529 research outputs found

    Thread-Modular Static Analysis for Relaxed Memory Models

    Full text link
    We propose a memory-model-aware static program analysis method for accurately analyzing the behavior of concurrent software running on processors with weak consistency models such as x86-TSO, SPARC-PSO, and SPARC-RMO. At the center of our method is a unified framework for deciding the feasibility of inter-thread interferences to avoid propagating spurious data flows during static analysis and thus boost the performance of the static analyzer. We formulate the checking of interference feasibility as a set of Datalog rules which are both efficiently solvable and general enough to capture a range of hardware-level memory models. Compared to existing techniques, our method can significantly reduce the number of bogus alarms as well as unsound proofs. We implemented the method and evaluated it on a large set of multithreaded C programs. Our experiments showthe method significantly outperforms state-of-the-art techniques in terms of accuracy with only moderate run-time overhead.Comment: revised version of the ESEC/FSE 2017 pape

    ORCA: Ordering-free Regions for Consistency and Atomicity

    Get PDF
    Writing correct synchronization is one of the main difficulties of multithreaded programming. Incorrect synchronization causes many subtle concurrency errors such as data races and atomicity violations. Previous work has proposed stronger memory consistency models to rule out certain classes of concurrency bugs. However, these approaches are limited by a program’s original (and possibly incorrect) synchronization. In this work, we provide stronger guarantees than previous memory consistency models by punctuating atomicity only at ordering constructs like barriers, but not at lock operations. We describe the Ordering-free Regions for Consistency and Atomicity (ORCA) system which enforces atomicity at the granularity of ordering-free regions (OFRs). While many atomicity violations occur at finer granularity, in an empirical study of many large multithreaded workloads we find no examples of code that requires atomicity coarser than OFRs. Thus, we believe OFRs are a conservative approximation of the atomicity requirements of many programs. ORCA assists programmers by throwing an exception when OFR atomicity is threatened, and, in exception-free executions, guaranteeing that all OFRs execute atomically. In our evaluation, we show that ORCA automatically prevents real concurrency bugs. A user-study of ORCA demonstrates that synchronizing a program with ORCA is easier than using a data race detector. We evaluate modest hardware support that allows ORCA to run with just 18% slowdown on average over pthreads, with very similar scalability

    Maintaining the correctness of transactional memory programs

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaThis dissertation addresses the challenge of maintaining the correctness of transactional memory programs, while improving its parallelism with small transactions and relaxed isolation levels. The efficiency of the transactional memory systems depends directly on the level of parallelism, which in turn depends on the conflict rate. A high conflict rate between memory transactions can be addressed by reducing the scope of transactions, but this approach may turn the application prone to the occurrence of atomicity violations. Another way to address this issue is to ignore some of the conflicts by using a relaxed isolation level, such as snapshot isolation, at the cost of introducing write-skews serialization anomalies that break the consistency guarantees provided by a stronger consistency property, such as opacity. In order to tackle the correctness issues raised by the atomicity violations and the write-skew anomalies, we propose two static analysis techniques: one based in a novel static analysis algorithm that works on a dependency graph of program variables and detects atomicity violations; and a second one based in a shape analysis technique supported by separation logic augmented with heap path expressions, a novel representation based on sequences of heap dereferences that certifies if a transactional memory program executing under snapshot isolation is free from writeskew anomalies. The evaluation of the runtime execution of a transactional memory algorithm using snapshot isolation requires a framework that allows an efficient implementation of a multi-version algorithm and, at the same time, enables its comparison with other existing transactional memory algorithms. In the Java programming language there was no framework satisfying both these requirements. Hence, we extended an existing software transactional memory framework that already supported efficient implementations of some transactional memory algorithms, to also support the efficient implementation of multi-version algorithms. The key insight for this extension is the support for storing the transactional metadata adjacent to memory locations. We illustrate the benefits of our approach by analyzing its impact with both single- and multi-version transactional memory algorithms using several transactional workloads.Fundação para a Ciência e Tecnologia - PhD research grant SFRH/BD/41765/2007, and in the research projects Synergy-VM (PTDC/EIA-EIA/113613/2009), and RepComp (PTDC/EIAEIA/ 108963/2008

    CONTEXT-AWARE DEBUGGING FOR CONCURRENT PROGRAMS

    Get PDF
    Concurrency faults are difficult to reproduce and localize because they usually occur under specific inputs and thread interleavings. Most existing fault localization techniques focus on sequential programs but fail to identify faulty memory access patterns across threads, which are usually the root causes of concurrency faults. Moreover, existing techniques for sequential programs cannot be adapted to identify faulty paths in concurrent programs. While concurrency fault localization techniques have been proposed to analyze passing and failing executions obtained from running a set of test cases to identify faulty access patterns, they primarily focus on using statistical analysis. We present a novel approach to fault localization using feature selection techniques from machine learning. Our insight is that the concurrency access patterns obtained from a large volume of coverage data generally constitute high dimensional data sets, yet existing statistical analysis techniques for fault localization are usually applied to low dimensional data sets. Each additional failing or passing run can provide more diverse information, which can help localize faulty concurrency access patterns in code. The patterns with maximum feature diversity information can point to the most suspicious pattern. We then apply data mining technique and identify the interleaving patterns that are occurred most frequently and provide the possible faulty paths. We also evaluate the effectiveness of fault localization using test suites generated from different test adequacy criteria. We have evaluated Cadeco on 10 real-world multi-threaded Java applications. Results indicate that Cadeco outperforms state-of-the-art approaches for localizing concurrency faults

    Strong Memory Consistency For Parallel Programming

    Get PDF
    Correctly synchronizing multithreaded programs is challenging, and errors can lead to program failures (e.g., atomicity violations). Existing memory consistency models rule out some possible failures, but are limited by depending on subtle programmer-defined locking code and by providing unintuitive semantics for incorrectly synchronized code. Stronger memory consistency models assist programmers by providing them with easier-to-understand semantics with regard to memory access interleavings in parallel code. This dissertation proposes a new strong memory consistency model based on ordering-free regions (OFRs), which are spans of dynamic instructions between consecutive ordering constructs (e.g. barriers). Atomicity over ordering-free regions provides stronger atomicity than existing strong memory consistency models with competitive performance. Ordering-free regions also simplify programmer reasoning by limiting the potential for atomicity violations to fewer points in the program’s execution. This dissertation explores both software-only and hardware-supported systems that provide OFR serializability

    Dynamic Analysis of Embedded Software

    Get PDF
    abstract: Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation overhead for gathering execution information may change the execution of a program, and lead to distorted analysis results, i.e., probe effect. This thesis presents a framework that tackles the non-determinism and probe effect incurred in dynamic analysis of embedded software. The thesis largely consists of three parts. First of all, we discusses a deterministic replay framework to provide reproducible execution. Once a program execution is recorded, software instrumentation can be safely applied during replay without probe effect. Second, a discussion of probe effect is presented and a simulation-based analysis is proposed to detect execution changes of a program caused by instrumentation overhead. The simulation-based analysis examines if the recording instrumentation changes the original program execution. Lastly, the thesis discusses data race detection algorithms that help to remove data races for correctness of the replay and the simulation-based analysis. The focus is to make the detection efficient for C/C++ programs, and to increase scalability of the detection on multi-core machines.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Towards lightweight and high-performance hardware transactional memory

    Get PDF
    Conventional lock-based synchronization serializes accesses to critical sections guarded by the same lock. Using multiple locks brings the possibility of a deadlock or a livelock in the program, making parallel programming a difficult task. Transactional Memory (TM) is a promising paradigm for parallel programming, offering an alternative to lock-based synchronization. TM eliminates the risk of deadlocks and livelocks, while it provides the desirable semantics of Atomicity, Consistency, and Isolation of critical sections. TM speculatively executes a series of memory accesses as a single, atomic, transaction. The speculative changes of a transaction are kept private until the transaction commits. If a transaction can break the atomicity or cause a deadlock or livelock, the TM system aborts the transaction and rolls back the speculative changes. To be effective, a TM implementation should provide high performance and scalability. While implementations of TM in pure software (STM) do not provide desirable performance, Hardware TM (HTM) implementations introduce much smaller overhead and have relatively good scalability, due to their better control of hardware resources. However, many HTM systems support only the transactions that fit limited hardware resources (for example, private caches), and fall back to software mechanisms if hardware limits are reached. These HTM systems, called best-effort HTMs, are not desirable since they force a programmer to think in terms of hardware limits, to use both HTM and STM, and to manage concurrent transactions in HTM and STM. In contrast with best-effort HTMs, unbounded HTM systems support overflowed transactions, that do not fit into private caches. Unbounded HTM systems often require complex protocols or expensive hardware mechanisms for conflict detection between overflowed transactions. In addition, an execution with overflowed transactions is often much slower than an execution that has only regular transactions. This is typically due to restrictive or approximative conflict management mechanism used for overflowed transactions. In this thesis, we study hardware implementations of transactional memory, and make three main contributions. First, we improve the general performance of HTM systems by proposing a scalable protocol for conflict management. The protocol has precise conflict detection, in contrast with often-employed inexact Bloom-filter-based conflict detection, which often falsely report conflicts between transactions. Second, we propose a best-effort HTM that utilizes the new scalable conflict detection protocol, termed EazyHTM. EazyHTM allows parallel commits for all non-conflicting transactions, and generally simplifies transaction commits. Finally, we propose an unbounded HTM that extends and improves the initial protocol for conflict management, and we name it EcoTM. EcoTM features precise conflict detection, and it efficiently supports large as well as small and short transactions. The key idea of EcoTM is to leverage an observation that very few locations are actually conflicting, even if applications have high contention. In EcoTM, each core locally detects if a cache line is non-conflicting, and conflict detection mechanism is invoked only for the few potentially conflicting cache lines.La Sincronización tradicional basada en los cerrojos de exclusión mutua (locks) serializa los accesos a las secciones críticas protegidas este cerrojo. La utilización de varios cerrojos en forma concurrente y/o paralela aumenta la posibilidad de entrar en abrazo mortal (deadlock) o en un bloqueo activo (livelock) en el programa, está es una de las razones por lo cual programar en forma paralela resulta ser mucho mas dificultoso que programar en forma secuencial. La memoria transaccional (TM) es un paradigma prometedor para la programación paralela, que ofrece una alternativa a los cerrojos. La memoria transaccional tiene muchas ventajas desde el punto de vista tanto práctico como teórico. TM elimina el riesgo de bloqueo mutuo y de bloqueo activo, mientras que proporciona una semántica de atomicidad, coherencia, aislamiento con características similares a las secciones críticas. TM ejecuta especulativamente una serie de accesos a la memoria como una transacción atómica. Los cambios especulativos de la transacción se mantienen privados hasta que se confirma la transacción. Si una transacción entra en conflicto con otra transacción o sea que alguna de ellas escribe en una dirección que la otra leyó o escribió, o se entra en un abrazo mortal o en un bloqueo activo, el sistema de TM aborta la transacción y revierte los cambios especulativos. Para ser eficaz, una implementación de TM debe proporcionar un alto rendimiento y escalabilidad. Las implementaciones de TM en el software (STM) no proporcionan este desempeño deseable, en cambio, las mplementaciones de TM en hardware (HTM) tienen mejor desempeño y una escalabilidad relativamente buena, debido a su mejor control de los recursos de hardware y que la resolución de los conflictos así el mantenimiento y gestión de los datos se hace en hardware. Sin embargo, muchos de los sistemas de HTM están limitados a los recursos de hardware disponibles, por ejemplo el tamaño de las caches privadas, y dependen de mecanismos de software para cuando esos límites son sobrepasados. Estos sistemas HTM, llamados best-effort HTM no son deseables, ya que obligan al programador a pensar en términos de los límites existentes en el hardware que se esta utilizando, así como en el sistema de STM que se llama cuando los recursos son sobrepasados. Además, tiene que resolver que transacciones hardware y software se ejecuten concurrentemente. En cambio, los sistemas de HTM ilimitados soportan un numero de operaciones ilimitadas o sea no están restringidos a límites impuestos artificialmente por el hardware, como ser el tamaño de las caches o buffers internos. Los sistemas HTM ilimitados por lo general requieren protocolos complejos o mecanismos muy costosos para la detección de conflictos y el mantenimiento de versiones de los datos entre las transacciones. Por otra parte, la ejecución de transacciones es a menudo mucho más lenta que en una ejecución sobre un sistema de HTM que este limitado. Esto es debido al que los mecanismos utilizados en el HTM limitado trabaja con conjuntos de datos relativamente pequeños que caben o están muy cerca del núcleo del procesador. En esta tesis estudiamos implementaciones de TM en hardware. Presentaremos tres contribuciones principales: Primero, mejoramos el rendimiento general de los sistemas, al proponer un protocolo escalable para la gestión de conflictos. El protocolo detecta los conflictos de forma precisa, en contraste con otras técnicas basadas en filtros Bloom, que pueden reportar conflictos falsos entre las transacciones. Segundo, proponemos un best-effort HTM que utiliza el nuevo protocolo escalable detección de conflictos, denominado EazyHTM. EazyHTM permite la ejecución completamente paralela de todas las transacciones sin conflictos, y por lo general simplifica la ejecución. Por último, proponemos una extensión y mejora del protocolo inicial para la gestión de conflictos, que llamaremos EcoTM. EcoTM cuenta con detección de conflictos precisa, eficiente y es compatible tanto con transacciones grandes como con pequeñas. La idea clave de EcoTM es aprovechar la observación que en muy pocas ubicaciones de memoria aparecen los conflictos entre las transacciones, incluso en aplicaciones tienen muchos conflictos. En EcoTM, cada núcleo detecta localmente si la línea es conflictiva, además existe un mecanismo de detección de conflictos detallado que solo se activa para las pocas líneas de memoria que son potencialmente conflictivas

    OSCAR. A Noise Injection Framework for Testing Concurrent Software

    Get PDF
    “Moore’s Law” is a well-known observable phenomenon in computer science that describes a visible yearly pattern in processor’s die increase. Even though it has held true for the last 57 years, thermal limitations on how much a processor’s core frequencies can be increased, have led to physical limitations to their performance scaling. The industry has since then shifted towards multicore architectures, which offer much better and scalable performance, while in turn forcing programmers to adopt the concurrent programming paradigm when designing new software, if they wish to make use of this added performance. The use of this paradigm comes with the unfortunate downside of the sudden appearance of a plethora of additional errors in their programs, stemming directly from their (poor) use of concurrency techniques. Furthermore, these concurrent programs themselves are notoriously hard to design and to verify their correctness, with researchers continuously developing new, more effective and effi- cient methods of doing so. Noise injection, the theme of this dissertation, is one such method. It relies on the “probe effect” — the observable shift in the behaviour of concurrent programs upon the introduction of noise into their routines. The abandonment of ConTest, a popular proprietary and closed-source noise injection framework, for testing concurrent software written using the Java programming language, has left a void in the availability of noise injection frameworks for this programming language. To mitigate this void, this dissertation proposes OSCAR — a novel open-source noise injection framework for the Java programming language, relying on static bytecode instrumentation for injecting noise. OSCAR will provide a free and well-documented noise injection tool for research, pedagogical and industry usage. Additionally, we propose a novel taxonomy for categorizing new and existing noise injection heuristics, together with a new method for generating and analysing concurrent software traces, based on string comparison metrics. After noising programs from the IBM Concurrent Benchmark with different heuristics, we observed that OSCAR is highly effective in increasing the coverage of the interleaving space, and that the different heuristics provide diverse trade-offs on the cost and benefit (time/coverage) of the noise injection process.Resumo A “Lei de Moore” é um fenómeno, bem conhecido na área das ciências da computação, que descreve um padrão evidente no aumento anual da densidade de transístores num processador. Mesmo mantendo-se válido nos últimos 57 anos, o aumento do desempenho dos processadores continua garrotado pelas limitações térmicas inerentes `a subida da sua frequência de funciona- mento. Desde então, a industria transitou para arquiteturas multi núcleo, com significativamente melhor e mais escalável desempenho, mas obrigando os programadores a adotar o paradigma de programação concorrente ao desenhar os seus novos programas, para poderem aproveitar o desempenho adicional que advém do seu uso. O uso deste paradigma, no entanto, traz consigo, por consequência, a introdução de uma panóplia de novos erros nos programas, decorrentes diretamente da utilização (inadequada) de técnicas de programação concorrente. Adicionalmente, estes programas concorrentes são conhecidos por serem consideravelmente mais difíceis de desenhar e de validar, quanto ao seu correto funcionamento, incentivando investi- gadores ao desenvolvimento de novos métodos mais eficientes e eficazes de o fazerem. A injeção de ruído, o tema principal desta dissertação, é um destes métodos. Esta baseia-se no “efeito sonda” (do inglês “probe effect”) — caracterizado por uma mudança de comportamento observável em programas concorrentes, ao terem ruído introduzido nas suas rotinas. Com o abandono do Con- Test, uma framework popular, proprietária e de código fechado, de análise dinâmica de programas concorrentes através de injecção de ruído, escritos com recurso `a linguagem de programação Java, viu-se surgir um vazio na oferta de framework de injeção de ruído, para esta mesma linguagem. Para mitigar este vazio, esta dissertação propõe o OSCAR — uma nova framework de injeção de ruído, de código-aberto, para a linguagem de programação Java, que utiliza manipulação estática de bytecode para realizar a introdução de ruído. O OSCAR pretende oferecer uma ferramenta livre e bem documentada de injeção de ruído para fins de investigação, pedagógicos ou até para a indústria. Adicionalmente, a dissertação propõe uma nova taxonomia para categorizar os dife- rentes tipos de heurísticas de injecção de ruídos novos e existentes, juntamente com um método para gerar e analisar traces de programas concorrentes, com base em métricas de comparação de strings. Após inserir ruído em programas do IBM Concurrent Benchmark, com diversas heurísticas, ob- servámos que o OSCAR consegue aumentar significativamente a dimensão da cobertura do espaço de estados de programas concorrentes. Adicionalmente, verificou-se que diferentes heurísticas produzem um leque variado de prós e contras, especialmente em termos de eficácia versus eficiência
    corecore