the PPM system has been shown to present the best BER performance, including high interference-resistance capability. A group of new mathematical models have been evaluated, which demonstrates a high level of correlation with the results derived from empirical models at 93%. Thus, the mathematical models developed and used for the specified evaluation appear to correspond reasonably well, and can be applied in future research on these aspects

    Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Get PDF
    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles

    Advances in Manufacturing Technology XXVII: Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013)

    Get PDF
    ICMR2013 was organised by Cranfield University on the 19-20 September 2013. The conference focuses on any aspects of product development, manufacturing technology, manufacturing systems, information systems and digital technologies. It provides an excellent avenue for researchers to present state-of-the-art multidisciplinary manufacturing research and exchange ideas. In addition to the four keynote speeches from Airbus and Rolls-Royce and three invited presentations, there are 108 papers in these proceedings. These papers are split into 24 technical sessions. The International Conference on Manufacturing Research is a major event for academics and industrialists engaged in manufacturing research. Held annually in the UK since the late 1970s, the conference is renowned as a friendly and inclusive environment that brings together a broad community of researchers who share a common goal; developing and managing the technologies and operations that are key to sustaining the success of manufacturing businesses. For over two decades, ICMR has been the main manufacturing research conference organised in the UK, successfully bringing researchers, academics and industrialists together to share their knowledge and experiences. Initiated a National Conference by the Consortium of UK University Manufacturing Engineering Heads (COMEH), it became an International Conference in 2003. COMEH is an independent body established in 1978. Its main aim is to promote manufacturing engineering education, training and research. To achieve this, the Consortium maintains a close liaison with government bodies concerned with the training and continuing development of professional engineers, while responding to the appropriate consultative and discussion documents and other initiatives. COMEH is represented on the Engineering Professorā€™s council (EPC) and it organises and supports national manufacturing engineering education research conferences and symposia

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore